WO2022193593A1 - 外转子永磁电机以及洗衣机 - Google Patents

外转子永磁电机以及洗衣机 Download PDF

Info

Publication number
WO2022193593A1
WO2022193593A1 PCT/CN2021/119325 CN2021119325W WO2022193593A1 WO 2022193593 A1 WO2022193593 A1 WO 2022193593A1 CN 2021119325 W CN2021119325 W CN 2021119325W WO 2022193593 A1 WO2022193593 A1 WO 2022193593A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
permanent magnet
rotor
magnet motor
outer rotor
Prior art date
Application number
PCT/CN2021/119325
Other languages
English (en)
French (fr)
Inventor
葛梦
李文瑞
兰海
武谷雨
龚黎明
Original Assignee
美的威灵电机技术(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美的威灵电机技术(上海)有限公司 filed Critical 美的威灵电机技术(上海)有限公司
Publication of WO2022193593A1 publication Critical patent/WO2022193593A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present application relates to the technical field of motors, and in particular, to an outer rotor permanent magnet motor and a washing machine.
  • Flow permanent magnet motors are widely used in industrial production and household appliances, including stators and rotors.
  • the rotor of the outer rotor permanent magnet motor is provided with a plurality of stator iron cores, and three-phase windings are formed by winding on the stator iron cores.
  • the stator has 27 slots
  • the rotor has 36 magnetic poles (the number of unit motors is 9)
  • the ratio of the number of stator slots to the number of rotor poles is 3:4.
  • the cogging torque of the motor is large under the coordination of the poles.
  • the structures with 33 slots and 44 poles (the number of unit motors are 11) and 36 slots and 48 poles (the number of unit motors is 12), this In this structure, the number of unit motors is increased, the number of motor slots is more, and the coil winding stroke and time during the production process will be longer.
  • the permanent magnets usually use radial magnetization or parallel magnetization to form permanent magnets.
  • the magnetic field of the magnets on the rotor side and the stator side is evenly distributed, the power density of the motor is not high, and the output capacity of the motor is limited.
  • the main purpose of the present application is to provide an outer rotor permanent magnet motor, which aims to solve the problem of difficulty in increasing the power density of the motor in the prior art.
  • an outer rotor permanent magnet motor the outer rotor permanent magnet motor includes:
  • an outer rotor which is sleeved on the outer side of the stator and is arranged concentrically with the stator;
  • the outer rotor includes:
  • the rotor iron core is an annular structure
  • a plurality of permanent magnets are arranged along the circumferential direction of the rotor iron core to form a plurality of magnetic poles in the circumferential direction of the rotor iron core, and the magnetization directions of two adjacent magnetic poles are opposite.
  • the angle between the orientation of the magnetic domains of the permanent magnets in the magnetic poles and the center line of the magnetic poles is ⁇ , and the ⁇ is not less than zero degrees and not more than 40 degrees, so that the magnetic flux density is high in the center of the magnetic poles and tends to be two in the circumferential direction. end and gradually decrease the magnetic properties.
  • the number of stator slots formed on the stator is 30, and the number of rotor poles formed by the plurality of permanent magnets along the circumferential direction of the rotor core is 40.
  • the diameter of the outer surface of each permanent magnet is between 90 mm and 320 mm, the axial height of each permanent magnet along the rotor core is less than 50 mm, and each The radial thickness of the permanent magnet along the rotor core is less than 10 mm.
  • the radial thickness is between 4 mm and 8 mm, and the axial height is between 15 mm and 50 mm.
  • the maximum value of ⁇ is not less than 20 degrees and not more than 35 degrees.
  • the maximum value of ⁇ is not less than 25 and not more than 35.
  • each of the permanent magnets is formed with one of the magnetic poles or an even number of the magnetic poles.
  • the even number of the poles is 2 or 4.
  • the stator includes one or more stator punches having an annular stator yoke and stator teeth disposed on the stator yoke, the inner diameter of the annular stator yoke being 140 mm. ⁇ 220 mm.
  • the radial thickness of the annular stator yoke is between 4 mm and 12 mm, and the length of the stator teeth extending toward the rotor core is between 18 mm and 40 mm.
  • the present application also proposes a washing machine, which includes a housing and the outer rotor permanent magnet motor according to any one of the above, wherein the outer rotor permanent magnet motor is installed in the housing.
  • the outer rotor is sleeved on the outer side of the stator and is arranged concentrically with the stator, wherein the outer rotor includes: a rotor core with a ring structure, and a plurality of permanent magnets are arranged along the circumferential direction of the rotor core , in order to form a plurality of magnetic poles in the circumferential direction of the rotor core, the magnetization directions of the two adjacent magnetic poles are opposite, and the angle between the magnetic domain orientation of the permanent magnet in each magnetic pole and the center line of the magnetic pole is ⁇ , and ⁇ is not less than zero degrees, and not more than 40 degrees, so as to form a magnetic characteristic in which the magnetic flux density is high in the center of the magnetic pole and gradually decreases as it goes to both ends in the circumferential direction.
  • the magnetic flux interlinked between the outer rotor and the stator will increase.
  • the magnetic field lines converge to the center line of the magnetic pole, the magnetic density near the center line of the magnetic pole is high, and the two directions along the circumferential direction are high. The end is low, so that the magnetic field near the outer rotor is strengthened and the magnetic field outside the rotor is weakened, which can improve the magnetic field strength of the air gap.
  • the coil on the stator is energized, the interaction force between the strengthened permanent magnetic field on the outer rotor and the current magnetic field increases large, increasing the power density of the motor. And the magnetic field distribution is more sinusoidal, which is conducive to reducing cogging torque and reducing vibration and noise.
  • FIG. 1 is a schematic diagram of the assembly structure of the stator and the rotor of the outer rotor permanent magnet motor of the application;
  • FIG. 2 is a schematic diagram of the assembly structure of the rotor and the connecting frame of the outer rotor permanent magnet motor of the application;
  • FIG. 3 is a schematic diagram of the configuration of the magnetization directions of a pair of magnetic poles in the outer rotor permanent magnet motor of the application;
  • Fig. 4 is the schematic diagram that each permanent magnet of the outer rotor permanent magnet motor of the application is distributed with a magnetic pole;
  • FIG. 5 is a schematic diagram showing that each permanent magnet of the outer rotor permanent magnet motor of the present application has two magnetic poles distributed
  • each permanent magnet of the outer rotor permanent magnet motor of the application is distributed with four magnetic poles;
