WO2021056902A1 - 电机和家用电器 - Google Patents

电机和家用电器 Download PDF

Info

Publication number
WO2021056902A1
WO2021056902A1 PCT/CN2019/129350 CN2019129350W WO2021056902A1 WO 2021056902 A1 WO2021056902 A1 WO 2021056902A1 CN 2019129350 W CN2019129350 W CN 2019129350W WO 2021056902 A1 WO2021056902 A1 WO 2021056902A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
motor
rotor core
sector
core
Prior art date
Application number
PCT/CN2019/129350
Other languages
English (en)
French (fr)
Inventor
李文瑞
于明湖
李虎
Original Assignee
广东威灵电机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东威灵电机制造有限公司 filed Critical 广东威灵电机制造有限公司
Priority to EP19946787.9A priority Critical patent/EP4007125A4/en
Priority to KR1020227006993A priority patent/KR20220041193A/ko
Priority to JP2022513593A priority patent/JP7387877B2/ja
Publication of WO2021056902A1 publication Critical patent/WO2021056902A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/09Magnetic cores comprising laminations characterised by being fastened by caulking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • This application relates to the field of motor technology, and in particular to a motor and household appliances.
  • One of the objectives of the embodiments of the present application is to provide a motor and a household appliance, aiming to solve the problems of low power density and high vibration and noise.
  • a motor which includes a rotor core and a stator core.
  • the rotor core includes a collar portion and a plurality of sector portions spaced around the collar portion, and a containing groove is formed between two adjacent sector portions.
  • the stator core is sleeved on the rotor core and includes a plurality of stator units enclosed in a ring shape.
  • the pole slot factor of the motor is the absolute value of the difference between the number of stator units and the number of sectors
  • the P-S coefficient of the motor is the sum of the reciprocal of the pole slot factor and the reciprocal of the positive sequence adjacent natural numbers of the pole slot factor.
  • the P-S coefficient ranges from 0.4 to 0.5 and 0.8 to 1, and the number of slots per pole per phase of the motor is greater than or equal to 0.35 and less than or equal to 0.5.
  • a household appliance including the above-mentioned motor.
  • the motor and household appliances provided by the embodiments of the present application have the beneficial effects that the vibration and noise of the motor can be reduced, and the power density and efficiency of the motor can be high, and the cost of the motor can also be effectively reduced.
  • Fig. 1 is a schematic cross-sectional view of an embodiment of a motor provided by the present application along an axial direction;
  • Fig. 2 is a schematic cross-sectional view of the motor shown in Fig. 1 along the axial direction;
  • FIG. 3 is a schematic diagram of the trend change of the number of poles, the number of slots, and the efficiency of the motor shown in FIG. 1;
  • Fig. 4 is a schematic diagram of the trend change of the P-S coefficient and the motor efficiency of the motor shown in Fig. 1;
  • FIG. 5 is a schematic diagram of the trend change of the P-S coefficient of the motor shown in FIG. 1 and the percentage of the electromagnetic vibration amplitude of the motor;
  • Fig. 6 is a partial enlarged schematic diagram for showing the size of the air gap in the motor shown in Fig. 1;
  • FIG. 7 is a schematic diagram of the structure of the sector portion in the rotor core shown in FIG. 6;
  • FIG. 8 is a schematic diagram of the trend change of the air gap and the outer diameter of the rotor core of the motor shown in FIG. 1 on the efficiency of the motor;
  • FIG. 9 is a schematic diagram of the trend change of the maximum air gap of the motor shown in FIG. 1 on the efficiency of the motor and the magnetic field distortion rate of the motor;
  • FIG. 10 is a schematic diagram of the trend change of the outer diameter of the rotor core and the axial length of the magnet on the efficiency of the motor shown in FIG. 1;
  • FIG. 11 is a schematic diagram of the three-dimensional structure of the rotor in the motor shown in FIG. 1;
  • Fig. 12 is a schematic cross-sectional view perpendicular to the axial direction of a specific embodiment of the rotor shown in Fig. 11;
  • Fig. 13 is a schematic front view of the end face of the rotor shown in Fig. 12;
  • FIG. 14 is a schematic cross-sectional view perpendicular to the axial direction of another embodiment of the rotor shown in FIG. 11;
  • FIG. 15 is a schematic cross-sectional view perpendicular to the axial direction of another embodiment of the rotor shown in FIG. 11;
  • FIG. 16 is a schematic diagram of an enlarged structure of area A shown in FIG. 15;
  • Fig. 17 is a schematic front view of the end face of the rotor shown in Fig. 14 or Fig. 15;
  • FIG. 18 is a schematic cross-sectional view of the rotor shown in FIG. 11 along the axial side;
  • FIG. 19 is a schematic diagram of the structure of the rotor shaft in the rotor shown in FIG. 18;
  • FIG. 20 is a schematic diagram of an exploded structure of the rotor core in the motor shown in FIG. 1;
  • FIG. 21 is a schematic diagram of the structure of the first rotor punching piece in the rotor core shown in FIG. 20;
  • Fig. 22 is a schematic structural diagram of a second rotor punch in the rotor core shown in Fig. 20;
  • FIG. 23 is a schematic diagram of the dimensions in the rotor core shown in FIG. 22;
  • Fig. 24 is a schematic diagram of local magnetic leakage distribution in the motor shown in Fig. 1;
  • FIG. 25 is a schematic cross-sectional structure view of the stator in the motor shown in FIG. 1 along the axial direction;
  • FIG. 26 is a schematic diagram of the structure of the stator core in the motor shown in FIG. 1;
  • Fig. 27 is a schematic structural diagram of a specific embodiment of the stator unit in the stator core shown in Fig. 26;
  • Fig. 28 is a schematic structural diagram of another specific embodiment of the stator unit in the stator core of Fig. 26.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of the motor provided by the present application along the axial direction
  • FIG. 2 is a schematic cross-sectional view of the motor shown in FIG. 1 along the axial direction.
  • the motor 100 includes a rotor and a stator.
  • the rotor includes a rotor core 10, a plurality of magnets 30, a plastic covering member 40, and a rotor shaft 50.
  • the plurality of magnets 30 are embedded on the rotor core 10, and the plastic covering member 40 is covered on the rotor core 10 so that the rotor iron
  • the core 10 and the plurality of magnets 30 are combined to form a rotor, and the rotor shaft 50 is assembled with the shaft hole 120 on the rotor core 10 to output power through the rotor shaft 50.
  • the stator is wound around the periphery of the rotor, and includes a stator core 20, a winding 26, a bobbin 60 and a plastic package 70.
  • the winding 26 is wound on the stator core 20, and when the winding 26 is powered on, an alternating magnetic field is generated to drive the rotor to rotate.
  • the winding frame 60 covers the inner surface of the stator slot 24 on the stator core 20 to isolate the winding 26.
  • the plastic package 70 is coated on the stator core 20 to encapsulate the stator core 20, the winding 26 and the winding frame 60, so as to prevent impurities and the like from entering the stator core 20.
  • the rotor core 10 specifically includes a collar portion 12 and a plurality of sector portions 14 spaced around the collar portion 12, and a receiving groove 16 is formed between two adjacent sector portions 14 , So that a plurality of receiving grooves 16 spaced apart along the circumference of the collar portion 12 are formed on the rotor core 10, and each receiving groove 16 is provided with a magnet 30, that is, a plurality of magnets 30 and a plurality of sectors 14 along the axis
  • the ring portions 12 are arranged alternately in the circumferential direction.
  • the shaft hole 120 is provided on the collar portion 12, and the rotor shaft 50 is assembled with the shaft hole 120, such as interference fit or clearance fit.
  • the N pole and S pole of the magnet 30 are attached to the side surfaces of the two adjacent sectors 14 respectively, and the opposite faces of the adjacent magnets 30 have the same polarity, that is, the same S Pole or N pole, so that the sector 14 clamped by two adjacent magnets 30 corresponds to the S or N magnetic polarity, and at the same time, the two adjacent sectors 14 show the opposite magnetic polarity.
  • the rotor core 10 includes an even number of sectors 14 which alternately exhibit opposite S pole and N pole magnetic polarities in the circumferential direction and form a closed magnetic circuit.
  • the plurality of accommodating grooves 16 are evenly distributed along the circumferential direction of the collar portion 12.
  • the magnet 30 is, for example, a ferrite-based sintered magnet, a neodymium magnet, or the like.
  • the magnet 30 has a rectangular parallelepiped structure, and the magnet 30 is disposed in the receiving groove 16 and penetrates the rotor core 10 along the axial direction of the rotor core 10.
  • the magnet 30 may also be a trapezoidal structure or the like, which is not limited in this application.
  • the overmolding part 40 is made of resin material and is formed on the rotor core 10 and the magnet 30 by injection molding. The overmolding part 40 is further filled in the gap between the magnet 30 and the rotor core 10.
  • the stator core 20 includes a plurality of stator units 22 enclosed in a ring shape, and each stator unit 22 is provided with a winding 26.
  • a stator slot 24 is formed between adjacent stator units 22, and the winding 26 is wound on the corresponding stator unit 22 and placed in the stator slot 24.
  • the winding 26 is a three-phase winding. The windings of each phase are wound on the stator unit 22 at intervals, and the windings of each phase are sequentially energized according to the law to generate an alternating magnetic field.
  • the present application provides an embodiment for optimizing the motor from the perspective of the number of stator slots and the number of rotor poles of the motor 100.
  • the pole slot factor s of the motor 100 is defined as the absolute value of the difference between the number of stator units 22 and the number of sectors 14, and the PS coefficient k ps of the motor 100 is the reciprocal of the pole slot factor s
  • the range includes the endpoint values 0.4, 0.5, 0.8, and 1, while limiting the motor 100
  • the number of slots per phase per pole is greater than or equal to 0.35 and less than or equal to 0.5.
  • the number of slots per pole per phase is the ratio of the number of slots and the number of poles multiplied by the number of phases.
  • the number of stator units 22 is z
  • the number of stator slots is z
  • the number of sectors 14 is 2p
  • the number of rotor poles is 2p
  • the pole slot factor s
  • PS coefficient k ps [s+ (s+1)]/[s ⁇ (s+1)]
  • the expression of the number of slots per pole per phase is: z/(2p ⁇ 3).
  • the number of poles 2p and the number of slots z both have a greater impact on the efficiency, performance and cost of the motor 100.
  • Figure 3 is a schematic diagram of the trend changes of the number of poles 2p, the number of slots z and its efficiency of the motor 100
  • Figure 4 is a schematic diagram of the trend changes of the motor PS coefficient k ps and the motor efficiency
  • Figure 5 is the motor PS coefficient k ps and electromagnetic Schematic diagram of the trend of the vibration amplitude percentage.
  • the efficiency of the motor 100 first increases and then decreases with the increase in the number of slots z, and the efficiency of the motor 100 first increases and then decreases with the increase in the number of poles 2p.
  • the number of slots z is too large or too small.
  • the number of poles 2p is not conducive to maximizing the efficiency of the motor 100, and the efficiency peak of the motor 100 appears in the range of the slot number z from 5 to 15 and the pole number 2p from 0 to 20.
  • FIGS. 4 and 5 are drawn on the premise that the number of slots per phase per pole is greater than or equal to 0.35 and less than or equal to 0.5. Specifically, the higher the motor efficiency and the lower the electromagnetic vibration effect of the motor, the better the performance of the motor.
  • the motor efficiency forms two peaks with the increase of the motor PS coefficient k ps , and it can be concluded from Figure 4 that the local peak of the motor efficiency appears when the motor PS coefficient k ps is between 0.4 to 0.5 and 0.8 to 1. Within the section.
  • this application selects the PS coefficient k ps to be greater than or equal to 0.4 and less than or equal to 0.5 or greater than or equal to 0.8 and less than or equal to 1, and there are two ranges for each pole per pole.
  • the number of phase slots is greater than or equal to 0.35 and less than or equal to 0.5.
  • the above-mentioned motor efficiency and electromagnetic vibration amplitude percentage are greatly improved compared with existing products.
  • the present application in order to improve the efficiency of the motor 100 and reduce the vibration and noise of the motor, the present application also provides a pair of motors from the perspective of the air gap between the stator and rotor of the motor 100 and the outer diameter of the rotor. 100 for optimized implementation.
  • an uneven air gap is adopted between the stator iron core 20 and the rotor iron core 10, and the uneven air gap changes periodically along the outer circumference of the rotor iron core 10.
  • each sector 14 and the stator teeth 24 form an uneven air gap, so the uneven air gap between the stator core 20 and the rotor core 10 changes periodically along the outer circumference of the rotor core 10.
  • the radial distance between the outer peripheral side of the rotor core 10 and the inner peripheral side of the stator core 20 is also uneven.
  • the uneven radial spacing also periodically changes along the outer circumference of the rotor core 10.
  • the size of the air gap between any part of the stator unit 22 and the sector 14 may first increase and then decrease as the rotation of the rotor core 10 is repeated, or it may first decrease and then decrease as the rotation of the rotor core 10 is repeated. Increase.
  • the collar portion 12 has a shaft hole 120, and the outer edges of the sector portion 14 each include a first arc segment 141 concentric with the shaft hole 120 and respectively Two second arc segments 143 connected to both ends of the first arc segment 141, wherein the second arc segment 143 and the first arc segment 141 are not concentric. That is, the second arc segment 143 is not concentric with the shaft hole 120, but is eccentric relative to the shaft hole 120.
  • the rotor and the stator are arranged concentrically, so that the second arc segment 143 on both sides and the stator teeth 24 can be unevenly formed.
  • the air gap, the air gap between the second arc segment 143 and the stator unit 22 gradually increases or gradually becomes smaller, so as to reduce the back EMF harmonic rate of the motor 100 and improve the efficiency of the motor.
  • the radial air gap between the first arc segment 141 and the stator unit 22 constitutes the minimum air gap ⁇ 1 of the uneven air gap.
  • the outer edge of the sector 14 further includes two straight line segments 145 connected to the two second arc segments 143 respectively.
  • the straight section 145 is located at the outer end of the outer edge contour of the sector 14, so when the rotor core 10 is plastic-sealed, part of the plastic at the containing groove 16 can flow to the arc surface of the outer contour of the rotor core 10 through the straight section 145, thereby This can better prevent flashing, that is, prevent the plastic from protruding from the second arc segment 143, thereby avoiding friction between the rotor and the stator.
  • the contour of the inner peripheral surface of the stator core 20 is a regular circular inner surface
  • the contour of the outer peripheral surface of the rotor core 10 is an irregular circular outer surface, so that the rotor core 10 and the stator core 20 are An uneven air gap is formed between.
  • the inner peripheral surface profile of the stator core 20 and the outer peripheral surface profile of the rotor core 10 are both irregular circular surfaces, and an uneven air gap may also be formed between the rotor core 10 and the stator core 20.
  • the following is to optimize the uneven air gap from the two indicators of the minimum air gap, the ratio of the minimum air gap and the maximum air gap, so that the uneven air gap can improve the efficiency of the motor 100 and reduce the motor 100 100 for the purpose of vibration and noise.
  • the size of the air gap ⁇ in the radial direction and the side area of the rotor determine the magnetic field distribution between the rotor and the stator and the flux conversion efficiency.
  • FIG 8 is a schematic diagram of the motor efficiency changing with the air gap of the motor and the outer diameter of the rotor.
  • the outer diameter D of the air gap ⁇ -one correspondence, to minimize the gap ⁇ of the present application is a non-uniform gap with the rotor core 10 corresponding to the outer diameter D R & lt described as an example.
  • the motor efficiency first increases and then decreases as an example.
  • the reason why the motor efficiency first increases is that the outer diameter D of the rotor core 10 is larger.
  • the rotor power density is high, and the air gap reluctance increases with the increase of the air gap, which corresponds to the decrease of the magnetic flux on the rotor and leads to a decrease in iron loss.
  • the magnetic load on the motor is higher than the electrical load, and during the increase of the air gap ⁇ , the magnetic load gradually decreases, and the electrical load gradually increases until the second After reaching the equilibrium point, the efficiency of the corresponding motor reaches the maximum. After that, the magnetic load is less than the electric load, and the motor efficiency gradually decreases.
  • the motor efficiency shows a trend of first increasing and then decreasing.
  • the side area of the rotor decreases and the air gap reluctance increases.
  • the magnetic load on the motor is higher than the electrical load, and during the reduction of the rotor outer diameter, the magnetic load Gradually decrease, and the electrical load gradually increases until the two reach a balance, corresponding to the maximum motor efficiency, after which the magnetic load is less than the electrical load, the motor efficiency gradually decreases.
  • the size of the air gap ⁇ and the rotor outer diameter D are set to meet the following conditions: the minimum air gap ⁇ 1 of the uneven air gap and the number of sectors 14 2p
  • the quotient obtained by dividing the product by the circumference of the corresponding rotor core 10 is greater than or equal to 0.01 and less than or equal to 0.05. Under this condition, the motor efficiency can be optimized.
  • the above design method achieves the purpose of improving the efficiency and power density of the motor 100 by limiting the range of the air gap aspect ratio.
  • the ratio of the minimum air gap and the maximum air gap of the uneven air gap is further optimized to reduce the vibration and noise of the motor 100.
  • the sine of the magnetic field of the motor 100 is poor, its harmonic content is relatively high, and the interaction of the harmonic magnetic fields between the stator and the rotor during the operation of the motor 100 is likely to produce ripple torque and radial force. Waves, which in turn generate torque fluctuations and radial vibrations, bring noise problems to the operation of the motor 100.
  • the air gap reluctance should be distributed as sinusoidal as possible to reduce the content of harmonic components as much as possible.
