WO2020125066A1 - 切向电机、电机转子及转子铁芯 - Google Patents

切向电机、电机转子及转子铁芯 Download PDF

Info

Publication number
WO2020125066A1
WO2020125066A1 PCT/CN2019/104096 CN2019104096W WO2020125066A1 WO 2020125066 A1 WO2020125066 A1 WO 2020125066A1 CN 2019104096 W CN2019104096 W CN 2019104096W WO 2020125066 A1 WO2020125066 A1 WO 2020125066A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor core
magnetic isolation
rotor
magnetic
isolation hole
Prior art date
Application number
PCT/CN2019/104096
Other languages
English (en)
French (fr)
Inventor
魏会军
肖勇
王晶
孙文娇
陈华杰
陈彬
高明世
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Publication of WO2020125066A1 publication Critical patent/WO2020125066A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present application relates to the technical field of motors, in particular to tangential motors, motor rotors and rotor cores.
  • Tangential permanent magnet synchronous motor has the effect of "magnetism". Compared with radial permanent magnet synchronous motor, it can produce higher air gap magnetic density, which makes the motor have small size, light weight, large torque and large power density. The advantages of high motor efficiency and good dynamic performance are increasingly used in industrial fields such as servo systems, electric traction, and home appliance industries.
  • a rotor core the rotor core is provided with a plurality of permanent magnet slots spaced along its circumferential direction, and the rotor core has a rotor magnetic pole between two adjacent permanent magnet slots;
  • the rotor magnetic pole is provided with a first magnetic isolation hole and a second magnetic isolation hole, the first magnetic isolation hole is located on the radial center line of the rotor magnetic pole, and the second magnetic isolation hole is distributed on the The first magnetic isolation hole is along both sides of the rotor core in the circumferential direction, and the width of the first magnetic isolation hole along the circumference of the rotor core is directed toward the center of the rotor core outside Gradually increase.
  • the first magnetic isolation hole is located on the radial center line of the rotor magnetic pole, so as to reduce the magnetic flux where the magnetic flux is relatively dense, and to uniform the magnetic flux of the entire rotor magnetic pole.
  • the width of the first magnetic shielding hole along the circumferential direction of the rotor core gradually increases from the outside of the rotor core toward its center, that is, the width of the first magnetic shielding hole gradually increases from the outside to the inside to increase
  • the magnetic resistance at the denser magnetic poles inside the rotor poles makes the magnetic flux at the radial centerline of the rotor poles evenly dispersed.
  • second magnetic isolation holes are distributed on both sides of the rotor core in the circumferential direction of the first magnetic isolation hole, and the second magnetic isolation holes cooperate with the first magnetic isolation holes to further uniform the magnetic flux on the rotor magnetic pole and improve the magnetic flux direction. In this way, comprehensively improve the waveform of the air gap magnetic density, reduce the proportion of harmonics, reduce the vibration and noise of the motor, reduce the harmonic loss, and improve the efficiency of the motor.
  • the magnetic resistance on the demagnetization magnetic path is increased, and the anti-demagnetization capability of the motor is improved.
  • the second magnetic isolation holes on both sides of the first magnetic isolation hole are symmetrical about a radial center line of the rotor magnetic pole.
  • the width of the outer side wall of the first magnetic isolation hole near the outer side of the rotor core is B
  • the width of the inner side wall of the first magnetic isolation hole near the center of the rotor core is C
  • B Meet the following relationship with C: 1.7 ⁇ B/C ⁇ 1.1.
  • the width of the second magnetic shielding hole along the circumferential direction of the rotor core gradually decreases in a direction toward the center of the rotor core outside.
  • the second magnetic isolation hole has a radially outermost end near the outer side of the rotor core and a radially innermost end near the center of the rotor core, the second magnetic isolation hole The radially outermost end extends obliquely to the radially innermost end in a direction away from the radial centerline of the rotor magnetic pole.
  • the first magnetic isolation hole and the second magnetic isolation hole are arranged offset in the circumferential direction of the rotor core.
  • the distance between the outer side wall of the outer side of the rotor core and the outer circumferential surface of the rotor core of the first magnetic isolation hole is smaller than that of the second magnetic isolation hole near the rotor iron
  • the distance between the outer side wall outside the core and the outer circumferential surface of the rotor core; the distance between the inner side of the first magnetic isolation hole near the center of the rotor core and the center of the rotor core is greater than the distance The distance between the inner side of the second magnetic isolation hole near the center of the rotor core and the center of the rotor core.
  • the distance between the outer sidewall of the first magnetic isolation hole and the outer sidewall of the second magnetic isolation hole is F, and the length of the first magnetic isolation hole along the radial direction of the rotor core Is G, F and G satisfy the following relationship: 0.8 ⁇ F/G ⁇ 0.4; and/or
  • the distance between the inner side wall of the first magnetic isolation hole and the inner side wall of the second magnetic isolation hole is J, and the length of the first magnetic isolation hole along the radial direction of the rotor core is G, G and J
  • the following relationship should be satisfied: 1.6 ⁇ G/J ⁇ 0.8.
  • an end of the second magnetic isolation hole near the rotor core has rounded corners or sharp corners.
  • the width of the outer side wall of the second magnetic isolation hole near the outer side of the rotor core is D
  • the width of the inner side wall of the second magnetic isolation hole near the center of the rotor core is E
  • E Meet the following relationship with D: 0.95 ⁇ E/D ⁇ 0.3.
  • the rotor pole is provided with a communication hole communicating between the first magnetic isolation hole and the second magnetic isolation hole.
  • the communication hole is parallel to the outer circumference of the rotor core, or the communication hole is tangentially inclined with respect to the outer circumference of the rotor core.
  • a third magnetic isolation hole is formed in the rotor magnetic pole, and the third magnetic isolation hole is adjacent to the permanent magnet slot and close to the outer circumferential surface of the rotor magnetic pole.
  • the present application also provides a motor rotor including a rotor core and a plurality of permanent magnets.
  • the rotor core is the above-mentioned rotor core.
  • the plurality of permanent magnets are respectively disposed in the plurality of permanent magnet slots, and each Two adjacent permanent magnets of the same polarity are oppositely arranged.
  • the width of the permanent magnet gradually decreases from the outer side of the rotor core to the center thereof.
  • the present application also provides a tangential motor including a motor stator and the above-mentioned motor rotor.
  • the motor rotor is rotatably disposed relative to the motor stator.
  • FIG. 1 is a schematic structural diagram of a tangential motor in an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of an electronic core in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an electronic iron core in another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electronic iron core in still another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an electronic iron core in another embodiment of the application.
  • FIG. 6 is a schematic structural diagram of an electronic iron core in another embodiment of this application.