  • FIG. 7 is a schematic diagram of the comparison of the back EMF FFT formed by the outer rotor permanent magnet motor formed by the permanent magnet of the outer rotor permanent magnet motor of the application and the motor with uniform distribution of inner and outer magnetic fields;
  • FIG. 8 is a schematic diagram showing the comparison of the proportions of harmonics of each order of the back EMF formed by the outer rotor permanent magnet motor formed by the permanent magnet of the outer rotor permanent magnet motor of the application and the motor with uniform distribution of inner and outer magnetic fields;
  • FIG. 9 is a schematic diagram of an embodiment of a stator punch of an outer rotor permanent magnet motor of the present application.
  • FIG. 10 is a schematic diagram of another embodiment of the stator punch of the outer rotor permanent magnet motor of the application.
  • FIG. 11 is a schematic diagram of another embodiment of a stator punch of an outer rotor permanent magnet motor of the application.
  • FIG. 12 is a schematic diagram of still another embodiment of a stator punch of an outer rotor permanent magnet motor of the present application.
  • FIG. 13 is a schematic structural diagram of the stator of the outer rotor permanent magnet motor of the application.
  • FIG. 14 is a schematic diagram of the arrangement and connection of the coils of the outer rotor permanent magnet motor of the present application on the stator teeth.
  • the present application proposes an outer rotor permanent magnet motor, as shown in FIG. 1 , the outer rotor permanent magnet motor includes: a stator 2 ; and an outer rotor 1 , the outer rotor 1 is sleeved on the stator 2 outside, and is arranged concentrically with the stator 2; wherein, as shown in FIG. 2, the outer rotor 1 includes: a rotor iron core 12, the rotor iron core 12 is an annular structure; a plurality of permanent magnets 11, a plurality of The permanent magnets 11 are arranged along the circumference of the rotor core 12 to form a plurality of magnetic poles in the circumference of the rotor core 12 (Fig.
  • FIG. 3 shows a schematic diagram of the configuration of the magnetization direction under a pair of magnetic poles, Fig.
  • the magnetization directions of the two adjacent magnetic poles are opposite, and the magnetic domain orientation of the permanent magnet 11 in each of the magnetic poles is oriented to its magnetic pole centerline (the magnetic pole centerline is shown in Figure 3).
  • the angle between the magnetic domains is shown by the arrows in Figure 3-6) is ⁇ , the ⁇ is not less than zero degrees, and is not more than 40 degrees, so that the magnetic flux density is high in the center of the magnetic pole and Magnetic properties that gradually decrease toward the ends in the circumferential direction (shown by the dashed arcs in the figure).
  • the stator 2 of the outer rotor permanent magnet motor proposed in the present application is located inside the outer rotor 1 , the outer rotor 1 is an annular structure and is sleeved outside the stator 2 , and the outer rotor 1 and the stator 2 are arranged concentrically.
  • the outer rotor 1 includes a rotor iron core 12 , the iron core is an annular structure, and a plurality of permanent magnets 11 are arranged on the circumference of the rotor iron core 12 to form a plurality of magnetic poles along the circumference of the rotor iron core 12 , It should be noted that each permanent magnet 11 may be distributed with one magnetic pole or an even number of magnetic poles.
  • the number of magnetic poles on each permanent magnet 11 may be 2, 4, or 8.
  • Figure 4 shows a schematic diagram of one magnetic pole distributed on each permanent magnet 11
  • Figure 5 shows a schematic diagram of two magnetic poles distributed on each permanent magnet 11
  • Figure 6 shows a schematic diagram of each permanent magnet 11
  • the magnetization directions of two adjacent magnetic poles are opposite.
  • Figures 3 and 5 show the configuration diagrams of the magnetization directions under a pair of magnetic poles, forming a permanent magnetic field that can generate an interaction force with the current magnetic field formed by the stator 2 .
  • the number of stator slots formed on the stator is 30, and the number of rotor poles formed by a plurality of the permanent magnets along the circumferential direction of the rotor core is 40.
  • each permanent magnet 11 has multiple magnetic domains.
  • the permanent magnet 11 uses the method of filling or pressing to manufacture a complete magnet, and then in a special Magnetization is performed in the fixture of the mold, or the direction of the flow channel of the material is controlled to form a magnetic domain in a specific direction during the mold filling process.
  • the processing efficiency is high, and it is relatively easy to achieve mass production.
  • each permanent magnet 11 has multiple orientations (the directions indicated by the arrows in FIG. 3-6 are indicated as magnetic domain orientations), but from the perspective of a single permanent magnet 11 formed by multiple magnetic domains,
  • the magnetization directions shown on the two adjacent permanent magnets 11 are still opposite, and each permanent magnet 11 has an arc-shaped inner surface and an arc-shaped outer surface (for example, a circular arc segment with the same radius, or an arc in the middle). shape, the combination of straight lines at both ends, or the combination of two arcs with different radii, etc.), in this embodiment, the outer surface of each permanent magnet 11 is arranged in contact with the inner side of the rotor core 12.
  • the rotor core 12 can also be slotted to fix the permanent magnets 11 in the slots.
  • the diameter of the outer surface arc of each permanent magnet 11 is between 90 mm and 320 mm, the axial height of each permanent magnet 11 along the rotor core 12 is less than 50 mm, and each permanent magnet 11 is less than 50 mm in diameter.
  • the thickness of the magnets 11 along the radial direction of the rotor core 12 is less than 10 mm, so that the output torque of the motor is high, the performance requirements are met, and the cost is low.
  • the angle between the orientation of the magnetic domain of the permanent magnet 11 in each magnetic pole and the center line of the magnetic pole is ⁇ , and the ⁇ is not less than zero degrees and not greater than 40 degrees, corresponding to the inner direction of the permanent magnet 11 of each magnetic pole.
  • There is a certain magnetic domain orientation change law in the magnetic domain As shown in Figure 3-6, in the ring direction of the rotor core 12, the angle ⁇ within the same magnetic pole gradually decreases from one side to the other and then gradually increases.
  • the magnetic domain orientation of each magnetic domain can be rotated by a specific angle in turn, so that the magnetic domain orientation in each magnetic pole is generally radial, so that the magnetic flux density is high in the center of the magnetic pole and increases with the direction of the two directions in the circumferential direction.
  • the magnetic flux interlinked with the stator will increase. (It can be seen from the magnetic field lines) because the magnetic field lines converge to the center line of the magnetic pole, so the magnetic density near the center line of the magnetic pole is high, and the magnetic field along the circumference is high. Therefore, the magnetic field near the inner side of the rotor 1 is strengthened, and the magnetic field outside the rotor 1 is weakened, that is, the magnetic field inside the rotor iron core 12 is enhanced, and the magnetic field toward the outer side of the rotor iron core 12 is very small.
