WO2013018196A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2013018196A1
WO2013018196A1 PCT/JP2011/067676 JP2011067676W WO2013018196A1 WO 2013018196 A1 WO2013018196 A1 WO 2013018196A1 JP 2011067676 W JP2011067676 W JP 2011067676W WO 2013018196 A1 WO2013018196 A1 WO 2013018196A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
wound
sub
active material
positive electrode
Prior art date
Application number
PCT/JP2011/067676
Other languages
English (en)
French (fr)
Inventor
成吾 中村
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/067676 priority Critical patent/WO2013018196A1/ja
Publication of WO2013018196A1 publication Critical patent/WO2013018196A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-231297
  • winding axes of a plurality of power generation elements wound in a long cylindrical shape are arranged in a horizontal direction, and these power generation elements
  • a battery pack is disclosed that is connected in parallel and stored in a battery case.
  • it is proposed to fill all or part of the gap between the power generation element and the battery case with an insulating filler.
  • Patent Document 2 discloses a battery having a flat wound electrode body in a strip shape in which a coating layer is formed at least on one side at the center of the wound electrode body. A structure in which a positive electrode and a negative electrode and strip-shaped separators are stacked in a flat manner has been proposed.
  • the present inventor considers accommodating a plurality of wound electrode bodies in a battery case as large lithium ions.
  • the plurality of wound electrode bodies are bent and flattened and accommodated in the battery case, when the same electrode is wound on the outermost periphery of the wound electrode bodies to be stacked, The same electrode is opposed to the portion where the wound electrode body and the wound electrode body face each other.
  • a portion where the wound electrode body and the wound electrode body opposed to the same electrode face structurally does not function efficiently as a battery element.
  • the lithium ion secondary battery includes a battery case, a plurality of wound electrode bodies, and at least one sub-electrode.
  • Each of the plurality of wound electrode bodies includes a belt-like positive electrode and a belt-like negative electrode.
  • the belt-like positive electrode and the belt-like negative electrode are wound in a state where they are overlapped with a separator interposed therebetween.
  • the wound electrode body is bent flat along a direction perpendicular to the winding axis when wound.
  • the plurality of wound electrode bodies are accommodated in the battery case in a state in which flat portions of the wound electrode bodies bent flat are overlapped.
  • the sub-electrode is formed on the outermost surface with the opposite polarity to the electrode wound on the outermost periphery of the wound electrode body, and is arranged between the flat portions of the wound electrode body bent flat.
  • the part where the wound electrode body and the wound electrode body are opposed functions efficiently as a battery element structurally.
  • the electrode wound on the outermost periphery of the wound electrode body may be a negative electrode
  • the active material layer formed on the outermost surface of the sub-electrode may be a positive electrode.
  • the sub-electrode is housed in a flat portion of the electrode that is wound on the outermost periphery of the wound electrode body that is bent flat.
  • swelling of a battery case is provided.
  • the sub-electrode includes a sub-current collector and a sub-active material layer formed on both surfaces of the sub-current collector and serving as an electrode opposite to the electrode wound on the outermost periphery of the wound electrode body. It may be a sheet-like electrode. Thus, the sub-electrode can be made thin in order to make the portion where the wound electrode body and the wound electrode body face each other function efficiently as a battery element.
  • the sub-electrode is formed by alternately laminating sheet-like sub-positive electrodes and sheet-like sub-negative electrodes, and the opposite of the sub-positive electrode and the sub-negative electrode that is wound on the outermost periphery of the wound electrode body.
  • a laminated electrode structure in which the electrodes are laminated on the outside may be used.
  • the sub-electrode includes a strip-shaped sub-positive electrode and a strip-shaped sub-negative electrode, and the sub-positive electrode and the sub-negative electrode are wound in a state where they are stacked with a separator interposed therebetween, and when the wound A wound electrode structure that is bent flat along a direction perpendicular to the winding axis may be used.
  • an electrode opposite to the electrode wound on the outermost periphery of the wound electrode body among the sub-positive electrode and the sub-negative electrode is preferably wound on the outermost periphery of the sub-electrode.
  • the positive electrode of the wound electrode body may include, for example, a strip-shaped positive electrode current collector and a positive electrode active material layer formed on both surfaces of the strip-shaped positive electrode current collector. You may have the part in which the positive electrode active material layer is not formed along the long side of one side of a positive electrode electrical power collector.
  • the negative electrode of the wound electrode body may include a strip-shaped negative electrode current collector and negative electrode active material layers formed on both surfaces of the strip-shaped negative electrode current collector. You may have the part in which the negative electrode active material layer is not formed along the long side of the one side of a negative electrode collector.
  • the positive electrode and the negative electrode are preferably stacked so that the positive electrode active material layer and the negative electrode active material layer face each other with a separator interposed therebetween.
  • a portion of the positive electrode current collector where the positive electrode active material layer is not formed protrudes on one side of a portion where the positive electrode active material layer and the negative electrode active material layer face each other, and among the positive electrode current collector, the positive electrode active material It is preferable that a portion of the negative electrode current collector where the negative electrode active material layer is not formed protrudes on the side opposite to the side where the portion where the layer is not formed protrudes.
  • the plurality of wound electrode bodies are preferably stacked such that the side on which the positive electrode current collector protrudes and the side on which the negative electrode current collector protrudes.
  • the negative electrode of the wound electrode body may be bent at the inner peripheral end, and the second sub-electrode serving as the positive electrode may be sandwiched between the bent negative electrodes. Further, the portion of the positive electrode current collector where the positive electrode active material layer is not formed is collected for each wound electrode body, and the portion of the negative electrode current collector where the negative electrode active material layer is not formed is It is good to collect for every turn electrode body.
  • a positive electrode terminal connected to a portion of the positive electrode current collector where the positive electrode active material layer is not formed and a negative electrode active material layer of the negative electrode current collector are formed. It is good to have the electrode terminal of the negative electrode to which the part which is not connected.
  • the electrode terminal of the positive electrode is preferably provided with a plurality of connection sites to which the portion of the positive electrode current collector where the positive electrode active material layer is not formed is connected.
  • the electrode terminal of the negative electrode is preferably provided with a plurality of connection portions to which a portion of the negative electrode current collector where the negative electrode active material layer is not formed is connected.
  • the method for manufacturing a lithium ion secondary battery includes, for example, a step of preparing a plurality of wound electrode bodies, a step of preparing sub-electrodes, a step of stacking a plurality of wound electrode bodies, and a plurality of wound electrodes. And a step of housing the body in the battery case.
  • a belt-like positive electrode and a belt-like negative electrode are provided, and the belt-like positive electrode and the belt-like negative electrode are wound in a state of being overlapped with a separator interposed therebetween, It is preferable to prepare a plurality of wound electrode bodies that are bent flat along the direction orthogonal to the winding axis.
  • a plurality of prepared flat electrode bodies are overlapped with each other, a sub-electrode is disposed between the flat parts of the wound electrode body, and the sub-electrode and the wound electrode body are arranged.
  • the assembly is preferably housed in a battery case.
  • FIG. 1 is a diagram illustrating an example of the structure of a lithium ion secondary battery.
  • FIG. 2 is a view showing a wound electrode body of a lithium ion secondary battery.
  • FIG. 3 is a cross-sectional view showing a III-III cross section in FIG.
  • FIG. 4 is a cross-sectional view showing the structure of the positive electrode active material layer.
  • FIG. 5 is a cross-sectional view showing the structure of the negative electrode active material layer.
  • FIG. 6 is a side view showing a welding location between an uncoated portion of the wound electrode body and the electrode terminal.
  • FIG. 7 is a diagram schematically illustrating a state of the lithium ion secondary battery during charging.
  • FIG. 8 is a diagram schematically showing a state of the lithium ion secondary battery during discharge.
  • FIG. 9 is a diagram showing a lithium ion secondary battery according to an embodiment of the present invention.
  • FIG. 10 is an XX cross-sectional view of the lithium ion secondary battery according to one embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of the lithium ion secondary battery XI-XI according to an embodiment of the present invention.
  • FIG. 12 is a view showing wound electrode bodies 200A to 200D of the lithium ion secondary battery according to one embodiment of the present invention.
  • FIG. 13 is a cross-sectional view showing XIII-XIII cross sections of wound electrode bodies 200A to 200D of the lithium ion secondary battery according to one embodiment of the present invention.
  • FIG. 10 is an XX cross-sectional view of the lithium ion secondary battery according to one embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of the lithium ion secondary battery XI-XI according to an embodiment of the present invention.
  • FIG. 12 is a view showing
  • FIG. 14 is a view showing the wound electrode bodies 200A to 200D and the sub electrodes 500A to 500C of the lithium ion secondary battery according to the embodiment of the present invention.
  • FIG. 15 is a perspective view showing a restraining member of a lithium ion secondary battery according to an embodiment of the present invention.
  • FIG. 16 is a diagram showing a sub-electrode having a laminated electrode structure.
  • FIG. 17 is a diagram illustrating a sub-electrode having a wound electrode structure.
  • FIG. 18 is a diagram illustrating a sub-electrode having a wound electrode structure.
  • FIG. 19 is a view showing a modified example of the wound electrode body.
  • FIG. 20 is a diagram illustrating a vehicle equipped with a lithium ion secondary battery.
  • FIG. 1 shows a lithium ion secondary battery 100.
  • the lithium ion secondary battery 100 includes a wound electrode body 200 and a battery case 300.
  • FIG. 2 is a view showing the wound electrode body 200.
  • FIG. 3 shows a III-III cross section in FIG.
  • the wound electrode body 200 includes a positive electrode sheet 220, a negative electrode sheet 240, and separators 262 and 264.
  • the positive electrode sheet 220, the negative electrode sheet 240, and the separators 262 and 264 are respectively strip-shaped sheet materials.
  • the positive electrode sheet 220 includes a strip-shaped positive electrode current collector 221 and a positive electrode active material layer 223.
  • a metal foil suitable for the positive electrode can be suitably used.
  • a strip-shaped aluminum foil having a predetermined width and a thickness of approximately 15 ⁇ m can be used.
  • An uncoated portion 222 is set along the edge on one side in the width direction of the positive electrode current collector 221.
  • the positive electrode active material layer 223 is held on both surfaces of the positive electrode current collector 221 except for the uncoated portion 222 set on the positive electrode current collector 221 as shown in FIG.
  • the positive electrode active material layer 223 contains a positive electrode active material.
  • the positive electrode active material layer 223 is formed by applying a positive electrode mixture containing a positive electrode active material to the positive electrode current collector 221.
  • FIG. 4 is a cross-sectional view of the positive electrode sheet 220.
  • the positive electrode active material particles 610, the conductive material 620, and the binder 630 in the positive electrode active material layer 223 are schematically illustrated so that the structure of the positive electrode active material layer 223 becomes clear.
  • the positive electrode active material layer 223 includes positive electrode active material particles 610, a conductive material 620, and a binder 630.
  • the positive electrode active material particles 610 a material that can be used as a positive electrode active material of a lithium ion secondary battery can be used.
  • the positive electrode active material particles 610 include LiNiCoMnO 2 (lithium nickel cobalt manganese composite oxide), LiNiO 2 (lithium nickelate), LiCoO 2 (lithium cobaltate), LiMn 2 O 4 (lithium manganate), LiFePO And lithium transition metal oxides such as 4 (lithium iron phosphate).
  • LiMn 2 O 4 has, for example, a spinel structure.
  • LiNiO 2 or LiCoO 2 has a layered rock salt structure.
  • LiFePO 4 has, for example, an olivine structure.
  • LiFePO 4 having an olivine structure includes, for example, nanometer order particles.
  • LiFePO 4 having an olivine structure can be further covered with a carbon film.
  • the conductive material 620 examples include carbon materials such as carbon powder and carbon fiber.
  • the conductive material 620 one kind selected from such conductive materials may be used alone, or two or more kinds may be used in combination.
  • the carbon powder various carbon blacks (for example, acetylene black, oil furnace black, graphitized carbon black, carbon black, graphite, ketjen black), graphite powder, and the like can be used.
  • the binder 630 binds the positive electrode active material particles 610 and the conductive material 620 included in the positive electrode active material layer 223, or binds these particles and the positive electrode current collector 221.
  • a polymer that can be dissolved or dispersed in a solvent to be used can be used as the binder 630.
  • a cellulose polymer (carboxymethylcellulose (CMC), hydroxypropylmethylcellulose (HPMC), etc.), a fluorine resin (eg, polyvinyl alcohol (PVA), polytetrafluoroethylene, etc.) (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP, etc.), rubbers (vinyl acetate copolymer, styrene butadiene copolymer (SBR), acrylic acid-modified SBR resin (SBR latex), etc.)
  • a water-soluble or water-dispersible polymer such as can be preferably used.
  • a polymer polyvinylidene fluoride (PVDF), polyvinylidene chloride (PVDC), polyacrylonitrile (PAN), etc.
  • PVDF polyvinylidene fluoride
  • PVDC polyvinylidene chloride
  • PAN polyacrylonitrile
  • the positive electrode active material layer 223 is prepared, for example, by preparing a positive electrode mixture in which the above-described positive electrode active material particles 610 and the conductive material 620 are mixed in a paste (slurry) with a solvent, applied to the positive electrode current collector 221, and dried. And is formed by rolling.
  • a solvent for the positive electrode mixture either an aqueous solvent or a non-aqueous solvent can be used.
  • a preferred example of the non-aqueous solvent is N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • the polymer material exemplified as the binder 630 may be used for the purpose of exhibiting a function as a thickener or other additive of the positive electrode mixture in addition to the function as a binder.
  • the mass ratio of the positive electrode active material in the total positive electrode mixture is preferably about 50 wt% or more (typically 50 to 95 wt%), and usually about 70 to 95 wt% (for example, 75 to 90 wt%). It is more preferable. Further, the ratio of the conductive material to the whole positive electrode mixture can be, for example, about 2 to 20 wt%, and is usually preferably about 2 to 15 wt%. In the composition using the binder, the ratio of the binder to the whole positive electrode mixture can be, for example, about 1 to 10 wt%, and usually about 2 to 5 wt%.
  • the negative electrode sheet 240 includes a strip-shaped negative electrode current collector 241 and a negative electrode active material layer 243.
  • a metal foil suitable for the negative electrode can be suitably used.
  • the negative electrode current collector 241 is made of a strip-shaped copper foil having a predetermined width and a thickness of about 10 ⁇ m.
  • an uncoated part 242 is set along the edge.
  • the negative electrode active material layer 243 is formed on both surfaces of the negative electrode current collector 241 except for the uncoated portion 242 set on the negative electrode current collector 241.
  • the negative electrode active material layer 243 is held by the negative electrode current collector 241 and contains at least a negative electrode active material.
  • a negative electrode mixture containing a negative electrode active material is applied to the negative electrode current collector 241.
  • FIG. 5 is a cross-sectional view of the negative electrode sheet 240 of the lithium ion secondary battery 100.
  • the negative electrode active material layer 243 includes negative electrode active material particles 710, a thickener (not shown), a binder 730, and the like.
  • the negative electrode active material particles 710 and the binder 730 in the negative electrode active material layer 243 are schematically illustrated so that the structure of the negative electrode active material layer 243 becomes clear.
  • Negative Electrode Active Material Particles 710 one or two or more materials conventionally used for lithium ion secondary batteries can be used without particular limitation.
  • the negative electrode active material is, for example, natural graphite, natural graphite coated with an amorphous carbon material, graphite (graphite), non-graphitizable carbon (hard carbon), graphitizable carbon ( Soft carbon) or a carbon material combining these may be used.
  • the negative electrode active material particles 710 are illustrated using so-called scaly graphite, but the negative electrode active material particles 710 are not limited to the illustrated example.
  • the negative electrode active material layer 243 is prepared, for example, by preparing a negative electrode mixture in which the negative electrode active material particles 710 and the binder 730 described above are mixed in a paste (slurry) with a solvent, and applied to the negative electrode current collector 241 and dried. It is formed by rolling. At this time, any of an aqueous solvent and a non-aqueous solvent can be used as the solvent for the negative electrode mixture.
  • a preferred example of the non-aqueous solvent is N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • the binder 730 the polymer material exemplified as the binder 630 of the positive electrode active material layer 223 (see FIG. 4) can be used.
  • the polymer material exemplified as the binder 630 of the positive electrode active material layer 223 may be used for the purpose of exhibiting a function as a thickener or other additive of the positive electrode mixture in addition to the function as a binder. possible.
  • the separators 262 and 264 are members that separate the positive electrode sheet 220 and the negative electrode sheet 240 as shown in FIG. 1 or FIG.
  • the separators 262 and 264 are made of a strip-shaped sheet material having a predetermined width and having a plurality of minute holes.
  • a single layer structure separator or a multilayer structure separator made of a porous polyolefin resin can be used as the separators 262 and 264.
  • the width b1 of the negative electrode active material layer 243 is slightly wider than the width a1 of the positive electrode active material layer 223.
  • the widths c1 and c2 of the separators 262 and 264 are slightly wider than the width b1 of the negative electrode active material layer 243 (c1, c2>b1> a1).
  • the separators 262 and 264 are made of sheet-like members.