  • FIG. 7 is a schematic structural view of an electronic iron core in another embodiment of the application.
  • FIG. 8 is a comparison diagram of the harmonic ratio of the tangential motor shown in FIG. 1 and the existing motor;
  • FIG. 9 is a comparison diagram of the back-EMF harmonics of the tangential motor shown in FIG. 1 and the existing motor;
  • FIG. 10 is a comparison diagram of the torque ripple of the tangential motor shown in FIG. 1 and the existing motor;
  • FIG. 11 is a comparison diagram of the demagnetization current of the tangential motor shown in FIG. 1 and the existing motor;
  • FIG. 12 is a comparison diagram of the radial electromagnetic force of the tangential motor shown in FIG. 1 and the existing motor;
  • FIG. 13 is a comparison diagram of the tangential electromagnetic force of the tangential motor shown in FIG. 1 and the existing motor.
  • an element when said to be “fixed” to another element, it can be directly on the other element or there can also be a centered element.
  • an element When an element is considered to be “connected” to another element, it may be directly connected to another element or there may be a center element at the same time.
  • a tangential motor 200 including a motor stator 210 and a motor rotor 100.
  • the motor rotor 100 is rotatably disposed relative to the motor stator 210, and is electromagnetically converted by a cutting magnetic field.
  • the motor rotor 100 is rotatably sleeved in the motor stator 210.
  • the motor rotor 100 includes a plurality of permanent magnets 10 and a rotor core 30.
  • a plurality of permanent magnet slots 31 are provided on the rotor core 30 at intervals along the circumferential direction thereof, and the plurality of permanent magnets 10 are respectively provided in a plurality of In the permanent magnet slot 31, and each adjacent two permanent magnets 10 are oppositely arranged with the same polarity, the permanent magnet 10 is fixedly installed on the rotor core 30 through the permanent magnet slot 31.
  • the permanent magnet 10 and the permanent magnet slot 31 extend in the radial direction of the rotor core 30, and the permanent magnet 10 is tangentially magnetized to form a tangential motor 200.
  • the width of the permanent magnet 10 gradually decreases from the outside of the rotor core 30 to the center thereof.
  • the strongest part affected by the reverse magnetic field is that the permanent magnet 10 is close to the outer end of the rotor, and the width of the permanent magnet 10 close to the outer end of the rotor is set wider, which can effectively improve The demagnetization resistance of the motor.
  • the rotor core 30 has a rotor magnetic pole 32 located between two adjacent permanent magnet slots 31.
  • the rotor magnetic pole 32 is further provided with a fixing hole 33 which can be inserted into the fixing hole 33.
  • the reinforcing rod is connected to a plurality of rotor punches in the rotor core 30 through the reinforcing rod.
  • a first magnetic isolation hole 35 and a second magnetic isolation hole 37 are also provided in the rotor magnetic pole 32, the first magnetic isolation hole 35 is located on the radial center line a of the rotor magnetic pole 32, and the second magnetic isolation hole 37 are distributed on both sides of the first magnetic isolation hole 35 along the circumferential direction of the rotor core 30, and the width of the first magnetic isolation hole 35 along the circumferential direction of the rotor core 30 gradually increases from the outer side of the rotor core 30 toward the center thereof Increase.
  • a first magnetic isolation hole 35 is provided on the radial center line a of the rotor magnetic pole 32 to reduce the magnetic flux where the magnetic flux is relatively dense, and the magnetic flux of the entire rotor magnetic pole 32 is uniform; and, the first magnetic isolation hole 35 The width of is gradually increased from the outside to the inside to increase the magnetic resistance of the rotor magnetic pole 32 where the magnetic poles are denser, so that the magnetic flux at the radial center line a of the rotor magnetic pole 32 is evenly dispersed.
  • second magnetic isolation holes 37 are provided on both sides of the first magnetic isolation hole 35, and cooperate with the first magnetic isolation holes 35 to further uniform the magnetic flux on the rotor magnetic pole 32 and improve the magnetic flux direction.
  • the width of the outer side wall of the first magnetic isolation hole 35 near the outer side of the rotor core 30 is B, and the width of the inner side wall of the first magnetic isolation hole 35 near the center of the rotor core 30 is C, B and C satisfies the following relationship: 1.7 ⁇ C/B ⁇ 1.1, the width of the first magnetic isolation hole 35 in the radial direction is reasonably set, to avoid excessive width difference between the two ends of the first magnetic isolation hole 35, and to ensure the effect of uniform magnetic flux.
  • the shape of the first magnetic shielding hole 35 is an isosceles trapezoid.
  • the first magnetic isolation hole 35 and the second magnetic isolation hole 37 are located on the side of the fixing hole 33 close to the outer periphery of the rotor core 30, that is, the first magnetic isolation hole 35 and the second magnetic isolation hole 37 It is provided near the outer side of the rotor core 30.
  • the minimum distance between the fixing hole 33 and the first magnetic isolation hole 35 and the second magnetic isolation hole 37 is greater than 1.5 mm, which ensures the mechanism between the fixing hole 33 and the first magnetic isolation hole 35 and the second magnetic isolation hole 37 Strength, improve safety and reliability.
  • the second magnetic isolation holes 37 on both sides of the first magnetic isolation hole 35 are arranged symmetrically with respect to the radial center line a of the rotor magnetic pole 32 so as to be on both sides of the radial center line a of the rotor magnetic pole 32 Guide the magnetic flux evenly and reduce the proportion of harmonics.
  • the width of the second magnetic isolation hole 37 along the circumferential direction of the rotor core 30 gradually decreases in the direction in which the outer side of the rotor core 30 points toward the center, and the width of the second magnetic isolation hole 37 gradually decreases from the outside to the inside , And the first magnetic isolation hole 35 whose width gradually increases from the outside to the inside compensates for the magnetic resistance to guide the direction of the magnetic flux uniformly.
  • the width of the outer side wall of the second magnetic isolation hole 37 near the outer side of the rotor core 30 is D
  • the width of the inner side wall of the second magnetic isolation hole 37 near the center of the rotor core 30 is E
  • E and D satisfy the following relationship: 0.95 ⁇ E/D ⁇ 0.3, set a reasonable width difference between the two ends of the second magnetic isolation hole 37.
  • E/D ⁇ 0.3 the difficulty of rotor stamping process can be reduced.
  • the end of the second magnetic isolation hole 37 near the center of the rotor core 30 has rounded corners or sharp corners (as shown in FIG. 2 ), that is, the width of the second magnetic isolation hole 37 At that time, it gradually decreased to zero.
  • the second magnetic isolation hole 37 has a radially outermost end 372 near the rotor core 30 and a radially innermost end 374 near the center of the rotor core 30.
  • the outer end 372 extends obliquely to the radially innermost end 374 in a direction away from the radial center line a of the rotor magnetic pole 32, that is to say, the second magnetic isolation hole 37 is inclined relative to the radial center line a of the rotor magnetic pole 32, and the second The outer end of the magnetic isolation hole 37 is closer to the radial center line a of the rotor magnetic pole 32, and the inner end of the second magnetic isolation hole 37 is farther away from the radial center line a of the rotor magnetic pole 32 to increase the second magnetic isolation hole 37
  • the magnetic flux barrier and guidance are performed from the circumferential and radial directions of the rotor core 30 to further uniform the magnetic flux and reduce the proportion of harmonics.