  • the present application further optimizes the design of the non-uniform air gap under the premise of optimizing the length-diameter ratio of the aforementioned air gap, so as to minimize the harmonic content of the magnetic field of the motor.
  • the minimum air gap between the stator core 20 and the rotor core 10 is ⁇ 1
  • the maximum air gap is ⁇ 2
  • the maximum air gap ⁇ 2 and the minimum air gap ⁇ 1 and their transition process are optimized.
  • the specific design process should satisfy the balance between motor efficiency and magnetic field distortion rate, and conduct a preferential analysis of the motor's magnetic field distortion rate and performance, and obtain the change trend of motor efficiency and distortion rate with the ratio k of the maximum air gap and the minimum air gap as shown in Figure 9. Show.
  • the motor efficiency decreases significantly.
  • the main reason is that the increase in the maximum air gap ⁇ 2 causes the corresponding rotor part to shrink. Furthermore, the available magnetic flux area is reduced, thereby reducing the power density of the rotor, while the Carter coefficient of the air gap is increased, and the overall trend of the performance of the motor 100 is reduced, and the efficiency is reduced.
  • the maximum air gap ⁇ 2 is too narrow, and the motor efficiency is higher. This is because the magnet 30 has a larger radial length and can provide a larger magnetic energy product. At the same time, the Carter coefficient of the air gap is smaller, and the motor efficiency is increased.
  • the minimum air gap ⁇ 1 is designed to be 0.3 mm, and it is reasonable to determine the maximum air gap ⁇ 2 to be designed to be between 0.37 and 0.6.
  • the air gap ratio coefficient k is selected as 0.65, and the maximum air gap ⁇ 2 is determined to be 0.46. mm.
  • the present application in order to improve the efficiency of the motor 100 and reduce the cost of the motor, also provides a method from the perspective of the rotor outer diameter D of the motor 100 and the radial length l PM of the magnet 30 An optimized implementation of the motor 100.
  • the magnet radial length l PM 30 also increases, the magnetic energy product is also a corresponding increase in the motor.
  • the excessively strong magnetic energy product will increase the iron loss of the motor 100.
  • the outer diameter of the motor remains the same, it will also bring about the problem of the reduction of the stator slot area that can be wound. Therefore, only a smaller diameter winding can be used. Ensure that the winding area is occupied, which will increase the winding resistance and increase the copper loss. Therefore, a reasonable allocation of the space between the stator core 20 and the rotor core 10 and the magnet 30 is the key to determining the maximum power density and efficiency of the motor 100.
  • the electric load gradually decreases until the two reach a balance, and the motor efficiency also reaches a local peak. After that, the magnetic load is more than the electric load, and the motor efficiency gradually decreases.
  • the efficiency of the motor increases with the increase of the radial length l PM .
  • the magnetic load of the motor increases with the increase of the radial length l PM .
  • the magnetic load and electrical load The gap between them is gradually narrowing, and the efficiency of the motor is gradually improving.
  • the optimal efficiency of the radial length of the magnet 30 l PM rotor outer diameter D r should meet the following conditions: the number of the sector divided by the circumference of the largest circumference of the outer peripheral portion 14 of the rotor core 10 is constituted And the length l PM of the magnet 30 in the radial direction of the rotor core 10 is greater than or equal to 1 and less than or equal to 1.4.
  • the minimum perimeter air gap ⁇ corresponding to the outer diameter D r 1 is the maximum circumference of the determined circumference, i.e. 1 ⁇ D r / (2pl PM) ⁇ 1.4 .
  • select rotor outer diameter D r of 50mm and may obtain a suitable size range of the radial length of magnet 30 l PM, and to select the value of the rule within this range.
  • the present application in order to improve the efficiency of the motor 100, also provides a motor 100 from the perspective of the dimensions of the stator core 20, the rotor core 10, and the magnet 30 of the motor 100 in the axial direction. 100 for optimized implementation.
  • the main parts are the cost of copper (winding 26), the cost of steel/iron (stator core 20 and rotor core 10), and the cost of magnet (magnet 30). ), in terms of proportion, copper cost>magnet cost>steel cost. Since the magnet 30 is combined and fixed with the rotor core 10 and then magnetized, the magnetization of the magnet 30 cannot reach saturation. Therefore, if the better efficiency performance of the motor is to be maintained, the cost of copper must be increased, and copper is a precious metal. The amount of copper will increase the cost of the motor 100. If the performance of the motor is improved by increasing the amount of magnet 30, there will be a certain marginal effect.
  • the improvement of the motor performance is not obvious, but the cost of the motor is greatly increased.
  • the grade of the magnet 30 is increased, for example, the original 6 series is changed to 9 series, then the magnet The price of 30 will double, and the cost of the motor 100 will be higher.
  • the price of steel/iron is lower than that of copper and magnets 30. Therefore, it is relatively preferred to increase the length of the rotor core 10 in the axial direction to improve the performance of the motor, that is, the solution of the motor 100 provided in this application The performance of the motor 100 can be improved at a relatively small cost.
  • the length L 3 of the magnet 30 in the axial direction is set to be greater than or equal to the length L 1 of the rotor core 10 in the axial direction.
  • the collar portion 12 has a shaft hole 120, and the axial direction is the axial direction of the shaft hole 120.
  • the two end surfaces of the magnet 30 can be set to be flush with the two end surfaces of the rotor core 10, or one end surface of the magnet 30 is flush with one end surface of the rotor core 10, and the other end surface of the magnet 30 protrudes from the rotor.
  • the above arrangement can generate a more saturated magnetic field in the rotor core 10, increase the magnetic density on the rotor core 10, and further increase the power density of the motor 100, so as to improve the performance efficiency of the motor 100.
  • the length L 1 of the rotor core 10 in the axial direction of the shaft hole 120 may be set to be greater than or equal to the length L 2 of the stator core 20 in the axial direction.
  • the length of the rotor core 10 in the axial direction L 1 of the stator core 20 in the axial direction is equal to the length L 2
  • both end faces of the rotor core 10 of the stator core 20 is flush with both end surfaces, such that The side surface of the rotor core 10 is at least aligned with the inner side surface of the stator core 20 to facilitate magnetic field distribution and flux conversion in the air gap.
  • the length L1 of the rotor core 10 in the axial direction is greater than the length L2 of the stator core 20 in the axial direction, and the first end surface of the rotor core 10 is relatively protruding or flush with the stator core in the axial direction.
  • the first end surface of the rotor core 10 and the second end surface of the rotor core 10 protrude from the second end surface of the stator core 20 relatively.
  • the end magnetic field protruding from the rotor core 10 can be used to compensate for the performance loss caused by the magnetization of the magnet 30 is not saturated.
  • the performance of the motor 100 is relatively improved at a relatively small cost.
  • the length L 1 of the rotor core 10 of the stator core 20 and the ratio of L 2 is greater than 1.0 and equal to 1.25, the higher will be the size range of the axial end portion of the magnet to compensate for flux collection effect of 30.
  • the performance loss caused by the unsaturation of magnetization can increase the power density of the motor 100 and improve the efficiency performance of the motor 100.
  • the first end surface of the rotor core 10 is flush with the first end surface of the stator core 20, the second end surface of the rotor core 10 protrudes relative to the second end surface of the stator core 20, and both ends of the magnet 30
  • the surface protrudes in the axial direction with respect to the end faces of the rotor core 10, and the ends of the magnet 30 protruding from the rotor core 10 are used to generate a magnetic field into the rotor core 10 due to the end effect, and the magnet 30 is used to protrude the rotor core.
  • the end of the core 10 generates a magnetic field interlinked with the stator core 10 to improve the efficiency of the motor 100.
  • the protruding lengths of the two ends of the magnet 30 relative to the two ends of the rotor core 10 are equal, so that the magnetic density generated by the magnet 30 in the rotor core 10 is the same, and the performance of the rotor core 10 is better. Balance is beneficial to improve the performance of the motor 100.
  • the length of the rotor 3 and the core 10 length L L of the difference between the magnet 1 on the stator core 30 in the axial direction divided by the length L 2 20 obtained quotient value greater than or equal to 0.15 and less than equal to 0.45, the The size range will generate a higher end magnetic field by the end magnetization effect to improve the performance of the motor 100.
  • end faces of the magnet 30 can also protrude asymmetrically in the axial direction relative to the end faces of the stator core 20, that is, the lengths of the magnets 30 protruding from the two end faces of the stator core 20 are different.
  • the longer end protruding from the end surface of the stator core 20 is used to install a sensor to monitor the operating state of the motor 100.
  • the shorter end of the magnet 30 protruding from the end surface of the stator core 20 can be The higher end magnetic field generated by the end magnetization effect can improve the performance of the motor 100.
  • the first length L 4 of the magnet 30 protruding from the first end surface of the stator core 20 is greater than or equal to 2 mm and less than or equal to 6 mm
  • the second length L 5 of the magnet 30 protruding from the second end surface of the stator core 20 The size range of the first length L 4 is greater than or equal to 4 mm and less than or equal to 8 mm.
  • the size range of the first length L 4 can not only facilitate the installation of sensors to detect the operating state of the motor 100, but also can be matched with the size range of the second length L 5 to achieve the end magnetization effect. Generating a higher end magnetic field improves the performance of the motor 100.
  • this application in order to prevent foreign matter such as iron filings from entering the air gap between the stator and rotor, the stator and rotor friction with the iron filings and damage, thereby reducing the efficiency of the motor 100 and generating abnormal noise
  • this application also provides an optimization method for the rotor from the perspective of the rotor to reduce the impact of foreign matter such as iron filings on the performance, noise, and reliability of the motor.
  • a debris adsorption groove 41 is provided on the overmolding member 40.
  • the overmolding part 40 covers the magnet 30 and is formed on both end faces and side faces of the rotor core 10, and the part of the overmolding part 40 formed on the side surface of the rotor core 20 is provided with debris adsorption grooves 41 ,
  • the debris adsorption groove 41 is used to absorb the small foreign matter adsorbed during the operation of the rotor, reducing the risk of friction between the rotor and the stator due to the adsorption of foreign matter such as metal debris on the surface of the rotor, which is beneficial to improve the performance of the motor .
  • the overmolding part 40 specifically includes an end surface covering portion 42 and a side filling portion 44.
  • the end surface covering portion 42 covers the magnet 30 on the end surface of the rotor core 10, exposing the collar portion 12 and the sector portion 14 on the end surface of the rotor core 10, that is, the end surface covering portion 42 covers at least the magnet 30 on the end surface of the rotor core 10 and exposes At least part of the collar part 12 and part of the sector part 14 of the end face of the rotor core 10.
  • the end surface covering portion 42 covers and wraps the part of the magnet 30 protruding from the end surface of the rotor core 10, and acts to fix the magnet 30 in the axial direction. Furthermore, positioning holes may be provided on the two opposite sides of the magnet 30 for positioning the axial length of the magnet 30 protruding from the end surface of the rotor core 10.
  • At least one positioning hole 424 is formed on the end surface covering portion 42 corresponding to each magnet 30.
  • two positioning holes 424 are formed on the end surface covering portion 42 corresponding to each magnet 30.
  • the positioning hole 424 is used for positioning the position of the magnet 30 and can reduce the material used for the end surface covering portion 42.
  • the positioning hole 424 can be filled with filler to perform dynamic balance correction of the rotor.
  • the end surface covering portion 42 includes a collar covering sub-part 420 and a plurality of magnet covering sub-parts 422.
  • the multiple magnet covering sub-parts 422 are radially connected to the collar covering sub-part 420, and the collar covering sub-part 420 covers at least part of the collar In part 12, each magnet covering sub-part 422 covers a magnet 30 correspondingly, and a space is formed between the magnet covering sub-parts 422 and the fan-shaped part 14 is exposed.
  • a balance hole 146 may be provided on the portion of the fan-shaped portion 14 exposed from the end surface covering portion 42, and the balance hole 146 penetrates the fan-shaped portion 14.
  • the balance hole 146 can not only reduce the weight of the rotor core 10, but also dissipate the rotor core 10, and the balance hole 146 can be filled with material to increase the weight to perform dynamic balance correction of the rotor.
  • each sector 14 is provided with a balance hole 146.
  • the balance hole 146 may be provided only on a part of the fan-shaped portion 14.
  • a retaining ring 426 may also be provided between two adjacent magnet covering sub-parts 422.
  • the retaining ring 326 is located on the outer periphery of the sector portion 14, so that the balance hole 146 is located at the retaining ring 426, the magnet covering sub-part 422 and
  • the collar covers the area enclosed by the sub-part 420, and the retaining ring 426 can prevent the filler from overflowing to the side of the rotor core 10 when filling the balance hole 146, and can also increase the reliability of the filler fixed on the rotor core 10. It prevents the packing from being thrown off by centrifugal force when the rotor rotates at a high speed, and at the same time, it is convenient for personnel to quickly operate the packing and reduce the risk of quality problems.
  • the side filling part 44 is connected to the end surface covering part 42, covers the magnet 30 on the side surface of the rotor core 10 and exposes the fan-shaped part 14 on the side surface of the rotor core 10; the debris suction groove 41 is formed in the side filling part 44.
  • the debris adsorption groove 41 is formed in the side filling portion 44 extending along the axial direction of the rotor core 10.
  • the debris suction groove 41 is provided in the side filling portion 44 at a certain angle with respect to the axial direction.
  • a plurality of debris adsorption grooves 41 are provided on the side filling portion 44, and a debris adsorption groove 41 is formed on the side filling portion 44 corresponding to each magnet 30.
  • a debris suction groove 41 is formed on the side filling portion 44 corresponding to every two magnets 30.
  • a plurality of debris adsorption grooves 41 are formed on the side filling portion 44 corresponding to each magnet 30, and the plurality of debris adsorption grooves 41 are distributed along the axial direction.
  • the side filling portion 44 is aligned and connected with the side surface of the rotor core 10, that is, the connection is smoothly transitioned, so as to reduce the wind resistance suffered by the rotor when it rotates.
  • the sector portion 14 extends away from the outer edge of the collar portion 12 toward the accommodating groove 16 to form a stop portion 140, and the magnet 30 abuts against the stop portion 140;
  • the stop portion 140 forms a gap 142, and the existence of the gap 142 is beneficial to greatly reduce the magnetic flux leakage of the rotor core 10.
  • the side filling part 44 is filled in the gap 142, and the side filling part 44 is aligned and connected to the side surface of the rotor core 10, and the side filling part 44 is connected to the magnet covering sub-parts 422 on both ends of the rotor core 10.
  • a debris adsorption groove 32 is provided on the magnet 30.
  • the main difference lies in that one side of the magnet 30 is exposed from the side of the rotor core 10 and there is a debris adsorption groove 32 provided thereon, and a plurality of debris adsorption grooves 32 are removed from the rotor. The side of the iron core 10 is exposed.
  • the debris adsorption groove 32 is exposed from the gap 142 formed by the two stoppers 140, and foreign matter such as iron debris can enter the debris adsorption groove 32 from the gap 142 and be magnetically absorbed by the debris adsorption groove 32 to avoid iron debris.
  • foreign matter such as iron debris
  • Other foreign objects affect the performance, noise and reliability of the motor.
  • the overmolding member 40 is not filled in the gap 142, that is, the overmolding member 40 does not include the aforementioned side filling portion 44, the overmolding member 40 includes an end surface covering portion 42, and the debris adsorption groove 32 is exposed from the gap 142 .
  • the overmolding member 40 is also filled in a part of the gap 142, so that the overmolding member 40 can also be formed on the side of the rotor core 10, and the debris adsorption groove 32 is exposed from the gap 142 that is not filled by the overmolding member 40.
  • the debris suction groove 32 is formed on the magnet 30 extending along the axial direction of the rotor core 22, that is, a debris suction groove 32 is formed on the magnet 30 in the axial direction.
  • a plurality of debris adsorption grooves 32 are distributed along the axial direction on the side surface of one magnet 30.
  • a debris suction groove 32 is formed in every one of the number of adjacent two or three magnets 30.
  • the magnet 30 is provided with a debris adsorption groove 32, which is equivalent to reducing the volume of the magnet 30.
  • a debris adsorption groove 32 which is equivalent to reducing the volume of the magnet 30.
  • the magnetic field of the magnet 30 is analyzed to determine the opening in a reasonable position Debris adsorption groove 32.
  • the simulation analysis shows that the magnet part of the magnet 30 exposed in the gap 142 has the lowest magnetic induction intensity, and the magnetic induction intensity is the highest on the two sides adjacent to the lowest magnetic induction intensity, that is, the magnet part covered by the stopper 140.
  • a debris adsorption groove 32 is opened at the low magnetic field of the magnet 30, and the debris is adsorbed
  • the slot 32 is exposed on the side of the rotor core 10 from the gap 142 to attract foreign matter such as iron filings into it, thereby preventing the iron filings from affecting the performance, noise and reliability of the motor.
  • the rotor core 10 is provided with a debris adsorption groove 144.