  • the separators 262 and 264 may be members that insulate the positive electrode active material layer 223 and the negative electrode active material layer 243 and allow the electrolyte to move. Therefore, it is not limited to a sheet-like member.
  • the separators 262 and 264 may be formed of a layer of insulating particles formed on the surface of the positive electrode active material layer 223 or the negative electrode active material layer 243, for example, instead of the sheet-like member.
  • the particles having insulating properties inorganic fillers having insulating properties (for example, fillers such as metal oxides and metal hydroxides) or resin particles having insulating properties (for example, particles such as polyethylene and polypropylene). ).
  • the positive electrode sheet 220 and the negative electrode sheet 240 have a positive electrode active material layer 223 and a negative electrode active material layer 243 with separators 262 and 264 interposed therebetween. Are stacked so that they face each other. More specifically, in the wound electrode body 200, the positive electrode sheet 220, the negative electrode sheet 240, and the separators 262 and 264 are stacked in the order of the positive electrode sheet 220, the separator 262, the negative electrode sheet 240, and the separator 264.
  • the positive electrode active material layer 223 and the negative electrode active material layer 243 are opposed to each other with the separators 262 and 264 interposed therebetween. Then, on one side of the portion where the positive electrode active material layer 223 and the negative electrode active material layer 243 face each other, a portion of the positive electrode current collector 221 where the positive electrode active material layer 223 is not formed (uncoated portion 222) protrudes. Yes. A portion of the negative electrode current collector 241 where the negative electrode active material layer 243 is not formed (uncoated portion 242) protrudes on the side opposite to the side where the uncoated portion 222 protrudes.
  • the battery case 300 is a so-called square battery case, and includes a container body 320 and a lid 340.
  • the container main body 320 has a bottomed rectangular tube shape and is a flat box-shaped container having one side surface (upper surface) opened.
  • the lid 340 is a member that is attached to the opening (opening on the upper surface) of the container body 320 and closes the opening.
  • the container main body 320 and the lid body 340 constituting the battery case 300 are made of a lightweight metal such as aluminum or an aluminum alloy. Thereby, weight energy efficiency can be improved.
  • the battery case 300 has a flat rectangular internal space as a space for accommodating the wound electrode body 200. Further, as shown in FIG. 1, the flat internal space of the battery case 300 is slightly wider than the wound electrode body 200.
  • the battery case 300 includes a bottomed rectangular tubular container body 320 and a lid 340 that closes the opening of the container body 320. Electrode terminals 420 and 440 are attached to the lid 340 of the battery case 300. The electrode terminals 420 and 440 pass through the battery case 300 (lid 340) and come out of the battery case 300.
  • the lid 340 is provided with a liquid injection hole 350 and a safety valve 360.
  • the wound electrode body 200 is flatly pushed and bent in one direction orthogonal to the winding axis WL.
  • the uncoated part 222 of the positive electrode current collector 221 and the uncoated part 242 of the negative electrode current collector 241 are spirally exposed on both sides of the separators 262 and 264, respectively.
  • the intermediate portions 224 and 244 of the uncoated portions 222 and 242 are gathered together and welded to the tip portions 420 a and 440 a of the electrode terminals 420 and 440.
  • ultrasonic welding is used for welding the electrode terminal 420 and the positive electrode current collector 221 due to the difference in materials.
  • FIG. 6 is a side view showing a welded portion between the intermediate portion 224 (244) of the uncoated portion 222 (242) of the wound electrode body 200 and the electrode terminal 420 (440), and VI in FIG. It is -VI sectional drawing.
  • the wound electrode body 200 is attached to the electrode terminals 420 and 440 fixed to the lid body 340 in a state where the wound electrode body 200 is flatly pushed and bent.
  • the wound electrode body 200 is accommodated in a flat internal space of the container body 320 as shown in FIG.
  • the container body 320 is closed by the lid 340 after the wound electrode body 200 is accommodated.
  • the joint 322 (see FIG. 1) between the lid 340 and the container main body 320 is welded and sealed, for example, by laser welding.
  • the wound electrode body 200 is positioned in the battery case 300 by the electrode terminals 420 and 440 fixed to the lid 340 (battery case 300).
  • an electrolytic solution is injected into the battery case 300 from a liquid injection hole 350 provided in the lid 340.
  • a so-called non-aqueous electrolytic solution that does not use water as a solvent is used.
  • an electrolytic solution in which LiPF 6 is contained at a concentration of about 1 mol / liter in a mixed solvent of ethylene carbonate and diethyl carbonate (for example, a mixed solvent having a volume ratio of about 1: 1) is used. Yes.
  • a metal sealing cap 352 is attached (for example, welded) to the liquid injection hole 350 to seal the battery case 300.
  • the electrolytic solution is not limited to the electrolytic solution exemplified here.
  • non-aqueous electrolytes conventionally used for lithium ion secondary batteries can be used as appropriate.
  • the positive electrode active material layer 223 has minute gaps 225 that should also be referred to as cavities, for example, between the positive electrode active material particles 610 and the conductive material 620 (see FIG. 4).
  • An electrolytic solution (not shown) can penetrate into the minute gaps of the positive electrode active material layer 223.
  • the negative electrode active material layer 243 has minute gaps 245 that should also be referred to as cavities, for example, between the negative electrode active material particles 710 (see FIG. 5).
  • the gaps 225 and 245 are appropriately referred to as “holes”.
  • the wound electrode body 200 has uncoated portions 222 and 242 spirally wound on both sides along the winding axis WL.
  • the electrolytic solution can permeate from the gaps between the uncoated portions 222 and 242. For this reason, in the lithium ion secondary battery 100, the electrolytic solution is immersed in the positive electrode active material layer 223 and the negative electrode active material layer 243.
  • the flat internal space of the battery case 300 is slightly wider than the wound electrode body 200 deformed flat.
  • gaps 310 and 312 are provided between the wound electrode body 200 and the battery case 300.
  • the gaps 310 and 312 serve as a gas escape path.
  • the abnormally generated gas moves toward the safety valve 360 through the gaps 310 and 312 between the wound electrode body 200 and the battery case 300 on both sides of the wound electrode body 200, and from the safety valve 360 to the battery case 300. Exhausted outside.
  • the positive electrode current collector 221 and the negative electrode current collector 241 are electrically connected to an external device through electrode terminals 420 and 440 that penetrate the battery case 300.
  • the operation of the lithium ion secondary battery 100 during charging and discharging will be described.
  • FIG. 7 schematically shows the state of the lithium ion secondary battery 100 during charging.
  • the electrode terminals 420 and 440 (see FIG. 1) of the lithium ion secondary battery 100 are connected to the charger 290. Due to the action of the charger 290, lithium ions (Li) are released from the positive electrode active material in the positive electrode active material layer 223 to the electrolytic solution 280 during charging. In addition, charges are released from the positive electrode active material layer 223. The discharged electric charge is sent to the positive electrode current collector 221 through a conductive material (not shown), and further sent to the negative electrode sheet 240 through the charger 290. In the negative electrode sheet 240, electric charges are stored, and lithium ions (Li) in the electrolytic solution 280 are absorbed and stored in the negative electrode active material in the negative electrode active material layer 243.
  • FIG. 8 schematically shows a state of the lithium ion secondary battery 100 during discharging.
  • charges are sent from the negative electrode sheet 240 to the positive electrode sheet 220, and lithium ions stored in the negative electrode active material layer 243 are released to the electrolyte solution 280.
  • lithium ions in the electrolytic solution 280 are taken into the positive electrode active material in the positive electrode active material layer 223.
  • lithium ions pass between the positive electrode active material layer 223 and the negative electrode active material layer 243 through the electrolytic solution 280.
  • electric charge is sent from the positive electrode active material to the positive electrode current collector 221 through the conductive material.
  • the charge is returned from the positive electrode current collector 221 to the positive electrode active material through the conductive material.
  • the above shows an example of a lithium ion secondary battery.
  • the lithium ion secondary battery is not limited to the above form.
  • an electrode sheet in which an electrode mixture is applied to a metal foil is used in various other battery forms.
  • a cylindrical battery or a laminate battery is known as another battery type.
  • a cylindrical battery is a battery in which a wound electrode body is accommodated in a cylindrical battery case.
  • a laminate type battery is a battery in which a positive electrode sheet and a negative electrode sheet are stacked with a separator interposed therebetween.
  • lithium ion secondary battery according to an embodiment of the present invention will be described.
  • the same reference numerals are used as appropriate for members or parts having the same functions as those of the above-described lithium ion secondary battery 100, and description will be given with reference to the above-described diagram of the lithium ion secondary battery 100 as necessary. To do.
  • FIG. 9 shows a lithium ion secondary battery 100A according to an embodiment of the present invention.
  • FIG. 10 is an XX cross-sectional view of the lithium ion secondary battery 100A.
  • FIG. 11 is a cross-sectional view taken along the line XI-XI of the lithium ion secondary battery 100A.
  • FIG. 12 is a diagram showing the structure of the wound electrode bodies 200A to 200D of the lithium ion secondary battery 100A shown in FIG.
  • FIG. 13 is a sectional view taken along line XIII-XIII of the wound electrode bodies 200A to 200D shown in FIG.
  • FIG. 14 is a view in which wound electrode bodies 200A to 200D and sub-electrodes 500A to 500C housed in battery case 300A (see FIG. 11) are taken out.
  • a lithium ion secondary battery 100A includes a battery case 300A, a plurality (four in the illustrated example) of wound electrode bodies 200A to 200D, as shown in FIGS. At least one (three in the illustrated example) sub-electrodes 500A to 500C are provided. In FIG. 11, the sub-electrodes 500A to 500C are drawn thicker than the wound electrode bodies 200A to 200D. Here, illustration of the internal structure of the wound electrode bodies 200A to 200D is omitted. In these respects, FIG. 14 is illustrated in the same manner as FIG. FIG. 14 also shows electrodes (negative electrodes 240A to 240D) and separators 262 and 264 that are wound on the outermost periphery of the wound electrode bodies 200A to 200D.
  • the battery case 300A has a substantially rectangular internal space in which a plurality of wound electrode bodies 200A to 200D can be accommodated in an overlapping manner. In the example shown in FIGS. 9 to 11, four wound electrode bodies 200A to 200D are accommodated in the battery case 300A.
  • the battery case 300A includes a bottomed rectangular tube-shaped container body 320A and a lid 340A that closes the opening of the container body 320A. Electrode terminals 520 and 540 are attached to the lid 340A of the battery case 300A.
  • the lid 340A is provided with a liquid injection hole 350A and a safety valve 360A.
  • a metal sealing cap 352A is attached to the liquid injection hole 350A.
  • wound electrode bodies 200A to 200D are bent flat along a direction perpendicular to the winding axis WL (see FIG. 12) when wound. Further, as shown in FIG. 10, wound electrode bodies 200A to 200D are accommodated in battery case 300A in a state where flat portions 210A to 210D of wound electrode bodies 200A to 200D bent flat are overlapped. . In this embodiment, the wound electrode bodies 200A to 200D are accommodated in the battery case 300A with almost no gap in the stacked direction. Furthermore, the battery case 300A is restrained by a restraining member (not shown).
  • the wound electrode bodies 200A to 200D each have substantially the same structure as the above-described wound electrode body 200 (see FIGS. 2 to 5), as shown in FIGS.
  • the wound electrode bodies 200A to 200D are appropriately given the same reference numerals as the wound electrode body 200.
  • characters A to D are appropriately added to the reference numerals.
  • the wound electrode bodies 200A to 200D are each provided with a strip-like positive electrode 220 and a strip-like negative electrode 240 as shown in FIGS.
  • Each of the plurality of wound electrode bodies 200A to 200D has substantially the same structure as the above-described wound electrode body 200.
  • the strip-shaped positive electrode 220 (positive electrode sheet) includes a strip-shaped positive electrode current collector 221 and a positive electrode active material layer 223.
  • the positive electrode active material layer 223 is formed on both surfaces of a strip-shaped positive electrode current collector 221. Further, a portion 222 where the positive electrode active material layer 223 is not formed is provided along the long side of one side of the positive electrode current collector 221. In this embodiment, the positive electrode active material layer 223 is formed by applying a paste material. For this reason, the portion 222 where the positive electrode active material layer 223 is not formed in the positive electrode current collector 221 is appropriately referred to as an “uncoated portion”.
  • the portion of the belt-like positive electrode 220 where the positive electrode active material layer 223 is formed on the positive electrode current collector 221 substantially functions as the positive electrode of the wound electrode bodies 200A to 200D.
  • the strip-shaped negative electrode 240 (negative electrode sheet) includes a strip-shaped negative electrode current collector 241 and a negative electrode active material layer 243.
  • the negative electrode active material layer 243 is formed on both surfaces of the strip-shaped negative electrode current collector 241. Further, a portion 242 where the negative electrode active material layer 243 is not formed is provided along the long side of one side of the negative electrode current collector 241.
  • the negative electrode active material layer 243 is formed by applying a paste material. For this reason, the part 242 in which the negative electrode active material layer 243 is not formed in the negative electrode current collector 241 is appropriately referred to as an “uncoated part”.
  • the portion where the negative electrode active material layer 243 is formed on the negative electrode current collector 241 releases or occludes lithium ions. Therefore, the portion of the strip-shaped negative electrode 240 where the negative electrode active material layer 243 is formed on the negative electrode current collector 241 substantially functions as the negative electrode of the wound electrode bodies 200A to 200D.
  • the strip-shaped positive electrode 220 and the strip-shaped negative electrode 240 are wound in a state of being overlapped with separators 262 and 264 interposed therebetween, and are bent flat along the direction orthogonal to the winding axis WL when the winding is performed. It has been.
  • the separators 262 and 264 are sheet-like separators.
  • the positive electrode sheet 220 and the negative electrode sheet 240 are separated from each other with the separators 262 and 264 interposed therebetween.
  • the layer 223 and the negative electrode active material layer 243 are stacked so as to face each other.
  • the positive electrode sheet 220, the negative electrode sheet 240, and the separators 262 and 264 are stacked in the order of the positive electrode sheet 220, the separator 262, the negative electrode sheet 240, and the separator 264.
  • the widths c1 and c2 of the separators 262 and 264 are the same.
  • the widths c1 and c2 of the separators 262 and 264 are wider than the width b1 of the negative electrode active material layer 243.
  • the width b1 of the negative electrode active material layer 243 is wider than the width a1 of the positive electrode active material layer 223.
  • the edges on both sides of the separators 262 and 264 protrude from the negative electrode active material layer 243, respectively. Further, the edges on both sides of the negative electrode active material layer 243 protrude from the positive electrode active material layer 223, respectively.
  • a portion of the positive electrode current collector 221 where the positive electrode active material layer 223 is not formed protrudes on one side of the portion where the positive electrode active material layer 223 and the negative electrode active material layer 243 face each other.
  • a portion of the negative electrode current collector 241 where the negative electrode active material layer 243 is not formed protrudes on the side opposite to the side where the uncoated portion 222 protrudes.
  • the wound electrode bodies 200A to 200D are longer in the strip-shaped negative electrode 240 than in the strip-shaped positive electrode 220. Further, the separators 262 and 264 are longer than the strip-shaped negative electrode 240. In the outermost periphery of the wound electrode bodies 200A to 200D, the strip-shaped positive electrode 220 is covered with the strip-shaped negative electrode 240. Further, the strip-shaped negative electrode 240 is covered with separators 262 and 264.
  • the wound electrode bodies 200A to 200D are each bent flat.
  • the wound electrode bodies 200A to 200D are accommodated in the battery case 300A in a state where the flat portions 210A to 210D of the wound electrode bodies 200A to 200D that are bent flat are overlapped.
  • gaps 310A and 312A are provided on both sides of the wound shaft WL (see FIG. 12) of the wound electrode bodies 200A to 200D.
  • the gaps 310A and 312A serve as a gas escape path for extracting gas that can be generated in the battery case 300A, for example, when overcharge occurs.
  • Sub-electrodes 500A to 500C are arranged between flat portions 210A to 210D of wound electrode bodies 200A to 200D that are bent flat.
  • the sub-electrodes 500A to 500C are formed on the outermost surface with positive and negative electrodes opposite to the electrodes 240A to 240D wound on the outermost periphery of the wound electrode bodies 200A to 200D. And it is disposed between flat portions 210A to 210D of the wound electrode bodies 200A to 200D that are bent flat.
  • the sub-electrodes 500A to 500C are sheet-like electrodes.
  • the sub-electrodes 500A to 500C include sub-current collectors 502A to 502C and sub-active material layers 504A to 504C.
  • the sub current collectors 502A to 502C are current collectors of the sub electrodes 500A to 500C.
  • the sub current collectors 502A to 502C are rectangular sheet-like base materials.
  • the sub active material layers 504A to 504C are formed on both surfaces of the sub current collectors 502A to 502C.
  • the sub current collectors 502A to 502C for example, the same metal foil as that of the current collector used for the electrodes opposite in polarity to the electrodes wound on the outermost periphery of the wound electrode bodies 200A to 200D can be used.
  • the sub active material layers 504A to 504C are formed of an active material layer that becomes an electrode opposite to the electrode wound on the outermost periphery of the wound electrode bodies 200A to 200D.