  • the orientation of the magnetic domains may not be set according to the same rotation angle, as long as the magnetic lines of force are concentrated toward the inner side of the rotor.
  • the value range of the maximum value of ⁇ is related to the number of magnetic poles.
  • the maximum value of ⁇ is not less than 15 degrees and not greater than 35 degrees, so that the rotor
  • the inner magnetic field of the iron core 12 is strengthened, and the outer magnetic field is weakened, so that the magnetic field strength of the air gap between the stator and the rotor is enhanced, and the saturation degree of the magnetic field on the rotor side is reduced, the output performance of the motor is improved, and the power density is increased.
  • the magnetic field distribution is more sinusoidal, and the harmonic content is less, which is beneficial to reduce the cogging torque and torque ripple, thereby reducing the vibration and noise of the motor.
  • the maximum value of the ⁇ is not less than 18 degrees and not greater than 40 degrees, and any value within this range is acceptable , for example, 30 degrees, which can be set as required.
  • An air gap is formed between the stator 2 and the outer rotor 1 (not marked in the figure). Since the magnetic field inside the rotor core 12 is enhanced, the magnetic induction intensity at the air gap increases. When the coil 3 on the stator 2 is energized , the interaction force between the strengthened permanent magnet field on the outer rotor 1 and the current magnetic field increases, which improves the power density of the motor. As shown in FIG. 7 , the outer rotor permanent magnet motor proposed in this embodiment and the inner and outer magnetic fields are evenly distributed The FFT comparison diagram of the motor back EMF formed by the generator shows that after using the permanent magnet 11 in this application, the no-load back EMF fundamental wave amplitude is larger, indicating that the motor output capability is stronger, which is beneficial to improve the motor power density.
  • Figure 8 is a schematic diagram showing the comparison of the proportions of the harmonics of each order of the back EMF of the motor when the outer rotor permanent magnet motor formed by the permanent magnet 11 proposed in this embodiment and the inner and outer magnetic fields are evenly distributed. After the magnet 11, the 5th and 7th harmonics in the back EMF are significantly reduced, indicating that the magnetic field distribution toward the inner side of the rotor core 12 is closer to a sinusoidal shape, which is beneficial to reduce cogging torque and torque ripple, and reduce vibration noise.
  • the rotor iron core 12 is generally made of magnetically conductive material
  • the magnetic field toward the outside of the rotor iron core 12 is very small, the magnetic circuit saturation of the rotor 1 is avoided, which can not only improve the output capacity of the motor, but also reduce the The loss of the rotor iron core 12 is reduced, and the motor efficiency is further improved.
  • the outer rotor permanent magnet motor proposed in this embodiment has higher motor output efficiency, so that it can reduce the motor efficiency without relying on increasing the number of unit motors. Small cogging torque can reduce the winding time during the manufacturing process and reduce the manufacturing and processing difficulty of the motor.
  • the stator 2 includes a stator punch formed of a magnetically conductive material. As shown in FIGS. 9-12 , the stator punch has an annular stator yoke 22 , and the stator teeth 21 are formed by extending outward from the outer diameter of the stator yoke 22 .
  • the stator 2 is formed by stacking a plurality of stator punches.
  • a plurality of sector-shaped units are butted against each other to form stator punches, and two ends of the sector-shaped units are respectively provided with grooves 27 and protrusions 25, and the protrusions 25 are inserted into the grooves 27 at one end of adjacent sector-shaped units.
  • the lamination unit is formed by a strip-shaped stator tooth belt having a stator yoke 22 and a plurality of stator teeth 21 in a spiral shape. As shown in FIG. 12 , a plurality of notches are spaced apart on the stator yoke 22 . 28. The stator teeth 21 and the notches 28 are located on opposite sides of the stator tooth 21 belt, respectively. The existence of the notches 27 facilitates the helical winding of the strip-shaped stator tooth belt. The dotted line and the realization in Figure 12 show two stators respectively. Toothed belt, in practical applications, the incoming material for processing the stator is generally a strip-shaped stamping plate.
  • a stator slot 25 is formed between two adjacent stator teeth 21 .
  • the ratio of the stator slot 25 to the number of rotor poles is 3:4, and a coil 3 is wound around the stator teeth 21 .
  • the stator teeth 21 are provided with an insulating layer (not marked in the figure), the insulating layer is wrapped around the surface of the stator teeth 21, and the insulating layer is an insulating film or two pieces of insulation slots to insulate the coil 3 from the stator teeth 21 .
  • the arrangement of the coil 3 on the stator teeth 21 is shown in Figure 14.
  • the windings on the adjacent three stator teeth 21 along the circumferential direction of the stator yoke 22 are respectively connected to currents with a phase difference of 120° to form three-phase windings.
  • the ratio of 25 to the number of rotor poles is 3:4, so the number of windings per phase is exactly one-third of the number of stator teeth 21, where the number of rotor poles is the total number of magnetic poles on rotor 1, such as when each When one magnetic pole is formed on the permanent magnet 11, the number of rotor poles is equal to the number of permanent magnets 11.
  • the number of rotor poles is equal to twice the number of permanent magnets 11.
  • the number of rotor poles is equal to four times the number of permanent magnets 11.
  • the number of stator slots 25 is 30, the number of rotor poles is 40, the number of unit motors is 10, the cogging torque is low, and the winding time is relatively short.
  • the present application also proposes a washing machine, which includes a casing and the above-mentioned outer rotor permanent magnet motor, wherein the outer rotor permanent magnet motor is installed in the casing.
  • the inner magnetic field of the rotor iron core 12 in the rotor permanent magnet motor is enhanced and the outer magnetic field is weakened, the magnetic field strength of the air gap between the stator and the rotor is enhanced, and the magnetic field saturation degree on the rotor side is reduced, the output performance of the motor is improved, and the power density is increased.
  • the magnetic field distribution is closer to a sinusoidal shape, with less harmonic content, which is beneficial to reduce cogging torque and torque ripple, so that the washing machine proposed in this embodiment has low noise and high power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Textile Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本申请提供了一种外转子永磁电机以及洗衣机,所述外转子永磁电机包括:定子;以及外转子,所述外转子套设于所述定子外侧,且与所述定子同心设置;其中,所述外转子包括:转子铁芯,所述转子铁芯为环状结构;多块永磁体,多块所述永磁体沿所述转子铁芯周向设置形成的转子极数为40,相邻两个磁极的磁化方向相反,所述定子上形成的定子槽数为30,且每一所述磁极内的永磁体的磁畴取向与其磁极中心线的夹角为α,所述α不小于零度,且不大于40度,以形成磁通密度在所述磁极中央高且随着趋向圆周方向两端而逐渐降低的磁特性。