  • the main difference lies in that the side of the fan-shaped portion 14 facing away from the collar portion 12 is provided with a debris adsorption groove 144.
  • the debris suction groove 144 can be arranged at any position on the side wall of the sector portion 14 away from the collar portion 12.
  • a debris suction groove 144 is provided on the side of the stop portion 140 away from the collar portion 12.
  • the magnetic flux passing through the stop portion 140 is much greater than the magnetic flux passing through the same size cross-sectional area on the fan-shaped portion 14.
  • the electromagnetic simulation analysis of the rotor core 10 also shows that the magnetic induction intensity at the junction of the stop portion 140 is relatively high. Therefore, in order to absorb fine foreign matter such as iron filings outside the rotor core 10, the stopper 140 is selected to open the debris suction groove 144.
  • the present application makes full and effective use of the magnetic field distribution on the rotor core 10, and opens the debris adsorption groove 144 on the stop portion 140 to absorb impurities such as iron filings, without adversely affecting the performance of the rotor core 10. And since the magnetic field intensity at the location where the debris adsorption groove 144 is located is stronger than the magnetic field intensity at other positions on the side of the rotor core 10, the debris adsorption groove 144 can effectively adsorb small foreign objects such as iron filings.
  • the two stop portions 140 with the gap 142 can also be connected into one body, that is, the outer peripheries of adjacent sector portions 14 are connected to each other, so that the overmolding part 40 only includes the end surface covering portion 42, the same
  • the debris suction groove 144 can be arranged at any position on the side wall of the sector portion 14 away from the collar portion 12.
  • the above-mentioned debris adsorption grooves (41, 32, 144) can exist at the same time, one of the three, or two of the three, which can effectively prevent foreign matter such as iron filings from affecting the performance and noise of the motor. And reliability.
  • the present application in order to reduce the shaft voltage on the rotor shaft 50, also provides an optimized implementation of the rotor from the perspective of the rotor shaft 50 and the shaft hole 120, so as to electrostatically isolate the rotor iron The core 10 and the rotor shaft 50.
  • the rotor shaft 50 and the shaft hole 120 may adopt interference fit.
  • the diameter of the shaft hole 120 is larger than the shaft diameter of the rotor shaft 50, and the rotor shaft 50 and the shaft hole 120 are arranged coaxially, so that the rotor as a whole maintains dynamic balance, and the rotor shaft 50 and The rotor core 10 is integrated into a single body by the overmolding part 40.
  • the overmold 40 is filled between the rotor shaft 50 and the inner wall of the shaft hole 120 to isolate and insulate the rotor core 10 and the rotor shaft 50, and to fix the rotor shaft 50 and the rotor core 10, thereby changing
  • the electrostatic capacity on the side of the rotor makes it easy to balance the electrostatic capacity on the side of the rotor with the electrostatic capacity on the side of the matched stator, thereby reducing the shaft voltage on the rotor shaft 50 and improving the electric corrosion of the bearing.
  • the rotor shaft 50 includes a shaft body 52 and a shaft groove 54 provided on the shaft body 52.
  • the outer diameter of the shaft groove 54 is smaller than the outer diameter of the shaft body 52.
  • the corresponding part of the shaft groove 54 is located in the shaft hole 120, and the overmolding member 40 is filled between the shaft groove 54 and the inner wall of the shaft hole 120.
  • a plurality of shaft grooves 54 may be provided on the shaft body 52, and the plurality of shaft grooves 54 are spaced apart from the shaft body 52 along the axial direction, and the plurality of shaft grooves 54 are all located in the shaft hole 120, thereby overcoating
  • the member 40 is filled between the plurality of shaft grooves 54 and the inner side wall of the shaft hole 120 to increase the rotational torque between the rotor shaft 50 and the rotor core 10 and prevent the rotor shaft 50 and the rotor core 10 from loosening.
  • the surface of the shaft groove 54 is protruded or recessed to form an anti-drop part 540, which is used to increase the rotational torque between the rotor shaft 50 and the rotor core 10, and prevent the rotor shaft of the motor from being in use. 50 and the rotor core 10 fall off.
  • a groove-shaped anti-drop portion 540 is formed on the surface of the shaft groove 54 or a boss-shaped anti-drop portion 540 is formed on the surface of the shaft groove 54. Furthermore, the combination of the overmolding member 40 and the anti-drop portion 540 can increase The rotation torque between the large rotor shaft 50 and the rotor core 10.
  • the overmolding member 40 is made of elastic material, so as to absorb and buffer the tangential torque fluctuations of the rotor core 10 and the rotor shaft 50 during the rotation, so as to reduce the abnormal vibration transmitted through the rotor shaft 50 , And reduce vibration noise.
  • the present application in order to reduce the magnetic flux leakage of the motor 100, also proposes an implementation manner for optimizing the rotor core 10 from the perspective of the rotor core structure.
  • the rotor core 10 includes a first rotor punching piece group 11, a second rotor punching piece group 13, and a third rotor punching piece group 15 stacked in sequence.
  • the first rotor punching piece group 11 and the third rotor punching piece group 15 are both stacked by a plurality of first rotor punching pieces 110.
  • the first rotor punching piece 110 includes a first ring piece 112 and a surrounding ring piece 112.
  • the first ring segments 112 are provided with a plurality of first sector segments 113 at intervals, and the multiple first segment segments 113 in each first rotor punching segment 110 are connected to the first ring segments 112.
  • the second rotor punching piece group 13 is formed by stacking a plurality of second rotor punching pieces 130.
  • the second rotor punching piece 130 includes a second ring piece 132 and spaced apart around the second ring piece 132.
  • a plurality of second sector pieces 133, in each of the second rotor punching pieces 130, the second sector pieces 133 and the second ring pieces 132 are connected and disconnected in a staggered arrangement.
  • first ring piece 112 and the second ring piece 132 are stacked to form the collar portion 12, and the first sector piece 113 and the second sector piece 132 are stacked to form the sector portion 14.
  • the second segment 133 and the second ring segment 132 in the second rotor punching piece 130 are connected and disconnected alternately. Therefore, part of the second segment 133 is not connected with the second ring segment 132, that is, part of the second segment.
  • the piece 133 is independent of the second ring piece 132 and is fixed by other adjacently stacked second sector pieces 133, that is, there is an air gap magnetic resistance between the second sector piece 133 and the second ring piece 132, which can reduce leakage. Magnetic;
  • the other second segment pieces 133 in the second rotor punching piece 130 are connected to the second ring piece 132, which can ensure the overall strength of the second rotor punching piece group 13, thereby ensuring the overall strength of the rotor core 10 .
  • the first sector 113 and the second sector 133 are both provided with riveting points 116 at the same position, and two adjacent rotor punching plates are connected by the riveting points 116, that is, they are arranged adjacent to each other in the axial direction.
  • the two first rotor punching pieces 110, the two second rotor punching pieces 130, and the first rotor punching pieces 110 and the second rotor punching pieces 130 are all connected by riveting points 116.
  • the second sector piece 133 connected to the second ring piece 132 and the second sector piece not connected to the second ring piece 132 The sheets 133 are stacked and arranged.
  • the plurality of second rotor punches 130 in the second rotor punch group 13 can also be arranged in other ways, for example, half of the second rotor punches 130 are stacked on each other, and the other half of the second rotor punches are stacked on each other.
  • the sheet 130 deflects a second fan-shaped sheet 133 and is stacked to form the second rotor punching sheet group 13.
  • the second rotor punching piece group 13 further includes a first rotor punching piece 110, and the first rotor punching piece 110 is distributed among the plurality of second rotor punching pieces 130.
  • the above are only examples, and the present application does not limit the specific arrangement of the second rotor punch group 13.
  • This structural arrangement of the second rotor punch group 13 can reduce magnetic flux leakage and increase the back-EMF coefficient of the rotor core 10, thereby improving the performance of the motor 100, ensuring the strength of the rotor core 10 itself, and helping to reduce The risk of strength failure caused by centrifugal force during rotation.
  • a plurality of spaced first limit posts 117 are formed on the side of the first ring piece 112 facing the first sector piece 113, and the first limit posts 117 are located Between two adjacent first sector-shaped pieces 113.
  • a plurality of second limiting posts 137 are formed on the side of the second ring piece 132 facing the second sector piece 133, and the second limiting posts 137 are located between two adjacent second sector pieces 133.
  • the length of the first limiting post 117 along the radial direction of the first ring piece 112 is greater than the length of the second limiting post 137 along the radial direction of the second ring piece 132.
  • the number of the first limit post 117 and the second limit post 137 are multiple, and they are stacked corresponding to each other.
  • the longer first limit post 117 is used to constrain the magnet 30 in the receiving groove 16, and the shorter one
  • the second limit post 137 can ensure that it does not contact the magnet 30 but leaves a certain air gap with the magnet 30, which can effectively reduce the leakage of the magnetic circuit through the second limit post 137, thereby reducing the leakage of the rotor core 10 magnetic.
  • the first fan-shaped piece 113 and the second fan-shaped piece 133 are provided with balance holes 146 at the same position, and each balance hole 146 is stacked correspondingly, and the balance hole 146 penetrates the fan portion 14.
  • a connecting bridge structure is provided between the first segment 113 and the first ring segment 112 and between the second segment 133 and the second ring segment 132.
  • the plurality of first sector-shaped pieces 113 are all connected to the first ring piece 112 through the first connecting bridge 119.
  • Second connecting bridges 135 and disconnected connecting bridges 136 are alternately arranged in the second rotor punching piece 13, wherein a part of the second sector-shaped piece 133 is connected to the second ring piece 132 through the second connecting bridge 135, and the other part
  • the second sector piece 133 is spaced apart from the second ring piece 132 through the disconnected connecting bridge 136, that is, the gap between the second sector piece 133 and the second ring piece 132 is spaced apart as the disconnected connecting bridge 136 .
  • the ratio of the width of the first connecting bridge 119, the second connecting bridge 135 and the disconnected connecting bridge 136 in the circumferential direction of the rotor core 10 to the thickness of the punching sheet is 0.8 to 1.5.
  • the thickness of the punching piece is the thickness of the punching piece of the first rotor punching piece 11 and the second rotor punching piece 13, and the widths of the first connecting bridge 119, the second connecting bridge 135 and the disconnecting connecting bridge 136 are all the same.
  • the first connecting bridge 119 and the second connecting bridge 135 have sufficient strength, and the disconnected connecting bridge 136 can better reduce the magnetic flux leakage of the rotor core 10.
  • the ratio of the length l in the radial direction of the disconnected bridge 136 to the width w in the circumferential direction is greater than or equal to the set value.
  • the set value is the quotient obtained by dividing the product of the minimum air gap ⁇ 1 of the uneven air gap and the number of sectors 2p by 1% of the circumference of the maximum circumference ⁇ D r formed by the outer circumference of the rotor core 10.
  • the relationship formula between the length l and the width w is expressed as l/w ⁇ 200p ⁇ 1 / ⁇ D r .
  • the length l and the width w should be increased as much as possible, and the smaller length l and the larger width w will cause excessive magnetic flux leakage of the rotor core 10 and poor motor performance.
  • an excessively large length l and an excessively small width w will affect the mechanical strength of the rotor core 10 and cause safety hazards.
  • the length l is greater than or equal to 2.5 mm
  • the width w is greater than or equal to 0.3 mm and less than or equal to 1 mm.
  • the length l and the width w are the length and width of the first connecting bridge and the second connecting bridge at the same time.
  • selecting an appropriate length l and width w, and making it consistent with l/w ⁇ 200p ⁇ 1 / ⁇ D r can reduce the magnetic leakage of the rotor core 10 as much as possible, increase the power density of the rotor core 10, and also ensure The mechanical strength of the rotor core 10 can further improve the power density and efficiency of the motor 100.
  • the present application in conjunction with FIG. 25 and FIG. 26, in order to improve the material utilization rate of the motor, the present application also proposes an implementation manner for optimizing the stator core from the perspective of the stator core structure.
  • the stator unit 22 is roughly T-shaped.
  • the stator unit 22 includes a yoke 220, a tooth 222, and a tooth shoulder 224.
  • the tooth 222 is connected between the yoke 220 and the tooth shoulder 224.
  • a plurality of stator units The plurality of yokes 220 of 22 are connected in sequence, and a stator slot 24 is formed between adjacent tooth portions 222 to form a plurality of stator slots 24.
  • the tooth portion 222 is provided with a winding 26, and two adjacent tooth shoulders 224 are provided between gap.
  • the stator core 20 includes 12 T-shaped stator units 22, which can be matched with a rotor with 8 or 10 poles.
  • the outer surface 221 of the yoke 220 is a flat surface and constitutes the polygonal outer surface of the stator core 20; the inner surface of the tooth shoulder 224 is arc-shaped and constitutes the circular inner surface of the stator core 20 to facilitate the rotor It rotates relative to the stator core 20.
  • the stator core 20 is formed by arranging a plurality of stator units 22 meshingly connected in sequence and enclosed in a ring shape.
  • the stator units 22 are independent of each other, which can improve the manufacturing
  • the utilization rate of the material of the stator unit 22 allows smaller-sized materials to be used and made into the stator unit 22.
  • the outer surface 221 of the yoke 220 is set to be flat, so that the stator unit 22 is opposite to the outer surface of the yoke.
  • the arc-shaped stator unit occupies a smaller area, which further improves the utilization rate of materials, thereby reducing the manufacturing cost of the stator core 20.
  • one end of the yoke 220 is provided with a protrusion 227, and the other end is provided with a groove 228; a plurality of yokes 220 are sequentially engaged and connected by the protrusions 227 and the grooves 228.
  • the protrusion 227 has a semicircular shape
  • the groove 228 is a semicircular groove, and the semicylindrical shape engages with the semicircular groove to connect two adjacent yokes 220.
  • the root of the protrusion 227 is provided with a clamping groove 2271
  • the end of the groove 228 on the yoke 220 is correspondingly provided with a clamping column 2281, the clamping column 2281 and the clamping groove 2271
  • the snap fit can further enhance the strength of the meshing connection between the stator units 22.
  • the inner surface 223 of the yoke 220 is further flat, parallel to the outer surface 221 of the yoke 220, and the teeth 222 are perpendicular to the inner surface 223, so that the wire can be attached to The inner surface 223 starts to wind from the inner surface 223, so that the wire arrangement on the tooth portion 222 is neat and the winding groove full rate is high.
  • the inner surface of the yoke is a curved stator core, and its winding maximum slot full rate is 65%, while the winding slot full rate of the stator core 20 provided by the present application can reach 70%, which is relatively improved
  • the inner surface 223 is flat, which can further improve the utilization rate of the material for making the stator unit 22, and the outer surface 221 and the inner surface 223 are both flat, the mold structure for making the stator core 20 will become simpler, which can reduce The cost of the mold further reduces the manufacturing cost of the stator core 20.
  • the tooth shoulder 224 is configured as an oblique shoulder, which can effectively improve the magnetic saturation at the connection with the tooth 222 compared to a straight shoulder.
  • the yoke 220 is provided with a first rivet point 225
  • the tooth shoulder 224 is provided with a second rivet point 226.
  • the area of the second rivet point 226 is smaller than the area of the first rivet point 225.
  • the present application moves the second riveting point 226 down to the tooth shoulder 224, and further reduces the second riveting point relative to the first riveting point 225
  • the size and area of 226 can effectively improve the magnetic saturation on the tooth 222 and the tooth shoulder 224, and improve the power density of the stator core 20.
  • first riveting point 225 and the second riveting point 226 are: when the stator core 20 is formed by a plurality of laminated stator punching pieces, the first riveting point 225 and the second riveting point 226 It is arranged on the stator punched piece, and a plurality of stator punched pieces are laminated through the first rivet point 225 and the second rivet point 226 to form the stator core 20.
  • the motor 100 further includes a winding frame 60, which is an insulating winding frame, which is made of, for example, a resin-like insulating material.
  • the bobbin 60 covers the inner surface 223 of the yoke 220, the tooth 222 and the inner surface of the tooth shoulder 224 to isolate the winding 26.
  • the motor 100 further includes a plastic package 70, which is wrapped around the outer circumference and both ends of the stator core 20 to encapsulate the stator core 20, the winding 26, and the winding frame 60 , To prevent impurities etc. from entering the stator core 20.
  • the application discloses a motor and a household appliance.
  • the range of the PS coefficient of the motor to 0.4 to 0.5 and 0.8 to 1, and the number of slots per pole per phase of the motor is greater than or equal to 0.35 and less than or equal to 0.5, the number of slots and poles of the motor are optimized to ensure the motor's performance
  • the harmonic components of the tangential electromagnetic force wave are low, which can reduce the vibration and noise of the motor.
  • it can also make the power density and efficiency of the motor high, and the cost of the motor is also effectively reduced.
  • the motor 100 described above can be used as a power source in household appliances or other fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

一种电机和家用电器,该电机(100)包括:转子铁芯(10),包括轴环部(12)和多个扇形部(14),两相邻扇形部(14)之间构成容纳槽(16);定子铁芯(20),套设于转子铁芯(10)外周,包括围合呈环状的多个定子单元(22)。该方案限定电机(100)的P-S系数和每极每相槽数,以实现降低电机(100)的振动噪音,同时也能够使得电机(100)的功率密度高和效率高,且电机(100)的成本也得到有效降低。

Description

电机和家用电器
本申请要求于2019年09月26日在中华人民共和国专利局提交的、申请号为201910919342.6、发明名称为“电机和家用电器”的中华人民共和国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机技术领域,特别是涉及一种电机和家用电器。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。直流无刷电机因其结构简单,运行可靠,越来越多地使用在各种家用电器中。但相关技术中电机的功率密度较低且振动噪音较大,已不符合当前家用电器的需求,需要寻求一种功率密度较高且振动噪音较小的电机,而改善电机噪音的同时也需考虑电机的效率与成本,因而需寻求振动噪音、效率、成本的平衡。
申请内容
本申请实施例的目的之一在于:提供一种电机和家用电器,旨在解决功率密度低、振动噪音大的的问题。
本申请实施例采用的技术方案是:
第一方面,提供了一种电机,包括转子铁芯和定子铁芯。转子铁芯包括轴环部和围绕轴环部间隔设置的多个扇形部,两相邻扇形部之间构成容纳槽。定子铁芯套设于转子铁芯,包括围合呈环状的多个定子单元。该电机的极槽因子为定子单元的数量与扇形部的数量的差值绝对值,且该电机的P-S系数为极槽因子的倒数与极槽因子正序相邻自然数的倒数之和。其中,P-S系数范围为0.4至0.5和0.8至1,电机的每极每相槽数大于等于0.35且小于等于0.5。
第二方面,提供一种家用电器包括如上述的电机。
本申请实施例提供的电机和家用电器的有益效果在于:可降低电机的振动噪音,同时也能够使得电机的功率密度高和效率高,且电机的成本也得到有效降低。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请提供的电机一实施例沿垂直于轴向的截面示意图;
图2是图1所示的电机沿轴向的截面示意图;
图3是图1所示的电机的极数、槽数与电机效率的趋势变化示意图;
图4是图1所示的电机的P-S系数与电机效率的趋势变化示意图;
图5是图1所示的电机的P-S系数与电机的电磁振动幅值百分比的趋势变化示意图;
图6是用于显示图1所示的电机中的气隙尺寸的局部放大示意图;
图7是图6所示的转子铁芯中扇形部的结构示意图;
图8是图1所示的电机的气隙和转子铁芯的外径对电机效率的趋势变化示意图;
图9是图1所示的电机的最大气隙对电机的效率和电机的磁场畸变率的趋势变化示意图;
图10是图1所示的转子铁芯的外径和磁铁轴向长度对电机效率的趋势变化示意图;
图11是图1所示的电机中转子的立体结构示意图;
图12是图11所示的转子一具体实施方式垂直于轴向的截面示意图;
图13是图12所示的转子的端面的正视示意图;
图14是图11所示的转子另一具体实施方式垂直于轴向的截面示意图;
图15是图11所示的转子又一具体实施方式垂直于轴向的截面示意图;
图16是图15所示的A区域的放大结构示意图;
图17是图14或图15所示的转子的端面的正视示意图;
图18是图11所示的转子沿轴向一侧的截面示意图;
图19是图18所示的转子中转子轴的结构示意图;
图20是图1所示的电机中的转子铁芯的分解结构示意图;
图21是图20所示的转子铁芯中的第一转子冲片的结构示意图;
图22是图20所示的转子铁芯中的第二转子冲片的结构示意图;
图23是图22所示的转子铁芯中尺寸标注示意图;
图24是图1所示的电机中局部磁漏分布示意图;
图25是图1所示的电机中定子沿垂直于轴向的截面结构示意图;
图26是图1所示的电机中定子铁芯的结构示意图;
图27是图26所示的定子铁芯中定子单元一具体实施方式的结构示意图;
图28是图26定子铁芯中定子单元另一具体实施方式的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。
若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本实用新型要求的保护范围之内。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
参阅图1和图2,图1是本申请提供的电机一实施例沿轴向的截面示意图,图2是图1所示的电机沿垂直于轴向的截面示意图。
在本实施例中,该电机100包括转子和定子。转子包括转子铁芯10、多个磁铁30、包塑件40和转子轴50,其中多个磁铁30嵌于转子铁芯10上,包塑件40包覆于转子铁芯10上,使得转子铁芯10和多个磁铁30结合成转子,转子轴50与转子铁芯10上的轴孔120相装配,以通过转子轴50输出动力。
定子绕设于转子的外围,且包括定子铁芯20、绕组26、绕线架60和塑封件70。绕组26缠绕于定子铁芯20上,且绕组26在上电时产生交变磁场,从而驱动转子转动。绕线架60包覆于定子铁芯20上定子槽24的内表面,以隔离绕组26。塑封件70包覆于定子铁芯20上,以封装定子铁芯20、绕组26及绕线架60,避免杂质等进入定子铁芯20内。
在一个实施例中,参照图1和图2,转子铁芯10具体包括轴环部12和围绕轴环部12间隔设置的多个扇形部14,两相邻扇形部14之间构成容纳槽16,从而在转子铁芯10上沿轴环部12的周向形成间隔分布的多个容纳槽16,每一容纳槽16中设置有一磁铁30,即多个磁铁30与多个扇形部14沿轴环部12周向交替排列。轴孔120设置于轴环部12上,转 子轴50与轴孔120相装配,例如过盈配合或间隙配合。
当磁铁30嵌于容纳槽16内时,磁铁30的N极和S极分别与两相邻扇形部14上的侧面贴合,相邻磁铁30上相对的面的极性相同,即同为S极或N极,进而使得被相邻的两个磁铁30所夹持的扇形部14对应表现为S或N磁极性,同时相邻两个扇形部14表现出相反的磁极性。
在本实施例中,转子铁芯10包括偶数个扇形部14,该偶数个扇形部14沿周向依次交替表现出相反的S极和N极磁极性,并形成封闭的磁回路。另外,为使得磁回路均匀分布,多个容纳槽16沿轴环部12周向均匀分布。
磁铁30例如为铁氧体类的烧结磁铁或钕磁铁等。本实施例中,磁铁30为长方体结构,磁铁30设置于容纳槽16内且沿转子铁芯10的轴向贯穿转子铁芯10。在其他实施例中,磁铁30还可以是梯形体等结构,本申请对此不作限制。
包塑件40为树脂类材质,通过注塑的方式形成于转子铁芯10、磁铁30上,包塑件40还进一步填充于磁铁30与转子铁芯10之间的空隙内。
在一个实施例中,参照图1和图2,定子铁芯20包括围合呈环状的多个定子单元22,每一定子单元22上设置有一绕组26。相邻的定子单元22之间构成定子槽24,绕组26缠绕于对应的定子单元22上且置于定子槽24内。绕组26为三相绕组,各相绕线依次间隔缠绕于定子单元22上,并通过对各相绕线按规律依次上电,从而产生交变磁场。
为了提高电机100的效率,本申请从电机100的定子槽数和转子极数角度出发,提供一种对电机进行优化的实施方式。
具体而言,在本实施例中,定义电机100的极槽因子s为定子单元22的数量与扇形部14的数量的差值绝对值,电机100的P-S系数k ps为极槽因子s的倒数与极槽因子s正序相邻自然数的倒数之和,并限定P-S系数k ps的范围为0.4至0.5和0.8至1,该范围包括端点值0.4、0.5、0.8和1,同时限定电机100的每极每相槽数大于等于0.35且小于等于0.5。其中,每极每相槽数为槽数与极数乘以相数之积的比值。
例如,定子单元22的数量为z,则定子槽数为z,扇形部14的数量为2p,则转子极数为2p,极槽因子s=|z-2p|,P-S系数k ps=[s+(s+1)]/[s×(s+1)],每极每相槽数的表达式为:z/(2p×3)。
下面将具体论述上述限定对电机效率所带来的改进效果。
首先从定子角度出发,如图6所示,通过电磁分析可知,由于定子单元22之间存在附加气隙25,因此定子槽数z越多则附加气隙25越多,定子铁芯20对磁路的磁阻越大。为保持电机性能最优,则需要相对地将绕组26的绕线加粗、将定子单元22上的绕线圈数增多或者将绕线的整体长度增加,以便产生更大的磁场强度克服所增加的磁阻。
相反,当定子槽数z相对较少时,定子上的磁通量也较少,定子上的磁通量处于欠饱和状态,则使得电机100的效率降低,电机100的功率密度也降低了。
进一步从转子角度出发,以切向充磁的内置式电机为例,当转子极数2p相对较少时,则磁铁30的数量也较少,转子上的磁通量较低,因而通过转子与定子之间气隙参与机电能量转换的磁通也较低,电机100的功率密度也较低。此时,为保持电机性能最优,则需要相对地增加磁铁30沿径向上的尺寸,以增大转子上的磁通量,转子铁芯10的径向尺寸也将增加,因而电机100的成本将增加。
相反,当电机100的转子极数2p相对较多时,磁铁30的数量也相对较多,转子上的磁通量处于过饱和状态,使得电机100的铁损增大。在转速不变的情况下,极数2p相对较多的电机100运行所需的三相电的频率将增加,进一步增大了电机100的铁损,造成电机100的效率下降,且电机100的成本也上升了。
因而,极数2p、槽数z均对电机100的效率、性能和成本有较大影响,同时在研究中还发现,极数2p、槽数z对电机100的电磁振动幅度也有较大影响。
为了获取极数2p和槽数z的最优化组合,本申请通过对电机100进行大量实验验证分析,从而得到图3、图4和图5所示的曲线数据,并通过对上述曲线数据对极数2p和槽数z进行优化。具体而言,图3为电机100的极数2p、槽数z与其效率的趋势变化示意图,图4为电机P-S系数k ps与电机效率的趋势变化示意图,图5为电机P-S系数k ps与电磁振动幅值百分比的趋势示意图。
如图3所示,电机100的效率随槽数z的增加先增大后减小,电机100的效率随极数2p的增加同样先增大后减小,过大或过小的槽数z、极数2p均不利于电机100的效率最大化,且电机100的效率峰值出现在槽数z为5至15、极数2p为0到20的区间范围内。
在一个实施例中,如图4和图5所示,图4和图5为在每极每相槽数满足大于等于0.35且小于等于0.5的前提下绘制而成的。具体而言,电机效率越高,电机的电磁振动效应越低,则电机的性能越优良。图4中电机效率随电机P-S系数k ps的增大形成了两个波峰,且从图4中可以得出电机效率的局部峰值出现在电机P-S系数k ps为0.4至0.5和0.8至1之间的区段内。图5中电磁振动幅值百分比随电机P-S系数k ps的增大出现两个波谷,且从图5中可以得出电磁振动幅值百分比的局部波谷值出现在电机P-S系数k ps为0.4至0.5和0.8至1之间的区段内。
因此,综合考虑电机效率、电磁振动幅值百分比以及电机成本等因素,本申请选取P-S系数k ps大于等于0.4且小于等于0.5或大于等于0.8且小于等于1两个范围,且同时有每极每相槽数大于等于0.35且小于等于0.5,此设计能够保证电机100的切向电磁力波的谐波成分较低,即电机100的振动噪音小,同时相同成本下功率密度高、电机效率好,且电机的成本也得到有效降低。
例如,电机100为10极12槽三相电机,则其P-S系数k ps为0.83,每极每相槽数为12/(10×3)=0.4,电机效率为0.89,电磁振动幅值百分比为30%。电机100为8极12槽三相电机,则其P-S系数k ps为0.45,每极每相槽数为12/(8×3)=0.5,电机效率为0.86,电磁振动幅值百分比为38%。上述电机效率和电磁振动幅值百分比相较于现有产品均具有很大改善。
在一个实施例中,参阅图6,为提高电机100的效率及降低电机的振动噪音,本申请还从电机100的定转子之间气隙和转子外径的角度出发,提供了一种对电机100进行优化的实施方式。
如图6所示,在本实施例中,定子铁芯20和转子铁芯10之间采用不均匀气隙的设计方式,且该不均匀气隙沿转子铁芯10外周呈周期性变化。具体地,每一扇形部14与定子齿24之间均构成不均匀气隙,因而定子铁芯20与转子铁芯10之间的不均匀气隙沿转子铁芯10外周呈周期性变化。
在一个实施例中,由于转子铁芯10与定子铁芯20之间构成不均匀气隙,使得转子铁芯10的外周侧与定子铁芯20的内周侧之间的径向间距也是不均匀的,且这种径向间距的不均匀也是沿转子铁芯10的外周呈周期性变化的。
具体地,定子单元22上任一处与扇形部14之间的气隙大小可随转子铁芯10的转动重复先增大而后减小,或者也可随转子铁芯10的转动重复先减小而后增大。
在一个实施例中,结合图6、图7,在本实施例中,轴环部12具有轴孔120,扇形部14的外边缘均包括与轴孔120同心的第一圆弧段141和分别连接于第一圆弧段141两端的两第二圆弧段143,其中第二圆弧段143与第一圆弧段141非同心。即第二圆弧段143不与轴孔120同心,而相对轴孔120偏心,通常将转子与定子同心设置,因而能够使得两侧的第二圆弧段143与定子齿24之间形成不均匀气隙,第二圆弧段143与定子单元22之间的气隙逐渐增大或逐渐较小,从而可起到降低电机100反电势谐波率,和提高电机效率的作用。
其中,第一圆弧段141与定子单元22之间的径向气隙构成该不均匀气隙的最小气隙δ 1
扇形部14的外边缘还包括分别连接于两第二圆弧段143的两直线段145。直线段145位于扇形部14外边缘轮廓的外端,因而在将转子铁芯10塑封时,容纳槽16处的部分塑料能够通过直线段145流动至转子铁芯10外轮廓的弧面上,从而能够更好地防止溢料,即防止塑料凸出第二圆弧段143,进而避免转子和定子之间的摩擦。
可选地,定子铁芯20的内周面轮廓为规则的圆形内表面,则转子铁芯10的外周面轮廓为非规则的圆形外表面,从而转子铁芯10与定子铁芯20之间构成不均匀气隙。
可选地,定子铁芯20的内周面轮廓和转子铁芯10的外周面轮廓均为非规则的圆形表面,转子铁芯10与定子铁芯20之间也可构成不均匀气隙。
下面分别从不均匀气隙的最小气隙、最小气隙与最大气隙的比值两个指标对该不均匀气隙进行优化,以使得该不均匀气隙能够达到提高电机100的效率及降低电机100的振动噪音的目的。
根据电机的电磁原理,气隙δ沿径向的尺寸大小及转子的侧面积决定转子与定子间的磁场分布和磁通转换效率。气隙δ的径向尺寸越小、转子铁芯10的外径D越大,则对应的气隙磁阻越小。气隙δ的径向尺寸越大、外径D越小,则对应的气隙磁阻越大。过大的气隙磁阻将导致气隙δ内的磁场减弱,进而导致参与机电能量转换的磁通降低和电机效率降低,而过小的气隙磁阻则导致转子和定子极易磁饱和,进而导致铁损上升,电机效率也将降低。因此合理的气隙δ与转子铁芯10的外径D的比值是提高电机效率的关键因素。
参阅图8,图8为电机效率随电机的气隙及转子外径变化的示意图。此处气隙δ与外径D一一对应,本申请以不均匀气隙的最小气隙δ 1与对应的转子铁芯10的外径D r为例说明。
如图8所示,气隙δ为0.3mm时,电机效率随外径D增大而减小;气隙δ为0.35mm时,电机效率随外径D增大呈现先增大后减小的变化趋势;气隙δ为0.4mm、0.45mm及0.5mm时,电机效率随外径D增大而增大。当外径D为45mm时,电机效率随气隙δ增大而减小;当外径D为47mm、49mm、51mm、53mm及55mm时,电机效率随气隙δ增大呈现先增大后减小的变化趋势。