  • the electrodes wound on the outermost periphery of the wound electrode bodies 200A to 200D are negative electrodes (negative electrode sheets 240A to 240D).
  • negative electrode sheets 240A to 240D negative electrode active material layers 243A to 243D are formed on both surfaces of the negative electrode current collectors 241A to 241D.
  • the electrode formed on the outermost surface of the sub-electrodes 500A to 500C is a positive electrode.
  • aluminum foil is used for the sub current collectors 502A to 502C as in the case of the positive electrode current collector 221 (see FIG. 12) of the wound electrode bodies 200A to 200D.
  • the sub active material layers 504A to 504C have the same structure as the positive electrode active material layer 223 (see FIG. 12) of the wound electrode bodies 200A to 200D.
  • the sub current collectors 502A to 502C are rectangular sheet-like base materials. On one side of the sub current collectors 502A to 502C, there are portions 506A to 506C where the sub active material layers 504A to 504C are not formed. In this embodiment, the sub active material layers 504A to 504C are formed by applying a paste material in the same manner as the positive electrode active material layer 223 (see FIG. 12). Therefore, portions 506A to 506C in which the sub active material layers 504A to 504C are not formed in the sub current collectors 502A to 502C are appropriately referred to as “uncoated portions”.
  • the sub-electrodes 500A to 500C are disposed between flat portions 210A to 210D of the wound electrode bodies 200A to 200D that are bent flat.
  • the outermost periphery of the wound electrode bodies 200A to 200D is covered with separators 262 and 264. Therefore, between the sub-electrodes 500A to 500C and the electrodes (negative electrode sheets 240A to 240D) wound on the outermost periphery of the wound electrode bodies 200A to 200D, they are wound on the outermost periphery of the wound electrode bodies 200A to 200D.
  • the separators 262 and 264 are interposed.
  • a separate separator may be interposed between the wound electrode bodies 200A to 200D and the sub electrodes 500A to 500C.
  • the sub-electrodes 500A to 500C are housed in flat portions 210A to 210D of the electrodes that are wound on the outermost periphery of the wound electrode bodies 200A to 200D that are bent flat. That is, in this embodiment, the sub-active material layers 504A to 504C of the sub-electrodes 500A to 500C are the flat surfaces of the negative electrode active material layers 243A to 243D of the negative electrodes 240A to 240D that are wound on the outermost periphery of the wound electrode bodies 200A to 200D. It is contained in the part.
  • the sub-electrodes 500A to 500C are stacked between the wound electrode bodies 200A to 200D so that the sub-active material layers 504A to 504C do not protrude from the flat portions of the negative electrode active material layers 243A to 243D.
  • the width of the sub active material layer 504 of the sub electrodes 500A to 500C is substantially the same as the width of the positive electrode active material layer 223 of the wound electrode bodies 200A to 200D.
  • the height of the sub active material layer 504 of the sub electrode 500 is slightly smaller than the height of the flat portion of the negative electrode active material layers 243A to 243D of the negative electrodes 240A to 240D wound around the outermost periphery of the wound electrode bodies 200A to 200D. short.
  • the sub active material layer 504 serving as the positive electrode has a structure covered with the negative electrode active material layers 243A to 243D of the wound electrode bodies 200A to 200D. Accordingly, lithium ions released from the sub active material layer 504 serving as the positive electrode can be appropriately absorbed by the negative electrode active material layers 243A to 243D of the wound electrode bodies 200A to 200D.
  • the uncoated portions 506A to 506C of the sub-electrodes 500A to 500C are wound like the positive uncoated portions 222A to 222D of the wound electrode bodies 200A to 200D.
  • the positive electrode active material layer 223 and the negative electrode active material layer 243 of the electrode bodies 200A to 200D protrude from one side of the facing portion.
  • Electrode terminals 520, 540 As shown in FIGS. 9 and 10, the electrode terminals 520 and 540 pass through the battery case 300A (lid body 340A) and come out of the battery case 300A.
  • the positive electrode terminal 520 extends into the battery case 300A and is connected to the uncoated portions 222A to 222D of the positive electrode sheets 220A to 220D of the wound electrode bodies 200A to 200D and the uncoated portions 506A to 506C of the sub electrodes 500A to 500C.
  • the negative electrode terminal 540 extends into the battery case 300A and is connected to the uncoated portions 242A to 242D of the negative electrode sheets 240A to 240D of the wound electrode bodies 200A to 200D. Yes.
  • the positive electrode terminal 520 is formed between the uncoated part 222A of the wound electrode body 200A and the uncoated part 222B of the wound electrode body 200B, and the wound The uncoated portion 222C of the electrode body 200C and the uncoated portion 222D of the wound electrode body 200D respectively extend. Then, a welded portion 520A that bundles and welds the uncoated portions 222A to 222D between the uncoated portion 222A and the uncoated portion 222B and between the uncoated portion 222C and the uncoated portion 222D. To 520D are provided.
  • the electrode terminal 520 is branched into two in the battery case 300A.
  • One branched terminal extends between the uncoated part 222A of the wound electrode body 200A and the uncoated part 222B of the wound electrode body 200B.
  • the one terminal is bent so as to draw an arc between the uncoated part 222A and the uncoated part 222B.
  • the one terminal is provided with a linear welded part 520A for welding the uncoated part 222A and a linear welded part 520B for welding the uncoated part 222B.
  • the other branched terminal extends between the uncoated part 222C of the wound electrode body 200C and the uncoated part 222D of the wound electrode body 200D.
  • the other terminal is bent so as to draw an arc between the uncoated portion 222C and the uncoated portion 222D.
  • the other terminal is provided with a linear welded part 520C for welding the uncoated part 222C and a linear welded part 520D for welding the uncoated part 222D.
  • the negative electrode terminal 540 has the same structure as the positive electrode terminal 520. Negative electrode uncoated portions 242A to 242D of wound electrode bodies 200A to 200D are connected to negative electrode terminals 540, respectively.
  • the positive electrode terminal 520 is provided with a plurality of connection portions (welded portions 520A to 520D in this embodiment) to which the uncoated portions 222 of the belt-like positive electrodes 220A to 220D are connected.
  • the negative electrode terminal 540 is provided with a plurality of connection portions (welded portions 540A to 540D (see FIG. 9)) to which the uncoated portions 242 of the strip-shaped negative electrodes 240A to 240D are connected.
  • the uncoated portions 222 and the uncoated portions 242 of the plurality of wound electrode bodies 200A to 200D do not have to be combined into one, and the uncoated portions 222 and the uncoated portions of the wound electrode bodies 200A to 200D are not required.
  • the engineering part 242 can be shortened.
  • the wound electrode bodies 200A to 200D and the electrode terminals 520 and 540 are insulated from the battery case 300A.
  • an insulating material (not shown) is interposed between the wound electrode bodies 200A to 200D and the electrode terminals 520 and 540 and the battery case 300A.
  • the electrode terminals 520 and 540 are provided on the lid 340A of the battery case 300A.
  • the wound electrode bodies 200A to 200D may be housed in the battery case 300A after the wound electrode bodies 200A to 200D are connected to the electrode terminals 520 and 540. Then, after the wound electrode bodies 200A to 200D are stored in the battery case 300A, the joint 322A between the container body 320A and the lid body 340A of the battery case 300A may be sealed.
  • FIG. 15 is a diagram showing an assembled battery 1000 in which a plurality (four in the illustrated example) of lithium ion secondary batteries 100A are combined.
  • the expansion of each battery case 300 ⁇ / b> A of the assembled battery 1000 is suppressed by the restraining member 550.
  • the restraining member 550 includes a spacer 560, end plates 565 and 566, a beam material 570, and screws 575 and 576, as shown in FIG.
  • the assembled battery 1000 includes four lithium ion secondary batteries 100A in combination as shown in FIG.
  • the lithium ion secondary battery 100A is assembled by alternately changing the positions of the positive electrode terminal 520 and the negative electrode terminal 540. Thereby, the positive electrode terminal 520 and the negative electrode terminal 540 of the adjacent lithium ion secondary battery 100 ⁇ / b> A are brought close to each other.
  • the positive electrode terminal 520 and the negative electrode terminal 540 of the adjacent lithium ion secondary battery 100A are connected by a connecting member 555, and the positive electrode and the negative electrode of four lithium ion secondary batteries 100A. Are combined in series.
  • the spacer 560 is disposed between the lithium ion secondary batteries 100A.
  • End plates 565 and 566 are arranged at both ends of a combination of a plurality of lithium ion secondary batteries 100A.
  • the beam material 570 is spanned across the end plates 565 and 566 on both sides of the plurality of lithium ion secondary batteries 100 ⁇ / b> A, and is attached to the end plates 565 and 566 by screws 575 and 576.
  • the restraining member 550 can narrow the interval between the end plates 565 and 566 by tightening the screws 575 and 576. With this restraining member 550, as shown in FIG. 10, the restraining force P can be applied to the battery case 300A.
  • the battery case 300 ⁇ / b> A is suppressed from expanding by the restraining force P.
  • the spacer 560 has a size corresponding to the flat portion of the electrode wound around the outermost periphery of the wound electrode bodies 200A to 200D arranged in a flat bent state in the battery case 300A. have.
  • the spacer 560 is arranged outside the battery case 300A in accordance with a position where the flat portion of the electrode wound on the outermost periphery of the wound electrode bodies 200A to 200D abuts.
  • the restraining force P of the restraining member 550 acts on the battery case 300A of each lithium ion secondary battery 100A through the spacer 560.
  • the restraining force P of the restraining member 550 acts on the flat portion of the electrode wound around the outermost periphery of the wound electrode bodies 200A to 200D of each lithium ion secondary battery 100A.
  • the wound electrode bodies 200A to 200D are repeatedly expanded and contracted with charging / discharging.
  • the restraining force P of the restraining member 550 acts in the direction in which the wound electrode bodies 200A to 200D are overlapped as shown in FIG. Due to the action of the restraining force P, the expansion of the battery case 300A is suppressed to a small level.
  • the sub-electrodes 500A to 500C are arranged between the flat portions 210A to 210D of the wound electrode bodies 200A to 200D that are bent flat.
  • the restraining force P of the restraining member 550 can prevent the sub electrodes 500A to 500C disposed between the wound electrode bodies 200A to 200D from being displaced.
  • an example of the restraining member 550 that restrains the battery case 300A has been illustrated, but the structure of the restraining member 550 is not limited to this.
  • the plurality of wound electrode bodies 200A to 200D each include the strip-shaped positive electrode 220 and the strip-shaped negative electrode 240.
  • the strip-shaped positive electrode 220 and the strip-shaped negative electrode 240 are wound in a state where they are stacked with separators 262 and 264 interposed therebetween. And it is bent flat along the direction orthogonal to the winding axis WL when wound. Further, as shown in FIG. 10 and FIG.
  • the plurality of wound electrode bodies 200A to 200D are arranged in the battery case 300A in a state where the flat portions 210A to 210D of the wound electrode bodies 200A to 200D bent flat are overlapped. Is housed in. Further, as shown in FIG. 14, sub-electrodes 500A to 500C are arranged between flat portions 210A to 210D of wound electrode bodies 200A to 200D bent flat. Further, an electrode (positive electrode) opposite in polarity to the electrode (here, negative electrodes 240A to 240D) wound on the outermost periphery of the wound electrode bodies 200A to 200D is formed on the outermost surface of the sub-electrodes 500A to 500C. Yes.
  • the sub-electrodes 500A to 500C that are opposite in polarity to the electrodes (here, the negative electrodes 240A to 240D) wound on the outermost periphery of the wound electrode bodies 200A to 200D are wound electrode bodies. It is sandwiched between 200A to 200D.
  • the electrodes (here, the negative electrodes 240A to 240D) wound on the outermost periphery of the wound electrode bodies 200A to 200D are connected to the sub electrodes 500A to 500C. Lithium ion release and occlusion can be performed between the two.
  • the portions where the wound electrode bodies 200A to 200D face each other function efficiently as a battery element structurally.
  • the electrode wound on the outermost periphery of the wound electrode bodies 200A to 200D is the negative electrode, and the active material layer (sub active material layers 504A to 504C) formed on the outermost surface of the sub electrodes 500A to 500C. ) Is the positive electrode. It is possible to prevent the positive electrode active material layer 223 of the wound electrode bodies 200A to 200D from being exposed outside the portion where the wound electrode bodies 200A to 200D are opposed to each other. Further, the sub-electrodes 500A to 500C are preferably housed in a flat portion of the electrode that is wound on the outermost periphery of the wound electrode body 200.
  • the lithium ion secondary battery 100A may include a restraining member 550 that suppresses the expansion of the battery case 300A, for example, as shown in FIG. Thereby, the displacement of the sub-electrodes 500A to 500C can be suppressed, and the expansion of the battery case 300A can be suppressed.
  • the sub-electrodes 500A to 500C are sheet-shaped (strip-shaped) electrodes each including a sub-current collector 502 and sub-active material layers 504 formed on both surfaces of the sub-current collector 502. is there.
  • the sub active material layer 504 is composed of an active material layer which is an electrode opposite to the electrode wound on the outermost periphery of the wound electrode bodies 200A to 200D.
  • the sub-electrodes 500A to 500C are in the form of a sheet (strip shape), can be formed thin, and the portion where the wound electrode bodies 200A to 200D face each other can structurally function efficiently as a battery element. .
  • the sub-electrodes 500A to 500C can be manufactured at a low cost. As a result, the lithium ion secondary battery 100A including the sub-electrodes 500A to 500C can be realized in a compact and low cost.
  • the positive electrodes of the wound electrode bodies 200A to 200D are, as shown in FIGS. 12 and 13, the belt-like positive electrode current collector 221 and the positive electrode active material formed on both surfaces of the positive electrode current collector 221. A material layer 223. Further, the positive electrodes of the wound electrode bodies 200A to 200D have a portion where the positive electrode active material layer 223 is not formed (uncoated portion 222) along one long side of the positive electrode current collector 221.
  • the negative electrodes of the wound electrode bodies 200A to 200D include a strip-shaped negative electrode current collector 241 and a negative electrode active material layer 243 formed on both surfaces of the negative electrode current collector 241. Further, the negative electrodes of the wound electrode bodies 200A to 200D have a portion (uncoated portion 242) where the negative electrode active material layer 243 is not formed along one long side of the negative electrode current collector 241.
  • the positive electrode and the negative electrode of the wound electrode bodies 200A to 200D are stacked so that the positive electrode active material layer 223 and the negative electrode active material layer 243 face each other with the separators 262 and 264 interposed therebetween.
  • a portion of the positive electrode current collector 221 where the positive electrode active material layer 223 is not formed protrudes.
  • the negative electrode active material layer 243 of the negative electrode current collector 241 is formed on the side of the positive electrode current collector 221 opposite to the side where the positive electrode active material layer 223 is not formed (uncoated portion 222).
  • a non-coated portion (uncoated portion 242) protrudes.
  • the plurality of wound electrode bodies 200A to 200D are stacked such that the side where the positive electrode current collector 221 protrudes and the side where the negative electrode current collector 241 protrudes are aligned.
  • the positive electrode current collector 221 protrudes from one side of the battery case 300A and the negative electrode current collector 241 protrudes from the opposite side, the positive electrode current collector 221 and the negative electrode current collector 221
  • the arrangement of the electrode terminals 520 and 540 that are electrically connected to the electric body 241 can be simplified.
  • the negative electrode 240 of the wound electrode bodies 200A to 200D may be bent at the inner peripheral end 246.
  • the second sub electrode 580 serving as a positive electrode is sandwiched between the bent negative electrodes 240.
  • the second sub electrode 580 may have a structure in which a positive electrode active material layer is formed on both surfaces of the positive electrode current collector.
  • the portion of the positive electrode current collector 221 where the positive electrode active material layer 223 is not formed is the wound electrode body 200A ⁇ It is summarized every 200D.
  • the portion of the negative electrode current collector 241 where the negative electrode active material layer 243 is not formed is gathered for each of the wound electrode bodies 200A to 200D. Yes. Thereby, the width
  • the widths of the uncoated portions 222 and 242 of the plurality of wound electrode bodies 200A to 200D can be made substantially the same, and the plurality of wound electrode bodies 200A to 200D can be shared.
  • the uncoated portions 222 and 242 of the plurality of wound electrode bodies 200A to 200D are collected, the uncoated portions 222 and 242 are secured to have a long width, or the plurality of wound electrode bodies 200A to 200D. For example, it may be necessary to change the widths of the uncoated portions 222 and 242.
  • a positive electrode terminal 520 to which a portion (uncoated portion 222) where the positive electrode active material layer 223 is not formed in the positive electrode current collector 221 is connected, and a negative electrode active material layer 243 in the negative electrode current collector 241. It is preferable to include a negative electrode terminal 540 to which a portion where no is formed is connected.
  • the positive electrode terminal 520 is connected to a portion 520A ⁇ of the positive electrode current collector 221 to which a portion where the positive electrode active material layer 223 is not formed (uncoated portion 222) is connected.
  • a plurality of 520D may be provided.
  • connection portions 540A to 540D (refer to FIG.