Description

外转子永磁电机以及洗衣机
本申请要求于2021年3月15日申请的、申请号为202110278424.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机技术领域,特别涉及一种外转子永磁电机以及洗衣机。
背景技术
流永磁电机广泛应用于工业生产以及家用电器中,包括了定子以及转子,外转子永磁电机的转子上设置多个定子铁芯,并在定子铁芯上绕线形成三相绕组。
以应用于直驱式洗衣机所采用的电机为例,其定子具有27个槽、转子具有36个磁极(单元电机数为9),定子槽数与转子极数之比为3:4,这槽极配合下,电机齿槽转矩较大。为减小齿槽转矩,可通过增加单元电机数来实现,如,现有技术中,33槽44极(单元电机数为11)和36槽48极(单元电机数为12)结构,此种结构中单元电机数提高,电机槽数较多,生产过程中线圈绕线行程及时间会较长,,此外,现有技术中永磁体通常采用径向充磁或平行充磁,形成的永磁体在转子侧以及定子侧的磁场均匀分布,电机功率密度不高,电机的输出能力有限。
技术问题
本申请的主要目的是提供一种外转子永磁电机,旨在解决现有技术中,电机的功率密度提升困难的问题。
技术解决方案
为实现上述目的,本申请提出一种外转子永磁电机,所述外转子永磁电机包括:
定子;以及
外转子,所述外转子套设于所述定子外侧,且与所述定子同心设置;
其中,所述外转子包括:
转子铁芯,所述转子铁芯为环状结构;
多块永磁体,多块所述永磁体沿所述转子铁芯周向设置,以在所述转子铁芯的周向形成多个磁极,相邻两个磁极的磁化方向相反,每一所述磁极内的永磁体的磁畴取向与其磁极中心线的夹角为α,所述α不小于零度,且不大于40度,以形成磁通密度在所述磁极中央高且随着趋向圆周方向两端而逐渐降低的磁特性。
在一实施例中,所述定子上形成的定子槽数为30,多块所述永磁体沿所述转子铁芯的周向形成的转子极数为40。
在一实施例中,每块所述永磁体的外表面圆弧直径处于90 mm~320 mm之间,每块所述永磁体沿所述转子铁芯的轴向高度小于50 mm,且每块所述永磁体的沿所述转子铁芯的径向厚度小于10 mm。
在一实施例中,所述径向厚度处于4mm~8mm之间,所述轴向高度处于15mm~50mm之间。
在一实施例中,所述α的最大值不小于20度,且不大于35度。
在一实施例中,所述α的最大值不小于25,且不大于35。
在一实施例中,每一所述永磁体形成有一个所述磁极或偶数个所述磁极。
在一实施例中,偶数个所述磁极为2个或4个。
在一实施例中,所述定子包括一个或多个定子冲片,所述定子冲片上具有环形定子轭以及设置在所述定子轭上的定子齿,所述环形定子轭的内直径处于140 mm~220 mm。
在一实施例中,所述环形定子轭的径向厚度处于4 mm~12 mm之间,所述定子齿朝向所述转子铁芯延伸的长度处于18mm~40mm之间。
本申请还提出一种洗衣机,所述洗衣机包括壳体以及如上任一项所述的外转子永磁电机,所述外转子永磁电机装设在所述壳体中。
有益效果
本申请技术方案通过将外转子套设于所述定子外侧,且与所述定子同心设置,其中,外转子包括:为环状结构的转子铁芯,多块永磁体沿转子铁芯周向设置,以在转子铁芯的周向形成多个磁极,相邻两个磁极的磁化方向相反,每一磁极内的永磁体的磁畴取向与其磁极中心线的夹角为α,α不小于零度,且不大于40度,以形成磁通密度在所述磁极中央高且随着趋向圆周方向两端而逐渐降低的磁特性。这种磁畴方向配置下,外转子与定子交链的磁通量会增加,(从磁力线可以看出)因为磁力线向磁极中心线处汇聚,因此靠近磁极中心线处磁密高,沿周向的两端低,从而使得靠近外转子内侧磁场增强、转子外侧磁场削弱,可以提高气隙磁场强度,当定子上的线圈通电后,外转子上强化后的永磁场与电流磁场之间的相互作用力增大,提高了电机功率密度。并且磁场分布更加正弦,有利于减小齿槽转矩,降低振动噪音。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请外转子永磁电机的定子与转子的装配结构示意图;
图2为本申请外转子永磁电机的转子与连接架的装配结构示意图;
图3为本申请外转子永磁电机中一对磁极的磁化方向的配置示意图;
图4为本申请外转子永磁电机每块永磁体分布有一个磁极的示意图;
图5为本申请外转子永磁电机每块永磁体分布有两个磁极的示意图
图6为本申请外转子永磁电机每块永磁体分布有四个磁极的示意图;
图7为本申请外转子永磁电机的永磁体形成的外转子永磁电机与内外侧磁场均匀分布的电机形成的反电势FFT对比示意图;
