WO2013018919A1 - ヒータ制御装置及び方法並びにプログラム - Google Patents

ヒータ制御装置及び方法並びにプログラム Download PDF

Info

Publication number
WO2013018919A1
WO2013018919A1 PCT/JP2012/069968 JP2012069968W WO2013018919A1 WO 2013018919 A1 WO2013018919 A1 WO 2013018919A1 JP 2012069968 W JP2012069968 W JP 2012069968W WO 2013018919 A1 WO2013018919 A1 WO 2013018919A1
Authority
WO
WIPO (PCT)
Prior art keywords
ptc
power
heater
energized state
ratio
Prior art date
Application number
PCT/JP2012/069968
Other languages
English (en)
French (fr)
Inventor
圭史 永坂
秀隆 佐藤
中野 浩児
史郎 松原
聡 小南
角藤 清隆
清水 健志
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US14/002,923 priority Critical patent/US9198231B2/en
Priority to EP12819393.5A priority patent/EP2741568B1/en
Priority to CN201280011789.XA priority patent/CN103597907B/zh
Publication of WO2013018919A1 publication Critical patent/WO2013018919A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0202Switches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0236Industrial applications for vehicles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient

Definitions

  • the present invention relates to a heater control device, method, and program suitable for use in, for example, an on-vehicle PTC (Positive Temperature Coefficient) heater.
  • PTC Physical Temperature Coefficient
  • a PTC heater which is one form of an electric heater has a structure in which heat is generated by energizing a DC power supply to a PTC element which is a resistance element having a positive temperature characteristic.
  • PTC heaters are widely used because there is a timing at which the resistance value suddenly increases as the temperature rises, and because a constant temperature can be maintained by energization of a simple DC power supply, the control structure can be simplified.
  • Patent Document 1 Conventionally, combination information that associates a combination of ON / OFF of a plurality of switching elements corresponding to a PTC heater and output power supplied by the combination is provided, and ON / OFF of each switching element is controlled based on the combination information. As a result, the PTC heater was driven to satisfy the required power.
  • the combination pattern that supplies the closest output power amount is selected from among the combination patterns of output values specified by the on / off of the switching element with respect to the required power, the output power is Can only be supplied in stages, and there is a problem that intermediate values defined by the combination pattern cannot be output, and fine control cannot be performed.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a heater control device, method, and program capable of finely controlling the output power value.
  • the present invention is a heater control device applied to a heater unit including at least two PTC heaters having PTC elements, and is provided corresponding to each of the PTC heaters.
  • Switching means for switching between states, pattern information that associates the state combination pattern of the energized state and the non-energized state of each PTC element, and the output power value supplied by the state combination pattern, and the heater unit
  • the required power is an intermediate value of the output power value defined by the pattern information, based on the ratio of the on / off time when the average power within a certain period matches the required power
  • the PTC element Provided is a heater control device comprising a ratio control means for controlling a ratio between an energized state and a non-energized state.
  • each PTC heater is associated with each PTC heater based on the pattern information in which the state combination pattern of energization and non-energization of each PTC heater and the output power value supplied by the state combination pattern are defined.
  • the energization and de-energization of the PTC element are switched, and power that satisfies the required power is output.
  • the required power is an intermediate value of the output power value specified by the pattern information
  • the PTC element is in the energized state only for a period of time in which the required power and the average power within the constant period coincide with each other. Controlled.
  • the required power is output from the heater unit by controlling the ratio of the on / off time even if the required power is an intermediate value of the output power value.
  • the power value can be finely controlled.
  • the ratio control unit of the heater control device has a switching loss caused by switching between energization and non-energization of the switching unit being greater than a period in which the loss is less than an allowable loss, and the water temperature of the PTC heater is predetermined with respect to a target temperature. It is preferable that a period smaller than a period determined by the heat capacity of the entire heater unit including a condition that is equal to or less than a temperature difference is a switching period of the switching unit.
  • the control performance is better as the cycle is shorter.
  • the surge current is generated by the capacitance component existing in the PTC element and the switching loss is increased by the surge current, the cycle cannot be extremely shortened.
  • the temperature difference in which the water temperature to be controlled rises and falls with respect to the target temperature becomes large, so that the cycle cannot be made extremely long considering the heat capacity of the system to be controlled.
  • the present invention is based on the heat capacity of the entire heater unit including the condition that the switching cycle is made larger than the cycle that becomes the switching loss or less and the water temperature of the PTC heater becomes a predetermined temperature difference or less with respect to the target temperature. Since the period is smaller than the determined period, the efficiency of the heater unit can be improved.
  • the heater control device calculates a real power based on a current value and a current voltage value at a predetermined timing, and adds a value obtained by adding a difference between the required power and the actual power to the current required power next time.
  • the required power may be used.
  • the output accuracy with respect to the required power can be improved by correcting the error of the energized power with respect to the required power by the feedback control.
  • the heater control device may stop power output in the certain period when an integral value of electric power in the certain period exceeds a required heat amount calculated based on the requested power in the certain period. Good. Thereby, the output accuracy with respect to the required power can be improved without feedback control.
  • the heater control device preferably includes selection means for selecting the PTC elements to be energized sequentially from the PTC elements having the largest power consumption among the plurality of PTC elements.
  • PTC heaters with higher power consumption generate larger inrush currents. For example, by sequentially energizing PTC heaters with higher power consumption, for example, the maximum allowable current value will be greatly exceeded at the end while sequentially energizing. It is possible to reduce the vertical fluctuation (ripple) of the current value with respect to the target value.
  • the present invention is a heater control method applied to a heater unit including at least two PTC heaters each having a PTC element.
  • the heater control method is provided corresponding to each PTC heater.
  • the switching process for switching between the states, the required power for the heater unit is associated with the state combination pattern of the energized state and the non-energized state of each PTC element and the output power value supplied by the state combination pattern Based on the ratio of the on / off time when the average power within a certain period matches the required power when the output power value is an intermediate value defined by the pattern information, the energization state and non-energization of the PTC element
  • a heater control method including a ratio control process for controlling a ratio with a state is provided.
  • the present invention is a heater control program applied to a heater unit including at least two PTC heaters each having a PTC element, and is provided corresponding to each PTC heater.
  • the switching process for switching between the states, the required power for the heater unit is associated with the state combination pattern of the energized state and the non-energized state of each PTC element and the output power value supplied by the state combination pattern Based on the ratio of the on / off time when the average power within a certain period matches the required power when the output power value is an intermediate value defined by the pattern information, the energization state and non-energization of the PTC element
  • a heater control program for causing a computer to execute a ratio control process for controlling a ratio with a state Subjected to.
  • the present invention has an effect that the output power value can be finely and accurately controlled.
  • FIG. 1 is a schematic configuration diagram of a heater control device 10 applied to an in-vehicle PTC heater 1.
  • the in-vehicle PTC heater 1 includes three PTC heaters 2a, 2b, and 2c, and the PTC heaters 2a, 2b, and 2c are provided with PTC elements 3a, 3b, and 3c, respectively. Yes.
  • the PTC heater is described as PTC heater 2 and the PTC element is described as PTC element 3.
  • the number of PTC heaters is not particularly limited.
  • the power consumption of the PTC heaters 2a, 2b, and 2c will be described as 2.0 kW, 1.0 kW, and 2.0 kW, respectively. Is not particularly limited, and all the PTC heaters may have different power consumption.