具体分析如下,以当气隙δ增大时,电机效率呈现先增大后减小趋势的情况为例,电机效率先增大的原因是在转子铁芯10的外径D较大的情况下,转子功率密度高,随气隙增大时气隙磁阻增加,对应转子上的磁通下降,并导致铁耗下降。从电机设计角度而言,在电机效率增大的区间内,电机上的磁负荷高于电负荷,并在气隙δ增大过程中,磁负荷逐渐减小,而电负荷逐渐增加,直至二者达到平衡点,对应电机的效率达到最大,此后磁负荷小于电负荷,电机效率逐渐下降。
同理,气隙δ为0.35mm时,在转子铁芯10的外径D减小过程中,电机效率呈现先增大后减小的变化趋势。其中,在电机效率的增大区间内,转子的侧面积减小,气隙磁阻增大,此区间段内电机上的磁负荷高于电负荷,并在转子外径缩小过程中,磁负荷逐渐减小,而电负荷逐渐增加,直至二者达到平衡,对应待电机效率达到最大,此后磁负荷小于电负荷,电机效率逐渐下降。
因此,通过大量的试验测试分析,在本实施例中,将气隙δ的大小与转子外径D设置成满足以下条件:不均匀气隙的最小气隙δ 1与扇形部14的数量2p的乘积除以所对应的转子铁芯10圆周周长所得到的商值大于等于0.01且小于等于0.05。在此条件下,电机效率可以得到优化。
具体地,0.01≤2pδ 1/(πD r)≤0.05,其中πD r为最小气隙δ 1所对应的转子铁芯10圆周周长,D r为与最小气隙δ 1对应转子铁芯10的外径。例如,选取气隙宽度δ 1为0.35mm,转子铁芯10外径D r为50.2mm,则气隙长径比为0.022。
以上设计方式通过限定气隙长径比的范围,达到提高电机100的效率及功率密度的目的。接下来进一步对不均匀气隙的最小气隙和最大气隙的比值进行优化,以降低电机100 的振动噪音。
在一个实施例中,若电机100的磁场正弦度较差,则其谐波成分含量较高,电机100在运行过程中定子与转子的谐波磁场相互作用易产生纹波转矩及径向力波,进而产生转矩波动与径向振动,给电机100运转带来噪音问题。而合理地对定子铁芯20和转子铁芯10之间的气隙进行优化设计,使气隙磁阻呈周期性分布,可以改善谐波磁场,从而避免或减弱电机100的振动噪音。
因此,为减小电机100的振动噪音,以及对气隙空间内的磁场进行优化,从而保证磁场正弦度,应尽量使得气隙磁阻呈正弦分布,使得所含谐波成分含量尽可能地降低,还需要对转子铁芯10的外轮廓进行优化设计。本申请进一步在前述气隙长径比的优化前提下,对不均匀气隙进行优化设计,以使得电机磁场的谐波含量最小化。
如图6所示,定子铁芯20和转子铁芯10之间的最小气隙为δ 1,最大气隙为δ 2。在对转子铁芯10的外轮廓优化过程中,即是对最大气隙δ 2和最小气隙δ 1及其过渡过程进行优化设计。具体设计过程应满足电机效率和磁场畸变率的平衡,对电机的磁场畸变率和性能进行择优分析,得到电机效率、畸变率随最大气隙和最小气隙的比值k的变化趋势如图9所示。
如图9所示,电机100在畸变率和性能的实验验证分析中,随着比值k的增加,电机效率下降明显,其主要原因是最大气隙δ 2增大导致对应的转子部分内缩,进而可提供的磁通面积减小,进而降低了转子的功率密度,同时气隙的卡特系数增加,整体趋势上电机100的性能下降,效率降低。尺寸过于狭小的最大气隙δ 2,电机效率较高,这是因为磁铁30沿径向的尺寸长度较大,能提供的磁能积更大,同时气隙的卡特系数较小,电机效率上升,但由于最大气隙δ 2和最小气隙δ 1差距较小,气隙磁阻的正弦波动对整体磁路影响较小,因此磁场畸变率较高,无法实现优化气隙磁场的目标。
在本实施例中,通过在畸变率和效率之间寻求平衡范围,确定不均匀气隙的最小气隙δ 1与最大气隙δ 2的比值k大于等于0.5且小于等于0.8时,可保证电机效率较高的同时,其磁场畸变率较低。
进一步分析发现最小气隙δ 1满足大于等于0.2mm且小于等于0.5mm时,能够更准确地确保电机效率较高且磁场畸变率较低。
例如,最小气隙δ 1设计为0.3mm,确定最大气隙δ 2设计为0.37-0.6之间比较合理,本实施例中选取气隙比值系数k为0.65,则确定最大气隙δ 2为0.46mm。
在一个实施例中,结合图10,为提高电机100的效率及降低电机的成本,本申请还从电机100的转子外径D和磁铁30的径向长度l PM的角度出发,提供了一种对电机100进行优化的实施方式。
具体而言,随着转子铁芯10的外径D的增加,磁铁30的径向长度l PM也增大,则电机磁能积也相应提高。但过强的磁能积将导致电机100的铁损增加,在电机外径不变的前提下还同时带来可绕线的定子槽面积减小的问题,因而只能选用更小直径的绕组来确保绕组的占用面积,这将导致绕线电阻增加,铜损增大。因而合理地分配定子铁芯20和转子铁芯10及磁铁30的空间是决定电机100实现功率密度、效率最大化的关键。
在本实施例中,通过大量的实验验证分析,获得转子外径D r与磁铁30的径向长度l PM的比例关系与电机效率之间的变化趋势如图10所示。
如图6和图10所示,转子外径为45mm、48mm时,电机效率随径向长度l PM的增大而减小,此区间内电机的磁负荷多于电负荷,且随后磁负荷与电负荷之间的差距逐渐增大,电机的磁过饱和程度高,铁损逐渐变大,进而电机效率逐渐减小。转子外径为50mm时,电机效率随径向长度l PM的增大呈先增大后减小的变化趋势,在电机效率增大的区段,电机的磁负荷随径向长度l PM的增大而增多,而电负荷逐渐减少,直到二者达到平衡,电机效率也达到局部峰值,此后磁负荷多于电负荷,电机效率逐渐下降。转子外径为53mm、55mm 时,电机效率随径向长度l PM的增大而增大,在该区段内电机的磁负荷随径向长度l PM的增大而增多,磁负荷与电负荷之间的差距逐渐缩小,电机效率也逐步提升。
因此,经过实验验证分析,得到效率最优的磁铁30的径向长度l PM与转子外径D r应满足以下条件:转子铁芯10外周所构成最大圆周的周长除以扇形部14的数量及磁铁30在转子铁芯10径向的长度l PM得到的商值大于等于1且小于等于1.4。其中,与最小气隙δ 1对应的外径D r所决定的周长为最大圆周周长,即1≤πD r/(2pl PM)≤1.4。例如,选取转子外径D r为50mm,并可获取磁铁30的径向长度l PM的适宜大小范围,并在该范围内选取规则的数值即可。
在一个实施例中,参照图2,为提高电机100的效率,本申请还从电机100的定子铁芯20、转子铁芯10和磁铁30沿轴向的尺寸角度出发,提供了一种对电机100进行优化的实施方式。
首先,实际电机成本构成中,对电机性能有益的材料中,其主要部分为用铜成本(绕组26)、用钢/铁成本(定子铁芯20和转子铁芯10),磁铁成本(磁铁30),从比例来说,铜成本>磁铁成本>钢成本。由于磁铁30与转子铁芯10结合固定后再进行着磁,磁铁30充磁无法达到饱和,因此,如果要维持电机较优的效率性能,则必须增加用铜成本,而铜为贵金属,增加用铜量,将增加电机100的成本。如果通过增加磁铁30的用量去提升电机性能,则有一定的边际效应。即,当磁铁30的用量超过了某个阈值,对电机性能的改善不明显,却导致电机的成本大幅上升,如果通过增加磁铁30的等级,例如原使用6系改用为9系,那么磁铁30的价格将翻倍的增长,则电机100的成本将更高。钢材/铁材对于电机100而言,其价格相对铜和磁铁30较低,因而通过增加转子铁芯10沿轴向的长度来提升电机性能相对是首选,即本申请所提供的电机100的方案能够以相对较小的成本提升电机100的性能。
如图2所示,在本实施例中,将磁铁30沿轴向的长度L 3设置成大于等于转子铁芯10沿轴向的长度L 1。其中,轴环部12具有轴孔120,该轴向为轴孔120的轴线方向。具体而言,磁铁30的两端面可以设置成与转子铁芯10的两端面平齐,或者磁铁30的一端面与转子铁芯10的一端面平齐,磁铁30的另一端面凸出于转子铁芯10的另一端面,或者磁铁30的两端面分别对应凸出于转子铁芯10的两端面,且磁铁30的两端面相对于转子铁芯10的两端面所分别凸出的长度可以相等或不等。上述设置方式可以使得在转子铁芯10中产生较饱和的磁场,提高转子铁芯10上的磁密度,进而提高电机100的功率密度,以提升电机100的性能效率。
在一些实施例中,还可以将转子铁芯10沿轴孔120的轴向上的长度L 1设置成大于等于定子铁芯20沿轴向上的长度L 2
在一些实施例中,转子铁芯10沿轴向的长度L 1等于定子铁芯20沿轴向的长度L 2,转子铁芯10的两端面与定子铁芯20的两端面平齐,以使得转子铁芯10的侧面至少与定子铁芯20的内侧面对齐,以便于气隙区间内的磁场分布和磁通转换。
在另一些实施例中,转子铁芯10沿轴向的长度L1大于定子铁芯20沿轴向的长度L2,转子铁芯10的第一端面沿轴向相对凸出或平齐于定子铁芯20的第一端面,转子铁芯10的第二端面相对凸出定子铁芯20的第二端面。
由于转子铁芯10的至少一端面凸出于定子铁芯20的端面,进而可利用转子铁芯10所凸出的端部磁场,来弥补磁铁30充磁不饱和所带来的性能损失,可相对地以较小的成本提升电机100的性能。
在一个实施例中,转子铁芯10的长度L 1与定子铁芯20的长度L 2之比大于等于1.0且小于等于1.25,该尺寸范围将以较高的轴向端部聚磁效应弥补磁铁30充磁不饱和所带来的性能损失,来提高电机100的功率密度,以提升电机100的效率性能。
本实施例中,转子铁芯10的第一端面与定子铁芯20的第一端面平齐,转子铁芯10的 第二端面相对定子铁芯20的第二端面凸出,磁铁30的两端面相对于转子铁芯10的两端面在轴向上凸出,进而利用磁铁30自转子铁芯10凸出的两端因端部效应产生进入转子铁芯10的磁场以及利用磁铁30凸出转子铁芯10的端部产生与定子铁芯10交链的磁场,来提升电机100的效率。
在一个实施例中,磁铁30的两端面相对于转子铁芯10两端所凸出的长度相等,以使得磁铁30于转子铁芯10内所产生的磁密相同,转子铁芯10的性能更均衡,有利于提升电机100的性能。
在一个实施例中,磁铁30沿轴向上的长度L 3与转子铁芯10的长度L 1之差除以定子铁芯20的长度L 2得到的商值大于等于0.15且小于等于0.45,该尺寸范围将以端部聚磁效应产生较高的端部磁场来提升电机100的性能。
此外,磁铁30的两端面还可以相对于定子铁芯20的两端面在轴向上非对称凸出,即磁铁30分别自定子铁芯20的两个端面凸出的长度不同,其中磁铁30自定子铁芯20的端面凸出长度较长的一端用于安装传感器,以便于对电机100的运行状态进行监测,磁铁30自定子铁芯20的端面凸出长度较短的一端能够以端部聚磁效应所产生较高的端部磁场提升电机100的性能即可。
在一个实施例中,磁铁30凸出定子铁芯20的第一端面的第一长度L 4大于等于2mm且小于等于6mm,磁铁30凸出定子铁芯20的第二端面的第二长度L 5大于等于4mm且小于等于8mm,该第一长度L 4的尺寸范围既能便于安装传感器以检测电机100的运行状态,又能与第二长度L 5的尺寸范围相配合以端部聚磁效应所产生较高的端部磁场提升电机100的性能。
在一个实施例中,结合图10至图17,为了防止铁屑等异物进入定转子之间的气隙内后,定子和转子与铁屑摩擦而损坏,进而降低电机100的效率、产生异响等状况发生,本申请还从转子的角度出发,提供一种对转子的优化方式,以降低铁屑等异物气隙内而对电机性能、噪音及可靠性造成的影响。
在第一种实施方式中,包塑件40上设有碎屑吸附槽41。
参阅图11至图13,包塑件40包覆磁铁30并形成于转子铁芯10的两个端面及侧面,包塑件40中形成于转子铁芯20侧面的部分设置有碎屑吸附槽41,碎屑吸附槽41用于吸纳转子运转过程中所吸附的微小异物,降低因金属碎屑等异物吸附于转子表面而使得转子与定子之间转动时产生摩擦的风险,有利于改善电机的性能。
包塑件40具体包括端面覆盖部42和侧面填充部44。端面覆盖部42覆盖转子铁芯10端面的磁铁30,露出转子铁芯10端面的轴环部12及扇形部14,即端面覆盖部42至少将转子铁芯10端面的磁铁30所覆盖,并露出转子铁芯10端面的至少部分轴环部12及部分扇形部14。
端面覆盖部42将磁铁30自转子铁芯10的端面凸出的部分覆盖包裹,对磁铁30起到轴向固定的作用。进一步,可以在磁铁30的两相对侧面上还设置定位孔,以用于定位磁铁30凸出转子铁芯10的端面的轴向长度。
在本实施例中,端面覆盖部42上对应每一磁铁30形成有至少一个定位孔424。例如,端面覆盖部42上对应每一磁铁30形成有两个定位孔424。定位孔424用于定位磁铁30的位置,以及可以减少端面覆盖部42的用料,进一步地还可向该定位孔424内填料以对转子进行动平衡校正。
该端面覆盖部42包括轴环覆盖子部420和多个磁铁覆盖子部422,多个磁铁覆盖子部422呈放射状连接于轴环覆盖子部420,轴环覆盖子部420至少覆盖部分轴环部12,每一磁铁覆盖子部422对应覆盖一磁铁30,磁铁覆盖子部422之间形成有空间并露出扇形部14。
在一个实施例中,可以在扇形部14自端面覆盖部42露出的部分上设置平衡孔146,该平衡孔146贯穿扇形部14。设置该平衡孔146既能够减少转子铁芯10的重量,又能够 对转子铁芯10进行散热,还可以通过向该平衡孔146填充材质增重以对转子进行动平衡校正。
在本实施例中,每一扇形部14上均设置有平衡孔146。在其他实施例中,也可以仅在部分扇形部14上设置平衡孔146。
在一个实施例中,两相邻磁铁覆盖子部422之间还可以设置有挡圈426,挡圈326位于扇形部14的外周缘,因而平衡孔146位于挡圈426、磁铁覆盖子部422和轴环覆盖子部420所围设的区域内,进而挡圈426可以防止对平衡孔146填料时填料溢出至转子铁芯10的侧面,还可增加填料固定于转子铁芯10上的可靠性,并防止转子高速旋转时离心力导致该填料甩脱,同时也便于人员快速操作填料而减小产生品质问题的风险。
侧面填充部44连接端面覆盖部42,覆盖于转子铁芯10侧面的磁铁30,并露出转子铁芯10侧面的扇形部14;碎屑吸附槽41形成于侧面填充部44。
可选地,碎屑吸附槽41沿着转子铁芯10的轴向延伸形成于侧面填充部44。或者,碎屑吸附槽41相对轴向偏斜一定角度设置于侧面填充部44。
可选地,多个碎屑吸附槽41设置于侧面填充部44,侧面填充部44上对应于每一磁铁30形成有一碎屑吸附槽41。或者,侧面填充部44上对应于每两个磁铁30形成有一碎屑吸附槽41。或者,侧面填充部44上对应于每一磁铁30形成有多个碎屑吸附槽41,多个碎屑吸附槽41沿轴向分布。
需要说明的是,侧面填充部44与转子铁芯10的侧面对齐连接,即连接处平滑过渡,以减少转子转动时所承受的风阻。
在一个实施例中,扇形部14远离轴环部12的外边缘朝向容纳槽16伸出形成止挡部140,磁铁30抵靠于止挡部140;两相邻扇形部14之间相对的两止挡部140形成间隙142,该间隙142的存在有利于大幅减少转子铁芯10的漏磁。侧面填充部44填充于间隙142中,且侧面填充部44与转子铁芯10的侧面对齐连接,以及侧面填充部44与转子铁芯10的两端面上的磁铁覆盖子部422连接。
在第二种实施方式中,磁铁30上设有碎屑吸附槽32。
参阅图14,相比于上述实施例,不同点主要在于,磁铁30的一侧面自转子铁芯10的侧面露出且其上设有碎屑吸附槽32,进而多个碎屑吸附槽32自转子铁芯10的侧面露出。
具体而言,碎屑吸附槽32自两止挡部140形成的间隙142露出,铁屑等异物可从间隙142进入碎屑吸附槽32并被碎屑吸附槽32磁吸收纳,以避免铁屑等异物对电机性能、噪音及可靠性造成影响。
本实施例中,包塑件40不填充于间隙142中,即包塑件40不包括上述的侧面填充部44,包塑件40包括端面覆盖部42,且碎屑吸附槽32自间隙142露出。