图8为本申请外转子永磁电机的永磁体形成的外转子永磁电机与内外侧磁场均匀分布的电机形成的反电势各次谐波占比对比示意图;
图9为本申请外转子永磁电机的定子冲片的一实施例的示意图;
图10为本申请外转子永磁电机的定子冲片的另一实施例的示意图;
图11为本申请外转子永磁电机的定子冲片的又一实施例的示意图;
图12为本申请外转子永磁电机的定子冲片的再一实施例的示意图;
图13为本申请外转子永磁电机的定子的结构示意图;
图14为本申请外转子永磁电机的线圈在定子齿上的排布连接示意图。
附图标号说明:
标号 名称 标号 名称
1 外转子 222 内定子轭
11 永磁体 25 定子槽
12 转子铁芯 26 凸起
2 定子 27 凹槽
21 定子齿 3 线圈
22 定子轭 4 连接架
221 外定子轭    
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
为实现上述目的,本申请提出一种外转子永磁电机,如图1所示,所述外转子永磁电机包括:定子2;以及外转子1,所述外转子1套设于所述定子2外侧,且与所述定子2同心设置;其中,如图2所示,所述外转子1包括:转子铁芯12,所述转子铁芯12为环状结构;多块永磁体11,多块所述永磁体11沿所述转子铁芯12周向设置,以在所述转子铁芯12的周向形成多个磁极(如图3示出了一对磁极下磁化方向的配置示意图,图中每块永磁体11中只设有一个磁极),相邻两个磁极的磁化方向相反,每一所述磁极内的永磁体11的磁畴取向与其磁极中心线(磁极中心线如图3中的虚直线所示,磁畴如图3-6中的箭头所示)的夹角为α,所述α不小于零度,且不大于40度,以形成磁通密度在所述磁极中央高且随着趋向圆周方向两端而逐渐降低的磁特性(如图中的虚弧线所示)。
本申请提出的外转子永磁电机的定子2位于外转子1内部,外转子1为环状结构,套设于定子2外侧,且外转子1与定子2同心设置。本实施例中,外转子1包括了转子铁芯12,铁芯为环状结构,且转子铁芯12的周上设置了多块永磁体11形成沿转子铁芯12周向的多个磁极,应当说明的是,每块永磁体11上可以分布有一个磁极也可以分布有偶数个磁极,当分布有偶数个磁极时,每块永磁体11上的磁极数量可以为2个、4个、8个等,图4中示出了每块永磁体11上分布有一个磁极的示意图,图5中示出了每块永磁体11上分布有两个磁极的示意图,图6中示出了每块永磁体11上分布有四个磁极的示意图。相邻两个磁极的磁化方向相反,如图3、5示出了一对磁极下磁化方向的配置示意图,形成能够与定子2形成的电流磁场产生相互作用力的永磁磁场。转子磁极数量较大时,相邻磁极之间的漏磁会增加,从而降低电机输出转矩,当转子磁极数较小时,永磁体内部不同位置处磁畴取向变化较大,难以加工制造,因此,在一可选实施例中,所述定子上形成的定子槽数为30,多块所述永磁体沿所述转子铁芯的周向形成的转子极数为40。
应当说明的是,磁畴如图3-6中的箭头所示,每块永磁体11具有多个磁畴,永磁体11利用充模或压模的方法制造一个完整的磁体,然后在一个特制的夹具中进行充磁,或是在充模的过程中控制用料的流道方向形成特定方向的磁畴,加工效率高,比较容易实现批量化生产。
每块永磁体11内的磁畴具有多个取向(如图3-6中的箭头所指的方向即示意为磁畴取向),但从由多个磁畴形成的单个永磁体11上看,相邻两个永磁体11上所表现出的磁化方向依然是相反的,每块永磁体11均具有弧形内表面以及弧形外表面(如,半径相同的圆弧段,或是中间为弧形、两端为直线的组合,或者两段半径不同的弧形组合等),本实施例中,每块永磁体11的外表面贴合转子铁芯12的内侧设置,当然,在其他实施例中,也可在转子铁芯12上开槽,将永磁体11固定在槽内。每块所述永磁体11的外表面圆弧直径处于90 mm~320 mm之间,每块所述永磁体11沿所述转子铁芯12的轴向高度小于50 mm,且每块所述永磁体11的沿所述转子铁芯12的径向厚度小于10 mm,以使得电机输出转矩较高,满足性能需求且成本较低。
本实施例中,每一磁极内的永磁体11的磁畴取向与其磁极中心线的夹角为α,所述α不小于零度,且不大于40度,对应于每一磁极的永磁体11内的磁畴存在一定的磁畴取向变化规律,如图3-6所示,在转子铁芯12的环向上,同一磁极内的夹角α从一侧向另一侧逐渐减小然后再逐渐增大,各磁畴的磁畴取向可以依次旋转一特定的角度,使得每个磁极内的磁畴取向大体上呈辐射状,从而使得磁通密度在所述磁极中央高且随着趋向圆周方向两端而逐渐降低,这种磁畴方向配置下,与定子交链的磁通量会增加,(从磁力线可以看出)因为磁力线向磁极中心线处汇聚,因此靠近磁极中心线处磁密高,沿周向的两端低,从而靠近转子1内侧磁场增强、转子1外侧磁场削弱,即转子铁芯12内侧的磁场得到增强,在朝向转子铁芯12外侧的磁场很小。当然,也可不依相同的旋转角度设置磁畴取向,只要使磁力线向转子内侧集中即可。α的最大值的取值范围与磁极数量相关,在进一步的实施例中,所述磁极的数量大于或等于20时,所述α的最大值不小于15度,且不大于35度,使得转子铁芯12内侧磁场增强,外侧磁场削弱,从而使得定转子之间的气隙磁场强度增强,并且降低了转子侧磁场饱和程度,提高电机输出性能,增大功率密度。并且磁场分布更加正弦,谐波含量更少,有利于减小齿槽转矩和降低转矩脉动,从而减小电机振动噪音。