  • the upstream side of the PTC heater 2 is connected to a positive terminal A of the DC power supply device via the heater control device 10, and the downstream side of the DC power supply device is connected to the downstream side of the PTC heater 2 via the heater control device 10. It is connected to the terminal B on the negative side.
  • the heater control device 10 includes a ratio adjustment unit 11, switching elements (switching means) 12 a, 12 b, 12 c, a current detection unit 13, and a voltage detection unit 14.
  • switching element is described as the switching element 12.
  • the switching elements 12a, 12b, and 12c are provided in association with the PTC heaters 2a, 2b, and 2c, respectively.
  • the switching element 12 is connected to the ratio adjusting unit 11 and is controlled to be turned on / off to switch between energization and non-energization of the PTC heaters 2a, 2b, and 2c based on a control signal output from the ratio adjusting unit 11. Is done.
  • the current detection unit 13 measures a current value on the provided path and outputs information on the measured current value to the ratio adjustment unit 11.
  • the voltage detection unit 14 is provided on the plus side of the DC power supply device, measures the voltage value of the heater unit 1, and outputs information on the measured voltage value to the ratio adjustment unit 11.
  • FIG. 2 is a functional block diagram showing the functions provided in the ratio adjusting unit 11 in an expanded manner.
  • the ratio adjusting unit 11 includes a ratio control unit (ratio control unit) 20, a selection unit (selection unit) 21, and pattern information 22.
  • ratio control unit 20 matches the average power within a certain period with the required power. Based on the ratio of the on / off time, the ratio of the energized state and the non-energized state of the PTC element 3 is controlled.
  • the ratio control unit 20 has a switching loss caused by switching between energization and non-energization of the switching element 12 greater than a cycle in which the allowable loss or less, and the water temperature of the PTC heater 2 is less than a predetermined temperature difference with respect to the target temperature.
  • the period smaller than the period determined by the heat capacity of the entire vehicle-mounted PTC heater including the above condition is set as the switching period of the switching element 12, and the switching element is controlled based on this switching period.
  • the ratio control unit 20 turns on / off the PTC heater 2 corresponding to the output power value of the pattern information 22. Based on the state combination pattern (details will be described later), the energized state and the non-energized state of the PTC element 3 are controlled.
  • the selection unit 21 selects the PTC elements 3 to be energized in order from the PTC element 3 with the largest power consumption among the plurality of PTC elements 3. This is because, as a PTC heater with higher power consumption generates a larger inrush current, the maximum allowable current value is greatly increased at the end, for example, by sequentially energizing the PTC heater with higher power consumption. It is possible to prevent the situation such as exceeding the current value and to reduce the vertical fluctuation (ripple) of the current value.
  • the pattern information 22 associates the state combination pattern of the energized state and the non-energized state of each PTC element 3 with the output power value supplied by the state combination pattern.
  • the on / off state combination patterns of the PTC heaters 2a, 2b, and 2c are associated with the output power information corresponding to the state combination patterns.
  • the ON state of the PTC heater 2 is indicated by a black circle ( ⁇ ) mark
  • the OFF state is indicated by a white circle ( ⁇ ) mark.
  • the PTC heater 2b is turned on and the PTC heaters 2a and 2c are turned off.
  • the pattern number is a serial number assigned to the state combination pattern for convenience of explanation.
  • a control method of the ratio control unit 20 when the required power is 0.5 [kW] will be described.
  • the electric power of 0.5 [kW] is all in the off state pattern 0 (0 [kW]) and the pattern 1 (1 [1 [1] in which the PTC heater 2b is turned on and the PTC heaters 2a and 2c are turned off. kW]).
  • the ratio control unit 20 selects a state combination pattern that can supply power exceeding the required power and selects By controlling the ratio of the on / off time of the pattern, the ratio of the energized state and the non-energized state of the PTC element 3 is adjusted so that the average power within a certain period matches the required power.
  • the heater control device 10 sets the acquired required power value (for example, 2.5 kW) as the target power value at time T (0) (step SA1). Based on the pattern information 22, the ratio adjusting unit 20 determines the on / off state combination pattern of the PTC heater 2 that can output the power of the target power value (step SA2). Based on the determined state combination pattern, the on / off state of the switching element 12 is controlled, and the energization and de-energization of the PTC element 3 are controlled (step SA3).
  • the ratio adjusting unit 20 determines the on / off state combination pattern of the PTC heater 2 that can output the power of the target power value (step SA2). Based on the determined state combination pattern, the on / off state of the switching element 12 is controlled, and the energization and de-energization of the PTC element 3 are controlled (step SA3).
  • the target power value is the output power value indicated by the pattern information 22
  • on / off of the PTC heater 2 is controlled based on the on / off state combination pattern associated with the output voltage value.
  • the output voltage value is an intermediate value indicated by the pattern information 22
  • a pattern that can supply a power value closest to the target power among patterns that can be output exceeding the target power is selected and the selected pattern is selected.
  • the ratio between the ON time and the OFF time of the PTC heater 2 to be turned on is adjusted and controlled.
  • Pattern 3 is a state combination pattern capable of outputting a power value (3 kW) closest to 2.5 kW. That is, based on FIG. 3, a combination pattern that selects the PTC heaters 2a and 2b and turns off the PTC heater 2c is selected.
  • the PTC heater 2 with higher electric power is sequentially turned on, the PTC heater 2a is turned on after turning on the PTC heater 2a for a period of 100% of one cycle T.
  • the PTC heater 2b is controlled to make an output. As a result, 2 kW is output from the PTC heater 2a and 0.5 kW is output from the PTC heater 2b, so that a total power of 2.5 kW can be output.
  • the current value is measured by the current detection unit 13, the voltage value is measured by the voltage detection unit 14, and the information on the current value and the voltage value is output to the heater control device 10 (step SA4).
  • the actual power is calculated (step SA5).
  • the coefficient K (K is the difference between the calculated actual power and the required power value at the current time T (n).
  • the value obtained by multiplying 0 to 1) and adding the target power value at the current time T (n) is set as the target power value at the next time T (n + 1) (step SA6).
  • the process returns to step SA2 and the process is repeated.
  • the heater control device 10 includes a main storage device such as a CPU and a RAM, and a computer-readable recording medium on which a program for realizing all or part of the above processing is recorded. Then, the CPU reads out the program recorded in the storage medium and executes information processing / calculation processing, thereby realizing processing similar to that of the above-described heater control device.
  • the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
  • the PTC element 3 is switched between energization and de-energization based on the pattern information 22, and outputs power that satisfies the required power. . Further, when the required power is an intermediate value of the output power value specified by the pattern information 22, the PTC element 3 is based on the ratio of the on / off time when the average power within a certain period matches the required power.
  • the power value output from the in-vehicle PTC heater 1 can be controlled steplessly, so that fine control can be performed. Furthermore, there are cases where energization power errors due to variations in the PTC element 3 are included, or when the resistance value of the element itself changes with temperature and the current changes with the passage of time, so that the output power realization accuracy deteriorates. However, by applying correction by feedback control, the output accuracy can be improved and the required power can be satisfied.
  • the heater control device 10 corrects the error of the energized power caused by the variation of the PTC element 3 by feedback control and controls to satisfy the required power.
  • the control for satisfying the required power is performed.
  • the method is not limited to this.
  • the amount of heat Pc unit: joule [J]
  • a certain period for example, T seconds
  • control may be performed so as to stop the output in that section. Specifically, as shown in FIG.
  • the instantaneous power P calculated based on the product of the current value I detected by the current detector 13 and the voltage value V detected by the voltage detector 14 is calculated.
  • Time integration is performed, and when the required heat quantity Pc ⁇ T calculated in advance is reached, the energization is stopped and the total heat quantity required in one cycle is controlled. In this way, by sequentially integrating the power and making the amount of heat constant for each section, the required power can be satisfied without the above-described feedback control.