可选地,包塑件40还填充于部分间隙142中,从而包塑件40还可形成于转子铁芯10的侧面,碎屑吸附槽32自未被包塑件40填充的间隙142露出。
在一些实施例中,碎屑吸附槽32沿着转子铁芯22的轴向延伸形成于磁铁30上,即磁铁30上沿轴向形成有一个碎屑吸附槽32。
在另一些实施例中,一个磁铁30的侧面沿轴向分布有多个碎屑吸附槽32。或者,每相邻的两个、三个等磁铁30数目中的一个上形成有碎屑吸附槽32。
在磁铁30上设有碎屑吸附槽32,相当于减小了磁铁30的体积,为尽量减弱磁铁30体积减小对转子性能的影响,对磁铁30的磁场进行分析,以确定在合理位置开设碎屑吸附槽32。
经仿真分析可知,磁铁30暴露在间隙142中的磁铁部分磁感强度最低,在邻近该磁感强度最低处的两侧,即止挡部140覆盖下的磁铁部分磁感强度最高。为尽量降低在磁铁30上开槽对转子100性能的影响,同时利用磁铁30上的高磁场对铁屑等异物的吸引,在磁铁30的低磁场处开设碎屑吸附槽32,且碎屑吸附槽32自间隙142露出于转子铁芯10的侧面, 以吸引铁屑等异物进入其中,进而避免铁屑对电机性能、噪音及可靠性造成影响。
在第三种实施方式中,转子铁芯10上设有碎屑吸附槽144。
参阅图15至图17,相比于上述实施例,不同点主要在于,扇形部14上背离轴环部12的一侧设有碎屑吸附槽144。碎屑吸附槽144可设置于扇形部14背离轴环部12的侧壁上的任意位置。
本实施例中,止挡部140背离轴环部12的一侧设有碎屑吸附槽144。
由于止挡部140的横截面相对扇形部14其他位置上的横截面急剧缩小,因而自止挡部140上通过的磁通量极大地多于自扇形部14上相同大小的横截面积中通过的磁通量,甚至于止挡部140处于磁饱和状态,即止挡部140处的磁感强度较高,同时对转子铁芯10进行电磁仿真分析,也表明止挡部140连接处的磁感强度较高,因而为吸纳转子铁芯10外部的铁屑等微小异物,而选择在止挡部140上开设碎屑吸附槽144。
因而,本申请充分有效地利用转子铁芯10上的磁场分布状况,在止挡部140上开设碎屑吸附槽144吸纳铁屑等杂质的同时,对转子铁芯10的性能未造成不良影响,以及由于碎屑吸附槽144所在位置处的磁场强度相对于转子铁芯10侧面的其他位置处的磁场强度较强,因而碎屑吸附槽144可对铁屑等微小异物进行有效吸附。
在一些实施例中,如图16中具有间隙142的两止挡部140还可以连接成一体,即相邻扇形部14的外周缘彼此连接,从而包塑件40仅包括端面覆盖部42,同样碎屑吸附槽144可设置于扇形部14背离轴环部12的侧壁上的任意位置。
需要说明的是,上述碎屑吸附槽(41、32、144)可同时存在、存在三者中的一种或存在三者中的两种,均可有效避免铁屑等异物对电机性能、噪音及可靠性造成影响。
在一个实施例中,结合图18,为降低转子轴50上的轴电压,本申请还从转子轴50、轴孔120的角度出发,提供一种对转子优化的实施方式,以静电隔离转子铁芯10和转子轴50。
在一些实施方式中,转子轴50和轴孔120可以采用过盈装配。
本实施例中,如图18所示,轴孔120的孔径尺寸大于转子轴50的轴径尺寸,转子轴50与轴孔120共轴线设置,以使得转子整体保持动平衡,且转子轴50和转子铁芯10通过包塑件40结合成一体。
在一个实施例中,包塑件40填充于转子轴50与轴孔120的内壁之间,以隔离并绝缘转子铁芯10和转子轴50,且固定转子轴50和转子铁芯10,从而改变转子一侧的静电容量,使得转子一侧的静电容量与配合的定子一侧的静电容量易于达到平衡,进而可降低转子轴50上的轴电压,达到改善轴承电腐蚀的作用。
在一个实施例中,如图19所示,转子轴50包括轴体52和设置于轴体52上的轴槽54,轴槽54的外径小于轴体52的外径。轴槽54所对应的部分位于轴孔120内,包塑件40填充于轴槽54与轴孔120的内壁之间。
在一些实施例中,轴体52上还可以设置多个轴槽54,多个轴槽54沿轴向间隔分布与轴体52上,多个轴槽54均位于轴孔120内,从而包塑件40填充于多个轴槽54与轴孔120的内侧壁之间,可增大转子轴50与转子铁芯10之间的回转扭矩,防止转子轴50与转子铁芯10松脱。
在另一些实施例中,轴槽54的表面凸出或凹陷形成有防脱部540,以用于增大转子轴50与转子铁芯10之间的回转扭矩,防止电机在使用过程中转子轴50与转子铁芯10之间脱落。
例如,在轴槽54的表面形成有凹槽状的防脱部540,或者轴槽54的表面形成有凸台状的防脱部540,进而包塑件40与该防脱部540结合可增大转子轴50与转子铁芯10之间的回转扭矩。
在一个实施例中,包塑件40由弹性材质制成,从而可以吸收、缓冲转子铁芯10与转 子轴50在旋转过程中的切向力矩波动,以减少通过转子轴50传递出去的异常震动,并减小震动噪音。
在一个实施例中,结合图20至图24,为减少电机100的漏磁,本申请还从转子铁芯结构的角度出发,提出一种对转子铁芯10进行优化的实施方式。
参阅图20至图22,转子铁芯10包括依次层叠设置的第一转子冲片组11、第二转子冲片组13和第三转子冲片组15。
如图21所示,第一转子冲片组11和第三转子冲片组15均由多个第一转子冲片110层叠而成,第一转子冲片110包括第一环圈片112和围绕第一环圈片112间隔设置的多个第一扇形片113,每一个第一转子冲片110中多个第一扇形片113均与第一环圈片112连接。
如图22所示,第二转子冲片组13由多个第二转子冲片130层叠而成,第二转子冲片130包括第二环圈片132和围绕第二环圈片132间隔设置的多个第二扇形片133,每一个第二转子冲片130中第二扇形片133与第二环圈片132连接和断开彼此交错设置。
其中,第一环圈片112和第二环圈片132层叠形成轴环部12,第一扇形片113和第二扇形片132层叠形成扇形部14。
第二转子冲片130中的第二扇形片133与第二环圈片132连接和断开彼此交错设置,因而部分第二扇形片133不与第二环圈片132连接,即部分第二扇形片133相对第二环圈片132独立而通过相邻层叠的其他第二扇形片133固定,即该第二扇形片133与第二环圈片132之间存在气隙磁阻,从而能够减少漏磁;同时该第二转子冲片130中其他的第二扇形片133与第二环圈片132连接,因而能够保证第二转子冲片组13的整体强度,进而保证转子铁芯10的整体强度。
在一个实施例中,第一扇形片113和第二扇形片133的相同位置均设置有铆扣点116,相邻两转子冲片之间通过铆扣点116连接,即沿轴向相邻设置的两第一转子冲片110、两第二转子冲片130及第一转子冲片110和第二转子冲片130之间均通过铆扣点116连接。
本实施例中,第二转子冲片组13的相邻两第二转子冲片130中,连接第二环圈片132的第二扇形片133与未连接第二环圈片132的第二扇形片133层叠设置。
第二转子冲片组13中的多个第二转子冲片130还可有其他的排列方式,例如一半数量的第二转子冲片130彼此层叠,还相对另一半数量彼此层叠的第二转子冲片130偏转一个第二扇形片133并层叠,从而形成第二转子冲片组13。或者,第二转子冲片组13还包括第一转子冲片110,第一转子冲片110分布于多个第二转子冲片130之间。以上仅为示例,本申请对第二转子冲片组13的具体排布状况不作限制。
第二转子冲片组13的这种结构设置能够减少漏磁和提高转子铁芯10的反电势系数,因而可提高电机100的性能,还保证了转子铁芯10自身的强度,并且有利于降低在旋转时由离心力造成的强度失效的风险。
在一个实施例中,如图21和图22所示,第一环圈片112朝向第一扇形片113的一侧形成有多个间隔的第一限位柱117,第一限位柱117位于两相邻第一扇形片113之间。第二环圈片132朝向第二扇形片133的一侧形成有多个第二限位柱137,第二限位柱137位于两相邻第二扇形片133之间。第一限位柱117沿第一环圈片112径向的长度大于第二限位柱137沿第二环圈片132径向的长度。
第一限位柱117和第二限位柱137的数量均为多个,且彼此对应层叠设置,较长的第一限位柱117用于限制磁铁30于容纳槽16内,进而较短的第二限位柱137得以保证不与磁铁30接触而与磁铁30之间留有一定的气隙,从而可有效减少磁路通过第二限位柱137泄露,因而能够减少转子铁芯10的漏磁。
在一个实施例中,第一扇形片113和第二扇形片133的相同位置均设置有平衡孔146,各平衡孔146对应层叠,进而平衡孔146贯穿扇形部14。
第一扇形片113与第一环圈片112之间以及第二扇形片133与第二环圈片132之间设 置有连接桥结构。具体来说,多个第一扇形片113均通过第一连接桥119与第一环圈片112连接。第二转子冲片13中交错设置有第二连接桥135和断开式连接桥136,其中,一部分的第二扇形片133通过第二连接桥135与第二环圈片132连接,和另一部分的第二扇形片133通过断开式连接桥136与第二环圈片132间隔设置,即将第二扇形片133与第二环圈片132间隔设置时之间的间隙作为断开式连接桥136。
其中,第一连接桥119、第二连接桥135和断开式连接桥136沿转子铁芯10周向上宽度与冲片厚度之比为0.8至1.5。该冲片厚度为第一转子冲片11和第二转子冲片13的冲片厚度,同时第一连接桥119、第二连接桥135和断开式连接桥136的宽度均相同。该尺寸范围下,第一连接桥119、第二连接桥135具有足够的强度,且断开式连接桥136能够较好地减少转子铁芯10的漏磁。
参阅图23,断开式连接桥136沿径向的长度l与其沿周向的宽度w的比值大于等于设定值。其中,该设定值为不均匀气隙的最小气隙δ 1与扇形部数量2p的乘积除以转子铁芯10外周所构成最大圆周πD r的周长的1%所得到的商值。
具体地,长度l和宽度w关系公式表现为l/w≥200pδ 1/πD r
如图24所示,根据电磁场理论,第二扇形片133与第二环圈片132断开设置时,第二扇形片133与第二环圈片132之间存在气隙磁阻,相对于第二扇形片133与第二环圈片132连接的情况磁漏会降低。
如图23和图24所示,为进一步降低第二扇形片133与第二环圈片132之间的漏磁,应尽量增加长度l和减少宽度w,较小的长度l和较大的宽度w将导致转子铁芯10的漏磁过大,电机性能较差。然而,从稳定性角度考虑,过大的长度l和过小的宽度w,将影响转子铁芯10的的机械强度,造成安全隐患。
在一实施方式中,长度l大于等于2.5mm,宽度w大于等于0.3mm且小于等于1mm。该长度l和宽度w同时为第一连接桥、所述第二连接桥的长度和宽度。
经试验验证显示,宽度w大于1mm时,转子铁芯10的磁漏增加10%以上,电机100性能将严重下降;而宽度w小于0.3mm时,转子铁芯10的强度将不足,并将使得在生产或使用过程中发生疲劳断裂的风险急剧升高。因而,宽度w范围为0.3mm至1mm时,既能使得转子铁芯10的磁漏维持在比较低的范围,且还能够保证转子铁芯10的强度。因而,此设计可以保证转子铁芯10漏磁小、功率密度高,而且转子铁芯10的机械强度大。
因此,选取适当的长度l和宽度w,并使其符合l/w≥200pδ 1/πD r,能够尽可能地减少转子铁芯10漏磁,提高转子铁芯10的功率密度,且还能够保证转子铁芯10的机械强度,进而可提高电机100的功率密度和效率。
在一个实施例中,结合图25和图26,为提升电机的材料利用率,本申请还从定子铁芯结构的角度出发,提出一种对定子铁芯进行优化的实施方式。
参阅图25、图26,定子单元22大致呈T型,定子单元22包括轭部220、齿部222和齿肩224,齿部222连接于轭部220和齿肩224之间,多个定子单元22的多个轭部220依次连接,进而相邻的齿部222之间形成定子槽24,以形成多个定子槽24,齿部222上设有绕组26,两相邻齿肩224之间具有间隙。
例如,定子铁芯20包括12个T型定子单元22,其可对应极数为8极或10极的转子配合。
在一个实施例中,轭部220的外表面221为平面,构成定子铁芯20的多边形外表面;齿肩224的内表面为弧形,构成定子铁芯20的圆形内表面,以便于转子相对定子铁芯20转动。
通过设置多个定子单元22依次啮合连接并围合成环状,以构成定子铁芯20,进而在多个定子单元22未组合成定子铁芯20时,各定子单元22相互独立,因而可以提高制作定子单元22的材料的利用率,使得较小尺寸的材料也得以利用并制作成定子单元22,同时 将轭部220的外表面221设置呈平面,使得该定子单元22相对轭部的外表面呈弧形的定子单元所占用的面积更小,进一步地提高了材质的利用率,进而使得定子铁芯20的制作成本得以降低。
在一个实施例中,如图27所示,轭部220的一端设有凸起227,其另一端设有凹槽228;多个轭部220通过凸起227和凹槽228依次啮合连接。凸起227呈半圆状,凹槽228呈半圆槽,该半圆柱状与半圆槽啮合以连接两相邻的轭部220。
在一个实施例中,如图28所示,凸起227的根部设有卡接槽2271,轭部220上的凹槽228所在的一端对应设有卡柱2281,卡柱2281与卡接槽2271卡接配合,从而可进一步增强各定子单元22之间的啮合连接强度。
参阅图26和图27,在本实施例中,轭部220的内表面223进一步为平面,与轭部220的外表面221平行,齿部222垂直设置于内表面223,从而导线可贴合到该内表面223并自内表面223开始绕线,使得齿部222上的排线工整且绕线槽满率高。
轭部的内表面为弧面的定子铁芯,其绕线的最高槽满率为65%,而本申请提供的定子铁芯20的绕线槽满率最高可达到70%,因而相对提升了定子铁芯20的绕线槽满率。以及内表面223为平面可进一步地提高制作定子单元22的材料的利用率,并且外表面221和内表面223均为平面,则制作定子铁芯20的模具结构将变得较简单,从而可降低模具的费用,使得定子铁芯20的制作成本进一步降低。
在一个实施例中,齿肩224设置为斜肩式,相对于直肩式轴肩,其可以有效改善与齿部222连接处的磁饱和状况。
此外,轭部220设有第一铆扣点225,齿肩224上设有第二铆扣点226,第二铆扣点226的面积小于第一铆扣点225的面积。相比于第二铆扣点226设置于齿部222上的方案,本申请通过将第二铆扣点226下移至齿肩224,并进一步相对第一铆扣点225缩小第二铆扣点226的尺寸面积,可有效改善齿部222和齿肩224上的磁饱和状况,改善定子铁芯20的功率密度。
第一铆扣点225和第二铆扣点226的一种用途是:当定子铁芯20由层叠设置的多个定子冲片形成时,该第一铆扣点225和第二铆扣点226设置于定子冲片上,并且多个定子冲片通过第一铆扣点225和第二铆扣点226层叠铆扣构成定子铁芯20。
在一个实施例中,如图10及图25所示,电机100还包括绕线架60,绕线架60为绝缘绕线架,其例如采用树脂类绝缘材质制成。绕线架60包覆轭部220的内表面223、齿部222及齿肩224的内表面,以隔离绕组26。
在一个实施例中,如图10所示,电机100还包括塑封件70,塑封件70包覆于定子铁芯20的外周和两端面,以封装定子铁芯20、绕组26及绕线架60,避免杂质等进入定子铁芯20内。
本申请公开了一种电机和家用电器。通过限定电机的P-S系数范围为0.4至0.5和0.8至1,以及电机的每极每相槽数大于等于0.35且小于等于0.5,进而对电机的槽数、极数进行优化,以能够保证电机的切向电磁力波的谐波成分较低,进而可降低电机的振动噪音,同时也能够使得电机的功率密度高和效率高,且电机的成本也得到有效降低。
由上文所描述的上述电机100可作为动力源用于家用电器或其他领域。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (26)

  1. 一种电机,其特征在于,所述电机包括:
    转子铁芯,包括轴环部和围绕所述轴环部间隔设置的多个扇形部,两相邻所述扇形部之间构成容纳槽;
    定子铁芯,套设于所述转子铁芯,包括围合呈环状的多个定子单元;
    其中,所述电机的极槽因子为所述定子单元的数量与所述扇形部的数量的差值绝对值,所述电机的P-S系数为所述极槽因子的倒数与所述极槽因子正序相邻自然数的倒数之和;所述P-S系数范围为0.4至0.5和0.8至1;所述电机的每极每相槽数大于等于0.35且小于等于0.5。
  2. 根据权利要求1所述的电机,其特征在于,所述转子铁芯沿轴向的长度大于等于所述定子铁芯沿所述轴向的长度。
  3. 根据权利要求2所述的电机,其特征在于,所述转子铁芯的长度与所述定子铁芯的长度之比大于等于1.0且小于等于1.25。
  4. 根据权利要求2所述的电机,其特征在于,所述转子铁芯的第一端面相对凸出或平齐于所述定子铁芯的第一端面,所述转子铁芯的第二端面相对所述定子铁芯的第二端面凸出。
  5. 根据权利要求1所述的电机,其特征在于,所述电机还包括多个磁铁,所述磁铁分别嵌设于对应的所述容纳槽内,所述磁铁的至少一端面相对所述转子铁芯的对应端面凸出。
  6. 根据权利要求5所述的电机,其特征在于,所述磁铁沿所述转子铁芯轴向的长度与所述转子铁芯沿轴向的长度之差除以所述定子铁芯沿所述轴向的长度得到的商值大于等于0.15且小于等于0.45。
  7. 根据权利要求5所述的电机,其特征在于,所述磁铁的两端面相对于所述定子铁芯的两端面在轴向上非对称凸出。
  8. 根据权利要求7所述的电机,其特征在于,所述磁铁凸出所述定子铁芯的第一端面的第一长度大于等于2mm且小于等于6mm,所述磁铁凸出所述定子铁芯的第二端面的第二长度大于等于4mm且小于等于8mm。
  9. 根据权利要求1所述的电机,其特征在于,所述电机还包括包塑件和多个磁铁,所述磁铁分别嵌设于一所述容纳槽内;
    所述包塑件包覆所述磁铁,并形成于所述转子铁芯的端面及侧面;其中,所述包塑件形成于所述转子铁芯侧面的部分设置有碎屑吸附槽。
  10. 根据权利要求9所述的电机,其特征在于,所述包塑件包括:
    端面覆盖部,覆盖所述转子铁芯端面的所述磁铁,露出所述转子铁芯端面的所述扇形部;
    侧面填充部,连接所述端面覆盖部,覆盖于所述转子铁芯侧面的磁铁,露出所述转子铁芯侧面的所述扇形部;所述碎屑吸附槽形成于所述侧面填充部。
  11. 根据权利要求10所述的电机,其特征在于,所述扇形部远离所述轴环部的外边缘朝向所述容纳槽伸出形成止挡部,所述磁铁抵靠于所述止挡部;两相邻所述扇形部之间相对的两所述止挡部形成间隙,所述侧面填充部填充于所述间隙中。
  12. 根据权利要求10所述的电机,其特征在于,所述端面覆盖部包括多个磁铁覆盖子部和轴环覆盖子部,所述多个磁铁覆盖子部呈放射状连接于所述轴环覆盖子部;所述两相邻磁铁覆盖子部之间连接设置有挡圈,所述挡圈位于所述扇形部的外周缘。
  13. 根据权利要求12所述的电机,其特征在于,所述扇形部自所述端面覆盖部露出的部分上设有平衡孔,所述平衡孔位于所述挡圈、所述磁铁覆盖子部和所述轴环覆盖子部所 围设的区域内。
  14. 根据权利要求1所述的电机,其特征在于,所述扇形部上背离所述轴环部的一侧设有碎屑吸附槽。
  15. 根据权利要求14所述的电机,其特征在于,所述扇形部远离所述轴环部的外边缘朝向所述容纳槽伸出形成止挡部,两相邻所述扇形部之间相对的两所述止挡部形成间隙,所述止挡部背离所述轴环部的一侧设有所述碎屑吸附槽。
  16. 根据权利要求1所述的电机,其特征在于,所述轴环部具有轴孔,所述电机还包括转子轴和包塑件,所述转子轴插设于所述轴孔中;
    其中,所述轴孔的孔径大于所述转子轴的轴径,所述包塑件填充于所述转子轴和所述轴孔的内壁之间。
  17. 根据权利要求1所述的电机,其特征在于,所述转子铁芯包括依次层叠设置的第一转子冲片组、第二转子冲片组和第三转子冲片组;
    所述第一转子冲片组和所述第三转子冲片组均由多个第一转子冲片层叠而成,所述第一转子冲片包括第一环圈片和围绕所述第一环圈片间隔设置的多个第一扇形片,每一所述第一转子冲片中多个所述第一扇形片均与所述第一环圈片连接;
    所述第二转子冲片组由多个第二转子冲片层叠而成,所述第二转子冲片包括第二环圈片和围绕所述第二环圈片间隔设置的多个第二扇形片,每一所述第二转子冲片中所述第二扇形片与所述第二环圈片连接和断开彼此交错设置;
    其中,所述第一环圈片和所述第二环圈片层叠形成所述轴环部,所述第一扇形片和所述第二扇形片层叠形成所述扇形部。
  18. 根据权利要求17所述的电机,其特征在于,所述层叠设置的相邻两第二转子冲片中,连接所述第二环圈片的第二扇形片和与未连接所述第二环圈片的第二扇形片层叠设置。
  19. 根据权利要求17所述的电机,其特征在于,所述第一环圈片朝向所述第一扇形片的一侧形成有第一限位柱,所述第一限位柱位于两相邻第一扇形片之间;
    所述第二环圈片朝向所述第二扇形片的一侧形成有第二限位柱,所述第二限位柱位于两相邻第二扇形片之间;
    所述第一限位柱与所述第二限位柱层叠设置,所述第一限位柱沿所述第一环圈片径向的长度大于所述第二限位柱沿所述第二环圈片径向的长度。
  20. 根据权利要求17所述的电机,其特征在于,所述第一扇形片均通过第一连接桥与所述第一环圈片连接;
    所述第二转子冲片中交错设置有第二连接桥和断开式连接桥,其中,一部分所述第二扇形片通过第二连接桥与所述第二环圈片连接,和另一部分所述第二扇形片通过断开式连接桥与所述第二环圈片间隔设置;
    其中,所述第一连接桥、所述第二连接桥和所述断开式连接桥沿所述转子铁芯周向上的宽度与冲片厚度之比为0.8至1.5。
  21. 根据权利要求20所述的电机,其特征在于,所述断开式连接桥沿径向的长度与其沿周向的宽度的比值大于等于设定值;
    其中,所述定子铁芯和所述转子铁芯之间构成不均匀气隙,所述不均匀间隙沿所述转子铁芯外周呈周期性变化,所述设定值为所述不均匀气隙的最小气隙与所述扇形部数量的乘积除以所述转子铁芯外周所构成最大圆周的周长的1%所得到的商值。
  22. 根据权利要求21所述的电机,其特征在于,所述断开式连接桥沿径向的长度大于等于2.5mm,所述第一连接桥、所述第二连接桥和所述断开式连接桥的沿周向上的宽度大于等于0.3mm且小于等于1mm。
  23. 根据权利要求1所述的电机,其特征在于,所述定子单元包括轭部、齿部和齿肩,所述齿部连接于所述轭部和所述齿肩之间,所述多个定子单元的多个轭部依次连接,两相 邻齿肩之间具有间隙。
  24. 根据权利要求23所述的电机,其特征在于,所述轭部的一端设有凸起,另一端设有凹槽;所述多个轭部通过所述凸起和所述凹槽依次啮合连接。
  25. 根据权利要求23所述的电机,其特征在于,所述轭部的内表面为平面。
  26. 一种家用电器,其特征在于,所述家用电器包括如权利要求1至25任一项所述的电机。
PCT/CN2019/129350 2019-09-26 2019-12-27 电机和家用电器 WO2021056902A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19946787.9A EP4007125A4 (en) 2019-09-26 2019-12-27 ELECTRIC MOTOR AND HOUSEHOLD APPLIANCE
KR1020227006993A KR20220041193A (ko) 2019-09-26 2019-12-27 모터 및 가정용 전기장치
JP2022513593A JP7387877B2 (ja) 2019-09-26 2019-12-27 モータ及び家電製品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910919342.6 2019-09-26
CN201910919342.6A CN111384804B (zh) 2019-09-26 2019-09-26 电机和家用电器