在另一实施例中,所述磁极的数量大于或等于8,且小于或等于20时,所述α的最大值不小于18度,且不大于40度,处于该范围内的任意数值均可,如,30度,具体可根据需要设定。
定子2与外转子1之间间隔设置形成气隙(图中未标示),由于转子铁芯12内侧的磁场得到增强,从而气隙处的磁感应强度增大,当定子2上的线圈3通电后,外转子1上强化后的永磁场与电流磁场之间的相互作用力增大,提高了电机功率密度,如图7所示为本实施例提出的外转子永磁电机与内外侧磁场均匀分布的发电机形成的电机反电势FFT对比示意图,可以看到,采用本申请中永磁体11后,空载反电势基波幅值更大,表明电机输出能力更强,有利于提高电机功率密度。如图8所示为本实施例提出的永磁体11形成的外转子永磁电机与内外侧磁场均匀分布时,电机反电势各次谐波占比对比示意图,可以看到,采用本申请中永磁体11后,反电势中5、7次谐波明显降低,表明朝向转子铁芯12内侧的磁场分布更加接近正弦形状,有利于减小齿槽转矩和转矩脉动,降低振动噪音。此外,由于转子铁芯12一般由导磁材料构成,本实施例中,由于在朝向转子铁芯12外侧的磁场很小,避免了转子1磁路饱和,除了能够提高电机输出能力外,还减小了转子铁芯12损耗,进一步提高了电机效率,在相同单元电机数的情况下,本实施例提出的外转子永磁电机具有更高的电机输出效率,从而可以不依靠增加单元电机数减小齿槽转矩,制造过程中可减少绕线时长,降低了电机的制造加工难度。
定子2包括了由导磁材料形成的定子冲片,如图9-12所示,定子冲片上具有呈环状的定子轭22,定子齿21由定子轭22外径处往外延伸而形成。
作为本申请的一个实施例,定子2由多个定子冲片堆叠形成。
作为本申请的另一实施例,多个扇形单元相互对接形成定子冲片,扇形单元两端分别设有凹槽27和凸起25,凸起25插入到相邻扇形单元一端的凹槽27中形成定子冲片。
作为本申请的另一实施例,叠片单元为具有定子轭22以及多个定子齿21的条形定子齿带螺旋环绕形成,如图12所示,定子轭22上间隔开设有多个槽口28,定子齿21与槽口28分别位于所述定子齿21带上相对的两侧,槽口27的存在便于条形定子齿带螺旋环绕,图12中虚线与实现分别示出了两条定子齿带,在实际应用中,用于加工定子的来料一般为条形冲压板,这种定子齿带螺旋环绕形成定子的方式能够节约冲压板的材料,使冲压板形成的废料更少,有利于节约成本。相邻两定子齿21之间形成定子槽25,在一可选实施例中,如图13所示,定子槽25与转子极数的比例为3:4,定子齿21上绕设有线圈3形成绕组,所述定子齿21上设有绝缘层(图中未标示),所述绝缘层包绕在所述定子齿21的表面,所述绝缘层为绝缘薄膜或两扣合为一体的绝缘槽,以将线圈3与定子齿21绝缘。线圈3在定子齿21上的排布如图14所示,沿定子轭22环向的相邻三个定子齿21上的绕组分别接入相位相差120°的电流形成三相绕组,由于定子槽25与转子极数的比例为3:4,因此每相绕组的数量刚好是定子齿21数的三分之一,这里的转子极数为转子1上具有的总磁极数量,如,当每一永磁体11上形成有一个磁极时,转子极数等于永磁体11数,当每一永磁体11上形成有两个磁极时,转子极数等于两倍的永磁体11数,当每一永磁体11上形成有四个磁极时,转子极数等于四倍的永磁体11数。
作为一种实施例,定子槽25数为30,转子极数为40,单元电机数为10,齿槽转矩较低,绕线时间相对较短。
本申请还提出一种洗衣机,所述洗衣机包括壳体以及如上所述的外转子永磁电机,所述外转子永磁电机装设在所述壳体中。
由于转子永磁电机中的转子铁芯12内侧磁场得到增强,外侧磁场削弱,使得定转子之间的气隙磁场强度增强,并且降低了转子侧磁场饱和程度,提高电机输出性能,增大功率密度,并且磁场分布更加接近正弦形状,谐波含量更少,有利于减小齿槽转矩和降低转矩脉动,从而本实施例提出的洗衣机噪音小、功率大。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (11)

  1. 一种外转子永磁电机,其中,所述外转子永磁电机包括:
    定子;以及
    外转子,所述外转子套设于所述定子外侧,且与所述定子同心设置;
    其中,所述外转子包括:
    转子铁芯,所述转子铁芯为环状结构;
    多块永磁体,多块所述永磁体沿所述转子铁芯周向设置,以在所述转子铁芯的周向形成多个磁极,相邻两个磁极的磁化方向相反,每一所述磁极内的永磁体的磁畴取向与其磁极中心线的夹角为α,所述α不小于零度,且不大于40度,以形成磁通密度在所述磁极中央高且随着趋向圆周方向两端而逐渐降低的磁特性。
  2. 根据权利要求1所述的外转子永磁电机,其中,所述定子上形成的定子槽数为30,多块所述永磁体沿所述转子铁芯的周向形成的转子极数为40。
  3. 根据权利要求1所述的外转子永磁电机,其中,每块所述永磁体的外表面圆弧直径处于90 mm~320 mm之间,每块所述永磁体沿所述转子铁芯的轴向高度小于50 mm,且每块所述永磁体的沿所述转子铁芯的径向厚度小于10 mm。
  4. 根据权利要求3所述的外转子永磁电机,其中,所述径向厚度处于4mm~8mm之间,所述轴向高度处于15mm~50mm之间。
  5. 根据权利要求3所述的外转子永磁电机,其中,所述α的最大值不小于20度,且不大于35度。
  6. 根据权利要求5所述的外转子永磁电机,其中,所述α的最大值不小于25,且不大于35。
  7. 根据权利要求1所述的外转子永磁电机,其中,每一所述永磁体形成有一个所述磁极或偶数个所述磁极。
  8. 根据权利要求7所述的外转子永磁电机,其中,偶数个所述磁极为2个或4个。
  9. 根据权利要求1-8任一项所述的外转子永磁电机,其中,所述定子包括一个或多个定子冲片,所述定子冲片上具有环形定子轭以及设置在所述定子轭上的定子齿,所述定子轭的内直径处于140 mm~220 mm。
  10. 根据权利要求9所述的外转子永磁电机,其中,所述环形定子轭的径向厚度处于4 mm~12 mm之间,所述定子齿朝向所述转子铁芯延伸的长度处于18mm~40mm之间。
  11. 一种洗衣机,其中,所述洗衣机包括壳体以及如权利要求1-10任一项所述的外转子永磁电机,所述外转子永磁电机装设在所述壳体中。
PCT/CN2021/119325 2021-03-15 2021-09-18 外转子永磁电机以及洗衣机 WO2022193593A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110278424.4A CN113113989A (zh) 2021-03-15 2021-03-15 外转子永磁电机以及洗衣机
CN202110278424.4 2021-03-15

Publications (1)

Publication Number Publication Date
WO2022193593A1 true WO2022193593A1 (zh) 2022-09-22

Family

ID=76711484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119325 WO2022193593A1 (zh) 2021-03-15 2021-09-18 外转子永磁电机以及洗衣机

Country Status (2)

Country Link
CN (1) CN113113989A (zh)
WO (1) WO2022193593A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865370A (zh) * 2021-03-15 2021-05-28 美的威灵电机技术(上海)有限公司 电机转子以及电机
CN113113989A (zh) * 2021-03-15 2021-07-13 美的威灵电机技术(上海)有限公司 外转子永磁电机以及洗衣机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133516A (ja) * 1992-03-04 1994-05-13 Japan Servo Co Ltd 3相ブラシレスモータ
CN105762999A (zh) * 2016-04-26 2016-07-13 沈阳工业大学 一种永磁转子低谐波充磁方法和装置
CN111834116A (zh) * 2019-04-23 2020-10-27 西门子歌美飒可再生能源公司 制造具有减小的变形的烧结永磁体
CN113113989A (zh) * 2021-03-15 2021-07-13 美的威灵电机技术(上海)有限公司 外转子永磁电机以及洗衣机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017430A1 (en) * 2007-08-01 2009-02-05 Fisher & Paykel Appliances Limited Improved appliance, rotor and magnet element
CN104953737B (zh) * 2014-03-26 2019-03-22 德昌电机(深圳)有限公司 一种永磁无刷电机
CN108736607A (zh) * 2018-05-10 2018-11-02 天津大学 一种具有永磁体偏心结构的磁场调制波浪发电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133516A (ja) * 1992-03-04 1994-05-13 Japan Servo Co Ltd 3相ブラシレスモータ
CN105762999A (zh) * 2016-04-26 2016-07-13 沈阳工业大学 一种永磁转子低谐波充磁方法和装置
CN111834116A (zh) * 2019-04-23 2020-10-27 西门子歌美飒可再生能源公司 制造具有减小的变形的烧结永磁体
CN113113989A (zh) * 2021-03-15 2021-07-13 美的威灵电机技术(上海)有限公司 外转子永磁电机以及洗衣机

Also Published As

Publication number Publication date
CN113113989A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN108448849B (zh) 一种定子永磁型双转子磁场调制电机及其设计方法
CN109274240A (zh) 复合型非晶合金轴向磁通电机
US6211595B1 (en) Armature structure of toroidal winding type rotating electric machine
JP5610726B2 (ja) 電気モータ
WO2015025669A1 (ja) 発電機
JP2007209186A (ja) 同期電動機及び同期電動機の製造方法
WO2022193593A1 (zh) 外转子永磁电机以及洗衣机
WO2020125066A1 (zh) 切向电机、电机转子及转子铁芯
WO2021056902A1 (zh) 电机和家用电器
CN113178961B (zh) 一种轴向模块化磁通反向电机
WO2022193592A1 (zh) 电机转子以及电机
WO2024060681A1 (zh) 一种永磁电机和电驱动系统
US11177705B2 (en) Permanent magnet motor, compressor and refrigeration system
CN110492708B (zh) 叠层式游标电机
JP2003250235A (ja) 単相コンデンサ駆動モータ及びその製造方法
WO2023108910A1 (zh) 转子组件、电机和电器设备
CN112688458A (zh) 一种大轴径内置式永磁电机的转子结构及其电机
CN112615509A (zh) 双永磁体内嵌式永磁同步电机结构
JP2006296001A (ja) 回転電機および電磁機器
CN113193670B (zh) 一种模块化磁通反向电机
WO2019062130A1 (zh) 电机转子、永磁电机和压缩机
CN216851480U (zh) 电机的转子和电机
Wang et al. High torque density toroidal winding permanent magnet vernier machine with dual rotor
CN209982197U (zh) 一种同性极励磁电机
CN218958633U (zh) 用于电机的定子的定子冲片、定子和电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931168

Country of ref document: EP

Kind code of ref document: A1