  • the distance between the second magnetic isolation hole 37 and the adjacent permanent magnet slot 31 is also gradual, and the distance between the inner end of the second magnetic isolation hole 37 and the adjacent permanent magnet slot 31 is 1 ,
  • the distance between the outer end of the second magnetic shielding hole 37 and the same adjacent permanent magnet slot 31 is H, and the following relationship is satisfied between I and H: 0.5 ⁇ I/H ⁇ 0.1, making the permeability of the magnetic circuit more transitional Evenly.
  • the first magnetic isolation holes 35 and the second magnetic isolation holes 37 are arranged offset in the circumferential direction of the rotor core 30 to prevent the first magnetic isolation holes 35 and the second magnetic isolation holes 37 from being located on the rotor core 30
  • the magnetic flux barrier and guidance are further performed from the circumferential direction and the radial direction of the rotor core 30 to improve Magnetic flux uniformity.
  • the distance between the outer side wall of the first magnetic isolation hole 35 near the outer side of the rotor core 30 and the outer circumferential surface of the rotor core 30 is smaller than the outer side surface of the second magnetic isolation hole 37 near the outer side of the rotor core 30 and the rotor core
  • the distance between the outer peripheral surfaces of 30, that is, the first magnetic shielding hole 35 is closer to the outer peripheral surface of the rotor core 30 than the second magnetic shielding hole 37.
  • the distance between the inner side of the first magnetic isolation hole 35 near the center of the rotor core 30 and the center of the rotor core 30 is greater than the inner side of the second magnetic isolation hole 37 near the center of the rotor core 30 and the center of the rotor core 30 The distance between them, that is, the second magnetic isolation hole 37 is closer to the center of the rotor core 30 than the first magnetic isolation hole 35.
  • the first magnetic isolation hole 35 is closer to the outer periphery of the rotor core 30, and the second magnetic isolation hole 37 is closer to the center of the rotor core 30, and the first magnetic isolation hole 35 and the second isolation formed in the rotor core 30 are displaced in the circumferential direction ⁇ 37 ⁇ Magnetic hole 37.
  • the distance between the outer side wall of the first magnetic isolation hole 35 and the outer side wall of the second magnetic isolation hole 37 is F
  • the length of the first magnetic isolation hole 35 in the radial direction of the rotor core 30 is G
  • F and G satisfy The following relationship: 0.8 ⁇ F/G ⁇ 0.4, to avoid that the distance between the outer side wall of the first magnetic isolation hole 35 and the outer side wall of the second magnetic isolation hole 37 is too large or too small.
  • the distance between the inner side wall of the first magnetic isolation hole 35 and the inner side wall of the second magnetic isolation hole 37 is J
  • the length of the first magnetic isolation hole 35 along the radial direction of the rotor core 30 is G, G and J
  • the following relationship should be satisfied: 1.6 ⁇ G/J ⁇ 0.8, to avoid that the distance between the inner side wall of the first magnetic isolation hole 35 and the inner side wall of the second magnetic isolation hole 37 is too large or too small.
  • the distance between the first magnetic isolation hole 35 and the second magnetic isolation hole 37 is reasonably set to reduce the harmonics of the air gap magnetic density, reduce the back-EMF harmonics, and reduce the vibration noise while ensuring the motor flux linkage.
  • a first magnetic isolation bridge 34 having a thickness A is formed between the first magnetic isolation hole 35 and the outer circumferential surface of the rotor, and the air gap length between the motor rotor 100 and the motor stator 210 is ⁇ , A
  • the air gap length between the motor rotor 100 and the motor stator 210.
  • the bridge 36 changes the magnetic flux direction through the second magnetic isolation bridge 36, thereby improving the magnetic field distribution and reducing the motor noise.
  • the magnetic flux is transmitted through the second magnetic isolation bridge 36 to transmit magnetic energy to ensure the no-load flux linkage of the motor, the output capacity of the motor, and the efficiency of the motor.
  • the second magnetic shielding holes 37 are inclined, the corresponding second magnetic shielding bridge 36 is inclined accordingly.
  • the rotor pole 32 is provided with a communication hole 38 communicating between the first magnetic isolation hole 35 and the second magnetic isolation hole 37, so that the first The magnetic isolation hole 35, the communication hole 38, and the second magnetic isolation hole 37 are connected as an integrated magnetic isolation hole, which increases the magnetic resistance near the radial center line a of the rotor magnetic pole 32 and reduces the transmission from the radial center line a
  • the magnetic flux increases the magnetic flux transmitted from both sides of the radial center line a of the rotor magnetic pole 32, improves the air gap magnetic density waveform, reduces the proportion of harmonics, and reduces motor vibration and noise.
  • the communication hole 38 is filled with a non-magnetic conductive substance.
  • the communication hole 38 is parallel to the outer periphery of the rotor core 30, or the communication hole 38 is tangentially inclined with respect to the outer periphery of the rotor core 30, and the shape of the communication hole 38 is not limited herein.
  • a third magnetic isolation hole 39 is further provided in the rotor magnetic pole 32, the third magnetic isolation hole 39 is adjacent to the permanent magnet slot 31 and is close to the outer circumferential surface of the rotor magnetic pole 32.
  • a magnetic isolation bridge is formed between the three magnetic isolation holes 39 and the outer circumferential surface of the rotor pole 32, and a magnetic isolation bridge is also formed between the permanent magnet slot 31 to further optimize the air gap magnetic field distribution and effectively reduce the effects of harmonic magnetic fields. Torque pulsation reduces motor vibration and noise.
  • the above-mentioned motor rotor 100 is also provided. After being applied to the tangential motor 200, the motor noise can be reduced, and the demagnetization resistance of the motor can also be improved.
  • the above-mentioned rotor core 30 is further provided.
  • the rotor core 30 has a rotor magnetic pole 32 between two adjacent permanent magnet slots 31, and a first magnetic isolation hole is formed in the rotor magnetic pole 32 35 ⁇ 37 ⁇ 35 and the second magnetic isolation hole 37.
  • the first magnetic isolation hole 35 is located on the radial center line a of the rotor magnetic pole 32 to reduce the magnetic flux where the magnetic flux is denser, and to uniform the magnetic flux of the entire rotor magnetic pole 32.
  • the width of the first magnetic isolation hole 35 along the circumferential direction of the rotor core 30 gradually increases from the outside of the rotor core 30 toward its center, that is, the width of the first magnetic isolation hole 35 gradually increases from the outside to the inside
  • the magnetic flux at the radial center line a of the rotor magnetic pole 32 is evenly dispersed.
  • the second magnetic isolation holes 37 are distributed on both sides of the first magnetic isolation holes 35 along the circumferential direction of the rotor core 30.
  • the second magnetic isolation holes 37 cooperate with the first magnetic isolation holes 35 to further uniform the magnetic flux on the rotor magnetic pole 32. Improve magnetic flux. In this way, comprehensively improve the waveform of the air gap magnetic density, reduce the proportion of harmonics, reduce motor vibration and noise, reduce harmonic losses, and improve motor efficiency.
  • the magnetic resistance on the demagnetization magnetic path is increased, and the anti-demagnetization ability of the motor is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