Publications (1)

Publication Number Publication Date
WO2021056902A1 true WO2021056902A1 (zh) 2021-04-01

Family

ID=71218458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129350 WO2021056902A1 (zh) 2019-09-26 2019-12-27 电机和家用电器

Country Status (5)

Country Link
EP (1) EP4007125A4 (zh)
JP (1) JP7387877B2 (zh)
KR (1) KR20220041193A (zh)
CN (4) CN111384804B (zh)
WO (1) WO2021056902A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900811B (zh) * 2020-08-10 2021-11-19 广东威灵电机制造有限公司 转子、电机及家用电器
CN113541344B (zh) * 2021-08-09 2024-09-27 珠海格力节能环保制冷技术研究中心有限公司 电机、压缩机以及具有其的冰箱
CN114039435B (zh) * 2021-11-04 2023-10-03 广东美芝精密制造有限公司 转子结构、电机结构、压缩机结构和制冷设备
EP4293875A1 (de) * 2022-06-15 2023-12-20 Vorwerk & Co. Interholding GmbH Elektromotor, küchenmaschine und montageverfahren
KR20240072742A (ko) * 2022-11-17 2024-05-24 삼성전자주식회사 모터
DE102022133514A1 (de) * 2022-12-15 2024-06-20 Valeo Powertrain Gmbh Rotor für eine elektrische Maschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158008A (ja) * 2004-11-25 2006-06-15 Asmo Co Ltd 永久磁石埋め込み型ロータ及び回転電機
CN201398140Y (zh) * 2009-05-15 2010-02-03 陈友林 一种永磁同步电机定子
CN207184192U (zh) * 2017-09-29 2018-04-03 广东威灵电机制造有限公司 转子、电机、水泵和洗碗机
CN207368769U (zh) * 2017-08-09 2018-05-15 珠海格力节能环保制冷技术研究中心有限公司 切向电机及切向电机转子
CN109245394A (zh) * 2018-09-14 2019-01-18 珠海格力电器股份有限公司 密封结构、轴密封装置及电机
CN110277847A (zh) * 2018-05-31 2019-09-24 广东威灵电机制造有限公司 转子和电机

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10100717C1 (de) * 2001-01-10 2002-07-25 Miele & Cie Permanentmagnet-Rotor für eine elektrische Maschine
JP4559831B2 (ja) * 2004-11-29 2010-10-13 日本電産シバウラ株式会社 モータのロータ
US7683518B2 (en) * 2007-02-28 2010-03-23 Panasonic Corporation Motor
DE102009048116A1 (de) * 2009-10-02 2011-04-07 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Bürstenloser Synchronmotor
CN103023255A (zh) * 2011-09-26 2013-04-03 辐射通量实验室私人有限公司 电磁机
JP5888490B2 (ja) * 2011-11-10 2016-03-22 日本電産株式会社 モータ
CN102684434A (zh) * 2012-06-09 2012-09-19 重庆市乐尔佳机械有限公司 超节能5500瓦6极三相异步电动机
JP6135967B2 (ja) * 2012-08-07 2017-05-31 日本電産株式会社 ロータ、モータ、およびロータの製造方法
FR2997807B1 (fr) * 2012-11-06 2016-10-21 Valeo Equip Electr Moteur Moteur electrique synchrone a aimants permanents et compresseur electrique comportant un tel moteur electrique
CN103516165A (zh) * 2013-04-09 2014-01-15 广东美芝精密制造有限公司 电机和具有该电机的压缩机
CN104753188B (zh) * 2013-12-30 2018-01-23 丹佛斯(天津)有限公司 电机、压缩机及控制电机或压缩机的方法
JP6327446B2 (ja) * 2014-03-18 2018-05-23 日本電産株式会社 モータ
CN104702025A (zh) * 2015-04-01 2015-06-10 哈尔滨工业大学 径向磁路多级单极不等齿宽减速型电机保护器
US20160329760A1 (en) * 2015-05-07 2016-11-10 Nidec Motor Corporation Stator and motor shell interconnection
DE102016108429A1 (de) * 2015-05-08 2016-11-10 Johnson Electric S.A. Einphasiger Außenläufermotor und Läufer hiervon
WO2018061179A1 (ja) * 2016-09-30 2018-04-05 日本電産株式会社 ロータの製造方法、ロータおよびモータ
DE102017208280A1 (de) * 2017-05-17 2018-11-22 BSH Hausgeräte GmbH Elektrischer Antriebsmotor mit verringerter Geräuschentwicklung sowie diesen enthaltendes Haushaltsgerät
CN107342667B (zh) * 2017-05-24 2019-05-31 江苏大学 一种永磁同步电机高效率区域调节方法
CN109546832B (zh) * 2017-09-21 2021-08-10 德昌电机(深圳)有限公司 无刷直流电机及其双离合变速器
CN108923553A (zh) * 2018-05-31 2018-11-30 广东威灵电机制造有限公司 一种高功率密度永磁电机
CN108718124B (zh) * 2018-05-31 2020-06-30 广东威灵电机制造有限公司 转子铁芯、转子和电机
CN108808922B (zh) * 2018-05-31 2020-06-30 广东威灵电机制造有限公司 转子铁芯和电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158008A (ja) * 2004-11-25 2006-06-15 Asmo Co Ltd 永久磁石埋め込み型ロータ及び回転電機
CN201398140Y (zh) * 2009-05-15 2010-02-03 陈友林 一种永磁同步电机定子
CN207368769U (zh) * 2017-08-09 2018-05-15 珠海格力节能环保制冷技术研究中心有限公司 切向电机及切向电机转子
CN207184192U (zh) * 2017-09-29 2018-04-03 广东威灵电机制造有限公司 转子、电机、水泵和洗碗机
CN110277847A (zh) * 2018-05-31 2019-09-24 广东威灵电机制造有限公司 转子和电机
CN109245394A (zh) * 2018-09-14 2019-01-18 珠海格力电器股份有限公司 密封结构、轴密封装置及电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4007125A4

Also Published As

Publication number Publication date
EP4007125A4 (en) 2022-10-05
CN114598076A (zh) 2022-06-07
JP2022547444A (ja) 2022-11-14
CN113098171A (zh) 2021-07-09
CN114598075A (zh) 2022-06-07
EP4007125A1 (en) 2022-06-01
JP7387877B2 (ja) 2023-11-28
CN111384804A (zh) 2020-07-07
CN113098171B (zh) 2022-07-19
KR20220041193A (ko) 2022-03-31
CN111384804B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
WO2021056902A1 (zh) 电机和家用电器
JP5678954B2 (ja) 永久磁石形回転電機
CN103795168B (zh) 永磁体转子及其方法
WO2015025669A1 (ja) 発電機
WO2017011682A1 (en) Combination structure between stator and rotor in a brushless motor
CN103180611B (zh) 用于车辆的电动马达驱动式压缩机
CN104300710B (zh) 转子、内置式永磁电机以及压缩机
CN203387385U (zh) 一种拼装式磁极的轴向磁场无铁心永磁电机
WO2023020597A1 (zh) 一种谐波磁场驱动电机
CN113162350A (zh) 高扭矩电动机
KR101263350B1 (ko) 축 방향 자속 영구자석형 발전기
CN208489707U (zh) 转子和具有其的电机
CN113113989A (zh) 外转子永磁电机以及洗衣机
CN113315265B (zh) 电机和家用电器
CN105896862A (zh) 一种永磁电动机
CN204145097U (zh) 压缩机及其电机
KR101614685B1 (ko) 권선계자형 동기 전동기 및 그의 회전자
WO2022193592A1 (zh) 电机转子以及电机
CN112564350B (zh) 电机、家用电器及电机的制造方法
CN209016814U (zh) 转子冲片
CN118367744B (zh) 一种电机及具有该电机的压缩机
CN218958633U (zh) 用于电机的定子的定子冲片、定子和电机
CN109450124B (zh) 定子铁心挂线骨架、定子铁心及高速电机
CN208835966U (zh) 电机
KR100624796B1 (ko) 전동기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022513593

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20227006993

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019946787

Country of ref document: EP

Effective date: 20220228

NENP Non-entry into the national phase

Ref country code: DE