Landscapes

  • Control Of Resistance Heating (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Resistance Heating (AREA)

Abstract

出力電力値を細やかに、かつ、精度よく制御する。PTC素子を有するPTCヒータを少なくとも2個備えるヒータユニットに適用されるヒータ制御装置において、各前記PTCヒータに対応して設けられ、オンオフにより前記PTC素子の通電状態と非通電状態とを切り替える切替部と、前記ヒータユニットに対する要求電力値に対し、各前記PTC素子の通電状態と非通電状態との状態組み合わせパターンを規定したパターン情報(22)と、前記ヒータユニットに対する要求電力が、前記パターン情報で規定される前記要求電力値の中間値である場合に、一定周期内の平均電力が前記要求電力と一致する場合のオンオフ時間の割合に基づいて、前記PTC素子の通電状態と非通電状態との割合を制御する割合制御部(20)とを設ける。

Description

ヒータ制御装置及び方法並びにプログラム
 本発明は、例えば、車載用PTC(Positive Temperature Coefficient)ヒータに用いて好適なヒータ制御装置及び方法並びにプログラムに関するものである。
 例えば、電気ヒータの一形態であるPTCヒータは、正温度特性を持つ抵抗素子であるPTC素子に直流電源を通電させることにより発熱を得る構造である。PTCヒータは、温度上昇に伴い抵抗値が急激に上昇するタイミングが存在し、単純な直流電源の通電により一定の温度を保持できるため制御構造が簡素化できる等の理由により広く使用されている(例えば、特許文献1)。従来は、PTCヒータに対応した複数のスイッチング素子のオンオフの組み合わせと、その組み合わせによって供給される出力電力とを対応づけた組合せ情報を設けておき、各スイッチング素子のオンオフを組合せ情報に基づいて制御することにより、PTCヒータは要求電力を満たすように駆動されていた。
特許2007-283790号公報
 しかしながら、従来の方法では、要求電力に対し、スイッチング素子のオンオフで規定される出力値の組み合わせパターンのうち、最も近い出力電力量を供給する組み合わせパターンを選定して通電していたので、出力電力は段階的に供給することしかできず、また、組み合わせパターンで規定される中間値の出力ができず、細やかな制御ができないという問題があった。
 本発明は、このような事情に鑑みてなされたものであって、出力電力値を細やかに制御することのできるヒータ制御装置及び方法並びにプログラムを提供することを目的とする。
 本発明は、PTC素子を有するPTCヒータを少なくとも2個備えるヒータユニットに適用されるヒータ制御装置であって、各前記PTCヒータに対応して設けられ、オンオフにより前記PTC素子の通電状態と非通電状態とを切り替える切替手段と、各前記PTC素子の通電状態と非通電状態との状態組み合わせパターンと、該状態組み合わせパターンにより供給される出力電力値とを対応付けたパターン情報と、前記ヒータユニットに対する要求電力が、前記パターン情報で規定された前記出力電力値の中間値である場合に、一定周期内の平均電力が前記要求電力と一致する場合のオンオフ時間の割合に基づいて、前記PTC素子の通電状態と非通電状態との割合を制御する割合制御手段とを具備するヒータ制御装置を提供する。
 このような構成によれば、各PTCヒータの通電と非通電との状態組み合わせパターンと、状態組み合わせパターンにより供給される出力電力値とが規定されたパターン情報に基づいて、各PTCヒータに対応して設けられた切替手段のオンオフが制御されることによりPTC素子の通電と非通電とが切り替えられ、要求電力を満たす電力を出力する。また、要求電力が、パターン情報で規定される出力電力値の中間値である場合には、一定周期のうち、要求電力と一定周期内の平均電力とが一致する時間だけ、PTC素子が通電状態に制御される。
 このように、パターン情報で規定される段階的な出力電力値のみでなく、要求電力が出力電力値の中間値であっても、オンオフ時間の割合を制御することによって、ヒータユニットから出力される電力値を細やかに制御できる。
 上記ヒータ制御装置の前記割合制御手段は、前記切替手段の通電と非通電との切替によって生じるスイッチング損失が許容損失以下となる周期より大きく、かつ、前記PTCヒータの水温が目標温度に対して所定温度差以下となる条件を含む前記ヒータユニット全体の熱容量によって決定される周期よりも小さい周期を、前記切替手段の切替周期とすることが好ましい。
 制御性能は、周期が短いほど良いが、PTC素子内に存在するキャパシタンス成分によりサージ電流が発生し、そのサージ電流によりスイッチング損失が増大するため、極端に周期を短くすることができない。また、周期が長すぎる場合には、制御すべき水温が目標温度に対して上下する温度差が大きくなるので、制御するシステムの熱容量を考慮して、極端に周期を長くすることができない。本発明はこれらに対処するべく、スイッチング周期を、スイッチング損失以下となる周期より大きくし、かつ、PTCヒータの水温が目標温度に対して所定温度差以下となる条件を含むヒータユニット全体の熱容量によって決定される周期より小さくするので、ヒータユニットの効率を向上させることができる。
 上記ヒータ制御装置は、所定タイミングにおいて、現在の電流値と現在の電圧値とに基づいて実電力を算出し、要求電力と実電力との差分を現在の前記要求電力に加えた値を、次回の前記要求電力とすることとしてもよい。
 このように、通電電力の要求電力に対する誤差分を、フィードバック制御により補正することにより、要求電力に対する出力精度を向上させることができる。
 上記ヒータ制御装置は、一定期間内における電力の積分値が、前記一定期間内で前記要求電力に基づいて算出される要求熱量を超過した場合に、前記一定期間の電力出力を停止することとしてもよい。
 これにより、フィードバック制御なしに、要求電力に対する出力精度を向上させることができる。
 上記ヒータ制御装置において、複数の前記PTC素子のうち、消費電力が大きい前記PTC素子から順に、通電状態にする前記PTC素子として選定する選定手段を備えることが好ましい。
 消費電力が大きいPTCヒータほど大きい突入電流が発生するので、消費電力の大きいPTCヒータから順に通電状態とすることで、例えば、順次通電していく中で最後に最大許容電流値を大幅に超過してしまう等の状況を防ぎ、電流値の目標値に対する上下変動(リップル)を小さくすることができる。