  • the structure of the lithium ion secondary battery 100A has been described above.
  • the manufacturing method of the lithium ion secondary battery 100A includes a step of preparing a plurality of wound electrode bodies, a step of preparing sub-electrodes, a step of stacking a plurality of wound electrode bodies, a sub-electrode and a plurality of windings. And a step of housing the electrode body in a battery case.
  • a belt-like positive electrode 220 and a belt-like negative electrode 240 are provided. It is preferable to prepare a plurality of wound electrode bodies that are wound with the separators 262 and 264 interposed therebetween and are bent flat along the direction orthogonal to the winding axis WL.
  • the step of preparing the sub-electrode includes sub-electrodes 500A to 500C in which electrodes that are opposite in polarity to the outermost electrodes of the wound electrode bodies 200A to 200D are formed on the outermost surface. Prepare it.
  • a plurality of prepared wound electrode bodies 200A to 200D are overlapped with flat portions 210A to 210D, and the wound electrode bodies 200A to 200D are overlapped.
  • the sub-electrodes 500A to 500C may be disposed between the flat portions 210A to 210D, and the assembly of the sub-electrodes 500A to 500C and the wound electrode bodies 200A to 200D may be accommodated in the battery case 300A.
  • the lithium ion secondary battery according to one embodiment of the present invention has been described above, the lithium ion secondary battery according to the present invention is not limited to the above.
  • the sub electrode may have a laminated electrode structure.
  • FIG. 16 shows a sub-electrode 750 having a laminated electrode structure.
  • the sub-electrode 750 having a stacked electrode structure is formed by alternately stacking sheet-like sub-positive electrodes 760 and sheet-like sub-negative electrodes 770.
  • an electrode opposite to the electrode wound on the outermost periphery of the wound electrode bodies 200A to 200D is laminated on the outside.
  • the electrode wound on the outermost periphery of the wound electrode body 200 is a negative electrode
  • the sub-electrode 750 having a laminated electrode structure has a sub-positive electrode 760 laminated outside. Good.
  • the sub-positive electrode 760 includes a sub-positive electrode current collector 762 and a sub-positive electrode active material layer 764.
  • the sub positive electrode active material layer 764 is formed on both surfaces of the sub positive electrode current collector 762, respectively. Further, at one end of the sub positive electrode current collector 762, there is a portion 766 (a non-coated portion of the positive electrode) where the sub positive electrode active material layer 764 is not formed.
  • the sub negative electrode 770 includes a sub negative electrode current collector 722 and a sub negative electrode active material layer 774.
  • the sub negative electrode active material layers 774 are formed on both surfaces of the sub negative electrode current collector 722, respectively. Further, at one end of the sub negative electrode current collector 722, there is a portion 776 (negative electrode uncoated portion) where the sub negative electrode active material layer 774 is not formed.
  • the sub positive electrode 760 and the sub negative electrode 770 are overlapped with separators 782 and 784 interposed therebetween.
  • the sub positive electrode active material layer 764 and the sub negative electrode active material layer 774 are opposed to each other with the separators 782 and 784 interposed therebetween.
  • An uncoated portion 766 of the positive electrode protrudes from one side of the portion where the sub positive electrode active material layer 764 and the sub negative electrode active material layer 774 face each other.
  • an uncoated portion 776 of the negative electrode protrudes on the side opposite to the side where the uncoated portion 766 of the positive electrode protrudes.
  • the sub-electrode 750 is disposed between the wound electrode bodies 200 and 200 as shown in FIG. 16, for example. At this time, the electrode (sub positive electrode 760) stacked outside the sub electrode 750 is wound around the outermost periphery of the wound electrode body 200 with the separators 262 and 264 of the wound electrode bodies 200A to 200D interposed therebetween. Opposite the electrode (negative electrode (see FIG. 14)).
  • the electrode here, the negative electrode
  • Lithium ions can be released and occluded between the formed electrodes (here, the sub-positive electrode 760).
  • the sub electrode of the lithium ion secondary battery 100A may have a wound electrode structure.
  • FIG. 17 is a diagram in which a sub-electrode 800 having a wound electrode structure is disposed between flat portions 210 of the wound electrode body 200 bent flat.
  • the sub-electrode 800 having a wound electrode structure includes a strip-shaped sub-positive electrode 820 and a strip-shaped sub-negative electrode 840.
  • the sub-positive electrode 820 and the sub-negative electrode 840 are wound in a state of being overlapped with separators 862 and 864 interposed therebetween, and are bent flat along a direction perpendicular to the winding axis WL when the winding is performed. It has been.
  • the winding amount of the sub electrode 800 may be smaller than that of the wound electrode bodies 200 to 200.
  • an electrode of the sub-positive electrode 820 and the sub-negative electrode 840 opposite to the electrode wound on the outermost periphery of the wound electrode body 200 is wound.
  • the sub-positive electrode 820 may be wound on the outermost periphery of the sub-electrode 800.
  • a sub-electrode 800 having a wound electrode structure shown in FIG. 18 has a sub-positive electrode 820 wound on the outermost periphery of the sub-electrode 800.
  • the band-shaped sub-positive electrode 820 includes a band-shaped positive electrode current collector 821 and a positive electrode active material layer 823.
  • the positive electrode active material layer 823 is formed on both surfaces of a strip-shaped positive electrode current collector 821. Further, a portion 822 where the positive electrode active material layer 823 is not formed is provided along the long side of one side of the positive electrode current collector 821. In this embodiment, the positive electrode active material layer 823 is formed by applying a paste material. For this reason, a portion 822 of the positive electrode current collector 821 where the positive electrode active material layer 823 is not formed is appropriately referred to as an “uncoated portion”.
  • the strip-shaped sub-negative electrode 840 includes a strip-shaped negative electrode current collector 841 and a negative electrode active material layer 843.
  • the negative electrode active material layer 843 is formed on both surfaces of a strip-shaped negative electrode current collector 841. Further, a portion 842 where the negative electrode active material layer 843 is not formed is provided along the long side of one side of the negative electrode current collector 841.
  • the negative electrode active material layer 843 is formed by applying a paste material. For this reason, the part 842 where the negative electrode active material layer 843 is not formed in the negative electrode current collector 241 is appropriately referred to as an “uncoated part”.
  • the band-shaped sub-positive electrode 820 and the band-shaped sub-negative electrode 840 are wound in a state of being overlapped with the separators 862 and 864 interposed therebetween, and are flattened along the direction orthogonal to the winding axis WL when wound. Is bent.
  • the electrolytic solution can permeate through the gap between the uncoated portions 822 and 842 on both sides 852 and 854 along the winding axis WL.
  • the sub-positive electrode 820, the sub-negative electrode 840, and the separators 862, 864 are stacked in the order of the sub-negative electrode 840, the separator 862, the sub-positive electrode 820, and the separator 864. Yes.
  • the widths c1 and c2 of the separators 862 and 864 are the same.
  • the widths c1 and c2 of the separators 862 and 864 are wider than the width b1 of the negative electrode active material layer 843 of the sub negative electrode 840.
  • the width b1 of the negative electrode active material layer 843 is wider than the width a1 of the positive electrode active material layer 823.
  • the edges on both sides of the separators 862 and 864 protrude from the negative electrode active material layer 843, respectively. Furthermore, the edges on both sides of the negative electrode active material layer 843 protrude from the positive electrode active material layer 823, respectively.
  • a portion of the positive electrode current collector 821 where the positive electrode active material layer 823 is not formed protrudes on one side of the portion where the positive electrode active material layer 823 and the negative electrode active material layer 843 face each other.
  • a portion of the positive electrode current collector 821 where the positive electrode active material layer 823 is not formed protrudes on one side of the portion where the positive electrode active material layer 823 and the negative electrode active material layer 843 face each other.
  • a portion of the negative electrode current collector 841 where the negative electrode active material layer 843 is not formed protrudes on the side opposite to the side where the uncoated portion 822 protrudes.
  • the strip-shaped positive electrode 220 is covered with the strip-shaped negative electrode 240 at the outermost periphery of the wound electrode body 200. Furthermore, the strip-shaped negative electrode 240 is covered with separators 262 and 264 (see FIGS. 12 and 14).
  • the wound electrode body 200 is bent flat as shown in FIG.
  • a sub-electrode 800 is disposed between the flat portions 210 and 210 of the wound electrode bodies 200 and 200 that are bent flat.
  • the electrode here, the negative electrode 240
  • Lithium ions can be released or occluded with the other electrode (here, positive electrode 820).
  • the part which the wound electrode bodies 200 and 200 oppose functions efficiently as a battery element structurally.
  • the curved portion of the sub positive electrode 820 that is wound around the outermost periphery of the sub electrode 800 is exposed between the wound electrode bodies 200.
  • the sub positive electrode 820 is exposed to the electrolyte solution because lithium is deposited, for example, when the number of times of the sub electrode 800 is large.
  • a cover 880 that covers the curved portion of the sub-positive electrode 820 that runs around the outermost periphery of the sub-electrode 800 may be provided on the sub-electrode 800.
  • Such a cover 880 may preferably be composed of a negative electrode sheet 880. This prevents the curved portion of the sub-positive electrode 820 straddling the outermost periphery of the sub-electrode 800 from being exposed to the electrolyte, and the curved portion of the sub-positive electrode 820 structurally functions efficiently as a battery element. Can be made.
  • the lithium ion secondary battery according to one embodiment of the present invention has been described above, but the present invention is not limited to any of the above-described embodiments unless specifically mentioned.
  • a lithium ion secondary battery 100A includes, for example, a large and high capacity lithium ion secondary battery in which a plurality of wound electrode bodies are accommodated in a battery case as shown in FIG. Can be realized.
  • the sub-electrodes 500A to 500C are arranged with the separators 262 and 264 interposed between the flat portions 210A to 210D of the wound electrode bodies 200A to 200D that are bent flat. Yes.
  • the sub-electrodes 500A to 500C are formed on the outermost surface with the opposite polarity to the electrodes wound on the outermost periphery of the wound electrode bodies 200A to 200D.
  • the wound electrode bodies 200A to 200D can function more efficiently, and the capacity can be further increased. For this reason, it is used as a vehicle driving power source as a driving battery for a hybrid vehicle having a high level required for high-rate output characteristics and cycle characteristics, and particularly for a plug-in hybrid or electric vehicle having a high level required for high capacity. Is preferred. That is, for example, as shown in FIG. 20, the lithium ion secondary battery can be suitably used as a vehicle driving battery 1000 for a motor (electric motor) that drives the vehicle 1.
  • the vehicle driving battery 1000 may be formed of an assembled battery in which a plurality of secondary batteries are combined.
  • Vehicle 100 100A Lithium ion secondary battery 200, 200A-200D Winding electrode body 210, 210A-210D Flat part 220, 220A-220D of winding electrode body Positive electrode (positive electrode sheet) 221 Positive electrode current collector 222, 222A to 222D Uncoated portion 223 Positive electrode active material layer 224 Intermediate portion 225 Gaps (cavity) 240, 240A to 240D Negative electrode (negative electrode sheet) 241, 241 A to 241 D Negative electrode current collector 242, 242 A to 242 D Uncoated part 243, 243 A to 243 D Negative electrode active material layer 245 Gap (cavity) 252, 254 Winding electrode body on both sides 262, 264 Separator 280 Electrolyte 290 Battery charger 300, 300A Battery case 310, 312 Gap 310A, 312A between wound electrode body 200 and battery case 300 Winding electrode body 200A-200D Gap 320, 320A with battery case 300A Container body 322, 322A Lid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

 このリチウムイオン二次電池100Aでは、複数の捲回電極体200A~200Dは、それぞれ帯状の正極220と帯状の負極240とを備え、帯状の正極220と帯状の負極240とは、セパレータ262、264を介在させて重ねられた状態で捲回されている。かつ、複数の捲回電極体200A~200Dは、捲回された際の捲回軸WLに直行する方向に沿って扁平に曲げられており、さらに、当該複数の捲回電極体200A~200Dは、扁平に曲げられた捲回電極体の平坦部分が重ねられた状態で電池ケース300Aに収容されている。サブ電極500A~500Cは、捲回電極体200A~200Dの最外周に捲かれた電極とは正負が反対の電極が最表面に形成されている。サブ電極500A~500Cは、扁平に曲げられた捲回電極体200A~200Dの平坦部分の間に配置されている。

Description

リチウムイオン二次電池
 本発明は、リチウムイオン二次電池に関する。
 リチウムイオン二次電池について、例えば、特開2002-231297号公報(特許文献1)には、長円筒形に巻回した複数の発電要素の巻回軸線を水平方向に配置し、これらの発電要素を並列に接続して電池ケース内に収納した組電池が開示されている。同公報では、発電要素と電池ケースとの間隙の全部または一部に絶縁充填材を充填することが提案されている。
 また、特開2010-186683号公報(特許文献2)には、扁平形状の捲回電極体を有する電池について、捲回電極体の中心部分に、少なくとも片面に塗工層を形成された短冊状の正極および負極と、短冊状のセパレータとを平積みした構造が提案されている。
特開2002-231297号公報 特開2010-186683号公報
 本発明者は、大型のリチウムイオンとして、電池ケースに複数の捲回電極体を収容することを考えている。複数の捲回電極体が、扁平に曲げられ、かつ、重ねられた状態で、電池ケースに収容されている場合、重ねられる捲回電極体の最外周にそれぞれ同じ電極が捲かれていると、捲回電極体と捲回電極体とが対向する部分では同じ電極が対向する。この場合、同じ電極が対向した捲回電極体と捲回電極体とが対向した部分は、構造的に電池要素として効率的に機能していない。
 リチウムイオン二次電池は、電池ケースと、複数の捲回電極体と、少なくとも一つのサブ電極とを備えている。複数の捲回電極体は、それぞれ帯状の正極と帯状の負極とを備えている。ここで、帯状の正極と帯状の負極とは、セパレータを介在させて重ねられた状態で捲回されている。捲回電極体は、捲回された際の捲回軸に直行する方向に沿って扁平に曲げられている。さらに、複数の捲回電極体は、扁平に曲げられた捲回電極体の平坦部分が重ねられた状態で電池ケースに収容されている。また、サブ電極は、捲回電極体の最外周に捲かれた電極とは正負が反対の電極が最表面に形成されており、扁平に曲げられた捲回電極体の平坦部分の間に配置されている。これにより、捲回電極体と捲回電極体とが対向した部分が、構造的に電池要素として効率的に機能する。
 また、この場合、例えば、捲回電極体の最外周に捲かれた電極が負極であり、かつ、サブ電極の最表面に形成された活物質層が正極であるとよい。また、サブ電極は、扁平に曲げられた捲回電極体の最外周に捲かれた電極の平坦部分に収められている。また、電池ケースの膨張を抑える拘束部材を備える。
 また、サブ電極は、サブ集電体と、サブ集電体の両面に形成された、捲回電極体の最外周に捲かれた電極とは反対の電極となるサブ活物質層とを備えたシート状の電極であってもよい。これにより、捲回電極体と捲回電極体とが対向した部分を構造的に電池要素として効率的に機能させる上で、サブ電極を薄く作製することができる。
 サブ電極は、シート状のサブ正極と、シート状のサブ負極とが交互に積層されており、かつ、サブ正極とサブ負極のうち、捲回電極体の最外周に捲かれた電極とは反対の電極が外側に積層された、積層電極構造であってもよい。
 また、サブ電極は、帯状のサブ正極と、帯状のサブ負極とを備え、サブ正極とサブ負極とは、セパレータを介在させて重ねられた状態で捲回され、かつ、当該捲回された際の捲回軸に直行する方向に沿って扁平に曲げられた捲回電極構造であってもよい。この場合、サブ電極の最外周には、サブ正極とサブ負極のうち、捲回電極体の最外周に捲かれた電極とは反対の電極が捲かれているとよい。
 捲回電極体の正極は、例えば、帯状の正極集電体と、帯状の正極集電体の両面に形成された正極活物質層とを備えていてもよい。正極集電体の片側の長辺に沿って正極活物質層が形成されていない部分を有していてもよい。捲回電極体の負極は、帯状の負極集電体と、帯状の負極集電体の両面に形成された負極活物質層とを備えていてもよい。負極集電体の片側の長辺に沿って負極活物質層が形成されていない部分を有していてもよい。この場合、正極と負極とは、セパレータを介在させた状態で、正極活物質層と負極活物質層とが対向するように重ねられているとよい。また、正極活物質層と負極活物質層とが対向した部分の片側に、正極集電体のうち正極活物質層が形成されていない部分がはみ出ており、正極集電体のうち正極活物質層が形成されていない部分がはみ出た側とは反対側に、負極集電体のうち負極活物質層が形成されていない部分がはみ出ていているとよい。そして、複数の捲回電極体は、正極集電体がはみ出た側と、負極集電体がはみ出た側とを揃えて重ねられているとよい。
 また、この場合、捲回電極体の前記負極は内周端部において折り曲げられており、当該折り曲げられた負極の間に、正極となる第2サブ電極が挟まれているとよい。また、正極集電体のうち正極活物質層が形成されていない部分は、捲回電極体毎に纏められており、負極集電体のうち負極活物質層が形成されていない部分は、捲回電極体毎に纏められているとよい。
 また、例えば、リチウムイオン二次電池は、正極集電体のうち正極活物質層が形成されていない部分が接続された正極の電極端子と、負極集電体のうち負極活物質層が形成されていない部分が接続された負極の電極端子とを備えているとよい。
 この場合、正極の電極端子は、正極集電体のうち正極活物質層が形成されていない部分が接続された接続部位が複数設けられているとよい。また、負極の電極端子は、負極集電体のうち負極活物質層が形成されていない部分が接続された接続部位が複数設けられているとよい。これにより、正極集電体のうち正極活物質層が形成されていない部分を小さくできる。また、負極集電体のうち負極活物質層が形成されていない部分を小さくできる。
 また、リチウムイオン二次電池の製造方法は、例えば、複数の捲回電極体を用意する工程と、サブ電極を用意する工程と、複数の捲回電極体を重ねる工程と、複数の捲回電極体を電池ケースに収容する工程とを備えているとよい。
 この場合、複数の捲回電極体を用意する工程では、帯状の正極と帯状の負極とを備え、帯状の正極と帯状の負極とは、セパレータを介在させて重ねられた状態で捲回され、捲回軸に直行する方向に沿って扁平に曲げられた捲回電極体を複数個用意するとよい。サブ電極を用意する工程では、捲回電極体の最外周に捲かれた電極とは正負が反対の電極が最表面に形成されたサブ電極を用意するとよい。電池ケースに収容する工程では、複数個用意された捲回電極体の平坦部分を重ね合わせるとともに、当該捲回電極体の平坦部分の間にサブ電極を配置し、当該サブ電極と捲回電極体とのアッセンブリを電池ケースに収容するとよい。
図1は、リチウムイオン二次電池の構造の一例を示す図である。 図2は、リチウムイオン二次電池の捲回電極体を示す図である。 図3は、図2中のIII-III断面を示す断面図である。 図4は、正極活物質層の構造を示す断面図である。 図5は、負極活物質層の構造を示す断面図である。 図6は、捲回電極体の未塗工部と電極端子との溶接箇所を示す側面図である。 図7は、リチウムイオン二次電池の充電時の状態を模式的に示す図である。 図8は、リチウムイオン二次電池の放電時の状態を模式的に示す図である。 図9は、本発明の一実施形態に係るリチウムイオン二次電池を示す図である。 図10は、本発明の一実施形態に係るリチウムイオン二次電池のX-X断面図である。 図11は、本発明の一実施形態に係るリチウムイオン二次電池のXI-XI断面図である。 図12は、本発明の一実施形態に係るリチウムイオン二次電池の捲回電極体200A~200Dを示す図である。 図13は、本発明の一実施形態に係るリチウムイオン二次電池の捲回電極体200A~200DのXIII-XIII断面を示す断面図である。 図14は、本発明の一実施形態に係るリチウムイオン二次電池の捲回電極体200A~200Dおよびサブ電極500A~500Cを取り出した図である。 図15は、本発明の一実施形態に係るリチウムイオン二次電池の拘束部材を示す斜視図である。 図16は、積層電極構造のサブ電極を示す図である。 図17は、捲回電極構造のサブ電極を示す図である。 図18は、捲回電極構造のサブ電極を示す図である。 図19は、捲回電極体の変形例を示す図である。 図20は、リチウムイオン二次電池を搭載した車両を示す図である。
 ここではまず、リチウムイオン二次電池の一構造例を説明する。その後、かかる構造例を適宜に参照しつつ、本発明の一実施形態に係るリチウムイオン二次電池を説明する。なお、同じ作用を奏する部材、部位には適宜に同じ符号を付している。また、各図面は模式的に描かれており、必ずしも実物を反映していない。各図面は、一例を示すのみであり、特に言及されない限りにおいて本発明を限定しない。
 図1は、リチウムイオン二次電池100を示している。このリチウムイオン二次電池100は、図1に示すように、捲回電極体200と電池ケース300とを備えている。図2は、捲回電極体200を示す図である。図3は、図2中のIII-III断面を示している。
 捲回電極体200は、図2に示すように、正極シート220、負極シート240およびセパレータ262、264を有している。正極シート220、負極シート240およびセパレータ262、264は、それぞれ帯状のシート材である。
≪正極シート220≫
 正極シート220は、帯状の正極集電体221と正極活物質層223とを備えている。正極集電体221には、正極に適する金属箔が好適に使用され得る。正極集電体221には、例えば、所定の幅を有し、厚さが凡そ15μmの帯状のアルミニウム箔を用いることができる。正極集電体221の幅方向片側の縁部に沿って未塗工部222が設定されている。図示例では、正極活物質層223は、図3に示すように、正極集電体221に設定された未塗工部222を除いて、正極集電体221の両面に保持されている。正極活物質層223には、正極活物質が含まれている。正極活物質層223は、正極活物質を含む正極合剤を正極集電体221に塗工することによって形成されている。
≪正極活物質層223および正極活物質粒子610≫
 ここで、図4は、正極シート220の断面図である。なお、図4において、正極活物質層223の構造が明確になるように、正極活物質層223中の正極活物質粒子610と導電材620とバインダ630とを大きく模式的に表している。正極活物質層223には、図4に示すように、正極活物質粒子610と導電材620とバインダ630が含まれている。
 正極活物質粒子610には、リチウムイオン二次電池の正極活物質として用いることができる物質を使用することができる。正極活物質粒子610の例を挙げると、LiNiCoMnO(リチウムニッケルコバルトマンガン複合酸化物)、LiNiO(ニッケル酸リチウム)、LiCoO(コバルト酸リチウム)、LiMn(マンガン酸リチウム)、LiFePO(リン酸鉄リチウム)などのリチウム遷移金属酸化物が挙げられる。ここで、LiMnは、例えば、スピネル構造を有している。また、LiNiO或いはLiCoOは層状の岩塩構造を有している。また、LiFePOは、例えば、オリビン構造を有している。オリビン構造のLiFePOには、例えば、ナノメートルオーダーの粒子がある。また、オリビン構造のLiFePOは、さらにカーボン膜で被覆することができる。
≪導電材620≫
 導電材620としては、例えば、カーボン粉末、カーボンファイバーなどのカーボン材料が例示される。導電材620としては、このような導電材から選択される一種を単独で用いてもよく二種以上を併用してもよい。カーボン粉末としては、種々のカーボンブラック(例えば、アセチレンブラック、オイルファーネスブラック、黒鉛化カーボンブラック、カーボンブラック、黒鉛、ケッチェンブラック)、グラファイト粉末などのカーボン粉末を用いることができる。
≪バインダ630≫
 また、バインダ630は、正極活物質層223に含まれる正極活物質粒子610と導電材620の各粒子を結着させたり、これらの粒子と正極集電体221とを結着させたりする。かかるバインダ630としては、使用する溶媒に溶解または分散可能なポリマーを用いることができる。例えば、水性溶媒を用いた正極合剤組成物においては、セルロース系ポリマー(カルボキシメチルセルロース(CMC)、ヒドロキシプロピルメチルセルロース(HPMC)など)、フッ素系樹脂(例えば、ポリビニルアルコール(PVA)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)など)、ゴム類(酢酸ビニル共重合体、スチレンブタジエン共重合体(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)など)などの水溶性または水分散性ポリマーを好ましく採用することができる。また、非水溶媒を用いた正極合剤組成物においては、ポリマー(ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)、ポリアクリルニトリル(PAN)など)を好ましく採用することができる。
≪増粘剤、溶媒≫
 正極活物質層223は、例えば、上述した正極活物質粒子610と導電材620を溶媒にペースト状(スラリ状)に混ぜ合わせた正極合剤を作製し、正極集電体221に塗布し、乾燥させ、圧延することによって形成されている。この際、正極合剤の溶媒としては、水性溶媒および非水溶媒の何れも使用可能である。非水溶媒の好適な例としてN-メチル-2-ピロリドン(NMP)が挙げられる。上記バインダ630として例示したポリマー材料は、バインダとしての機能の他に、正極合剤の増粘剤その他の添加剤としての機能を発揮する目的で使用されることもあり得る。
 正極合剤全体に占める正極活物質の質量割合は、凡そ50wt%以上(典型的には50~95wt%)であることが好ましく、通常は凡そ70~95wt%(例えば75~90wt%)であることがより好ましい。また、正極合剤全体に占める導電材の割合は、例えば凡そ2~20wt%とすることができ、通常は凡そ2~15wt%とすることが好ましい。バインダを使用する組成では、正極合剤全体に占めるバインダの割合を例えば凡そ1~10wt%とすることができ、通常は凡そ2~5wt%とすることが好ましい。
≪負極シート240≫
 負極シート240は、図2に示すように、帯状の負極集電体241と、負極活物質層243とを備えている。負極集電体241には、負極に適する金属箔が好適に使用され得る。この負極集電体241には、所定の幅を有し、厚さが凡そ10μmの帯状の銅箔が用いられている。負極集電体241の幅方向片側には、縁部に沿って未塗工部242が設定されている。負極活物質層243は、負極集電体241に設定された未塗工部242を除いて、負極集電体241の両面に形成されている。負極活物質層243は、負極集電体241に保持され、少なくとも負極活物質が含まれている。負極活物質層243は、負極活物質を含む負極合剤が負極集電体241に塗工されている。
≪負極活物質層243≫
 図5は、リチウムイオン二次電池100の負極シート240の断面図である。負極活物質層243には、図5に示すように、負極活物質粒子710、増粘剤(図示省略)、バインダ730などが含まれている。図5では、負極活物質層243の構造が明確になるように、負極活物質層243中の負極活物質粒子710とバインダ730とを大きく模式的に表している。
≪負極活物質粒子710≫
 負極活物質粒子710としては、従来からリチウムイオン二次電池に用いられる材料の一種または二種以上を特に限定なく使用することができる。例えば、少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が挙げられる。より具体的には、負極活物質は、例えば、天然黒鉛、非晶質の炭素材料でコートした天然黒鉛、黒鉛質(グラファイト)、難黒鉛化炭素質(ハードカーボン)、易黒鉛化炭素質(ソフトカーボン)、または、これらを組み合わせた炭素材料でもよい。なお、ここでは、負極活物質粒子710は、いわゆる鱗片状黒鉛が用いられた場合を図示しているが、負極活物質粒子710は、図示例に限定されない。
≪増粘剤、溶媒≫
 負極活物質層243は、例えば、上述した負極活物質粒子710とバインダ730を溶媒にペースト状(スラリ状)に混ぜ合わせた負極合剤を作製し、負極集電体241に塗布し、乾燥させ、圧延することによって形成されている。この際、負極合剤の溶媒としては、水性溶媒および非水溶媒の何れも使用可能である。非水溶媒の好適な例としてN-メチル-2-ピロリドン(NMP)が挙げられる。バインダ730には、上記正極活物質層223(図4参照)のバインダ630として例示したポリマー材料を用いることができる。また、上記正極活物質層223のバインダ630として例示したポリマー材料は、バインダとしての機能の他に、正極合剤の増粘剤その他の添加剤としての機能を発揮する目的で使用されることもあり得る。
≪セパレータ262、264≫
 セパレータ262、264は、図1または図2に示すように、正極シート220と負極シート240とを隔てる部材である。この例では、セパレータ262、264は、微小な孔を複数有する所定幅の帯状のシート材で構成されている。セパレータ262、264には、例えば、多孔質ポリオレフィン系樹脂で構成された単層構造のセパレータ或いは積層構造のセパレータを用いることができる。この例では、図2および図3に示すように、負極活物質層243の幅b1は、正極活物質層223の幅a1よりも少し広い。さらにセパレータ262、264の幅c1、c2は、負極活物質層243の幅b1よりも少し広い(c1、c2>b1>a1)。
 なお、図1および図2に示す例では、セパレータ262、264は、シート状の部材で構成されている。セパレータ262、264は、正極活物質層223と負極活物質層243とを絶縁するとともに、電解質の移動を許容する部材であればよい。したがって、シート状の部材に限定されない。セパレータ262、264は、シート状の部材に代えて、例えば、正極活物質層223または負極活物質層243の表面に形成された絶縁性を有する粒子の層で構成してもよい。ここで、絶縁性を有する粒子としては、絶縁性を有する無機フィラー(例えば、金属酸化物、金属水酸化物などのフィラー)、或いは、絶縁性を有する樹脂粒子(例えば、ポリエチレン、ポリプロピレンなどの粒子)で構成してもよい。
 この捲回電極体200では、図2および図3に示すように、正極シート220と負極シート240とは、セパレータ262、264を介在させた状態で、正極活物質層223と負極活物質層243とが対向するように重ねられている。より具体的には、捲回電極体200では、正極シート220と負極シート240とセパレータ262、264とは、正極シート220、セパレータ262、負極シート240、セパレータ264の順に重ねられている。
 また、この際、正極活物質層223と負極活物質層243とは、セパレータ262、264が介在した状態で対向している。そして、正極活物質層223と負極活物質層243とが対向した部分の片側に、正極集電体221のうち正極活物質層223が形成されていない部分(未塗工部222)がはみ出ている。当該未塗工部222がはみ出た側とは反対側には、負極集電体241のうち負極活物質層243が形成されていない部分(未塗工部242)がはみ出ている。
≪電池ケース300≫
 また、この例では、電池ケース300は、図1に示すように、いわゆる角型の電池ケースであり、容器本体320と、蓋体340とを備えている。容器本体320は、有底四角筒状を有しており、一側面(上面)が開口した扁平な箱型の容器である。蓋体340は、当該容器本体320の開口(上面の開口)に取り付けられて当該開口を塞ぐ部材である。
 車載用の二次電池では、車両の燃費を向上させるため、重量エネルギ効率(単位重量当りの電池の容量)を向上させることが望まれる。この実施形態では、電池ケース300を構成する容器本体320と蓋体340は、アルミニウム、アルミニウム合金などの軽量金属が採用されている。これにより重量エネルギ効率を向上させることができる。
 電池ケース300は、捲回電極体200を収容する空間として、扁平な矩形の内部空間を有している。また、図1に示すように、電池ケース300の扁平な内部空間は、捲回電極体200よりも横幅が少し広い。この実施形態では、電池ケース300は、有底四角筒状の容器本体320と、容器本体320の開口を塞ぐ蓋体340とを備えている。また、電池ケース300の蓋体340には、電極端子420、440が取り付けられている。電極端子420、440は、電池ケース300(蓋体340)を貫通して電池ケース300の外部に出ている。また、蓋体340には注液孔350と安全弁360とが設けられている。
 捲回電極体200は、図2に示すように、捲回軸WLに直交する一の方向において扁平に押し曲げられている。図2に示す例では、正極集電体221の未塗工部222と負極集電体241の未塗工部242は、それぞれセパレータ262、264の両側において、らせん状に露出している。図6に示すように、この実施形態では、未塗工部222、242の中間部分224、244を寄せ集め、電極端子420、440の先端部420a、440aに溶接している。この際、それぞれの材質の違いから、電極端子420と正極集電体221の溶接には、例えば、超音波溶接が用いられる。また、電極端子440と負極集電体241の溶接には、例えば、抵抗溶接が用いられる。ここで、図6は、捲回電極体200の未塗工部222(242)の中間部分224(244)と電極端子420(440)との溶接箇所を示す側面図であり、図1のVI-VI断面図である。
 捲回電極体200は、扁平に押し曲げられた状態で、蓋体340に固定された電極端子420、440に取り付けられる。かかる捲回電極体200は、図1に示すように、容器本体320の扁平な内部空間に収容される。容器本体320は、捲回電極体200が収容された後、蓋体340によって塞がれる。蓋体340と容器本体320の合わせ目322(図1参照)は、例えば、レーザ溶接によって溶接されて封止されている。このように、この例では、捲回電極体200は、蓋体340(電池ケース300)に固定された電極端子420、440によって、電池ケース300内に位置決めされている。
≪電解液≫
 その後、蓋体340に設けられた注液孔350から電池ケース300内に電解液が注入される。電解液は、水を溶媒としていない、いわゆる非水電解液が用いられている。この例では、電解液は、エチレンカーボネートとジエチルカーボネートとの混合溶媒(例えば、体積比1:1程度の混合溶媒)にLiPFを約1mol/リットルの濃度で含有させた電解液が用いられている。その後、注液孔350に金属製の封止キャップ352を取り付けて(例えば溶接して)電池ケース300を封止する。なお、電解液は、ここで例示された電解液に限定されない。例えば、従来からリチウムイオン二次電池に用いられている非水電解液は適宜に使用することができる。
≪空孔≫
 ここで、正極活物質層223は、例えば、正極活物質粒子610と導電材620の粒子間などに、空洞とも称すべき微小な隙間225を有している(図4参照)。かかる正極活物質層223の微小な隙間には電解液(図示省略)が浸み込み得る。また、負極活物質層243は、例えば、負極活物質粒子710の粒子間などに、空洞とも称すべき微小な隙間245を有している(図5参照)。ここでは、かかる隙間225、245(空洞)を適宜に「空孔」と称する。また、捲回電極体200は、図2に示すように、捲回軸WLに沿った両側において、未塗工部222、242が螺旋状に巻かれている。かかる捲回軸WLに沿った両側252、254において、未塗工部222、242の隙間から、電解液が浸み込みうる。このため、リチウムイオン二次電池100の内部では、正極活物質層223と負極活物質層243に電解液が浸み渡っている。
≪ガス抜け経路≫
 また、この例では、当該電池ケース300の扁平な内部空間は、扁平に変形した捲回電極体200よりも少し広い。捲回電極体200の両側には、捲回電極体200と電池ケース300との間に隙間310、312が設けられている。当該隙間310、312は、ガス抜け経路になる。例えば、過充電が生じた場合などにおいて、リチウムイオン二次電池100の温度が異常に高くなると、電解液が分解されてガスが異常に発生する場合がある。この実施形態では、異常に発生したガスは、捲回電極体200の両側における捲回電極体200と電池ケース300との隙間310、312を通して安全弁360の方へ移動し、安全弁360から電池ケース300の外に排気される。
 かかるリチウムイオン二次電池100では、正極集電体221と負極集電体241は、電池ケース300を貫通した電極端子420、440を通じて外部の装置に電気的に接続される。以下、充電時と放電時のリチウムイオン二次電池100の動作を説明する。
≪充電時の動作≫
 図7は、かかるリチウムイオン二次電池100の充電時の状態を模式的に示している。充電時においては、図7に示すように、リチウムイオン二次電池100の電極端子420、440(図1参照)は、充電器290に接続される。充電器290の作用によって、充電時には、正極活物質層223中の正極活物質からリチウムイオン(Li)が電解液280に放出される。また、正極活物質層223からは電荷が放出される。放出された電荷は、導電材(図示省略)を通じて正極集電体221に送られ、さらに、充電器290を通じて負極シート240へ送られる。また、負極シート240では電荷が蓄えられるとともに、電解液280中のリチウムイオン(Li)が、負極活物質層243中の負極活物質に吸収され、かつ、貯蔵される。
≪放電時の動作≫
 図8は、かかるリチウムイオン二次電池100の放電時の状態を模式的に示している。放電時には、図8に示すように、負極シート240から正極シート220に電荷が送られるとともに、負極活物質層243に貯蔵されたリチウムイオンが、電解液280に放出される。また、正極では、正極活物質層223中の正極活物質に電解液280中のリチウムイオンが取り込まれる。
 このようにリチウムイオン二次電池100の充放電において、電解液280を介して、正極活物質層223と負極活物質層243との間でリチウムイオンが行き来する。また、充電時においては、正極活物質から導電材を通じて正極集電体221に電荷が送られる。これに対して、放電時においては、正極集電体221から導電材を通じて正極活物質に電荷が戻される。
 充電時においては、リチウムイオンの移動および電子の移動がスムーズなほど、効率的で急速な充電が可能になると考えられる。放電時においては、リチウムイオンの移動および電子の移動がスムーズなほど、電池の抵抗が低下し、放電量が増加し、電池の出力が向上すると考えられる。
≪他の電池形態≫
 なお、上記はリチウムイオン二次電池の一例を示すものである。リチウムイオン二次電池は上記形態に限定されない。また、同様に金属箔に電極合剤が塗工された電極シートは、他にも種々の電池形態に用いられる。例えば、他の電池形態として、円筒型電池或いはラミネート型電池などが知られている。円筒型電池は、円筒型の電池ケースに捲回電極体を収容した電池である。また、ラミネート型電池は、正極シートと負極シートとをセパレータを介在させて積層した電池である。
 以下、本発明の一実施形態に係るリチウムイオン二次電池を説明する。なお、ここで、上述したリチウムイオン二次電池100と同じ作用を奏する部材または部位には、適宜に同じ符号を用い、必要に応じて上述したリチウムイオン二次電池100の図を参照して説明する。
 図9は、本発明の一実施形態に係るリチウムイオン二次電池100Aを示している。図10は、リチウムイオン二次電池100AのX-X断面図である。さらに、図11は、リチウムイオン二次電池100AのXI-XI断面図である。図12は、図9に示すリチウムイオン二次電池100Aの捲回電極体200A~200Dの構造を示す図である。図13は、図12に示す捲回電極体200A~200DのXIII-XIII断面図である。また、図14は、電池ケース300A(図11参照)に収容された捲回電極体200A~200Dと、サブ電極500A~500Cを取り出した図である。
 本発明の一実施形態に係るリチウムイオン二次電池100Aは、図9から図11に示すように、電池ケース300Aと、複数(図示例では、4つ)の捲回電極体200A~200Dと、少なくとも一つ(図示例では3つ)のサブ電極500A~500Cとを備えている。図11中、サブ電極500A~500Cは、捲回電極体200A~200Dに比べて厚く描かれている。また、ここでは、捲回電極体200A~200Dの内部構造の図示は省略されている。これらの点について、図14は、図11と同様に図示されている。また、図14では、捲回電極体200A~200Dの最外周に捲かれた電極(負極240A~240D)およびセパレータ262、264が図示されている。
≪電池ケース300A≫
 電池ケース300Aは、図9から図11に示すように、複数の捲回電極体200A~200Dを重ね合わせて収容し得る略矩形の内部空間を有している。なお、図9~図11に示す例では、電池ケース300Aには、4つの捲回電極体200A~200Dが収容されている。
 この実施形態では、電池ケース300Aは、有底四角筒状の容器本体320Aと、容器本体320Aの開口を塞ぐ蓋体340Aとを備えている。また、電池ケース300Aの蓋体340Aには、電極端子520、540が取り付けられている。また、蓋体340Aには注液孔350Aと安全弁360Aとが設けられている。注液孔350Aに金属製の封止キャップ352Aが取り付けられている。
 また、捲回電極体200A~200Dは、捲回された際の捲回軸WL(図12参照)に直行する方向に沿って扁平に曲げられている。さらに、捲回電極体200A~200Dは、図10に示すように、扁平に曲げられた捲回電極体200A~200Dの平坦部分210A~210Dが重ねられた状態で電池ケース300Aに収容されている。この実施形態では、捲回電極体200A~200Dは重ねられた方向において概ね隙間なく電池ケース300Aに収納されている。さらに、電池ケース300Aは、拘束部材(図示省略)によって拘束されている。
≪複数の捲回電極体200A~200D≫
 捲回電極体200A~200Dは、図12および図13に示すように、それぞれ上述した捲回電極体200(図2から図5参照)と概ね同じ構造を備えている。ここでは、捲回電極体200A~200Dについて、適宜に捲回電極体200と同じ符号を付している。なお、本明細書および図面において、捲回電極体200A~200Dの部材または部位について、何れの捲回電極体200A~200Dの部材または部位であるか区別を要する場合に、捲回電極体200A~200Dに対応させてA~Dの文字を適宜に符号に添えている。
 この実施形態では、捲回電極体200A~200Dは、図12および図13に示すように、それぞれ帯状の正極220と帯状の負極240とを備えている。複数の捲回電極体200A~200Dは、それぞれ上述した捲回電極体200と概ね同じ構造を備えている。
≪帯状の正極≫
 帯状の正極220(正極シート)は、図12および図13に示すように、帯状の正極集電体221と、正極活物質層223とを備えている。正極活物質層223は、帯状の正極集電体221の両面に形成されている。また、正極集電体221の片側の長辺に沿って正極活物質層223が形成されていない部分222を有している。この実施形態では、正極活物質層223がペースト材料を塗布することによって形成されている。このため、正極集電体221のうち正極活物質層223が形成されていない部分222は、適宜に「未塗工部」と称する。ここで、帯状の正極220のうち、正極集電体221に正極活物質層223が形成された部分が、リチウムイオンを放出又は吸蔵する。このため、帯状の正極220のうち、正極集電体221に正極活物質層223が形成された部分が、実質的には、捲回電極体200A~200Dの正極として機能している。
≪帯状の負極≫
 帯状の負極240(負極シート)は、図12および図13に示すように、帯状の負極集電体241と、負極活物質層243とを備えている。負極活物質層243は、帯状の負極集電体241の両面に形成されている。また、負極集電体241の片側の長辺に沿って負極活物質層243が形成されていない部分242を有している。この実施形態では、負極活物質層243がペースト材料を塗布することによって形成されている。このため、負極集電体241のうち負極活物質層243が形成されていない部分242は、適宜に「未塗工部」と称する。ここで、帯状の負極240のうち、負極集電体241に負極活物質層243が形成された部分が、リチウムイオンを放出又は吸蔵する。このため、帯状の負極240のうち、負極集電体241に負極活物質層243が形成された部分が、実質的には、捲回電極体200A~200Dの負極として機能している。
 帯状の正極220と帯状の負極240とは、セパレータ262、264を介在させて重ねられた状態で捲回され、当該捲回された際の捲回軸WLに直行する方向に沿って扁平に曲げられている。この実施形態では、セパレータ262、264は、シート状のセパレータが用いられている。
 より具体的には、この捲回電極体200A~200Dでは、図12および図13に示すように、正極シート220と負極シート240とは、セパレータ262、264を介在させた状態で、正極活物質層223と負極活物質層243とが対向するように重ねられている。この捲回電極体200A~200Dでは、正極シート220と負極シート240とセパレータ262、264とは、正極シート220、セパレータ262、負極シート240、セパレータ264の順に重ねられている。
 セパレータ262、264の幅c1、c2はそれぞれ同じである。セパレータ262、264の幅c1、c2は、負極活物質層243の幅b1より広い。また、負極活物質層243の幅b1は、正極活物質層223の幅a1より広い。そして、セパレータ262、264の両側の縁は、負極活物質層243からそれぞれはみ出ている。さらに、負極活物質層243の両側の縁は、正極活物質層223からそれぞれはみ出ている。
 また、正極活物質層223と負極活物質層243とが対向した部分の片側には、正極集電体221のうち正極活物質層223が形成されていない部分(未塗工部222)がはみ出ている。当該未塗工部222がはみ出た側とは反対側には、負極集電体241のうち負極活物質層243が形成されていない部分(未塗工部242)がはみ出ている。
 また、この実施形態では、図示は省略するが、捲回電極体200A~200Dは、帯状の正極220よりも帯状の負極240の方が長い。さらに、セパレータ262、264は、帯状の負極240よりも長い。捲回電極体200A~200Dの最外周では、帯状の正極220は帯状の負極240によって覆われている。さらに、帯状の負極240は、セパレータ262、264によって覆われている。
 捲回電極体200A~200Dは、それぞれ扁平に曲げられている。そして、捲回電極体200A~200Dは、扁平に曲げられた捲回電極体200A~200Dの平坦部分210A~210Dが重ねられた状態で電池ケース300Aに収容されている。捲回電極体200A~200Dと電池ケース300Aとの間には、捲回電極体200A~200Dの捲回軸WL(図12参照)の両側に隙間310A、312Aが設けられている。当該隙間310A、312Aは、例えば、過充電が生じた場合などにおいて、電池ケース300A内で発生し得るガスを抜くためのガス抜け経路になる。また、扁平に曲げられた捲回電極体200A~200Dの平坦部分210A~210Dの間には、サブ電極500A~500Cが配置されている。
≪サブ電極500A~500C≫
 サブ電極500A~500Cは、図14に示すように、捲回電極体200A~200Dの最外周に捲かれた電極240A~240Dとは正負が反対の電極が最表面に形成されている。そして、扁平に曲げられた捲回電極体200A~200Dの平坦部分210A~210Dの間に配置されている。
 この実施形態では、サブ電極500A~500Cは、シート状の電極である。サブ電極500A~500Cは、サブ集電体502A~502Cと、サブ活物質層504A~504Cとを備えている。
≪サブ集電体502A~502C、サブ活物質層504A~504C≫
 サブ集電体502A~502Cは、サブ電極500A~500Cの集電体である。この実施形態では、サブ集電体502A~502Cは矩形のシート状の基材である。サブ活物質層504A~504Cは、サブ集電体502A~502Cの両面に形成されている。サブ集電体502A~502Cは、例えば、捲回電極体200A~200Dの最外周に捲かれた電極とは正負が反対の電極で用いられた集電体と同じ金属箔を用いることができる。サブ活物質層504A~504Cは、捲回電極体200A~200Dの最外周に捲かれた電極とは反対の電極となる活物質層で構成されている。
 この実施形態では、図14に示すように、捲回電極体200A~200Dの最外周に捲かれた電極は負極(負極シート240A~240D)である。負極シート240A~240Dは、負極集電体241A~241Dの両面に負極活物質層243A~243Dが形成されている。これに対して、サブ電極500A~500Cの最表面に形成された電極は正極である。この実施形態では、サブ集電体502A~502Cには、捲回電極体200A~200Dの正極集電体221(図12参照)と同様に、アルミニウム箔が用いられている。また、サブ活物質層504A~504Cは、捲回電極体200A~200Dの正極活物質層223(図12参照)と同じ構造である。
≪未塗工部506A~506C≫
 この実施形態では、サブ集電体502A~502Cは、矩形のシート状の基材である。サブ集電体502A~502Cの片側には、サブ活物質層504A~504Cが形成されていない部分506A~506Cを有している。この実施形態では、サブ活物質層504A~504Cは、正極活物質層223(図12参照)と同様にペースト材料を塗布することによって形成されている。このため、サブ集電体502A~502Cのうちサブ活物質層504A~504Cが形成されていない部分506A~506Cは適宜に「未塗工部」と称する。
≪サブ電極500A~500Cの配置≫
 サブ電極500A~500Cは、図14に示すように、扁平に曲げられた捲回電極体200A~200Dの平坦部分210A~210Dの間に配置されている。この実施形態では、捲回電極体200A~200Dの最外周はセパレータ262、264で覆われている。このため、サブ電極500A~500Cと、捲回電極体200A~200Dの最外周に捲かれた電極(負極シート240A~240D)との間に、捲回電極体200A~200Dの最外周に捲かれたセパレータ262、264が介在している。なお、捲回電極体200A~200Dと、サブ電極500A~500Cとの間に、別途セパレータを介在させてもよい。
 サブ電極500A~500Cは、扁平に曲げられた捲回電極体200A~200Dの最外周に捲かれた電極の平坦部分210A~210Dに収められている。すなわち、この実施形態では、サブ電極500A~500Cのサブ活物質層504A~504Cは、捲回電極体200A~200Dの最外周に捲かれた負極240A~240Dの負極活物質層243A~243Dの平坦部分に収められている。換言すると、サブ活物質層504A~504Cが負極活物質層243A~243Dの平坦部分からはみ出ないように、サブ電極500A~500Cが捲回電極体200A~200Dの間に重ねられている。
 この実施形態では、サブ電極500A~500Cのサブ活物質層504の幅は、捲回電極体200A~200Dのお正極活物質層223の幅と概ね同じ幅である。また、サブ電極500のサブ活物質層504の高さは、捲回電極体200A~200Dの最外周に捲かれた負極240A~240Dの負極活物質層243A~243Dの平坦部分の高さよりも少し短い。この実施形態において、正極となるサブ活物質層504は、捲回電極体200A~200Dの負極活物質層243A~243Dで覆われた構造となる。これにより、正極となるサブ活物質層504から放出されるリチウムイオンを、捲回電極体200A~200Dの負極活物質層243A~243Dに適切に吸収させることができる。
 また、サブ電極500A~500Cの未塗工部506A~506Cは、図11および図14に示すように、捲回電極体200A~200Dの正極の未塗工部222A~222Dと同様に、捲回電極体200A~200Dの正極活物質層223と負極活物質層243とが対向した部分の片側にはみ出ている。
≪電極端子520、540≫
 電極端子520、540は、図9および図10に示すように、電池ケース300A(蓋体340A)を貫通して電池ケース300Aの外部に出ている。正極の電極端子520は電池ケース300A内に延び、捲回電極体200A~200Dの正極シート220A~220Dの未塗工部222A~222Dおよびサブ電極500A~500Cの未塗工部506A~506Cに接続されている。また、図示は省略するが、同様に、負極の電極端子540は、電池ケース300A内に延び、捲回電極体200A~200Dの負極シート240A~240Dの未塗工部242A~242Dに接続されている。
 この実施形態では、正極の電極端子520は、図10に示すように、捲回電極体200Aの未塗工部222Aと捲回電極体200Bの未塗工部222Bとの間、および、捲回電極体200Cの未塗工部222Cと捲回電極体200Dの未塗工部222Dとの間にそれぞれ延びている。そして、未塗工部222Aと未塗工部222Bとの間で、未塗工部222Cと未塗工部222Dとの間に、各未塗工部222A~222Dを束ねて溶接する溶接部520A~520Dが設けられている。
 また、この実施形態では、電池ケース300Aに4つの捲回電極体200A~200Dが収容されている。電極端子520は、図10に示すように、電池ケース300A内で2つに分岐している。分岐した一方の端子は、捲回電極体200Aの未塗工部222Aと捲回電極体200Bの未塗工部222Bとの間に延びている。当該一方の端子は、未塗工部222Aと未塗工部222Bの間で弧を描くように屈曲している。そして、当該一方の端子には、未塗工部222Aを溶接する直線状の溶接部520Aと、未塗工部222Bを溶接する直線状の溶接部520Bとが設けられている。
 また、分岐した他方の端子は、捲回電極体200Cの未塗工部222Cと捲回電極体200Dの未塗工部222Dとの間に延びている。当該他方の端子は、未塗工部222Cと未塗工部222Dの間で弧を描くように屈曲している。そして、当該他方の端子には、未塗工部222Cを溶接する直線状の溶接部520Cと、未塗工部222Dを溶接する直線状の溶接部520Dとが設けられている。図示は省略するが、負極の電極端子540は、正極の電極端子520と同様の構造を備えている。捲回電極体200A~200Dの負極の未塗工部242A~242Dは、負極の電極端子540にそれぞれ接続されている。
 このように、正極の電極端子520には、帯状の正極220A~220Dの未塗工部222が接続される複数の接続部位(この実施形態では、溶接部520A~520D)が設けられている。また、負極の電極端子540は、帯状の負極240A~240Dの未塗工部242が接続された複数の接続部位(溶接部540A~540D(図9参照))が設けられている。これにより、複数の捲回電極体200A~200Dの未塗工部222、未塗工部242を、一つに纏めなくて良く、捲回電極体200A~200Dの未塗工部222、未塗工部242を短くできる。
 なお、捲回電極体200A~200Dおよび電極端子520、540は、電池ケース300Aとは絶縁されている。この実施形態では、捲回電極体200A~200Dおよび電極端子520、540と、電池ケース300Aとの間に絶縁材(図示省略)が介在している。また、電極端子520、540は、電池ケース300Aの蓋体340Aに設けられている。この場合、例えば、電極端子520、540に捲回電極体200A~200Dを接続した後で、捲回電極体200A~200Dを電池ケース300Aに収めるとよい。そして、電池ケース300Aに捲回電極体200A~200Dを収めた後で、電池ケース300Aの容器本体320Aと蓋体340Aとの合わせ目322Aを封止するとよい。
≪拘束部材≫
 図15は、複数(図示例では、4つ)のリチウムイオン二次電池100Aを組み合わせた組電池1000を示す図である。この実施形態では、図15に示すように、組電池1000の各電池ケース300Aは、拘束部材550によって膨張が抑えられている。
 この実施形態では、拘束部材550は、図15に示すように、スペーサ560と、エンドプレート565、566と、ビーム材570と、ビス575、576とを備えている。
 この実施形態では、組電池1000は、図15に示すように、4つのリチウムイオン二次電池100Aが組み合わされている。リチウムイオン二次電池100Aは、正極の電極端子520と負極の電極端子540の位置を交互に変えて組み合わされている。これにより、隣接するリチウムイオン二次電池100Aの正極の電極端子520と、負極の電極端子540とを近接させている。図15に示す例では、隣接するリチウムイオン二次電池100Aの正極の電極端子520と、負極の電極端子540とは、接続部材555で接続され、4つのリチウムイオン二次電池100Aの正極と負極が直列に組み合わされている。
 スペーサ560は、リチウムイオン二次電池100Aの間に配置されている。エンドプレート565、566は、複数のリチウムイオン二次電池100Aを組み合わせた両端に配置されている。ビーム材570は、複数のリチウムイオン二次電池100Aの両側においてエンドプレート565、566に架け渡され、ビス575、576によってエンドプレート565、566に取り付けられている。かかる拘束部材550は、ビス575、576を締めることによって、エンドプレート565、566の間隔を狭くできる。かかる拘束部材550によって、図10に示すように、電池ケース300Aに拘束力Pを与えることができる。電池ケース300Aは、拘束力Pによって、膨張するのを抑えられる。
 また、この実施形態では、スペーサ560は、電池ケース300A内で、扁平に曲げられた状態で配置された捲回電極体200A~200Dの最外周に捲かれた電極の平坦部分に応じた大きさを有している。スペーサ560は、電池ケース300Aの外部において、捲回電極体200A~200Dの最外周に捲かれた電極の平坦部分が当接する位置に合わせて配置されている。かかるスペーサ560を介して拘束部材550の拘束力Pが各リチウムイオン二次電池100Aの電池ケース300Aに作用する。これによって、各リチウムイオン二次電池100Aの捲回電極体200A~200Dの最外周に捲かれた電極の平坦部分に、拘束部材550の拘束力Pが作用する。
 捲回電極体200A~200Dは、充放電に伴って膨張と収縮が繰り返される。この際、拘束部材550の拘束力Pは、図10に示すように、捲回電極体200A~200Dが重ねられた方向に作用する。かかる拘束力Pの作用によって、電池ケース300Aの膨張は小さく抑えられる。また、この実施形態では、図11に示すように、扁平に曲げられた捲回電極体200A~200Dの平坦部分210A~210Dの間に、サブ電極500A~500Cが配置されている。拘束部材550の拘束力Pによって、捲回電極体200A~200Dの間に配置されたサブ電極500A~500Cがずれるのを防止できる。以上、電池ケース300Aを拘束する拘束部材550の一例を例示したが、拘束部材550の構造はこれに限定されない。
≪リチウムイオン二次電池100Aの作用≫
 このリチウムイオン二次電池100Aによれば、図9、図12および図13に示すように、複数の捲回電極体200A~200Dは、それぞれ帯状の正極220と帯状の負極240とを備えている。帯状の正極220と帯状の負極240とは、セパレータ262、264を介在させて重ねられた状態で捲回されている。そして、捲回された際の捲回軸WLに直行する方向に沿って扁平に曲げられている。さらに、複数の捲回電極体200A~200Dは、図10および図11に示すように、扁平に曲げられた捲回電極体200A~200Dの平坦部分210A~210Dが重ねられた状態で電池ケース300Aに収容されている。さらに、図14に示すように、扁平に曲げられた捲回電極体200A~200Dの平坦部分210A~210Dの間に、サブ電極500A~500Cが配置されている。また、捲回電極体200A~200Dの最外周に捲かれた電極(ここでは、負極240A~240D)とは正負が反対の電極(正極)が、サブ電極500A~500Cの最表面に形成されている。
 このリチウムイオン二次電池100Aでは、捲回電極体200A~200Dの最外周に捲かれた電極(ここでは、負極240A~240D)とは正負が反対のサブ電極500A~500Cが、捲回電極体200A~200Dに挟まれている。充放電時に、捲回電極体200A~200Dが対向する部分では、捲回電極体200A~200Dの最外周に捲かれた電極(ここでは、負極240A~240D)が、サブ電極500A~500Cとの間でリチウムイオンの放出や吸蔵を行うことができる。これにより、捲回電極体200A~200Dが対向した部分は、構造的に電池要素として効率的に機能する。
 また、この実施形態では、捲回電極体200A~200Dの最外周に捲かれた電極が負極であり、サブ電極500A~500Cの最表面に形成された活物質層(サブ活物質層504A~504C)が正極である。捲回電極体200A~200Dが対向する部分以外で、捲回電極体200A~200Dの正極活物質層223が露出するのを防止できる。さらに、サブ電極500A~500Cは、捲回電極体200の最外周に捲かれた電極の平坦部分に収められているとよい。これにより、正極となるサブ電極500A~500Cから放出されるリチウムイオンがスムーズに捲回電極体200の最外周に捲かれた電極の平坦部分に吸収される。このため、捲回電極体200A~200Dが対向した部分を、構造的に電池要素として効率的に機能させることができる。
 また、リチウムイオン二次電池100Aは、例えば、図15に示すように、電池ケース300Aの膨張を抑える拘束部材550を備えているとよい。これにより、サブ電極500A~500Cのずれを抑えることができるとともに、電池ケース300Aの膨張を抑えることができる。
 また、この実施形態では、サブ電極500A~500Cは、サブ集電体502と、サブ集電体502の両面に形成されたサブ活物質層504とを備えたシート状(短冊状)の電極である。ここで、サブ活物質層504は、捲回電極体200A~200Dの最外周に捲かれた電極とは反対の電極となる活物質層で構成されている。かかるサブ電極500A~500Cは、シート状(短冊状)であり、薄く形成でき、かつ、捲回電極体200A~200Dが対向した部分は、構造的に電池要素として効率的に機能させることができる。また、かかるサブ電極500A~500Cは、低コストで作製できる。これにより、かかるサブ電極500A~500Cを備えたリチウムイオン二次電池100Aをコンパクトに、かつ、低コストで実現できる。
 また、この実施形態では、捲回電極体200A~200Dの正極は、図12および図13に示すように、帯状の正極集電体221と、正極集電体221の両面に形成された正極活物質層223とを備えている。また、捲回電極体200A~200Dの正極は、正極集電体221の片側の長辺に沿って正極活物質層223が形成されていない部分(未塗工部222)を有している。
 捲回電極体200A~200Dの負極は、帯状の負極集電体241と、負極集電体241の両面に形成された負極活物質層243とを備えている。また、捲回電極体200A~200Dの負極は、負極集電体241の片側の長辺に沿って負極活物質層243が形成されていない部分(未塗工部242)を有している。
 かかる捲回電極体200A~200Dの正極と負極とは、セパレータ262、264を介在させた状態で、正極活物質層223と負極活物質層243とが対向するように重ねられている。正極活物質層223と負極活物質層243とが対向した部分の片側に、正極集電体221のうち正極活物質層223が形成されていない部分(未塗工部222)がはみ出ている。正極集電体221のうち正極活物質層223が形成されていない部分(未塗工部222)がはみ出た側とは反対側に、負極集電体241のうち負極活物質層243が形成されていない部分(未塗工部242)がはみ出ている。そして、複数の捲回電極体200A~200Dは、正極集電体221がはみ出た側と、負極集電体241がはみ出た側とを揃えて重ねられている。
 これにより、図9から図11に示すように、電池ケース300A内の片側に正極集電体221がはみ出て、その反対側に負極集電体241がはみ出るので、正極集電体221と負極集電体241とを電気的に接続する電極端子520、540の配置を単純化できる。
 また、図19に示すように、捲回電極体200A~200Dの負極240は内周端部246において折り曲げられていてもよい。この場合、当該折り曲げられた負極240の間に、正極となる第2サブ電極580が挟まれているとよい。例えば、第2サブ電極580は、正極集電体の両面に正極活物質層を形成した構造であるとよい。これにより、捲回電極体200A~200Dの負極240は内周端部において折り曲げられている場合でも、当該負極240の内周端部246と、正極となる第2サブ電極580との間で、リチウムイオンの放出や吸蔵を行うことができる。このように、捲回電極体200A~200Dは、第2サブ電極580を有していることによって、さらに効率的に電池要素として機能させることができる。
 さらに、この実施形態では、図10および図11に示すように、正極集電体221のうち正極活物質層223が形成されていない部分(未塗工部222)は、捲回電極体200A~200D毎に纏められている。さらに、図示は省略するが、同様に、負極集電体241のうち負極活物質層243が形成されていない部分(未塗工部242)は、捲回電極体200A~200D毎に纏められている。これにより、未塗工部222、242の幅を短くでき、電池ケース300Aをコンパクトにできる。また、複数の捲回電極体200A~200Dの未塗工部222、242の幅を概ね同じ長さにでき、複数の捲回電極体200A~200Dを共通化できる。
 なお、複数の捲回電極体200A~200Dの未塗工部222、242を全て纏める場合には、未塗工部222、242の幅を長く確保したり、複数の捲回電極体200A~200Dについて、それぞれ未塗工部222、242の幅を変えたりする必要が生じ得る。
 また、正極集電体221のうち正極活物質層223が形成されていない部分(未塗工部222)が接続された正極の電極端子520と、負極集電体241のうち負極活物質層243が形成されていない部分が接続された負極の電極端子540を備えているとよい。この場合、正極の電極端子520は、図10に示すように、正極集電体221のうち正極活物質層223が形成されていない部分(未塗工部222)が接続された接続部位520A~520Dが複数設けられているとよい。また、負極の電極端子540は、同様に、負極集電体241のうち負極活物質層243が形成されていない部分(未塗工部242)が接続された接続部位540A~540D(図9参照)が複数設けられているとよい。これにより、捲回電極体200A~200Dの未塗工部222、242の幅を短くでき、電池ケース300Aをコンパクトにできる。
 以上、リチウムイオン二次電池100Aの構造を説明した。
≪リチウムイオン二次電池100Aの製造方法≫
 かかるリチウムイオン二次電池100Aの製造方法は、複数の捲回電極体を用意する工程と、サブ電極を用意する工程と、複数の捲回電極体を重ねる工程と、サブ電極と複数の捲回電極体とを電池ケースに収容する工程とを備えているとよい。
 ここで複数の捲回電極体を用意する工程では、例えば、図12および図13に示すように、帯状の正極220と帯状の負極240とを備え、帯状の正極220と帯状の負極240とは、セパレータ262、264を介在させて重ねられた状態で捲回され、捲回軸WLに直行する方向に沿って扁平に曲げた捲回電極体を複数個用意するとよい。
 サブ電極を用意する工程は、図14に示すように、捲回電極体200A~200Dの最外周に捲かれた電極とは正負が反対の電極が最表面に形成されたサブ電極500A~500Cを用意するとよい。
 電池ケースに収容する工程では、図10および図11に示すように、複数個用意された捲回電極体200A~200Dの平坦部分210A~210Dを重ね合わせるとともに、当該捲回電極体200A~200Dの平坦部分210A~210Dの間にサブ電極500A~500Cを配置し、当該サブ電極500A~500Cと捲回電極体200A~200Dとのアッセンブリを電池ケース300Aに収容するとよい。
 以上、本発明の一実施形態に係るリチウムイオン二次電池を説明したが、本発明に係るリチウムイオン二次電池は、上記に限定されない。
≪積層電極構造のサブ電極≫
 例えば、上述したリチウムイオン二次電池100Aでは、サブ電極は積層電極構造でもよい。
 図16は、積層電極構造のサブ電極750を示している。積層電極構造のサブ電極750は、図16に示すように、シート状のサブ正極760と、シート状のサブ負極770とが交互に積層されている。サブ正極760とサブ負極770のうち、捲回電極体200A~200D(図14参照)の最外周に捲かれた電極とは反対の電極が外側に積層されている。例えば、捲回電極体200の最外周に捲かれた電極が負極である場合には、図16に示すように、積層電極構造のサブ電極750は、サブ正極760が外側に積層されているとよい。
 なお、図16に示すように、サブ正極760は、サブ正極集電体762と、サブ正極活物質層764とを備えている。サブ正極活物質層764は、サブ正極集電体762の両面にそれぞれ形成されている。また、サブ正極集電体762の一端には、サブ正極活物質層764が形成されていない部分766(正極の未塗工部)がある。サブ負極770は、サブ負極集電体722と、サブ負極活物質層774とを備えている。サブ負極活物質層774は、サブ負極集電体722の両面にそれぞれ形成されている。また、サブ負極集電体722の一端には、サブ負極活物質層774が形成されていない部分776(負極の未塗工部)がある。
 サブ正極760とサブ負極770とは、セパレータ782、784を介在させた状態で重ねられている。この際、サブ正極活物質層764とサブ負極活物質層774とは、セパレータ782、784を介在させた状態で対向させている。サブ正極活物質層764とサブ負極活物質層774とが対向した部分の片側には、正極の未塗工部766がはみ出ておいる。また、正極の未塗工部766がはみ出た側とは反対側に、負極の未塗工部776がはみ出ている。
 かかるサブ電極750は、例えば、図16に示すように、捲回電極体200、200の間に配置されている。この際、サブ電極750の外側に積層された電極(サブ正極760)は、捲回電極体200A~200Dのセパレータ262、264を介在させた状態で、捲回電極体200の最外周に捲かれた電極(負極(図14参照))と対向する。
 これにより、充放電時に、捲回電極体200、200が対向する部分では、捲回電極体200、200の最外周に捲かれた電極(ここでは、負極)が、サブ電極750の外側に積層された電極(ここでは、サブ正極760)との間でリチウムイオンの放出や吸蔵を行うことができる。これにより、捲回電極体200、200が対向した部分は、構造的に電池要素として効率的に機能する。
≪捲回電極構造のサブ電極≫
 また、リチウムイオン二次電池100Aのサブ電極は捲回電極構造でもよい。
 図17は、扁平に曲げられた捲回電極体200の平坦部分210の間に、捲回電極構造のサブ電極800が配置された図である。捲回電極構造のサブ電極800は、図18に示すように、帯状のサブ正極820と、帯状のサブ負極840とを備えている。サブ正極820とサブ負極840とは、セパレータ862、864を介在させて重ねられた状態で捲回され、かつ、当該捲回された際の捲回軸WLに直行する方向に沿って扁平に曲げられている。サブ電極800の捲回量は、捲回電極体200~200に比べて少なくてよい。
 サブ電極800の最外周には、サブ正極820とサブ負極840のうち、捲回電極体200の最外周に捲かれた電極とは反対の電極が捲かれている。例えば、捲回電極体200の最外周に捲かれた電極が負極である場合には、サブ電極800の最外周にはサブ正極820が捲かれているとよい。図18に示す捲回電極構造のサブ電極800は、サブ電極800の最外周にはサブ正極820が捲かれている。
≪帯状のサブ正極820≫
 帯状のサブ正極820は、図18に示すように、帯状の正極集電体821と、正極活物質層823とを備えている。正極活物質層823は、帯状の正極集電体821の両面に形成されている。また、正極集電体821の片側の長辺に沿って正極活物質層823が形成されていない部分822を有している。この実施形態では、正極活物質層823がペースト材料を塗布することによって形成されている。このため、正極集電体821のうち正極活物質層823が形成されていない部分822は、適宜に「未塗工部」と称する。
≪帯状のサブ負極840≫
 帯状のサブ負極840は、図18に示すように、帯状の負極集電体841と、負極活物質層843とを備えている。負極活物質層843は、帯状の負極集電体841の両面に形成されている。また、負極集電体841の片側の長辺に沿って負極活物質層843が形成されていない部分842を有している。この実施形態では、負極活物質層843がペースト材料を塗布することによって形成されている。このため、負極集電体241のうち負極活物質層843が形成されていない部分842は、適宜に「未塗工部」と称する。
 帯状のサブ正極820と帯状のサブ負極840とは、セパレータ862、864を介在させて重ねられた状態で捲回され、当該捲回された際の捲回軸WLに直行する方向に沿って扁平に曲げられている。かかる捲回電極構造のサブ電極800には、捲回軸WLに沿った両側852、854において、未塗工部822、842の隙間から電解液が浸み込みうる。
 捲回電極構造のサブ電極800では、図18に示すように、サブ正極820とサブ負極840とセパレータ862、864とは、サブ負極840、セパレータ862、サブ正極820、セパレータ864の順に重ねられている。
 ここで、セパレータ862、864の幅c1、c2はそれぞれ同じである。セパレータ862、864の幅c1、c2は、サブ負極840の負極活物質層843の幅b1より広い。また、負極活物質層843の幅b1は、正極活物質層823の幅a1より広い。そして、セパレータ862、864の両側の縁は、負極活物質層843からそれぞれはみ出ている。さらに、負極活物質層843の両側の縁は、正極活物質層823からそれぞれはみ出ている。
 また、正極活物質層823と負極活物質層843とが対向した部分の片側には、正極集電体821のうち正極活物質層823が形成されていない部分(未塗工部822)がはみ出ている。当該未塗工部822がはみ出た側とは反対側には、負極集電体841のうち負極活物質層843が形成されていない部分(未塗工部842)がはみ出ている。
 また、この実施形態では、捲回電極体200の最外周では、帯状の正極220は帯状の負極240によって覆われている。さらに、帯状の負極240は、セパレータ262、264によって覆われている(図12および図14参照)。
 捲回電極体200は、図17に示すように、それぞれ扁平に曲げられている。扁平に曲げられた捲回電極体200、200の平坦部分210、210の間には、サブ電極800が配置されている。充放電時に、捲回電極体200、200が対向する部分では、捲回電極体200、200の最外周に捲かれた電極(ここでは、負極240)が、サブ電極800の最外周に捲かれた電極(ここでは、正極820)との間でリチウムイオンの放出や吸蔵を行うことができる。これにより、捲回電極体200、200が対向した部分は、構造的に電池要素として効率的に機能する。
 なお、この実施形態では、サブ電極800の最外周に捲かれるサブ正極820の湾曲部分は、捲回電極体200の間で露出する。この際、サブ電極800の捲回数が多い場合など、サブ正極820が電解液中に露出するのは、リチウムが析出する原因となるので、好ましくない。このため、図18に示すように、サブ電極800の最外周に捲かれるサブ正極820の湾曲部分を覆うカバー880を、サブ電極800に設けてもよい。これにより、サブ電極800の最外周に捲かれるサブ正極820の湾曲部分が電解液中に露出するのを防止できる。かかるカバー880は、好ましくは負極シート880で構成してもよい。これにより、サブ電極800の最外周に捲かれるサブ正極820の湾曲部分が電解液中に露出するのを防止し、かつ、当該サブ正極820の湾曲部分を構造的に電池要素として効率的に機能させることができる。
 以上、本発明の一実施形態に係るリチウムイオン二次電池を説明したが、本発明は、特に言及されない限りにおいて、上述した何れの実施形態にも限定されない。
 本発明の一実施形態に係るリチウムイオン二次電池100Aは、例えば、図11に示すように、電池ケースに複数の捲回電極体が収容されており、大型で高容量のリチウムイオン二次電池を実現できる。リチウムイオン二次電池100Aでは、扁平に曲げられた捲回電極体200A~200Dの平坦部分210A~210Dの間に、セパレータ262、264を介在させた状態で、サブ電極500A~500Cが配置されている。サブ電極500A~500Cは、捲回電極体200A~200Dの最外周に捲かれた電極とは正負が反対の電極が最表面に形成されている。これにより、捲回電極体200A~200Dの最外周に捲かれた電極と、サブ電極500A~500Cとの間で、リチウムイオンの放出や吸蔵が行われるので、捲回電極体200A~200Dが対向した部分が、構造的に電池要素として効率的に機能する。
 このように本発明は、各捲回電極体200A~200Dをより効率よく機能させることができ、さらなる高容量化を図ることができる。このため、ハイレートでの出力特性やサイクル特性について要求されるレベルが高いハイブリッド車や、特に、高容量化について要求されるレベルが高いプラグインハイブリッドや電気自動車の駆動用電池としての車両駆動電源として好適である。すなわち、リチウムイオン二次電池は、例えば、図20に示すように、車両1を駆動させるモータ(電動機)の車両駆動用電池1000として好適に利用され得る。車両駆動用電池1000は、複数の二次電池を組み合わせた組電池で構成してもよい。
1 車両
100、100A リチウムイオン二次電池
200、200A~200D 捲回電極体
210、210A~210D 捲回電極体の平坦部分
220、220A~220D 正極(正極シート)
221 正極集電体
222、222A~222D 未塗工部
223 正極活物質層
224 中間部分
225 隙間(空洞)
240、240A~240D 負極(負極シート)
241、241A~241D 負極集電体
242、242A~242D 未塗工部
243、243A~243D 負極活物質層
245 隙間(空洞)
252、254 捲回電極体の両側
262、264 セパレータ
280 電解液
290 充電器
300、300A 電池ケース
310、312 捲回電極体200と電池ケース300との隙間
310A、312A 捲回電極体200A~200Dと電池ケース300Aとの隙間
320、320A 容器本体
322、322A 蓋体と容器本体の合わせ目
340、340A 蓋体
350、350A 注液孔
352、352A 封止キャップ
360、360A 安全弁
420 電極端子
420a 先端部
440 電極端子
440a 先端部
500A~500C サブ電極
502、502A~502C サブ集電体
504、504A~504C サブ活物質層
506A~506C 未塗工部(サブ集電体のうちサブ活物質層が形成されていない部分)
520、520A~520D 接続部位(溶接部)
540、540A~540D 接続部位(溶接部)
550 拘束部材
555 接続部材
560 スペーサ
565 エンドプレート
570 ビーム材
575、576 ビス
610 正極活物質粒子
620 導電材
630 バインダ
710 負極活物質粒子
730 バインダ
750 サブ電極(積層電極構造のサブ電極)
760 サブ正極
762 サブ正極集電体
764 サブ正極活物質層
766 未塗工部(サブ正極集電体のうちサブ正極活物質層が形成されていない部分)
770 サブ負極
772 サブ負極集電体
774 サブ負極活物質層
776 未塗工部(サブ負極集電体のうちサブ負極活物質層が形成されていない部分)
782、784 セパレータ(サブセパレータ)
800 サブ電極(捲回電極構造のサブ電極)
820 サブ正極
821 正極集電体
822 未塗工部(正極集電体のうち正極活物質層が形成されていない部分)
823 正極活物質層
840 サブ負極
841 負極集電体
842 未塗工部(負極集電体のうち負極活物質層が形成されていない部分)
843 負極活物質層
852、854 サブ電極の両側
862、864 セパレータ
880 カバー(負極シート)
1000 車両駆動用電池(組電池)
WL 捲回軸

Claims (12)

  1.  電池ケースと、複数の捲回電極体と、少なくとも一つのサブ電極とを備え、
     前記複数の捲回電極体は、それぞれ帯状の正極と帯状の負極とを備え、前記帯状の正極と前記帯状の負極とは、セパレータを介在させて重ねられた状態で捲回されており、かつ、当該捲回された際の捲回軸に直行する方向に沿って扁平に曲げられており、
     さらに、当該複数の捲回電極体は、扁平に曲げられた前記捲回電極体の平坦部分が重ねられた状態で前記電池ケースに収容されており、
     前記サブ電極は、前記捲回電極体の最外周に捲かれた電極とは正負が反対の電極が最表面に形成されており、前記扁平に曲げられた前記捲回電極体の平坦部分の間に配置されている、
    リチウムイオン二次電池。
  2.  前記捲回電極体の最外周に捲かれた電極が負極であり、前記サブ電極の最表面に形成された活物質層が正極である、請求項1に記載されたリチウムイオン二次電池。
  3.  前記サブ電極は、前記扁平に曲げられた前記捲回電極体の最外周に捲かれた電極の平坦部分に収められている、請求項1または2に記載されたリチウムイオン二次電池。
  4.  前記電池ケースの膨張を抑える拘束部材を備えた、請求項1から3までの何れか一項に記載されたリチウムイオン二次電池。
  5.  前記サブ電極は、
     サブ集電体と、
     前記サブ集電体の両面に形成された、前記捲回電極体の最外周に捲かれた電極とは反対の電極となるサブ活物質層と、
    を備えた、請求項1から4までの何れか一項に記載されたリチウムイオン二次電池。
  6.  前記サブ電極は、
     シート状のサブ正極と、シート状のサブ負極とが交互に積層されており、かつ、
     前記サブ正極とサブ負極のうち、前記捲回電極体の最外周に捲かれた電極とは反対の電極が外側に積層された、請求項1から4までの何れか一項に記載されたリチウムイオン二次電池。
  7.  前記サブ電極は、
     帯状のサブ正極と、
     帯状のサブ負極と
    を備え、
     前記サブ正極とサブ負極とは、セパレータを介在させて重ねられた状態で捲回され、かつ、当該捲回された際の捲回軸に直行する方向に沿って扁平に曲げられており
     前記サブ電極の最外周には、前記サブ正極と前記サブ負極のうち、前記捲回電極体の最外周に捲かれた電極とは反対の電極が捲かれている、請求項1から4までの何れか一項に記載されたリチウムイオン二次電池。
  8.  前記捲回電極体の正極は、
       帯状の正極集電体と、
       前記帯状の正極集電体の両面に形成された正極活物質層と
    を備え、
       前記正極集電体の片側の長辺に沿って前記正極活物質層が形成されていない部分を有しており、
     前記捲回電極体の負極は、
       帯状の負極集電体と、
       前記帯状の負極集電体の両面に形成された負極活物質層と
    を備え、
       前記負極集電体の片側の長辺に沿って前記負極活物質層が形成されていない部分を有しており、
     前記正極と負極とは、
       前記セパレータを介在させた状態で、前記正極活物質層と前記負極活物質層とが対向するように重ねられており、
       前記正極活物質層と前記負極活物質層とが対向した部分の片側に、前記正極集電体のうち前記正極活物質層が形成されていない部分がはみ出ており、前記正極集電体のうち前記正極活物質層が形成されていない部分がはみ出た側とは反対側に、前記負極集電体のうち前記負極活物質層が形成されていない部分がはみ出ており、
     前記複数の捲回電極体は、前記正極集電体がはみ出た側と、前記負極集電体がはみ出た側とを揃えて重ねられている、
    請求項1から7までの何れか一項に記載されたリチウムイオン二次電池。
  9.  前記捲回電極体の前記負極は内周端部において折り曲げられており、当該折り曲げられた負極の間に、正極となる第2サブ電極が挟まれている、請求項8に記載されたリチウムイオン二次電池。
  10.  前記正極集電体のうち前記正極活物質層が形成されていない部分は、前記捲回電極体毎に纏められており、
     前記負極集電体のうち前記負極活物質層が形成されていない部分は、前記捲回電極体毎に纏められている、請求項8または9に記載されたリチウムイオン二次電池。
  11.  請求項1から10までの何れか一項に記載されたリチウムイオン二次電池を複数組み合わせた組電池。
  12.  請求項1から10までの何れか一項に記載されたリチウムイオン二次電池、又は、請求項11に記載された組電池を備えた車両駆動用電池。
PCT/JP2011/067676 2011-08-02 2011-08-02 リチウムイオン二次電池 WO2013018196A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/067676 WO2013018196A1 (ja) 2011-08-02 2011-08-02 リチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/067676 WO2013018196A1 (ja) 2011-08-02 2011-08-02 リチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2013018196A1 true WO2013018196A1 (ja) 2013-02-07

Family

ID=47628759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067676 WO2013018196A1 (ja) 2011-08-02 2011-08-02 リチウムイオン二次電池

Country Status (1)

Country Link
WO (1) WO2013018196A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015274A1 (en) * 2013-08-02 2015-02-05 Toyota Jidosha Kabushiki Kaisha Secondary battery
JP2018133175A (ja) * 2017-02-14 2018-08-23 トヨタ自動車株式会社 ラミネート全固体電池の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261440A (ja) * 1997-03-19 1998-09-29 Hitachi Ltd リチウム二次電池とその製造方法および電池システム
JP2000223109A (ja) * 1999-02-03 2000-08-11 Japan Storage Battery Co Ltd 電 池
JP2003031202A (ja) * 2001-07-18 2003-01-31 Furukawa Battery Co Ltd:The 角形蓄電池
JP2003187856A (ja) * 2001-12-18 2003-07-04 Japan Storage Battery Co Ltd 電 池
JP2003346878A (ja) * 2002-05-24 2003-12-05 Japan Storage Battery Co Ltd 電 池
JP2007234453A (ja) * 2006-03-02 2007-09-13 Toyota Motor Corp 2次電池およびその車両搭載構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261440A (ja) * 1997-03-19 1998-09-29 Hitachi Ltd リチウム二次電池とその製造方法および電池システム
JP2000223109A (ja) * 1999-02-03 2000-08-11 Japan Storage Battery Co Ltd 電 池
JP2003031202A (ja) * 2001-07-18 2003-01-31 Furukawa Battery Co Ltd:The 角形蓄電池
JP2003187856A (ja) * 2001-12-18 2003-07-04 Japan Storage Battery Co Ltd 電 池
JP2003346878A (ja) * 2002-05-24 2003-12-05 Japan Storage Battery Co Ltd 電 池
JP2007234453A (ja) * 2006-03-02 2007-09-13 Toyota Motor Corp 2次電池およびその車両搭載構造

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015274A1 (en) * 2013-08-02 2015-02-05 Toyota Jidosha Kabushiki Kaisha Secondary battery
CN105453315A (zh) * 2013-08-02 2016-03-30 丰田自动车株式会社 二次电池
US20160181619A1 (en) * 2013-08-02 2016-06-23 Toyota Jidosha Kabushiki Kaisha Secondary battery
CN105453315B (zh) * 2013-08-02 2018-05-18 丰田自动车株式会社 二次电池
US10056617B2 (en) 2013-08-02 2018-08-21 Toyota Jidosha Kabushiki Kaisha Secondary battery
JP2018133175A (ja) * 2017-02-14 2018-08-23 トヨタ自動車株式会社 ラミネート全固体電池の製造方法
US10971707B2 (en) 2017-02-14 2021-04-06 Toyota Jidosha Kabushiki Kaisha Laminated all-solid-state battery including a filler

Similar Documents

Publication Publication Date Title
JP6208708B2 (ja) リチウムイオン二次電池およびそれを用いたシステム
JP6094810B2 (ja) 非水電解質二次電池
JP6086240B2 (ja) 非水電解液電池およびその製造方法
JP5889333B2 (ja) 組電池
BR112012012049B1 (pt) Coletor de corrente para bateria secundária bipolar, eletrodo para bateria secundária bipolar e bateria secundária bipolar
JP5386983B2 (ja) 双極型電極およびそれを用いた双極型電池
KR101707335B1 (ko) 비수 전해액 2차 전지
JP2010086728A (ja) リチウムイオン電池
JP5835614B2 (ja) 非水系二次電池
JP2010161249A (ja) リチウムイオンキャパシタ
CN106025169B (zh) 蓄电元件
WO2019098056A1 (ja) リチウムイオン二次電池
JP7441013B2 (ja) 組電池
KR20140009047A (ko) 이차전지용 파우치 및 이를 포함하는 이차전지
JP2007035419A (ja) 電池
JP7455032B2 (ja) 電池
JP5298815B2 (ja) リチウムイオン二次電池の製造方法、電解液及びリチウムイオン二次電池
JP7003775B2 (ja) リチウムイオン二次電池
WO2013051138A1 (ja) 組電池及び組電池の製造方法
JP7024540B2 (ja) 電気化学素子
JP6102442B2 (ja) リチウムイオン二次電池
JP2020161293A (ja) リチウムイオン二次電池
WO2013018196A1 (ja) リチウムイオン二次電池
JP5914635B2 (ja) 角形二次電池モジュール
JP5835612B2 (ja) 非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP