WO2013018823A1 - 熱膨張制御金属複合材料およびその製造方法 - Google Patents

熱膨張制御金属複合材料およびその製造方法 Download PDF

Info

Publication number
WO2013018823A1
WO2013018823A1 PCT/JP2012/069570 JP2012069570W WO2013018823A1 WO 2013018823 A1 WO2013018823 A1 WO 2013018823A1 JP 2012069570 W JP2012069570 W JP 2012069570W WO 2013018823 A1 WO2013018823 A1 WO 2013018823A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
thermal expansion
composite material
mixed powder
powder
Prior art date
Application number
PCT/JP2012/069570
Other languages
English (en)
French (fr)
Inventor
康司 竹中
大輔 ▲濱▼田
丈夫 松野
英典 高木
Original Assignee
独立行政法人理化学研究所
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人理化学研究所, 国立大学法人名古屋大学 filed Critical 独立行政法人理化学研究所
Publication of WO2013018823A1 publication Critical patent/WO2013018823A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride

Definitions

  • the present invention relates to a thermal expansion control metal composite material and a manufacturing method thereof. More specifically, the present invention relates to a thermal expansion control metal composite material using powder sintering and a method for producing the same.
  • thermal expansion may be required to match between materials.
  • a material for a package heat sink of a semiconductor device such as an IC (integrated circuit)
  • the thermal expansion is similar to that of silicon constituting the semiconductor device. Is desirable. Otherwise, it may lead to serious problems such as peeling, warping and cracking.
  • a technique for precisely matching the thermal expansion of each material to a specific value is required.
  • typical examples of the linear expansion coefficient ⁇ required for various materials are as follows.
  • a material having a negative coefficient of thermal expansion ⁇ of about ⁇ 5 ppm / ° C. to ⁇ 10 ppm / ° C. is required for a temperature compensation material for fiber Bragg grating (FBG).
  • FBG fiber Bragg grating
  • a material exhibiting a thermal expansion coefficient ⁇ of about 0 ppm / ° C., that is, a zero thermal expansion material is required for various precision instruments and various devices, particularly semiconductor manufacturing apparatuses.
  • a material having a thermal expansion coefficient ⁇ of about 2 ppm / ° C., that is, a material exhibiting a thermal expansion equivalent to that of silicon is required for, for example, an IC package heat sink.
  • Non-Patent Documents 1 and 2 One of the few solutions for controlling thermal expansion is a technique that utilizes a material exhibiting negative thermal expansion, that is, a negative thermal expansion material (Non-Patent Documents 1 and 2).
  • the negative thermal expansion material is used as a constituent material for suppressing thermal expansion or adapting to the target thermal expansion (hereinafter referred to as “thermal expansion inhibitor”), and the thermal expansion is positive. Is combined with other materials.
  • the target thermal expansion is implement
  • metal matrix composite material With regard to a composite material having a metal matrix (base material) (referred to as “metal matrix composite material” in the present application), low expansibility can be achieved by including ceramics having a smaller thermal expansion value than the metal to be the matrix.
  • achieve is known (patent document 1). However, the effect of suppressing the thermal expansion of the ceramic is small, and the low expansibility achieved is not sufficient.
  • FIG. 1 is a perspective view showing a crystal structure showing an inverted perovskite-type manganese nitride Mn 3 AN.
  • Patent Document 2 that discloses an invention created by a part of the inventors of the present application includes a reverse perovskite-type manganese nitride (interstitial manganese nitride) having a negative linear expansion coefficient in a temperature range according to the composition. Also called).
  • the low-expansion metal matrix composite material obtained by combining the aluminum reverse perovskite manganese nitride Mn 3 AN and light metal are created by the inventors of the present application (Patent Document 4: International Publication No. WO2008 / 111285).
  • a porous press-molded body is once formed from a powder of reverse perovskite manganese nitride.
  • a light metal or the like is pressure infiltrated into the press-molded body to form a composite material as an infiltrated body.
  • this series of methods is particularly referred to as a high pressure infiltration method.
  • the high-pressure infiltration method is suitable for a wide range of applications as compared with the conventional material disclosed in Patent Document 1, and has a possibility of making a relatively large member such as a mechanical member.
  • Invar steel which is a conventionally known representative metal alloy low-expansion metal material
  • the low-expansion metal matrix composite material produced by high-pressure infiltration by adopting aluminum as the matrix metal phase is: Due to its light weight, it has wide usage.
  • the inventor of the present application considered that the high-pressure infiltration method, which is a kind of infiltration method, is unlikely to limit the size of the member.
  • Non-patent Document 9 a low expansion metal matrix composite material in which reverse perovskite-type manganese nitride Mn 3 AN and copper Cu are combined has been developed by a Chinese group (Non-patent Document 9).
  • Non-Patent Document 9 the thermal expansion inhibitor Mn 3 Cu 0.5 Sn 0.5 N or Mn 3 Cu 0.5 Ni 0.5 N is combined with Cu by heat treatment in nitrogen gas at 500 ° C. for 10 hours. It is written.
  • detailed technical information is not disclosed, and a general-purpose technology that can be combined with various compositions of manganese nitride thermal expansion inhibitors and various metal matrices has not been established yet. .
  • Patent Document 4 the technique of producing a metal matrix composite material by compounding a reverse perovskite manganese nitride and a light metal by a high pressure infiltration method. It became.
  • the high-pressure infiltration method often makes it difficult to precisely control the thermal expansion.
  • the composition ratio of elements in the thermal expansion inhibitor with high precision, precisely controlling thermal expansion, or by controlling the ratio between the thermal expansion inhibitor and the metal phase such as the matrix metal phase with high precision.
  • the high-pressure osmosis method cannot always be adopted.
  • the suitability of the high-pressure infiltration method also depends on the size and shape of the component produced by the composite. In other words, even if a test piece or a simple-shaped test piece is manufactured and a desired characteristic (for example, a desired coefficient of thermal expansion) is realized, a member having a desired size and shape is obtained depending on the combination of the materials. When manufactured, the characteristics change. For this reason, regarding the high-pressure infiltration method, when applying the knowledge discovered by the test for scale-up, it may be accompanied by great difficulty in applying to actual machine parts.
  • the chemical reaction between the light metal that forms the matrix metal phase and the reverse perovskite-type manganese nitride is very precisely controlled, and the desired characteristics are achieved especially in practical machine parts. It can be difficult to do. According to the study by the inventors of the present application, it is often difficult to satisfactorily combine a member having a size exceeding about a 5 cm square cube in the high pressure infiltration method.
  • a light metal or the like is infiltrated by pressurization or the like into a press-molded body that is a green compact or sintered body formed by press-molding powder.
  • the press-molded body disclosed as an example of Patent Document 4 is about 5 parts by weight of a thermal expansion inhibitor powder such as Mn 3 Cu 0.5 Sn 0.5 N with respect to 100 parts by weight.
  • Colloidal silica and about 5 parts by weight of polyvinyl butyral (PVB) as a binder are added and mixed uniformly.
  • the press-molded body at this time contains Mn 3 Cu 0.5 Sn 0.5 N at a rate of, for example, 40% by volume.
  • the procedure of the high pressure infiltration method is roughly divided into a preheating process and an infiltration process. That is, the press-molded body is preheated to a temperature of, for example, 400 ° C. (preheating step). Then, the preheated press-molded body is set in, for example, an aluminum casting mold, and an aluminum alloy heated and melted at, for example, about 750 ° C. is poured into the mold (infiltration process).
  • the molten alloy is infiltrated into the press-formed body by pressurizing at 60 MPa for about 10 minutes. After the molten metal has solidified, the solid is removed from the casting mold.
  • the solid at this time may not be used as a metal matrix composite as it is.
  • a single metal or alloy-only layer (hereinafter referred to as “alloy layer”) having a composition very close to the infiltrated aluminum alloy may be formed on the surface of the solid material.
  • alloy layer a single metal or alloy-only layer having a composition very close to the infiltrated aluminum alloy
  • the remaining part near the center is often used (for example, Patent Document 4, paragraphs [0039] and [0042]).
  • the inventors of the present application speculate that one of the causes of each limitation of the high pressure infiltration method is in the preheating process.
  • the press-formed body is easily changed in quality by oxidation or the like until it is opened to the space in a high temperature state and placed in the casting mold.
  • the thermal expansion inhibitor that has undergone a chemical change such as oxidation or a composition change such as sublimation / precipitation increases the possibility that the desired action cannot be exhibited.
  • the high pressure infiltration method is caused by the difficulty of the infiltration process itself.
  • the high pressure infiltration method as long as the molten metal is infiltrated, it is necessary that many of the pores of the thermal expansion inhibitor are open pores that are connection holes inside the press-formed body.
  • such a press-molded body cannot always be produced.
  • the high-pressure infiltration method using a press-molded body tends to cause non-uniformity in composition.
  • the thermal expansion characteristics change depending on the ratio between the matrix metal phase and the thermal expansion inhibitor, so the ratio between the matrix metal phase and the thermal expansion inhibitor is maintained to achieve the desired thermal expansion characteristics.
  • the preheating process and the infiltration process described above are closely related to each other.
  • the restrictions resulting from the preheating process described above become even more remarkable.
  • the ease of chemical change of the thermal expansion inhibitor which is a limitation of the high pressure infiltration method, and the ease of sublimation / precipitation of components contained in the expansion inhibitor are also greatly affected as the temperature rises.
  • any of the constraints related to the preheating process and the infiltration process described above are affected by the difference in the environment between the surface and the interior, leading to difficulty in scaling up.
  • thermal expansion inhibitor The ease of alteration of the above-described thermal expansion inhibitor and the difficulty of infiltration due to the high melting point of a single metal or metal alloy greatly depend on the composition of the thermal expansion inhibitor and the metal phase. Focusing on the specific composition of the thermal expansion inhibitor, handling of the thermal expansion inhibitor containing Zn, which easily sublimates and precipitates or chemically changes, is extremely difficult to handle. Sufficient practicality with the thermal expansion inhibitor containing Zn The metal composite material provided with is not produced until now. Moreover, although the thing containing Cu as a thermal expansion inhibitor is reported by the nonpatent literature 9 at the example compounded with the metal, the conditions for fine compounding are not indicated. Furthermore, a metal composite material having sufficient practicality using a thermal expansion inhibitor containing Ga has not been produced so far.
  • the high-pressure infiltration method has only a track record of compounding that is not necessarily accurate enough for low melting point Al (melting point 660 ° C.) or Al alloy.
  • Cu having a higher melting point (melting point: 1083 ° C.) is also disclosed in Non-Patent Document 9, conditions for fine complexation are not disclosed, and it has been demonstrated with sufficient accuracy. It ’s hard.
  • High melting point metals exceeding the melting point of Cu include materials such as iron (melting point: 1539 ° C.) and Ti (melting point: 1727 ° C.) which are excellent as structural materials or have high corrosion resistance. There is no guide on how to complex these high melting point metals with thermal expansion inhibitors.
  • the metal matrix composite material by the high pressure infiltration method and the manufacturing method thereof still have technical problems to be overcome.
  • the present invention solves at least one of the above problems.
  • the present invention provides a metal composite material taking advantage of the superior characteristics of reverse perovskite manganese nitride and a method for producing the same.
  • the present invention contributes to high accuracy and performance improvement of various devices.
  • the inventor of the present application has realized that the above-described restrictions in the metal matrix composite material and the manufacturing method thereof are unavoidable as long as the high pressure infiltration method is adopted. It is difficult to improve the accuracy of the composite of the metal matrix composite material, the success or failure of the composite of the metal composite material is affected by the shape and size, the thermal expansion inhibitor, the metal phase of the metal or alloy, or their composition or each other Any restriction on the ratio is caused by the high-pressure infiltration process.
  • the inventors of the present application aimed at alleviating at least one of the constraints caused by the composition change in the high-pressure infiltration method, and eagerly pursued a composite method applicable to the composite of the thermal expansion inhibitor and the metal phase. Explored.
  • a powder of a single metal or metal alloy that becomes a metal phase and a powder of a thermal expansion inhibitor of reverse perovskite type manganese nitride are mixed, and the mixed powder (hereinafter referred to as “mixed powder”) is mixed. Sinter.
  • the inventors of the present application are based on the prediction that, among various methods of powder metallurgy, the method of compounding by heating and sintering the mixed powder in a sealed state must be effective. Therefore, the inventors have decided to reflect the knowledge acquired by the inventors in the technical examination including the high-pressure infiltration method regarding the powder of the thermal expansion inhibitor.
  • Mn—Zn—Sn—N or Mn—Zn—Ge—N thermal expansion material Mn—Cu—Sn—N or Mn—Cu—Ge—N thermal expansion material, and
  • the composition can be controlled with high precision by applying a method of heating and sintering in a hermetic state in a thermally expanded material of Mn—Ga—Sn—N or Mn—Ga—Ge—N based on this composite. It was confirmed that a metal composite material to be formed was formed.
  • the mixed powder obtained by mixing the powder of the product and the powder of the single metal or metal alloy having the composition to be the metal phase is placed in a hermetically sealed state and heated, the metal phase and the reverse perovskite manganese nitride are sintered.
  • a thermal expansion controlled metal composite material is provided which is composited by ligation.
  • the Mn—Cu—Sn—N reverse perovskite manganese nitride or the Mn—Cu—Ge—N reverse perovskite manganese nitride exhibits negative thermal expansion at least in a certain temperature range.
  • the mixed powder obtained by mixing the powder of the product and the powder of the single metal or metal alloy having the composition to be the metal phase is placed in a hermetically sealed state and heated, the metal phase and the reverse perovskite manganese nitride are sintered.
  • a thermal expansion controlled metal composite material is provided which is composited by ligation.
  • the mixed powder obtained by mixing the powder of the product and the powder of the single metal or metal alloy having the composition to be the metal phase is placed in a hermetically sealed state and heated, the metal phase and the reverse perovskite manganese nitride are sintered.
  • a thermal expansion controlled metal composite material is provided which is composited by ligation.
  • the mixed powder in a sealed state by an electric current sintering method in which a current is supplied to the mixed powder or to the conductive mold containing the mixed powder.
  • an electric current sintering method in which a current is supplied to the mixed powder or to the conductive mold containing the mixed powder.
  • a thermal expansion control metal composite such that the metal is heated. That is, in one embodiment of the present invention, an Mn—Zn—Sn—N-based reverse perovskite-type manganese nitride or an Mn—Zn—Ge—N-based reverse perovskite-type manganese nitride that exhibits negative thermal expansion at least in a certain temperature range.
  • an Mn—Cu—Sn—N-based reverse perovskite-type manganese nitride or an Mn—Cu—Ge—N-based reverse perovskite-type manganese nitride that exhibits negative thermal tension at least in a certain temperature range a step of preparing a mixed powder obtained by mixing a powder of a single metal or metal alloy having a composition to be a metal phase with each other, a step of keeping the mixed powder in a sealed state, and the mixed powder in the sealed state.
  • an Mn—Ga—Sn—N-based reverse perovskite-type manganese nitride or an Mn—Ga—Ge—N-based reverse perovskite-type manganese nitride that exhibits negative thermal expansion at least in a certain temperature range a step of preparing a mixed powder obtained by mixing a powder of a single metal or metal alloy having a composition to be a metal phase with each other, a step of keeping the mixed powder in a sealed state, and the mixed powder in the sealed state.
  • the thermal expansion inhibitor of the reverse perovskite-type manganese nitride (hereinafter referred to as the reverse perovskite-type manganese nitride thermal expansion inhibitor is referred to as “manganese nitride thermal expansion inhibitor” or simply “thermal expansion suppression”).
  • Powder of a single metal or a metal alloy, that is, a metal raw material powder to be a metal phase, is mixed in advance at an appropriate ratio, and the mixed powder is maintained in a hermetically sealed state, for example, in an airtight state.
  • Composite by disposing inside a mold or a sintering mold (“sintering mold”) such as a conductive graphite die and punch.
  • the sealed state does not necessarily require the sintered mold to be airtight.
  • the internal space of the airtight container is not limited to the inside of the airtight container such as a vacuum chamber or a container cut off from the external atmosphere (outside air).
  • negative thermal expansion means that the linear thermal expansion ⁇ L / L decreases with respect to temperature or the linear expansion coefficient ⁇ is negative.
  • the powder refers to a powder or a powder whose particle size is not necessarily limited, and the composition, layer structure, internal structure, aggregation state, etc. of the powder are not particularly limited.
  • the mode in which the mixed powder is heated in a hermetically sealed state includes not only one that applies heat by radiation, convection, conduction, or induction, but also one that generates heat in response to supplying arbitrary energy from the outside. .
  • one that heats the mixed powder itself by causing current to flow and generating Joule heat is also an aspect of heating.
  • the mixed powder is sintered by being heated in a sealed state as a powder. For this reason, it can be compounded at a temperature lower than the melting point of the metal.
  • the thermal expansion inhibitor is prevented from touching the oxygen-containing atmosphere at a temperature at which the metal melts.
  • the material of the single metal or metal alloy that becomes the metal phase is not limited to one having a low melting point.
  • the metal phase does not necessarily need to be a matrix metal phase after the composite, and may be a continuous metal phase or not a continuous metal phase.
  • the allowable range is also expanded.
  • the selection range of a thermal expansion inhibitor is also expanded.
  • the temperature can be raised and cooled more efficiently, and in particular, the cooling time can be shortened. That is, in each aspect of the present invention, compared to the high-pressure infiltration method described in Patent Document 4, at least one of a wider temperature range, a wider thermal expansion range, higher accuracy, and a more flexible shape / size. In this respect, it is possible to provide a thermal expansion variable metal composite material with improved practicality.
  • Mn—Zn—Sn—N or Mn—Zn—Ge—N thermal expansion inhibitor Mn—Cu—Sn—N or Mn—Cu—Ge—N thermal expansion inhibitor
  • Mn—Ga—Sn—N-based or Mn—Ga—Ge—N-based thermal expansion inhibitor can be more specifically expressed by a composition formula. Each of these expressions is described by simplifying the composition of the following composition formula as “Mn—M 1 -M 2 —N system”.
  • M 1 includes at least one of Zn, Cu, and Ga
  • M 2 includes at least one of Ge and Sn.
  • a part of Mn may be replaced with another element, and a part of nitrogen N may be replaced with hydrogen H, boron B, carbon C, and oxygen O.
  • M 1 may contain an element other than Ga, Zn, and Cu
  • M 2 may contain an element other than Ge and Sn.
  • At least one of the restrictions remaining in the high pressure infiltration method is eliminated or relaxed.
  • a metal composite material that employs a manganese nitride thermal expansion inhibitor that has been difficult to employ.
  • a matrix metal phase and a manganese nitride thermal expansion inhibitor can be combined at an arbitrary ratio with good reproducibility.
  • Example 2 of the Present Invention 3 is a graph depicting expansion at a reference temperature of 0 ° C.
  • the linear thermal expansion of the metal composite of manganese nitride thermal expansion inhibitor Mn 3 Zn 0.45 Sn 0.55 N (50 vol%) and true bell (50 vol%) of Example 3 of the present invention was brought to a reference temperature of 100 ° C. It is a graph drawn.
  • Example 4 of the present invention The linear thermal expansion of the metal composite material of the manganese nitride thermal expansion inhibitor Mn 3 Zn 0.45 Sn 0.55 N (50 vol%) and copper Cu (50 vol%) of Example 4 of the present invention was set to a reference temperature of 100 ° C. It is a graph drawn. Linear Heat of Metal Composite Material of Manganese Nitride Thermal Expansion Inhibitor Mn 3 Zn 0.75 Sn 0.25 N 0.95 B 0.05 (50 vol%) and Copper Cu (50 vol%) of Example 5 of the Present Invention 3 is a graph depicting expansion at a reference temperature of 0 ° C.
  • Example 6 of the present invention The linear thermal expansion of the metal composite material of manganese nitride thermal expansion inhibitor Mn 3 Zn 0.45 Sn 0.55 W (50 vol%) and iron Fe (50 vol%) of Example 6 of the present invention was set to a reference temperature of 100 ° C. It is a graph drawn.
  • the linear thermal expansion of the metal composite material of the manganese nitride thermal expansion inhibitor Mn 3 Zn 0.45 Sn 0.55 N (50 vol%) and titanium Ti (50 vol%) of Example 7 of the present invention was set to a reference temperature of 100 ° C. It is a graph drawn.
  • Example 8 of the present invention The linear thermal expansion of the metal composite material of the manganese nitride thermal expansion inhibitor Mn 3 Cu 0.5 Sn 0.5 N (40 vol%) and copper Cu (60 vol 1%) of Example 8 of the present invention was set to a reference temperature of 0 ° C. It is a graph drawn.
  • the linear thermal expansion of the metal composite material of the manganese nitride thermal expansion inhibitor Mn 3 Ga 0.73 Ge 0.27 N (30 vol%) and aluminum Al (70 vol%) of Example 9 of the present invention was set to a reference temperature of 100 ° C. It is a graph drawn.
  • Example 10 of the present invention The linear thermal expansion of the metal composite material of the manganese nitride thermal expansion inhibitor Mn 3 Cu 0.5 Sn 0.5 N (40 vol%) and aluminum Al (60 vol%) of Example 10 of the present invention was set to a reference temperature of 0 ° C. It is a graph drawn. Manganese nitride thermal expansion inhibitor Mn 3.15 Zn 0.6 Sn 0.25 N (50 vol%) and copper Cu (50 vol%) of the metal composite material of Example 11 of the present invention was measured at a reference temperature of 0. It is the graph drawn at ° C.
  • Example 12 of the present invention The linear thermal expansion of the manganese nitride thermal expansion inhibitor Mn 3.15 Zn 0.6 Sn 0.25 N (60 vol%) and aluminum Al (40 vol%) of Example 12 of the present invention is defined as a reference temperature of 0. It is the graph drawn at ° C.
  • the linear thermal expansion of the metal composite material of the manganese nitride inhibitor Mn 3.1 Zn 0.5 Sn 0.4 N (50 vol%) and magnesium Mg (50 vol%) of Example 13 of the present invention to a reference temperature of 100 ° C. It is a graph drawn.
  • Example 14 of the present invention The linear thermal expansion of the metal composite material of the manganese nitride inhibitor Mn 3.5 Zn 0.25 Sn 0.25 N (50 vol%) and aluminum Al (50 vol%) of Example 14 of the present invention was set to a reference temperature of 0 ° C. It is a graph drawn. The linear thermal expansion of the metal composite material of the manganese nitride inhibitor Mn 3 Zn 0.4 Sn 0.6 N 0.85 C 0.15 (70 vol%) and aluminum Al (30 vol%) of Example 15 of the present invention. It is the graph drawn at the reference temperature of 100 degreeC.
  • Example 16 of the present invention The linear thermal expansion of the metal composite of manganese nitride inhibitor Mn 3 Zn 0.4 Sn 0.6 N 0.88 C 0.12 (50 vol%) and brass ( ⁇ 50 vol%) of Example 16 of the present invention. It is the graph drawn at the reference temperature of 0 degreeC.
  • the linear thermal expansion of the metal composite material of the manganese nitride thermal expansion inhibitor Mn 3 Cu 0.55 Ge 0.45 N (50 vol%) and aluminum Al (50 vol%) of Example 17 of the present invention was set to a reference temperature of 0 ° C. It is a graph drawn.
  • Example 18 and Example 19 of the present invention Is a graph in which the linear thermal expansion of the metal composite material is drawn at a reference temperature of 0 ° C. and the reproducibility thereof is compared. It is a graph which shows the diffraction pattern of the X-ray diffraction experiment conducted about Example 1 of this invention.
  • Thermal expansion inhibitor Mn 3.15 Zn 0.6 Sn 0.25 N was heat-treated at 800 ° C. for 12 hours in an open system in nitrogen gas, and the linear thermal expansion before and after that was drawn at a reference temperature of 100 ° C. Is.
  • FIG. 2 is an explanatory diagram showing the basic classification of the composite method.
  • a reverse perovskite-type manganese nitride powder exhibiting negative thermal expansion at least in a certain temperature range that is, a thermal expansion inhibitor powder, and a single metal or metal alloy powder having a composition that forms a metal phase are mixed.
  • a powder metallurgy method or a powder metallurgy method in which the metal phase and the reverse perovskite-type manganese nitride are combined by sintering by arranging and heating the mixed powder in a sealed state is adopted.
  • a non-pressure infiltration method such as a casting method, and mechanical alloying.
  • methods such as current sintering, cold forming low temperature sintering method, electromagnetic wave sintering, and powder rolling are included.
  • a mixed powder obtained by mixing the powder for suppressing thermal expansion of the reverse perovskite-type manganese nitride and the powder of a single metal or metal alloy having a composition that becomes a metal phase after being combined is hermetically sealed. Any powder metallurgy technique can be employed as long as it is heated and sintered in the state.
  • the powder metallurgy method described as the present embodiment is most typically a spark plasma sintering (SPS) method, which is a kind of electric current sintering method, and a cold that is not included in the electric current sintering method. It is carried out by a molding low temperature sintering method. These will be described.
  • SPS spark plasma sintering
  • alloy means a metal alloy.
  • the spark plasma sintering method is a form of the pulse current method, which is a kind of current sintering method, and a large current is applied to a powder or to a die punch or mold (sintered mold) for sintering the powder. It is a sintering technique heated by flowing.
  • Other methods included in the electric current sintering method such as pulsed electric current pressure sintering (PECS: Pulsed Electric Current Sintering) and plasma activated sintering (PAS: Plasma Activated Sintering) are also applicable to this embodiment.
  • PECS Pulsed Electric Current Sintering
  • PAS Plasma activated sintering
  • the cold forming low temperature sintering method is a method of performing “cold pressing” and then firing and sintering at a low temperature.
  • the term “cold press” means only the cold forming.
  • the ratio between the metal phase and the thermal expansion inhibitor can be set in a wider range.
  • the conventional high-pressure infiltration method it is necessary to form a press-formed body having a porosity and mechanical strength that is compatible with metal infiltration and maintains its shape during the infiltration.
  • the ratio with the thermal expansion inhibitor was naturally limited.
  • the mixed metal powder and the thermal expansion inhibitor powder are placed in a sealed space and heated, it is not necessary for the mixed powder at that time to maintain any shape.
  • the mixed powder is not easily affected by the atmosphere. This is because a step corresponding to the preheating step necessary for infiltrating the molten metal in the high-pressure infiltration method is not necessary.
  • heating and sintering of the mixed powder in a sealed state is advantageous because it can be performed at a low temperature and in a short time as compared with the conventional high-pressure infiltration method.
  • it is possible to appropriately control the chemical reaction between the powder for the metal phase and the powder of the manganese nitride thermal expansion inhibitor.
  • This advantage is particularly remarkable in the case where electric heat generation such as electric current sintering or plasma due to a discharge phenomenon is used for sintering.
  • heating and sintering to the mixed powder in a sealed state For example, it can be combined by low temperature and short time processing.
  • the compounding by sintering in the present embodiment proceeds in a state where the mixed powder is sealed in a sealed space.
  • the manganese nitride powder which is a thermal expansion inhibitor contained in the mixed powder, can be exposed to the atmosphere outside the sealed space (outside air), or can be exposed to the outside of the sealed space at high temperatures. It is not put in. Therefore, even if a component element that easily sublimes and precipitates, for example, Zn, is contained in the thermal expansion inhibitor, the composition can be combined with a minimum change in composition.
  • a metal that employs an Mn-Zn-Sn-N-based or Mn-Zn-Ge-N-based thermal expansion inhibitor that has conventionally been difficult to be combined due to chemical changes, sublimation, or precipitation It becomes possible to produce a composite material, and it is possible to produce a metal composite material whose thermal expansion is precisely controlled.
  • the mixed powder is sintered in a sealed space or the energization sintering
  • the powder of the manganese nitride thermal expansion inhibitor and the powder of the single metal or alloy for the metal phase can be mixed at an arbitrary ratio with high reproducibility. For this reason, it becomes possible to control precise thermal expansibility which was impossible in the prior art such as high pressure infiltration method.
  • Mn-Cu-Sn-N or Mn-Cu-Ge-N thermal expansion inhibitor which has not been able to be precisely combined in the past, is employed, Mn-Ga-Sn-N or Mn Even when a -Ga-Ge-N thermal expansion inhibitor is used, the thermal expansion is precisely controlled by the present embodiment in which the mixed powder is sintered in a sealed space and the composite treatment such as energization sintering. It becomes possible to produce a metal composite material.
  • the cold forming low temperature sintering method is also a form of powder metallurgy that sinters the mixed powder in a sealed space.
  • the cold forming low temperature sintering method unlike the current sintering, although no current is passed through neither the powder nor the sintering mold, the above-mentioned advantages are achieved because the mixed powder is sintered in a sealed space. .
  • a high-pressure infiltration method disclosed in Patent Document 4 is adopted by adopting, for example, an alloy mainly composed of titanium (including single titanium) that could not be employed from the melting point. It is possible to produce a metal composite material having a higher strength than that of the metal composite material. In addition to these, it is also possible to employ inexpensive single metals or alloys suitable for structural materials such as iron and brass. Note that these simple metals or alloys are merely shown for illustration.
  • composition of the thermal expansion inhibitor combined in the present embodiment is preferably composed of a reverse perovskite manganese nitride expressed by the following composition formula.
  • Composition formula (1) Mn 3 + y M 1 1- (x + y) M 2 x N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1),
  • M 1 includes at least one of Ga, Zn, and Cu
  • M 2 includes at least one of Ge and Sn.
  • a part of Mn may be replaced with another element, and a part of nitrogen N may be replaced with hydrogen H, boron B, carbon C, and oxygen O.
  • M 1 may contain an element other than Ga, Zn, and Cu
  • M 2 may contain an element other than Ge and Sn.
  • substances expressed by components and composition formulas, and substances expressed as “consisting of” by listing the components and composition formulas are mainly substances specified by the specified components and composition formulas. It means any substance as a component. Therefore, the substance constituting the present invention specified or defined by these expressions may contain impurities not explicitly shown in each component or composition formula without departing from the spirit of the present invention.
  • a main component means the component which occupies 50 weight% or more of content rate. Since the characteristics of reverse perovskite manganese nitride are largely determined by the main component, it is appropriate to determine the characteristics of reverse perovskite manganese nitride based on the composition of the main component of reverse perovskite manganese nitride. .
  • the thermal expansion inhibitor mainly composed of the inverse perovskite-type manganese nitride of the composition formula (1) is the inverse perovskite-type manganese nitride of the composition formula (1) and the inverse perovskite-type manganese nitride. It may be a mixture with subcomponents of mass that does not exceed the amount.
  • the inverse perovskite-type manganese nitride having the specific composition clearly specified by the composition formula or the chemical formula may be expressed without explicitly describing the “main component”. This is merely for clarity or simplicity of description. Even so, the expression for the thermal expansion inhibitor does not exclude the addition of subcomponents to the thermal expansion inhibitor.
  • the reverse perovskite manganese nitride having such a composition can be combined with a single metal or an alloy.
  • a thermal expansion inhibitor containing Zn that may be sublimated and precipitated at the time of compounding is employed, in this embodiment, it is possible to perform compounding under a wide range of conditions.
  • a thermal expansion inhibitor containing Zn that may be sublimated and precipitated at the time of compounding
  • a metal composite material in which the reverse perovskite-type manganese nitride is a Mn—Zn—Sn—N-based reverse perovskite-type manganese nitride is one of the suitable materials in this embodiment.
  • a thermal expansion inhibitor for example Mn-, which has been limited in terms of complexization because it contains components that are easily sublimated and precipitated despite being superior in both function and material cost. Complexization using a Zn—Sn—N thermal expansion inhibitor is also facilitated.
  • Mn—Zn—Sn—N-based reverse perovskite-type manganese nitride was successfully manufactured as a metal composite material using a thermal expansion inhibitor.
  • Mn—Cu—Sn—N-based reverse perovskite-type manganese nitride This means that a manganese nitride thermal expansion inhibitor having higher functionality may be put into practical use. That is, the Mn—Zn—Sn—N-based manganese nitride thermal expansion inhibitor exhibits a larger negative thermal expansion than the Mn—Cu—Sn—N-based manganese nitride thermal expansion inhibitor.
  • the thermal expansion inhibitor of the Mn—Zn—Sn—N-based reverse perovskite manganese nitride is employed, there is an advantage that the degree of freedom of thermal expansion control using the thermal expansion inhibitor is increased.
  • controlled thermal expansion can be realized in a wider range of linear expansion, and thermal expansion can be suppressed by suppressing thermal expansion to a target value by adding a smaller amount of thermal expansion inhibitor.
  • the influence of the agent on the properties of the metal phase other than the suppression of thermal expansion can be reduced.
  • the metal composite material which shows a larger negative thermal expansion can be provided.
  • Mn—Zn—Sn—N-based reverse perovskite manganese nitride or the like clearly indicates an embodiment in which nitrogen is replaced by a light element, for example, Mn 3 + y M 1 1-xy M 2 x N 1-z X z (X is a light element, x, y, z is 0 or more and less than 1)
  • a light element is an element group which consists of B (boron), C (carbon), H (hydrogen), and O (oxygen). A part of Mn may be replaced with another element.
  • the above-described circumstances regarding the metal composite material employing the Mn—Zn—Sn—N-based thermal expansion inhibitor are the same as those of the Mn—Zn—Ge—N-based reverse perovskite-type manganese nitride in which the metal element M 2 is Ge. The same applies to the metal composite material used.
  • Mn—Cu—Sn—N and Mn—Cu—Ge—N thermal expansion inhibitors Mn—Ga—Sn—N and Mn—Ga— disclosed in, for example, Patent Document 4 are used.
  • This embodiment described above also suppresses chemical changes, for example, to other material-based thermal expansion inhibitors such as Ge—N, and the composition ratio of elements contained in the thermal expansion inhibitor is set to a desired value. This is advantageous in that it can be controlled with high accuracy.
  • the sintering step in the method for producing the metal composite material of the present embodiment is a step of sintering by passing an electric current through the mixed powder arranged in the sealed space.
  • the sintering process using this electric current is particularly advantageous as a technique for producing a metal composite material that employs each of the thermal expansion inhibitors described above.
  • This method is a method called an electric current sintering method or a method similar thereto in the field of powder metallurgy and the like.
  • an electric current sintering method can be used among various powder metallurgical methods disclosed in Non-Patent Document 8 and the like. The advantage of adopting this electric current sintering method is remarkable in the following points.
  • the powder is not exposed to the outside air while being heated.
  • an electric current sintering method even when a single metal or alloy that can be used in the high pressure infiltration method is adopted, the heat of the thermal expansion inhibitor combined with the single metal or alloy is reduced. The influence can be reduced. This is because the temperature rise due to energization can be performed within the minimum necessary range for the combination.
  • cooling can be performed in a short time after completion of the composite.
  • the electric current sintering method is not only an option for compounding many types of metals and alloys, but also has the advantage of compounding at low temperature and in a short time. As a result, the metal phase and manganese nitride It becomes possible to control the chemical reaction of the thermal expansion inhibitor with high accuracy.
  • FIG. 3 is an explanatory diagram for explaining a configuration of a metal composite material having an inclined mixing ratio.
  • FIG. 3A is an example of a cylindrical shape, and the mixing ratio is the mixing ratio of the top part of the figure where the thermal expansion is small from the mixing ratio of the bottom part of the figure where the thermal expansion is large. The structure is changing continuously. The change of the mixing ratio here is schematically shown by the density of halftone dots in the figure.
  • FIG. 3B shows, by way of example, a change in the mixing ratio of a configuration in which the mixing ratio is changed stepwise as an example. What is shown is the mixing ratio of the upper stage where the thermal expansion is large, the mixing ratio of the lower stage where the thermal expansion is small, and the intermediate thermal expansion between these upper and lower stages. This is an example of a three-stage change of the mixing ratio.
  • the continuous or stepwise changes in the mixing ratios shown here are just non-limiting examples for explanation. According to this modification, it is possible to provide a material in which the degree of thermal expansion changes depending on the position in a continuous and integral material.
  • the practical advantage of this is that it is possible to provide a cushioning material or the like that relieves changes in thermal expansion between materials having significantly different thermal expansion, such as silicon and copper.
  • a combination of powders of plural kinds of single metal or alloy having different elastic moduli may be changed depending on the position, and composite using mixed powder mixed with thermal expansion inhibitor powder may be performed.
  • thermal expansion can be achieved by mixing and sintering other materials, such as materials with excellent thermal conductivity, materials with excellent mechanical strength, and materials with high elastic modulus. At the same time, it is possible to produce a material with controlled properties.
  • the ability to produce a metal composite material at an inclined mixing ratio as in this modified example is that the mixed powder is heated in a sealed state in addition to the advantages of producing the composite material itself at an inclined mixing ratio. It is also a good example showing the advantage that precise thermal expansion control is possible by the sintering method.
  • the main elements contained in the manganese nitride thermal expansion inhibitor other than manganese and nitrogen are the first group (elements included in the group set are collectively referred to as “M 1 ”), and the second group. (“M 2 ”).
  • the first group (M 1 ) is an element group that contains Zn, Cu, Ga, and the like, and that causes large negative thermal expansion to the manganese nitride thermal expansion inhibitor.
  • the second group (M 2 ) is an element group that includes Sn, Ge, and the like and expands the operating temperature of the manganese nitride thermal expansion inhibitor.
  • the operating temperature is a temperature range where the negative thermal expansion action of the thermal expansion inhibitor is exhibited.
  • composition formula shows the manganese nitride thermal expansion inhibitor employed in the present embodiment as a composition example using these first group (M 1 ) and second group (M 2 ). It is a reverse perovskite type manganese nitride represented by (1).
  • M 1 is a group consisting of Cu, Zn, and Ga. at least one element selected from at least one element selected the M 2 from the group consisting of Ge, or Sn, and the M 3, Mg, Al, Si , Ti, V, Cr, Fe, Co, Ni, As at least one element selected from the group consisting of Zr, Nb, Mo, Ru, Rh, Pd, Ag, In, Hf, Ta, W, Re, Ir, Pt, Au, Bi, and rare earth elements, Composition formula (2): Mn 3 M 1 1-x M 2 x N (x is 0 or more and less than 1), Composition formula (3): Mn 3 + y M 1 1-xy M 2 x N (x, y is more than 0 and less than 1), Composition formula (4): (Mn 1- ⁇ M 3 ⁇ ) 3 M 1 1-x M 2 x N (x is more than
  • the composition formula (2) is a composition formula shown by using the first group (M 1 ) and the second group (M 2 ) as the manganese nitride thermal expansion inhibitor employed in the present embodiment.
  • composition formula (3) are those formula (2) M 1 manganese Mn becomes excessive when viewed from decreased, the composition formula (4), a part of manganese Mn is deficient viewed from formula (2) it is obtained by replacing the Mn by the element M 3.
  • the composition formula (5) is obtained by replacing a part of nitrogen N in the composition formula (2) with light elements such as hydrogen H, boron B, carbon C, and oxygen O.
  • composition formulas (2) to (5) are expressed by a more general expression, they are expressed by the above-described composition formula (1).
  • x, y, z and ⁇ in the composition formulas (1) to (5) are within a range where the negative thermal expansion action exhibited by the manganese nitride thermal expansion inhibitor is exhibited, for example, the temperature of the negative thermal expansion action. In order to expand the range or shift the temperature range, it is selected according to the use of the metal composite material. In the present application, values for determining composition ratios such as x, y, z, and ⁇ in different composition formulas are determined for each composition formula.
  • thermal expansion inhibitor of this embodiment is a thermal expansion inhibitor of a Mn—Zn—Sn—N reverse perovskite manganese nitride.
  • This thermal expansion inhibitor contains Zn as the first group (M 1 ) and Sn as the second group (M 2 ).
  • the effects of the first group of large negative thermal expansion in the manganese nitride thermal expansion inhibitor are Ga, Zn, and Cu in order from the most prominent. In other words, the effect of causing large negative thermal expansion of the elements of the first group is most excellent when Ga is contained, and then becomes weaker in the order of Zn and Cu.
  • Zn-based reverse perovskite-type manganese nitride
  • a metal composite material employing Zn-based reverse perovskite-type manganese nitride can be produced. Therefore, it can be said that the practicality of the metal composite material containing a manganese nitride thermal expansion inhibitor is greatly improved.
  • Ge is superior to Sn in the effect of providing a wide operating temperature by the second group of elements, but Sn is advantageous in terms of material cost.
  • thermal expansion inhibitor in this embodiment including the above examples is specifically shown by a combination of element names as constituent elements, Mn—Zn—Sn—N, Mn—Zn—Ge—N, Mn -Cu-Sn-N-based, Mn-Cu-Ge-N-based, Mn-Ga-Sn-N-based, and Mn-Ga-Ge-N-based reverse perovskite manganese nitrides.
  • element names as constituent elements, Mn—Zn—Sn—N, Mn—Zn—Ge—N, Mn -Cu-Sn-N-based, Mn-Cu-Ge-N-based, Mn-Ga-Sn-N-based, and Mn-Ga-Ge-N-based reverse perovskite manganese nitrides.
  • the material of the metal phase employed in the powder of the single metal or alloy of this embodiment is selected from aluminum, magnesium, copper, brass, iron, and titanium.
  • the metal phase in the composite material of the present embodiment is a simple substance of each of these metals or an alloy based on these metals.
  • the metal phase does not necessarily need to be a matrix metal phase in the produced composite material.
  • the metal phase in the present embodiment may be a continuous metal phase that is a base by including pores or other component particles in the sintered material, and is not such a continuous phase. Not necessary.
  • the material of the metal phase includes a single metal or an alloy that has been difficult to infiltrate in the high pressure infiltration method.
  • those having a melting point exceeding 1000 ° C. such as copper and brass, and those having a melting point exceeding 1500 ° C. such as iron and titanium are also included. Even when such a material is used for the metal phase, there is no hindrance to compositing in the present embodiment. Furthermore, in order to realize a combination of metal elements that do not form an alloy even when melted or an alloy having a composition in the metal phase, a combination of metal elements or amounts of a plurality of single metals or alloys that do not form an alloy with each other. It is also possible to prepare a powder for use as a powder for the metal phase.
  • the thermal expansion of the solid material including the metal composite material of the present embodiment is displayed by an index called linear thermal expansion ⁇ L / L.
  • the linear thermal expansion ⁇ L / L is expressed by the following formula, where T is the temperature of the metal composite material, L (T) is the sample length at the temperature T, and T 0 is the reference temperature.
  • ⁇ L / L [L (T) ⁇ L (T 0 )] / L (T 0 )
  • Formula (1) Defined by The linear thermal expansion ⁇ L / L is a dimensionless quantity representing how much the length changes at the temperature T with respect to the length of the sample at the reference temperature T 0 .
  • the thermal expansion may be displayed by a linear expansion coefficient ⁇ that is the slope (temperature differentiation) of the linear thermal expansion ⁇ L / L.
  • the linear expansion coefficient ⁇ is usually expressed in units of ppm / ° C.
  • a normal solid material expands as the temperature increases and the length increases, so the linear thermal expansion ⁇ L / L rises to the right and the value of the linear expansion coefficient ⁇ is positive.
  • a material that exhibits negative thermal expansion means a material that shrinks with temperature. For this reason, the linear thermal expansion ⁇ L / L in a material exhibiting negative thermal expansion falls to the right, and the linear expansion coefficient ⁇ has a negative value.
  • the means for producing the thermal expansion inhibitor powder employed as the present embodiment is not particularly limited.
  • a two-stage solid phase reaction method is employed.
  • the first step includes Mn 3 M 1 N powder, Mn 3 M 2 N powder, Mn 4 N powder, and Mn 3 MX (X is a light element) powder (hereinafter, generic name).
  • the 2nd process manufactures the powder of the thermal expansion inhibitor of the target composition by combining the intermediate powder manufactured by the 1st process so that it may become each target ratio, and making it a solid-phase reaction method. It is a stage.
  • the first step will be described for each material of the intermediate powder, and the second step will be described for each thermal expansion inhibitor.
  • the material enclosed in the quartz tube is heated and fired together with the quartz tube, for example, at 500 ° C. to 770 ° C. for 60 hours to 70 hours.
  • a mass material (bulk material) of Mn 3 M 1 N is produced.
  • the bulk material is taken out from the inside of the quartz tube and pulverized to produce Mn 3 M 1 N powder.
  • Mn 3 M 2 N powder is also produced by similar firing and grinding.
  • Mn 4 N powder is produced by using metal Mn (powder) as a raw material and heating it at 450 ° C. for 60 to 120 hours with nitrogen gas.
  • Mn 3 MX (M is M 1 or M 2 described above, X is boron B or carbon C), Mn, M, and X powders are weighed, and in order, 3: 1: (1 to 1.05 ) Are mixed at a ratio giving a molar ratio of) and stirred sufficiently, and then sealed in a quartz tube and heated.
  • the degree of vacuum in the quartz tube is about 10 ⁇ 3 torr (about 0.13 Pa), and the heat treatment is performed at 550 ° C. to 850 ° C. for 80 to 120 hours.
  • Mn 3 MX is prepared as a powder by trituration of the bulk material of Mn 3 MX manufactured.
  • the molar ratio of X (boron B or carbon C) is 1 to 1.05 instead of 1, because the ratio of X is to compensate for X atoms that may be lost during the firing process. It shows that it is adjusted.
  • the bulk material is pulverized into powder.
  • Mn 3 Zn 1-x Sn x N 1-y B y Mn 3 ZnN, Mn 3 SnN, Mn 3 ZnB powder (1-x- y): Mix in a ratio that gives a molar ratio of x: y.
  • Mn 3 Zn 1-x Sn x N 1-y C y Mn 3 ZnN, Mn 3 SnN, Mn 3 SnC powder is converted into a molar ratio of (1-x) :( xy): y. Mix in the ratio that gives.
  • the manganese nitride thermal expansion inhibitor powder produced by the second step (5-1-2-1 or 5-1-2-2) is replaced with hydrogen or N is replaced by H or O by heat treatment in an oxygen atmosphere.
  • substitution with H heat treatment is performed for 30 minutes to 3 hours under conditions of 150 to 350 ° C. and hydrogen pressure of 1 to 6 atmospheres.
  • substitution with O heat treatment is performed for 2 hours to 10 hours under conditions of 250 ° C. to 450 ° C. and oxygen partial pressure of 0.2 atm to 1 atm.
  • the raw materials are Mn 2 N, simple substance M 1 , simple substance M 2 , and simple substance M or M nitride (all powders), and each has a molar ratio of 3 (1- ⁇ ) / 2: (1-x): x: 3 ⁇
  • a part of N can be replaced with H or O by the method described in 5-1-2-3.
  • FIG. 4 is a flowchart showing a process of forming a metal composite material.
  • the powdered manganese nitride thermal expansion inhibitor produced by the above procedure is mixed at a predetermined ratio with the powder of the single metal or alloy that becomes the metal phase and stirred to prepare a mixed powder (S102).
  • the mixed powder is accommodated in a sintered mold made of graphite, for example, and placed in a vacuum atmosphere space inside a vacuum chamber or the like, for example, so that the mixed powder is sealed (S104).
  • the mixed powder is heated and sintered (S110).
  • a pressure of 10 MPa to 60 MPa is applied at a temperature of 300 ° C. to 650 ° C. (S112).
  • a sintering mold a donut-shaped die having a cylindrical housing portion with an inner diameter of 10 mm to 20 mm in the center, and a cylindrical shape inserted along the cylindrical shaft of the die from the outside into the cylindrical housing portion.
  • a pulse current of about 250 A to 750 A is applied for 20 milliseconds to 60 milliseconds when energized, and 4 milliseconds to 10 milliseconds during rest.
  • the composite of the metal composite material proceeds inside the sintered mold.
  • the current application conditions are determined in advance according to the material used, the composition of the thermal expansion inhibitor and the metal phase in the metal composite material to be produced, the mixing ratio thereof, the size of the sintered mold, and the like. In this way, for example, a condition suitable for changing the melting point and the electric resistivity depending on the material of the metal phase and changing the current density depending on the size of the sintered mold is found.
  • a so-called electric plasma sintering method called a discharge plasma sintering method is realized.
  • the sintering process proceeds sufficiently when the temperature in the sintering process is as low as 300 ° C. to 650 ° C. and the energization time is 5 minutes to 15 minutes. Also, the temperature raising and lowering process can be performed in a very short time of about 10 to 30 minutes.
  • the thermal expansion inhibitor is hardly altered.
  • the composition of the thermal expansion inhibitor, the composition of the metal phase in order to form the matrix metal phase in the high pressure infiltration method, it is higher than the melting point of the metal, so that infiltration proceeds, and cooling also takes time, the composition of the thermal expansion inhibitor, the composition of the metal phase, This is very different from the fact that these ratios are limited and sufficient accuracy cannot be obtained.
  • the sintering method for producing the metal composite material of this embodiment is not necessarily limited to electric current sintering.
  • this cold forming low temperature sintering method a mixed powder prepared by mixing a powder of a thermal expansion inhibitor and a metal powder as a metal phase is taken out by cold pressing with a pressing die, and the mixture is transferred to a quartz officer. This is a technique of firing in a vacuum sealed state.
  • a molded body by uniaxial compression of about 10 MPa to 30 MPa with a pressing die, and the degree of vacuum is about 10 ⁇ 3 torr in a quartz tube at 250 ° C. to 300 ° C. for 2 hours to 12 hours. It is possible to form a composite so as to be a metal composite material under firing conditions (about 0.13 Pa).
  • composition formulas (2), (3) and (5) in the second step, a part of the powder is cold-pressed to produce a rectangular sample piece, which is enclosed in a quartz tube together with the powder, Obtained by heating.
  • composition formula (4) when the quartz tube is sealed for the second time, a part of the powder is cold-pressed to produce a rectangular sample piece, which is sealed together with the powder and heated. was obtained.
  • composition of the metal phase and the composition of the thermal expansion inhibitor employed in each example are summarized in Tables 3 and 4.
  • Mn 2 N (powder) and Zn (powder) were produced by firing at 500 ° C. for 60 hours in a sealed state with a quartz tube.
  • the powder of Mn 3 SnN was produced by firing Mn 2 N (powder) and Sn (powder) at 760 ° C. for 60 hours in a sealed state with a quartz tube.
  • the powder and Mn 3 SnN powder Mn 3 ZnN to produce a powder of Mn 3 Zn 0.45 Sn 0.55 N by a second step described in (5-1-2-1).
  • M 1 is Cu
  • M 2 is Sn
  • x is 0.5
  • the first step and the second step were carried out to produce a thermal expansion inhibitor having a composition ratio of Mn 3 Cu 0.5 Sn 0.5 N.
  • an intermediate powder of Mn 3 CuN and Mn 3 SnN for a thermal expansion inhibitor having a composition ratio of Mn 3 Cu 0.5 Sn 0.5 N was described in (5-1-1-1).
  • Mn 2 N (powder) and Cu (powder) were produced by firing at 760 ° C. for 60 hours in a sealed state with a quartz tube.
  • the powder of Mn 3 SnN is as described above.
  • the powder and Mn 3 SnN powder Mn 3 CuN was produced a powder of Mn 3 Cu 0.5 Sn 0.5 N by the second step described in (5-1-2-1).
  • Example 9 M 1 is Ga, M 2 is Ge, and x is 0.27, and Mn 3 M 1 1-x M 2 x N (x is greater than 0 and less than 1) described above. Therefore, the first step and the second step were carried out to produce a thermal expansion inhibitor having a composition ratio of Mn 3 Ga 0.73 Ge 0.27 N.
  • the first step described in (5-1-1-1) is an intermediate powder of Mn 3 GeN for a thermal expansion inhibitor having a composition ratio of Mn 3 Ga 0.73 Ge 0.27 N. It was produced by. At this time, Mn 2 N (powder) and Ge (powder) were produced by firing at 760 ° C. for 60 hours in a sealed state with a quartz tube.
  • the Mn 3 GaN powder was produced by mixing the powder raw materials of Mn 2 N and GaN, heating the mixture at 1 atm and nitrogen pressure of 760 ° C. for 60 hours, and pulverizing it instead of the first step described above. .
  • the Mn 3 GaN powder and Mn 3 GeN powder to produce a powder of Mn 3 Ga 0.73 Ge 0.27 N by a second step described in (5-1-2-1).
  • Example 17 for Mn 3 M 1 1-x M 2 x N (x is greater than 0 and less than 1), where M 1 is Cu, M 2 is Ge and x is 0.45 the first step and the second step was performed to produce a Mn 3 Cu 0.55 Ge 0.45 N composition ratio of the thermal expansion inhibitor.
  • An intermediate powder of Mn 3 GeN and Mn 3 CuN was prepared as described above, and from these intermediate powders, Mn 3 Cu 0.55 Ge 0.005 was obtained by the second step described in (5-1-2-1) . A 45 N powder was produced.
  • Examples 11 to 14 For Examples 11 and 12, M 1 is Zn, M 2 is Sn, x is 0.25, and y is 0.15, Mn 3 + y M 1 1-xy M 2 x N (x , Y is more than 0 and less than 1), the first step and the second step were carried out to produce a thermal expansion inhibitor having a composition ratio of Mn 3.15 Zn 0.6 Sn 0.25 N. Specifically, to produce a powder of Mn 3 ZnN of powder and Mn 3 SnN as described above in (6-1-1). In addition, Mn 4 N powder was produced by the first step described in (5-1-1-2). From these intermediate powders, a powder of Mn 3.15 Zn 0.6 Sn 0.25 N was produced by the second step described in (5-1-2-2).
  • Example 13 a powder of Mn 3.1 Zn 0.5 Sn 0.4 N was manufactured by setting x to 0.4 and y to 0.1 in the above process. Further, for Example 14, a powder of Mn 3.5 Zn 0.25 Sn 0.25 N was produced by setting x to 0.25 and y to 0.0.25 in the above process.
  • Mn 3 ZnB powder was produced from Mn (powder), Zn (powder), and B (powder) as described above in (5-1-1-3) by heat treatment at 800 ° C. for 80 hours.
  • the ratios of Mn, Zn, and B were mixed in this order to a ratio that gave a molar ratio of 3: 1: 1.05.
  • a thermal expansion inhibitor having a composition ratio of 25 N 0.95 B 0.05 was produced.
  • a mixed powder prepared by mixing the thermal expansion inhibitor powder for each of the above-described examples and the single metal or alloy powder for each of the examples was prepared to prepare a metal composite material of each composition.
  • the powder of the single metal or alloy is aluminum (Examples 1, 2, 9, 10, 12, 14, 15, and 17 to 19), brass (Examples 3 and 16, and brass here is C2700 (Cu 65 wt%). Zn (35 wt%)), iron (Example 6), titanium (Example 7), copper (Examples 4, 5, 8 and 11), and magnesium (Example 13).
  • the mixing ratio was determined as the target ratio based on the volume fraction of the thermal expansion inhibitor powder and the powder of the single metal or alloy.
  • Example 15 it is 50 vol% to 50 vol% (Examples 1, 3 to 7, 11, 13, 14, 16, 17), 40 vol% vs. 60 vol% (Examples 2, 8, 10, 18, 19), 30 vol% vs. 70 vol% (Example 9), 60 vol% vs. 40 vol% (Example 12), 70 vol% vs. 30 vol% (Example 15) .
  • These volume fractions were calculated from the weights of the thermal expansion inhibitor before sintering and the metal powder using the specific gravity.
  • the specific gravity of the thermal expansion inhibitor is a theoretical value of 7.2 calculated from an equation of a lattice constant and a chemical composition (for example, Mn 3.15 Zn 0.6 Sn 0.25 N) obtained from the results of powder X-ray diffraction.
  • a chemical composition for example, Mn 3.15 Zn 0.6 Sn 0.25 N
  • Literature values (“Science Chronology”, National Astronomical Observatory, Maruzen, 1999 edition) were used as the atomic weight necessary for calculating the theoretical values.
  • JIS standard values were used for the specific gravity of the metal.
  • Examples 1 to 16, 18 and 19 were sintered using the discharge plasma sintering method. Specifically, a metal composite material of each composition was prepared using a discharge plasma sintering apparatus (Syntex lab., SPS Syntex Corporation (Japan)). In all of Examples 1 to 12, the operating conditions were as follows: a vacuum die and a pressure of 40 MPa, a graphite die having a cylindrical housing portion with an inner diameter of 15 mm as a mold, energized for 40 milliseconds, and rested for 7 mm. It was compounded by flowing a pulse current under the condition of seconds. The current was controlled so that the temperature of the thermocouple thermometer in which the temperature sensitive part was in contact with the outer surface of the graphite die was the target composite temperature.
  • a discharge plasma sintering apparatus Syntex lab., SPS Syntex Corporation (Japan)
  • the operating conditions were as follows: a vacuum die and a pressure of 40 MPa, a graphite die having a cylindrical housing portion with an inner diameter
  • Example 2 The conditions for each example were as shown in Table 2 above.
  • the compounding temperature was 350 ° C. and the holding time was 7 minutes.
  • the maximum current value was 490A.
  • Example 2 to 16, 18 and 19 the compounding temperature and holding time were set as clearly shown in Table 2, and the maximum current value at that time was obtained.
  • the composite temperature for controlling the current is determined according to the composition of the metal phase.
  • the compounding temperature was 350 ° C.
  • the compounding temperature of Examples 3 and 16 employing brass (melting point 1100 ° C.) was 600 ° C.
  • the compounding temperature of Examples 4, 5, 8, and 11 employing Cu (melting point: 1083 ° C.) was set to 550 ° C.
  • the compounding temperature of Example 6 employing Fe (melting point: 1539 ° C.) was 550 ° C.
  • the compounding temperature of Example 7 employing Ti was set to 650 ° C.
  • Example 13 employing Mg (melting point: 651 ° C.) was set to 350 ° C.
  • the composite temperatures in Examples 1 to 16, 18, and 19 using the electric current sintering were obtained by setting the temperature of the graphite die to be lower by at least 300 ° C. than the melting point of the metal material to be the metal phase. The treatment was performed.
  • Example 17 a metal composite material was produced by a cold forming low temperature sintering method. Specifically, it was taken out by cold pressing with a pressing mold by axial pressing at a pressure of 20 MPa, and baked at 250 ° C. for 12 hours in a state where it was vacuum-sealed in a quartz chamber.
  • each raw material powder was powders having a purity of 99.9% or more and a particle size of 1 ⁇ m to 200 ⁇ m.
  • the particle diameter of each intermediate powder produced by the first step was 1 to 200 ⁇ m.
  • the weighing, mixing, and stirring of each raw material powder were all performed in a nitrogen gas atmosphere.
  • the nitrogen gas used was freed of moisture and oxygen by a filter (DC-A4 and GC-RX, Nikka Seiko Co., Ltd. (Japan)).
  • the linear thermal expansion ⁇ L / L of the fabricated metal composite material of each example can be measured by the following two measurement techniques. Note that the proper use of these measurement methods is selected according to the sample shape.
  • LIX-2 for example, LIX-2, ULVAC-RIKO Co., Ltd. (Japan)
  • the measurement of the linear thermal expansion can be performed in the range from liquid nitrogen temperature to 220 degreeC, for example.
  • a plate-like sample is used as a target by using a strain gauge (for example, KFL-02-120-C1-11, Kyowa Denki Co., Ltd. (Japan)).
  • the strain gauge is integrally bonded to a sintered body sample ("plate sample") shaped into a plate shape of 4 mm x 4 mm x 1 mm with an adhesive (PC-6, Kyowa Denki Co., Ltd. (Japan)). It becomes.
  • the integrated sample is a measurement sample piece.
  • an adhesive is applied to a plate-like sample, and a strain gauge is disposed.
  • the object in that state is sandwiched between double clips for documents (for example, J-35, KOKUYO Co., Ltd. (Japan)), and a compressive load in the thickness direction is applied.
  • the strain gauge is fixed to the plate-like sample by heating in this state and placing the adhesive in a controlled atmosphere for a predetermined time to cure the adhesive.
  • the curing process is carried out under an atmosphere of nitrogen gas at 1 atm, maintained at 80 ° C. for 1 hour, 130 ° C. for 2 hours, and 150 ° C. for 2 hours.
  • the adhesive is cured by maintaining at 150 ° C. for 2 hours under an atmosphere of atmospheric pressure.
  • the resistance value R of the strain gauge of the measurement sample piece is measured by, for example, a physical property evaluation system (PPMS6000, Quantum Design Inc. (USA)).
  • a correction value unique to the measurement system including the strain gauge is calculated in advance by reference measurement using a reference sample (oxygen-free copper plate having a purity of 99.99%).
  • the strain gauge resistance strain value ⁇ R / R is measured by a physical characteristic evaluation system by targeting a reference sample to which a strain gauge of the same kind is fixed under the same conditions as those of the sample piece for measurement. .
  • the values of the linear expansion coefficients for Cu (G. K. White and J. G. Collins, J. Low Temp. Phys. 7, 43 (1972), and G. K. White, J. Phys. D: Appl. Phys. 6, 2070 (1973)), the correction value to be subtracted from the measured value of the resistance strain value of the same strain gauge is determined.
  • the resistance strain value obtained from the strain gauge of the measurement sample piece is measured while maintaining the operating condition of the measurement system in the same manner as that of the reference measurement, and the correction value is subtracted.
  • the linear thermal expansion ⁇ L / L for the measurement sample piece of each metal composite material is calculated.
  • FIG. 23 shows an example of the result as an X-ray diffraction experiment result.
  • a diffraction pattern of the metal composite material of Example 1 was obtained by Cu K ⁇ 1 emission line.
  • the peak positions of the diffraction patterns independently represented by the metal phase (Al) and the thermal expansion inhibitor (Mn 3 Zn 0.45 Sn 0.55 N) constituting the metal composite material of Example 1 are represented by symbols. It is specified in. As shown in FIG.
  • the diffraction peak of the metal composite material of Example 1 is either that of Al in the metal phase or that of Mn 3 Zn 0.45 Sn 0.55 N as the thermal expansion inhibitor. It was confirmed that it was only a thing. Thus, in the metal composite material of Example 1 compounded by the discharge plasma sintering method, it was confirmed that the thermal expansion inhibitor was compounded with aluminum without alteration. The inventor of the present application considers that this result is due to the technical advantage of the discharge plasma sintering method, that is, the composite is completed by heating at a temperature lower than the melting point and in a short time.
  • Thermal expansion inhibitor Mn 3.15 Zn 0.6 Sn 0.25 N is a thermal expansion inhibitor employed in Examples 11 and 12 of this embodiment, and Examples 11 to 11 shown in 6-1-2. 14 was produced as a powder.
  • the thermal expansion inhibitor Mn 3.15 Zn 0.6 Sn 0.25 N powder was heat-treated in an open system, it was confirmed that its thermal expansion characteristics changed significantly.
  • the thermal expansion inhibitor Mn 3.15 Zn 0.6 Sn 0.25 N powder was subjected to thermal expansion inhibitor Mn 3.15 Zn 0 according to the procedure shown in 5-4. A sintered body of .6 Sn 0.25 N was obtained.
  • the thermal expansion inhibitor Mn 3.15 Zn 0.6 Sn 0.25 N was obtained by the heat treatment in the open system. It was confirmed that at least 10% of Zn contained in the sintered body was sublimated and precipitated.
  • the thermal expansion was suppressed at least in a certain temperature range in the metal composite materials in all Examples.
  • the metal composite materials in all the examples were stably compounded, and were manufactured with reproducibility to such an extent that they could be used as materials for machine parts and the like.
  • Mn 3 Zn 0.45 Sn 0.55 N which is a thermal expansion inhibitor
  • Mn 3 Zn 0.45 Sn 0.55 N is converted into various metals, that is, a metal phase that is Al, brass, Cu, or Ti. It was confirmed that the present embodiment is useful for forming a metal composite material by forming a composite material. That is, it was confirmed that various kinds of single metals or alloys are actually targets for compounding with a thermal expansion inhibitor by electric current sintering.
  • Mn 3 Zn 0.45 Sn 0.55 N which is a thermal expansion inhibitor, is a material exhibiting negative thermal expansion having a linear expansion coefficient of ⁇ 50 ppm / ° C.
  • Mn 3 Zn 0.75 Sn 0.25 N 0.95 B 0.05 which is a thermal expansion inhibitor is compounded with various metals, that is, a metal phase which is Al or Cu.
  • a metal phase which is Al or Cu a metal phase which is Al or Cu.
  • the thermal expansion inhibitor Mn 3 Zn 0.75 Sn 0.25 N 0.95 B 0.05 exhibits negative thermal expansion with a linear expansion coefficient of ⁇ 29 ppm / ° C. at least in the range of 25 ° C. to 45 ° C. (Table 4).
  • the linear expansion coefficient of each composite metal composite material was controlled in the range of ⁇ 16 ppm / ° C. to +1 ppm / ° C.
  • Mn 3 Cu 0.5 Sn 0.5 N which is a thermal expansion inhibitor
  • various metals that is, a metal phase that is Cu or Al to form a metal composite material.
  • Mn 3 Cu 0.5 Sn 0.5 N which is a thermal expansion inhibitor
  • Mn 3 Cu 0.5 Sn 0.5 N which is a thermal expansion inhibitor
  • the linear expansion coefficient of each composite metal composite material was controlled in the range of ⁇ 8 ppm / ° C. to +3 ppm / ° C.
  • Example 8 or 10 proved that a remarkable thermal expansion suppressing effect was obtained and the linear expansion coefficient could be controlled in a wide range.
  • Mn 3 Ga 0.73 Ge 0.27 N which is a thermal expansion inhibitor
  • various metals that is, a metal phase that is Al to form a metal composite material. It was confirmed that the form was useful.
  • Mn 3 Ga 0.73 Ge 0.27 N which is a thermal expansion inhibitor, is a material that exhibits negative thermal expansion with a linear expansion coefficient of ⁇ 35 ppm / ° C. in a range of at least 130 ° C. to 160 ° C. (Table 4). ).
  • the linear expansion coefficient of the composite metal composite material was controlled within about 5 ppm / ° C. almost corresponding to the temperature range showing the negative thermal expansion (Table 2).
  • the linear expansion coefficient of Al at this temperature is about 23 ppm / ° C. (Table 3). Therefore, it was demonstrated by Example 9 that a remarkable thermal expansion suppressing effect can be obtained.
  • Mn 3.15 Zn 0.6 Sn 0.25 N which is a thermal expansion inhibitor
  • various metals that is, a metal phase of Cu or Al to form a metal composite material. It has been confirmed that the present embodiment is useful for this.
  • Mn 3.15 Zn 0.6 Sn 0.25 N which is a thermal expansion inhibitor, is a material exhibiting negative thermal expansion with a linear expansion coefficient of -21 ppm / ° C. in the range of at least 10 ° C. to 50 ° C. ( Table 4).
  • the linear expansion coefficient of the composite metal composite material was controlled in the range of 4 ppm / ° C. to 7 ppm / ° C. almost corresponding to the temperature range showing the negative thermal expansion (Table 2).
  • Mn 3.1 Zn 0.5 Sn 0.4 N that is a thermal expansion inhibitor is compounded with various metals, that is, a metal phase that is Mg, to form a metal composite material. It was confirmed that this embodiment is useful.
  • Mn 3.1 Zn 0.5 Sn 0.4 N which is a thermal expansion inhibitor, is a material exhibiting negative thermal expansion with a linear expansion coefficient of ⁇ 23 ppm / ° C. in the range of at least 50 ° C. to 75 ° C. ( Table 4).
  • the linear expansion coefficient of the composite metal composite material was controlled to approximately 1 ppm / ° C. almost corresponding to the temperature range showing the negative thermal expansion (Table 2).
  • the linear expansion coefficient of Mg at this temperature is about 25 ppm / ° C. (Table 3). Therefore, it was demonstrated by Example 13 that a remarkable thermal expansion suppressing effect can be obtained.
  • Mn 3.5 Zn 0.25 Sn 0.25 N which is a thermal expansion inhibitor is compounded with various metals, that is, a metal phase which is Al to form a metal composite material. It was confirmed that this embodiment is useful.
  • Mn 3.5 Zn 0.25 Sn 0.25 N which is a thermal expansion inhibitor, is a material exhibiting low thermal expansion with a linear expansion coefficient within ⁇ 1 ppm / ° C. within a range of at least ⁇ 120 ° C. to 15 ° C. ( Table 4).
  • the linear expansion coefficient of the composite metal composite material was controlled to approximately 10 ppm / ° C. substantially corresponding to the temperature range showing the low thermal expansion (Table 2).
  • the linear expansion coefficient of Al at this temperature is about 23 ppm / ° C. (Table 3). Therefore, Example 14 proved that a remarkable thermal expansion suppressing effect was obtained in a wide temperature range of ⁇ 120 ° C. to 7 ° C.
  • the Example 15 the Mn 3 Zn 0.4 Sn 0.6 N 0.85 C 0.15 a thermal expansion inhibitor, various metals, metal composite material was complexed to the metal phase which is that is Al It was confirmed that this embodiment is useful for forming.
  • the thermal expansion inhibitor Mn 3 Zn 0.4 Sn 0.6 N 0.85 C 0.15 exhibits negative thermal expansion with a linear expansion coefficient of ⁇ 8 ppm / ° C. at least in the range of 45 ° C. to 100 ° C. (Table 4).
  • the linear expansion coefficient of the composite metal composite material was controlled to approximately 1 ppm / ° C. almost corresponding to the temperature range showing the negative thermal expansion (Table 2).
  • the linear expansion coefficient of Al at this temperature is about 23 ppm / ° C. (Table 3). Therefore, it was proved by Example 15 that a remarkable thermal expansion suppressing effect was obtained.
  • Mn 3 Zn 0.4 Sn 0.6 N 0.88 C 0.12 which is a thermal expansion inhibitor is compounded with various metals, that is, a metal phase which is brass to obtain a metal composite material. It was confirmed that this embodiment is useful for forming.
  • the thermal expansion inhibitor Mn 3 Zn 0.4 Sn 0.6 N 0.88 C 0.12 exhibits negative thermal expansion with a linear expansion coefficient of ⁇ 23 ppm / ° C. at least in the range of 20 ° C. to 60 ° C. (Table 4).
  • the linear expansion coefficient of the composite metal composite material was controlled to approximately 3 ppm / ° C. almost corresponding to the temperature range showing the negative thermal expansion (Table 2).
  • the linear expansion coefficient of Al at this temperature is about 23 ppm / ° C. (Table 3). Therefore, Example 16 proved that a remarkable thermal expansion suppressing effect was obtained.
  • Mn 3 Cu 0.55 Ge 0.45 N is a thermal expansion inhibitor, various metals, the metallic phase by complexation to forming a metal composite material that is, Al It was confirmed that this embodiment is useful.
  • Mn 3 Cu 0.55 Ge 0.45 N which is a thermal expansion inhibitor, is a material exhibiting negative thermal expansion with a linear expansion coefficient of ⁇ 15 ppm / ° C. in the range of at least ⁇ 15 ° C. to 50 ° C. (Table 4). And almost corresponding to the temperature range showing the negative thermal expansion, the linear thermal expansion of the composite metal composite material was suppressed to within 150 ppm (Table 2).
  • the material of the metal phase is Al (melting point: about 660 ° C.), brass (melting point: about 1100 ° C., depending on the composition) ), Cu (melting point: about 1083 ° C.), Fe (melting point: about 1539 ° C.), Ti (melting point: about 1727 ° C.), Mn 3 Zn 0.45 Sn 0, which is the same thermal expansion inhibitor even if the melting point is greatly changed It was confirmed that 0.55 N was compounded, and that the produced metal composite material achieved a thermal expansion suppressing action in a similar temperature range.
  • Mn 4-xy Zn x Sn y N 1-z B z (where 0.25 ⁇ x ⁇ 0.75, 0.25 ⁇ In the general formula expressed as y ⁇ 0.55, 0 ⁇ z ⁇ 0.05), a set of values (x, y, z) is (0.6, 0.25, 0), (0.5 , 0.4, 0) and (0.25, 0.25, 0) in a large amount of Mn, even if a metal phase of Al, Cu, Mg is selected, it is possible to make a composite. It has also been found that the embodiments are useful.
  • the thermal expansion inhibitor of Mn 4-xy Zn x Sn y N 1-z B z has a set of values (x, y, z) of 0.45 ⁇ Under all conditions satisfying x ⁇ 0.75, 0.25 ⁇ y ⁇ 0.55, and 0 ⁇ z ⁇ 0.05, it was possible to stably form composites with various metal phases.
  • the reproducibility of the thermal expansion control of the method of the present embodiment is that the thermal expansion characteristics of the metal composite material composited according to the present embodiment does not change significantly with respect to the change in the conditions of the electric current sintering. It is shown by being reproduced with high accuracy. This property is demonstrated by a comparison of Examples 2, 18 and 19.
  • a composite material composed of Mn 3 Zn 0.75 Sn 0.25 N 0.95 B 0.05 (40 vol%) as a thermal expansion inhibitor and Al (60 vol%) as a metal / alloy matrix is used.
  • the composite was prepared by changing only the holding time at the time of combination from 2 minutes (Example 18) to 60 minutes (Example 19).
  • Examples 18 and 19 employ the same metal composite material as in Example 2 and change only the holding time of the composite.
  • FIG. 22 shows the linear expansion measured in Examples 2, 18, and 19. As shown in FIG. 22, in Examples 2, 18 and 19, the thermal expansion characteristics are reproduced with high accuracy. Moreover, in any of Examples 2, 18 and 19, by adjusting the mixing ratio of the thermal expansion inhibitor and the metal, for example, a line in the temperature range of 25 ° C. to 45 ° C. with high accuracy of within ⁇ 1 ppm / ° C., for example. It is possible to control the expansion coefficient. Thus, it was demonstrated that the control of the linear expansion coefficient by the method of the present embodiment does not show great dependence on the conditions of current sintering such as holding time and has extremely excellent reproducibility. .
  • the present invention contributes to the manufacture of any machine or apparatus that uses various metal members whose thermal expansion is suppressed or controlled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Ceramic Products (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

【課題】 高い精度で熱膨張が制御可能な金属基複合材料を実現する。 【解決手段】 本発明のある態様においては、少なくともある温度範囲で負の熱膨張を示す逆ペロフスカイト型マンガン窒化物の粉末と、金属相となる組成の単体金属または金属合金の粉末とを混合した混合粉を密閉状態において加熱することにより、金属相と逆ペロフスカイト型マンガン窒化物とが焼結により複合化されている熱膨張制御金属複合材料が提供される。また、熱膨張制御金属複合材料の製造方法も提供される。

Description

熱膨張制御金属複合材料およびその製造方法
 本発明は熱膨張制御金属複合材料およびその製造方法に関する。さらに詳細には、本発明は、粉末の焼結を利用する熱膨張制御金属複合材料およびその製造方法に関する。
 高度に発達した現代の産業技術において、熱膨張を抑制したり特定の値に精密に適合させること、すなわち熱膨張を制御することについての切実な要求が顕在化してきている。例えば最も多用される金属の一つである鉄の線膨張係数αは約12ppm/℃であり、この値は長さ10cmの鉄の棒材が温度1℃あたり1.2μm伸縮することを意味している。たとえこの程度の値であっても、例えばnmスケールなどの寸法精度が求められる半導体デバイス向けの製造装置といった用途にとって熱膨張が許容し難い寸法変化を生じさせかねない。このように、熱膨張の抑制が求められている用途が産業分野の至る所に存在する。
 また、複数種の素材の間における熱膨張の差が問題となる場合もある。複合材料系や接合材料系をなす材質においては、熱膨張を材質間で一致させることが求められることがある。例えば、IC(集積回路)などの半導体デバイスのパッケージヒートシンクのための材質としては、半導体デバイスの温度上昇により生じる熱応力を発生しにくくするために、半導体デバイスを構成するシリコンと同程度の熱膨張のものが望ましい。さもなければ、剥離、反り、クラックといった深刻な問題につながりかねないためである。接合材料系等において生じかねないこれらの問題を解決するためにも、各素材の熱膨張を特定の値に精密に適合させる技術が求められている。
 ここで、各種の材料に求められる線膨張係数αの代表例は次のようなものである。例えば、-5ppm/℃~-10ppm/℃程度の負の熱膨張係数αの材料がファイバー・ブラッグ・グレーティング(FBG)の温度補償材に求められている。また、0ppm/℃程度の熱膨張係数αを示す材料つまりゼロ熱膨張材料が、各種精密機器や各種のデバイス、とりわけ半導体製造装置などに求められている。そして、熱膨張係数αが約2ppm/℃程度の材料、すなわち、シリコンと同等の熱膨張を示す材料が、例えばICのパッケージヒートシンクに求められている。
 しかも、線膨張を制御する能力は産業技術に新たな可能性もたらすものともいえる。まず、熱膨張を制御した材料が実用されるためには、その材料の用途に応じた熱膨張以外の技術的要件を満たさなくてはならない。そのような要件の具体例を挙げれば、例えば光学的要件(FBGの場合)、構造材としての要件(半導体製造装置の場合)、そして、熱伝導部材としての要件(ICパッケージヒートシンクの場合)が含まれている。実用性のある材料といえるためには、これらの技術的要件を満たした上でさらに熱膨張が制御されなくてはならない。逆に、それぞれの用途の面では十分な性質を有していても、熱膨張が不適合であるがためにこれまで採用されえなかった材料も数多い。したがって、熱膨張の制御性を高めることは、これらの用途における材料の選択範囲を広げるという潜在的な効果をももたらすものである。
 このように、顕在化している要求や潜在的な可能性を秘めているにもかかわらず、材料の熱膨張を人為的に制御することは極めて難しい。その理由は、熱膨張が、熱振動における非調和成分という固体を構成する原子や結晶の不可避な性質に由来しているためである。
 熱膨張を制御するための数少ない解決方法の一つが、マイナスの熱膨張を示す材料、いわゆる負の熱膨張材料(非特許文献1、2)を活用する手法である。その手法においては、負の熱膨張材料は、熱膨張を抑制したり目的の熱膨張に適合させたりするための構成材料(以下、「熱膨張抑制剤」という)として利用され、熱膨張が正の材料とともに複合化される。そして、その複合材料により目的の熱膨張が実現され、その複合材料により目的の熱膨張が実現される。低膨張ガラスである「ゼロデュア」など市販の低膨張材料の多くがこのような手法に基づき作製されている。金属をマトリックス(基材)とする複合材料(本出願において、「金属基複合材料」という)に関しても、そのマトリックスとなる金属より熱膨張が小さな値を示すセラミックスを含有させることにより低膨張性を実現する技術が知られている(特許文献1)。しかしながら、そのセラミックの熱膨張抑制効果は小さく、実現されている低膨張性は十分とはいえない。
 このような状況において、巨大なマイナス熱膨張を実現する材料として、逆ペロフスカイト型マンガン窒化物MnAN(A:遷移金属または半導体元素)が報告されている(特許文献2、特許文献3、非特許文献3~7)。図1は、逆ペロフスカイト型マンガン窒化物MnANを示す結晶構造を示す斜視図である。例えば、本願の発明者らの一部により創出された発明を開示する特許文献2には、組成に応じた温度域にて負の線膨張係数を有する逆ペロフスカイト型マンガン窒化物(侵入型窒化マンガンとも呼ばれる)が開示されている。そして、逆ペロフスカイト型マンガン窒化物MnANと軽金属のアルミニウムとを複合化した低膨張金属基複合材料が本願の発明者らにより創出されている(特許文献4:国際公開番号WO2008/111285)。特許文献4に開示される手法においては、逆ペロフスカイト型マンガン窒化物の粉末により多孔質のプレス成形体をいったん形成する。つぎに、そのプレス成形体に軽金属等を加圧溶浸(pressure infiltrate)させることにより、溶浸体(infiltrated body)として複合材料を形成する。この一連の手法を本出願においては特に高圧浸透法と呼ぶこととする。高圧浸透法は、特許文献1に開示される従来の材料に比して広い用途に適し、機械部材のような比較的大型の部材をも作りうる可能性を秘めている。例えば、従来知られている代表的な金属合金の低膨張金属材料であるインバー鋼からみると、マトリックス金属相としてアルミニウムを採用することにより高圧浸透法により作製される低膨張金属基複合材料は、その軽量性から広い用途を有している。本願の発明者は、溶浸法の一種である高圧浸透法には、部材の寸法に対する制限が生じにくいと考えた。
 また、逆ペロフスカイト型マンガン窒化物MnANと銅Cuとを複合化した低膨張金属基複合材料が中国のグループにより開発された(非特許文献9)。非特許文献9では熱膨張抑制剤MnCu0.5Sn0.5NまたはMnCu0.5Ni0.5NがCuと、窒素ガス中500℃、10時間の熱処理で複合化されたと記されている。しかしながら、その詳しい技術情報は開示されておらず、また、マンガン窒化物熱膨張抑制剤の様々な組成、そして様々な金属マトリックスとの複合化を可能とする汎用的な技術は依然として確立していない。
特開平10-8164号公報(例えば段落[0021]、[0022]、[0037]) 国際公開番号WO2006/011590 国際公開番号WO2008/081647 国際公開番号WO2008/111285
A. W. Sleight, lnorg. Chem. 37, 2854 (1998) 竹中康司、日本物理学会誌 65、873(2010) J. P. Bouchaud, Ann. Chem. 3, 81 (1968) D. Fruchart and E. F. Bertaut, J. Phys. Soc. Jpn. 44, 781 (1978) K. Takenaka and H. Takagi, Appl. Phys. Lett. 87, 261902 (2005) K. Takenaka, K. Asano, M. Misawa, and H. Takagi, Appl. Phys. Lett. 92, 011927 (2008) 竹中康司、固体物理 Vol.41、361(2006) 社団法人粉体粉末冶金協会編 「粉体粉末冶金便覧」(内田老鶴圃、2010年)、例えば、第145~148頁 L. Ding, C. Wang, Y. Y. Na, L. H. Chu, J. Yan, and X. L. Chen, "Preparation and near zero thermal expansion property of Mn3Cu0.5A0.5N(A=Ni,Sn)/Cu composites," Scripta Mater. (2011), in press, 著者原稿(Accepted Manuscript)のオンライン公開
 しかしながら、特許文献4に開示される手法つまり高圧浸透法により逆ペロフスカイト型マンガン窒化物と軽金属とを複合化し金属基複合材料を製造する手法には、いまだ改善の余地が残されていることが明らかとなった。
 具体的には、まず、(1)高圧浸透法ではしばしば熱膨張の精密な制御が困難となる。高い精度により熱膨張抑制剤における元素の組成比を制御することにより熱膨張を精密に制御したり、熱膨張抑制剤とマトリックス金属相などの金属相の比率を高い精度に制御したりすることにより熱膨張を制御する目的において高圧浸透法を常に採用できるわけではない。
 また、(2)高圧浸透法の適否は、複合化により製造される部材の大きさや形状にも依存している。つまり、試験用の小片や単純な形状の試験片を製造して所望の特性(例えば目的の熱膨張率の値)が実現されたとしても、その材料の組合せにより所望の大きさ・形状の部材を製造すると特性が変化してしまう。このため高圧浸透法に関して、試験により発見された知見をスケールアップのために適用する際に、実際の機械部品にまで適用することに多大な困難を伴う場合がある。例えば、高圧浸透法による複合化の際に、マトリックス金属相となる軽金属と逆ペロフスカイト型マンガン窒化物との化学反応をごく精密に制御することや、特に実用される機械部品において所望の特性を実現することは困難な場合がある。本願の発明者らの検討によれば、高圧浸透法において5cm角の立方体程度を超えるサイズの部材を良好に複合化することはしばしば困難である。
 さらに、(3)高圧浸透法による複合化においては、複合化されるマトリックス金属相と熱膨張抑制剤との材質の組合せや、マトリックス金属相と熱膨張抑制剤との比率といった条件の中には採用しがたいものも散見される。これらの組成や比率にも高圧浸透法では制約がある。
 本願の発明者らは、高圧浸透法におけるこれらの制約の根本的な原因を詳細に解析した。そして、高圧浸透法におけるこれらの制約が、高圧浸透法の工程それ自体や、高圧浸透法に不可避な工程によりもたらされているとの結論に達した。以下、高圧浸透法の上記制約の原因を説明することのみを目的として、本願の発明者の一部が開示した特許文献4の内容に即し、高圧浸透法による金属基複合材料の作製工程例を説明する。
 高圧浸透法においては、粉体をプレス成形等することにより形成された圧粉体または焼結体であるプレス成形体に軽金属等を加圧等により溶浸させる。具体的には、特許文献4の実施例として開示したプレス成形体は、MnCu0.5Sn0.5Nといった熱膨張抑制剤の粉末を、その100重量部に対して5重量部程度のコロイダルシリカと、バインダーとしての5重量部程度のポリビニルブチラール(PVB)とを添加して均一に混合したものである。なお、この時点のプレス成形体は、例えば40体積%といった割合でMnCu0.5Sn0.5Nを含有している。
 ここで、高圧浸透法の手順は予熱工程と溶浸工程とに大別される。つまり、上記プレス成形体が例えば400℃といった温度に予熱される(予熱工程)。そして、予熱されたプレス成形体が例えばアルミニウム鋳造用金型の内部にセットされ、その金型に例えば750℃程度に加熱・溶融されたアルミニウム合金が注入される(溶浸工程)。特許文献4の作製工程例の溶浸工程では、60MPaにて10分間程度加圧することによって溶融合金をプレス成形体に溶浸させる。溶融金属が固化した後、鋳造用金型から固形物が取り出される。この時点での固形物は、そのままでは金属基複合材料として利用できない場合がある。例えば、その固形物の表面には、溶浸されるアルミニウム合金にごく近い組成の単体金属または合金のみの層(以下「合金層」という)が形成されることがある。高圧浸透法においては、その合金層を除去した後に、中心付近の残りの部分が利用されることが多い(例えば、特許文献4、段落[0039]および[0042])。
 本願発明者らは、高圧浸透法の各制約の原因の一つが予熱工程にあるものと推測している。端的には、予熱工程のために、プレス成形体が高温な状態で空間に開放され、鋳造用金型に配置されるまでの間、プレス成形体は酸化などにより変質しやすい状況におかれる。また、例えば、高温において蒸気圧が高く昇華・析出しやすい組成物や成分を高圧浸透法の熱膨張抑制剤として採用しがたいこともこの予熱工程に起因している。高圧浸透法において、上記酸化などの化学変化や昇華・析出などの組成変化を経た熱膨張抑制剤は所望の作用を発揮しえない可能性が高まる。これらの組成変化による変質は、熱膨張抑制剤の組成を制限し、さらに、予熱工程自体の条件を制約する要因となる。このように、予熱工程が熱膨張抑制剤の組成に対する制約をもたらしている。
 また、本願発明者らの検討によれば、高圧浸透法の別の制約は、溶浸工程それ自体の難しさにも原因がある。高圧浸透法においては、溶融した金属を溶浸させる以上、熱膨張抑制剤の気孔のうちの多数が、プレス成形体の内部において連結孔となった開放気孔となっている必要がある。しかし、そのようなプレス成形体が常に作製可能とは限らない。最も典型的には、プレス成形体を用いる高圧浸透法では組成に非一様性が生じやすい。その対処の際に、マトリックス金属相と熱膨張抑制剤との比率によって熱膨張特性が変化するため、目的の熱膨張特性が実現されるようにマトリックス金属相と熱膨張抑制剤との比率を維持しながらプレス成形体の気孔率を調整するという、その実現には著しい困難を伴う工程を行わざるをえないことも制約をもたらす。さらには、プレス成形体に浸透させる単体金属または合金の組成にも制約が生じる。溶浸工程を行なうためには、金属の融点が高々750℃程度以下の、比較的低融点のものに限定されるのである。マトリックス金属相として融点が高い金属を採用することは、この溶浸工程の温度を高めることを意味し、上記化学変化や昇華・析出などの問題を助長するために採用することはできない。加熱される部分の容積が大きくなることは、冷却に時間がかかることになり、金属と熱膨張抑制剤との化学反応を進行させてしまう、大きなデメリットも有する。
 しかも、上記空隙を防止するとともに、マトリックス金属相と熱膨張抑制剤との比率を一様にするために溶浸工程の処理時間を長くすると、別の問題を生じる。それは、熱膨張抑制剤とマトリックス金属相とが化学反応してしまい、熱膨張抑制剤の組成を制御して得られていた負の熱膨張特性が失われ、複合化された金属基複合材料の熱膨張の抑制の効果が消失してしまうことである。このように、溶浸工程が熱膨張抑制剤の組成に対する制約をもたらしている。
 そしてやっかいなことには、上述した予熱工程と溶浸工程は互いに密接に関連している。例えば、溶浸工程において溶融した金属のプレス成形体への浸透を容易にするためには、プレス成形体の予熱温度を高めることが考えられる。しかし、その対策では、上述した予熱工程に起因する制約はいっそう顕著なものとなる。そして、高圧浸透法の制約となる熱膨張抑制剤の化学変化のしやすさや、膨張抑制剤に含まれる成分の昇華・析出のしやすさは、高温になるにつれて影響を大きく受けるものでもある。しかも、上述した予熱工程および溶浸工程に関連する制約は、いずれも、表面と内部の環境の違いが影響しており、スケールアップの難しさにつながっている。
 これらの複雑にからみあった要因のために、上記(1)のように、高圧浸透法においては固形物の内部における実際の組成を精密に制御し目的の組成に均一化することがしばしば困難となる。また、上記(2)のように、形成される複合材料のサイズにも限界がある。当初はサイズに限界の少ない手法として採用した高圧浸透法ではあったが、熱膨張抑制剤の変質しやすさを原因として、必ずしも常に目論見通りとなるわけではない。そして、上記(3)のように、熱膨張抑制剤の組成や、マトリックス金属相の組成は、限定的なものに過ぎない。化学変化や昇華・析出しやすい組成の熱膨張抑制剤を採用しても、熱膨張抑制の作用を安定させることが難しく、また、溶浸させにくい金属、例えば高融点の単体金属または金属合金のマトリックス金属相は採用しえない。
 上述した熱膨張抑制剤の変質しやすさや単体金属または金属合金の高融点による溶浸の難しさは熱膨張抑制剤や金属相の組成に大きく左右される。熱膨張抑制剤の具体的組成に着目すると、特に昇華・析出したり化学変化しやすいZnを組成に含む熱膨張抑制剤の取り扱いが困難を極め、Znを含む熱膨張抑制剤による十分な実用性を備えた金属複合材料はこれまで作製されていない。また、熱膨張抑制剤としてCuを含むものは、非特許文献9には金属と複合化された例が報告されているものの、細かな複合化のための条件は開示されていない。さらに、Gaを含む熱膨張抑制剤による十分な実用性を備えた金属複合材料もこれまで作製されていない。
 さらに、金属相に着目すると、高圧浸透法では、融点の低いAl(融点660℃)やAl合金についての必ずしも十分な精度とはいいがたい複合化の実績があるのみであった。それより融点が高いCu(融点1083℃)についても、非特許文献9に開示はあるものの、細かな複合化のための条件は開示されておらず、十分な精度において実証されているとは言いがたい。また、Cuの融点を超える高融点の金属には、構造材として、または、高い防蝕性の点で優れた、鉄(融点1539℃)やTi(融点1727℃)といった物が含まれている。これらの高融点の金属に対してどのようにして熱膨張抑制剤と複合化すべきかの指針は得られていない。
 以上のように、高圧浸透法による金属基複合材料やその製造方法は依然として克服すべき技術的課題を残している。本発明は、上記課題の少なくともいずれかを解決するものである。本発明は、逆ペロフスカイト型マンガン窒化物のもつ優れた特徴を活かした金属複合材料およびその製造方法を提供する。これらにより、本発明は各種の装置の高精度化や性能向上に貢献するものである。
 本願の発明者は、金属基複合材料やその作製方法における上述した制約が高圧浸透法を採用する限り避けがたいことに気づいた。金属基複合材料の複合化の精度を高めにくいこと、金属複合材料の複合化の成否が形状やサイズの影響を受けること、熱膨張抑制剤、金属もしくは合金の金属相、またはこれらの組成または互いの比率に制約が生じることは、いずれも、高圧浸透法の工程に起因している。そして、本願発明者らは、高圧浸透法における組成変化によりもたらされる制約のうちの少なくともいずれかを緩和することを目指し、熱膨張抑制剤と金属相の複合化に適用可能な複合化手法を鋭意探索した。
 その結果、プレス成形体を予熱する予熱工程や、単体金属または合金を溶融させプレス成形体に浸透させる溶浸工程を利用することなく複合化する手法が有望であると予測した。特に、高圧浸透法よりも、むしろ、全く別の金属加工法である粉体冶金法または粉末冶金法(以下「粉末冶金法」と総称する)に類似の手法が、高圧浸透法による制約を緩和することにつながるものと本願発明者らは予測した。具体的には、金属相となる単体金属または金属合金の粉末と、逆ペロフスカイト型マンガン窒化物の熱膨張抑制剤の粉末とを混合し、その混合された粉末(以下「混合粉」という)を焼結させる。その際、本願発明者らは、粉末冶金の各種の方法のなかでも、密閉された状態においてその混合粉を加熱して焼結することにより複合化する手法が有効に違いないとの予測に基づき、熱膨張抑制剤の粉末に関し発明者が高圧浸透法を含めたこれまでの技術的検討において獲得してきた知見を反映させることとした。上述した高圧浸透法により獲得した知見からは、複合化前の予熱工程や複合化の処理中に加熱されている際に開放空間に暴露されることが複合化の制御性を悪化させ、組成に対する制約をもたらしているといえるからである。そして実際にも、Mn-Zn-Sn-N系またはMn-Zn-Ge-N系の熱膨張材料、Mn-Cu-Sn-N系またはMn-Cu-Ge-N系の熱膨張材料、そして、Mn-Ga-Sn-N系またはMn-Ga-Ge-N系の熱膨張材料において、密閉状態にて加熱し焼結を行なう手法をこの複合化に適用することにより高い精度で組成が制御される金属複合材料が形成されることを確認した。
 すなわち、本発明のある態様においては、少なくともある温度範囲で負の熱膨張を示す、Mn-Zn-Sn-N系逆ペロフスカイト型マンガン窒化物またはMn-Zn-Ge-N系逆ペロフスカイト型マンガン窒化物の粉末と、金属相となる組成の単体金属または金属合金の粉末とを混合した混合粉を密閉状態に配置して加熱することにより、前記金属相と前記逆ペロフスカイト型マンガン窒化物とが焼結により複合化されている熱膨張制御金属複合材料が提供される。
 また、本発明のある態様においては、少なくともある温度範囲で負の熱膨張を示す、Mn-Cu-Sn-N系逆ペロフスカイト型マンガン窒化物またはMn-Cu-Ge-N系逆ペロフスカイト型マンガン窒化物の粉末と、金属相となる組成の単体金属または金属合金の粉末とを混合した混合粉を密閉状態に配置して加熱することにより、前記金属相と前記逆ペロフスカイト型マンガン窒化物とが焼結により複合化されている熱膨張制御金属複合材料が提供される。
 さらに、本発明のある態様においては、少なくともある温度範囲で負の熱膨張を示す、Mn-Ga-Sn-N系逆ペロフスカイト型マンガン窒化物またはMn-Ga-Ge-N系逆ペロフスカイト型マンガン窒化物の粉末と、金属相となる組成の単体金属または金属合金の粉末とを混合した混合粉を密閉状態に配置して加熱することにより、前記金属相と前記逆ペロフスカイト型マンガン窒化物とが焼結により複合化されている熱膨張制御金属複合材料が提供される。
 また上述の態様に加えて、本発明では、焼結工程において、混合粉に対して、または混合粉を内包する導電性の型に対して電流を流す通電焼結法により密閉状態にある混合粉を加熱するような熱膨張制御金属複合材料の製造方法の態様も提供される。すなわち、本発明のある態様では、少なくともある温度範囲で負の熱膨張を示す、Mn-Zn-Sn-N系逆ペロフスカイト型マンガン窒化物またはMn-Zn-Ge-N系逆ペロフスカイト型マンガン窒化物の粉末と、金属相となる組成の単体金属または金属合金の粉末とを互いに混合した混合粉を準備する工程と、前記混合粉を密閉状態におく工程と、前記密閉状態にある前記混合粉を加圧しながら、該混合粉に対して、または該混合粉を内包する導電性の型に対して電流を流す通電焼結法により該密閉状態にある該混合粉を加熱する焼結工程とを含み、これにより、前記金属相と前記逆ペロフスカイト型マンガン窒化物とが複合化される熱膨張制御金属複合材料の製造方法が提供される。
 また、本発明のある態様では、少なくともある温度範囲で負の熱張を示す、Mn-Cu-Sn-N系逆ペロフスカイト型マンガン窒化物またはMn-Cu-Ge-N系逆ペロフスカイト型マンガン窒化物の粉末と、金属相となる組成の単体金属または金属合金の粉末とを互いに混合した混合粉を準備する工程と、前記混合粉を密閉状態におく工程と、前記密閉状態にある前記混合粉を加圧しながら、該混合粉に対して、または該混合粉を内包する導電性の型に対して電流を流す通電焼結法により該密閉状態にある該混合粉を加熱する焼結工程とを含み、これにより、前記金属相と前記逆ペロフスカイト型マンガン窒化物とが複合化される熱膨張制御金属複合材料の製造方法が提供される。
 さらに、本発明のある態様では、少なくともある温度範囲で負の熱膨張を示す、Mn-Ga-Sn-N系逆ペロフスカイト型マンガン窒化物またはMn-Ga-Ge-N系逆ペロフスカイト型マンガン窒化物の粉末と、金属相となる組成の単体金属または金属合金の粉末とを互いに混合した混合粉を準備する工程と、前記混合粉を密閉状態におく工程と、前記密閉状態にある前記混合粉を加圧しながら、該混合粉に対して、または該混合粉を内包する導電性の型に対して電流を流す通電焼結法により該密閉状態にある該混合粉を加熱する焼結工程とを含み、これにより、前記金属相と前記逆ペロフスカイト型マンガン窒化物とが複合化される熱膨張制御金属複合材料の製造方法が提供される。
 本発明の各態様においては、逆ペロフスカイト型マンガン窒化物の熱膨張抑制剤(以下、逆ペロフスカイト型マンガン窒化物の熱膨張抑制剤を「マンガン窒化物熱膨張抑制剤」または、単に「熱膨張抑制剤」と呼ぶ)の粉末と、単体金属または金属合金つまり金属相となる金属原材料の粉末とを適当な比率であらかじめ混合し、その混合粉を、例えば気密を保った密閉状態に維持し、金型や導電性のグラファイト製のダイおよびパンチなどの焼結用の型(「焼結型」)の内部に配置することにより複合化する。その密閉状態は、必ずしも焼結型が気密であることは必要ではなく、例えば真空チェンバーや、外部の雰囲気(外気)とは遮断された容器といった気密容器の内部に、その気密容器の内部空間と連通しているような焼結型を配置していてもよい。その複合化においては、例えば必要最小限の熱エネルギーを作用させる。このため、混合粉は密封状態において加熱され焼結される。この手法により、上述した高圧浸透法の工程に起因する複合化の制約の少なくともいずれかが緩和される。なお、本出願全般にわたり、負の熱膨張とは、温度に対して線熱膨張ΔL/Lが右肩下がりとなるか、線膨張係数αが負となることを意味する。また、粉末とは、必ずしも粒径が限定されていない粉体もしくは粉末を指し、その粉末の組成、層構造、内部構造、凝集状態等は特に限定されない。
 また、混合粉が密封状態において加熱される態様には、放射、対流、伝導、誘導のいずれかによって熱を加えるもののほか、外部から任意のエネルギーを供給することに応じて熱が生じるものも含む。例えば、電流を流しジュール熱を生成させることにより、混合粉自体を自己発熱させるものも加熱の一態様である。本発明の各態様においては、従来の高圧浸透法などと異なり、混合粉が、粉体のまま密封状態におかれて加熱されることにより焼結される。このため、金属の融点より低い温度で複合化できる。その上、金属が溶融するような温度において熱膨張抑制剤が酸素を含んだ大気に触れることは防止される。したがって、金属相となる単体金属または金属合金の材料は、融点が低いものには限定されない。さらに、金属相は、複合化後に必ずしもマトリックス金属相となっていることを要さず、連続金属相であっても、また、連続金属相でなくともよい。このため、本発明の各態様においては、上記の高圧浸透法の場合に融点が高く採用し難くい金属材料を採用することが可能となり、熱膨張抑制剤と金属相との互いの混合比率に対する許容範囲も拡がる。さらには、溶浸のための予熱工程が不要であることから、本発明の各態様においては、熱膨張抑制剤の選択範囲も拡大する。また、加熱する部分を混合粉が装填された焼結型に限定することにより、昇温・冷却をより効率的に行え、特に冷却時間を短縮できる。すなわち、本発明の各態様においては、特許文献4に記載された高圧浸透法に比べ、より広い温度範囲、より広い熱膨張範囲、より高い精度、より自由度の大きな形状・サイズという、少なくともいずれかの点において実用性が高められた熱膨張可変金属複合材料を提供することが可能となる。
 さらに、Mn-Zn-Sn-N系またはMn-Zn-Ge-N系の熱膨張抑制剤、Mn-Cu-Sn-N系またはMn-Cu-Ge-N系の熱膨張抑制剤、そして、Mn-Ga-Sn-N系またはMn-Ga-Ge-N系の熱膨張抑制剤とは、より具体的に組成式により表現することも可能である。これらの各表現は、つぎの組成式の組成を「Mn-M-M-N系」と簡略化して記載したものである。
 組成式:Mn3+y 1-(x+y) N (0<x<1、0≦y<1)、
ここで、MにはZn、Cu、Gaの少なくとも1種を含み、MにはGe、Snの少なくとも1種を含む。また、Mnの一部は他の元素に置き換わっていてもよく、窒素Nの一部が水素H、ホウ素B、炭素C、酸素Oと置き換わっていてもよい。なお、MにはGa、Zn、Cu以外の元素を含んでいてもよいし、MにはGe、Sn以外の元素を含んでいてもよい。
 本発明のいずれかの態様により、高圧浸透法に残存していた制約の少なくともいずれかが解消されるかまたは緩和される。その結果、従来採用し難かったマンガン窒化物の熱膨張抑制剤を採用する金属複合材料を作製することが可能となる。例えば、より広い温度範囲および広い熱膨張範囲において、より高い精度であったり、より自由度の大きな形状・サイズを有したりするような熱膨張を制御した金属複合材料を提供することが可能となる。本発明のいずれかの態様によれば、例えばマトリックス金属相とマンガン窒化物熱膨張抑制剤を任意の比率で再現性よく複合化することが可能となる。
逆ペロフスカイト型マンガン窒化物MnANを示す結晶構造を示す斜視図である。 複合化手法の基本的な分類を示す説明図である。 本発明のある実施形態における傾斜した混合比率を有する金属複合材料の構成を説明するための説明図である。 本発明のある実施形態における金属複合材料を形成する工程を示すフローチャートである。 本発明の実施例1のマンガン窒化物熱膨張抑制剤MnZn0.45Sn0.55N(50vol%)とアルミニウムAl(50vol%)の金属複合材料の線熱膨張を基準温度100℃にて描いたグラフである。 本発明の実施例2のマンガン窒化物熱膨張抑制剤MnZn0.75Sn0.250.950.05(40vol%)とアルミニウムAl(60vol%)の金属複合材料の線熱膨張を基準温度0℃にて描いたグラフである。 本発明の実施例3のマンガン窒化物熱膨張抑制剤MnZn0.45Sn0.55N(50vol%)と真鐘(50vol%)の金属複合材料の線熱膨張を基準温度100℃にて描いたグラフである。 本発明の実施例4のマンガン窒化物熱膨張抑制剤MnZn0.45Sn0.55N(50vol%)と銅Cu(50vol%)の金属複合材料の線熱膨張を基準温度100℃にて描いたグラフである。 本発明の実施例5のマンガン窒化物熱膨張抑制剤MnZn0.75Sn0.250.950.05(50vol%)と銅Cu(50vol%)の金属複合材料の線熱膨張を基準温度0℃にて描いたグラフである。 本発明の実施例6のマンガン窒化物熱膨張抑制剤MnZn0.45Sn0.55W(50vol%)と鉄Fe(50vol%)の金属複合材料の線熱膨張を基準温度100℃にて描いたグラフである。 本発明の実施例7のマンガン窒化物熱膨張抑制剤MnZn0.45Sn0.55N(50vol%)とチタンTi(50vol%)の金属複合材料の線熱膨張を基準温度100℃にて描いたグラフである。 本発明の実施例8のマンガン窒化物熱膨張抑制剤MnCu0.5Sn0.5N(40vol%)と銅Cu(60vo1%〉の金属複合材料の線熱膨張を基準温度0℃にて描いたグラフである。 本発明の実施例9のマンガン窒化物熱膨張抑制剤MnGa0.73Ge0.27N(30vol%)とアルミニウムAl(70vol%)の金属複合材料の線熱膨張を基準温度100℃にて描いたグラフである。 本発明の実施例10のマンガン窒化物熱膨張抑制剤MnCu0.5Sn0.5N(40vol%)とアルミニウムAl(60vol%)の金属複合材料の線熱膨張を基準温度0℃にて描いたグラフである。 本発明の実施例11のマンガン窒化物熱膨張抑制剤Mn3.15Zn0.6Sn0.25N(50vol%)と銅Cu(50vol%)の金属複合材料の線熱膨張を基準温度0℃にて描いたグラフである。 本発明の実施例12のマンガン窒化物熱膨張抑制剤Mn3.15Zn0.6Sn0.25N(60vol%)とアルミニウムAl(40vol%)の金属複合材料の線熱膨張を基準温度0℃にて描いたグラフである。 本発明の実施例13のマンガン窒化物抑制剤Mn3.1Zn0.5Sn0.4N(50vol%)とマグネシウムMg(50vol%)の金属複合材料の線熱膨張を基準温度100℃にて描いたグラフである。 本発明の実施例14のマンガン窒化物抑制剤Mn3.5Zn0.25Sn0.25N(50vol%)とアルミニウムAl(50vol%)の金属複合材料の線熱膨張を基準温度0℃にて描いたグラフである。 本発明の実施例15のマンガン窒化物抑制剤MnZn0.4Sn0.60.850.15(70vol%)とアルミニウムAl(30vol%)の金属複合材料の線熱膨張を基準温度100℃にて描いたグラフである。 本発明の実施例16のマンガン窒化物抑制剤MnZn0.4Sn0.60.880.12(50vol%)と真鍮(~50vol%)の金属複合材料の線熱膨張を基準温度0℃にて描いたグラフである。 本発明の実施例17のマンガン窒化物熱膨張抑制剤MnCu0.55Ge0.45N(50vol%)とアルミニウムAl(50vol%)の金属複合材料の線熱膨張を基準温度0℃にて描いたグラフである。 本発明の実施例2、実施例18および実施例19のマンガン窒化物熱膨張抑制剤MnZn0.75Sn0.250.950.05(40vol%)とアルミニウムAl(60vol%)の金属複合材料の線熱膨張を基準温度0℃にて描き、その再現性を比較したグラフである。 本発明の実施例1について行なったX線回折実験の回折パターンを示すグラフである。 熱膨張抑制剤Mn3.15Zn0.6Sn0.25Nを窒素ガス中開放系で800℃、12時間の熱処理をして、その前後の線熱膨張を基準温度100℃にて描いたものである。
 以下、本発明の実施形態について説明する。以下の説明に際し特に言及がない限り、全図にわたり共通する部分または要素には共通する参照符号が付されている。また、図中、各実施形態の要素のそれぞれは、必ずしも互いの縮尺比を保って示されてはいない。
<第1実施形態>
[1 概要]
 図2は、複合化手法の基本的な分類を示す説明図である。本実施形態においては、少なくともある温度範囲で負の熱膨張を示す逆ペロフスカイト型マンガン窒化物の粉末すなわち熱膨張抑制剤の粉末と、金属相となる組成の単体金属または金属合金の粉末とを混合した混合粉を密閉状態に配置して加熱することにより、金属相と前記逆ペロフスカイト型マンガン窒化物とが焼結により複合化される粉体冶金または粉末冶金法の手法を採用する。ここで、複合化手法には粉末冶金法以外にも非加圧浸透法や鋳造法、メカニカル・アロイングといった手法がある。また、粉末冶金法をさらに細分類すると、通電焼結や冷間成形低温焼結法、電磁波焼結、粉末圧延といった手法が含まれている。これらの手法のうち、本実施形態においては、逆ペロフスカイト型マンガン窒化物の熱膨張抑制の粉末と、複合化後に金属相となる組成の単体金属または金属合金の粉末とを混合した混合粉を密閉状態において加熱し焼結するかぎり、任意の粉末冶金の手法を採用することが可能である。本実施形態として説明する粉末冶金法は、最も典型的には、通電焼結法の一種である放電プラズマ焼結法(Spark Plasma Sintering, SPS)と、通電焼結法には含まれない冷間成形低温焼結法とにより実施される。これらについて説明する。以下の説明において、「合金」とは金属合金を意味する。
 放電プラズマ焼結法は、通電焼結法の1種であるパルス通電法の一形態であり、粉末に、またはその粉末を焼結するためのダイ・パンチまたは型(焼結型)に大電流を流すことにより加熱される焼結手法である。通電焼結法に含まれる他の手法であるパルス通電加圧焼結(PECS:Pulsed Electric Current Sintering)や、プラズマ活性化焼結(PAS: Plasma Activated Sintering)も本実施形態に適用可能である。
 また、冷間成形低温焼結法は、「冷間成形」(cold pressing)を行い、その後に低温にて焼成して焼結させる手法である。なお、本出願において、コールドプレスと記した場合には、上記冷間成形のみを意味している。
 本実施形態においては、金属相と熱膨張抑制剤との比率も、より広い範囲に設定することが可能となる。従来の高圧浸透法では、金属の溶浸に適合し、その溶浸の際に形状が維持される程度の気孔率や機械的強度のプレス成形体を形成しなくてはならず、金属相と熱膨張抑制剤との比率にも自ずと制約があった。これに対し本実施形態においては、混合した金属の粉末と熱膨張抑制剤の粉末を密閉空間に配置し加熱するため、その時点での混合粉が何らかの形状を保っている必要はない。また本実施形態においては、混合粉が雰囲気の影響を受けにくい。高圧浸透法における溶融した金属を浸透させるために必要な予熱工程に相当する工程は必要ないためである。さらに、本実施形態においては混合粉における金属相と熱膨張抑制剤との混合比率や、それが反映された金属複合材料における金属相と熱膨張抑制剤の比率にも制約が少ない。その結果、本実施形態においては、熱膨張をより効果的に抑制したり、精密に制御したりすることが可能となる。その結果、例えばシリコンの熱膨張に精度よく熱膨張を適合させたより高性能のパッケージヒートシンクを製造することも可能となる。
 また、密閉状態の混合粉に対する加熱および焼結は、従来の高圧浸透法などと比べて低温・短時間で実施することが可能となり有利である。その結果、金属相のための粉末とマンガン窒化物熱膨張抑制剤の粉末との間の化学反応を適切に制御することが可能となる。この利点は、特に通電焼結などの電気的な熱の生成や、放電現象によるプラズマを焼結に用いるものにおいて顕著である。例えば、高圧浸透法において複合化する際に金属相と化学反応して熱膨張抑制剤としての機能を失うような金属相の材質の組合せにおいても、密閉状態の混合粉に対する加熱および焼結であれば低温・短時間の処理により複合化が可能となる。
 加えて、本実施形態における焼結による複合化は、混合粉が密閉空間に密閉された状態にて進行する。このため、混合粉に含まれる熱膨張抑制剤であるマンガン窒化物の粉末は、密閉空間の外部の雰囲気(外気)にさらされることも、また、高温下で密閉空間の外部に開放された状態に置かれることもない。したがって、昇華・析出しやすい成分元素、例えばZnが熱膨張抑制剤に含まれていたとしても、組成変化を最小限にして複合化を実行することができる。したがって、例えば、従来は化学変化や昇華・析出のために複合化することが困難であったMn-Zn-Sn-N系またはMn-Zn-Ge-N系の熱膨張抑制剤を採用する金属複合材料を作製することが可能となり、精密に熱膨張が制御された金属複合材料を作製することが可能となる。
 さらに、密閉空間において混合粉を焼結させる本実施形態や通電燒結などにおいては、複合化の処理の繰り返し再現性を向上させることができる。これは、マンガン窒化物熱膨張抑制剤の粉末と金属相のための単体金属または合金の粉末を、高い再現性で任意の比率に混合することが可能となるということである。このため、高圧浸透法などの先行技術では不可能であった精緻な熱膨張性の制御が可能となる。したがって、従来は精密な複合化が行えなかったMn-Cu-Sn-N系またはMn-Cu-Ge-N系の熱膨張抑制剤を採用する場合や、Mn-Ga-Sn-N系またはMn-Ga-Ge-N系の熱膨張抑制剤を採用する場合においても、密閉空間において混合粉を焼結させる本実施形態や通電燒結などの複合化の処理により、精密に熱膨張が制御された金属複合材料を作製することが可能となる。
 なお、冷間成形低温焼結法も密閉空間において混合粉を焼結させる粉末冶金法の一形態である。冷間成形低温焼結法においては、通電焼結とは異なり、粉末にも焼結型にも電流が流されないものの、密閉空間において混合粉を焼結させることから上述した各利点が達成される。
 通電焼結や冷間成形低温焼結法などの密閉空間において混合粉を加熱し焼結させる粉末冶金法においては金属の選択肢が拡がる利点もある。複合材料において金属相となる単体金属または合金の組成を、従来選択しえなかったものから選ぶことが可能となる。例えば、融点の高さから高圧浸透法において採用しにくかった銅を主体とする合金(単体の銅を含む)を金属相に採用することにより、特許文献4に開示される高圧浸透法に比し優れた熱伝導や電気伝導を示す金属複合材料を作製することが可能となる。また、別の例では、例えば融点の他からから採用しえなかったチタニウムを主体とする合金(単体のチタニウムを含む)を金属相に採用することにより、特許文献4に開示される高圧浸透法に比して強度が一層大きい金属複合材料を作製することができる。これら以外にも、鉄、真鍮といった構造材に適する安価な単体金属または合金を採用することも可能である。なお、これらの単体金属または合金は、例示のために示したものに過ぎない。
 上述したように、本実施形態において複合化される熱膨張抑制剤の組成は、次の組成式により表現される逆ペロフスカイト型マンガン窒化物からなるものが好適である。
 組成式(1):Mn3+y 1-(x+y) N (0<x<1、0≦y<1)、
ここで、MにはGa、Zn、Cuの少なくとも1種を含み、MにはGe、Snの少なくとも1種を含む。また、Mnの一部は他の元素に置き換わっていてもよく、窒素Nの一部が水素H、ホウ素B、炭素C、酸素Oと置き換わっていてもよい。なお、MにはGa、Zn、Cu以外の元素を含んでいてもよいし、MにはGe、Sn以外の元素を含んでいてもよい。
 なお、本出願において、成分や組成式により表現される物質や、成分や組成式を列記して「からなる」と表現される物質は、明示された成分や組成式により特定される物質を主成分としている任意の物質を意味する。したがって、これらの表現により特定または規定される本願発明をなす物質は、本願発明の趣旨を逸脱しない範囲において、各成分や組成式に明示されない不純物を含んでいてもかまわない。そして、主成分とは、含有率が50重量%以上を占める成分をいう。逆ペロフスカイト型マンガン窒化物の特性は主成分によって概ね定まるため、逆ペロフスカイト型マンガン窒化物の特性を判断するにあたり、当該逆ペロフスカイト型マンガン窒化物の主成分となる組成により判断することは妥当である。本出願においては、例えば組成式(1)の逆ペロフスカイト型マンガン窒化物を主成分とする熱膨張抑制剤とは、組成式(1)の逆ペロフスカイト型マンガン窒化物と、その逆ペロフスカイト型マンガン窒化物を超えない質量の副成分との混合物である場合がある。そして、本出願においては、組成式または化学式により明示した当該特定の組成の逆ペロフスカイト型マンガン窒化物として、「主成分」についての記載と明示せずに表現することがある。これは、単に記載の明確化または簡略化のためのものである。その場合であっても、熱膨張抑制剤のための当該表現は、熱膨張抑制剤への副成分の添加を排除するものではない。
 上記組成式(1)に含まれる逆ペロフスカイト型マンガン窒化物の中には、高圧浸透法において単体金属または合金との複合化に支障が生じていたものも散見される。ところが、本実施形態においては、そのような組成の逆ペロフスカイト型マンガン窒化物も単体金属または合金と複合化することが可能となる。特に、例えば、複合化時において昇華・析出しかねないZnを含むような熱膨張抑制剤を採用しても、本実施形態においては、幅広い条件で複合化することが可能となる。このように、これまで複合化の条件が限られていた熱膨張抑制剤を利用する複合化も本実施形態においては容易に行なうことが可能である。
 特に、逆ペロフスカイト型マンガン窒化物が、Mn-Zn-Sn-N系逆ペロフスカイト型マンガン窒化物である金属複合材料は、本実施形態において好適なものの一つである。密閉空間において焼結させる本実施形態においては、熱膨張抑制剤からのZnの昇華・析出による脱離を防ぐことができる。したがって、機能と素材価格の両面でより優れているにもかかわらず、昇華・析出しやすい成分を含むためにこれまで複合化のための条件が限られていた熱膨張抑制剤、例えば、Mn-Zn-Sn-N系の熱膨張抑制剤を利用する複合化も容易になる。
 本実施形態においてMn-Zn-Sn-N系逆ペロフスカイト型マンガン窒化物の熱膨張抑制剤を用いる金属複合材料の製造に成功したことは、Mn-Cu-Sn-N系逆ペロフスカイト型マンガン窒化物より高機能であるマンガン窒化物熱膨張抑制剤を実用に供する可能性があることを意味する。つまり、Mn-Zn-Sn-N系マンガン窒化物熱膨張抑制剤では、Mn-Cu-Sn-N系マンガン窒化物熱膨張抑制剤よりも大きな負の熱膨張を示す。このため、Mn-Zn-Sn-N系逆ペロフスカイト型マンガン窒化物の熱膨張抑制剤を採用する場合、熱膨張抑制剤を利用した熱膨張制御の自由度が高まるという利点が生まれる。つまり、より広い線膨張の範囲で制御された熱膨張を実現することができ、また、より少ない熱膨張抑制剤の添加量により熱膨張を目的の値に抑制したりすることにより、熱膨張抑制剤が金属相の性質に及ぼす熱膨張の抑制以外の影響を軽減することができる。また、より大きな負の熱膨張を示す金属複合材料を提供することができる。このことにより、本実施形態においては、従来のマンガン窒化物熱膨張抑制剤において作製することができなかった光フィルターの温度補償のために金属複合材料を採用することが可能となる。なお、本出願において、Mn-Zn-Sn-N系逆ペロフスカイト型マンガン窒化物等の表記は、窒素を軽元素により置換する態様を明示すれば、例えば
 Mn3+y 1-x-y 1-z(Xは軽元素、x、y、zは0以上1未満)
と表示される組成式において、金属元素MをZn、金属元素MをSnとすることを意味する。また、本出願において軽元素とは、B(ホウ素)、C(炭素)、H(水素)、O(酸素)からなる元素群である。Mnの一部は他の元素に置き換わっていてもよい。
 また、Mn-Zn-Sn-N系の熱膨張抑制剤を採用する金属複合材料について上述した事情は、金属元素MをGeとしたMn-Zn-Ge-N系逆ペロフスカイト型マンガン窒化物を採用する金属複合材料についても同様である。
 さらに、従来の、例えば特許文献4に開示されていたMn-Cu-Sn-N系やMn-Cu-Ge-N系の熱膨張抑制剤、Mn-Ga-Sn-N系やMn-Ga-Ge-N系など、他の材料系の熱膨張抑制剤に対しても、上述した本実施形態は、例えば化学変化を抑制し、熱膨張抑制剤に含まれる元素の組成比を所望の値に精度良く制御することか可能となる点において有利である。
 加えて、本実施形態の金属複合材料の製造方法における焼結工程が、密閉空間に配置されている混合粉に対して電流を流すことにより焼結する工程とされる。この電流を利用する焼結工程は、上述した各熱膨張抑制剤を採用する金属複合材料を製造する手法としてとりわけ有利である。この手法は、粉末冶金等の分野において、通電焼結法と呼ばれる手法またはそれに類似する手法である。例えば非特許文献8などに開示される各種の粉末冶金的手法のうち通電焼結法を用いることができる。この通電焼結法を採用することの利点は次の点で顕著である。
 まず、通電焼結法においても加熱された状態で粉末を外気に触れさせることはない。また、通電焼結法を採用すれば、高圧浸透法において採用することが可能であった単体金属や合金を採用する場合であっても、その単体金属または合金と組み合わせる熱膨張抑制剤に対する熱の影響を低減することができる。これは、通電による温度上昇を、複合化に必要な必要最小限の範囲で行えるためである。その上、通電焼結法においては、複合化終了後、短時間で冷却可能である。以上の理由により、通電焼結法は多くの種類の金属や合金が、複合化の選択肢となるばかりか、低温・短時間で複合化させるメリットも生じ、その結果、金属相とマンガン窒化物の熱膨張抑制剤の化学反応を高い精度にて制御することが可能となる。
[1-1 変形例]
 本実施形態の変形例として、熱膨張抑制の粉末と金属の粉末との混合比率が傾斜している金属複合材料が提供される。図3は、傾斜した混合比率を有する金属複合材料の構成を説明するための説明図である。図3(a)は、一例として円柱形状に成形され、上記混合比率が、熱膨張が大きい構成となる図上の底部の混合比率から、熱膨張が小さい構成となる図上の頂部の混合比率へと連続的に変化している構成を示している。ここでの混合比率の変化の様子は図の網点の密度により模式的に示されている。これに対し、図3(b)は、一例として円柱形状に成形され、上記混合比率が、段階的に変化している構成の混合比率の変化の様子を同様の手法により示している。図示されているのは、熱膨張が大きい構成となる上段の混合比率、熱膨張が小さい構成となる下段の混合比率、そして、これら上段および下段に挟まれる中段における、これらの中間の熱膨張となる混合比率という3段階の変化の例である。
 これらに示した混合比率の連続的または段階的な変化は説明のための非限定的な例に過ぎない。本変形例により、連続した一体の素材において、熱膨張の程度が位置に依存して変化している素材を提供することが可能である。従来の高圧浸透法においては、金属相となる単体金属または合金の粉末と、熱膨張抑制剤の粉末との間の比率を空間的に意図したように変化させることができない。そのため、本実施形態の変形例における傾斜混合比率とされた金属複合材料は、焼結前の混合粉を密閉状態にて加熱し焼結する手法を採用することによって可能となる精密な熱膨張制御の一例である。これによる実用面での利点は、例えばシリコンと銅など、熱膨張の著しく異なる材料間の、熱膨張変化を緩和する緩衝材などを提供することが可能となることである。また、例えば弾性率の異なる複数種の単体金属または合金の粉末の互いの比率を位置により変更し、熱膨張抑制剤の粉末と混合した混合粉を利用した複合化も行なうこととしてもよい。この場合、熱膨張だけではなく弾性率を位置により制御することが可能となる。さらに、熱膨張抑制剤や金属に加え、さらに別の材料、例えば、熱伝導の優れた材料や機械的強度の優れた材料、弾性率の大きな材料を混合して焼結させることにより、熱膨張とともにそれらの性質も制御した材料を作製することが可能となる。なお、この変形例のような傾斜した混合比率において金属複合材料を作製しうることは、傾斜した混合比率の複合材料自体を作製すること自体の利点以外に、混合粉を密閉状態にて加熱し焼結する手法により精密な熱膨張制御が可能になる利点を示す好例でもある。
[2 マンガン窒化物熱膨張抑制剤]
 本実施形態の金属複合材料のための熱膨張抑制剤としては各種のマンガン窒化物を採用することが可能である。特に、特許文献2において開示されているようなマンガン窒化物熱膨張抑制剤の構成元素の役割は、本願の発明者の一部により既にほぼ特定されている。ここでは系統的にその役割を説明する。
 まず、マンガンと窒素以外にマンガン窒化物熱膨張抑制剤に含まれる主要な元素は、第1群(群の集合に含まれるメンバーとなる元素を「M」と総称する)と、第2群(同、「M」)とに分けることが可能である。このうち、第1群(M)は、Zn、Cu、Gaなどを含んでおり、マンガン窒化物熱膨張抑制剤に大きなマイナス熱膨張をもたらす元素群である。これに対し、第2群(M)は、Sn、Geなどを含んでおり、マンガン窒化物熱膨張抑制剤の動作温度を拡げる元素群である。なお、動作温度とは、熱膨張抑制剤の負の熱膨張作用が発揮される温度域である。
 より詳細に、これらの第1群(M)と第2群(M)とを用いて本実施形態において採用されるマンガン窒化物熱膨張抑制剤を組成例として示したものが上記組成式(1)により表記されるされる逆ペロフスカイト型マンガン窒化物である。
 上記組成式を例として含み、本実施形態において採用されるマンガン窒化物熱膨張抑制剤のからいくつかの典型的な組成をより具体的に説明すると、MをCu、Zn、Gaからなる群から選択される少なくとも一の元素、MをGeまたはSnからなる群から選択される少なくとも一の元素、そしてMを、Mg、Al、Si、Ti、V、Cr、Fe、Co、Ni、Zr、Nb、Mo、Ru、Rh、Pd、Ag、In、Hf、Ta、W、Re、Ir、Pt、Au、Bi、希土類元素からなる群から選択される少なくとも一の元素として、
 組成式(2):Mn 1-x N(xは0以上1未満)、
 組成式(3):Mn3+y 1-x-y N(x、yは0を超え1未満)、
 組成式(4):(Mn1-δ δ 1-x N(xは0を超え1未満、δは0を超え1未満)、そして
 組成式(5):Mn 1-x 1-y(Xは軽元素、x、yは0を超え1未満)
と表現されるものを挙げることができる。すなわち、組成式(2)は、本実施形態において採用されるマンガン窒化物熱膨張抑制剤として第1群(M)と第2群(M)とを用いて示した組成式である。つぎの組成式(3)は、組成式(2)からみてマンガンMnが過剰となりMが減少したもの、組成式(4)は、組成式(2)からみてマンガンMnの一部が欠損し元素MによりMnを置換したものである。そして、組成式(5)は、組成式(2)において窒素Nの一部が水素H、ホウ素B、炭素C、酸素Oなどの軽元素と置き換わったものである。
 そして上記組成式(2)~(5)をより一般的な表現により表すと先述の組成式(1)により表現される。なお、組成式(1)~(5)のx、y、zおよびδは、マンガン窒化物熱膨張抑制剤の示す負の熱膨張作用が発揮される範囲において、例えば負の熱膨張作用の温度範囲を拡げたり温度域をシフトしたりするために、金属複合材料の用途に応じて選択される。また、本出願において、異なる組成式におけるx、y、z、およびδなどの組成比を決定する値は組成式別に決定される。
 本実施形態の熱膨張抑制剤を具体例として示せば、例えばMn-Zn-Sn-N系逆ペロフスカイト型マンガン窒化物の熱膨張抑制剤である。この熱膨張抑制剤は、第1群(M)としてZn、第2群(M)としてSnを含むものである。一般に、マンガン窒化物熱膨張抑制剤における第1群の大きなマイナス熱膨張をもたらす作用は、顕著なものから順に、Ga、Zn、Cuとなる。つまり、第1群の元素の大きなマイナス熱膨張をもたらすという作用は、Gaを含むものが最も優れており、つぎにZn、そしてCuの順に弱くなる。ただし、実用面からは、素材価格が高価なGaを高い比率で用いることは難しく、ZnとCuが好適に選択される。このうち、特にZnは、Cuより負の熱膨張をもたらす作用が大きくしかも安価である。このため、上記Mn-Zn-Sn-N系やMn-Zn-Ge-N系(以下、「Zn系」と記載する)の逆ペロフスカイト型マンガン窒化物は熱膨張抑制剤としては理想的といえる。ただし、従来の複合化手法においては、Zn系逆ペロフスカイト型マンガン窒化物は上述したように昇華・析出しやすいために採用しにくかった。本実施形態は、Zn系の逆ペロフスカイト型マンガン窒化物を採用した金属複合材料が作製可能となるため、マンガン窒化物熱膨張抑制剤を含む金属複合材料の実用性を大きく改善するものといえる。
 また、第2群の元素による広い動作温度をもたらす作用はSnよりもGeの方が優れるものの、素材価格の面からはSnが有利である。
 上記の例も含め本実施形態における熱膨張抑制剤を、その構成元素となる元素名の組合せにより具体的に示せば、Mn-Zn-Sn-N系、Mn-Zn-Ge-N系、Mn-Cu-Sn-N系、Mn-Cu-Ge-N系、Mn-Ga-Sn-N系、Mn-Ga-Ge-N系のそれぞれの逆ペロフスカイト型マンガン窒化物である。なお、第1群(M)と第2群(M)とを用いて説明した上記各組成例は、各元素の役割を説明するための非限定的な例に過ぎない。
[3 金属相]
 本実施形態の単体金属または合金の粉末に採用される金属相の材質は、典型的には、アルミニウム、マグネシウム、銅、真鍮、鉄、チタンが選択される。なお、本実施形態の複合材料における金属相は、これら各金属の単体、または、これらの金属を基調とする合金である。また上述したように、金属相は、作製された複合材料において必ずしもマトリックス金属相となっていることを要さない。すなわち、本実施形態における金属相は、焼結された材料において気孔または他の成分粒子をその中に包含して基盤となる連続金属相であってもよく、またそのような連続相となっていなくともよい。なお、上記金属相の材質には、高圧浸透法において溶浸が困難であった単体金属または合金が含まれている。特に、銅、真鍮といった融点が1000℃を超えるものや、さらには鉄、チタンといった融点が1500℃を超えるようなものも含まれている。このような材質を金属相に採用する場合であっても、本実施形態においては複合化に支障がない。さらに、溶融させても合金をなさない金属元素の組合せや組成の合金が金属相にて実現されるように、互いに合金をなさない複数種の単体金属または合金の組合せや分量にて金属相のための粉末を準備し、それを金属相のための粉末として採用することも可能である。
[4 熱膨張の指標]
 本実施形態の金属複合材料を含め、固体材料の熱膨張は線熱膨張ΔL/Lと呼ばれる指標により表示される。なお、線熱膨張ΔL/Lは、Tを金属複合材料の温度、L(T)を温度Tでの試料の長さ、Tを基準温度として、次式:
 ΔL/L=[L(T)-L(T)]/L(T)   数式(1)
によって定義される。線熱膨張ΔL/Lは、基準温度Tにおける試料の長さに対して温度Tでは長さがどの程度変化するかを表している無次元量である。なお、熱膨張は、線熱膨張ΔL/Lの傾き(温度微分)である線膨張係数αにより表示される場合もある。その場合、線膨張係数αは通常、ppm/℃の単位によって表現される。通常の固体材料では、温度の上昇とともに膨張し長さも伸びるので、線熱膨張ΔL/Lは右肩上がりとなり線膨張係数αの値は正となる。これに対し、負の熱膨張を示す材料は、温度とともに縮む材料であることを意味している。このため、負の熱膨張を示す材料における線熱膨張ΔL/Lは右肩下がり、線膨張係数αは負の値となる。
[5 製造方法]
 以上に説明した本実施形態に含まれる金属複合材料の製造方法を次に説明する。説明は、熱膨張抑制剤の作製と、金属複合材料の作製とに分けて説明する。ここに説明する製造方法は、本実施形態を説明するためにのみ記載されるものである。
[5-1 熱膨張抑制剤の作製]
 本実施形態として採用される熱膨張抑制剤の粉末を製造するための手段は特に限定されない。典型的には、二段階の固相反応法が採用される。具体的には、第1の工程は、MnNの粉末、MnNの粉末、MnNの粉末、そして、MnMX(Xは軽元素)の粉末(以下、総称して中間体粉末と呼ぶ)を、固相反応法によりそれぞれ別々に製造する工程である。そして第2の工程は、第1の工程により製造した中間体粉末を、目的の各比率となるように組み合わせて固相反応法させることにより、目的の組成の熱膨張抑制剤の粉末を製造する段階である。第1の工程は中間体粉末の材料別に、また、第2の工程は熱膨張抑制剤別に説明する。
[5-1-1 二段階の固相反応法:第1の工程]
[5-1-1-1 第1の工程:MnNおよびMnNの粉末の製造]
 MnNおよびMnNの粉末のための固相反応法の第1の工程はつぎのようにして実行される。ここでは、MnNを例に説明する。まず、モル比でMn:M=3:1となるように秤量したMnN(粉末)とM(粉末)とを互いに混合し十分に攪拌する。そして、その攪拌後のものを石英管に真空封入する。この際の到達真空度は、典型的には、約10-3torr(約0.13Pa)程度とする。つぎに、石英管への封入物を石英管ごと、例えば500℃~770℃で60時間~70時間加熱し焼成する。この焼成によりMnNの塊の材料(バルク材料)が作製される。そして、石英管の内部からバルク材料を取り出して粉砕することにより、MnNの粉末が製造される。MnNの粉末も同様の焼成および粉砕により製造される。
[5-1-1-2 第1の工程:MnNの粉末の製造]
 MnNの粉末については金属Mn(粉末)を原料とし、窒素ガス1気圧、450℃で
60時間~120時間加熱することにより製造される。
[5-1-1-3 第1の工程:MnMXの粉末の製造]
 さらに、MnMX(Mは上述のMまたはM、Xはホウ素Bまたは炭素C)は、Mn、M、Xそれぞれの粉末を秤量し、順に、3:1:(1~1.05)のモル比を与える比率に混合し十分に攪拌した後、石英管に真空封入して加熱することにより製造する。石英管における真空度は約10-3torr(約0.13Pa)とし、熱処理は550℃~850℃で80時間~120時間加熱する。製造されたMnMXのバルク材料を粉砕すると粉末としてMnMXが製造される。なお、上記X(ホウ素Bまたは炭素C)のモル比を1ではなく1~1.05と示したのは、焼成の処理中に欠損する可能性のあるX原子を補うためにXの比率が調整されることを示している。
[5-1-2 第2の工程]
 固相反応法の第2の工程を三つの場合に分けて説明する。一つは、製造される粉末が、組成式(2)のMn 1-x Nである場合、次に、組成式(3)のMn3+y 1-x-y N(x、yは0を超え1未満)の場合、最後に、組成式(5)のMn 1-x 1-y(Xは軽元素、x、yは0を超え1未満)の場合である。なお、組成式(4)(Mn1-δ δ 1-x N(xは0を超え1未満、δは0を超え1未満)については5-2に記載する。
[5-1-2-1 第2の工程:Mn 1-x N]
 固相反応法の第2の工程におけるMn 1-x N(組成式(2))の製造では、まず、第1の工程により製造したMnN粉末とMnN粉末とを秤量し、目的のモル比(1-x):xを与える比率に混合し十分に攪拌した後、真空封入状態または窒素ガス1気圧の雰囲気下で、800℃、60時間の加熱によりバルク材料を作製する。そのバルク材料を粉砕して、Mn 1-x Nの粉末を製造する。
[5-1-2-2 第2の工程:Mn3+y 1-x-y N(x、yは0を超え1未満)(組成式(3))については、第1の工程により製造したMnN、MnN、MnNそれぞれの粉末を秤量し、目的のモル比y:(1-x-y):xを与える比率に混合して十分に攪拌した後、真空封入もしくは窒素ガス1気圧の雰囲気で、800℃にて60時間加熱してバルク材料を作製する。そしてそのバルク材料を粉砕して粉末とする。
[5-1-2-3 第2の工程:Mn 1-x 1-y(x、yは0を超え1未満)]
 そして、固相反応法の第2の工程におけるMn 1-x 1-y(x、yは0を超え1未満)(組成式(5))の製造においては、第1の工程により製造したMnN、MnNの粉末と、第1の工程により製造したMnMX(MはMまたはM)が原料となる。これらを目的の組成となるように秤量し、十分に攪拌した後、石英管に真空封入し、800℃、60時間~80時間加熱してバルク材料を作製する。そしてそのバルク材料を粉砕して粉末とする。ここで、目的の組成を実現するためには、例えばMnZn1-xSn1-yであれば、MnZnN、MnSnN、MnZnB粉末を(1-x-y):x:yのモル比を与える比率で混合する。また、例えばMnZn1-xSn1-yであれば、MnZnN、MnSnN、MnSnC粉末を(1-x):(x-y):yのモル比を与える比率で混合する。
 さらに、XがHやOの場合は、上記第2の工程(5-1-2-1もしくは5-1-2-2)により製造されたマンガン窒化物熱膨張抑制剤の粉末を、水素もしくは酸素雰囲気中で熱処理することによってNをHやOにより置換する。Hによる置換の場合には、150℃~350℃、水素圧1気圧~6気圧の条件下で30分から3時間熱処理する。一方、Oによる置換の場合は、250℃~450℃、酸素分圧0.2気圧~1気圧の条件下で2時間~10時間熱処理する。
[5-2 一段階の固相反応法]
 また、本実施形態として採用される熱膨張抑制剤の粉末を製造するためには、上記二段階の固相反応法の他に、一段階の固相反応法を採用することも可能である。例えば、MnN、Mn、Mnを原料として適当なモル比で混合し、500℃~760℃、24~60時間、窒素雰囲気中で1回の焼成により製造する工程を採用することができる。組成式(4):(Mn1-δ δ 1-x N(xは0を超え1未満、δは0を超え1未満)については、この一段階の固相反応を用いることができる。原料をMnN、単体M、単体M、および単体MもしくはMの窒化物(全て粉末)として、それぞれをモル比3(1-δ)/2:(1-x):x:3δだけ秤量し、攪拌した後、石英管に真空封入して760℃、60時間加熱して前反応体を作製する。それを粉砕した後、再度石英管に真空封入し、800℃、60時間加熱してバルク材料を作製する。それを粉砕して粉末とする。組成式(4)については5-1-2-3に記載した方法をもって、Nの一部をHやOと置換できる。
[5-3 金属複合材料の作製]
 次に、上記の手順で製造された粉末状のマンガン窒化物熱膨張抑制剤と金属相となる単体金属または合金の粉末とを複合化し金属複合材料を形成する工程について説明する。図4は、金属複合材料を形成する工程を示すフローチャートである。
[5-3-1 通電焼結]
 上記の手順で製造された粉末状のマンガン窒化物熱膨張抑制剤を、金属相となる単体金属または合金の粉末に対し所定の比率で混合し攪拌して混合粉を準備する(S102)。次に、その混合粉を例えばグラファイト製の焼結型に収容し、例えば、真空槽などの内部における真空雰囲気の空間に配置することにより、混合粉を密閉状態とする(S104)。そして、混合粉を加熱し焼結を実施する(S110)。
 焼結工程(S110)では、例えば、温度300℃~650℃の温度において、圧力10MPa~60MPaの圧力を加える(S112)。そして、例えば、焼結型として、中央に内径10mm~20mmの円筒状収容部を有するドーナツ状のダイと、そのダイの円筒状の収容部に外部から内挿されて円筒軸にそって円筒状収容部の空間を圧縮するパンチとを組み合わせたグラファイト製のものを利用した場合、250A~750A程度のパルス電流を通電時20ミリ秒~60ミリ秒、休止時4ミリ秒~10ミリ秒を1サイクルとする条件で断続させながら流すことにより、混合粉と焼結型とのいずれかまたは両方にジュール熱を生成させる(S114)。その状態を2分~60分保持することにより、焼結型の内部において金属複合材料の複合化が進行する。なお、電流の通電条件は、使用する材料や作製される金属複合材料における熱膨張抑制剤や金属相の組成やこれらの混合比率、焼結型のサイズ等により事前に決定しておく。こうして、例えば金属相の材質により融点や電気抵抗率が変化し、また、焼結型のサイズによって電流密度が変化することに適合する条件を見出しておく。なお、通電条件によっては、いわゆる放電プラズマ焼結法と呼ばれる種類の通電焼結法が実現している場合もある。
 最後に、冷却し、焼結型を取り外し、真空槽から取り出すことによって密閉状態を解除して、複合化された金属複合材料を取り出す(S120)。これで通電焼結法を利用した金属複合材料の複合化処理が終了する。
 なお、本願発明者らの検討によれば、上記通電時間が短すぎると複合化が不十分となる場合があり、長すぎると、熱膨張抑制剤が金属相と化学反応して熱膨張抑制剤による熱膨張抑制効果がみられないようである。ただし、本実施形態においては、概して、焼結工程における温度が温度300℃~650℃と低く、通電時間も5分~15分にて十分に焼結が進行する。また、昇温、降温過程も十数分~30分程度のごく短時間で可能である。つまり、金属層となる単体金属または合金の融点に比べて低い温度で、しかも短時間、密閉状態において行なわれる焼結においては、熱膨張抑制剤の変質はほとんどみられない。この点において、高圧浸透法においてマトリックス金属相を形成するために金属の融点より高く、溶浸を進行させるため、そして冷却にも時間を要し、熱膨張抑制剤の組成、金属相の組成、こられの比率に制約があり十分な精度が得られなかったのとは大きく異なる。
[5-3-2 冷間成形低温焼結法]
 本実施形態の金属複合材料を製造するための焼結方法は必ずしも通電焼結には限定されない。例えば、本願の発明者が冷間成形低温焼結法と呼ぶ手法によって焼結して金属複合材料を製造することも可能である。この冷間成形低温焼結法は、熱膨張抑制剤の粉末と金属相となる金属粉末とを混合して準備した混合粉を、プレス用金型でコールドプレスして取り出し、それを石英官に真空封入した状態にて焼成する手法である。例えば、プレス用金型にて10MPa~30MPa程度の一軸圧縮によって成形体を作ることが可能であり、250℃~300℃、2時間~12時間、石英管中、真空度は約10-3torr(約0.13Pa)を雰囲気とする焼成条件により、金属複合材料となるように複合化することが可能である。
[5-4 熱膨張評価に用いる焼結体試料の作製]
 本実施例で用いた熱膨張抑制剤の熱膨張評価のためには、以下の手順で、熱膨張評価用試料片を作製した。組成式(2)、(3)、(5)については第2の工程において、粉末の一部を冷間加圧して矩形の試料片の作製し、それを粉体とともに石英管封入して、加熱することにより得た。また組成式(4)については、2回目の石英管封入をする際、粉末の一部を冷間加圧して矩形の試料片の作製し、それを粉体とともに石英管封入して、加熱することにより得た。
[6 実施例]
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は本発明の趣旨を逸脱しない限り適宜変更することかできる。したがって、本発明の範囲は以下の具体例に限定されるものではない。上述した金属複合材料の製造方法を実施し、各実施例につき少なくとも再現性の確認が可能な数の試験片を作製した。上述した各作製条件において、各金属複合材料を作製した具体的条件は、以下に説明する通りである。ここでは、各試験片を、実施例1~19と呼ぶ。各実施例の概略は表1および表2のとおりである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 さらに、各実施例において採用した金属相の組成および熱膨張抑制剤の組成を表3および表4にまとめている。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 なお、上述した各組成の熱膨張抑制剤と各実施例との対応は、
 Mn 1-x N(xは0を超え1未満):実施例1、3、4、6~10、17
 Mn3+y 1-x-y N(x、yは0を超え1未満):実施例11~14
 Mn 1-x 1-y(x、yは0を超え1未満):実施例2、5、15、16、18、19
となる。
[6-1 熱膨張抑制剤の製造]
 各実施例において第1の工程および第2の工程における中間粉末や金属複合材料の製造のために採用した実際の温度および時間は次に説明する通りとした。
[6-1-1 熱膨張抑制剤の製造:実施例1、3、4、6~10および17]
 実施例1、3、4、6および7のために、MをZn、MをSn、そしてxを0.45として、上述したMn 1-x N(xは0を超え1未満)のための第1の工程および第2の工程を実施し、MnZn0.45Sn0.55Nの組成比の熱膨張抑制剤を製造した。具体的には、MnZn0.45Sn0.55Nの組成比の熱膨張抑制剤のためのMnZnNとMnSnNの中間粉末を(5-1-1-1)に説明した第1の工程によって作製した。この際、MnN(粉末)とZn(粉末)を、石英管による密閉状態において500℃、60時間焼成して製造した。また、MnSnNの粉末は、MnN(粉末)とSn(粉末)を、石英管による密閉状態において760℃、60時間焼成して製造した。次に、MnZnNの粉末とMnSnNの粉末から、(5-1-2-1)に説明した第2の工程によってMnZn0.45Sn0.55Nの粉末を製造した。
 また、実施例8および10のために、MをCu、MをSn、そしてxを0.5として、上述したMn 1-x N(xは0を超え1未満)のための第1の工程および第2の工程を実施し、MnCu0.5Sn0.5Nの組成比の熱膨張抑制剤を製造した。具体的には、MnCu0.5Sn0.5Nの組成比の熱膨張抑制剤のためのMnCuNとMnSnNの中間粉末を(5-1-1-1)に説明した第1の工程によって作製した。この際、MnN(粉末)とCu(粉末)を、石英管による密閉状態において760℃、60時間焼成して製造した。また、MnSnNの粉末は、上述したとおりである。次に、MnCuNの粉末とMnSnNの粉末から、(5-1-2-1)に説明した第2の工程によってMnCu0.5Sn0.5Nの粉末を製造した。
 さらに、実施例9のために、MをGa、MをGe、そしてxを0.27として、上述したMn 1-x N(xは0を超え1未満)のための第1の工程および第2の工程を実施し、MnGa0.73Ge0.27Nの組成比の熱膨張抑制剤を製造した。具体的には、MnGa0.73Ge0.27Nの組成比の熱膨張抑制剤のためのMnGeNの中間粉末を(5-1-1-1)に説明した第1の工程によって作製した。この際、MnN(粉末)とGe(粉末)を、石英管による密閉状態において760℃、60時間焼成して製造した。なお、MnGaNの粉末は、上述した第1の工程に代えて、MnNとGaNそれぞれの粉末原料を混合して窒素ガス1気圧、760℃で60時間加熱し、粉砕して製造した。次に、MnGaNの粉末とMnGeNの粉末から、(5-1-2-1)に説明した第2の工程によってMnGa0.73Ge0.27Nの粉末を製造した。
 そして実施例17のために、MをCu、MをGe、そしてxを0.45として、上述したMn 1-x N(xは0を超え1未満)のための第1の工程および第2の工程を実施し、MnCu0.55Ge0.45Nの組成比の熱膨張抑制剤を製造した。MnGeNとMnCuNの中間粉末は上述したように作製し、これらの中間粉末から、(5-1-2-1)に説明した第2の工程によってMnCu0.55Ge0.45Nの粉末を製造した。
[6-1-2 熱膨張抑制剤の製造:実施例11~14]
 実施例11および12のために、MをZn、MをSn、xを0.25、そしてyを0.15として、上述したMn3+y 1-x-y N(x、yは0を超え1未満)のための第1の工程および第2の工程を実施し、Mn3.15Zn0.6Sn0.25Nの組成比の熱膨張抑制剤を製造した。具体的には、(6-1-1)に上述したようにMnZnNの粉末とMnSnNの粉末とを製造した。また、(5-1-1-2)に説明した第1の工程によりMnNの粉末を製造した。これらの中間粉末から、(5-1-2-2)に説明した第2の工程によりMn3.15Zn0.6Sn0.25Nの粉末を製造した。
 また、実施例13のために、上記の工程においてxを0.4、yを0.1として、Mn3.1Zn0.5Sn0.4Nの粉末を製造した。また、実施例14のために、上記の工程においてxを0.25、yを0.0.25として、Mn3.5Zn0.25Sn0.25Nの粉末を製造した。
[6-1-3 熱膨張抑制剤の製造:実施例2、5、15、16、18および19]
 実施例2、5、18および19のために、MをZn、MをSn、XをB、xを0.25、そしてyを0.05として上述したMn 1-x 1-y(x、yは0を超え1未満)のための第1の工程および第2の工程を実施し、MnZn0.75Sn0.250.950.05の組成比の熱膨張抑制剤を製造した。具体的には、(6-1-1)に上述したようにMnZnNの粉末とMnSnNの粉末とを製造した。また、(5-1-1-3)に上述したようにしてMn(粉末)、Zn(粉末)、B(粉末)から、800℃で80時間の熱処理によりMnZnBの粉末を製造した。Mn、Zn、Bの比率は、この順に、3:1:1.05のモル比を与える比率に混合した。そして、MnZnNの粉末とMnSnNの粉末とMnZnBの粉末とから、(5-1-2-3)に従って800℃、60時間の加熱により、MnZn0.75Sn0.250.950.05の組成比の熱膨張抑制剤を製造した。
 また、実施例15および16のために、上記の工程においてMnZnN、MnSnN,MnSnCを用いて、それぞれMnZn0.4Sn0.60.850.15とMnZn0.4Sn0.60.880.12の粉末を製造した。
[6-2 金属複合材料の作製]
 上述した各実施例のための熱膨張抑制剤の粉末と、各実施例のための単体金属または合金の粉末との混合した混合粉を準備し各組成の金属複合材料を作製した。単体金属または合金の粉末は、アルミニウム(実施例1、2、9、10、12、14、15および17~19)、真鍮(実施例3および16、なお、ここでの真鍮はC2700(Cu65wt%Zn35wt%)とした)、鉄(実施例6)、チタン(実施例7)、銅(実施例4、5、8および11)、マグネシウム(実施例13)とした。混合比率は、熱膨張抑制剤の粉末と単体金属または合金の粉末との体積分率によって目的の比率とした。具体的には、熱膨張抑制剤の体積%対単体金属または合金の体積%で、50vol%対50vol%(実施例1、3~7、11、13、14、16、17)、40vol%対60vol%(実施例2、8、10、18、19)、30vol%対70vol%(実施例9)、60vol%対40vol%(実施例12)、70vol%対30vol%(実施例15)とした。なお、これらの体積分率は、焼結前の熱膨張抑制剤および金属の粉末の重量から、それぞれの比重を用いて算出した。熱膨張抑制剤の比重は、粉末X線回折の結果から実験で求めた格子定数と化学組成の式(例えばMn3.15Zn0.6Sn0.25N)から算出した理論値7.2を用いた。理論値の計算に必要な原子量は、文献値(「理科年表」、国立天文台編、丸善、平成11年版)を用いた。金属の比重についてはJIS規格の数値を用いた。
 実施例1~16、18および19は、放電プラズマ焼結法を採用して焼結した。具体的には、放電プラズマ焼結装置(Syntex lab.、SPSシンテックス株式会社(日本))を利用して、各組成の金属複合材料を作製した。その動作条件は、実施例1~12のすべてにおいて、真空雰囲気、圧力40MPaの条件の下、内径15mmの円柱状収容部をもつグラファイト製ダイを型として、通電時40ミリ秒、休止時7ミリ秒の条件でパルス電流を流して複合化した。なお、上記グラファイト製ダイの外側面に感温部を接触させた熱電対温度計の温度が目標の複合化温度になるように電流を制御した。実施例それぞれの条件は前掲表2に示したとおりとした。一例を説明すると、実施例1については、複合化温度350℃、保持時間7分であった。最大電流値は490Aであった。同様に実施例2~16、18および19についてはも表2に明示したように複合化温度および保持時間を設定し、その際の最大電流値が得られている。
 ここで、電流の制御のための複合化温度は、金属相の組成に応じて決定している。融点が660℃であるAlを作用する実施例1、2、9、10、12、14、15、18、および19は、複合化温度を350℃とした。真鍮(融点1100℃)を採用する実施例3、16の複合化温度を600℃とした。Cu(融点1083℃)を採用する実施例4、5、8、11の複合化温度を550℃とした。Fe(融点1539℃)を採用する実施例6の複合化温度を550℃とした。Ti(融点1727℃)を採用する実施例7の複合化温度を650℃とした。Mg(融点651℃)を採用する実施例13の複合化温度を350℃とした。このように、通電焼結を用いる実施例1~16、18、19において複合化された温度は、グラファイト製ダイの温度を、金属相となる金属材料の融点より少なくとも300℃以上低温にして複合化処理を行なった。
 また、実施例17は、冷間成形低温焼結法により金属複合材料を作製した。具体的には、プレス用金型で圧力20MPaの軸加圧によってコールドプレスして取り出し、それを石英官に真空封入した状態にて、250℃、12時間焼成条件した。
 上記の試料作製工程において、原料は全て純度99.9%以上、粒径1μm~200μmの粉末であった。また、第1の工程により製造された各中間粉末の粒径は、粒径1~200μmであった。各原料粉などの秤量、混合および攪拌は全て窒素ガス雰囲気にて行った。なお、用いた窒素ガスは、フィルター(DC-A4およびGC-RX、日化精工株式会社(日本))により水分と酸素を除去した。
[6-3 線熱膨張の測定]
 作製した各実施例の金属複合材料の線熱膨張ΔL/Lはつぎの二つの測定手法によって測定することが可能である。なお、これらの測定手法の使い分けは、サンプル形状により選択される。
 線熱膨張の第1の測定手法においては、レーザー光干渉型熱膨張計(例えば、LIX-2、アルバック理工株式会社(日本))により、例えば、5mm×5mm×12mmの直方体形状に整形した試料を測定する。試料は、例えば、同装置の光干渉用石英板に挟み込むために両端部を突起状に加工する。そしてその線熱膨張の測定は、例えば、液体窒素温度から220℃までの範囲にて実行することが可能である。
 線熱膨張の第2の測定手法においては、ストレインゲージ(例えば、KFL-02-120-C1-11、共和電業株式会社(日本))を用いて板状の試料を対象とする。上記ストレインゲージは、例えば、4mm×4mm×1mmの板状に整形した焼結体試料(「板状試料」)に接着剤(PC-6、共和電業株式会社(日本))により貼り付け一体化される。この一体化したものが測定用試料片となる。なお、この一体化の手順の例は、まず、板状試料に接着剤を塗布しストレインゲージを配置する。その状態のものを、文書用のダブルクリップ(例えば、J-35、コクヨ株式会社(日本))により挟み、厚み方向の圧縮荷重を印加する。つぎに、その状態で加熱し、制御された雰囲気に所定時間置いて接着剤を硬化させることにより、板状試料にストレインゲージが固着される。具体的な硬化処理は、窒素ガス1気圧の雰囲気のもと、80℃で1時間、130℃で2時間、150℃で2時間維持し、その後、ダブルクリップによる荷重を解除しさらに窒素ガス1気圧の雰囲気のもとにて150℃で2時間維持することにより接着剤を硬化させる、というものである。
 第2の線熱膨張の測定手法においては、その測定用試料片のストレインゲージの抵抗値Rが、例えば、物理特性評価システム(PPMS6000、Quantum Design Inc.(米国))により測定される。その測定のためには、例えば、事前に、参照試料(純度99.99%の無酸素銅板)を用いる参照測定によりストレインゲージを含む測定系固有の補正値が算出される。具体的には、測定用試料片と同様の条件にて同種のストレインゲージを固着させておいた参照試料を対象にすることにより、ストレインゲージ抵抗歪み値ΔR/Rを物理特性評価システムにより測定する。そしてその値を、Cuについての線膨張率の文献値(G. K. White and J. G. Collins, J. Low Temp. Phys. 7, 43 (1972)、および G. K. White, J. Phys. D: Appl. Phys. 6, 2070 (1973))と比較することより、同種のストレインゲージの抵抗歪み値の測定値から差し引くべき補正値を決定する。
 そして、測定系の動作条件を参照測定のものと同様に維持しながら測定用試料片のストレインゲージから取得される抵抗歪み値を測定し、上記補正値を差し引く。この測定により、各金属複合材料の測定用試料片についての線熱膨張ΔL/Lを算出する。
[6-4 測定結果]
 以下、各実施例における金属複合材料の線熱膨張ΔL/Lの実測値をグラフにして示す。またその結果の概要を前掲表2に示している。図5~図22は、実施例1~19の金属複合材料の線熱膨張を各基準温度T(数式(1))に基づき、横軸を温度、縦軸をΔL/L(10-3の目盛)として描いたグラフである。基準温度は、100℃(実施例1、3、4、6、7、9、13、15;図5、7、8、10、11、13、17、19)および0℃(実施例2、5、8、10~12、14、16~19;図6、9、12、14~16、18、20~22)である。各グラフには、確認の参考のため、組成、基準温度T、複合化方法を併記している。実施例1~16および実施例18,19の実測値は第1の測定手法により測定されたものである。実施例17については第2の測定手法により測定されたものである。
[6-5 放電プラズマ焼結法の技術的利点]
 上述した各実施例においては、各組合せの熱膨張抑制剤は、変質することなく各単体金属または合金の金属相と複合化された。図23に、その一例をX線回折実験結果として示す。このX線回折実験結果では、CuのKα1輝線により、実施例1の金属複合材料の回折パターンを取得した。比較のため、実施例1の金属複合材料をなす金属相(Al)と熱膨張抑制剤(MnZn0.45Sn0.55N)がそれぞれ単独で示す回折パターンのピーク位置を、それぞれ記号にて明示している。図23のように、実施例1の金属複合材料の示す回折ピークは、金属相のAlのものか、熱膨張抑制剤のMnZn0.45Sn0.55Nのものかのいずれかのもののみであることが確認された。このように、放電プラズマ焼結法により複合化された実施例1の金属複合材料においては、熱膨張抑制剤が変質することなく、アルミニウムと複合化されたことを確認した。この結果は、放電プラズマ焼結法の技術的利点、つまり融点に比べて低温で、かつ、短時間の加熱により複合化が完了したため、と本願の発明者は考えている。
[6-6 開放形の加熱が熱膨張抑制剤に与える影響]
 気密性の高いグラファイト・ダイおよびパンチを用いた本発明の実施形態が、開放系かつ予熱工程を必要とする高圧浸透法に比べて極めて有効であることを、金属と複合化していない熱膨張抑制剤Mn3.15Zn0.6Sn0.25Nの開放系での熱処理により確認した。図24にはMn3.15Zn0.6Sn0.25Nを窒素ガス中に800℃、12時間接触させ続けた熱膨張抑制剤Mn3.15Zn0.6Sn0.25N試料についての線熱膨張の測定結果である。熱膨張抑制剤Mn3.15Zn0.6Sn0.25Nは、本実施形態の実施例11および12で採用した熱膨張抑制剤であり、6-1-2に示した実施例11~14と同様に粉末として製造した。その熱膨張抑制剤Mn3.15Zn0.6Sn0.25Nの粉末は開放系で熱処理すると、その熱膨張特性が著しく変化する事を確認した。なお、熱膨張特性を測定するために、熱膨張抑制剤Mn3.15Zn0.6Sn0.25Nの粉末は、5-4に示した手順により熱膨張抑制剤Mn3.15Zn0.6Sn0.25Nの焼結体を得た。この開放系における熱処理による著しい変化が明快に示しているのは、気密性の高いグラファイト・ダイおよびパンチの焼結型において短時間のうちに複合化を完了する発明の実施形態の有用性である。すなわち、図24に示すように、Znを含有するマンガン窒化物熱膨張抑制剤は、開放系において熱処理された場合その熱膨張特性が著しく変化し、熱膨張の度合いや動作温度域が変化した。この結果は、Zn系のマンガン窒化物熱膨張抑制剤を採用して単体金属または合金の粉末と複合化した金属複合材料の製造工程において、開放系での熱処理を行なうと、熱膨張特性を再現よく制御することが著しく困難になることを示している。また、組成分析のために別途測定したオージェ分析(日本電子 JAMP-7800)によれば、上記の開放系での熱処理により、熱膨張抑制剤Mn3.15Zn0.6Sn0.25Nの焼結体に含有されているZnのうち少なくとも10%が、昇華・析出していることが確認された。
[6-7 実施例に対する評価]
 以上の各実施例により、本実施形態の所期の目的のいくつかが実際に確認された。各実施例に対する評価を前掲の表2に示している。また前掲の表3には各実施例に採用した金属の線膨張係数も併記している。さらに熱膨張抑制剤のみの性質は、前掲の表4も参照されたい。
 まず、すべての実施例における金属複合材料において、熱膨張が少なくともある温度範囲において抑制されたことが確認された。しかも、すべての実施例における金属複合材料は安定して複合化が進行し、機械部品等のための素材として用いることが可能な程度の繰り返し再現性をもって製造された。
 次に、各実施例により各種の熱膨張抑制剤に対する本実施形態の適用可能性が確認された。実施例1、3、4、6または7により、熱膨張抑制剤であるMnZn0.45Sn0.55Nを、各種の金属、つまり、Al、真鍮、Cu、またはTiである金属相に複合化させて金属複合材料を形成することに対し本実施形態が役立つことが確認された。つまり、多様な種類の単体金属または合金が実際に通電焼結による熱膨張抑制剤との複合化の対象となることを確認した。熱膨張抑制剤であるMnZn0.45Sn0.55Nは、少なくとも122℃~135℃の範囲にて線膨張係数が-50ppm/℃の負の熱膨張を示す材質である(表4)。そして、その負の熱膨張を示す温度範囲にほぼ対応して、複合化後の金属複合材料それぞれの線膨張係数が-32ppm/℃~+5ppm/℃の範囲で制御された(表2)。ここで、Al、真鍮、Cu、Fe、Tiの、この温度における線膨張係数はそれぞれ、約23ppm/℃、約18ppm/℃、約17ppm/℃、約12ppm/℃、約9ppm/℃である(表3)。したがって、実施例1、3、4、6または7により、顕著な熱膨張抑制効果が得られ、広い範囲で線膨張係数が制御可能であることが実証された。
 実施例2または5により、熱膨張抑制剤であるMnZn0.75Sn0.250.950.05を、各種の金属、つまり、AlまたはCuである金属相に複合化させて金属複合材料を形成することに対し本実施形態が役立つことが確認された。熱膨張抑制剤であるMnZn0.75Sn0.250.950.05は、少なくとも25℃~45℃の範囲にて線膨張係数が-29ppm/℃の負の熱膨張を示す材質である(表4)。そして、その負の熱膨張を示す温度範囲にほぼ対応して、複合化後の金属複合材料それぞれの線膨張係数が-16ppm/℃~+1ppm/℃の範囲で制御された(表3)。ここで、Al、Cuの、この温度における線膨張係数はそれぞれ、約23ppm/℃、約17ppm/℃である(表3)。したがって、実施例2または5により、顕著な熱膨張抑制効果が得られ、広い範囲で線膨張係数が制御可能であることが実証された。
 実施例8または10により、熱膨張抑制剤であるMnCu0.5Sn0.5Nを、各種の金属、つまり、CuまたはAlである金属相に複合化させ金属複合材料を形成することに対し本実施形態が役立つことが確認された。熱膨張抑制剤であるMnCu0.5Sn0.5Nは、少なくとも40℃~60℃の範囲にて線膨張係数が-27ppm/℃の負の熱膨張を示す材質である(表4)。そして、その負の熱膨張を示す温度範囲にほぼ対応して、複合化後の金属複合材料それぞれの線膨張係数が-8ppm/℃~+3ppm/℃の範囲で制御された(表2)。ここで、Cu、Alの、この温度における線膨張係数はそれぞれ、約17ppm/℃、約23ppm/℃である(表3)。したがって、実施例8または10により、顕著な熱膨張抑制効果が得られ、広い範囲で線膨張係数が制御可能であることが実証された。
 実施例9により、熱膨張抑制剤であるMnGa0.73Ge0.27Nを、各種の金属、つまりAlである金属相に複合化させて金属複合材料を形成することに対し本実施形態が役立つことが確認された。熱膨張抑制剤であるMnGa0.73Ge0.27Nは、少なくとも130℃~160℃の範囲にて線膨張係数が-35ppm/℃の負の熱膨張を示す材質である(表4)。そして、その負の熱膨張を示す温度範囲にほぼ対応して、複合化後の金属複合材料の線膨張係数がおよそ5ppm/℃以内に制御された(表2)。ここで、Alの、この温度における線膨張係数は約23ppm/℃である(表3)。したがって、実施例9により、顕著な熱膨張抑制効果が得られることが実証された。
 実施例11または12により、熱膨張抑制剤であるMn3.15Zn0.6Sn0.25Nを、各種の金属、つまりCuまたはAlである金属相に複合化させて金属複合材料を形成することに対して本実施形態が役立つことが確認された。熱膨張抑制剤であるMn3.15Zn0.6Sn0.25Nは、少なくとも10℃~50℃の範囲にて線膨張係数が-21ppm/℃の負の熱膨張を示す材質である(表4)。そして、その負の熱膨張を示す温度範囲にほぼ対応して、複合化後の金属複合材料の線膨張係数が4ppm/℃~7ppm/℃の範囲で制御された(表2)。ここで、Cu、Alの、この温度における線膨張係数はそれぞれ、約17ppm/℃、約23ppm/℃である(表3)。したがって、実施例11または12により、顕著な熱膨張抑制効果が得られることが実証された。
 実施例13により、熱膨張抑制剤であるMn3.1Zn0.5Sn0.4Nを、各種の金属、つまりMgである金属相に複合化させて金属複合材料を形成することに対して本実施形態が役立つことが確認された。熱膨張抑制剤であるMn3.1Zn0.5Sn0.4Nは、少なくとも50℃~75℃の範囲にて線膨張係数が-23ppm/℃の負の熱膨張を示す材質である(表4)。そして、その負の熱膨張を示す温度範囲にほぼ対応して、複合化後の金属複合材料の線膨張係数がおよそ1ppm/℃に制御された(表2)。ここで、Mgの、この温度における線膨張係数は約25ppm/℃である(表3)。したがって、実施例13により、顕著な熱膨張抑制効果が得られることが実証された。
 実施例14により、熱膨張抑制剤であるMn3.5Zn0.25Sn0.25Nを、各種の金属、つまりAlである金属相に複合化させて金属複合材料を形成することに対して本実施形態役立つことが確認された。熱膨張抑制剤であるMn3.5Zn0.25Sn0.25Nは、少なくとも-120℃~15℃の範囲にて線膨張係数が±1ppm/℃以内の低熱膨張を示す材質である(表4)。そして、その低熱膨張を示す温度範囲にほぼ対応して、複合化後の金属複合材料の線膨張係数がおよそ10ppm/℃に制御された(表2)。ここで、Alの、この温度における線膨張係数は約23ppm/℃である(表3)。したがって、実施例14により、-120℃~7℃という広い温度範囲で顕著な熱膨張抑制効果が得られることが実証された。
 実施例15により、熱膨張抑制剤であるMnZn0.4Sn0.60.850.15を、各種の金属、つまりAlである金属相に複合化させて金属複合材料を形成することに対して本実施形態が役立つことが確認された。熱膨張抑制剤であるMnZn0.4Sn0.60.850.15は、少なくとも45℃~100℃の範囲にて線膨張係数が-8ppm/℃の負の熱膨張を示す材質である(表4)。そして、その負の熱膨張を示す温度範囲にほぼ対応して、複合化後の金属複合材料の線膨張係数がおよそ1ppm/℃に制御された(表2)。ここで、Alの、この温度における線膨張係数は約23ppm/℃である(表3)。したがって、実施例15により、顕著な熱膨張抑制効果が得られることが実証された。
 実施例16により、熱膨張抑制剤であるMnZn0.4Sn0.60.880.12を、各種の金属、つまり真鍮である金属相に複合化させて金属複合材料を形成することに対して本実施形態が役立つことが確認された。熱膨張抑制剤であるMnZn0.4Sn0.60.880.12は、少なくとも20℃~60℃の範囲にて線膨張係数が-23ppm/℃の負の熱膨張を示す材質である(表4)。そして、その負の熱膨張を示す温度範囲にほぼ対応して、複合化後の金属複合材料の線膨張係数がおよそ3ppm/℃に制御された(表2)。ここで、
Alの、この温度における線膨張係数は約23ppm/℃である(表3)。したがって、実施例16により、顕著な熱膨張抑制効果が得られることが実証された。
 そして、実施例17により、熱膨張抑制剤であるMnCu0.55Ge0.45Nを、各種の金属、つまりAlである金属相に複合化させて金属複合材料を形成することに対し本実施形態が役立つことが確認された。熱膨張抑制剤であるMnCu0.55Ge0.45Nは、少なくとも-15℃~50℃の範囲にて線膨張係数が-15ppm/℃の負の熱膨張を示す材質である(表4)。そして、その負の熱膨張を示す温度範囲にほぼ対応して、複合化後の金属複合材料は線熱膨張が150ppm以内に抑えられた(表2)。これは線膨張係数の平均値が±2.5ppm/℃以内に抑制できていることに相当する。ここで、Alの、この温度における線膨張係数は約25ppm/℃である(表3)。したがって、実施例17により、顕著な熱膨張抑制効果が得られることが実証された。
 さらに、各実施例により各種の粉末冶金の手法に対する本実施形態の適用可能性が確認された。すなわち、実施例1~16および実施例18、19と、実施例17との対比により、本実施形態が放電プラズマ焼結とともに冷間成形低温焼結法においても実施されることが確認された。
 加えて、各実施例により各種の金属相に対する本実施形態の適用可能性が確認された。すなわち、実施例1、3、4、6および7の相互の対比により、本実施形態において、金属相の材質が、Al(融点約660℃)、真鍮(融点約1100℃、ただし、組成に依存)、Cu(融点約1083℃)、Fe(融点約1539℃)、Ti(融点約1727℃)と融点が大きく変化していても同一の熱膨張抑制剤であるMnZn0.45Sn0.55Nが複合化されること、そして、作製された金属複合材料において類似の温度範囲において熱膨張抑制作用が実現されることが確認された。特に、実施例1、3、4、6および7により、融点の高さから高圧浸透法を適用して複合化すること自体が難しかった真鍮、Cu、Fe、Tiを複合化のための金属相として採用しうることが確認された。また、実施例1、3、4、6および7により、高圧浸透法においてZnの昇華・析出のために採用が難しかった熱膨張抑制剤であるMnZn0.45Sn0.55Nを、融点の高い各種の金属相に複合化させて金属複合材料を形成することに対し本実施形態が役立つことが確認された。
 より具体的には、実施例1と2の対比、および、実施例4と5の対比により、Mn4-x-yZnSn1-z(ただし、0.45≦x≦0.75、0.25≦y≦0.55、0≦z≦0.05)と一般式により表現される熱膨張抑制剤において、値の組(x、y、z)が、(0.45、0.55、0)、および、(0.75、0.25、0.05)の条件において、Al、Cuの金属相を選択しても複合化することが可能であり、本実施形態が役立つことが確認された。とりわけ、これらの対比に、実施例11~14それぞれを加えると、Mn4-x-yZnSn1-z(ただし、0.25≦x≦0.75、0.25≦y≦0.55、0≦z≦0.05)と表現される一般式において、値の組(x、y、z)が、(0.6、0.25、0)、(0.5、0.4、0)および(0.25、0.25、0)となるMnが多い条件において、Al、Cu、Mgの金属相を選択しても複合化することが可能であり、本実施形態が役立つことも確認された。実施例としての測定値は示さないが、Mn4-x-yZnSn1-zの熱膨張抑制剤は、値の組(x、y、z)が、0.45≦x≦0.75、0.25≦y≦0.55、0≦z≦0.05を満たすすべての条件において、各種の金属相に対し安定して複合化することが可能であった。
 加えて、実施例1と15の対比、および、実施例3と16の対比により、Mn4-x-yZnSn1-z(ただし、0.25≦x≦0.75、0.25≦y≦0.55、0≦z≦0.15)と一般式により表現される熱膨張抑制剤において、値の組(x、y、z)が、(0.45、0.55、0)、(0.4、0.6、0.12)、および(0.4、0.6、0.15)の条件において、Al、真鍮の金属相を選択しても複合化することが可能であり、本実施形態が役立つことが確認された。上述したMn4-x-yZnSn1-z(ただし、0.45≦x≦0.75、0.25≦y≦0.55、0≦z≦0.05)との一般式により表現される熱膨張抑制剤と合わせ、Mn4-x-yZnSn1-z(ただし、0.25≦x≦0.75、0.25≦y≦0.55、0≦z≦0.15、XはBまたはC)と一般式により表現される熱膨張抑制剤において、各種の金属相に対し安定して複合化させうることを確認した。
 さらに加えて、各実施例により様々な温度域における様々な熱膨張への本実施形態の適用可能性が確認された。すなわち、実施例1、2、9、10、12、14、15および17の相互の対比により、本実施形態において、同一の金属相Alに対し様々な温度域、例えば-100℃~157℃において、様々な線膨張係数、例えば-32ppm/℃~+10ppm/℃、を実現することが可能であることが確認された。Alをベースとする1種の金属材料でこのように広い範囲にわたり線膨張係数が制御できることは、本発明の金属複合材料の汎用性を示すものとして特筆できる。
 本実施形態の手法が熱膨張制御の再現性に極めて優れていることは、本実施形態により複合化された金属複合材料の熱膨張特性が、通電焼結の条件変更に対して大きく変化せず高い精度で再現されることにより示される。実施例2、18および19の対比により、この性質は実証される。実施例18および19では、熱膨張抑制剤としてMnZn0.75Sn0.250.950.05(40vol%)、金属・合金マトリックスとしてAl(60vol%)からなる複合材料を、複合に際しての保持時間のみを2分(実施例18)、60分(実施例19)と変えて作製した。つまり実施例18および19は、実施例2と同一の金属複合材料を採用し、複合化の保持時間のみを変更したものである。図22には、実施例2、18、19において測定された線膨張を示している。図22に示すように、実施例2、18および19においては、熱膨張特性は高い精度で再現されている。しかも、実施例2、18および19のいずれにおいても、例えば熱膨張抑制剤と金属の混合比を調整することにより、例えば±1ppm/℃以内という高い精度で25℃~45℃の温度域の線膨張係数を制御することが可能である。このように、本実施形態の手法による線膨張係数の制御は、保持時間といった通電焼結の条件に対して大きな依存性を示さず、極めて優れた再現性を有していることが実証された。
 以上、本発明の実施形態を具体的に説明した。上述の実施形態、変形例、および実施例は、いずれも、本出願において開示される発明を説明するために記載されたものであり、本出願の発明の範囲は、特許請求の範囲の記載に基づき定められるべきものである。実施形態の他の組合せを含む本発明の範囲内に存在する変形例もまた、特許請求の範囲に含まれるものである。
 本発明によれば、熱膨張が抑止されまたは制御された各種の金属部材を利用する任意の機械や装置の製造に貢献する。

Claims (19)

  1.  少なくともある温度範囲で負の熱膨張を示す、Mn-Zn-Sn-N系逆ペロフスカイト型マンガン窒化物またはMn-Zn-Ge-N系逆ペロフスカイト型マンガン窒化物の粉末と、金属相となる組成の単体金属または金属合金の粉末とを混合した混合粉を密閉状態に配置して加熱することにより、前記金属相と前記逆ペロフスカイト型マンガン窒化物とが焼結により複合化されている
     熱膨張制御金属複合材料。
  2.  前記逆ペロフスカイト型マンガン窒化物が、
     組成式(1):Mn3+y 1-(x+y) N (0<x<1、0≦y<1)
    の組成式により表されるものである、ただし、金属元素MにはZnを含み、MにはGe、Snの少なくとも1種を含み、Mnの一部は他の元素に置き換わっていてもよく、窒素Nの一部が水素H、ホウ素B、炭素C、酸素Oと置き換わっていてもよく、さらに、MにはGa、Zn、Cu以外の元素を含んでいてもよく、MにはGe、Sn以外の元素を含んでいてもよい
     請求項1に記載の金属複合材料。
  3.  前記逆ペロフスカイト型マンガン窒化物が、
     Mn4-x-yZnSn1-z(ただし、0.45≦x≦0.75、0.25≦y≦0.55、0≦z≦0.05)
     の組成式により表されるものである
     請求項2に記載の金属複合材料。
  4.  少なくともある温度範囲で負の熱膨張を示す、Mn-Cu-Sn-N系逆ペロフスカイト型マンガン窒化物またはMn-Cu-Ge-N系逆ペロフスカイト型マンガン窒化物の粉末と、金属相となる組成の単体金属または金属合金の粉末とを混合した混合粉を密閉状態に配置して加熱することにより、前記金属相と前記逆ペロフスカイト型マンガン窒化物とが焼結により複合化されている
     熱膨張制御金属複合材料。
  5.  少なくともある温度範囲で負の熱膨張を示す、Mn-Ga-Sn-N系逆ペロフスカイト型マンガン窒化物またはMn-Ga-Ge-N系逆ペロフスカイト型マンガン窒化物の粉末と、金属相となる組成の単体金属または金属合金の粉末とを混合した混合粉を密閉状態に配置して加熱することにより、前記金属相と前記逆ペロフスカイト型マンガン窒化物とが焼結により複合化されている
     熱膨張制御金属複合材料。
  6.  前記単体金属または金属合金が、銅、真鍮、鉄、チタンからなる群から選択される少なくとも一の単体金属または金属合金を少なくとも一部の成分として含むものである
     請求項1乃至請求項5のいずれか1項に記載の金属複合材料。
  7.  前記密閉状態にある前記混合粉を加圧しながら、該混合粉と該混合粉を内包する導電性の型とのいずれかまたは双方に電流を流す通電焼結法により、前記型または前記混合粉の温度が、前記金属相の融点よりも低い温度に維持されて複合化されている
     請求項6に記載の金属複合材料。
  8.  前記単体金属または金属合金が、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金いずれかからなる群から選択される少なくとも一の単体金属または金属合金を少なくとも一部の成分として含むものである
     請求項1乃至請求項5のいずれか1項に記載の金属複合材料。
  9.  前記密閉状態にある前記混合粉を加圧しながら、該混合粉と該混合粉を内包する導電性の型とのいずれかまたは双方に電流を流す通電焼結法により、前記型または前記混合粉の温度が、前記金属相の融点よりも低い温度に維持されて複合化されている
     請求項8に記載の金属複合材料。
  10.  前記逆ペロフスカイト型マンガン窒化物の組成、または、前記単体金属または金属合金の組成を、位置に応じて連続的にまたは段階的に変化させることにより、前記金属複合材料の外形を形成するための型の内部に配置して焼結されたものである
     請求項1乃至請求項5のいずれか1項に記載の金属複合材料。
  11.  少なくともある温度範囲で負の熱膨張を示す、Mn-Zn-Sn-N系逆ペロフスカイト型マンガン窒化物またはMn-Zn-Ge-N系逆ペロフスカイト型マンガン窒化物の粉末と、金属相となる組成の単体金属または金属合金の粉末とを互いに混合した混合粉を準備する工程と、
     前記混合粉を密閉状態におく工程と、
     前記密閉状態にある前記混合粉を加圧しながら、該混合粉に対して、または該混合粉を内包する導電性の型に対して電流を流す通電焼結法により該密閉状態にある該混合粉を加熱する焼結工程と
     を含み、これにより、前記金属相と前記逆ペロフスカイト型マンガン窒化物とが複合化される
     熱膨張制御金属複合材料の製造方法。
  12.  少なくともある温度範囲で負の熱膨張を示す、Mn-Cu-Sn-N系逆ペロフスカイト型マンガン窒化物またはMn-Cu-Ge-N系逆ペロフスカイト型マンガン窒化物の粉末と、金属相となる組成の単体金属または金属合金の粉末とを互いに混合した混合粉を準備する工程と、
     前記混合粉を密閉状態におく工程と、
     前記密閉状態にある前記混合粉を加圧しながら、該混合粉に対して、または該混合粉を内包する導電性の型に対して電流を流す通電焼結法により該密閉状態にある該混合粉を加熱する焼結工程と
     を含み、これにより、前記金属相と前記逆ペロフスカイト型マンガン窒化物とが複合化される
     熱膨張制御金属複合材料の製造方法。
  13.  少なくともある温度範囲で負の熱膨張を示す、Mn-Ga-Sn-N系逆ペロフスカイト型マンガン窒化物またはMn-Ga-Ge-N系逆ペロフスカイト型マンガン窒化物の粉末と、金属相となる組成の単体金属または金属合金の粉末とを互いに混合した混合粉を準備する工程と、
     前記混合粉を密閉状態におく工程と、
     前記密閉状態にある前記混合粉を加圧しながら、該混合粉に対して、または該混合粉を内包する導電性の型に対して電流を流す通電焼結法により該密閉状態にある該混合粉を加熱する焼結工程と
     を含み、これにより、前記金属相と前記逆ペロフスカイト型マンガン窒化物とが複合化される
     熱膨張制御金属複合材料の製造方法。
  14.  前記型または前記混合粉の温度を前記金属相の融点よりも低い温度に維持して前記複合化を実行する
     請求項11乃至請求項13のいずれか1項に記載の金属複合材料の製造方法。
  15.  前記電流により放電プラズマが形成される
     請求項14に記載の金属複合材料の製造方法。
  16.  前記密閉状態が、前記金属複合材料の外形を形成するための型または該型を内包し外気から遮断された容器により実現されている
     請求項15に記載の金属複合材料の製造方法。
  17.  前記単体金属または金属合金が、銅、真鍮、鉄、チタンからなる群から選択される少なくとも一の単体金属または金属合金を少なくとも一部の成分として含むものである
     請求項11乃至請求項13のいずれか1項に記載の金属複合材料の製造方法。
  18.  前記単体金属または金属合金が、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金いずれかからなる群から選択される少なくとも一の単体金属または金属合金を少なくとも一部の成分として含むものである
     請求項11乃至請求項13のいずれか1項に記載の金属複合材料の製造方法。
  19.  前記混合粉を密閉状態におく工程が、前記逆ペロフスカイト型マンガン窒化物の組成、または、前記単体金属または金属合金の組成のうちの少なくともいずれかを、位置に応じて連続的にまたは段階的に変化させて、前記粉末を前記金属複合材料の外形を形成するための型の内部に配置する工程を含んでいる
     請求項11乃至請求項13のいずれか1項に金属複合材料の製造方法。
PCT/JP2012/069570 2011-08-02 2012-08-01 熱膨張制御金属複合材料およびその製造方法 WO2013018823A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011169255A JP5935258B2 (ja) 2011-08-02 2011-08-02 熱膨張制御金属複合材料およびその製造方法
JP2011-169255 2011-08-02

Publications (1)

Publication Number Publication Date
WO2013018823A1 true WO2013018823A1 (ja) 2013-02-07

Family

ID=47629342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069570 WO2013018823A1 (ja) 2011-08-02 2012-08-01 熱膨張制御金属複合材料およびその製造方法

Country Status (2)

Country Link
JP (1) JP5935258B2 (ja)
WO (1) WO2013018823A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103450844A (zh) * 2013-08-27 2013-12-18 江苏大学 一种负热膨胀复合材料及其制备方法
CN109133939A (zh) * 2018-10-09 2019-01-04 上海交通大学 一种制备致密超大负热膨胀块体材料的方法
CN109133938A (zh) * 2018-10-09 2019-01-04 上海交通大学 一种负热膨胀材料的制备及其负热膨胀行为的调控方法
RU2676537C1 (ru) * 2017-09-06 2019-01-09 Дмитрий Александрович Серебренников Композитный материал с инварными свойствами
US11097487B2 (en) 2018-12-21 2021-08-24 Hamilton Sundstrand Corporation Apparatus and method for controlling tolerance of compositions during additive manufacturing
CN113381027A (zh) * 2021-02-07 2021-09-10 南京工业大学 一种负膨胀材料复合的钴基钙钛矿材料、制备方法以及固体氧化物燃料电池
CN115323233A (zh) * 2022-08-19 2022-11-11 北京科技大学 一种高温零膨胀合金材料及制备方法
CN116949313A (zh) * 2023-08-01 2023-10-27 哈尔滨工业大学 一种宽温区近零膨胀多相反钙钛矿锰氮化合物/铝复合材料及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2800145B1 (en) * 2013-05-03 2018-11-21 Saint-Gobain Glass France Back contact substrate for a photovoltaic cell or module
JP6317123B2 (ja) * 2014-02-10 2018-04-25 昭和電工株式会社 熱電素子、熱電モジュールおよび熱電素子の製造方法
KR101646766B1 (ko) * 2014-10-24 2016-08-10 한국수력원자력 주식회사 피동촉매형 수소재결합기 및 이의 자연발화 방지방법
JP6804777B2 (ja) * 2019-05-27 2020-12-23 国立大学法人東北大学 耐食性評価用金属試験片の作製方法
CN112410623B (zh) * 2019-08-21 2022-01-07 天津大学 一种高阻尼铝硅基复合材料及其制备方法
JP7494534B2 (ja) 2020-04-02 2024-06-04 トヨタ自動車株式会社 部品の支持構造
JP7386142B2 (ja) * 2020-08-27 2023-11-24 日本特殊陶業株式会社 保持装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051304A (ja) * 1991-06-24 1993-01-08 Sumitomo Coal Mining Co Ltd 傾斜機能材の製造方法
WO2006011590A1 (ja) * 2004-07-30 2006-02-02 Riken 熱膨張抑制剤、ゼロ熱膨張材料、負の熱膨張材料、熱膨張抑制方法および熱膨張抑制剤の製造方法
WO2008111285A1 (ja) * 2007-03-12 2008-09-18 Taiheiyo Cement Corporation 金属-セラミックス複合材料およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051304A (ja) * 1991-06-24 1993-01-08 Sumitomo Coal Mining Co Ltd 傾斜機能材の製造方法
WO2006011590A1 (ja) * 2004-07-30 2006-02-02 Riken 熱膨張抑制剤、ゼロ熱膨張材料、負の熱膨張材料、熱膨張抑制方法および熱膨張抑制剤の製造方法
WO2008111285A1 (ja) * 2007-03-12 2008-09-18 Taiheiyo Cement Corporation 金属-セラミックス複合材料およびその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DING,LEI ET AL.: "Preparation and near zero thermal expansion property of Mn3Cu0.5A0.5N (A=Ni,Sn)/Cu composites", SCRIPTA MATERIALIA, vol. 65, 13 July 2011 (2011-07-13), pages 687 - 690, Retrieved from the Internet <URL:http://ac.els-cdn.com/Sl359646211003976/1-s2.0-S1359646211003976-main.pdf?_tid=da827c80-1692-11e2-bc9b-OOOOOaacb362&acdnat=1350283256_dc28ac92a708bd15945a4c65ee47fe50> [retrieved on 20121015] *
HOLZER,HERMANN ET AL.: "Phase transformation and thermal expansion of Cu/ZrW208 metal matrix composites", JOURNAL OF MATERIALS RESEARCH, vol. 14, no. 3, 1999, NEW YORK; WARRENDALE, PA., pages 780 - 789, Retrieved from the Internet <URL:http://www.arc.nucapt.northwestern.edu/refbase/files/JMR99-CuZWO.pdf> [retrieved on 20121015] *
MATSUMOTO,AKIHIRO ET AL.: "Fabrication and Thermal Expansion of Al-ZrW208 Composites by Pulse Current Sintering Process", MATERIALS SCIENCE FORUM, vol. 426-432, 2003, pages 2279 - 2284 *
SUN,ZHONGHUA ET AL.: "Effects of sintering temperature on microstructure, nitrogen deficiency and densification of spark plasma sintered Mn3Cu0.5Ge0.5N", CERAMICS INTERNATIONAL, vol. 37, 3 February 2011 (2011-02-03), KIDLINGTON, pages 1693 - 1696, Retrieved from the Internet <URL:http://ac.els-cdn.com/S0272884211000599/1-s2.0-S0272884211000599-main.pdf?_tid=3fd808a2-169d-lle2-86fe-00000aabOf27&acdnat=1350287721484c7b429facb06815ba7aOd6396ceel> [retrieved on 20121015] *
VERDON,C. ET AL.: "HIGH-TEMPERATURE REACTIVITY IN THE ZrW208-Cu SYSTEM", SCRIPTA MATERIALIA, vol. 36, no. 9, 1997, pages 1075 - 1080, Retrieved from the Internet <URL:http://ac.els-cdn.com/S1359646296004812/1-s2.0-51359646296004812-main.pdf?_tid=e2408bc2-169e-lle2-bldc-00000aab0f6b&acdnat=1350288423257a8ebd978ce8f12d935e8590539ca2> [retrieved on 20121015] *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103450844A (zh) * 2013-08-27 2013-12-18 江苏大学 一种负热膨胀复合材料及其制备方法
CN103450844B (zh) * 2013-08-27 2016-04-27 江苏大学 一种负热膨胀复合材料及其制备方法
RU2676537C1 (ru) * 2017-09-06 2019-01-09 Дмитрий Александрович Серебренников Композитный материал с инварными свойствами
CN109133939A (zh) * 2018-10-09 2019-01-04 上海交通大学 一种制备致密超大负热膨胀块体材料的方法
CN109133938A (zh) * 2018-10-09 2019-01-04 上海交通大学 一种负热膨胀材料的制备及其负热膨胀行为的调控方法
US11097487B2 (en) 2018-12-21 2021-08-24 Hamilton Sundstrand Corporation Apparatus and method for controlling tolerance of compositions during additive manufacturing
CN113381027A (zh) * 2021-02-07 2021-09-10 南京工业大学 一种负膨胀材料复合的钴基钙钛矿材料、制备方法以及固体氧化物燃料电池
CN115323233A (zh) * 2022-08-19 2022-11-11 北京科技大学 一种高温零膨胀合金材料及制备方法
CN116949313A (zh) * 2023-08-01 2023-10-27 哈尔滨工业大学 一种宽温区近零膨胀多相反钙钛矿锰氮化合物/铝复合材料及其制备方法

Also Published As

Publication number Publication date
JP2013032244A (ja) 2013-02-14
JP5935258B2 (ja) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5935258B2 (ja) 熱膨張制御金属複合材料およびその製造方法
WO2006011590A1 (ja) 熱膨張抑制剤、ゼロ熱膨張材料、負の熱膨張材料、熱膨張抑制方法および熱膨張抑制剤の製造方法
Salvador et al. Transport and mechanical property evaluation of (AgSbTe) 1− x (GeTe) x (x= 0.80, 0.82, 0.85, 0.87, 0.90)
Nakamura et al. Mechanical Properties of Metallic Perovskite Mn3Cu0. 5Ge0. 5N: High‐Stiffness Isotropic Negative Thermal Expansion Material
JP5350553B1 (ja) 耐熱性の優れたCu−ダイヤモンド基固相焼結体を用いた放熱板、その放熱板を用いたエレクトロニクス用デバイス、および耐熱性の優れたCu−ダイヤモンド基固相焼結体を用いた放熱板の製造方法
JP5447743B1 (ja) Fe−Co系合金スパッタリングターゲット材およびその製造方法
EP2418923B1 (en) Thermal expansion suppressing member and anti-thermally-expansive member
Zhou et al. Fully-dense Mn3Zn0. 7Ge0. 3N/Al composites with zero thermal expansion behavior around room temperature
WO2000076940A1 (en) Composite material and semiconductor device using the same
Xie et al. Microstructure and mechanical properties of crystalline particulates dispersed Ni-based metallic glassy composites fabricated by spark plasma sintering
Dmitruk et al. Development of pore-free Ti-Si-C MAX/Al-Si composite materials manufactured by squeeze casting infiltration
JP2021155293A (ja) 積層構造体および半導体製造装置部材
EP1314498B1 (en) Method for producing a composite material
WO2022085134A1 (ja) ダイヤモンド基複合材料及びその製造方法、放熱部材及びエレクトロニクスデバイス
Godbole et al. Al-Si controlled expansion alloys for electronic packaging applications
JP2007107070A (ja) アルミニウム合金−炭化珪素窒化珪素質複合体
JP2004346368A (ja) 複合材料の製造方法、及び複合材料
WO2018083819A1 (ja) 磁性材料の製造方法
JP4332615B2 (ja) 金属−セラミックス複合材料およびその製造方法
CN109022987B (zh) 一种宽温区负热膨胀Laves相合金及其制备方法
CN113122784A (zh) 一种钼基块体非晶合金及其制备方法
KR102012442B1 (ko) 고인성 산화물 소결체의 제조 방법
JP2006009088A (ja) 低熱膨脹複合材料の製造方法および板状複合体、電子機器用部品
WO2023145337A1 (ja) 熱電変換材料、熱電変換材料用組成物、熱電変換素子、熱電変換モジュール、熱電変換システム、熱電変換材料用組成物の製造方法、及び熱電変換材料の製造方法
Hao et al. Negative thermal expansion and spontaneous magnetostriction of Dy2AlFe10Mn6 compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12819883

Country of ref document: EP

Kind code of ref document: A1