一种切向电机(200)、电机转子(100)及转子铁芯(30),转子铁芯(30)上沿其周向间隔开设有多个永磁体槽(31),转子铁芯(30)具有位于相邻两个永磁体槽(31)之间的转子磁极(32);其中,转子磁极(32)上开设有第一隔磁孔(35)及第二隔磁孔(37),第一隔磁孔(35)位于转子磁极(32)的径向中心线(a)上,以减小磁通较为密集处的磁通,均匀转子磁极(32)整体的磁通。同时,第一隔磁孔(35)的宽度由外至内逐渐增大,以增大转子磁极(32)内部磁极较为密集处的磁阻,使转子磁极(32)径向中心线(a)处的磁通均匀分散。并且,第二隔磁孔(37)分布于第一隔磁孔(35)沿转子铁芯(30)周向的两侧,第二隔磁孔(37)配合第一隔磁孔(35)进一步均匀转子磁极(32)上的磁通,改善磁通走向。上述技术方案综合改善气隙磁密的波形,降低谐波占比,降低电机振动及噪声。

Description

切向电机、电机转子及转子铁芯
相关申请
本申请要求2018年12月20日申请的,申请号为201811566044.5,名称为“切向电机、电机转子及转子铁芯”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及电机技术领域,特别是涉及切向电机、电机转子及转子铁芯。
背景技术
切向永磁同步电机具有“聚磁”的效果,与径向永磁同步电机相比,能产生更高的气隙磁密,使得电机具有体积小,重量轻,转矩大,功率密度大,电机效率高及动态性能好等优点,越来越多地被应用于伺服系统、电力牵引等工业领域及家电行业。
但是,切向永磁同步电机中,因为永磁体的磁极不直接面对定子,气隙磁场调节难度较大,气隙磁密、反电势的谐波含量较大,使得电机转矩脉动较大,电机振动较大。
发明内容
基于此,有必要针对切向电机振动较大的问题,提供一种减小电机振动的转子铁芯。
一种转子铁芯,所述转子铁芯上沿其周向间隔开设有多个永磁体槽,所述转子铁芯具有位于相邻两个所述永磁体槽之间的转子磁极;
其中,所述转子磁极上开设有第一隔磁孔及第二隔磁孔,所述第一隔磁孔位于所述转子磁极的径向中心线上,所述第二隔磁孔分布于所述第一隔磁孔沿所述转子铁芯周向的两侧,且所述第一隔磁孔沿所述转子铁芯周向的宽度,在所述转子铁芯外侧指向其中心的方向上逐渐增大。
上述转子铁芯中,第一隔磁孔位于转子磁极的径向中心线上,以减小磁通较为密集处的磁通,均匀转子磁极整体的磁通。同时,第一隔磁孔沿转子铁芯周向的宽度,在转子铁芯外侧指向其中心的方向上逐渐增大,即第一隔磁孔的宽度由外至内逐渐增大,以增大转子磁极内部磁极较为密集处的磁阻,使转子磁极径向中心线处的磁通均匀分散。并且,第一隔磁孔沿转子铁芯周向的两侧均分布有第二隔磁孔,第二隔磁孔配合第一隔磁孔进一步均匀转子磁极上的磁通,改善磁通走向。如此,综合改善气隙磁密的波形,降低谐波占比, 降低电机振动及噪声,降低谐波损耗,提高电机效率。同时,通过设置第一隔磁孔和第二隔磁孔,增大退磁磁路上的磁阻,提升电机抗退磁能力。
在其中一个实施例中,所述第一隔磁孔两侧的所述第二隔磁孔关于所述转子磁极的径向中心线对称。
在其中一个实施例中,所述第一隔磁孔靠近所述转子铁芯外侧的外侧壁宽度为B,所述第一隔磁孔靠近所述转子铁芯中心的内侧壁宽度为C,B与C满足以下关系:1.7≥B/C≥1.1。
在其中一个实施例中,所述第二隔磁孔沿所述转子铁芯周向的宽度,在所述转子铁芯外侧指向其中心的方向上逐渐减小。
在其中一个实施例中,所述第二隔磁孔具有靠近所述转子铁芯外侧的径向最外端和靠近所述转子铁芯中心的径向最内端,所述第二隔磁孔由所述径向最外端以远离所述转子磁极的径向中心线的方向倾斜延伸至所述径向最内端。
在其中一个实施例中,所述第一隔磁孔和所述第二隔磁孔在所述转子铁芯的周向上错位设置。
在其中一个实施例中,所述第一隔磁孔靠近所述转子铁芯外侧的外侧壁与所述转子铁芯外周面之间的距离,小于所述第二隔磁孔靠近所述转子铁芯外侧的外侧壁与所述转子铁芯外周面之间的距离;所述第一隔磁孔靠近所述转子铁芯中心的内侧面与所述转子铁芯中心之间的距离,大于所述第二隔磁孔靠近所述转子铁芯中心的内侧面与所述转子铁芯中心之间的距离。
在其中一个实施例中,所述第一隔磁孔外侧壁与所述第二隔磁孔外侧壁之间的距离为F,所述第一隔磁孔沿所述转子铁芯径向的长度为G,F与G满足以下关系:0.8≥F/G≥0.4;和/或
所述第一隔磁孔内侧壁与所述第二隔磁孔内侧壁之间的距离为J,所述第一隔磁孔沿所述转子铁芯径向的长度为G,G与J的应满足以下关系:1.6≥G/J≥0.8。
在其中一个实施例中,所述第二隔磁孔靠近所述转子铁芯的一端为圆角或尖角。
在其中一个实施例中,所述第二隔磁孔靠近所述转子铁芯外侧的外侧壁宽度为D,所述第二隔磁孔靠近所述转子铁芯中心的内侧壁宽度为E,E与D满足以下关系:0.95≥E/D≥0.3。
在其中一个实施例中,所述转子磁极上开设有连通于所述第一隔磁孔和所述第二隔磁孔之间的连通孔。
在其中一个实施例中,所述连通孔平行于所述转子铁芯的外周,或者所述连通孔相对 所述转子铁芯的外周切向倾斜。
在其中一个实施例中,所述第一隔磁孔与所述第二隔磁孔之间具有间距。
在其中一个实施例中,所述转子磁极上开设有第三隔磁孔,所述第三隔磁孔与所述永磁体槽相邻,且靠近所述转子磁极的外周面。
本申请还提供一种电机转子,包括转子铁芯和多个永磁铁,所述转子铁芯为上述转子铁芯,多个所述永磁体分别设置于多个所述永磁体槽内,且每相邻两个所述永磁体的同极性相对设置。
在其中一个实施例中,所述永磁体宽度在所述转子铁芯外侧至其中心的方向上逐渐减小。
本申请还提供一种切向电机,包括电机定子及上述电机转子,所述电机转子相对所述电机定子可转动设置。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本申请一实施例中切向电机的结构示意图;
图2为本申请一实施例中电子铁芯的结构示意图;
图3为本申请另一实施例中电子铁芯的结构示意图;
图4为本申请再一实施例中电子铁芯的结构示意图;
图5为本申请又一实施例中电子铁芯的结构示意图;
图6为本申请又一实施例中电子铁芯的结构示意图;
图7为本申请又一实施例中电子铁芯的结构示意图;
图8为图1所示切向电机与现有电机谐波占比的对比图;
图9为图1所示切向电机与现有电机反电势谐波对比图;
图10为图1所示切向电机与现有电机转矩脉动对比图;
图11为图1所示切向电机与现有电机退磁电流对比图;
图12为图1所示切向电机与现有电机径向电磁力对比图;
图13为图1所示切向电机与现有电机切向电磁力对比图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示,本申请一实施例中,提供一种切向电机200,包括电机定子210和电机转子100,电机转子100相对电机定子210可转动设置,通过切割磁场进行电磁转化。具体地,电机转子100可转动地套设于电机定子210内。
在一实施例中,电机转子100包括多个永磁体10和转子铁芯30,转子铁芯30上沿其周向间隔开设有多个永磁体槽31,多个永磁体10分别设于多个永磁体槽31内,且每相邻两个永磁体10的同极性相对设置,如此通过永磁体槽31在转子铁芯30上固定安装永磁体10。同时,永磁体10及永磁体槽31沿转子铁芯30的径向延伸,永磁体10切向磁化,以形成切向电机200。可选地,永磁体10宽度在转子铁芯30外侧至其中心的方向上逐渐减小。当电机定子210对永磁体10施加反向磁场时,受反向磁场作用最强部位为永磁体10靠近转子的外端,而将永磁体10靠近转子的外端宽度设置较宽,可以有效提升电机的抗退磁能力。
如图2所示,在一实施例中,转子铁芯30具有位于相邻两个永磁体槽31之间的转子磁极32,转子磁极32上还开设有固定孔33,固定孔33内可插入加强杆,通过加强杆连接转子铁芯30中的多片转子冲片。
在一实施例中,转子磁极32上还开设有第一隔磁孔35和第二隔磁孔37,第一隔磁孔35位于转子磁极32的径向中心线a上,第二隔磁孔37分布于第一隔磁孔35沿转子铁芯30周向的两侧,且第一隔磁孔35沿转子铁芯30周向的宽度,在转子铁芯30外侧指向其中心的方向上逐渐增大。首先,在转子磁极32的径向中心线a上设置第一隔磁孔35,以减小磁通较为密集处的磁通,均匀转子磁极32整体的磁通;并且,第一隔磁孔35的宽度 由外至内逐渐增大,以增大转子磁极32内部磁极较为密集处的磁阻,使转子磁极32径向中心线a处的磁通均匀分散。并且,在第一隔磁孔35两侧设置第二隔磁孔37,配合第一隔磁孔35进一步均匀转子磁极32上的磁通,改善磁通走向。如此,如图8-10所示,综合改善气隙磁密的波形,降低谐波占比,降低电机振动及噪声,降低谐波损耗,提高电机效率。同时,如图11所示,通过设置第一隔磁孔35和第二隔磁孔37,增大退磁磁路上的磁阻,提升电机抗退磁能力。
如图3所示,可选地,第一隔磁孔35靠近转子铁芯30外侧的外侧壁宽度为B,第一隔磁孔35靠近转子铁芯30中心的内侧壁宽度为C,B与C满足以下关系:1.7≥C/B≥1.1,合理设置第一隔磁孔35在径向上的宽度,避免第一隔磁孔35两端宽度差过大,保证均匀磁通的效果。具体地,第一隔磁孔35的形状为等腰梯形。
进一步地,在一实施例中,第一隔磁孔35和第二隔磁孔37位于固定孔33靠近转子铁芯30外周的一侧,即第一隔磁孔35和第二隔磁孔37靠近转子铁芯30的外侧设置。并且,固定孔33与第一隔磁孔35和第二隔磁孔37之间的最小距离大于1.5mm,保证固定孔33与第一隔磁孔35及第二隔磁孔37之间的机械强度,提高安全可靠性。
更进一步地,在一实施例中,第一隔磁孔35两侧的第二隔磁孔37关于转子磁极32的径向中心线a对称设置,以在转子磁极32径向中心线a两侧均匀引导磁通,降低谐波占比。
具体地,第二隔磁孔37沿转子铁芯30周向的宽度,在转子铁芯30外侧指向其中心的方向上逐渐减小,第二隔磁孔37的宽度由外至内逐渐减小,与宽度由外之内逐渐增大的第一隔磁孔35相互补偿磁阻,以均匀引导磁通走向。可选地,第二隔磁孔37靠近转子铁芯30外侧的外侧壁宽度为D,第二隔磁孔37靠近转子铁芯30中心的内侧壁宽度为E,E与D满足以下关系:0.95≥E/D≥0.3,设置合理的第二隔磁孔37两端的宽度差。并且,当E/D≥0.3时,可以降低转子冲压工艺难度。可以理解地,在其他一些实施例中,第二隔磁孔37靠近转子铁芯30中心的一端为圆角或尖角(如图2所示),即第二隔磁孔37的宽度由外至内逐渐递减为零。
在一些实施例中,第二隔磁孔37具有靠近转子铁芯30的径向最外端372和靠近转子铁芯30中心的径向最内端374,第二隔磁孔37由径向最外端372以远离转子磁极32径向中心线a的方向倾斜延伸至径向最内端374,也就是说第二隔磁孔37相对转子磁极32的径向中心线a倾斜设置,且第二隔磁孔37的外端距离转子磁极32的径向中心线a较近,第二隔磁孔37的内端距离转子磁极32的径向中心线a较远,以增大第二隔磁孔37在转子铁芯30周向上的跨度,以从转子铁芯30周向及径向上均进行磁通阻障及引导,进一步均 匀磁通,降低谐波占比。
同时,在一实施例中,第二隔磁孔37与相邻永磁体槽31之间的间距也是渐变的,第二隔磁孔37内端与相邻永磁体槽31之间的间距为I,第二隔磁孔37外端与同一相邻永磁体槽31之间的间距为H,I与H之间满足以下关系:0.5≥I/H≥0.1,使得磁路的磁导过渡的更均匀。
在一实施例中,第一隔磁孔35和第二隔磁孔37在转子铁芯30的周向上错位设置,避免第一隔磁孔35和第二隔磁孔37位于转子铁芯30的同一圆周上,以增加第一隔磁孔35和第二隔磁孔37在转子铁芯30径向上的跨度,进一步从转子铁芯30的周向及径向上进行磁通阻障及引导,提高磁通均匀性。
具体地,第一隔磁孔35靠近转子铁芯30外侧的外侧壁与转子铁芯30外周面之间的距离,小于第二隔磁孔37靠近转子铁芯30外侧的外侧面与转子铁芯30外周面之间的距离,也就是说第一隔磁孔35相比于第二隔磁孔37更靠近转子铁芯30的外周面。同时,第一隔磁孔35靠近转子铁芯30中心的内侧面与转子铁芯30中心之间的距离,大于第二隔磁孔37靠近转子铁芯30中心的内侧面与转子铁芯30中心之间的距离,也就是说第二隔磁孔37相比第一隔磁孔35更靠近转子铁芯30中心。如此,第一隔磁孔35更靠近转子铁芯30外周,第二隔磁孔37更靠近转子铁芯30中心,形成在转子铁芯30周向上错位的第一隔磁孔35和第二隔磁孔37。
可选地,第一隔磁孔35外侧壁与第二隔磁孔37外侧壁之间的距离为F,第一隔磁孔35沿转子铁芯30径向的长度为G,F与G满足以下关系:0.8≥F/G≥0.4,避免第一隔磁孔35外侧壁与第二隔磁孔37外侧壁之间的距离过大或过小。和/或,第一隔磁孔35内侧壁与第二隔磁孔37内侧壁之间的距离为J,第一隔磁孔35沿转子铁芯30径向的长度为G,G与J的应满足以下关系:1.6≥G/J≥0.8,避免第一隔磁孔35内侧壁与第二隔磁孔37内侧壁之间的距离过大或过小。如此,合理设置第一隔磁孔35与第二隔磁孔37错位的距离,以在保证电机磁链的情况下降低气隙磁密的谐波,降低反电势谐波,降低振动噪声。
并且,在一实施例中,第一隔磁孔35与转子外周面之间形成有厚度为A的第一隔磁桥34,电机转子100与电机定子210之间的气隙长度为δ,A与δ之间的满足以下关系:1.4≥A/δ≥1。A/δ<1时,第一隔磁桥34的厚度过窄,不易冲压,过窄易导致第一隔磁桥34断裂,增大气隙长度,降低电机的磁能传递效果;A/δ>1.4时,第一隔磁桥34的厚度过大,大部分磁通通过第一隔磁桥34传递,对磁路改善效果不明显,气隙磁密波形畸变依然很大。故当1.4≥A/δ≥1时,可以较好的改善电机气隙磁场的分布,降低了谐波占比,降低电机振动噪声,降低了谐波损耗,提高电机效率。并且,如图12-13所示,以 12S8P电机为例,电机的电磁力降低。
如图3所示,在一些实施例中,第一隔磁孔35与第二隔磁孔37之间具有间距,第一隔磁孔35和第二隔磁孔37之间形成第二隔磁桥36,通过第二隔磁桥36改变磁通走向,进而改善磁场分布,降低电机噪声。并且,通过第二隔磁桥36传递磁通,传递磁能,保证电机的空载磁链,保证电机的输出能力,保证电机效率。可选地,当第二隔磁孔37倾斜设置时,形成的第二隔磁桥36相对应的倾斜。
如图4-6所示,可以理解地,在其他一些实施例中,转子磁极32上开设有连通于第一隔磁孔35和第二隔磁孔37之间的连通孔38,使第一隔磁孔35、连通孔38及第二隔磁孔37连通为一个一体的隔磁孔,增大转子磁极32的径向中心线a附近的磁阻,减小从径向中心线a处传递的磁通,增大从转子磁极32径向中心线a两侧传递的磁通,改善气隙磁密波形,降低谐波占比,降低电机振动及噪声。可选地,连通孔38内填充不导磁物质。并且,连通孔38平行于转子铁芯30的外周,或者连通孔38相对转子铁芯30的外周切向倾斜,对于连通孔38的形状在此不做限定。
如图7所示,在一些实施例中,转子磁极32上还开设有第三隔磁孔39,第三隔磁孔39与永磁体槽31相邻,且靠近转子磁极32的外周面,第三隔磁孔39与转子磁极32外周面之间形成有隔磁桥,与永磁体槽31之间也形成有隔磁桥,以进一步优化气隙磁场分布,有效减小谐波磁场作用产生的转矩脉动,降低电机振动及噪声。
本申请一实施例中,还提供一种上述电机转子100,应用于切向电机200后,可以降低电机噪音,还可以提高电机的抗退磁能力。
本申请一实施例中,还提供一种上述转子铁芯30,转子铁芯30具有位于相邻两个永磁体槽31之间的转子磁极32,且转子磁极32上开设有第一隔磁孔35和第二隔磁孔37。
在一实施例中,第一隔磁孔35位于转子磁极32的径向中心线a上,以减小磁通较为密集处的磁通,均匀转子磁极32整体的磁通。同时,第一隔磁孔35沿转子铁芯30周向的宽度,在转子铁芯30外侧指向其中心的方向上逐渐增大,即第一隔磁孔35的宽度由外至内逐渐增大,以增大转子磁极32内部磁极较为密集处的磁阻,使转子磁极32径向中心线a处的磁通均匀分散。并且,第二隔磁孔37分布于第一隔磁孔35沿转子铁芯30周向的两侧,第二隔磁孔37配合第一隔磁孔35进一步均匀转子磁极32上的磁通,改善磁通走向。如此,综合改善气隙磁密的波形,降低谐波占比,降低电机振动及噪声,降低谐波损耗,提高电机效率。同时,通过设置第一隔磁孔35和第二隔磁孔37,增大退磁磁路上的磁阻,提升电机抗退磁能力。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例 中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (17)

  1. 一种转子铁芯(30),其特征在于,所述转子铁芯(30)上沿其周向间隔开设有多个永磁体槽(31),所述转子铁芯(30)具有位于相邻两个所述永磁体槽(31)之间的转子磁极(32);
    其中,所述转子磁极(32)上开设有第一隔磁孔(35)及第二隔磁孔(37),所述第一隔磁孔(35)位于所述转子磁极(32)的径向中心线(a)上,所述第二隔磁孔(37)分布于所述第一隔磁孔(35)沿所述转子铁芯(30)周向的两侧,且所述第一隔磁孔(35)沿所述转子铁芯(30)周向的宽度,在所述转子铁芯(30)外侧指向其中心的方向上逐渐增大。
  2. 根据权利要求1所述的转子铁芯(30),其特征在于,所述第一隔磁孔(35)两侧的所述第二隔磁孔(37)关于所述转子磁极(32)的径向中心线(a)对称。
  3. 根据权利要求1或2所述的转子铁芯(30),其特征在于,所述第一隔磁孔(35)靠近所述转子铁芯(30)外侧的外侧壁宽度为B,所述第一隔磁孔(35)靠近所述转子铁芯(30)中心的内侧壁宽度为C,B与C满足以下关系:1.7≥B/C≥1.1。
  4. 根据权利要求1所述的转子铁芯(30),其特征在于,所述第二隔磁孔(37)沿所述转子铁芯(30)周向的宽度,在所述转子铁芯(30)外侧指向其中心的方向上逐渐减小。
  5. 根据权利要求4所述的转子铁芯(30),其特征在于,所述第二隔磁孔(37)具有靠近所述转子铁芯(30)外侧的径向最外端(372)和靠近所述转子铁芯(30)中心的径向最内端(374),所述第二隔磁孔(37)由所述径向最外端(372)以远离所述转子磁极(32)的径向中心线(a)的方向倾斜延伸至所述径向最内端(374)。
  6. 根据权利要求1或5所述的转子铁芯(30),其特征在于,所述第一隔磁孔(35)和所述第二隔磁孔(37)在所述转子铁芯(30)的周向上错位设置。
  7. 根据权利要求6所述的转子铁芯(30),其特征在于,所述第一隔磁孔(35)靠近所述转子铁芯(30)外侧的外侧壁与所述转子铁芯(30)外周面之间的距离,小于所述第二隔磁孔(37)靠近所述转子铁芯(30)外侧的外侧壁与所述转子铁芯(30)外周面之间的距离;所述第一隔磁孔(35)靠近所述转子铁芯(30)中心的内侧面与所述转子铁芯(30)中心之间的距离,大于所述第二隔磁孔(37)靠近所述转子铁芯(30)中心的内侧面与所述转子铁芯(30)中心之间的距离。
  8. 根据权利要求7所述的转子铁芯(30),其特征在于,所述第一隔磁孔(35)外侧 壁与所述第二隔磁孔(37)外侧壁之间的距离为F,所述第一隔磁孔(35)沿所述转子铁芯(30)径向的长度为G,F与G满足以下关系:0.8≥F/G≥0.4;和/或
    所述第一隔磁孔(35)内侧壁与所述第二隔磁孔(37)内侧壁之间的距离为J,所述第一隔磁孔(35)沿所述转子铁芯(30)径向的长度为G,G与J的应满足以下关系:1.6≥G/J≥0.8。
  9. 根据权利要求4所述的转子铁芯(30),其特征在于,所述第二隔磁孔(37)靠近所述转子铁芯(30)的一端为圆角或尖角。
  10. 根据权利要求4所述的转子铁芯(30),其特征在于,所述第二隔磁孔(37)靠近所述转子铁芯(30)外侧的外侧壁宽度为D,所述第二隔磁孔(37)靠近所述转子铁芯(30)中心的内侧壁宽度为E,E与D满足以下关系:0.95≥E/D≥0.3。
  11. 根据权利要求1-5任意一项所述的转子铁芯(30),其特征在于,所述转子磁极(32)上开设有连通于所述第一隔磁孔(35)和所述第二隔磁孔(37)之间的连通孔(38)。
  12. 根据权利要求11所述的转子铁芯(30),其特征在于,所述连通孔(38)平行于所述转子铁芯(30)的外周,或者所述连通孔(38)相对所述转子铁芯(30)的外周切向倾斜。
  13. 根据权利要求1-5任意一项所述的转子铁芯(30),其特征在于,所述第一隔磁孔(35)与所述第二隔磁孔(37)之间具有间距。
  14. 根据权利要求1任意一项所述的转子铁芯(30),其特征在于,所述转子磁极(32)上开设有第三隔磁孔(39),所述第三隔磁孔(39)与所述永磁体槽(31)相邻,且靠近所述转子磁极(32)的外周面。
  15. 一种电机转子(100),其特征在于,包括转子铁芯(30)和多个永磁铁,所述转子铁芯(30)为上述权利要求1-14任意一项所述的转子铁芯(30),多个所述永磁体(10)分别设置于多个所述永磁体槽(31)内,且每相邻两个所述永磁体(10)的同极性相对设置。
  16. 根据权利要求15所述的电机转子(100),其特征在于,所述永磁体(10)宽度在所述转子铁芯(30)外侧至其中心的方向上逐渐减小。
  17. 一种切向电机200,其特征在于,包括电机定子(210)及上述权利要求15或16所述的电机转子(100),所述电机转子(100)相对所述电机定子(210)可转动设置。
PCT/CN2019/104096 2018-12-20 2019-09-03 切向电机、电机转子及转子铁芯 WO2020125066A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811566044.5A CN109412300B (zh) 2018-12-20 2018-12-20 切向电机、电机转子及转子铁芯
CN201811566044.5 2018-12-20

Publications (1)

Publication Number Publication Date
WO2020125066A1 true WO2020125066A1 (zh) 2020-06-25

Family

ID=65460626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104096 WO2020125066A1 (zh) 2018-12-20 2019-09-03 切向电机、电机转子及转子铁芯

Country Status (2)

Country Link
CN (1) CN109412300B (zh)
WO (1) WO2020125066A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412300B (zh) * 2018-12-20 2024-09-27 珠海格力节能环保制冷技术研究中心有限公司 切向电机、电机转子及转子铁芯
CN110401278B (zh) * 2019-05-21 2024-07-19 尼得科凯宇汽车电器(江苏)有限公司 一种刹车系统用无刷电机转子冲片结构
CN110932433A (zh) * 2019-11-21 2020-03-27 常州鋐汇动力科技有限公司 一种内置式永磁电机转子结构
CN112953063A (zh) * 2021-03-25 2021-06-11 中国科学院深圳先进技术研究院 用于伺服系统的五相电机
EP4213348A1 (en) * 2022-01-18 2023-07-19 Volvo Car Corporation Electric motor comprising a flux barrier
CN117277644B (zh) * 2022-06-15 2024-03-22 杭州松下马达有限公司 一种具有导流通道的转子铁芯及转子

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160036274A1 (en) * 2013-03-14 2016-02-04 Emerson Electric Co. Rotors and stators for dynamoelectric machines
CN106329776A (zh) * 2016-10-13 2017-01-11 华中科技大学 一种内置式转子结构的永磁电机
CN107222047A (zh) * 2017-08-09 2017-09-29 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯
CN107222045A (zh) * 2017-08-09 2017-09-29 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯
CN107240975A (zh) * 2017-08-09 2017-10-10 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯
CN107276353A (zh) * 2017-08-09 2017-10-20 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯
CN109412300A (zh) * 2018-12-20 2019-03-01 珠海格力节能环保制冷技术研究中心有限公司 切向电机、电机转子及转子铁芯
CN209134170U (zh) * 2018-12-20 2019-07-19 珠海格力节能环保制冷技术研究中心有限公司 切向电机、电机转子及转子铁芯

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341655A (ja) * 2004-05-24 2005-12-08 Denso Corp 磁石埋め込み式回転電機のロータ
US7932658B2 (en) * 2007-03-15 2011-04-26 A.O. Smith Corporation Interior permanent magnet motor including rotor with flux barriers
JP5811567B2 (ja) * 2011-03-31 2015-11-11 株式会社富士通ゼネラル 回転子および永久磁石電動機
CN106208450A (zh) * 2016-08-01 2016-12-07 哈尔滨工业大学 增磁式内置切向可调磁通电机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160036274A1 (en) * 2013-03-14 2016-02-04 Emerson Electric Co. Rotors and stators for dynamoelectric machines
CN106329776A (zh) * 2016-10-13 2017-01-11 华中科技大学 一种内置式转子结构的永磁电机
CN107222047A (zh) * 2017-08-09 2017-09-29 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯
CN107222045A (zh) * 2017-08-09 2017-09-29 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯
CN107240975A (zh) * 2017-08-09 2017-10-10 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯
CN107276353A (zh) * 2017-08-09 2017-10-20 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯
CN109412300A (zh) * 2018-12-20 2019-03-01 珠海格力节能环保制冷技术研究中心有限公司 切向电机、电机转子及转子铁芯
CN209134170U (zh) * 2018-12-20 2019-07-19 珠海格力节能环保制冷技术研究中心有限公司 切向电机、电机转子及转子铁芯

Also Published As

Publication number Publication date
CN109412300B (zh) 2024-09-27
CN109412300A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2020125066A1 (zh) 切向电机、电机转子及转子铁芯
CN107240975B (zh) 切向电机、切向电机转子及其转子铁芯
CN107222047B (zh) 切向电机、切向电机转子及其转子铁芯
CN107222045B (zh) 切向电机、切向电机转子及其转子铁芯
WO2020098339A1 (zh) 电机转子结构及永磁电机
JP7230185B2 (ja) ロータ及び永久磁石モータ
CN208835852U (zh) 电机转子和永磁电机
CN107276353B (zh) 切向电机、切向电机转子及其转子铁芯
US11728716B2 (en) Stator assembly and center disk spindle double-rotor motor
WO2022193593A1 (zh) 外转子永磁电机以及洗衣机
CN107248793B (zh) 切向电机、切向电机转子及其转子铁芯
WO2020088085A1 (zh) 电机转子及永磁电机
CN111711292A (zh) 转子结构、电机及压缩机
CN207039324U (zh) 切向电机、切向电机转子及其转子铁芯
CN107994700B (zh) 一种具有自起动能力的超高速永磁电机转子结构
CN212435453U (zh) 转子结构、电机及压缩机
WO2022193592A1 (zh) 电机转子以及电机
CN209134170U (zh) 切向电机、电机转子及转子铁芯
CN208849647U (zh) 一种盘式永磁涡流联轴器
CN207868887U (zh) 一种高速永磁体同步电机转子结构
CN212435455U (zh) 转子结构、电机及压缩机
CN216851480U (zh) 电机的转子和电机
CN116780800B (zh) 一种具有低损耗特征的低温高速电机结构
CN106357027A (zh) 电机转子及电机
CN210780276U (zh) 一种混合励磁电机新型转子结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898161

Country of ref document: EP

Kind code of ref document: A1