 本発明は、PTC素子を有するPTCヒータを少なくとも2個備えるヒータユニットに適用されるヒータ制御方法であって、各前記PTCヒータに対応して設けられ、オンオフにより前記PTC素子の通電状態と非通電状態とを切り替える切替過程と、前記ヒータユニットに対する要求電力が、各前記PTC素子の通電状態と非通電状態との状態組み合わせパターンと、該状態組み合わせパターンにより供給される出力電力値とを対応付けたパターン情報で規定された前記出力電力値の中間値である場合に、一定周期内の平均電力が前記要求電力と一致する場合のオンオフ時間の割合に基づいて、前記PTC素子の通電状態と非通電状態との割合を制御する割合制御過程とを有するヒータ制御方法を提供する。
 本発明は、PTC素子を有するPTCヒータを少なくとも2個備えるヒータユニットに適用されるヒータ制御プログラムであって、各前記PTCヒータに対応して設けられ、オンオフにより前記PTC素子の通電状態と非通電状態とを切り替える切替処理と、前記ヒータユニットに対する要求電力が、各前記PTC素子の通電状態と非通電状態との状態組み合わせパターンと、該状態組み合わせパターンにより供給される出力電力値とを対応付けたパターン情報で規定された前記出力電力値の中間値である場合に、一定周期内の平均電力が前記要求電力と一致する場合のオンオフ時間の割合に基づいて、前記PTC素子の通電状態と非通電状態との割合を制御する割合制御処理とをコンピュータに実行させるためのヒータ制御プログラムを提供する。
 本発明は、出力電力値を細やかに、かつ、精度よく制御できるという効果を奏する。
本発明の第1の実施形態に係るヒータ制御装置の概略構成図である。 本発明の第1の実施形態に係る割合調整部が備える機能を展開して示した機能ブロック図である。 PTCヒータのオンオフ状態と出力電力との関係を示した一例である。 割合制御部によってPTCヒータの通電時間を制御することを示した一例である。 本発明の第1の実施形態に係るヒータ制御装置の動作フローである。 本発明の第1の実施形態の変形例を説明するための図である。
 以下に、本発明に係るヒータ制御装置及び方法並びにプログラムの実施形態について、図面を参照して説明する。
〔第1の実施形態〕
 本実施形態において、PTC素子を有するPTCヒータを3個備えるヒータユニットが車載用PTCヒータである場合を想定し、本実施形態のヒータ制御装置が車載用PTCヒータに適用されることとして説明するが、これに限定されない。
 図1は、車載用PTCヒータ1に適用したヒータ制御装置10の概略構成図である。
 本実施形態においては、車載用PTCヒータ1は、3個のPTCヒータ2a,2b,2cを備えており、各PTCヒータ2a,2b,2cにはそれぞれPTC素子3a,3b,3cが設けられている。
 以下、特に明記しない場合には、PTCヒータはPTCヒータ2、PTC素子はPTC素子3として記述する。なお、本実施形態においては、車載用PTCヒータ1に設けられるPTCヒータは3個であることとして説明するが、PTCヒータの個数は特に限定されない。また、本実施形態においては、PTCヒータ2a,2b,2cの消費電力の大きさをそれぞれ2.0kW,1.0kW,2.0kWであることとして説明するが、PTCヒータの消費電力の大きさは特に限定されるものでなく、全てのPTCヒータがそれぞれ異なる消費電力であってもよい。
 図1に示されるように、PTCヒータ2の上流側はヒータ制御装置10を介して直流電源装置のプラス側である端子Aと接続され、下流側はヒータ制御装置10を介して直流電源装置のマイナス側である端子Bと接続されている。
 ヒータ制御装置10は、割合調整部11、スイッチング素子(切替手段)12a,12b,12c、電流検出部13、及び電圧検出部14を備えている。以下特に明記しない場合には、スイッチング素子はスイッチング素子12として記述する。
 スイッチング素子12a,12b,12cは、それぞれPTCヒータ2a,2b,2cに対応づけて設けられている。また、スイッチング素子12は、割合調整部11と接続されており、割合調整部11から出力される制御信号に基づいて、PTCヒータ2a,2b,2cの通電と非通電とを切り替えるべくオンオフが制御される。
 電流検出部13は、設けられた経路上の電流値を計測し、計測された電流値の情報を割合調整部11に出力する。
 電圧検出部14は、直流電源装置のプラス側に設けられ、ヒータユニット1の電圧値を計測し、計測された電圧値の情報を割合調整部11に出力する。
 図2は、割合調整部11が備える機能を展開して示した機能ブロック図である。図2に示されるように、割合調整部11は、割合制御部(割合制御手段)20、選定部(選定手段)21、及びパターン情報22を備えている。
 割合制御部20は、車載用PTCヒータ(ヒータユニット)1に対する要求電力が、パターン情報22で規定される出力電力値の中間値である場合に、一定周期内の平均電力が要求電力と一致する場合のオンオフ時間の割合に基づいて、PTC素子3の通電状態と非通電状態との割合を制御する。
 また、割合制御部20は、スイッチング素子12の通電と非通電との切替によって生じるスイッチング損失が許容損失以下となる周期より大きく、かつ、PTCヒータ2の水温が目標温度に対して所定温度差以下となる条件を含む車載用PTCヒータ全体の熱容量によって決定される周期よりも小さい周期を、スイッチング素子12の切替周期とし、この切替周期に基づいてスイッチング素子を制御する。
 また、車載用PTCヒータ1に対する要求電力が、パターン情報22で規定される出力電力値である場合には、割合制御部20は、パターン情報22の出力電力値に対応するPTCヒータ2のオンオフの状態組み合わせパターン(詳細は後述する)に基づいて、PTC素子3の通電状態と非通電状態とを制御する。
 選定部21は、複数のPTCヒータ2を通電状態にする場合には、複数のPTC素子3のうち、消費電力が大きいPTC素子3から順に、通電状態にするPTC素子3として選定する。これは、消費電力が大きいPTCヒータほど大きい突入電流が発生するので、消費電力の大きいPTCヒータから順に通電状態とすることで、例えば、順次通電していく中で最後に最大許容電流値を大幅に超過してしまう等の状況を防ぎ、電流値の上下変動(リップル)を小さくすることができる。
 パターン情報22は、各PTC素子3の通電状態と非通電状態との状態組み合わせパターンと、状態組み合わせパターンにより供給される出力電力値とを対応付けている。具体的には、図3に示されるように、PTCヒータ2a,2b,2cのそれぞれのオンオフの状態組み合わせパターンと、状態組み合わせパターンに対応した出力電力の情報とが対応付けられている。図3においては、PTCヒータ2のオン状態を黒丸(●)印、オフ状態を白丸(○)印で示すこととし、例えば、PTCヒータ2bをオン状態にし、PTCヒータ2a及び2cをオフ状態にすることにより(パターン1)、1.0kWの出力電力を供給可能であることを示す。また、パターン番号は説明の便宜上、状態組み合わせパターンに割り振った通し番号である。
 ここで、例えば、要求電力が0.5〔kW〕である場合における割合制御部20の制御方法について説明する。図3に基づき、電力0.5〔kW〕は、全てオフ状態のパターン0(0〔kW〕)と、PTCヒータ2bをオン状態としPTCヒータ2a,2cをオフ状態としたパターン1(1〔kW〕)との中間値の電力である。また、パターン1を100パーセント(%)オン状態にすると1〔kW〕の電力が出力されることから、0.5〔kW〕は、周期Tの50%をオン状態にすれば電力出力が可能となる。つまり、例えばPTCヒータ2bの周期Tが20〔sec:秒〕である場合には、オン状態にする時間Ton=10〔sec〕とし、オフ状態にする時間Toff=10〔sec〕とする(図4参照)。
 このように、要求電力がパターン情報22で対応付けられた出力電力値の中間値である場合には、割合制御部20は、要求電力を超える電力を供給できる状態組み合わせパターンを選定するとともに、選定したパターンのオンオフ時間の割合を制御して、一定周期内の平均電力が要求電力と一致するようにPTC素子3の通電状態と非通電状態との割合を調整する。
 次に、上述したヒータ制御装置10における制御方法について、図1から図5を用いて説明する。
 ヒータ制御装置10は、取得した要求電力値(例えば、2.5kW)の情報を、時刻T(0)における目標電力値とする(ステップSA1)。割合調整部20において、パターン情報22に基づいて、目標電力値の電力を出力できるPTCヒータ2のオンオフ状態の状態組み合わせパターンを決定する(ステップSA2)。決定された状態組み合わせパターンに基づいて、スイッチング素子12のオンオフ状態が制御され、PTC素子3の通電と非通電が制御される(ステップSA3)。
 目標電力値が、パターン情報22で示される出力電力値である場合には、出力電圧値に対応付けられたオンオフの状態組み合わせパターンに基づいてPTCヒータ2のオンオフが制御される。または、パターン情報22で示される出力電圧値の中間値である場合には、目標電力を超えて出力できるパターンのうち最も目標電力に近い電力値を供給できるパターンを選定するとともに、選定されたパターンのオン状態にするPTCヒータ2のオン時間とオフ時間との割合が調整されて、制御される。
 例えば、要求電力値である2.5kWを出力するには、2.5kWを供給でき、かつ、
2.5kWに最も近い電力値(3kW)を出力できる状態組み合わせパターンであるパターン3を選定する。つまり、図3に基づいてPTCヒータ2a,2bをオン状態、PTCヒータ2cをオフ状態とする組み合わせパターンを選定する。また、電力の大きなPTCヒータ2から順次オン状態にするので、PTCヒータ2aを1周期Tの100%の期間をオン状態にした後、PTCヒータ2bをオン状態にする。このとき、PTCヒータ2bは、1周期Tの100%の期間をオン状態にすると1〔kW〕出力されるので、オン状態にする時間Ton=50%に割合を調整し、1kWの50%の出力にするべくPTCヒータ2bを制御する。これにより、PTCヒータ2aによって2kW、及びPTCヒータ2bによって0.5kW出力されるので、合計2.5kWの電力が出力できる。
 電流検出部13により電流値が計測されるとともに、電圧検出部14により電圧値が計測され、電流値及び電圧値の情報はそれぞれヒータ制御装置10に出力される(ステップSA4)。取得した電流値及び電圧値の情報に基づいて、実電力が算出される(ステップSA5)算出された実電力と現在時刻T(n)の要求電力値との差分に対し、係数K(Kは0から1)を乗算し、現在時刻T(n)の目標電力値を加算したものを、次の時刻T(n+1)における目標電力値とする(ステップSA6)。次の時刻T(n+1)における目標電力値を算出すると、ステップSA2に戻り、処理を繰り返す。
 上述した実施形態に係るヒータ制御装置10においては、上記処理の全て或いは一部を別途ソフトウェアを用いて処理する構成としてもよい。この場合、ヒータ制御装置10は、CPU、RAM等の主記憶装置、及び上記処理の全て或いは一部を実現させるためのプログラムが記録されたコンピュータ読み取り可能な記録媒体を備えている。そして、CPUが上記記憶媒体に記録されているプログラムを読み出して、情報の加工・演算処理を実行することにより、上述のヒータ制御装置と同様の処理を実現させる。
 ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。
 以上説明してきたように、本実施形態に係るヒータ制御装置10及び方法並びにプログラムによれば、各PTCヒータ2の通電と非通電との状態組み合わせパターンと、状態組み合わせパターンにより供給される出力電力値とが規定されたパターン情報22に基づいて、各PTCヒータ2に対応して設けられたスイッチング素子12のオンオフによってPTC素子3の通電と非通電とが切り替えられ、要求電力を満たす電力を出力する。また、要求電力が、パターン情報22で規定される出力電力値の中間値である場合には、一定周期内の平均電力が要求電力と一致する場合のオンオフ時間の割合に基づいて、PTC素子3の通電状態と非通電状態との割合を制御することにより、車載用PTCヒータ1から出力される電力値を無段階に制御できるので、細やかな制御ができる。さらに、PTC素子3のばらつきによる通電電力の誤差が含まれる場合や、時間の経過に伴い素子自体が温度により抵抗値が変わり、電流が変化するため出力電力の実現精度が悪化する場合であっても、フィードバック制御によって補正を加えることにより、出力精度を向上させて要求電力を満たすことができる。
〔変形例〕
 なお、本実施形態においては、ヒータ制御装置10が、PTC素子3のばらつきによって生じる通電電力の誤差をフィードバック制御により補正し、要求電力を満たすよう制御していたが、要求電力を満たすための制御方法はこれに限定されない。例えば、要求電力に対し、一定期間(例えば、T秒)内で必要とされる熱量Pc(単位はジュール〔J〕)を予め算出し、その一定期間内における電流値と電圧値との積分値が、上記熱量を超過したら、その区間の出力を止めるよう制御することとしてもよい。具体的には、図6に示されるように、電流検出部13によって検出された電流値Iと、電圧検出部14によって検出された電圧値Vとの積に基づいて算出される瞬時電力Pを時間積分し、予め算出した要求熱量Pc×Tに達した時点で通電を止め、1周期で必要なトータル熱量を制御する。このように、逐次電力を積分し、区間ごとに熱量を一定にすることにより、上述したフィードバック制御なしに要求電力を満たすことができる。
2,2a,2b,2c PTCヒータ
3,3a,3b,3c PTC素子
10 ヒータ制御装置
11 割合調整部
12,12a,12b,12c スイッチング素子
20 割合制御部
21 選定部
22 パターン情報

Claims (7)

  1.  PTC素子を有するPTCヒータを少なくとも2個備えるヒータユニットに適用されるヒータ制御装置であって、
     各前記PTCヒータに対応して設けられ、オンオフにより前記PTC素子の通電状態と非通電状態とを切り替える切替手段と、
     各前記PTC素子の通電状態と非通電状態との状態組み合わせパターンと、該状態組み合わせパターンにより供給される出力電力値とを対応付けたパターン情報と、
     前記ヒータユニットに対する要求電力が、前記パターン情報で規定された前記出力電力値の中間値である場合に、一定周期内の平均電力が前記要求電力と一致する場合のオンオフ時間の割合に基づいて、前記PTC素子の通電状態と非通電状態との割合を制御する割合制御手段と
    を具備するヒータ制御装置。
  2.  前記割合制御手段は、前記切替手段の通電と非通電との切替によって生じるスイッチング損失が許容損失以下となる周期より大きく、かつ、前記PTCヒータの水温が目標温度に対して所定温度差以下となる条件を含む前記ヒータユニット全体の熱容量によって決定される周期よりも小さい周期を、前記切替手段の切替周期とする請求項1に記載のヒータ制御装置。
  3.  所定タイミングにおいて、現在の電流値と現在の電圧値とに基づいて実電力を算出し、要求電力と実電力との差分を現在の前記要求電力に加えた値を、次回の前記要求電力とする請求項1または請求項2に記載のヒータ制御装置。
  4.  一定期間内における電力の積分値が、前記一定期間内で前記要求電力に基づいて算出される要求熱量を超過した場合に、前記一定期間の電力出力を停止する請求項1から請求項3のいずれかに記載のヒータ制御装置。
  5.  複数の前記PTC素子のうち、消費電力が大きい前記PTC素子から順に、通電状態にする前記PTC素子として選定する選定手段を備える請求項1から請求項4のいずれかに記載のヒータ制御装置。
  6.  PTC素子を有するPTCヒータを少なくとも2個備えるヒータユニットに適用されるヒータ制御方法であって、
     各前記PTCヒータに対応して設けられ、オンオフにより前記PTC素子の通電状態と非通電状態とを切り替える切替過程と、
     前記ヒータユニットに対する要求電力が、各前記PTC素子の通電状態と非通電状態との状態組み合わせパターンと、該状態組み合わせパターンにより供給される出力電力値とを対応付けたパターン情報で規定された前記出力電力値の中間値である場合に、一定周期内の平均電力が前記要求電力と一致する場合のオンオフ時間の割合に基づいて、前記PTC素子の通電状態と非通電状態との割合を制御する割合制御過程と
    を有するヒータ制御方法。
  7.  PTC素子を有するPTCヒータを少なくとも2個備えるヒータユニットに適用されるヒータ制御プログラムであって、
     各前記PTCヒータに対応して設けられ、オンオフにより前記PTC素子の通電状態と非通電状態とを切り替える切替処理と、
     前記ヒータユニットに対する要求電力が、各前記PTC素子の通電状態と非通電状態との状態組み合わせパターンと、該状態組み合わせパターンにより供給される出力電力値とを対応付けたパターン情報で規定された前記出力電力値の中間値である場合に、一定周期内の平均電力が前記要求電力と一致する場合のオンオフ時間の割合に基づいて、前記PTC素子の通電状態と非通電状態との割合を制御する割合制御処理と
    をコンピュータに実行させるためのヒータ制御プログラム。
PCT/JP2012/069968 2011-08-04 2012-08-06 ヒータ制御装置及び方法並びにプログラム WO2013018919A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/002,923 US9198231B2 (en) 2011-08-04 2012-08-06 Heater control device, method and program
EP12819393.5A EP2741568B1 (en) 2011-08-04 2012-08-06 Heater control device, method, and program
CN201280011789.XA CN103597907B (zh) 2011-08-04 2012-08-06 加热器控制装置及方法以及程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011171154A JP5875279B2 (ja) 2011-08-04 2011-08-04 ヒータ制御装置及び方法並びにプログラム
JP2011-171154 2011-08-04

Publications (1)

Publication Number Publication Date
WO2013018919A1 true WO2013018919A1 (ja) 2013-02-07

Family

ID=47629429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069968 WO2013018919A1 (ja) 2011-08-04 2012-08-06 ヒータ制御装置及び方法並びにプログラム

Country Status (5)

Country Link
US (1) US9198231B2 (ja)
EP (1) EP2741568B1 (ja)
JP (1) JP5875279B2 (ja)
CN (1) CN103597907B (ja)
WO (1) WO2013018919A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3008844A1 (fr) * 2013-07-22 2015-01-23 Valeo Systemes Thermiques Systeme de gestion de resistance chauffante a coefficient de temperature positif d'un equipement de chauffage electrique auxiliaire de vehicule automobile
CN110505717A (zh) * 2018-05-17 2019-11-26 马勒国际有限公司 用于确定ptc热敏电阻元件工作状态的方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3007229B1 (fr) * 2013-06-17 2015-06-19 Valeo Systemes Thermiques Commande d'un circuit de chauffage electrique, notamment pour vehicule automobile
JP6874511B2 (ja) 2016-04-28 2021-05-19 オムロン株式会社 出力制御ユニット、出力制御システム、出力制御ユニットの制御方法
JP6953775B2 (ja) 2016-04-28 2021-10-27 オムロン株式会社 出力制御ユニット、出力制御システム、出力制御ユニットの制御方法
US10908195B2 (en) * 2016-06-15 2021-02-02 Watlow Electric Manufacturing Company System and method for controlling power to a heater
CN106347067B (zh) * 2016-07-29 2018-09-11 北京新能源汽车股份有限公司 电动汽车及用于电动汽车的ptc电加热器的控制方法、系统
US20180063887A1 (en) * 2016-09-01 2018-03-01 Hamilton Sundstrand Corporation Heated ptc element with protection circuit
US10906379B1 (en) 2016-11-29 2021-02-02 TSI Products, Inc. Compact air conditioning apparatus, cord harness and method of use thereof
CN107421065B (zh) * 2017-07-18 2019-09-03 郴州市中马汽车空调有限公司 一种空调控制装置及其控制方法
FR3069999A1 (fr) * 2017-08-04 2019-02-08 Valeo Systemes Thermiques Dispositif de chauffage electrique haute tension
JP6948183B2 (ja) * 2017-08-09 2021-10-13 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
FR3079479B1 (fr) * 2018-03-29 2020-02-28 Valeo Systemes Thermiques Procede de commande d'un module electrique additionnel
FR3087990A1 (fr) * 2018-10-25 2020-05-01 Valeo Systemes Thermiques Dispositif de chauffage
WO2021129543A1 (zh) * 2019-12-24 2021-07-01 追觅科技(上海)有限公司 功率控制方法、装置及存储介质
CN111083810A (zh) * 2019-12-24 2020-04-28 追觅科技(上海)有限公司 功率控制方法、装置及存储介质
CN111083809A (zh) * 2019-12-24 2020-04-28 追觅科技(上海)有限公司 功率控制方法、装置及存储介质
CN111083811A (zh) * 2019-12-24 2020-04-28 追觅科技(上海)有限公司 功率控制方法、装置及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000225834A (ja) * 1999-02-08 2000-08-15 Valeo Klimasyst Gmbh 自動車用電気加熱装置
JP2003050520A (ja) * 2001-08-08 2003-02-21 Ricoh Co Ltd ヒータ駆動装置、定着装置及び画像形成装置
JP2003217793A (ja) * 2002-01-23 2003-07-31 Ricoh Co Ltd ヒータ制御装置、定着装置及び画像形成装置
JP2006185766A (ja) * 2004-12-28 2006-07-13 Murata Mach Ltd Ptcヒータ用温度コントローラ
JP2007115680A (ja) * 2005-10-18 2007-05-10 Robert Bosch Gmbh ヒータエレメントとして用いられたptc電熱素子の作動のための回路装置
JP2007283790A (ja) 2006-04-12 2007-11-01 Auto Network Gijutsu Kenkyusho:Kk 車載用ptcヒータの制御装置
WO2010004617A1 (ja) * 2008-07-08 2010-01-14 フィグラ株式会社 発熱性板材の製造方法、その製造方法によって製造した発熱性板材、板状構造体、及び発熱システム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953711A (en) * 1973-11-06 1976-04-27 E.G.O. Elektro-Geraete Blanc Und Fischer Cooking units
JPH0478413U (ja) * 1990-11-15 1992-07-08
US5789723A (en) * 1996-08-23 1998-08-04 Hewlett-Packard Company Reduced flicker fusing system for use in electrophotographic printers and copiers
JP3381140B2 (ja) * 1997-12-26 2003-02-24 澁谷工業株式会社 ボンディング装置におけるヒータ電力制御装置
JPH11249490A (ja) * 1998-03-04 1999-09-17 Canon Inc 加熱装置及びこの加熱装置を備える画像形成装置
JP2000347746A (ja) * 1999-03-31 2000-12-15 Omron Corp 温度制御システム、電源装置および温度調節器
DE19948313A1 (de) 1999-10-07 2001-04-12 Alcatel Sa Elektrische Heizung sowie Verfahren zur Regelung einer elektrischen Heizung
DE10109734B4 (de) 2001-02-28 2005-09-22 Behr-Hella Thermocontrol Gmbh Verfahren zur Steuerung einer Elektroheizung zur Erwärmung eines Gegenstandes oder Mediums
FR2838599B1 (fr) * 2002-04-11 2004-08-06 Valeo Climatisation Dispositif de chauffage electrique, notamment pour appareil de chauffage et ou climatisation de vehicule
DE50200767D1 (de) 2002-10-30 2004-09-09 Catem Gmbh & Co Kg Elektrische Heizvorrichtung mit mehreren Heizelementen
US6998584B1 (en) * 2004-09-03 2006-02-14 Caterpillar Inc. System for output power control on electric heater drive
JP5091579B2 (ja) * 2007-07-26 2012-12-05 矢崎総業株式会社 負荷制御装置
KR100894008B1 (ko) * 2007-11-16 2009-04-17 모딘코리아 유한회사 자동차의 보조전기가열장치 및 방법
CN201166434Y (zh) 2007-12-20 2008-12-17 比亚迪股份有限公司 一种ptc电加热器
DE102008059751A1 (de) * 2008-12-01 2010-06-02 Voss Automotive Gmbh Verfahren und Heizsystem zum Beheizen eines Fluid-Leitungssystems insbesondere in einem Kraftfahrzeug
JP5027863B2 (ja) 2009-11-26 2012-09-19 シャープ株式会社 空気調和機
JP5488218B2 (ja) * 2010-06-09 2014-05-14 日産自動車株式会社 車両用空調装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000225834A (ja) * 1999-02-08 2000-08-15 Valeo Klimasyst Gmbh 自動車用電気加熱装置
JP2003050520A (ja) * 2001-08-08 2003-02-21 Ricoh Co Ltd ヒータ駆動装置、定着装置及び画像形成装置
JP2003217793A (ja) * 2002-01-23 2003-07-31 Ricoh Co Ltd ヒータ制御装置、定着装置及び画像形成装置
JP2006185766A (ja) * 2004-12-28 2006-07-13 Murata Mach Ltd Ptcヒータ用温度コントローラ
JP2007115680A (ja) * 2005-10-18 2007-05-10 Robert Bosch Gmbh ヒータエレメントとして用いられたptc電熱素子の作動のための回路装置
JP2007283790A (ja) 2006-04-12 2007-11-01 Auto Network Gijutsu Kenkyusho:Kk 車載用ptcヒータの制御装置
WO2010004617A1 (ja) * 2008-07-08 2010-01-14 フィグラ株式会社 発熱性板材の製造方法、その製造方法によって製造した発熱性板材、板状構造体、及び発熱システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2741568A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3008844A1 (fr) * 2013-07-22 2015-01-23 Valeo Systemes Thermiques Systeme de gestion de resistance chauffante a coefficient de temperature positif d'un equipement de chauffage electrique auxiliaire de vehicule automobile
WO2015010842A1 (fr) * 2013-07-22 2015-01-29 Valeo Systemes Thermiques Système de gestion de résistance chauffante à coefficient de température positif d'un équipement de chauffage électrique auxiliaire de véhicule automobile
CN110505717A (zh) * 2018-05-17 2019-11-26 马勒国际有限公司 用于确定ptc热敏电阻元件工作状态的方法
CN110505717B (zh) * 2018-05-17 2022-12-02 马勒国际有限公司 用于确定ptc热敏电阻元件工作状态的方法

Also Published As

Publication number Publication date
EP2741568A1 (en) 2014-06-11
CN103597907B (zh) 2016-03-02
EP2741568A4 (en) 2015-03-25
JP2013037813A (ja) 2013-02-21
JP5875279B2 (ja) 2016-03-02
US20130341318A1 (en) 2013-12-26
US9198231B2 (en) 2015-11-24
EP2741568B1 (en) 2018-10-31
CN103597907A (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
WO2013018919A1 (ja) ヒータ制御装置及び方法並びにプログラム
JP5875278B2 (ja) ヒータ制御装置及びその制御方法並びにその制御プログラム
KR100894008B1 (ko) 자동차의 보조전기가열장치 및 방법
US11505098B2 (en) Temperature control method, device and system for vehicle seat heating
JP2007028893A5 (ja)
CN111165069B (zh) 座椅加热器、温度控制方法和存储温度控制程序的计算机介质
US7947930B2 (en) Method and circuit for controlling at least a heating element of a heating device
JP5130786B2 (ja) Ptcヒータ制御装置
JP2006024537A (ja) 電力制御装置および電力制御方法
JP5249563B2 (ja) 便座温度制御装置
JP4344656B2 (ja) 床暖房用ヒーターへの電源供給方法及びそれを実施するための電流制御装置
JP5125190B2 (ja) 位相制御方法および位相制御装置
JP2010244861A (ja) シートヒータ
JP2009283332A (ja) Ptcシートヒータ制御装置
CN105519234B (zh) 用于控制机动车辆的辅助电加热设备的具有正温度系数的加热电阻器的系统
JP2019049929A (ja) 電力検出装置及び加熱装置
JP2008288180A (ja) ヒーターの温度調節器
JP2018012442A (ja) リレーユニット、ヒータ制御装置、ヒータ装置、およびヒータ制御方法
JP2004152627A (ja) 電流制御方法及びそれを実施するための電流制御装置
KR200358424Y1 (ko) 전열응용제품의 온도제어구조
JP5883929B2 (ja) ガスセンサの加熱装置を作動させる装置、方法
JP2004259557A (ja) ヒーターにおける消費電流制御方法及びそれを実施するための消費電流制御装置
WO2014054682A1 (ja) 電力供給制御装置
JP2002267194A (ja) 電気床暖房装置の制御方法
JPS60129814A (ja) 室温制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819393

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14002923

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE