WO2013018156A9 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2013018156A9
WO2013018156A9 PCT/JP2011/067443 JP2011067443W WO2013018156A9 WO 2013018156 A9 WO2013018156 A9 WO 2013018156A9 JP 2011067443 W JP2011067443 W JP 2011067443W WO 2013018156 A9 WO2013018156 A9 WO 2013018156A9
Authority
WO
WIPO (PCT)
Prior art keywords
region
source
drain
impurity concentration
halo
Prior art date
Application number
PCT/JP2011/067443
Other languages
English (en)
French (fr)
Other versions
WO2013018156A1 (ja
Inventor
新居 浩二
誠 藪内
塚本 康正
健吾 増田
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to PCT/JP2011/067443 priority Critical patent/WO2013018156A1/ja
Priority to US14/236,067 priority patent/US10032781B2/en
Priority to CN201180072497.2A priority patent/CN103703556B/zh
Priority to JP2013526624A priority patent/JP5658822B2/ja
Priority to TW101119829A priority patent/TWI569417B/zh
Publication of WO2013018156A1 publication Critical patent/WO2013018156A1/ja
Publication of WO2013018156A9 publication Critical patent/WO2013018156A9/ja
Priority to US16/014,920 priority patent/US10217751B2/en
Priority to US16/239,835 priority patent/US10510761B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a semiconductor device including an SRAM memory cell and a method for manufacturing such a semiconductor device.
  • SOC System On Chip
  • SRAM Static Random Access Memory
  • the SRAM memory cell includes a flip-flop obtained by cross-coupling two inverters and two access transistors.
  • the flip-flop is provided with two storage nodes that are cross-coupled. In the two storage nodes, there exists a bistable state in which the potential of one storage node is set to the high level and the potential of the other storage node is set to the low level. As long as a predetermined power supply potential is applied, the state is maintained, and the state is stored as “1” or “0” as information.
  • a drive transistor is connected between the storage node and the ground potential, and a load transistor is connected between the storage node and the power supply potential.
  • An access transistor is connected between the storage node and the bit line. Data writing and reading are performed via an access transistor.
  • Non-Patent Document 1 In the SRAM memory cell described in Non-Patent Document 1 or Non-Patent Document 2 as an access transistor that meets such a requirement, in order to adjust the threshold voltage, the impurity concentration of a pair of halo regions is set.
  • Asymmetric access transistors have been proposed. That is, an access transistor in which the impurity concentration of the halo region connected to the storage node in the pair of halo regions is higher than the impurity concentration of the halo region connected to the bit line. Proposed.
  • the halo region is an impurity region formed in order to suppress a short channel effect in a miniaturized transistor.
  • the ion implantation for forming the halo region is also referred to as pocket implantation.
  • Non-Patent Document 3 proposes a layout for suppressing variations in threshold voltages of transistors constituting the SRAM.
  • the SRAM having the access transistor described above has the following problems.
  • the halo region is formed not only in the access transistor but also in the drive transistor and the load transistor.
  • the impurity concentration of the pair of halo regions formed in the drive transistor and the load transistor is the same (symmetrical).
  • An NMIS (N channel type metal insulator semiconductor) transistor is formed as an access transistor and a drive transistor, and its halo region is formed as a p-type impurity region.
  • a PMIS (P channel type metal insulator semiconductor) transistor is formed as a load transistor, and its halo region is formed as an n-type impurity region.
  • the SRAM memory cell
  • three resist masks are formed as implantation masks in order to form a pair of halo regions having the same impurity concentration for each of the access transistor, drive transistor, and load transistor.
  • another resist mask is formed as an implantation mask. Is done.
  • at least four implantation masks are required to form a halo region of each transistor that forms an SRAM memory cell.
  • the present invention proposes an improvement over a semiconductor device provided with a conventional SRAM, and one object thereof is to provide a semiconductor device in which the implantation mask can be reduced, and the other object is It is to provide a method for manufacturing such a semiconductor device.
  • a semiconductor device is a semiconductor device having a static random access memory, and includes a storage node, a bit line pair, a ground wiring, a first element formation region, and a second element formation region. , An access transistor and a drive transistor.
  • the storage node includes a first storage node and a second storage node that store data.
  • the bit line pair inputs / outputs data.
  • a ground potential is applied to the ground wiring.
  • the first element formation region and the second element formation region are respectively defined by element isolation insulating films in predetermined regions on the main surface of the semiconductor substrate.
  • the access transistor is formed in the first element formation region and is separated from the first source / drain region and the second source / drain region of the first conductivity type, and the first source / drain region and the second source.
  • the drive transistor is formed in the first element formation region and is spaced apart from each other by a first conductivity type third source / drain region and a fourth source / drain region, and a third source / drain region and a fourth source.
  • the access transistor includes a second conductivity type first halo region having a first impurity concentration and a second conductivity type second halo region having a second impurity concentration.
  • the first halo region is formed in the region immediately below the access gate electrode so as to be adjacent to the first source / drain region electrically connected to a predetermined bit line of the bit line pair.
  • the second halo region is formed in the region immediately below the access gate electrode so as to be adjacent to the second source / drain region electrically connected to the storage node.
  • the drive transistor includes a second conductivity type third halo region having a third impurity concentration and a second conductivity type fourth halo region having a fourth impurity concentration.
  • the third halo region is formed in the region immediately below the drive gate electrode so as to be adjacent to the third source / drain region electrically connected to the storage node.
  • the fourth halo region is formed in the region immediately below the drive gate electrode so as to be adjacent to the fourth source / drain region electrically connected to the ground wiring.
  • the second impurity concentration is set higher than the first impurity concentration.
  • the third impurity concentration is set higher than the fourth impurity concentration.
  • the first impurity concentration and the fourth impurity concentration are set to different impurity concentrations (claim 1).
  • a semiconductor device is a semiconductor device having a static random access memory, and includes a storage node, a first bit line pair and a second bit line pair, a ground wiring, and a first wiring. It has an element formation region and a second element formation region, a first access transistor, a drive transistor, and a second access transistor.
  • the storage node includes a first storage node and a second storage node that store data. The first bit line pair and the second bit line pair respectively input / output data. A ground potential is applied to the ground wiring.
  • the first element formation region and the second element formation region are respectively defined by element isolation insulating films in predetermined regions on the main surface of the semiconductor substrate.
  • the first access transistor is formed in the first element formation region, and is separated from the first source / drain region and the second source / drain region, and the first source / drain region and the first source / drain region.
  • the drive transistor is formed in the first element formation region and is separated from the third source / drain region and the fourth source / drain of the first conductivity type, and the third source / drain region and the fourth source / drain region.
  • a drive gate electrode located on a region sandwiched by the drain is included.
  • the second access transistor is formed in the first element formation region and is spaced apart from each other by a first conductivity type fifth source / drain and sixth source / drain, and a fifth source / drain and sixth source / drain.
  • a second access gate electrode located on a region sandwiched between the drains is included.
  • the first access transistor includes a second conductivity type first halo region having a first impurity concentration and a second conductivity type second halo region having a second impurity concentration.
  • the first halo region is formed adjacent to the first source / drain region electrically connected to a predetermined bit line of the first bit line pair in a region immediately below the first access gate electrode. .
  • the second halo region is formed in the region immediately below the first access gate electrode so as to be adjacent to the second source / drain region electrically connected to the storage node.
  • the drive transistor includes a second conductivity type third halo region having a third impurity concentration and a second conductivity type fourth halo region having a fourth impurity concentration.
  • the third halo region is formed in the region immediately below the drive gate electrode so as to be adjacent to the third source / drain region electrically connected to the storage node.
  • the fourth halo region is formed in the region immediately below the drive gate electrode so as to be adjacent to the fourth source / drain electrically connected to the ground wiring.
  • the second access transistor includes a second conductivity type fifth halo region having a fifth impurity concentration and a second conductivity type sixth halo region having a sixth impurity concentration.
  • the fifth halo region is formed in the region immediately below the second access gate electrode so as to be adjacent to the fifth source / drain electrically connected to the predetermined bit line of the second bit line pair.
  • the sixth halo region is formed adjacent to the sixth source / drain electrically connected to the storage node in the region immediately below the second access gate electrode.
  • the second impurity concentration is set higher than the first impurity concentration.
  • the third impurity concentration is set higher than the fourth impurity concentration.
  • the first impurity concentration and the fourth impurity concentration are set to different impurity concentrations.
  • the fifth impurity concentration is set lower than the sixth impurity concentration.
  • a semiconductor device is a semiconductor device having a static random access memory, and includes a storage node, a first bit line pair and a second bit line pair, a ground wiring, One element formation region and a second element formation region, a first access transistor, a first drive transistor, a second access transistor, and a second drive transistor are included.
  • the storage node includes a first storage node and a second storage node that store data.
  • the first bit line pair and the second bit line pair respectively input / output data.
  • a ground potential is applied to the ground wiring.
  • the first element formation region and the second element formation region are respectively defined by element isolation insulating films in predetermined regions on the main surface of the semiconductor substrate.
  • the first access transistor is formed in the first element formation region, and is separated from the first source / drain region and the second source / drain region, and the first source / drain region and the first source / drain region.
  • the first drive transistor is formed in the first element formation region and is spaced apart from each other by a first conductivity type third source / drain region and a fourth source / drain, and a third source / drain region and a fourth source transistor.
  • a first drive gate electrode located on a region sandwiched between the source and drain is included.
  • the second access transistor is formed in the first element formation region and is spaced apart from each other by a first conductivity type fifth source / drain and sixth source / drain, and a fifth source / drain and sixth source / drain.
  • a second access gate electrode located on a region sandwiched between the drains is included.
  • the second drive transistor is formed in the first element formation region and is separated from the first conductivity type seventh source / drain and eighth source / drain, and the seventh source / drain and eighth source / drain.
  • a second drive gate electrode located on a region sandwiched by the drain is included.
  • the first access transistor includes a second conductivity type first halo region having a first impurity concentration and a second conductivity type second halo region having a second impurity concentration.
  • the first halo region is formed adjacent to the first source / drain region electrically connected to a predetermined bit line of the first bit line pair in a region immediately below the first access gate electrode. .
  • the second halo region is formed in the region immediately below the access gate electrode so as to be adjacent to the second source / drain region electrically connected to the storage node.
  • the first drive transistor includes a second conductivity type third halo region having a third impurity concentration and a second conductivity type fourth halo region having a fourth impurity concentration.
  • the third halo region is formed in the region immediately below the first drive gate electrode so as to be adjacent to the third source / drain region electrically connected to the storage node.
  • the fourth halo region is formed adjacent to the fourth source / drain electrically connected to the ground wiring in the region immediately below the first drive gate electrode.
  • the second access transistor includes a second conductivity type fifth halo region having a fifth impurity concentration and a second conductivity type sixth halo region having a sixth impurity concentration.
  • the fifth halo region is formed in the region immediately below the second access gate electrode so as to be adjacent to the fifth source / drain electrically connected to the predetermined bit line of the second bit line pair.
  • the sixth halo region is formed adjacent to the sixth source / drain electrically connected to the storage node in the region immediately below the second access gate electrode.
  • the second drive transistor includes a second conductivity type seventh halo region having a seventh impurity concentration and a second conductivity type eighth halo region having an eighth impurity concentration.
  • the seventh halo region is formed adjacent to the seventh source / drain electrically connected to the storage node in the region immediately below the second drive gate electrode.
  • the eighth halo region is formed in the region immediately below the second drive gate electrode so as to be adjacent to the eighth source / drain electrically connected to the ground wiring.
  • the second impurity concentration is set higher than the first impurity concentration.
  • the third impurity concentration is set higher than the fourth impurity concentration.
  • the first impurity concentration and the fourth impurity concentration are set to different impurity concentrations.
  • the fifth impurity concentration is set lower than the sixth impurity concentration.
  • the seventh impurity concentration is set higher than the eighth impurity concentration.
  • a semiconductor device is a semiconductor device having a static random access memory, and includes a storage node, a first bit line pair, a read bit line, a ground wiring, and a first wiring.
  • An element formation region and a second element formation region, a first access transistor, a first drive transistor, a second drive transistor, and a second access transistor are included.
  • the storage node includes a first storage node and a second storage node that store data.
  • the first bit line pair inputs and outputs data.
  • the read bit line outputs data.
  • a ground potential is applied to the ground wiring.
  • the first element formation region and the second element formation region are respectively defined by element isolation insulating films in predetermined regions on the main surface of the semiconductor substrate.
  • the first access transistor is formed in the first element formation region, and is separated from the first source / drain region and the second source / drain region, and the first source / drain region and the first source / drain region.
  • the first drive transistor is formed in the first element formation region and is spaced apart from each other by a first conductivity type third source / drain region and a fourth source / drain, and a third source / drain region and a fourth source transistor.
  • a first drive gate electrode located on a region sandwiched between the source and drain is included.
  • the second drive transistor is formed in the first element formation region and is spaced apart from each other by a first conductivity type fifth source / drain and sixth source / drain, and a fifth source / drain and sixth source / drain.
  • a second drive gate electrode located on a region sandwiched by the drain is included.
  • the second access transistor is formed in the first element formation region and is separated from the first conductivity type seventh source / drain and eighth source / drain, and the seventh source / drain and eighth source / drain.
  • a second access gate electrode located on a region sandwiched between the drains is included.
  • the first access transistor includes a second conductivity type first halo region having a first impurity concentration and a second conductivity type second halo region having a second impurity concentration.
  • the first halo region is formed adjacent to the first source / drain region electrically connected to a predetermined bit line of the first bit line pair in a region immediately below the first access gate electrode. .
  • the second halo region is formed in the region immediately below the first access gate electrode so as to be adjacent to the second source / drain region electrically connected to the storage node.
  • the first drive transistor includes a second conductivity type third halo region having a third impurity concentration and a second conductivity type fourth halo region having a fourth impurity concentration.
  • the third halo region is formed in the region immediately below the first drive gate electrode so as to be adjacent to the third source / drain region electrically connected to the storage node.
  • the fourth halo region is formed adjacent to the fourth source / drain electrically connected to the ground wiring in the region immediately below the first drive gate electrode.
  • the second drive transistor includes a second conductivity type fifth halo region having a fifth impurity concentration and a second conductivity type sixth halo region having a sixth impurity concentration.
  • the fifth halo region is formed in a region immediately below the second drive gate electrode so as to be adjacent to the fifth source / drain electrically connected to the ground wiring.
  • the sixth halo region is formed adjacent to the sixth source / drain electrically connected to the storage node in the region immediately below the second drive gate electrode.
  • the second access transistor includes a second conductivity type seventh halo region having a seventh impurity concentration and a second conductivity type eighth halo region having an eighth impurity concentration.
  • the seventh halo region is formed adjacent to the seventh source / drain electrically connected to the storage node in the region immediately below the second access gate electrode.
  • the eighth halo region is formed adjacent to the eighth source / drain electrically connected to the read bit line in the region immediately below the second access gate electrode.
  • the second impurity concentration is set higher than the first impurity concentration.
  • the third impurity concentration is set higher than the fourth impurity concentration.
  • the first impurity concentration and the fourth impurity concentration are set to different impurity concentrations.
  • the fifth impurity concentration and the sixth impurity concentration are set to the same impurity concentration.
  • the seventh impurity concentration and the eighth impurity concentration are set to the same impurity concentration.
  • a semiconductor device is a semiconductor device having a static random access memory, and includes a storage node, a bit line pair, a ground wiring, a first element formation region, and a second element.
  • a formation region, an access transistor, and a drive transistor are included.
  • the storage node includes a first storage node and a second storage node that store data.
  • the bit line pair inputs / outputs data.
  • a ground potential is applied to the ground wiring.
  • the first element formation region and the second element formation region are respectively defined by element isolation insulating films in predetermined regions on the main surface of the semiconductor substrate.
  • the access transistor is formed in the first element formation region and is separated from the first source / drain region and the second source / drain region of the first conductivity type, and the first source / drain region and the second source.
  • An access gate electrode positioned along the first direction is included on a region sandwiched by the drain region.
  • the drive transistor is formed in the first element formation region and is separated from the third source / drain region and the fourth source / drain of the first conductivity type, and the third source / drain region and the fourth source / drain region.
  • a drive gate electrode located along a second direction intersecting the first direction is included on a region sandwiched between the drains.
  • the access transistor includes a second conductivity type first halo region having a first impurity concentration and a second conductivity type second halo region having a second impurity concentration.
  • the first halo region is formed in the region immediately below the access gate electrode so as to be adjacent to the first source / drain region electrically connected to a predetermined bit line of the bit line pair.
  • the second halo region is formed in the region immediately below the access gate electrode so as to be adjacent to the second source / drain region electrically connected to the storage node.
  • the drive transistor includes a second conductivity type third halo region having a third impurity concentration and a second conductivity type fourth halo region having a fourth impurity concentration.
  • the third halo region is formed in the region immediately below the drive gate electrode so as to be adjacent to the third source / drain region electrically connected to the storage node.
  • the fourth halo region is formed in the region immediately below the drive gate electrode so as to be adjacent to the fourth source / drain electrically connected to the ground wiring.
  • the second impurity concentration is set higher than the first impurity concentration.
  • the third impurity concentration and the fourth impurity concentration are set to the same impurity concentration.
  • the third impurity concentration and the fourth impurity concentration are set to the same impurity concentration as the first impurity concentration or lower than the first impurity concentration.
  • a manufacturing method of a semiconductor device is a manufacturing method of a semiconductor device having a static random access memory, and includes the following steps.
  • a first element formation region in which a first conductivity type transistor is to be formed and a second element formation region in which a second conductivity type transistor is to be formed are formed. Specify each.
  • a first region in which a first source / drain region which is electrically connected to a predetermined bit line of the bit line pair and spaced apart from each other is formed, and a storage node
  • a storage node having an access gate structure formed on a region sandwiched between the second region where the second source / drain region to be electrically connected is to be formed and spaced apart from each other A third region in which a third source / drain region electrically connected to the first wiring region is formed, and a fourth region in which a fourth source / drain region electrically connected to the ground wiring is formed.
  • a drive gate structure is formed on a region sandwiched between the two.
  • the access gate structure In the access gate structure, the first side surface located on the second region side is exposed, and the second region, the drive gate structure, the third region, and the fourth region are exposed, and the first region side in the access gate structure is exposed.
  • a first halo implantation mask is formed to cover the second side surface, the first region, and the second element formation region located at (1).
  • a first impurity of the second conductivity type is implanted into the exposed region of the semiconductor substrate through the first halo implantation mask at an angle inclined from a direction perpendicular to the main surface.
  • the first side surface located on the third region side is exposed, and the third region, the access gate structure, the first region, and the second region are exposed, and the drive gate structure side of the fourth region
  • a second halo implantation mask is formed to cover the second side surface, the fourth region, and the second element formation region located at (1).
  • a second impurity of the second conductivity type is implanted into the exposed region of the semiconductor substrate through the second halo implantation mask at an angle inclined from a direction perpendicular to the main surface.
  • a region immediately below the access gate structure is formed by implanting a first impurity of the second conductivity type, implanting a second impurity of the second conductivity type, and forming a first source / drain region to a fourth source / drain region. Then, a first conductivity type first halo region having a first impurity concentration is formed to be adjacent to the first source / drain region, and the first impurity is to be adjacent to the second source / drain region. A second conductivity type second halo region having a second impurity concentration higher than the concentration is formed.
  • a third conductivity type third halo region having a third impurity concentration is formed adjacent to the third source / drain region, and a fourth source / drain region is formed.
  • a second conductivity type fourth halo region having a fourth impurity concentration lower than the third impurity concentration and different from the first impurity concentration is formed so as to be adjacent to the first impurity concentration.
  • a manufacturing method of a semiconductor device is a manufacturing method of a semiconductor device having a static random access memory, and includes the following steps.
  • a first element formation region in which a first conductivity type transistor is to be formed and a second element formation region in which a second conductivity type transistor is to be formed are formed.
  • a first region in which a first source / drain region that is electrically connected to a predetermined bit line of the first bit line pair and spaced apart from each other is formed in the first element formation region;
  • a first access gate structure is formed on a region sandwiched between the second region where the second source / drain region electrically connected to the node is to be formed.
  • a first drive gate structure is formed on a region sandwiched between the fourth region to be formed.
  • a fifth region in which a fifth source / drain region electrically connected to a predetermined bit line of a second bit line pair different from the first bit line pair and spaced apart from each other is formed;
  • a second access gate structure is formed on a region sandwiched between a sixth region where a sixth source / drain region electrically connected to the storage node is to be formed.
  • the first side surface, the second region, the first drive gate structure, the third region, the fourth region, and the second access gate structure located on the second region side, on the sixth region side.
  • the first side surface and the sixth region which are located are exposed, and the second side surface located on the first region side in the first access gate structure, the first region and the second access gate structure are located on the fifth region side.
  • a first halo implantation mask is formed to cover the second side surface, the fifth region, and the second element formation region.
  • a first impurity of the second conductivity type is implanted into the exposed region of the semiconductor substrate through the first halo implantation mask at an angle inclined from a direction perpendicular to the main surface.
  • a second halo implantation mask is formed to cover the second side surface, the fourth region, and the second element formation region located on the fourth region side in the first drive gate structure.
  • a second impurity of the second conductivity type is implanted into the exposed region of the semiconductor substrate through the second halo implantation mask at an angle inclined from a direction perpendicular to the main surface.
  • the first source / drain region, the second source / drain region, the third source / drain region, the fourth source / drain region, the fifth source / drain region, and the sixth source -A drain region is formed.
  • a first impurity of the second conductivity type implanting a second impurity of the second conductivity type, and forming a first source / drain region to a sixth source / drain region.
  • a first conductivity type first halo region having a first impurity concentration is formed so as to be adjacent to the first source / drain region, and the first source / drain region is adjacent to the second source / drain region.
  • a second conductivity type second halo region having a second impurity concentration higher than the one impurity concentration is formed.
  • a third conductivity type third halo region having a third impurity concentration is formed so as to be adjacent to the third source / drain region.
  • a second conductivity type fourth halo region having a fourth impurity concentration lower than the third impurity concentration and different from the first impurity concentration is formed adjacent to the drain region.
  • a fifth conductivity type fifth halo region having a fifth impurity concentration is formed adjacent to the fifth source / drain region, and the sixth source / drain region is formed.
  • a second conductivity type sixth halo region having a sixth impurity concentration higher than the fifth impurity concentration is formed adjacent to the drain region.
  • a manufacturing method of a semiconductor device is a manufacturing method of a semiconductor device having a static random access memory, and includes the following steps.
  • a first element formation region in which a first conductivity type transistor is to be formed and a second element formation region in which a second conductivity type transistor is to be formed are formed. Specify each.
  • a first region in which a first source / drain region which is electrically connected to a predetermined bit line of the bit line pair and spaced apart from each other is formed, and a storage node
  • An access gate structure is formed along the first direction on a region sandwiched between the second region where the second source / drain region to be electrically connected is to be formed.
  • a third region where a third source / drain region electrically connected to the storage node and spaced apart from each other is formed, and a fourth source / drain region electrically connected to the ground wiring are formed.
  • a drive gate structure is formed along a second direction intersecting the first direction on a region sandwiched between the fourth region to be formed.
  • the access gate structure In the access gate structure, the first side surface located on the second region side, the second region, in the drive gate structure, the first side surface located on the third region side, and an opening exposing the third region, In the access gate structure, the second side surface located on the first region side, the first region, and the second side surface located on the fourth region side in the drive gate structure, the fourth region, and the second element formation region are covered.
  • a 1-halo implantation mask is formed. With respect to the region of the semiconductor substrate exposed to the opening through the first halo implantation mask, at an angle inclined from the direction perpendicular to the main surface, from one and the other in the first direction and one in the second direction And the other are implanted with first impurities of the second conductivity type.
  • a second halo implantation mask is formed to expose the access gate structure, the first region, the second region, the drive gate structure, the third region and the fourth region, and to cover the second element formation region.
  • a second impurity of the second conductivity type is implanted.
  • a region immediately below the access gate structure is formed by implanting a first impurity of the second conductivity type, implanting a second impurity of the second conductivity type, and forming a first source / drain region to a fourth source / drain region. Then, a first conductivity type first halo region having a first impurity concentration is formed to be adjacent to the first source / drain region, and the first impurity is to be adjacent to the second source / drain region. A second conductivity type second halo region having a second impurity concentration higher than the concentration is formed.
  • a third conductivity type third halo region having a third impurity concentration is formed adjacent to the third source / drain region, and a fourth source / drain region is formed.
  • a second conductivity type fourth halo region having a fourth impurity concentration lower than the third impurity concentration is formed adjacent to the first impurity concentration.
  • the mask for forming the halo region including the first halo region to the fourth halo region can be reduced.
  • both the read margin and the write margin can be improved.
  • the mask for forming the halo region including the first halo region to the fourth halo region can be reduced.
  • FIG. 2 is a plan view showing a configuration of an SRAM memory cell in a dotted frame shown in FIG. 1 in the embodiment.
  • 3 is a diagram showing an equivalent circuit of an SRAM memory cell in the same embodiment.
  • FIG. 5 is a cross-sectional view taken along a cross-sectional line VV shown in FIG. 4 in the embodiment.
  • it is a top view which shows the connection structure of each transistor and 1st metal wiring.
  • FIG. 4 is a partially enlarged cross-sectional view showing an access transistor in the same embodiment. 4 is a graph showing an impurity concentration profile of a halo region of an access transistor in the same embodiment.
  • FIG. 10 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device in the embodiment.
  • FIG. 12 is a plan view showing a process performed after the process shown in FIG. 11 in the same embodiment.
  • FIG. 13 is a cross sectional view taken along a cross sectional line XIII-XIII shown in FIG. 12 in the embodiment.
  • FIG. 14 is a cross-sectional view showing a step performed after the step shown in FIG. 13 in the same embodiment.
  • FIG. 15 is a cross-sectional view showing a step performed after the step shown in FIG. 14 in the same embodiment.
  • FIG. 16 is a cross-sectional view showing a step performed after the step shown in FIG. 15 in the same embodiment.
  • FIG. 17 is a plan view showing a step performed after the step shown in FIG. 16 in the same embodiment.
  • FIG. 18 is a cross sectional view showing a step performed after the step shown in FIG.
  • FIG. 19 is a cross-sectional view showing a step performed after the step shown in FIG. 18 in the same embodiment.
  • FIG. 20 is a plan view showing a state of boron implantation at the time when the step shown in FIG. 19 is completed in the embodiment.
  • FIG. 20 is a plan view showing a step performed after the step shown in FIG. 19 in the same embodiment.
  • FIG. 22 is a cross-sectional view showing a step performed after the step shown in FIG. 21 in the embodiment, and taken along a cross-sectional line corresponding to cross-sectional line XXII-XXII shown in FIG.
  • FIG. 23 is a plan view showing a step performed after the step shown in FIG. 22 in the same embodiment.
  • FIG. 24 is a cross sectional view showing a step performed after the step shown in FIG. 23 in the embodiment, and taken along a cross sectional line corresponding to cross sectional line XXII-XXII shown in FIG.
  • FIG. 25 is a plan view showing a step performed after the step shown in FIG. 24 in the same embodiment.
  • FIG. 26 is a cross sectional view showing a step performed after the step shown in FIG. 25 in the embodiment, and taken along a cross sectional line corresponding to cross sectional line XXVI-XXVI shown in FIG.
  • FIG. 27 is a plan view showing a step performed after the step shown in FIG. 26 in the same embodiment.
  • FIG. 28 is a cross-sectional view showing a step performed after the step shown in FIG. 27 in the same embodiment.
  • FIG. 26 is a cross sectional view showing a step performed after the step shown in FIG. 28 in the embodiment, and taken along a cross sectional line corresponding to cross sectional line XXVI-XXVI shown in FIG.
  • FIG. 30 is a cross-sectional view showing a step performed after the step shown in FIG. 29 in the same embodiment.
  • FIG. 31 is a cross-sectional view showing a step performed after the step shown in FIG. 30 in the same embodiment.
  • FIG. 4 is a diagram showing a current flow during a read operation and a current flow during a write operation in the SRAM memory cell in the embodiment.
  • FIG. 5 is a graph showing an example of the relationship between the impurity concentration of a halo region of an access transistor and the impurity concentration of each halo region of a drive transistor in the embodiment.
  • it is a figure which shows the electric current which flows through an access transistor or a drive transistor.
  • it is a graph which shows the current characteristic with respect to the gate voltage in an access transistor or a drive transistor.
  • 4 is a graph showing a magnitude relationship between currents flowing through an access transistor and a drive transistor in the same embodiment.
  • It is a top view which shows the arrangement pattern of the SRAM memory cell in the semiconductor device which concerns on a comparative example. It is a top view which shows 1 process of the manufacturing method of the semiconductor device which concerns on a comparative example.
  • FIG. 39 is a plan view showing a step performed after the step shown in FIG. 38.
  • FIG. 40 is a plan view showing a step performed after the step shown in FIG. 39.
  • It is a top view which shows the process performed after the process shown in FIG.
  • It is a figure which shows the equivalent circuit of the SRAM memory cell in the semiconductor device of the 1st example concerning Embodiment 2 of this invention.
  • it is a top view which shows the arrangement pattern of a SRAM memory cell.
  • FIG. 44 is a cross sectional view taken along a cross sectional line XLIV-XLIV shown in FIG. 43 in the embodiment.
  • it is a top view which shows the connection structure of each transistor and 1st metal wiring.
  • FIG. 49 is a plan view showing a step performed after the step shown in FIG. 48 in the same embodiment.
  • FIG. 50 is a plan view showing a step performed after the step shown in FIG. 49 in the same embodiment. It is a figure which shows the arrangement pattern of the SRAM memory cell in the semiconductor device of the 2nd example concerning Embodiment 2 of this invention.
  • FIG. 52 is a cross sectional view taken along a cross sectional line LII-LII shown in FIG. 51 in the embodiment.
  • it is a top view which shows the connection structure of each transistor and 1st metal wiring.
  • it is a top view which shows the connection structure of the 1st metal wiring and the 2nd metal wiring.
  • it is a top view which shows the connection structure of the 2nd metal wiring and the 3rd metal wiring.
  • it is a top view which shows 1 process of the manufacturing method of the semiconductor device of the 2nd example.
  • FIG. 57 is a plan view showing a step performed after the step shown in FIG. 56 in the same embodiment.
  • FIG. 58 is a plan view showing a step performed after the step shown in FIG. 57 in the same embodiment. It is a figure which shows the equivalent circuit of the SRAM memory cell in the semiconductor device of the 3rd example concerning Embodiment 2 of this invention. In the same embodiment, it is a top view which shows the arrangement pattern of a SRAM memory cell.
  • FIG. 63 is a cross sectional view taken along a cross sectional line LXI-LXI shown in FIG. 60 in the embodiment.
  • it is a top view which shows the connection structure of each transistor and 1st metal wiring.
  • it is a top view which shows the connection structure of the 1st metal wiring and the 2nd metal wiring.
  • FIG. 66 is a plan view showing a step performed after the step shown in FIG. 65 in the same embodiment.
  • FIG. 67 is a plan view showing a step performed after the step shown in FIG. 66 in the same embodiment.
  • FIG. 69 is a cross sectional view taken along a cross sectional line LXIX-LXIX shown in FIG. 68 in the embodiment.
  • FIG. 74 is a plan view showing a step performed after the step shown in FIG. 73 in the same embodiment.
  • FIG. 75 is a plan view showing a step performed after the step shown in FIG. 74 in the same embodiment.
  • FIG. 78 is a cross sectional view taken along a cross sectional line LXXVIII-LXXVIII shown in FIG. 77 in the embodiment.
  • FIG. 78 is a cross sectional view taken along a cross sectional line LXXIX-LXXIX shown in FIG. 77 in the embodiment.
  • FIG. 81 is a plan view showing a step performed after the step shown in FIG. 80 in the same embodiment.
  • FIG. 82 is a plan view showing a step performed after the step shown in FIG. 81 in the same embodiment. It is a top view which shows the arrangement pattern of the SRAM memory cell in the semiconductor device concerning Embodiment 5 of this invention. In the embodiment, it is a top view which shows 1 process of the manufacturing method of a semiconductor device.
  • FIG. 85 is a plan view showing a step performed after the step shown in FIG. 84 in the same embodiment.
  • FIG. 86 is a plan view showing a step performed after the step shown in FIG. 85 in the same embodiment. It is a figure which shows the equivalent circuit of the SRAM memory cell in the semiconductor device concerning Embodiment 6 of this invention. In the same embodiment, it is a top view which shows the arrangement pattern of a SRAM memory cell.
  • FIG. 85 is a plan view showing a step performed after the step shown in FIG. 84 in the same embodiment.
  • FIG. 86 is a plan view showing a step performed after the step shown in FIG. 85 in the same embodiment.
  • FIG. 89 is a cross sectional view taken along a cross sectional line LXXXIX-LXXXIX shown in FIG. 88 in the embodiment.
  • FIG. 92 is a plan view showing a step performed after the step shown in FIG. 90 in the same embodiment.
  • FIG. 92 is a plan view showing a step performed after the step shown in FIG. 91 in the same embodiment.
  • It is a figure which shows the equivalent circuit of the SRAM memory cell in the semiconductor device concerning Embodiment 7 of this invention.
  • it is a top view which shows 1 process of the manufacturing method of a semiconductor device.
  • FIG. 92 is a plan view showing a step performed after the step shown in FIG. 90 in the same embodiment.
  • FIG. 92 is a plan view showing a step performed after the step shown in FIG. 91 in the same embodiment.
  • It is a figure which shows the equivalent circuit of the SRAM memory cell in the semiconductor device concerning Embodiment 7 of this invention.
  • it is a top view
  • FIG. 95 is a plan view showing a step performed after the step shown in FIG. 94 in the same embodiment.
  • FIG. 96 is a plan view showing a step performed after the step shown in FIG. 95 in the same embodiment.
  • It is a figure which shows the equivalent circuit of the SRAM memory cell in the semiconductor device of the 1st example based on Embodiment 8 of this invention.
  • it is a top view which shows the arrangement pattern of a SRAM memory cell.
  • FIG. 99 is a cross sectional view taken along a cross sectional line XCIX-XCIX shown in FIG. 98 in the embodiment.
  • it is a top view which shows 1 process of the manufacturing method of the semiconductor device of a 1st example.
  • FIG. 100 is a plan view showing a step performed after the step shown in FIG. 100 in the same embodiment.
  • FIG. 102 is a plan view showing a step performed after the step shown in FIG. 101 in the same embodiment. It is a figure which shows the equivalent circuit of the SRAM memory cell in the semiconductor device of the 2nd example concerning Embodiment 8 of this invention. In the same embodiment, it is a top view which shows 1 process of the manufacturing method of the semiconductor device of the 2nd example.
  • FIG. 105 is a plan view showing a step performed after the step shown in FIG. 104 in the same embodiment.
  • FIG. 106 is a plan view showing a step performed after the step shown in FIG. 105 in the same embodiment.
  • FIG. 3 is a diagram showing an equivalent circuit of an SRAM memory cell in the same embodiment.
  • FIG. In the same embodiment, it is a top view which shows the arrangement pattern of a SRAM memory cell.
  • FIG. 110 is a cross sectional view taken along a cross sectional line CX-CX shown in FIG. 109 in the embodiment.
  • it is a top view which shows the connection structure of each transistor and 1st metal wiring.
  • it is a top view which shows the connection structure of the 1st metal wiring and the 2nd metal wiring.
  • FIG. 10 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device in the embodiment.
  • FIG. 115 is a plan view showing a step performed after the step shown in FIG. 114 in the same embodiment.
  • FIG. 116 is a cross sectional view showing a step performed after the step shown in FIG. 115 in the embodiment, and taken along a cross sectional line corresponding to cross sectional line CXVI-CXVI shown in FIG. 115.
  • 116 is a cross sectional view showing a step performed after the step shown in FIG.
  • FIG. FIG. 118 is a cross sectional view showing a step performed after the step shown in FIG. 117 in the embodiment, and taken along a cross sectional line corresponding to cross sectional line CXVI-CXVI shown in FIG. 115.
  • 118 is a cross sectional view showing a step performed after the step shown in FIG. 118 in the embodiment, and taken along a cross sectional line corresponding to cross sectional line CXVI-CXVI shown in FIG. 115.
  • FIG. FIG. 119 is a plan view showing a step performed after the step shown in FIG. 119 in the embodiment.
  • FIG. 121 is a cross sectional view showing a step performed after the step shown in FIG. 120 in the embodiment, and taken along a cross sectional line corresponding to cross sectional line CXXI-CXXI shown in FIG. 120.
  • FIG. 122 is a cross sectional view showing a step performed after the step shown in FIG. 121 in the embodiment, and taken along a cross sectional line corresponding to cross sectional line CXXI-CXXI shown in FIG. 120.
  • FIG. 123 is a cross sectional view showing a step performed after the step shown in FIG. 122 in the embodiment, and taken along a cross sectional line corresponding to cross sectional line CXXI-CXXI shown in FIG.
  • FIG. 123 is a cross sectional view showing a step performed after the step shown in FIG. 123 in the embodiment, and taken along a cross sectional line corresponding to cross sectional line CXXI-CXXI shown in FIG. 120.
  • FIG. 127 is a plan view showing a step performed after the step shown in FIG. 124 in the same embodiment.
  • FIG. 126 is a cross sectional view showing a step performed after the step shown in FIG. 125 in the embodiment, and taken along a cross sectional line corresponding to cross sectional line CXXVI-CXXVI shown in FIG. 125.
  • FIG. 127 is a plan view showing a step performed after the step shown in FIG. 126 in the same embodiment.
  • FIG. 68 is a cross sectional view showing a step performed after the step shown in FIG. 127 in the embodiment, and taken along a cross sectional line corresponding to a cross sectional line CXXVIII-CXXVIII shown in FIG. 127.
  • FIG. 131 is a cross-sectional view showing a process performed after the process shown in FIG. 128 in the same Example.
  • FIG. 131 is a cross-sectional view showing a step performed after the step shown in FIG. 129 in the same embodiment.
  • FIG. 131 is a cross-sectional view showing a step performed after the step shown in FIG. 130 in the same embodiment. It is a top view which shows the arrangement pattern of the SRAM memory cell in the semiconductor device concerning Embodiment 10 of this invention.
  • FIG. 131 is a cross-sectional view showing a process performed after the process shown in FIG. 128 in the same Example.
  • FIG. 131 is a cross-sectional view showing a step performed after the step shown in FIG.
  • FIG. 132 is a cross sectional view taken along a cross sectional line CXXXIII-CXXXIII shown in FIG. 132 in the embodiment.
  • it is a top view which shows the connection structure of each transistor and 1st metal wiring.
  • it is a top view which shows the connection structure of the 1st metal wiring and the 2nd metal wiring.
  • it is a top view which shows 1 process of the manufacturing method of a semiconductor device.
  • FIG. 136 is a plan view showing a step performed after the step shown in FIG. 136 in the same embodiment.
  • FIG. 138 is a plan view showing a step performed after the step shown in FIG. 137 in the same embodiment.
  • FIG. 141 is a cross sectional view taken along a cross sectional line CXLI-CXLI shown in FIG. 140 in the embodiment.
  • FIG. 142 is a plan view showing a step performed after the step shown in FIG. 142 in the same embodiment.
  • FIG. 144 is a plan view showing a step performed after the step shown in FIG. 143 in the same embodiment.
  • FIG. 147 is a cross sectional view taken along a cross sectional line CXLVII-CXLVII shown in FIG. 146 in the embodiment. In the embodiment, it is a top view which shows 1 process of the manufacturing method of a semiconductor device.
  • FIG. 147 is a plan view showing a step performed after the step shown in FIG. 148 in the same embodiment.
  • FIG. 149 is a plan view showing a step performed after the step shown in FIG. 149 in the same embodiment.
  • Embodiment 1 First, an example of a semiconductor device called an SOC to which SRAM is applied as a memory cell will be described.
  • a semiconductor device SCD a plurality of logic circuits LC each realizing a specific function, such as a micro control unit, an analog-digital converter, a digital-analog converter, a bus controller, etc., and some of the logic circuits
  • An SRAM unit SR and the like that are connected and temporarily store data are mounted on one chip.
  • An IO region IO is formed so as to surround the logic circuit LC and the SRAM portion SR. As shown in FIG.
  • the SRAM section SR includes an SRAM memory cell array MA having a plurality of memory cells arranged in a matrix, an X decoder XD, a Y decoder YD, a sense amplifier SA, a write driver WD, and a main control circuit MC. It has.
  • the SRAM memory cell includes a flip-flop obtained by cross-coupling two inverters, and two access transistors AT1 and AT2.
  • the flip-flop is provided with two storage nodes SN and / SN that are cross-coupled.
  • Access transistors AT1 and AT2 are connected between storage nodes SN and / SN and bit lines BL and / BL.
  • Access transistors AT1 and AT2 have their gates connected to word line WL.
  • drive transistors DT1 and DT2 are connected between the storage nodes SN and / SN and the ground wiring (VSS).
  • Load transistors LT1, LT2 are connected between the storage nodes SN, / SN and the power supply wiring (VDD).
  • the gate of drive transistor DT1, the gate of load transistor LT1, and storage node / SN are electrically connected to each other.
  • the gate of the drive transistor DT2, the gate of the load transistor LT2, and the storage node SN are electrically connected to each other.
  • both bit lines BL and / BL are precharged to H level.
  • the drive transistor DT2 turned on uses the charge charged to the bit line / BL as the access transistor AT2. And then the potential of the bit line / BL is lowered.
  • a sense amplifier (not shown) detects a voltage drop of the bit line / BL.
  • a write driver (not shown) performs an operation of extracting the charge charged in the storage node N1 via the bit line BL charged to the H level and the access transistor AT1.
  • the access transistors AT1 and AT2 are connected to the source / drain regions connected to the storage nodes SN and / SN among the pair of halo regions HR formed respectively.
  • the impurity concentration of the adjacent halo region AHS is set higher than the impurity concentration of the halo region AHB adjacent to the source / drain regions connected to the bit lines BL and / BL.
  • the impurity concentration of the halo region DHS adjacent to the source / drain regions connected to the storage nodes SN and / SN among the pair of halo regions HR formed in each of the drive transistors DT1 and DT2 is grounded. It is set higher than the impurity concentration of the halo region DHE adjacent to the source / drain region connected to the wiring (VSS). Further, the impurity concentration of the halo region AHB and the impurity concentration of the halo region DHE are set to different impurity concentrations. Here, the impurity concentration of the halo region DHE is set lower than the impurity concentration of the halo region AHB.
  • FIG. 4 is a plan view showing a layout of transistors constituting memory cells of the SRAM cell array and contacts connected to the transistors.
  • each region surrounded by a dotted line constitutes one SRAM memory cell.
  • the transistors and contacts of each SRAM memory cell are arranged in mirror symmetry with the adjacent memory cells.
  • SRAM memory cell MA1 has access transistors AT1 and AT2, drive transistors DT1 and DT2, and load transistors LT1 and LT2.
  • element isolation regions FRN and FRP that are electrically isolated from each other are defined by forming an element isolation region ISR by an element isolation insulating film.
  • the element formation region FRN is formed in the NMIS region RN.
  • access transistors AT1 and AT2 and drive transistors DT1 and DT2 are formed as n-channel MIS transistors.
  • the element formation region FRP is formed in the PMIS region RP.
  • load transistors LT1 and LT1 are formed as p-channel type MIS transistors.
  • the access gate electrodes AG1, AG2 of the access transistors AT1, AT2 and the drive gate electrodes DG1, DG2 of the drive transistors DT1, DT2 are formed so as to cross the element formation region FRN.
  • the load gate electrodes LG1, LG2 of the load transistors LT1, LT2 are formed so as to cross the element formation region FRP.
  • Access gate electrodes AG1, AG2, drive gate electrodes DG1, DG2, and load gate electrodes LG1, LG2 are all formed to extend in one direction.
  • FIG. 5 is a cross-sectional view taken along a cross-sectional line VV passing through drive transistor DT1 and access transistor AT1 of SRAM memory cells MA1 and MA2 adjacent to each other in FIG.
  • a region S where an n-type source / drain region SDS is formed which is electrically connected to a storage node (contact SNC) and a bit line are electrically connected (contact BLC).
  • An access gate electrode AG1 of the access transistor AT1 is formed on a region sandwiched between the region B where the n-type source / drain region SDB is formed.
  • halo region AHS is formed as p-type halo region HR so as to be adjacent to source / drain region SDS, and halo region AHB is adjacent to source / drain region SDB. Is formed.
  • a drive gate electrode DG1 of the drive transistor DT1 is formed on a region sandwiched by the region S where the source / drain region SDS is formed.
  • a halo region DHS is formed as a p-type halo region HR adjacent to the source / drain region SDS, and the halo region DHE is adjacent to the source / drain region SDE. Is formed.
  • an extension region ER is formed from the surface to a predetermined depth, and a metal silicide film SCL is further formed.
  • a stress liner film SL such as a silicon nitride film is formed so as to cover the access gate electrode AG1, the drive gate electrode DG1, and the like.
  • An interlayer insulating film IL1 such as a silicon oxide film (for example, TEOS (Tetra Ethyl Ortho Silicate) film) is formed so as to cover the stress liner film SL.
  • a plug PG that penetrates the interlayer insulating film IL1 and the stress liner film SL and is electrically connected to the metal silicide film SCL (source / drain region SD) is formed.
  • the plug PG includes a barrier metal film BA1 such as a TiN film and a tungsten film TL1.
  • the plug PG electrically connected to the metal silicide film SCL located in the source / drain region SDE constitutes a contact VSSC. Further, the plug PG electrically connected to the metal silicide film SCL located in the source / drain region SDS constitutes a contact SNC (or storage node). The plug PG electrically connected to the metal silicide film SCL located in the source / drain region SDB constitutes a contact BLC.
  • An etching stopper film ES such as a silicon nitride film is formed on the interlayer insulating film IL1 so as to cover the plug PG.
  • an interlayer insulating film IL2 such as a silicon oxide film is formed.
  • a copper wiring CW1 penetrating through the interlayer insulating film IL2 and the etching stopper film ES and electrically connected to the plug PG is formed.
  • the copper wiring CW1 includes a barrier metal film BA2 such as a TaN film and a copper film CL1, and constitutes a first metal wiring.
  • a multilayer metal wiring is formed in a layer above the first metal wiring.
  • FIG. 6 is a plan view showing a connection structure between the transistor and the first metal wiring.
  • FIG. 7 is a plan view showing a connection structure between the first metal wiring and the second metal wiring.
  • FIG. 8 is a plan view showing a connection structure between the second metal wiring and the third metal wiring. 6 to 8 show a multilayer wiring structure for one memory cell.
  • the multilayer wiring structure on the adjacent SRAM memory cell has a wiring pattern formed in mirror symmetry with FIGS. Therefore, the SRAM memory cell MA1 will be mainly described.
  • One of the pair of source / drain regions SD (source / drain region SDB) of the access transistor AT1 is connected to the bit line BL via the contact BLC (plug PG), the first metal wiring BLM1 (copper wiring CW1), and the via BLV1.
  • the other of the pair of source / drain regions SD (source / drain region SDS) of the access transistor AT1 is connected to the load transistor LT1 via the contact SNC (plug PG), the first metal wiring SNM1 (copper wiring CW1), and the contact LGC.
  • the load gate electrode LG2 of the load transistor LT2 and the drive gate electrode DG2 of the drive transistor DT2.
  • the other of the pair of source / drain regions (source / drain region SDS) of the access transistor AT1 is electrically connected to one of the pair of source / drain regions (source / drain region SDS) of the drive transistor DT1.
  • the access gate electrode AG1 of the access transistor AT1 is connected to the third word line WL via the contact WLC (plug PG), the first metal wiring WLM1 (copper wiring CW1), the via BLV1, the second metal wiring WLM2, and the via WLV2. It is electrically connected to the metal wiring WLM3.
  • the other of the pair of source / drain regions (source / drain region SDE) of the drive transistor DT1 has contacts VSSC (plug PG), first metal wiring VSSM1 (copper wiring CW1), via VSSV1, second metal wiring VSSM2, and vias. It is electrically connected to a third metal wiring VSSM3 as a ground wiring VSS to which a ground potential is applied via VSSV2.
  • the other of the pair of source / drain regions of the load transistor LT1 is electrically connected to the second metal wiring VDDM2 as the power supply wiring VDD through the contact VDDC, the first metal wiring VDDM1 (copper wiring CW1), and the via VDDV1. Has been.
  • One of the pair of source / drain regions of the access transistor AT2 is connected to the second bit line / BL through the contact / BLC (plug PG), the first metal wiring / BLM1 (copper wiring CW1) and the via / BLV1. It is electrically connected to metal wiring / BLM2.
  • the other of the pair of source / drain regions of access transistor AT2 is one of the pair of source / drain regions of load transistor LT2 via contact / SCN (plug PG), first metal interconnection / SNM1, and contact / LGC.
  • the other of the pair of source / drain regions of the access transistor AT2 is electrically connected to one of the pair of source / drain regions of the drive transistor DT2.
  • the access gate electrode AG2 of the access transistor AT2 is connected to the third metal wiring WLM3 as the word line WL through the contact WLC, the first metal wiring WLM1 (copper wiring CW1), the via WLV1, the second metal wiring WLM2, and the via WLV2. Electrically connected.
  • the other of the pair of source / drain regions of the drive transistor DT2 has a ground potential through the contact VSSSC (plug PG), the first wiring VSSM1 (copper wiring CW1), the via VSSV1, the second metal wiring VSSM2, and the via VSSV2. It is electrically connected to a third metal wiring VSSM3 as a given ground wiring VSS.
  • the other of the pair of source / drain regions of the load transistor LT2 is a second metal wiring VDDM2 as a power supply wiring Vdd to which a power supply potential is applied via the contact VDDC, the first metal wiring VDDM1 (copper wiring CW1) and the via VDDV1. Is electrically connected.
  • the word line WL is connected to the contact WLC.
  • a ground wiring VSS is connected to the contact VSSC.
  • a power supply wiring VDD is connected to the contact VDDC.
  • Bit line BL is connected to contact BLC, and bit line / BL is connected to contact / BLC.
  • the contact SNC constitutes the storage node SN, and the contact / SNC constitutes the storage node / SN.
  • the contact SNC constitutes the storage node SN of the SRAM memory cell MA2.
  • a ground wiring VSS is connected to the contact VSSC.
  • the contact BLC connected to the bit line BL is shared by the SRAM memory cell MA1 and the SRAM memory cell MA2.
  • the access gate electrode AG1 of the access transistor AT1 (AT2) formed so as to cross the element formation region FRN (see FIG. 4) is formed on an interface layer (Inter Layer) SF such as SiON.
  • An interface layer (Inter Layer) SF such as SiON.
  • a high-k film HK having a predetermined dielectric constant such as La-containing HfO 2 or HfSiON, a metal film ML having a predetermined work function, such as TiN, and a polysilicon film PS are formed in a stacked manner.
  • a metal silicide film SCL such as nickel silicide is further formed on the surface.
  • An offset spacer OS such as a silicon nitride film is formed on both side surfaces of the access gate electrode AG1 (AG2). Over the offset spacer OS, a sidewall spacer SW made of a silicon oxide film SO and a silicon nitride film SNI is formed.
  • a portion of one element formation region that is orthogonal to the direction in which the access gate electrode AG1 (AG1) extends (gate length direction) across the access gate electrode AG1 (AG2) includes a halo region AHS, an extension region ER, and a source A drain region SD and a metal silicide film SCL are formed.
  • a halo region AHB, an extension region ER, a source / drain region SD, and a metal silicide film SCL are formed in the other element formation region perpendicular to the direction in which the access gate electrode AG1 (AG1) extends. .
  • the halo regions AHS and AHB are in regions adjacent to the mutually opposing portions of the pair of source / drain regions SD, respectively, and access gate electrodes AG1 (AG2) from the region immediately below the sidewall spacer SW. It is formed so as to reach the region immediately below.
  • the impurity concentration of the halo region HR is on the order of 1 ⁇ 10 18 / cm 3 to 1 ⁇ 10 19 / cm 3 , but in this semiconductor device, the impurity concentration of the halo region AHS is higher than the impurity concentration of the halo region AHB. Is set.
  • FIG. 10 shows the impurity concentration profile of the halo region.
  • the horizontal axis indicates the depth (arrows F1, F2) from the surface portion of the semiconductor substrate at the lower end of the side surface of the access gate electrode AG1 (AG2), and the vertical axis indicates the impurity concentration of the P-type impurity.
  • the impurity concentration of the halo region AHS is higher than the impurity concentration of the halo region AHB in the surface portion of the semiconductor substrate at the lower end of the side surface of the access gate electrode AG1 (AG2).
  • an impurity concentration peak appears first at predetermined depths f1 and f2 from the surface.
  • Peak of the impurity concentration of the halo region AHS is higher than the peak of the impurity concentration of the halo region AHB, halo region about 6 ⁇ 10 18 / cm 3 at AHS, with halo in the region AHB about 5 ⁇ 10 18 / cm 3 is there.
  • the impurity concentration of the extension region ER (see FIGS. 5 and 9) of the SRAM memory cell is 5 ⁇ 10 20 / cm 3 to 1 ⁇ 10 21 / cm 3 , and the source / drain region SD (FIGS. 5 and 9).
  • the impurity concentration of (see) is about 5 ⁇ 10 21 / cm 3 .
  • the halo region formed in the region immediately below the drive gate electrode DG1 as the halo region there are areas DHS and DHE (see FIG. 5).
  • the impurity concentration of the halo region DHS is set higher than the impurity concentration of the halo region DHE.
  • the impurity concentration of the halo region DHS is set higher than the impurity concentration of the halo region AHB, and the impurity concentration of the halo region DHE is set lower than the impurity concentration of the halo region AHB.
  • the respective impurity concentrations of the halo regions AHS, AHB, DHS, and DHE have the height relationship, both the read margin and the write margin can be increased.
  • the semiconductor device includes a logic circuit and the like in addition to the SRAM circuit.
  • a method for forming the access transistor and the drive transistor of the SRAM memory cell will be mainly described.
  • element formation regions FRN and FRP that are electrically isolated from each other are defined (see FIG. 4).
  • a p-well PW is formed in the element formation region FRN.
  • a high-k film HK having a predetermined dielectric constant, a metal film ML having a predetermined work function, and a polysilicon film PS are stacked on the surface of the semiconductor substrate SUB with the interface layer SF interposed therebetween.
  • a gate structure G to be the access gate electrode AG1 and a gate structure G to be the drive gate electrode DG1 are formed.
  • a silicon nitride film (not shown) is formed on the semiconductor substrate SUB so as to cover the gate structure G.
  • the silicon nitride film is anisotropically etched to form offset spacers OS on both side surfaces of the gate structure G.
  • a predetermined photoengraving process is performed to form a resist mask RMH1 that serves as an implantation mask for forming the halo region (implantation mask A).
  • a source / drain region electrically connected to the storage node in the gate structure G to be the access gate electrode AG1 (AG2) is formed in the resist mask RMH1.
  • the side surface located on the side of the region S to be formed, the region S, the gate structure G to be the drive gate electrode DG1 (DG2), and the source / drain regions electrically connected to the ground wiring are formed.
  • the region E is formed so as to be exposed by the opening pattern.
  • the resist mask RMH1 includes a side surface located on the side of the region B where the source / drain region electrically connected to the bit line is to be formed in the gate structure G to be the access gate electrode AG1, and the region B is formed so as to cover B.
  • a source / drain region electrically connected to the storage node in the gate structure G to be the access gate electrode AG1 (AG2) is formed.
  • the side surface located on the side where the region S to be formed is disposed, the region S, the gate structure G to be the drive gate electrode DG1 (DG2), and the source / drain regions electrically connected to the ground wiring are formed.
  • the region E to be formed is formed so as to be exposed by the opening pattern.
  • each opening of the resist mask RMH1 is formed across two adjacent SRAM memory cells MA1, MA2, and the like, and the region S in the gate structure G serving as the access gate electrode of one SRAM memory cell MA1.
  • the region from the side surface located on the side to the side surface located on the region S side in the gate structure G that serves as the access gate electrode of the other SRAM memory cell MA2 is continuously exposed.
  • the resist mask RMH1 is formed on the side of the region B in the gate structure serving as the access gate electrode of the SRAM memory cell MA2 from the side surface located on the region B side in the gate structure G serving as the access gate electrode of the SRAM memory cell MA1. Is formed so as to cover the PMIS region RP as well as to cover the region up to the side surface located in the area.
  • boron is oblique with respect to the direction perpendicular to the main surface of semiconductor substrate SUB from one side substantially perpendicular to the direction in which gate structure G extends.
  • a p-type impurity region PIR1 is formed in the exposed region of the p-well PW.
  • FIG. 15 using the same resist mask RMH1 as an implantation mask, boron is perpendicular to the main surface of the semiconductor substrate SUB from the other side opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region PIR2 is formed in the exposed p-well PW region (halo implantation A). Note that, in the implantation in the step shown in FIG. 14 and the implantation in the step shown in FIG. 15, boron is implanted with the same implantation amount and the same implantation energy.
  • the resist mask RMH1 is removed. At this time, no impurity region is formed in the region B in the element formation region FRN.
  • a predetermined photoengraving process is performed to form a resist mask RMH2 that serves as an implantation mask for forming the halo region (implantation mask B).
  • the resist mask RMH2 has a region S in which a source / drain region electrically connected to the storage node is formed in the gate structure G to be the drive gate electrode DG1 (DG2).
  • the side surface located on the side where it is disposed, the region S, the gate structure G to be the access gate electrode AG1 (AG2), and the source / drain region electrically connected to the bit line are formed.
  • the region B is formed so as to be exposed by the opening pattern.
  • the resist mask RMH2 is a side surface located on the side where the region E where the source / drain region electrically connected to the ground wiring is to be formed in the gate structure G to be the drive gate electrode DG1 is formed. And to cover the region E and the element formation region FRP.
  • boron is oblique to the direction perpendicular to the main surface of semiconductor substrate SUB from one side substantially perpendicular to the direction in which gate structure G extends.
  • a p-type impurity region PIR3 is formed in the exposed region of the p-well PW.
  • boron is perpendicular to the main surface of the semiconductor substrate SUB from the other side opposite to the direction substantially orthogonal to the direction in which the gate structure G extends.
  • a p-type impurity region PIR4 is formed in the exposed p-well PW region (halo implantation B). Note that boron is implanted with the same implantation amount and the same implantation energy in the implantation shown in FIG. 18 and the implantation shown in FIG.
  • the impurity concentration of the halo region (AHB) is set to be higher than the impurity concentration of the halo region (DHE).
  • the injection conditions are set so that the injection amount of the halo injection B is higher than the injection amount of the halo injection A.
  • the implantation amount of the halo implantation may be an implantation amount such that the impurity concentration of the halo region (AHB) and the impurity concentration of the halo region (DHE) are different, and the implantation amount of the halo implantation B is halo implantation.
  • the injection conditions may be set so as to be lower than the injection amount of A.
  • p-type impurity regions PIR3 and PIR4 are formed in region B
  • p-type impurity regions PIR1 and PIR2 are formed in region E
  • p-type impurity regions PIR1 and PIR2 are formed in region S.
  • PIR3, PIR4 are formed.
  • a part of the p-type impurity regions PIR1, PIR2, PIR3, PIR4 becomes a halo region.
  • a resist mask RME1 that exposes the NMIS region RN and covers the PMIS region RP is formed (implantation mask C).
  • the resist mask RME1 as an implantation mask for example, phosphorus or arsenic is exposed by implanting into the semiconductor substrate SUB from a direction substantially perpendicular to the main surface of the semiconductor substrate SUB.
  • An extension region ER is formed from the surface of the p-well PW region to a predetermined depth (extension implantation). Thereafter, the resist mask RME1 is removed.
  • the extension implantation can be performed before the halo implantation A and the halo implantation B.
  • a resist mask RME2 that covers the NMIS region RN and exposes the PMIS region RP is formed (implantation mask D).
  • phosphorus or arsenic is used as the main mask of the semiconductor substrate SUB using the resist mask RME2 as an implantation mask.
  • a halo region (not shown) is formed in the element formation region FRP.
  • boron is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby forming an extension region (not shown). Thereafter, the resist mask RME2 is removed.
  • a silicon oxide film and a silicon nitride film are sequentially formed so as to cover the gate structure G (access gate electrodes AG1, AG2, drive gate electrodes DG1, DG2, etc.).
  • the gate structure G access gate electrodes AG1, AG2, drive gate electrodes DG1, DG2, etc.
  • sidewalls made of the silicon oxide film SO and the silicon nitride film SNI are formed on both side surfaces of the gate structure G.
  • a spacer SW is formed.
  • a resist mask RMSD1 that exposes the NMIS region RN and covers the PMIS region RP is formed.
  • phosphorus or arsenic is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB using the resist mask RMSD1 (FIG. 25) and the sidewall spacer SW as an implantation mask.
  • source / drain regions SD are formed from the surface of the exposed p-well PW region to a predetermined depth. Thereafter, the resist mask RMSD1 is removed.
  • a resist mask RMSD2 that covers the NMIS region RN and exposes the PMIS region RP is formed.
  • boron is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB using the resist mask RMSD2 and the side wall spacer SW as an implantation mask, so that the surface of the exposed element formation region FRP is removed.
  • Source / drain regions are formed over a predetermined depth. Thereafter, resist mask RMSD2 is removed.
  • the source / drain region SD, the extension region ER, and the halo region HR are activated by thermally diffusing the implanted impurities by performing a predetermined annealing process.
  • the source / drain region SD, the extension region ER, and the halo region HR expand in the horizontal direction and the vertical (depth) direction.
  • a metal silicide film such as nickel silicide is formed on the surface of the polysilicon film such as the exposed source / drain region SD and access gate electrode AG1 and drive gate electrode DG1 by a salicide process. SCL is formed.
  • a stress liner film SL such as a silicon nitride film is formed so as to cover the access gate electrode AG1, the drive gate electrode DG1, and the like.
  • An interlayer insulating film IL1 such as a silicon oxide film (eg, TEOS film) is formed so as to cover the stress liner film SL.
  • the interlayer insulating film IL1 is anisotropically etched to form a contact hole CH (see FIG. 31) exposing the metal silicide film SCL.
  • a barrier metal film BA1 such as titanium nitride (TiN) is formed so as to cover the inner wall of the contact hole CH, and the contact hole CH is filled on the barrier metal film BA1.
  • the tungsten film TL1 is formed.
  • CMP chemical mechanical polishing
  • the portions of the barrier metal film and the tungsten film located on the upper surface of the interlayer insulating film IL1 are removed, and as shown in FIG.
  • a plug PG including a barrier metal film BA1 and a tungsten film TL1 is formed in the contact hole CH.
  • an etching stopper film ES such as a silicon nitride film is formed so as to cover the plug PG.
  • An interlayer insulating film IL2 such as a silicon oxide film is formed on the etching stopper film ES.
  • a groove exposing the surface of the plug PG is formed.
  • a barrier metal film BA2 such as tantalum nitride (TaN) is formed so as to cover the inner wall of the groove, and further, a copper film CL1 is formed on the barrier metal film BA2 so as to fill the groove. Is done.
  • Copper wiring CW1 is formed. Copper wiring CW1 corresponds to the first metal wiring.
  • an interlayer insulating film (not shown) is formed so as to cover the copper wiring CW1.
  • Vias VSSV1, WLV1, BLV1, VDDV1, / BLV1 are formed in the interlayer insulating film by a method similar to the method of forming the plug PG.
  • an interlayer insulating film (not shown) is formed so as to cover the vias VSSV1, WLV1, BLV1, VDDV1, and / BLV1.
  • Second metal interconnections VSSM2, WLM2, BLM2, VDDM2, and / BLM2 are formed in the interlayer insulating film by a method similar to the method of forming copper interconnection CW1.
  • an interlayer insulating film (not shown) is formed so as to cover the second metal wirings VSSM2, WLM2, BLM2, VDDM2, and / BLM2.
  • Vias VSSV2 and WLV2 are formed in the interlayer insulating film by a method similar to the method of forming the plug PG.
  • an interlayer insulating film (not shown) is formed so as to cover the vias VSSV2 and WLV2.
  • Third metal wirings VSSM3 and WLM3 are formed in the interlayer insulating film by a method similar to the method of forming copper wiring CW1.
  • the main part of the SRAM memory cell is formed.
  • the ⁇ ratio is the current ratio of drive transistor DT1 (DT2) to access transistor AT1 (AT2) (however, the source-to-gate voltage and the source-to-drain voltage are the same between the access transistor and the drive transistor). expressed.
  • the ⁇ ratio is expressed as a current ratio of the access transistor AT1 (AT2) to the load transistor LT1 (LT2) (the source-to-gate voltage and the source-to-drain voltage are the same between the access transistor and the load transistor).
  • the impurity concentration of halo region AHS is set higher than the impurity concentration of halo region AHB.
  • the impurity concentration of halo region DHS is set higher than the impurity concentration of halo region DHE.
  • the impurity concentration of halo region DHE of drive transistors DT1 and DT2 is set lower than the impurity concentration of halo region AHB of access transistors AT1 and AT2.
  • FIG. 34 shows the relationship between the currents IF and IR and the source-to-gate voltage Vgs at the same source-to-drain voltage.
  • the threshold voltage of the transistor is the opposite halo. This is lower than the threshold voltage of the transistor when current flows from the source / drain region on the region AHB (DHE) side to the source / drain region on the halo region AHS (DHS) side.
  • the halo region AHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and the impurity concentration is relatively low.
  • a low halo region AHB is formed on the bit line BL (/ BL) side.
  • halo region DHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and halo region DHE having a relatively low impurity concentration is formed on the ground wiring VSS side.
  • the current (current IRA) flowing through the access transistor from the bit line side toward the storage node side can be easily suppressed, and from the storage node side to the ground wiring side.
  • IFD current flowing through the drive transistor.
  • the ⁇ ratio (IFD / IRA) can be increased and the read margin can be increased.
  • the current flowing through the drive transistors DT1 and DT2 is only the current flowing from the storage node side to the ground wiring side during the read operation.
  • the halo region DHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side
  • the halo region DHE having a relatively low impurity concentration is formed on the ground wiring (VSS) side.
  • the threshold voltages of the transistors DT1 and DT2 can be relatively lowered to enable high-speed operation during reading.
  • the impurity concentration of the halo region DHE of the drive transistors DT1, DT2 is set lower than the impurity concentration of the halo region AHB of the access transistors AT1, AT2, has been described.
  • the impurity concentration of halo region DHE of DT2 is set higher than the impurity concentration of halo region AHB of access transistors AT1 and AT2, the leakage current from drive transistors DT1 and DT2 during read operation is suppressed. be able to.
  • the semiconductor device according to the comparative example first, as shown in FIG. 37, by forming an element isolation insulating film 102 on the main surface of the semiconductor substrate 101, element formation regions 103a and 103b that are electrically isolated from each other are defined. Is done. Next, across the element formation region 103a, the access gate electrode ALG of the access transistor AL, the access gate electrode ARG of the access transistor AR, the drive gate electrode NLG of the drive transistor NL, and the drive gate electrode NRG of the drive transistor NR are respectively It is formed at a predetermined position. Further, the load gate electrode PLG of the load transistor PL and the load gate electrode PRG of the load transistor PR are formed at predetermined positions so as to cross the element formation region 103b. In FIG. 37, two SRAM memory cells (dotted line frames 152a and 152b) are shown.
  • a resist mask 131 for forming halo regions of access transistors AL and AR is formed.
  • the resist mask 131 exposes the region RAR in which the access transistor AR of the SRAM memory cell in the dotted line frame 152a is formed and the region RAL in which the access transistor AL of the SRAM memory cell in the dotted line frame 152b is formed. It is formed so as to cover.
  • a p-type impurity is implanted into the exposed element formation region 103a by oblique ion implantation, thereby forming a halo region.
  • the region RAL more p-type impurities are implanted into the element forming region 103a located on the drive transistor NL side with respect to the access transistor AL.
  • the region RAR more p-type impurities are implanted into the element forming region 103a located on the drive transistor NR side with respect to the access transistor AR.
  • the resist mask 131 is removed.
  • a resist mask 132 for forming halo regions of other access transistors AL and AR is formed.
  • the resist mask 132 exposes the region RAL in which the access transistor AL of the SRAM memory cell in the dotted line frame 152a is formed and the region RAR in which the access transistor AR of the SRAM memory cell in the dotted line frame 152b is formed. It is formed so as to cover.
  • p-type impurities are implanted into the exposed element formation region 103a by oblique ion implantation, thereby forming a halo region.
  • the region RAL more p-type impurities are implanted into the element forming region 103a located on the drive transistor NL side with respect to the access transistor AL.
  • the region RAR more p-type impurities are implanted into the element forming region 103a located on the drive transistor NR side with respect to the access transistor AR.
  • the resist mask 132 is removed.
  • a resist mask 133 for forming halo regions and extension regions of the load transistors PL and PR is formed.
  • the resist mask 133 exposes an area in which the load transistors PL and PR of the SRAM memory cell in the dotted line frame 152a are formed and an area in which the load transistors PL and PR of the SRAM memory cell in the dotted line frame 152b are formed. It is formed so as to cover regions where transistors AL and AR and drive transistors NL and NR are formed.
  • an n-type impurity is implanted into the exposed element formation region 103b by oblique ion implantation, thereby forming a halo region.
  • an extension region is formed by implanting p-type impurities into the exposed element formation region 103b. Thereafter, the resist mask 133 is removed.
  • a resist mask 134 for forming halo regions of the drive transistors NL and NR is formed.
  • the resist mask 134 includes regions RNL and RNR in which the load transistors NL and NR of the SRAM memory cell in the dotted frame 152a are formed, and regions RNL and RNR in which the load transistors NL and NR of the SRAM memory cell in the dotted frame 152b are formed. It is formed so as to expose the RNR and cover other regions.
  • a halo region is formed by implanting p-type impurities into the element formation region 103a exposed by oblique ion implantation. Thereafter, the resist mask 134 is removed.
  • an SRAM memory cell having an asymmetric halo region is formed.
  • this SRAM memory cell at least four resist masks of a resist mask 131, a resist mask 132, a resist mask 133, and a resist mask 134 are required as implantation masks for forming a halo region including an asymmetric halo region.
  • the asymmetric halo regions of the access transistors AT1 and AT2 and the halo regions of the drive transistors DT1 and DT2 are formed in a resist mask RMH1 (implantation mask A) and a resist mask RMH2 ( Implantation mask B).
  • the halo regions of the load transistors LT1, LT2 are formed by a resist mask RME2 (implantation mask D).
  • the semiconductor device according to the comparative example requires at least four implantation masks (resist masks).
  • the halo region of each transistor can be formed by three implantation masks (resist masks).
  • at least one photoengraving mask for patterning the resist mask can be reduced, and as a result, the production cost can be reduced.
  • extension implantation is performed using the implantation mask C after performing the halo implantation A and the halo implantation B using the implantation mask A and the implantation mask B, respectively.
  • the halo implantation may be performed after the extension implantation.
  • extension implantation may be performed using the implantation mask C, then halo implantation A may be performed using the implantation mask A, and halo implantation B may be performed using the implantation mask B.
  • an opening sufficiently larger than the interval between adjacent access (drive) gate electrodes is formed as an opening (a blank pattern).
  • Embodiment 2 (First example) In the above-described semiconductor device, the case where a pair of access transistors AT1 and AT2 are provided to write and read the SRAM memory cell has been described.
  • a first example of a semiconductor device having dual-port SRAM memory cells each having a pair of access transistors as write and read ports will be described.
  • a word line WLA and a word line WLB are provided as word lines.
  • bit line pairs BLA and / BLA and bit line pairs BLB and / BLB are provided as bit line pairs.
  • the pair of access transistors AT1 and AT2 are connected between the storage nodes SN and / SN and the bit lines BLA and / BLA.
  • the gates of the access transistors AT1 and AT2 are connected to the word line WLA.
  • a pair of access transistors AT3 and AT4 are connected between storage nodes SN and / SN and bit lines BLB and / BLB. Access transistors AT3 and AT4 have their gates connected to word line WLB.
  • the impurity concentration in the halo region AHS adjacent to the source / drain regions connected to the storage nodes SN and / SN among the pair of halo regions HR formed in each of the access transistors AT1 and AT2 is determined by the bit line BLA.
  • / BLA is set higher than the impurity concentration of the halo region AHB adjacent to the source / drain region.
  • the impurity concentration of the halo region DHS adjacent to the source / drain regions connected to the storage nodes SN and / SN among the pair of halo regions HR formed in each of the drive transistors DT1 and DT2 is grounded. It is set higher than the impurity concentration of the halo region DHE adjacent to the source / drain region connected to the wiring (VSS).
  • the impurity concentration of the halo region AHS adjacent to the source / drain regions connected to the storage nodes SN and / SN among the pair of halo regions HR formed in each of the access transistors AT3 and AT4 is the bit line BLB.
  • / BLB is set higher than the impurity concentration of the halo region AHB adjacent to the source / drain region. Since the configuration other than this is the same as that of the equivalent circuit shown in FIG. 3, the same members are denoted by the same reference numerals, and the description thereof will not be repeated.
  • FIG. 43 is a plan view showing a layout of transistors constituting memory cells of the SRAM cell array and contacts connected to the transistors.
  • each region surrounded by a dotted line constitutes one SRAM memory cell.
  • element isolation regions FRN and FRP that are electrically isolated from each other are defined by forming an element isolation region ISR by an element isolation insulating film.
  • the element formation region FRN is formed in the NMIS region RN.
  • access transistors AT1, AT3, AT2, AT4 and drive transistors DT1, DT2 are formed in the element formation region FRN.
  • load transistors LT1 and LT2 are formed in the element formation region FRP as p-channel type MIS transistors.
  • the element formation region FRN where the access transistor AT1 is formed, the element formation region FRN where the access transistor AT2 is formed, and the element formation region FRN where the drive transistor DT1 is formed are electrically connected to each other by the element isolation region ISR. Separated.
  • the element formation region FRN in which the access transistor AT3 is formed, the element formation region FRN in which the access transistor AT4 is formed, and the element formation region FRN in which the drive transistor DT2 is formed are separated by the element isolation region ISR. They are electrically separated from each other.
  • the access gate electrodes AG1, AG2 of the access transistors AT1, AT2 are formed as a common electrode so as to cross the element formation region FRN. Further, the access gate electrodes AG3 and AG4 of the access transistors AT3 and AT4 are formed so as to cross the element formation region FRN as a common electrode.
  • Drive gate electrodes DG1 and DG2 of drive transistors DT1 and DT2 are formed across element formation region FRN. Further, in element formation region FNR where drive gate electrodes DG1 and DG2 are formed, the gate widths of drive gate electrodes DG1 and DG2 are longer than the gate widths of access transistors AT1 and AT2 (AT3 and AT4), for example. Is formed.
  • the load gate electrodes LG1, LG2 of the load transistors LT1, LT2 are formed so as to cross the element formation region FRP.
  • Access gate electrodes AG1, AG2, AG3, AG4, drive gate electrodes DG1, DG2, and load gate electrodes LG1, LG2 are all formed to extend in one direction.
  • FIG. 44 is a cross sectional view taken along a cross sectional line XLIV-XLIV passing through drive transistor DT1 and access transistor AT1 of the SRAM memory cell in FIG.
  • the region S where the n-type source / drain region SDS is formed which is electrically connected to the storage node (contact SNC) and the bit line are electrically connected (contact BLAC).
  • An access gate electrode AG1 of the access transistor AT1 is formed on a region sandwiched between the region B where the n-type source / drain region SDB is formed.
  • halo region AHS is formed as p-type halo region HR so as to be adjacent to source / drain region SDS, and halo region AHB is adjacent to source / drain region SDB. Is formed.
  • a drive gate electrode DG1 of the drive transistor DT1 is formed on a region sandwiched by the region S where the source / drain region SDS is formed.
  • a halo region DHS is formed as a p-type halo region HR adjacent to the source / drain region SDS, and the halo region DHE is adjacent to the source / drain region SDE. Is formed. Note that the same members as those of the semiconductor device according to FIG. 5 (Embodiment 1) are denoted by the same reference numerals, and description thereof will not be repeated.
  • FIG. 45 is a plan view showing a connection structure between a transistor and a first metal wiring in one memory cell.
  • FIG. 46 is a plan view showing a connection structure between the first metal wiring and the second metal wiring.
  • FIG. 47 is a plan view showing a connection structure between the second metal wiring and the third metal wiring.
  • One of the pair of source / drain regions of the access transistor AT1 is connected to the bit line BLA (/ BLA1) via the contact BLAC (/ BLAC), the first metal wiring BLAM1 (/ BLAM1) and the via BLAV1 (/ BLAV1).
  • BLA is electrically connected to the second metal wiring BLAM2 (/ BLAM2).
  • Gate electrode AG1 (AG2) of access transistor AT1 (AT2) is connected to third metal interconnection WLAM3 as word line WLA via contact WLAC, first metal interconnection WLAM1, via WLAV1, second metal interconnection WLAM2, and via WLAV2. Electrically connected.
  • One of the pair of source / drain regions of the access transistor AT3 is connected to the bit line BLB (/ BLBV1) via the contact BLBC (/ BLBC), the first metal wiring BLBM1 (/ BLBM1) and the via BLBV1 (/ BLBV1).
  • BLB is electrically connected to the second metal wiring BLBM2 (/ BLBM2).
  • Gate electrode AG3 (AG4) of access transistor AT3 is connected to third metal interconnection WLBM3 as word line WLB via contact WLBC, first metal interconnection WLBM1, via WLBV1, second metal interconnection WLBM2, and via WLBV2. Electrically connected.
  • the other of the pair of source / drain regions of access transistor AT1 (AT3) is connected to load gate electrode LG2 of load transistor LT2 and drive gate electrode of drive transistor DT2 through contact SNC, first metal interconnection SNM1 and contact SNGC. Each is electrically connected to DG2.
  • the other of the pair of source / drain regions of the access transistor AT2 (AT4) is connected to the load gate electrode LG1 of the load transistor LT1 and the drive transistor DT1 via the contact / SNC, the first metal wiring / SNM1 and the contact / SNGC. Each is electrically connected to the drive gate electrode DG1.
  • the other of the pair of source / drain regions of access transistor AT1 (AT3) is electrically connected to one of the pair of source / drain regions of drive transistor DT1 through contact SNC, first metal interconnection SNM1, and contact SNC. Connected.
  • the other of the pair of source / drain regions of access transistor AT2 (AT4) is connected to one of the pair of source / drain regions of drive transistor DT2 via contact / SNC, first metal interconnection / SNM1, and contact / SNC. Electrically connected.
  • the other of the pair of source / drain regions of access transistor AT1 (AT3) is electrically connected to one of the pair of source / drain regions of load transistor LT1 via contact SNC, first metal interconnection SNM1, and contact SNLC. Connected.
  • the other of the pair of source / drain regions of access transistor AT2 (AT4) is connected to one of the pair of source / drain regions of load transistor LT2 via contact / SNC, first metal interconnection / SNM1, and contact / SNLC. Electrically connected.
  • a predetermined photoengraving process is performed to form a resist mask RMH1 serving as an implantation mask for forming the halo region (implantation mask A).
  • the resist mask RMH1 is located on the side of the region S where the source / drain region electrically connected to the storage node is to be formed in each gate structure G to be the access gate electrodes AG1, AG2 (AG3, AG4).
  • a side surface, a region S thereof, a gate structure G to be a drive gate electrode DG1 (DG2), and a region E in which a source / drain region electrically connected to the ground wiring is formed are opened. It is formed so as to be exposed by the pattern.
  • the resist mask RMH1 is located on the side of the region B where the source / drain regions electrically connected to the bit lines are to be formed in the gate structure G to be the access gate electrodes AG1, AG2 (AG3, AG4).
  • the side surface and the region B are covered, and the PMIS region RP is formed.
  • resist mask RMH1 as an implantation mask, for example, boron is implanted by oblique implantation with respect to a direction perpendicular to the main surface of semiconductor substrate SUB from one direction substantially orthogonal to the direction in which gate structure G extends.
  • a p-type impurity region (not shown) is formed in the p-well region.
  • boron is implanted obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB from one opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region (not shown) is formed in the exposed p-well region (halo implantation A).
  • halo implantation A boron is implanted with the same implantation amount and the same implantation energy. Thereafter, the resist mask RMH1 is removed.
  • a predetermined photoengraving process is performed to form a resist mask RMH2 serving as an implantation mask for forming the halo region (implantation mask B).
  • the resist mask RMH2 is positioned on the side where the region S where the source / drain region electrically connected to the storage node is to be formed in the gate structure G to be the drive gate electrode DG1 (DG2).
  • the side surface, the region S, the gate structure G to be the access gate electrodes AG1, AG2 (AG3, AG4), and the region B in which source / drain regions electrically connected to the bit lines are formed It is formed to be exposed by the opening pattern.
  • the resist mask RMH2 is located on the side where the region E where the source / drain region electrically connected to the ground wiring is to be formed in the gate structure G to be the drive gate electrode DG1 (DG2). It is formed so as to cover the located side surface, the region E, and the element formation region FRP.
  • resist mask RMH2 as an implantation mask
  • boron is implanted by oblique implantation with respect to a direction perpendicular to the main surface of semiconductor substrate SUB from one direction substantially orthogonal to the direction in which gate structure G extends.
  • a p-type impurity region (not shown) is formed in the region of the p-well.
  • boron is implanted obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB from one opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region (not shown) is formed in the exposed p-well region (halo implantation B).
  • halo implantation B boron is implanted with the same implantation amount and the same implantation energy.
  • the implantation amount of the halo implantation B is set so that the impurity concentration of the halo region (AHB) is higher than the impurity concentration of the halo region (DHE).
  • the injection conditions may be set so as to be lower than the injection amount of A.
  • a resist mask RME1 that exposes the NMIS region RN and covers the PMIS region RP is formed (implantation mask C).
  • implantation mask C a resist mask that exposes the NMIS region RN and covers the PMIS region RP is formed.
  • phosphorus or arsenic is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby exposing the surface of the exposed p-well PW region.
  • An extension region ER (see FIG. 44) is formed over a predetermined depth (extension injection). Thereafter, the resist mask RME1 is removed.
  • the extension implantation can be performed before the halo implantation A and the halo implantation B.
  • a resist mask (not shown) that covers the NMIS region RN and exposes the PMIS region RP is formed (implantation mask D).
  • phosphorus or arsenic is exposed from a direction perpendicular to the main surface of the semiconductor substrate SUB using the resist mask as an implantation mask.
  • a halo region (not shown) is formed in the element formation region FRP.
  • boron is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby forming an extension region (not shown). Thereafter, the resist mask is removed.
  • copper wiring CW1 is formed as the first metal wiring. Thereafter, the multilayer wiring structure shown in FIGS. 46 and 47 is formed on copper wiring CW1, and the main part of the SRAM memory cell is formed.
  • halo regions AHS and AHB are formed in the access transistors AT1, AT2, AT3 and AT3, respectively.
  • access transistor AT1 AT2
  • halo region AHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side
  • halo region AHB having a relatively low impurity concentration is on the bit line BLA (/ BLA) side. Is formed.
  • access transistor AT3 AT4
  • halo region AHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side
  • halo region AHB having a relatively low impurity concentration is on the bit line BLB (/ BLB) side. Is formed.
  • halo regions DHS and DHB are formed in the drive transistors DT1 and DT2, respectively.
  • a halo region DHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and a halo region DHE having a relatively low impurity concentration is formed on the ground wiring VSS side.
  • the gate widths of drive transistors DT1, DT2 are set to be longer than the gate widths of access transistors AT1, AT2 (AT3, AT4).
  • the current flowing through the drive transistors DT1 and DT2 is only the current flowing from the storage node side to the ground wiring side during the read operation.
  • the halo region DHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side
  • the halo region DHE having a relatively low impurity concentration is formed on the ground wiring (VSS) side.
  • the threshold voltages of the transistors DT1 and DT2 can be relatively lowered to enable high-speed operation during reading.
  • the impurity concentration of halo region DHE in drive transistors DT1 and DT2 is set higher than the impurity concentration of halo region AHB of access transistors AT1 and AT2, the read operation is performed.
  • the leakage current from the drive transistors DT1 and DT2 can be suppressed.
  • the halo regions AHB and AHS of the access transistors AT1, AT2, AT3 and AT4 and the halo regions DHE and DHS of the drive transistors DT1 and DT2 are formed of the resist mask RMH1 (implantation mask A) and the resist mask RMH2. (Implantation mask B).
  • the halo regions of the load transistors LT1, LT2 are formed by a resist mask (implantation mask D).
  • FIG. 51 is a plan view showing the layout of the transistors constituting the memory cells of the SRAM cell array and the contacts connected to the transistors.
  • each region surrounded by a dotted line constitutes one SRAM memory cell.
  • element isolation regions FRN and FRP that are electrically isolated from each other are defined by forming an element isolation region ISR by an element isolation insulating film.
  • the element formation region FRN is formed in the NMIS region RN.
  • access transistors AT1, AT3, AT2, AT4 and drive transistors DT1, DT2 are formed in the element formation region FRN.
  • load transistors LT1 and LT2 are formed in the element formation region FRP as p-channel type MIS transistors.
  • the element formation region FRN where the access transistor AT1 is formed, the element formation region FRN where the access transistor AT3 is formed, and the element formation region FRN where the drive transistor DT1 is formed are connected to each other.
  • the element formation region FRN where the access transistor AT2 is formed, the element formation region FRN where the access transistor AT4 is formed, and the element formation region FRN where the drive transistor DT2 is formed are connected to each other.
  • the gate widths of drive gate electrodes DG1 and DG2 are longer than the gate widths of access transistors AT1 and AT2 (AT3 and AT4), for example. Is formed.
  • the load gate electrodes LG1, LG2 of the load transistors LT1, LT2 are formed so as to cross the element formation region FRP.
  • Access gate electrodes AG1, AG2, AG3, AG4, drive gate electrodes DG1, DG2, and load gate electrodes LG1, LG2 are all formed to extend in one direction.
  • FIG. 52 is a sectional view taken along a sectional line LII-LII passing through drive transistor DT1 and access transistor AT1 of the SRAM memory cell in FIG.
  • the region S where the n-type source / drain region SDS is formed which is electrically connected to the storage node (contact SNC) and the bit line are electrically connected (contact BLAC).
  • An access gate electrode AG1 of the access transistor AT1 is formed on a region sandwiched between the region B where the n-type source / drain region SDB is formed.
  • halo region AHS is formed as p-type halo region HR so as to be adjacent to source / drain region SDS, and halo region AHB is adjacent to source / drain region SDB. Is formed.
  • a drive gate electrode DG1 of the drive transistor DT1 is formed on a region sandwiched by the region S where the source / drain region SDS is formed.
  • a halo region DHS is formed as a p-type halo region HR adjacent to the source / drain region SDS, and the halo region DHE is adjacent to the source / drain region SDE. Is formed.
  • the same members as those of the semiconductor device according to the first example are denoted by the same reference numerals, and the description thereof will not be repeated.
  • FIG. 53 is a plan view showing a connection structure between a transistor and a first metal wiring in one memory cell.
  • FIG. 54 is a plan view showing a connection structure between the first metal wiring and the second metal wiring.
  • FIG. 55 is a plan view showing a connection structure between the second metal wiring and the third metal wiring.
  • One of the pair of source / drain regions of the access transistor AT1 is connected to the bit line BLA (/ BLA1) via the contact BLAC (/ BLAC), the first metal wiring BLAM1 (/ BLAM1) and the via BLAV1 (/ BLAV1).
  • BLA is electrically connected to the second metal wiring BLAM2 (/ BLAM2).
  • Gate electrode AG1 (AG2) of access transistor AT1 (AT2) is connected to third metal interconnection WLAM3 as word line WLA via contact WLAC, first metal interconnection WLAM1, via WLAV1, second metal interconnection WLAM2, and via WLAV2. Electrically connected.
  • One of the pair of source / drain regions of the access transistor AT3 is connected to the bit line BLB (/ BLBV1) via the contact BLBC (/ BLBC), the first metal wiring BLBM1 (/ BLBM1) and the via BLBV1 (/ BLBV1).
  • BLB is electrically connected to the second metal wiring BLBM2 (/ BLBM2).
  • Gate electrode AG3 (AG4) of access transistor AT3 is connected to third metal interconnection WLBM3 as word line WLB via contact WLBC, first metal interconnection WLBM1, via WLBV1, second metal interconnection WLBM2, and via WLBV2. Electrically connected.
  • the other of the pair of source / drain regions of the access transistor AT1 (AT3) is connected to the load gate electrode LG2 of the load transistor LT2 and the drive gate electrode of the drive transistor DT2 through the contact SNC, the first metal wiring SNM1, and the contact SNLC. Each is electrically connected to DG2.
  • the other of the pair of source / drain regions of the access transistor AT2 (AT4) is connected to the load gate electrode LG1 of the load transistor LT1 and the drive transistor DT1 via the contact / SNC, the first metal wiring / SNM1 and the contact / SNLC. Each is electrically connected to the drive gate electrode DG1.
  • the other of the pair of source / drain regions of the access transistor AT1 (AT3) is electrically connected to one of the pair of source / drain regions of the drive transistor DT1.
  • the other of the pair of source / drain regions of access transistor AT2 (AT4) is electrically connected to one of the pair of source / drain regions of drive transistor DT2.
  • the other of the pair of source / drain regions of access transistor AT1 (AT3) is electrically connected to one of the pair of source / drain regions of load transistor LT1 via contact SNC, first metal interconnection SNM1, and contact SNLC.
  • the other of the pair of source / drain regions of access transistor AT2 (AT4) is connected to one of the pair of source / drain regions of load transistor LT2 via contact / SNC, first metal interconnection / SNM1, and contact / SNLC. Electrically connected.
  • a predetermined photoengraving process is performed to form a resist mask RMH1 serving as an implantation mask for forming the halo region (implantation mask A).
  • the resist mask RMH1 is located on the side of the region S where the source / drain region electrically connected to the storage node is to be formed in each gate structure G to be the access gate electrodes AG1, AG3 (AG2, AG4).
  • a side surface, a region S thereof, a gate structure G to be a drive gate electrode DG1 (DG2), and a region E in which a source / drain region electrically connected to the ground wiring is formed are opened. It is formed so as to be exposed by the pattern.
  • the resist mask RMH1 is located on the side of the region B where the source / drain regions electrically connected to the bit lines are to be formed in the gate structure G to be the access gate electrodes AG1, AG3 (AG2, AG4).
  • the side surface and the region B are covered, and the PMIS region RP is formed.
  • resist mask RMH1 as an implantation mask, for example, boron is implanted by oblique implantation with respect to a direction perpendicular to the main surface of semiconductor substrate SUB from one direction substantially orthogonal to the direction in which gate structure G extends.
  • a p-type impurity region (not shown) is formed in the p-well region.
  • boron is implanted obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB from one opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region (not shown) is formed in the exposed p-well region (halo implantation A).
  • halo implantation A boron is implanted with the same implantation amount and the same implantation energy. Thereafter, the resist mask RMH1 is removed.
  • a predetermined photoengraving process is performed to form a resist mask RMH2 serving as an implantation mask for forming the halo region (implantation mask B).
  • the resist mask RMH2 is positioned on the side where the region S where the source / drain region electrically connected to the storage node is to be formed in the gate structure G to be the drive gate electrode DG1 (DG2).
  • the side surface, the region S, the gate structure G to be the access gate electrodes AG1, AG3 (AG2, AG4), and the region B in which source / drain regions electrically connected to the bit lines are formed It is formed to be exposed by the opening pattern.
  • the resist mask RMH2 is located on the side where the region E where the source / drain region electrically connected to the ground wiring is to be formed in the gate structure G to be the drive gate electrode DG1 (DG2). It is formed so as to cover the located side surface, its region E, and the PMIS region RP.
  • resist mask RMH2 as an implantation mask
  • boron is implanted by oblique implantation with respect to a direction perpendicular to the main surface of semiconductor substrate SUB from one direction substantially orthogonal to the direction in which gate structure G extends.
  • a p-type impurity region (not shown) is formed in the region of the p-well.
  • boron is implanted obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB from one opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region (not shown) is formed in the exposed p-well region (halo implantation B).
  • halo implantation B boron is implanted with the same implantation amount and the same implantation energy.
  • the implantation amount of the halo implantation B is set so that the impurity concentration of the halo region (AHB) is higher than the impurity concentration of the halo region (DHE).
  • the injection conditions may be set so as to be lower than the injection amount of A.
  • a resist mask RME1 that exposes the NMIS region RN and covers the PMIS region RP is formed (implantation mask C).
  • a resist mask RME1 that exposes the NMIS region RN and covers the PMIS region RP is formed (implantation mask C).
  • phosphorus or arsenic is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby exposing the surface of the exposed p-well PW region.
  • An extension region ER (see FIG. 52) is formed over a predetermined depth (extension injection). Thereafter, the resist mask RME1 is removed.
  • the extension implantation can be performed before the halo implantation A and the halo implantation B.
  • a resist mask (not shown) that covers the NMIS region RN and exposes the PMIS region RP is formed (implantation mask D).
  • phosphorus or arsenic is exposed from a direction perpendicular to the main surface of the semiconductor substrate SUB using the resist mask as an implantation mask.
  • a halo region (not shown) is formed in the element formation region FRP.
  • boron is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby forming an extension region (not shown). Thereafter, the resist mask is removed.
  • the halo region AHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and the impurity concentration is relatively high.
  • a low halo region AHB is formed on the bit line BLA (/ BLA) side.
  • access transistor AT3 (AT4) halo region AHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and halo region AHB having a relatively low impurity concentration is on the bit line BLB (/ BLB) side. Is formed.
  • halo region DHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and halo region DHE having a relatively low impurity concentration is formed on the ground wiring VSS side.
  • the gate widths of drive transistors DT1, DT2 are set to be longer than the gate widths of access transistors AT1, AT2 (AT3, AT4).
  • the current flowing through the drive transistors DT1 and DT2 is only the current flowing from the storage node side to the ground wiring side during the read operation.
  • the halo region DHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side
  • the halo region DHE having a relatively low impurity concentration is formed on the ground wiring (VSS) side.
  • the threshold voltages of the transistors DT1 and DT2 can be relatively lowered to enable high-speed operation during reading.
  • the impurity concentration of halo region DHE in drive transistors DT1 and DT2 is set higher than the impurity concentration of halo region AHB of access transistors AT1 and AT2, the read operation is performed.
  • the leakage current from the drive transistors DT1 and DT2 can be suppressed.
  • the halo regions AHB and AHS of the access transistors AT1, AT2, AT3 and AT4 and the halo regions DHE and DHS of the drive transistors DT1 and DT2 are formed of the resist mask RMH1 (implantation mask A) and the resist mask RMH2. (Implantation mask B).
  • the halo regions of the load transistors LT1, LT2 are formed by a resist mask (implantation mask D).
  • this dual port SRAM memory cell includes four drive transistors DT1A, DT1B, DT2A, and DT2B as drive transistors.
  • Drive transistors DT1A and DT1B are obtained by dividing the drive transistor DT1 of the first example or the second example into two drive transistors.
  • the drive transistors DT2A and DT2B are obtained by dividing the drive transistor DT2 of the first example or the second example into two drive transistors.
  • the impurity concentration of the halo region DHS adjacent to the source / drain region connected to the storage node SN in the pair of halo regions HR formed in each of the drive transistors DT1A and DT1B is applied to the ground wiring (VSS). It is set higher than the impurity concentration of the halo region DHE adjacent to the connected source / drain regions.
  • the impurity concentration of the halo region DHS adjacent to the source / drain region connected to the storage node / SN among the pair of halo regions HR formed in each of the drive transistors DT2A and DT2B is set higher. Since the other configuration is the same as that of the equivalent circuit shown in FIG. 42, the same members are denoted by the same reference numerals and the description thereof will not be repeated.
  • FIG. 60 is a plan view showing a layout of transistors constituting memory cells of the SRAM cell array and contacts connected to the transistors.
  • each region surrounded by a dotted line constitutes one SRAM memory cell.
  • element isolation regions FRN and FRP that are electrically isolated from each other are defined by forming an element isolation region ISR by an element isolation insulating film.
  • the element formation region FRN is formed in the NMIS region RN.
  • access transistors AT1, AT3, AT2, AT4 and drive transistors DT1, DT2 are formed in the element formation region FRN.
  • the drive transistor DT1 is obtained by connecting a drive transistor DT1A and a drive transistor DT1B in parallel.
  • the drive transistor DT2 is obtained by connecting a drive transistor DT2A and a drive transistor DT2B in parallel.
  • load transistors LT1 and LT2 are formed in the element formation region FRP as p-channel type MIS transistors.
  • the element formation region FRN in which the access transistor AT1 is formed is connected to the element formation region FRN in which the drive transistor DT1A is formed.
  • the element formation region FRN in which the access transistor AT3 is formed is connected to the element formation region FRN in which the drive transistor DT1B is formed.
  • the element formation region FRN where the drive transistor DT1A and the like are formed and the element formation region FRN where the drive transistor DT1B and the like are formed are electrically isolated from each other by the element isolation region ISR.
  • the element formation region FRN in which the access transistor AT2 is formed is connected to the element formation region FRN in which the drive transistor DT2A is formed.
  • the element formation region FRN where the access transistor AT2 is formed is connected to the element formation region FRN where the drive transistor DT2B is formed.
  • the element formation region FRN where the drive transistor DT2A and the like are formed and the element formation region FRN where the drive transistor DT2B and the like are formed are electrically isolated from each other by the element isolation region ISR.
  • the drive gate electrode DG1 of the drive transistors DT1A and DT1B is formed as a common drive gate electrode of the drive transistor DT1 so as to cross the two element formation regions FRN separated by the element isolation region ISR. Further, the drive gate electrode DG2 of the drive transistors DT2A and DT2B is formed as a common drive gate electrode of the drive transistor DT2 so as to cross the two element formation regions FRN separated by the element isolation region ISR.
  • the load gate electrodes LG1, LG2 of the load transistors LT1, LT2 are formed so as to cross the element formation region FRP.
  • Access gate electrodes AG1, AG2, AG3, AG4, drive gate electrodes DG1, DG2, and load gate electrodes LG1, LG2 are all formed to extend in one direction.
  • 61 is a cross-sectional view taken along a cross-sectional line LXI-LXI passing through drive transistor DT1A and access transistor AT1 of the SRAM memory cell in FIG.
  • a region S where an n-type source / drain region SDS is formed which is electrically connected to a storage node (contact SNC) and a bit line are electrically connected (contact BLAC).
  • An access gate electrode AG1 of the access transistor AT1 is formed on a region sandwiched between the region B where the n-type source / drain region SDB is formed.
  • halo region AHS is formed as p-type halo region HR so as to be adjacent to source / drain region SDS, and halo region AHB is adjacent to source / drain region SDB. Is formed.
  • a drive gate electrode DG1 of the drive transistor DT1A is formed on a region sandwiched by the region S where the source / drain region SDS is formed.
  • a halo region DHS is formed as a p-type halo region HR adjacent to the source / drain region SDS, and the halo region DHE is adjacent to the source / drain region SDE. Is formed.
  • the same members as those of the semiconductor device according to the first example are denoted by the same reference numerals, and the description thereof will not be repeated.
  • FIG. 62 is a plan view showing a connection structure between a transistor and a first metal wiring in one memory cell.
  • FIG. 63 is a plan view showing a connection structure between the first metal wiring and the second metal wiring.
  • FIG. 64 is a plan view showing a connection structure between the second metal wiring and the third metal wiring.
  • One of the pair of source / drain regions of the access transistor AT1 is connected to the bit line BLA (/ BLA1) via the contact BLAC (/ BLAC), the first metal wiring BLAM1 (/ BLAM1) and the via BLAV1 (/ BLAV1).
  • BLA is electrically connected to the second metal wiring BLAM2 (/ BLAM2).
  • Gate electrode AG1 (AG2) of access transistor AT1 (AT2) is connected to third metal interconnection WLAM3 as word line WLA via contact WLAC, first metal interconnection WLAM1, via WLAV1, second metal interconnection WLAM2, and via WLAV2. Electrically connected.
  • One of the pair of source / drain regions of the access transistor AT3 is connected to the bit line BLB (/ BLBV1) via the contact BLBC (/ BLBC), the first metal wiring BLBM1 (/ BLBM1) and the via BLBV1 (/ BLBV1).
  • BLB is electrically connected to the second metal wiring BLBM2 (/ BLBM2).
  • Gate electrode AG3 (AG4) of access transistor AT3 is connected to third metal interconnection WLBM3 as word line WLB via contact WLBC, first metal interconnection WLBM1, via WLBV1, second metal interconnection WLBM2, and via WLBV2. Electrically connected.
  • the other of the pair of source / drain regions of the access transistor AT1 (AT3) is connected to the load gate electrode LG2 of the load transistor LT2 and the drive gate electrode of the drive transistor DT2B via the contact SNC, the first metal wiring SNM1, and the contact SNLC.
  • DG2 and drive gate electrode DG2 of drive gate transistor DT2A are electrically connected to each other.
  • the other of the pair of source / drain regions of the access transistor AT2 (AT4) is connected to the load gate electrode LG1 of the load transistor LT1 and the drive transistor DT1A via the contact / SNC, the first metal wiring / SNM1, and the contact / SNLC.
  • the drive gate electrode DG1 and the drive gate electrode DG1 of the drive transistor DT1B are electrically connected to each other.
  • the other of the pair of source / drain regions of the access transistor AT1 (AT3) is electrically connected to one of the pair of source / drain regions of the drive transistor DT1A (DT1B).
  • the other of the pair of source / drain regions of access transistor AT2 (AT4) is electrically connected to one of the pair of source / drain regions of drive transistor DT2A (DT2B).
  • the other of the pair of source / drain regions of access transistor AT1 (AT3) is electrically connected to one of the pair of source / drain regions of load transistor LT1 via contact SNC, first metal interconnection SNM1, and contact SNLC.
  • the other of the pair of source / drain regions of access transistor AT2 (AT4) is connected to one of the pair of source / drain regions of load transistor LT2 via contact / SNC, first metal interconnection / SNM1, and contact / SNLC. Electrically connected.
  • a predetermined photoengraving process is performed to form a resist mask RMH1 serving as an implantation mask for forming the halo region (implantation mask A).
  • the resist mask RMH1 is located on the side of the region S where the source / drain region electrically connected to the storage node is to be formed in each gate structure G to be the access gate electrodes AG1, AG3 (AG2, AG4).
  • a side surface, a region S thereof, a gate structure G to be a drive gate electrode DG1 (DG2), and a region E in which a source / drain region electrically connected to the ground wiring is formed are opened. It is formed so as to be exposed by the pattern.
  • the resist mask RMH1 is located on the side of the region B where the source / drain regions electrically connected to the bit lines are to be formed in the gate structure G to be the access gate electrodes AG1, AG3 (AG2, AG4).
  • the side surface and the region B are covered, and the PMIS region RP is formed.
  • resist mask RMH1 as an implantation mask, for example, boron is implanted by oblique implantation with respect to a direction perpendicular to the main surface of semiconductor substrate SUB from one direction substantially orthogonal to the direction in which gate structure G extends.
  • a p-type impurity region (not shown) is formed in the p-well region.
  • boron is implanted obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB from one opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region (not shown) is formed in the exposed p-well region (halo implantation A).
  • halo implantation A boron is implanted with the same implantation amount and the same implantation energy. Thereafter, the resist mask RMH1 is removed.
  • a predetermined photoengraving process is performed to form a resist mask RMH2 serving as an implantation mask for forming the halo region (implantation mask B).
  • the resist mask RMH2 is positioned on the side where the region S where the source / drain region electrically connected to the storage node is to be formed in the gate structure G to be the drive gate electrode DG1 (DG2).
  • the side surface, the region S, the gate structure G to be the access gate electrodes AG1, AG3 (AG2, AG4), and the region B in which source / drain regions electrically connected to the bit lines are formed It is formed to be exposed by the opening pattern.
  • the resist mask RMH2 is located on the side where the region E where the source / drain region electrically connected to the ground wiring is to be formed in the gate structure G to be the drive gate electrode DG1 (DG2). It is formed so as to cover the located side surface, its region E, and the PMIS region RP.
  • resist mask RMH2 as an implantation mask
  • boron is implanted by oblique implantation with respect to a direction perpendicular to the main surface of semiconductor substrate SUB from one direction substantially orthogonal to the direction in which gate structure G extends.
  • a p-type impurity region (not shown) is formed in the region of the p-well.
  • boron is implanted obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB from one opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region (not shown) is formed in the exposed p-well region (halo implantation B).
  • halo implantation B boron is implanted with the same implantation amount and the same implantation energy.
  • the implantation amount of the halo implantation B is set so that the impurity concentration of the halo region (AHB) is higher than the impurity concentration of the halo region (DHE).
  • the injection conditions may be set so as to be lower than the injection amount of A.
  • a resist mask RME1 that exposes the NMIS region RN and covers the PMIS region RP is formed (implantation mask C).
  • a resist mask RME1 that exposes the NMIS region RN and covers the PMIS region RP is formed (implantation mask C).
  • phosphorus or arsenic is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby exposing the surface of the exposed p-well PW region.
  • An extension region ER (see FIG. 61) is formed over a predetermined depth (extension injection). Thereafter, the resist mask RME1 is removed.
  • the extension implantation can be performed before the halo implantation A and the halo implantation B.
  • a resist mask (not shown) that covers the NMIS region RN and exposes the PMIS region RP is formed (implantation mask D).
  • phosphorus or arsenic is exposed from a direction perpendicular to the main surface of the semiconductor substrate SUB using the resist mask as an implantation mask.
  • a halo region (not shown) is formed in the element formation region FRP.
  • boron is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby forming an extension region (not shown). Thereafter, the resist mask is removed.
  • a halo region AHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and the impurity concentration Halo region AHB having a relatively low value is formed on the bit lines BLA, / BLA (BLB, / BLB) side.
  • halo region DHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and halo region DHE having a relatively low impurity concentration is formed on the ground wiring VSS side.
  • the element formation region FRN in which the drive transistors DT1 and DT2 are respectively formed is divided into two as compared with the semiconductor device according to the second example.
  • the element formation regions FRN in which the drive transistor DT1 (DT2), the access transistor AT1 (AT2), and the access transistor AT3 (AT4) are formed are connected to each other.
  • the pattern of the element formation region FRN has a bent portion (bent pattern). With such a bent pattern, patterning by photolithography becomes difficult as the semiconductor device is miniaturized, so that the finished pattern (shape) becomes rounded.
  • the element formation region FRN in which the drive transistors DT1 and DT2 are respectively formed is divided into two, such a bent pattern is eliminated. For this reason, there is no rounded portion in the finished pattern, and variations in characteristics due to mask displacement or the like can be suppressed.
  • the gate widths of the drive transistors DT1 and DT2 are shorter than those of the semiconductor device according to the second example because the element formation region FRN in which the drive transistors DT1 and DT2 are formed is divided into two.
  • the gate width of drive transistor DT1 (DT2) is longer than the gate width of each of access transistors AT1, AT3 (AT2, AT4).
  • the current flowing through the drive transistors DT1 and DT2 is only the current flowing from the storage node side to the ground wiring side during the read operation.
  • the halo region DHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side
  • the halo region DHE having a relatively low impurity concentration is formed on the ground wiring (VSS) side.
  • the threshold voltages of the transistors DT1 and DT2 can be relatively lowered to enable high-speed operation during reading.
  • the impurity concentration of halo region DHE in drive transistors DT1 and DT2 is set higher than the impurity concentration of halo region AHB of access transistors AT1 and AT2, the read operation is performed.
  • the leakage current from the drive transistors DT1 and DT2 can be suppressed.
  • the halo regions AHB and AHS of the access transistors AT1, AT2, AT3 and AT4 and the halo regions DHE and DHS of the drive transistors DT1 and DT2 are formed of the resist mask RMH1 (implantation mask A) and the resist mask RMH2. (Implantation mask B).
  • the halo regions of the load transistors LT1, LT2 are formed by a resist mask (implantation mask D).
  • Embodiment 3 Here, another example of a semiconductor device including a dual port SRAM memory cell will be described. First, since the equivalent circuit of the SRAM memory cell is the same as the equivalent circuit shown in FIG. 42, the description thereof will not be repeated.
  • FIG. 68 is a plan view showing a layout of transistors constituting memory cells of the SRAM cell array and contacts connected to the transistors.
  • each region surrounded by a dotted line constitutes one SRAM memory cell.
  • element isolation regions FRN and FRP that are electrically isolated from each other are defined by forming an element isolation region ISR by an element isolation insulating film.
  • the element formation region FRN is formed in the NMIS region RN.
  • access transistors AT1, AT2, AT3, AT4 and drive transistors DT1, DT2 are formed in the element formation region FRN.
  • load transistors LT1 and LT1 are formed in the element formation region FRP as p-channel type MIS transistors.
  • the element formation region FRN where the access transistor AT1 is formed and the element formation region FRN where the access transistor AT2 and the drive transistor DT2 are formed are electrically isolated from each other by the element isolation region ISR.
  • the element formation region FRN where the access transistor AT4 is formed and the element formation region FRN where the access transistor AT3 and the drive transistor DT1 are formed are electrically separated from each other by the element isolation region ISR.
  • the access gate electrodes AG1, AG2 of the access transistors AT1, AT2 are formed as a common electrode so as to cross the element formation region FRN. Further, the access gate electrodes AG3 and AG4 of the access transistors AT3 and AT4 are formed so as to cross the element formation region FRN as a common electrode.
  • Drive gate electrode DG1 of drive transistor DT1 is formed across element formation region FRN where access transistor AT3 is formed.
  • Drive gate electrode DG2 of drive transistor DT2 is formed across element formation region FRN where access transistor AT2 is formed.
  • the load gate electrodes LG1, LG2 of the load transistors LT1, LT2 are formed so as to cross the element formation region FRP.
  • Access gate electrodes AG1, AG2, AG3, AG4, drive gate electrodes DG1, DG2, and load gate electrodes LG1, LG2 are all formed to extend in one direction.
  • FIG. 69 is a cross sectional view taken along a cross sectional line LXIX-LXIX passing through drive transistor DT2 and access transistor AT2 of the SRAM memory cell in FIG.
  • the access gate electrode AG2 of the access transistor AT2 is formed on a region sandwiched between the region B where the n-type source / drain region SDB is formed.
  • a halo region AHS is formed as a p-type halo region HR adjacent to the source / drain region SDS, and the halo region AHB is adjacent to the source / drain region SDB. Is formed.
  • a drive gate electrode DG2 of the drive transistor DT2 is formed on a region sandwiched by the region S where the source / drain region SDS is formed.
  • a halo region DHS is formed as a p-type halo region HR so as to be adjacent to the source / drain region SDS, and the halo region DHE is adjacent to the source / drain region SDE. Is formed. Note that the same members as those of the semiconductor device illustrated in FIG. 5 (Embodiment 1) are denoted by the same reference numerals, and description thereof will not be repeated.
  • FIG. 70 is a plan view showing a connection structure between a transistor and a first metal wiring in one memory cell.
  • FIG. 71 is a plan view showing a connection structure between the first metal wiring and the second metal wiring.
  • FIG. 72 is a plan view showing a connection structure between the second metal wiring and the third metal wiring.
  • One of the pair of source / drain regions of the access transistor AT1 is connected to the bit line BLA (/ BLA1) via the contact BLAC (/ BLAC), the first metal wiring BLAM1 (/ BLAM1) and the via BLAV1 (/ BLAV1).
  • BLA is electrically connected to the second metal wiring BLAM2 (/ BLAM2).
  • Gate electrode AG1 (AG2) of access transistor AT1 (AT2) is connected to third metal interconnection WLAM3 as word line WLA via contact WLAC, first metal interconnection WLAM1, via WLAV1, second metal interconnection WLAM2, and via WLAV2. Electrically connected.
  • One of the pair of source / drain regions of the access transistor AT3 is connected to the bit line BLB (/ BLBV1) via the contact BLBC (/ BLBC), the first metal wiring BLBM1 (/ BLBM1) and the via BLBV1 (/ BLBV1).
  • BLB is electrically connected to the second metal wiring BLBM2 (/ BLBM2).
  • Gate electrode AG3 (AG4) of access transistor AT3 is connected to third metal interconnection WLBM3 as word line WLB via contact WLBC, first metal interconnection WLBM1, via WLBV1, second metal interconnection WLBM2, and via WLBV2. Electrically connected.
  • the other of the pair of source / drain regions of the access transistor AT1 is electrically connected to the load gate electrode LG2 of the load transistor LT2 and the drive gate electrode DG2 of the drive transistor DT2 via the contact SNC.
  • the other of the pair of source / drain regions of access transistor AT3 is connected to load gate electrode LG2 of load transistor LT2 and drive gate electrode DG2 of drive transistor DT2 via contact SNC, first metal interconnection SNM1 and contact LGC. Electrically connected.
  • the other of the pair of source / drain regions of the access transistor AT2 is connected to the load gate electrode LG1 of the load transistor LT1 and the drive gate electrode of the drive transistor DT1 through the contact / SNC, the first metal wiring / SNM1, and the contact / LGC. It is electrically connected to DG1.
  • the other of the pair of source / drain regions of the access transistor AT4 is electrically connected to the load gate electrode LG1 of the load transistor LT1 and the drive gate electrode DG1 of the drive transistor DT1 via the contact / SNC.
  • a predetermined photoengraving process is performed to form a resist mask RMH1 serving as an implantation mask for forming the halo region (implantation mask A).
  • the resist mask RMH1 is located on the side of the region S where the source / drain region electrically connected to the storage node is to be formed in each gate structure G to be the access gate electrodes AG1, AG2 (AG3, AG4).
  • the side surface located, the region S, the gate structure G to be the drive gate electrode DG2 (DG1), and the region E in which the source / drain regions electrically connected to the ground wiring are formed are opened. It is formed so as to be exposed by the pattern.
  • the resist mask RMH1 is located on the side of the region B where the source / drain regions electrically connected to the bit lines are to be formed in the gate structure G to be the access gate electrodes AG1, AG2 (AG3, AG4).
  • the side surface and the region B are covered, and the PMIS region RP is formed.
  • resist mask RMH1 as an implantation mask, for example, boron is implanted by oblique implantation with respect to a direction perpendicular to the main surface of semiconductor substrate SUB from one direction substantially orthogonal to the direction in which gate structure G extends.
  • a p-type impurity region (not shown) is formed in the p-well region.
  • boron is implanted obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB from one opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region (not shown) is formed in the exposed p-well region (halo implantation A).
  • halo implantation A boron is implanted with the same implantation amount and the same implantation energy. Thereafter, the resist mask RMH1 is removed.
  • a predetermined photoengraving process is performed to form a resist mask RMH2 serving as an implantation mask for forming the halo region (implantation mask B).
  • the resist mask RMH2 is positioned on the side where the region S where the source / drain region electrically connected to the storage node is to be formed in the gate structure G to be the drive gate electrode DG1 (DG2).
  • the side surface, the region S, the gate structure G to be the access gate electrodes AG1, AG2 (AG3, AG4), and the region B in which source / drain regions electrically connected to the bit lines are formed It is formed to be exposed by the opening pattern.
  • the resist mask RMH2 is located on the side where the region E where the source / drain region electrically connected to the ground wiring is to be formed in the gate structure G to be the drive gate electrode DG1 (DG2). It is formed so as to cover the located side surface, the region E, and the element formation region FRP.
  • resist mask RMH2 as an implantation mask
  • boron is implanted by oblique implantation with respect to a direction perpendicular to the main surface of semiconductor substrate SUB from one direction substantially orthogonal to the direction in which gate structure G extends.
  • a p-type impurity region (not shown) is formed in the region of the p-well.
  • boron is implanted obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB from one opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region (not shown) is formed in the exposed p-well region (halo implantation B).
  • halo implantation B boron is implanted with the same implantation amount and the same implantation energy.
  • the implantation amount of the halo implantation B is set so that the impurity concentration of the halo region (AHB) is higher than the impurity concentration of the halo region (DHE).
  • the injection conditions may be set so as to be lower than the injection amount of A.
  • a resist mask RME1 that exposes the NMIS region RN and covers the PMIS region RP is formed (implantation mask C).
  • implantation mask C a resist mask that exposes the NMIS region RN and covers the PMIS region RP is formed.
  • phosphorus or arsenic is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby exposing the surface of the exposed p-well PW region.
  • An extension region ER (see FIG. 69) is formed over a predetermined depth (extension injection). Thereafter, the resist mask RME1 is removed.
  • the extension implantation can be performed before the halo implantation A and the halo implantation B.
  • a resist mask (not shown) that covers the NMIS region RN and exposes the PMIS region RP is formed (implantation mask D).
  • phosphorus or arsenic is exposed from a direction perpendicular to the main surface of the semiconductor substrate SUB using the resist mask as an implantation mask.
  • a halo region (not shown) is formed in the element formation region FRP.
  • boron is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby forming an extension region (not shown). Thereafter, the resist mask is removed.
  • halo regions AHS and AHB are formed in the access transistors AT1, AT2, AT3 and AT3, respectively.
  • access transistor AT1 AT2
  • halo region AHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side
  • halo region AHB having a relatively low impurity concentration is on the bit line BLA (/ BLA) side. Is formed.
  • access transistor AT3 AT4
  • halo region AHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side
  • halo region AHB having a relatively low impurity concentration is on the bit line BLB (/ BLB) side. Is formed.
  • halo regions DHS and DHB are formed in the drive transistors DT1 and DT2, respectively.
  • a halo region DHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and a halo region DHE having a relatively low impurity concentration is formed on the ground wiring VSS side.
  • the current flowing through the drive transistors DT1 and DT2 is only the current flowing from the storage node side to the ground wiring side during the read operation.
  • the halo region DHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side
  • the halo region DHE having a relatively low impurity concentration is formed on the ground wiring (VSS) side.
  • the threshold voltages of the transistors DT1 and DT2 can be relatively lowered to enable high-speed operation during reading.
  • the impurity concentration of halo region DHE in drive transistors DT1 and DT2 is set higher than the impurity concentration of halo region AHB of access transistors AT1 and AT2, the read operation is performed.
  • the leakage current from the drive transistors DT1 and DT2 can be suppressed.
  • the halo regions AHB and AHS of the access transistors AT1, AT2, AT3 and AT4 and the halo regions DHE and DHS of the drive transistors DT1 and DT2 are formed of the resist mask RMH1 (implantation mask A) and the resist mask RMH2. (Implantation mask B).
  • the halo regions of the load transistors LT1, LT2 are formed by a resist mask (implantation mask D).
  • Embodiment 4 a semiconductor device including four access transistors, four drive transistors, and two load transistors will be described as a semiconductor device including dual-port SRAM memory cells.
  • the equivalent circuit of the SRAM memory cell is basically the same as the equivalent circuit shown in FIG. 59 (third example of the second embodiment).
  • the drive transistor DT1 and the drive transistor DT3 are connected in parallel between the storage node SN and the ground wiring (VSS).
  • Drive transistor DT2 and drive transistor DT4 are connected in parallel between storage node / SN and ground wiring (VSS).
  • FIG. 77 is a plan view showing a layout of transistors constituting memory cells of the SRAM cell array and contacts connected to the transistors. In this plan view, each region surrounded by a dotted line constitutes one SRAM memory cell.
  • element isolation regions FRN and FRP that are electrically isolated from each other are defined by forming an element isolation region ISR by an element isolation insulating film.
  • the element formation region FRN is formed in the NMIS region RN.
  • the element formation region FRP is formed in the PMIS region RP.
  • access transistors AT1, AT3, AT2, AT4 and drive transistors DT1, DT2, DT3, DT4 are formed in the element formation region FRN.
  • load transistors LT1 and LT2 are formed in the element formation region FRP as p-channel type MIS transistors.
  • the element formation region FRN in which the access transistor AT1 is formed is connected to the element formation region FRN in which the access transistor AT3 is formed.
  • the element formation region FRN in which the drive transistor DT1 is formed is connected to the element formation region FRN in which the drive transistor DT3 is formed.
  • the element formation region FRN in which the access transistors AT1 and AT3 are formed and the element formation region FRN in which the drive transistors DT1 and DT3 are formed are electrically isolated from each other by the element isolation region ISR.
  • the element formation region FRN where the access transistor AT2 is formed is connected to the element formation region FRN where the access transistor AT4 is formed.
  • the element formation region FRN in which the drive transistor DT2 is formed is connected to the element formation region FRN in which the drive transistor DT4 is formed.
  • the element formation region FRN where the access transistors AT2 and AT4 are formed and the element formation region FRN where the drive transistors DT2 and DT4 are formed are electrically isolated from each other by the element isolation region ISR.
  • the drive gate electrodes DG1 and DG3 of the drive transistors DT1 and DT3 are formed so as to cross the element formation region FRN by bending a common gate electrode (gate structure).
  • the drive gate electrodes DG2 and DG4 of the drive transistors DT2 and DT4 are formed so as to cross the element formation region FRN by bending a common gate electrode (gate structure).
  • FIG. 78 is a cross sectional view taken along a cross sectional line LXXVIII-LXXVIII passing through access transistor AT3 and access transistor AT3 of the SRAM memory cell in FIG. 77.
  • FIG. 79 is a cross sectional view taken along a cross sectional line LXXIX-LXXIX passing through drive transistor DT1 and drive transistor DT3 in FIG.
  • the region S where the n-type source / drain region SDS is formed which is electrically connected to the storage node (contact SNC) and the bit line are electrically connected (contact BLAC).
  • An access gate electrode AG1 of the access transistor AT1 is formed on a region sandwiched between the region B where the n-type source / drain region SDB is formed.
  • the halo region AHS is formed adjacent to the source / drain region SDS as the p-type halo region HR, and the halo region AHB is formed adjacent to the source / drain region SDB. Has been.
  • a region S where an n-type source / drain region SDS is formed which is electrically connected to the storage node (contact SNC), and an n-type which is electrically connected to the bit line (contact BLBC).
  • An access gate electrode AG3 of the access transistor AT3 is formed on a region sandwiched by the region B where the source / drain region SDB is formed.
  • the halo region AHS is formed adjacent to the source / drain region SDS
  • the halo region AHB is formed adjacent to the source / drain region SDB.
  • the region S where the n-type source / drain region SDS is formed which is electrically connected to the storage node (contact SNC) and the ground wiring is electrically connected (contact VSSSC).
  • a drive gate electrode DG1 of the drive transistor DT1 is formed on a region sandwiched by the region E where the n-type source / drain region SDE is formed.
  • a halo region DHS is formed as a p-type halo region HR so as to be adjacent to the source / drain region SDS, and a halo region DHE is formed so as to be adjacent to the source / drain region SDE.
  • the region S where the n-type source / drain region SDS is formed which is electrically connected to the storage node (contact SNC), and the n-type which is electrically connected to the ground wiring (contact VSSC).
  • a drive gate electrode DG3 of the drive transistor DT3 is formed on a region sandwiched by the region E where the source / drain region SDE is formed.
  • the halo region DHS is formed adjacent to the source / drain region SDS
  • the halo region DHE is formed adjacent to the source / drain region SDE.
  • a multilayer wiring structure (not shown) corresponding to the equivalent circuit of the SRAM memory cell shown in FIG. 76 is formed by a multilayer metal wiring or the like above the first metal wiring shown in FIGS. 78 and 79. ing.
  • a predetermined photoengraving process is performed to form a resist mask RMH1 serving as an implantation mask for forming the halo region (implantation mask A).
  • the resist mask RMH1 is located on the side of the region S where the source / drain region electrically connected to the storage node is to be formed in each gate structure G to be the access gate electrodes AG1, AG3 (AG2, AG4).
  • the exposed side surface and the region S are exposed, and the gate structure G to be the drive gate electrodes DG1, DG3 (DG2, DG4) and the source / drain region electrically connected to the ground wiring are formed.
  • the region E to be formed and the region S in which source / drain regions electrically connected to the storage node are to be formed are exposed.
  • the resist mask RMH1 is located on the side of the region B where the source / drain regions electrically connected to the bit lines are to be formed in the gate structure G to be the access gate electrodes AG1, AG3 (AG2, AG4).
  • the side surface and the region B are covered, and the PMIS region RP is formed.
  • resist mask RMH1 as an implantation mask, for example, boron is implanted by oblique implantation with respect to a direction perpendicular to the main surface of semiconductor substrate SUB from one direction substantially orthogonal to the direction in which gate structure G extends.
  • a p-type impurity region (not shown) is formed in the p-well region.
  • boron is implanted obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB from one opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region (not shown) is formed in the exposed p-well region (halo implantation A).
  • halo implantation A boron is implanted with the same implantation amount and the same implantation energy. Thereafter, the resist mask RMH1 is removed.
  • a predetermined photoengraving process is performed to form a resist mask RMH2 serving as an implantation mask for forming the halo region (implantation mask B).
  • the resist mask RMH2 includes a gate structure G to be the access gate electrodes AG1, AG3 (AG2, AG4), a region S in which a source / drain region electrically connected to the storage node is to be formed, and a bit The region B in which source / drain regions electrically connected to the line are to be formed is exposed, and the storage node in the gate structure G to be the drive gate electrodes DG1, DG3 (DG2, DG4) is electrically connected The side surface located on the side where the region S where the source / drain region to be connected is to be formed and the region S are exposed.
  • the resist mask RMH2 is provided with a region E in which a source / drain region electrically connected to the ground wiring is formed in the gate structure G to be the drive gate electrodes DG1, DG3 (DG2, DG4). It is formed so as to cover the side surface located on the side where it is present, its region E, and the element formation region FRP.
  • resist mask RMH2 as an implantation mask
  • boron is implanted by oblique implantation with respect to a direction perpendicular to the main surface of semiconductor substrate SUB from one direction substantially orthogonal to the direction in which gate structure G extends.
  • a p-type impurity region (not shown) is formed in the region of the p-well.
  • boron is implanted obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB from one opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region (not shown) is formed in the exposed p-well region (halo implantation B).
  • halo implantation B boron is implanted with the same implantation amount and the same implantation energy.
  • the implantation amount of the halo implantation B is set so that the impurity concentration of the halo region (AHB) is higher than the impurity concentration of the halo region (DHE).
  • the injection conditions may be set so as to be lower than the injection amount of A.
  • a resist mask RME1 that exposes the NMIS region RN and covers the PMIS region RP is formed (implantation mask C).
  • a resist mask RME1 that exposes the NMIS region RN and covers the PMIS region RP is formed (implantation mask C).
  • phosphorus or arsenic is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby exposing the surface of the exposed p-well PW region.
  • An extension region ER (see FIGS. 78 and 79) is formed over a predetermined depth (extension injection). Thereafter, the resist mask RME1 is removed.
  • the extension implantation can be performed before the halo implantation A and the halo implantation B.
  • a resist mask (not shown) that covers the NMIS region RN and exposes the PMIS region RP is formed (implantation mask D).
  • phosphorus or arsenic is exposed from a direction perpendicular to the main surface of the semiconductor substrate SUB using the resist mask as an implantation mask.
  • a halo region (not shown) is formed in the element formation region FRP.
  • boron is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby forming an extension region (not shown). Thereafter, the resist mask is removed.
  • the halo region AHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and the impurity concentration is relatively high.
  • a low halo region AHB is formed on the bit line BLA (/ BLA) side.
  • access transistor AT3 (AT4) halo region AHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and halo region AHB having a relatively low impurity concentration is on the bit line BLB (/ BLB) side. Is formed.
  • a halo region DHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and a halo region DHE having a relatively low impurity concentration is connected to the ground wiring. It is formed on the VSS side. Further, the drive transistor DT1 and the drive transistor DT3 are connected in parallel, and the drive transistor DT2 and the drive transistor DT4 are connected in parallel.
  • the current flowing through the drive transistors DT1, DT3 (DT2, DT4) is only the current flowing from the storage node side to the ground wiring side during the read operation.
  • the halo region DHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side
  • the halo region DHE having a relatively low impurity concentration is formed on the ground wiring (VSS) side.
  • the threshold voltages of the transistors DT1, DT2 (DT2, DT4) can be made relatively low to enable high-speed operation during reading.
  • the impurity concentration of halo region DHE in drive transistors DT1, DT3, DT2, and DT4 is set higher than the impurity concentration of halo region AHB of access transistors AT1 (AT3) and AT2 (AT4).
  • AT3 access transistors AT1
  • AT4 AT2
  • the halo regions AHB and AHS of the access transistors AT1, AT2, AT3, and AT4 and the halo regions DHE and DHS of the drive transistors DT1, DT3, DT2, and DT4 are resist masks RMH1 (implantation mask A). And a resist mask RMH2 (implantation mask B).
  • the halo regions of the load transistors LT1, LT2 are formed by a resist mask (implantation mask D).
  • Embodiment 5 another example of a semiconductor device including four access transistors, four drive transistors, and two load transistors will be described as a semiconductor device including dual-port SRAM memory cells.
  • FIG. 83 is a plan view showing a layout of transistors constituting memory cells of the SRAM cell array and contacts connected to the transistors. In this plan view, each region surrounded by a dotted line constitutes one SRAM memory cell.
  • element isolation regions FRN and FRP that are electrically isolated from each other are defined by forming an element isolation region ISR by an element isolation insulating film.
  • the element formation region FRN is formed in the NMIS region RN.
  • the element formation region FRP is formed in the PMIS region RP.
  • access transistors AT1, AT2, AT3, AT4 and drive transistors DT1, DT2, DT3, DT4 are formed in the element formation region FRN.
  • load transistors LT1 and LT2 are formed in the element formation region FRP as p-channel type MIS transistors.
  • An element formation region FRN in which the access transistor AT1 is formed, an element formation region FRN in which the drive transistor DT1 is formed, an element formation region FRN in which the drive transistor DT2 is formed, and an access transistor AT2 are formed. It is connected to the element formation region FRN.
  • an element formation region FRN in which the access transistor AT3 is formed, an element formation region FRN in which the drive transistor DT3 is formed, an element formation region FRN in which the drive transistor DT4 is formed, and an access transistor AT4 are formed. It is connected to the element forming region FRN.
  • the element formation region FRN in which the access transistors AT1 and AT2 and the drive transistors DT1 and DT2 are formed and the element formation region FRN in which the access transistors AT3 and AT4 and the drive transistors DT3 and DT4 are formed are separated by the element isolation region ISR. They are electrically separated from each other.
  • the drive gate electrodes DG1, DG3 of the drive transistors DT1, DT3 and the load gate electrode LG1 of the load transistor LT1 are formed by a common gate electrode (gate structure). Drive transistor DT1 and drive transistor DT3 are connected in parallel. The load gate electrode LG1 is located between the drive gate electrode DG1 and the drive gate electrode DG3.
  • the drive gate electrodes DG2 and DG4 of the drive transistors DT2 and DT4 and the load gate electrode LG2 of the load transistor LT2 are formed by a common gate electrode (gate structure).
  • Drive transistor DT2 and drive transistor DT4 are connected in parallel.
  • the load gate electrode LG2 is located between the drive gate electrode DG2 and the drive gate electrode DG4.
  • a multilayer wiring structure (not shown) for connecting access transistors AT1 to AT4, drive transistors DT1 to DT3, and load transistors LT1 and LT2 so as to correspond to an equivalent circuit is formed on the surface of the semiconductor substrate. Yes.
  • a predetermined photoengraving process is performed to form a resist mask RMH1 serving as an implantation mask for forming the halo region (implantation mask A).
  • the resist mask RMH1 is located on the side of the region S where the source / drain region electrically connected to the storage node is to be formed in each gate structure G to be the access gate electrodes AG1, AG2 (AG3, AG4).
  • the exposed side surface and the region S are exposed, and the gate structure G to be the drive gate electrodes DG1, DG2 (DG3, DG4) and the source / drain regions electrically connected to the ground wiring are formed.
  • the region E to be formed is formed so as to be exposed by the opening pattern.
  • the resist mask RMH1 is located on the side of the region B where the source / drain regions electrically connected to the bit lines are to be formed in the gate structure G to be the access gate electrodes AG1, AG2 (AG3, AG4).
  • the side surface and the region B are covered, and the PMIS region RP is formed.
  • resist mask RMH1 as an implantation mask, for example, boron is implanted by oblique implantation with respect to a direction perpendicular to the main surface of semiconductor substrate SUB from one direction substantially orthogonal to the direction in which gate structure G extends.
  • a p-type impurity region (not shown) is formed in the p-well region.
  • boron is implanted obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB from one opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region (not shown) is formed in the exposed p-well region (halo implantation A).
  • halo implantation A boron is implanted with the same implantation amount and the same implantation energy. Thereafter, the resist mask RMH1 is removed.
  • a predetermined photoengraving process is performed to form a resist mask RMH2 serving as an implantation mask for forming the halo region (implantation mask B).
  • the resist mask RMH2 includes a gate structure G to be the access gate electrodes AG1, AG2 (AG3, AG4), a region S in which a source / drain region electrically connected to the storage node is to be formed, and a bit The region B where the source / drain regions electrically connected to the line are to be formed is exposed, and the storage node in the gate structure G that becomes the drive gate electrodes DG1, DG2 (DG3, DG4) is electrically connected The side surface located on the side where the region S where the source / drain region to be connected is to be formed is exposed by the opening pattern.
  • the resist mask RMH2 is provided with a region E in which a source / drain region electrically connected to the ground wiring is formed in the gate structure G to be the drive gate electrodes DG1, DG2 (DG3, DG4). It is formed so as to cover the side surface located on the side where it is present, its region E, and the element formation region FRP.
  • resist mask RMH2 as an implantation mask
  • boron is implanted by oblique implantation with respect to a direction perpendicular to the main surface of semiconductor substrate SUB from one direction substantially orthogonal to the direction in which gate structure G extends.
  • a p-type impurity region (not shown) is formed in the region of the p-well.
  • boron is implanted obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB from one opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region (not shown) is formed in the exposed p-well region (halo implantation B).
  • halo implantation B boron is implanted with the same implantation amount and the same implantation energy.
  • the implantation amount of the halo implantation B is set so that the impurity concentration of the halo region (AHB) is higher than the impurity concentration of the halo region (DHE).
  • the injection conditions may be set so as to be lower than the injection amount of A.
  • a resist mask RME1 that exposes the NMIS region RN and covers the PMIS region RP is formed (implantation mask C).
  • implantation mask C a resist mask that exposes the NMIS region RN and covers the PMIS region RP is formed.
  • phosphorus or arsenic is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby exposing the surface of the exposed p-well PW region.
  • An extension region (not shown) is formed over a predetermined depth (extension implantation). Thereafter, the resist mask RME1 is removed.
  • the extension implantation can be performed before the halo implantation A and the halo implantation B.
  • a resist mask (not shown) that covers the NMIS region RN and exposes the PMIS region RP is formed (implantation mask D).
  • phosphorus or arsenic is exposed from a direction perpendicular to the main surface of the semiconductor substrate SUB using the resist mask as an implantation mask.
  • a halo region (not shown) is formed in the element formation region FRP.
  • boron is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby forming an extension region (not shown). Thereafter, the resist mask is removed.
  • a first metal wiring (not shown) is formed through steps similar to those shown in FIGS. 28 to 31 (Embodiment 1). Thereafter, a multilayer wiring structure is formed on the first metal wiring, and the main part of the SRAM memory cell is formed.
  • the halo region AHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and the impurity concentration is relatively high.
  • a low halo region AHB is formed on the bit line BLA (/ BLA) side.
  • access transistor AT3 (AT4) halo region AHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and halo region AHB having a relatively low impurity concentration is on the bit line BLB (/ BLB) side. Is formed.
  • a halo region DHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and a halo region DHE having a relatively low impurity concentration is connected to the ground wiring. It is formed on the VSS side. Further, the drive transistor DT1 and the drive transistor DT3 are connected in parallel, and the drive transistor DT2 and the drive transistor DT4 are connected in parallel.
  • both the read margin and the write margin can be increased in the same manner as the SRAM memory cell of the semiconductor device described in the fourth embodiment. Further, high-speed operation at the time of reading can be enabled. Furthermore, one photolithography mask for forming the halo region can be reduced as compared with the semiconductor device according to the comparative example.
  • Embodiment 6 a semiconductor device having a 3-port SRAM memory cell having a read-only port will be described.
  • a bit line RBLA and a bit line RBLB are provided as read bit lines.
  • a read word line RWLA and a read word line RWLB are provided as read word lines.
  • the gate of the access transistor AT3 is connected to the read word line RWLA, and one of the pair of source / drain regions of the access transistor AT3 is connected to the bit line RBLA.
  • Access transistor AT4 has its gate connected to read word line RWLB, and one of the pair of source / drain regions of access transistor AT4 is connected to bit line RBLB.
  • the gate of the drive transistor DT3 is connected to the gate of the drive transistor DT1 and the gate of the load transistor LT1.
  • One of the pair of source / drain regions of drive transistor DT3 is connected to the other of the pair of source / drain regions of access transistor AT3.
  • the other of the pair of source / drain regions of the drive transistor DT3 is connected to the ground wiring (VSS).
  • the gate of the drive transistor DT4 is connected to the gate of the drive transistor DT2 and the gate of the load transistor LT2.
  • One of the pair of source / drain regions of drive transistor DT4 is connected to the other of the pair of source / drain regions of access transistor AT4.
  • the other of the pair of source / drain regions of the drive transistor DT4 is connected to the ground wiring (VSS).
  • a pair of halo regions AHT and AHT of access transistors AT3 and AT4 and a pair of halo regions DHT and DHT of drive transistors DT3 and DT4 are paired with a pair of halo regions HR (halo regions DHS and DHE of drive transistors DT1 and DT2). ),
  • the impurity concentration of the halo region DHE is the same. Since the configuration other than this is the same as that of the equivalent circuit shown in FIG. 3, the same members are denoted by the same reference numerals, and the description thereof will not be repeated.
  • data is read by detecting a change in potential of the read bit lines RBLA and RBLB when the access transistors AT3 and AT4 are turned on.
  • one of the drive transistors DT3, DT4 is turned on and the other is turned off.
  • the access transistors AT3 and AT4 are turned on in this state, the charge precharged to the read bit line RBLA (RBLB) is transferred to the access transistor AT3 (AT4) and the drive at the port where the drive transistor DT3 (DT4) is on.
  • the potential of the read bit line RBLA (RBLB) is lowered by being pulled out to the ground wiring through the transistor DT3 (DT4).
  • FIG. 88 is a plan view showing a layout of transistors constituting memory cells of the SRAM cell array and contacts connected to the transistors. In this plan view, each region surrounded by a dotted line constitutes one SRAM memory cell.
  • element isolation regions FRN and FRP that are electrically isolated from each other are defined by forming an element isolation region ISR by an element isolation insulating film.
  • the element formation region FRN is formed in the NMIS region RN.
  • the element formation region FRP is formed in the PMIS region RP.
  • access transistors AT1, AT2, AT3, AT4 and drive transistors DT1, DT2, DT3, DT4 are formed in the element formation region FRN.
  • load transistors LT1 and LT2 are formed in the element formation region FRP as p-channel type MIS transistors.
  • the element formation region FRN in which the access transistor AT1 is formed is connected to the element formation region FRN in which the drive transistor DT1 is formed.
  • the element formation region FRN in which the access transistor AT3 is formed is connected to the element formation region FRN in which the drive transistor DT3 is formed.
  • the element formation region FRN where the access transistor AT1 and the drive transistor DT1 are formed and the element formation region FRN where the access transistor AT3 and the drive transistor DT3 are formed are electrically separated by the element isolation region ISR. Yes.
  • the element formation region FRN in which the access transistor AT2 is formed is connected to the element formation region FRN in which the drive transistor DT2 is formed.
  • the element formation region FRN in which the access transistor AT4 is formed is connected to the element formation region FRN in which the drive transistor DT4 is formed.
  • the element formation region FRN where the access transistor AT2 and the drive transistor DT2 are formed and the element formation region FRN where the access transistor AT4 and the drive transistor DT4 are formed are electrically separated by the element isolation region ISR. Yes.
  • FIG. 89 is a cross sectional view taken along a cross sectional line LXXXIX-LXXXIX passing through the access transistor AT1 and the drive transistor DT1 of the SRAM memory cell in FIG. 88.
  • the cross-sectional structure shown in FIG. 89 is the same as the cross-sectional structure shown in FIG. For this reason, suppose that the same code
  • a resist mask RMH1 serving as an implantation mask for forming the halo region is formed (implantation mask A).
  • the resist mask RMH1 is a side surface located on the side of the region S where the source / drain region electrically connected to the storage node is to be formed in each gate structure G to be the access gate electrodes AG1, AG2.
  • the region S, and the gate structure G to be the drive gate electrodes DG1 and DG2 and the region E in which source / drain regions electrically connected to the ground wiring are to be formed are exposed. Formed as follows.
  • the resist mask RMH1 includes a gate structure G to be the access gate electrodes AG3 and AG4, a region RB in which a source / drain region electrically connected to the read bit line is formed, and a drive gate electrode.
  • the resist mask RMH1 has a side surface located on the side of the region B where the source / drain region electrically connected to the bit line is to be formed in the gate structure G to be the access gate electrodes AG1, AG2.
  • the region B is formed so as to cover the PMIS region RP.
  • resist mask RMH1 as an implantation mask, for example, boron is implanted by oblique implantation with respect to a direction perpendicular to the main surface of semiconductor substrate SUB from one direction substantially orthogonal to the direction in which gate structure G extends.
  • a p-type impurity region (not shown) is formed in the p-well region.
  • boron is implanted obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB from one opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region (not shown) is formed in the exposed p-well region (halo implantation A).
  • halo implantation A boron is implanted with the same implantation amount and the same implantation energy. Thereafter, the resist mask RMH1 is removed.
  • a predetermined photoengraving process is performed to form a resist mask RMH2 serving as an implantation mask for forming the halo region (implantation mask B).
  • the resist mask RMH2 is electrically connected to the gate structure G to be the access gate electrodes AG1 and AG2, the region S in which source / drain regions electrically connected to the storage node are formed, and the bit line.
  • the region B where the source / drain region to be connected is to be formed is exposed, and the source / drain region electrically connected to the storage node is formed in the gate structure G to be the drive gate electrodes DG1 and DG2. It is formed so as to expose the side surface located on the side where the region S to be formed is disposed.
  • the resist mask RMH2 is positioned on the side where the region E where the source / drain region to be electrically connected to the ground wiring is to be formed in the gate structure G to be the drive gate electrodes DG1 and DG2. It is formed so as to cover the side surface to be formed, its region E, and the element formation region FRP.
  • the resist mask RMH2 includes a gate structure G to be the access gate electrodes AG3, AG4, a region RB in which a source / drain region electrically connected to the read bit line is formed, and a drive gate electrode.
  • resist mask RMH2 as an implantation mask
  • boron is implanted by oblique implantation with respect to a direction perpendicular to the main surface of semiconductor substrate SUB from one direction substantially orthogonal to the direction in which gate structure G extends.
  • a p-type impurity region (not shown) is formed in the region of the p-well.
  • boron is implanted obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB from one opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region (not shown) is formed in the exposed p-well region (halo implantation B).
  • halo implantation B boron is implanted with the same implantation amount and the same implantation energy.
  • the implantation amount of the halo implantation B is set so that the impurity concentration of the halo region (AHB) is higher than the impurity concentration of the halo region (DHE).
  • the injection conditions may be set so as to be lower than the injection amount of A.
  • the halo region AHT formed in the access transistors AT3 and AT4 and the halo region DHT formed in the drive transistors DG3 and DG4 are formed by the halo implantation A, and the impurity concentrations of the halo regions AHT and DHT are set to The impurity concentration is the same as the impurity concentration of the halo region DHE of the transistors DG1 and DG2.
  • a resist mask RME1 that exposes the NMIS region RN and covers the PMIS region RP is formed (implantation mask C).
  • a resist mask RME1 that exposes the NMIS region RN and covers the PMIS region RP is formed (implantation mask C).
  • phosphorus or arsenic is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby exposing the surface of the exposed p-well PW region.
  • An extension region ER (see FIG. 89) is formed over a predetermined depth (extension injection). Thereafter, the resist mask RME1 is removed.
  • the extension implantation can be performed before the halo implantation A and the halo implantation B.
  • a resist mask (not shown) that covers the NMIS region RN and exposes the PMIS region RP is formed (implantation mask D).
  • phosphorus or arsenic is exposed from a direction perpendicular to the main surface of the semiconductor substrate SUB using the resist mask as an implantation mask.
  • a halo region (not shown) is formed in the element formation region FRP.
  • boron is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby forming an extension region (not shown). Thereafter, the resist mask is removed.
  • a read-only port is provided.
  • access transistors AT3 and AT4 and drive transistors DT3 and DT4 constituting a read-only port a pair of halo regions AHT and AHT of access transistors AT3 and AT4 and a pair of halo regions DHT and DHT of drive transistors DT3 and DT4 are Of the pair of halo regions HR (halo regions DHS, DHE) of the drive transistors DT1, DT2, the impurity concentration is the same as the impurity concentration of the halo region DHE.
  • the impurity concentration of the halo region DHE of the drive transistors DT1, DT2 is set lower than the impurity concentration of the halo region AHB of the access transistors AT1, AT2. For this reason, the impurity concentration of the halo regions AHT and DHT in the read port is lower than the impurity concentration of the halo region AHB. Thereby, in the read operation by the read-only port, the read speed can be improved.
  • the read word line RWLA and the read word line RWLB are shared, and the read bit line RBLA and the read bit line RBLB are used for differential reading, they should be used as a 2-port SRAM. Is also possible.
  • the halo region AHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and the halo region AHB having a relatively low impurity concentration is formed on the bit line. It is formed on the BL (/ BL) side.
  • halo region DHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and halo region DHE having a relatively low impurity concentration is formed on the ground wiring VSS side. ing.
  • both the read margin and the write margin can be increased as in the SRAM memory cell of the semiconductor device described in the first embodiment. Further, high-speed operation at the time of reading can be enabled. Furthermore, one photolithography mask for forming the halo region can be reduced as compared with the semiconductor device according to the comparative example.
  • Embodiment 7 Here, another example of a semiconductor device having a 3-port SRAM memory cell having a read-only port will be described.
  • a pair of halo regions AHT and AHT of access transistors AT3 and AT4 and a pair of halo regions DHT and DHT of drive transistors DT3 and DT4 are a pair of halo regions of access transistors AT1 and AT2.
  • HR halo regions AHS, AHB
  • the layout of the transistors constituting the memory cells of the SRAM cell array and the contacts connected to the transistors is the same as the layout shown in FIG.
  • the cross-sectional structure along the cross-sectional line corresponding to the cross-sectional line shown in FIG. 88 is the same as the cross-sectional structure shown in FIG. Therefore, the description of the layout and the cross-sectional structure will not be repeated.
  • a predetermined photoengraving process is performed to form a resist mask RMH1 serving as an implantation mask for forming the halo region (implantation mask A).
  • the resist mask RMH1 has a side surface located on the side of the region S where a source / drain region electrically connected to the storage node is to be formed in each gate structure G to be the access gate electrodes AG1, AG2.
  • the region S is exposed, and the gate structure G to be the drive gate electrodes DG1 and DG2 and the region E in which the source / drain regions electrically connected to the ground wiring are formed are exposed. It is formed.
  • the resist mask RMH1 has a side surface located on the side of the region B where the source / drain region electrically connected to the bit line is to be formed in the gate structure G to be the access gate electrodes AG1, AG2. It is formed so as to cover the region B.
  • the resist mask RMH1 includes a gate structure G to be the access gate electrodes AG3 and AG4, a region RB in which a source / drain region electrically connected to the read bit line is formed, and a drive gate electrode.
  • resist mask RMH1 as an implantation mask, for example, boron is implanted by oblique implantation with respect to a direction perpendicular to the main surface of semiconductor substrate SUB from one direction substantially orthogonal to the direction in which gate structure G extends.
  • a p-type impurity region (not shown) is formed in the p-well region.
  • boron is implanted obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB from one opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region (not shown) is formed in the exposed p-well region (halo implantation A).
  • halo implantation A boron is implanted with the same implantation amount and the same implantation energy. Thereafter, the resist mask RMH1 is removed.
  • a predetermined photoengraving process is performed to form a resist mask RMH2 serving as an implantation mask for forming the halo region (implantation mask B).
  • the resist mask RMH2 is electrically connected to the gate structure G to be the access gate electrodes AG1 and AG2, the region S in which source / drain regions electrically connected to the storage node are formed, and the bit line.
  • the region B where the source / drain region to be connected is to be formed is exposed, and the source / drain region electrically connected to the storage node is formed in the gate structure G to be the drive gate electrodes DG1 and DG2. It is formed so as to expose the side surface located on the side where the region S to be formed is disposed.
  • the resist mask RMH2 includes a gate structure G to be the access gate electrodes AG3, AG4, a region RB in which a source / drain region electrically connected to the read bit line is formed, and a drive gate electrode.
  • the resist mask RMH2 is positioned on the side where the region E where the source / drain region to be electrically connected to the ground wiring is to be formed in the gate structure G to be the drive gate electrodes DG1 and DG2. It is formed so as to cover the side surface to be formed, its region E, and the element formation region FRP.
  • resist mask RMH2 as an implantation mask
  • boron is implanted by oblique implantation with respect to a direction perpendicular to the main surface of semiconductor substrate SUB from one direction substantially orthogonal to the direction in which gate structure G extends.
  • a p-type impurity region (not shown) is formed in the region of the p-well.
  • boron is implanted obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB from one opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region (not shown) is formed in the exposed p-well region (halo implantation B).
  • halo implantation B boron is implanted with the same implantation amount and the same implantation energy.
  • the implantation amount of the halo implantation B is set so that the impurity concentration of the halo region (AHB) is higher than the impurity concentration of the halo region (DHE).
  • the injection conditions may be set so as to be lower than the injection amount of A.
  • the halo region AHT formed in the access transistors AT3 and AT4 and the halo region DHT formed in the drive transistors DG3 and DG4 are formed by the halo implantation B, and the impurity concentration of the halo regions AHT and DHT depends on the access concentration.
  • the impurity concentration is the same as that of the halo region AHB of the transistors AG1 and AG2.
  • a resist mask RME1 that exposes the NMIS region RN and covers the PMIS region RP is formed (implantation mask C).
  • implantation mask C a resist mask that exposes the NMIS region RN and covers the PMIS region RP is formed.
  • phosphorus or arsenic is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby exposing the surface of the exposed p-well PW region.
  • An extension region ER (not shown) is formed over a predetermined depth (extension injection). Thereafter, the resist mask RME1 is removed.
  • the extension implantation can be performed before the halo implantation A and the halo implantation B.
  • a resist mask (not shown) that covers the NMIS region RN and exposes the PMIS region RP is formed (implantation mask D).
  • phosphorus or arsenic is exposed from a direction perpendicular to the main surface of the semiconductor substrate SUB using the resist mask as an implantation mask.
  • a halo region (not shown) is formed in the element formation region FRP.
  • boron is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby forming an extension region (not shown). Thereafter, the resist mask is removed.
  • copper wiring CW1 is formed as the first metal wiring (see FIG. 89). Thereafter, a multilayer wiring structure is formed on the copper wiring CW1, and the main part of the SRAM memory cell is formed.
  • a read-only port is provided.
  • access transistors AT3 and AT4 and drive transistors DT3 and DT4 constituting a read-only port a pair of halo regions AHT and AHT of access transistors AT3 and AT4 and a pair of halo regions DHT and DHT of drive transistors DT3 and DT4 are Of the pair of halo regions HR (halo regions AHS, AHB) of the access transistors AT1, AT2, they are formed to have the same impurity concentration as that of the halo region AHB.
  • the impurity concentration of the halo region AHB of the access transistors AT1 and AT2 is set higher than the impurity concentration of the halo region DHE of the drive transistors DT1 and DT2. For this reason, the impurity concentration of the halo regions AHT and DHT at the read port is higher than the impurity concentration of the halo region DHE. Thereby, in the read operation by the read-only port, the leakage current from the drive transistors DT3 and DT4 at the time of reading can be suppressed.
  • the read word line RWLA and the read word line RWLB are shared, and the read bit line RBLA and the read bit line RBLB are used for differential reading, they should be used as a 2-port SRAM. Is also possible.
  • the halo region AHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and the halo region AHB having a relatively low impurity concentration is formed on the bit line. It is formed on the BL (/ BL) side.
  • halo region DHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and halo region DHE having a relatively low impurity concentration is formed on the ground wiring VSS side. ing.
  • both the read margin and the write margin can be increased as in the SRAM memory cell of the semiconductor device described in the first embodiment. Further, high-speed operation at the time of reading can be enabled. Furthermore, one photolithography mask for forming the halo region can be reduced as compared with the semiconductor device according to the comparative example.
  • Embodiment 8 (First example) Here, a semiconductor device having a 2-port SRAM memory cell having a read-only port will be described.
  • a bit line RBL is provided as a read bit line
  • a read word line RWL is provided as a read word line.
  • the gate of the access transistor AT3 is connected to the read word line RWL, and one of the pair of source / drain regions of the access transistor AT3 is connected to the bit line RBL.
  • the gate of the drive transistor DT3 is connected to the gate of the drive transistor DT2 and the gate of the load transistor LT2.
  • One of the pair of source / drain regions of drive transistor DT3 is connected to the other of the pair of source / drain regions of access transistor AT3.
  • the other of the pair of source / drain regions of the drive transistor DT3 is connected to the ground wiring (VSS).
  • the pair of halo regions AHT and AHT of the access transistor AT3 and the pair of halo regions DHT and DHT of the drive transistor DT3 are included in the pair of halo regions HR (halo regions DHS and DHE) of the drive transistors DT1 and DT2. It is formed so as to have the same impurity concentration as that of the halo region DHE. Since the configuration other than this is the same as that of the equivalent circuit shown in FIG. 3, the same members are denoted by the same reference numerals, and the description thereof will not be repeated.
  • data is read by detecting a change in potential of the read bit line RBL when the access transistor AT3 is turned on.
  • FIG. 98 is a plan view showing a layout of transistors constituting memory cells of the SRAM cell array and contacts connected to the transistors.
  • each region surrounded by a dotted line constitutes one SRAM memory cell.
  • element isolation regions FRN and FRP that are electrically isolated from each other are defined by forming an element isolation region ISR by an element isolation insulating film.
  • the element formation region FRN is formed in the NMIS region RN.
  • the element formation region FRP is formed in the PMIS region RP.
  • access transistors AT1, AT2, AT3 and drive transistors DT1, DT2, DT3 are formed in the element formation region FRN.
  • load transistors LT1 and LT2 are formed in the element formation region FRP as p-channel type MIS transistors.
  • the element formation region FRN in which the access transistor AT1 is formed is connected to the element formation region FRN in which the drive transistor DT1 is formed.
  • the element formation region FRN in which the access transistor AT2 is formed is connected to the element formation region FRN in which the drive transistor DT2 is formed.
  • the element formation region FRN in which the access transistor AT3 is formed is connected to the element formation region FRN in which the drive transistor DT3 is formed.
  • the element formation region FRN is electrically isolated by the element isolation region ISR.
  • FIG. 99 is a sectional view taken along a sectional line XCIX-XCIX passing through access transistor AT1 and drive transistor DT1 of the SRAM memory cell in FIG.
  • the cross-sectional structure shown in FIG. 99 is the same as the cross-sectional structure shown in FIG. For this reason, suppose that the same code
  • a structure (not shown) corresponding to the equivalent circuit of the SRAM memory cell shown in FIG. 97 is formed of multilayer metal wirings and the like above the first metal wiring shown in FIG.
  • the resist mask RMH1 serving as an implantation mask for forming the halo region (implantation mask A).
  • the resist mask RMH1 is a side surface located on the side of the region S where the source / drain region electrically connected to the storage node is to be formed in each gate structure G to be the access gate electrodes AG1, AG2.
  • the region S, and the gate structure G to be the drive gate electrodes DG1 and DG2 and the region E in which source / drain regions electrically connected to the ground wiring are to be formed are exposed. Formed as follows.
  • the resist mask RMH1 includes a gate structure G to be the access gate electrode AG3, a region RB in which a source / drain region electrically connected to the read bit line is formed, and a gate to be the drive gate electrode DG3. Sandwiched between the structure G, the region E in which source / drain regions electrically connected to the ground wiring are formed, and the gate structure G to be the access gate electrode AG3 and the gate structure G to be the drive gate electrode DG3 The formed element forming region FRN is exposed.
  • the resist mask RMH1 has a side surface located on the side of the region B where the source / drain region electrically connected to the bit line is to be formed in the gate structure G to be the access gate electrodes AG1, AG2.
  • the region B is formed so as to cover the PMIS region RP.
  • resist mask RMH1 as an implantation mask, for example, boron is implanted by oblique implantation with respect to a direction perpendicular to the main surface of semiconductor substrate SUB from one direction substantially orthogonal to the direction in which gate structure G extends.
  • a p-type impurity region (not shown) is formed in the p-well region.
  • boron is implanted obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB from one opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region (not shown) is formed in the exposed p-well region (halo implantation A).
  • halo implantation A boron is implanted with the same implantation amount and the same implantation energy. Thereafter, the resist mask RMH1 is removed.
  • a predetermined photoengraving process is performed to form a resist mask RMH2 serving as an implantation mask for forming the halo region (implantation mask B).
  • the resist mask RMH2 is electrically connected to the gate structure G to be the access gate electrodes AG1 and AG2, the region S in which source / drain regions electrically connected to the storage node are formed, and the bit line.
  • the region B where the source / drain region to be connected is to be formed is exposed, and the source / drain region electrically connected to the storage node is formed in the gate structure G to be the drive gate electrodes DG1 and DG2. It is formed so as to expose the side surface located on the side where the region S to be formed is disposed.
  • the resist mask RMH2 is positioned on the side where the region E where the source / drain region to be electrically connected to the ground wiring is to be formed in the gate structure G to be the drive gate electrodes DG1 and DG2. It is formed so as to cover the side surface to be formed, its region E, and the element formation region FRP.
  • the resist mask RMH2 includes a gate structure G to be the access gate electrode AG3, a region RB in which a source / drain region electrically connected to the read bit line is formed, and a gate to be the drive gate electrode DG3. Sandwiched between the structure G, the region E in which source / drain regions electrically connected to the ground wiring are formed, and the gate structure G to be the access gate electrode AG3 and the gate structure G to be the drive gate electrode DG3 The element forming region FRN is formed so as to cover the portion.
  • resist mask RMH2 as an implantation mask
  • boron is implanted by oblique implantation with respect to a direction perpendicular to the main surface of semiconductor substrate SUB from one direction substantially orthogonal to the direction in which gate structure G extends.
  • a p-type impurity region (not shown) is formed in the region of the p-well.
  • boron is implanted obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB from one opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region (not shown) is formed in the exposed p-well region (halo implantation B).
  • halo implantation B boron is implanted with the same implantation amount and the same implantation energy.
  • the implantation amount of the halo implantation B is set so that the impurity concentration of the halo region (AHB) is higher than the impurity concentration of the halo region (DHE).
  • the injection conditions may be set so as to be lower than the injection amount of A.
  • the halo region AHT formed in the access transistor AT3 and the halo region DHT formed in the drive transistor DG3 are formed by the halo implantation A, and the impurity concentrations of the halo regions AHT and DHT are the drive transistors DG1 and DG2.
  • the impurity concentration becomes the same as the impurity concentration of the halo region DHE.
  • a resist mask RME1 that exposes the NMIS region RN and covers the PMIS region RP is formed (implantation mask C).
  • implantation mask C a resist mask that exposes the NMIS region RN and covers the PMIS region RP is formed.
  • phosphorus or arsenic is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby exposing the surface of the exposed p-well PW region.
  • An extension region ER (see FIG. 99) is formed over a predetermined depth (extension injection). Thereafter, the resist mask RME1 is removed.
  • the extension implantation can be performed before the halo implantation A and the halo implantation B.
  • a resist mask (not shown) that covers the NMIS region RN and exposes the PMIS region RP is formed (implantation mask D).
  • phosphorus or arsenic is exposed from a direction perpendicular to the main surface of the semiconductor substrate SUB using the resist mask as an implantation mask.
  • a halo region (not shown) is formed in the element formation region FRP.
  • boron is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby forming an extension region (not shown). Thereafter, the resist mask is removed.
  • copper interconnection CW1 is formed as the first metal interconnection. Thereafter, a multilayer wiring structure is formed on the copper wiring CW1, and the main part of the SRAM memory cell is formed.
  • a read-only port is provided.
  • the impurity concentration of halo regions AHT and DHT is set lower than the impurity concentration of halo region AHB.
  • the halo region AHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and the halo region AHB having a relatively low impurity concentration is formed on the bit line. It is formed on the BL (/ BL) side.
  • halo region DHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and halo region DHE having a relatively low impurity concentration is formed on the ground wiring VSS side. ing.
  • both the read margin and the write margin can be increased as in the SRAM memory cell of the semiconductor device described in the first embodiment. Further, high-speed operation at the time of reading can be enabled. Furthermore, one photolithography mask for forming the halo region can be reduced as compared with the semiconductor device according to the comparative example.
  • the pair of halo regions AHT and AHT of the access transistor AT3 and the pair of halo regions DHT and DHT of the drive transistor DT3 are paired with a pair of halo regions HR (halo regions) of the access transistors AT1 and AT2.
  • AHS, AHB are formed to have the same impurity concentration as that of the halo region AHB. Since the other configuration is the same as that of the equivalent circuit shown in FIG. 97, the same members are denoted by the same reference numerals and the description thereof will not be repeated.
  • the structure of the SRAM memory cell is that the impurity concentration of the halo region AHT of the access transistor AT3 and the halo region DHT of the drive transistor DT3 are the same as the impurity concentration of the halo region AHB of the access transistors AT1 and AT2. Since it is the same as that of the semiconductor device according to the first example except for, the description thereof will not be repeated.
  • a resist mask serving as an implantation mask for forming a halo region by performing a predetermined photolithography process as shown in FIG. RMH1 is formed (implantation mask A).
  • the resist mask RMH1 has a side surface located on the side of the region S where a source / drain region electrically connected to the storage node is to be formed in each gate structure G to be the access gate electrodes AG1, AG2.
  • the region S is exposed, and the gate structure G to be the drive gate electrodes DG1 and DG2 and the region E in which the source / drain regions electrically connected to the ground wiring are formed are exposed. It is formed.
  • the resist mask RMH1 has a side surface located on the side of the region B where the source / drain region electrically connected to the bit line is to be formed in the gate structure G to be the access gate electrodes AG1, AG2. It is formed so as to cover the region B.
  • the resist mask RMH1 includes a gate structure G to be the access gate electrode AG3, a region RB in which a source / drain region electrically connected to the read bit line is formed, and a gate to be the drive gate electrode DG3. Sandwiched between the structure G, the region E in which source / drain regions electrically connected to the ground wiring are formed, and the gate structure G to be the access gate electrode AG3 and the gate structure G to be the drive gate electrode DG3 It is formed so as to cover the part of the element formation region FRN thus formed and the PMIS region RP.
  • resist mask RMH1 as an implantation mask, for example, boron is implanted by oblique implantation with respect to a direction perpendicular to the main surface of semiconductor substrate SUB from one direction substantially orthogonal to the direction in which gate structure G extends.
  • a p-type impurity region (not shown) is formed in the p-well region.
  • boron is implanted obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB from one opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region (not shown) is formed in the exposed p-well region (halo implantation A).
  • halo implantation A boron is implanted with the same implantation amount and the same implantation energy. Thereafter, the resist mask RMH1 is removed.
  • a predetermined photoengraving process is performed to form a resist mask RMH2 serving as an implantation mask for forming the halo region (implantation mask B).
  • the resist mask RMH2 is electrically connected to the gate structure G to be the access gate electrodes AG1 and AG2, the region S in which source / drain regions electrically connected to the storage node are formed, and the bit line.
  • the region B where the source / drain region to be connected is to be formed is exposed, and the source / drain region electrically connected to the storage node is formed in the gate structure G to be the drive gate electrodes DG1 and DG2. It is formed so as to expose the side surface located on the side where the region S to be formed is disposed.
  • the resist mask RMH2 includes a gate structure G to be the access gate electrode AG3, a region RB in which a source / drain region electrically connected to the read bit line is formed, and a gate to be the drive gate electrode DG3. Sandwiched between the structure G, the region E in which source / drain regions electrically connected to the ground wiring are formed, and the gate structure G to be the access gate electrode AG3 and the gate structure G to be the drive gate electrode DG3 The formed element forming region FRN is exposed.
  • the resist mask RMH2 is positioned on the side where the region E where the source / drain region to be electrically connected to the ground wiring is to be formed in the gate structure G to be the drive gate electrodes DG1 and DG2. It is formed so as to cover the side surface to be formed, its region E, and the element formation region FRP.
  • resist mask RMH2 as an implantation mask
  • boron is implanted by oblique implantation with respect to a direction perpendicular to the main surface of semiconductor substrate SUB from one direction substantially orthogonal to the direction in which gate structure G extends.
  • a p-type impurity region (not shown) is formed in the formed region.
  • boron is implanted obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB from one opposite to the direction substantially perpendicular to the direction in which the gate structure G extends.
  • a p-type impurity region (not shown) is formed in the exposed p-well region (halo implantation B).
  • halo implantation B boron is implanted with the same implantation amount and the same implantation energy.
  • the implantation amount of the halo implantation B is set so that the impurity concentration of the halo region (AHB) is higher than the impurity concentration of the halo region (DHE).
  • the injection conditions may be set so as to be lower than the injection amount of A.
  • the halo region AHT formed in the access transistor AT3 and the halo region DHT formed in the drive transistor DG3 are formed by the halo implantation B, and the impurity concentrations of the halo regions AHT and DHT are determined based on the access transistors AG1 and AG2.
  • the impurity concentration becomes the same as that of the halo region AHB.
  • a resist mask RME1 that exposes the NMIS region RN and covers the PMIS region RP is formed (implantation mask C).
  • implantation mask C a resist mask that exposes the NMIS region RN and covers the PMIS region RP is formed.
  • phosphorus or arsenic is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby exposing the surface of the exposed p-well PW region.
  • An extension region ER (not shown) is formed over a predetermined depth (extension injection). Thereafter, the resist mask RME1 is removed.
  • the extension implantation can be performed before the halo implantation A and the halo implantation B.
  • a resist mask (not shown) that covers the NMIS region RN and exposes the PMIS region RP is formed (implantation mask D).
  • phosphorus or arsenic is exposed from a direction perpendicular to the main surface of the semiconductor substrate SUB using the resist mask as an implantation mask.
  • a halo region (not shown) is formed in the element formation region FRP.
  • boron is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby forming an extension region (not shown). Thereafter, the resist mask is removed.
  • copper wiring CW1 is formed as the first metal wiring (see FIG. 99). Thereafter, a multilayer wiring structure is formed on the copper wiring CW1, and the main part of the SRAM memory cell is formed.
  • a read-only port is provided.
  • the impurity concentration of the halo regions AHT and DHT is set higher than the impurity concentration of the halo region DHE.
  • Embodiment 9 a semiconductor device including an SRAM memory cell called a vertical cell will be described.
  • SRAM memory cell SR (MA) has a plurality of memory cells arranged in a matrix of a plurality of rows and a plurality of columns on the main surface of the semiconductor substrate.
  • an arrangement pattern is formed in which individual SRAM memory cells are arranged so as to be mirror-symmetric (X inversion).
  • the equivalent circuit of the SRAM memory cell is the same as the equivalent circuit shown in FIG.
  • the impurity concentration of the halo region AHS connected to the storage nodes SN and / SN in the pair of halo regions HR is on the side connected to the bit lines BL and / BL. It is set higher than the impurity concentration of the halo region AHB.
  • the impurity concentration of the halo region DHS on the side connected to the storage nodes SN and / SN in the pair of halo regions HR is the halo on the side connected to the ground wiring VSS. It is set higher than the impurity concentration of the region DHE.
  • the impurity concentration of the halo region DHE is set lower than the impurity concentration of the halo region AHB.
  • FIG. 109 is a plan view showing a layout of transistors constituting the memory cells of the SRAM cell array and contacts connected to the transistors.
  • element formation regions FRN and FRP that are electrically isolated from each other are defined by forming an element isolation region ISR by an element isolation insulating film.
  • ISR element isolation region
  • FRNX a portion (element formation region FRNX) extending in parallel to the X direction and a portion (element formation region FRNY) extending in parallel to the Y direction are provided.
  • access transistors AT1 and AT2 and drive transistors DT1 and DT2 are formed as n-channel MIS transistors. Access transistors AT1 and AT2 are arranged in element formation region FRNY, and drive transistors DT1 and DT2 are arranged in element formation region FRNX. Access gate electrodes AG1, AG2 of access transistors AT1, AT2 are formed to extend in parallel with the X direction and cross element forming region FRNY. Drive gate electrodes DG1 and DG2 of drive transistors DT1 and DT2 are formed to extend in parallel to the Y direction and cross element formation region FRNX.
  • the element formation region FRNY (FRN) where the access transistor AT1 is formed is connected to the element formation region FRNX (FRN) where the drive transistor D1 is formed.
  • the element formation region FRNY (FRN) where the access transistor AT2 is formed is connected to the element formation region FRNX (FRN) where the drive transistor D2 is formed.
  • the element formation region FRN in which the access transistor AT1 and the drive transistor D1 are formed is electrically separated from the element formation region FRN in which the access transistor AT2 and the drive transistor D2 are formed by the element isolation region ISR.
  • the element formation region FRP extends in parallel with the X direction and is arranged at a distance from the element formation region FRN (FRNX).
  • load transistors LT1 and LT2 are formed as p-channel type MIS transistors.
  • the load gate electrodes LG1, LG2 of the load transistors LT1, LT2 are formed to extend in parallel to the Y direction and cross the element formation region FRP.
  • FIG. 110 is a cross sectional view taken along a cross sectional line CX-CX passing through the gate electrode of drive transistor DT1 and access transistor AT1.
  • the region S where the n-type source / drain region SDS is formed which is electrically connected to the storage node (contact SNC) and the bit line are electrically connected (contact BLC).
  • An access gate electrode AG1 of the access transistor AT1 is formed on a region sandwiched between the region B where the n-type source / drain region SDB is formed.
  • halo region AHS is formed as p-type halo region HR so as to be adjacent to source / drain region SDS, and halo region AHB is adjacent to source / drain region SDB. Is formed.
  • a drive gate electrode DG1 of the drive transistor DT1 is formed on a region sandwiched by the region S where the source / drain region SDS is formed.
  • a halo region DHS is formed as a p-type halo region HR adjacent to the source / drain region SDS, and the halo region DHE is adjacent to the source / drain region SDE. Is formed. Note that the same members as those of the semiconductor device illustrated in FIG. 5 (Embodiment 1) are denoted by the same reference numerals, and description thereof will not be repeated.
  • FIG. 111 is a plan view showing a connection structure between a transistor and a first metal wiring in one memory cell.
  • FIG. 112 is a plan view showing a connection structure between the first metal wiring and the second metal wiring.
  • FIG. 113 is a plan view showing a connection structure between the second metal wiring and the third metal wiring.
  • One of the pair of source / drain regions SD (source / drain region SDB) of the access transistor AT1 includes a contact plug BLC (plug PG), a first metal wiring BLM1 (copper wiring CW1), a via BLV1, and a second metal wiring BLM2. In addition, it is electrically connected to the third metal wiring BLM3 as the bit line BL via the via BLV2.
  • the other of the pair of source / drain regions SD (source / drain region SDS) of the access transistor AT1 is connected to the load transistor LT1 via the contact SNC (plug PG), the first metal wiring SNM1 (copper wiring CW1) and the contact SNLC. Are electrically connected to one of the pair of source / drain regions. Further, the source / drain region SDS of the access transistor AT1 is connected to the load transistor via the first metal wiring SNM1 (copper wiring CW1), the via SNV1, the second metal wiring SNM2, the via SNV1, the first metal wiring SNM1, and the contact SNGC.
  • the load gate electrode LG2 of LT2 and the drive gate electrode DG2 of the drive transistor DT2 are electrically connected to each other.
  • source / drain region SDS of the access transistor AT1 is electrically connected to one of the pair of source / drain regions (source / drain region SDS) of the drive transistor DT1.
  • Access gate electrode AG1 of access transistor AT1 is formed as a part of word line WL.
  • the other of the pair of source / drain regions (source / drain region SDE) of the drive transistor DT1 is electrically connected to the first metal wiring VSSM1 (copper wiring CW1) as the ground wiring through the contact VSSC (plug PG). It is connected.
  • the other of the pair of source / drain regions of the load transistor LT1 is connected to the third power supply wiring via the contact VDDC, the first metal wiring VDDM1 (copper wiring CW1), the via VDDV1, the second metal wiring VDDM2, and the via VDDV2. It is electrically connected to the metal wiring VDDM3.
  • One of the pair of source / drain regions SD (source / drain region SDB) of the access transistor AT2 includes a contact plug / BLC (plug / PG), a first metal wiring / BLM1 (copper wiring CW1), a via / BLV1, The second metal interconnection / BLM2 and the via / BLV2 are electrically connected to the third metal interconnection / BLM3 as the bit line / BL.
  • the other of the pair of source / drain regions SD (source / drain region SDS) of the access transistor AT2 is connected via the contact / SNC (plug PG), the first metal wiring / SNM1 (copper wiring CW1) and the contact / SNLC.
  • the load transistor LT2 is electrically connected to one of the pair of source / drain regions.
  • the source / drain region SDS of the access transistor AT2 includes the first metal wiring / SNM1 (copper wiring CW1), the via / SNV1, the second metal wiring / SNM2, the via / SNV1, the first metal wiring / SNM1, and the contact / SNGC.
  • the source / drain region SDS of the access transistor AT2 is electrically connected to one of the pair of source / drain regions (source / drain region SDS) of the drive transistor DT2.
  • Access gate electrode AG2 of access transistor AT2 is formed as part of word line WL.
  • the other of the pair of source / drain regions (source / drain region SDE) of the drive transistor DT2 is electrically connected to the first metal wiring VSSM1 (copper wiring CW1) as the ground wiring through the contact VSSC (plug PG). It is connected.
  • the other of the pair of source / drain regions of the load transistor LT2 is a third power supply wiring via the contact VDDC, the first metal wiring VDDM1 (copper wiring CW1), the via VDDV1, the second metal wiring VDDM2, and the via VDDV2. It is electrically connected to the metal wiring VDDM3.
  • a gate structure G to be the access gate electrode AG1 and a gate structure G to be the drive gate electrode DG1 are formed.
  • a silicon nitride film (not shown) is formed on the semiconductor substrate SUB so as to cover the gate structure G.
  • the silicon nitride film is anisotropically etched to form offset spacers OS on both side surfaces of the gate structure G.
  • a predetermined photoengraving process is performed to form a resist mask RMH1 serving as an implantation mask for forming the halo region (implantation mask A).
  • the resist mask RMH1 includes a side surface located on the side of the region S where the source / drain region electrically connected to the storage node is to be formed in the gate structure G to be the access gate electrodes AG1 and AG2, and the region S and the side surface located on the side where the region S is disposed in the gate structure G to be the drive gate electrodes DG1 and DG2 are formed so as to be exposed by the opening pattern.
  • the resist mask RMH1 has a side surface located on the side of the region B where the source / drain region electrically connected to the bit line is to be formed in the gate structure G to be the access gate electrodes AG1, AG2.
  • boron is implanted from a predetermined direction using the resist mask RMH1 as an implantation mask (halo implantation A).
  • about 7 degrees
  • a p-type impurity region PIR2 is formed in the exposed p-well PW region.
  • a p-type impurity region PIR3 is formed in the exposed p-well PW region.
  • about 7 degrees.
  • a predetermined photoengraving process is performed to form a resist mask RMH2 serving as an implantation mask for forming the halo region (implantation mask B).
  • the resist mask RMH2 is formed so as to expose the NMIS region RN and cover the PMIS region RP.
  • boron is implanted from a predetermined direction using the resist mask RMH2 as an implantation mask (halo implantation B).
  • about 7 degrees
  • a p-type impurity region PIR6 is formed in the exposed p-well PW region.
  • a p-type impurity region PIR7 is formed in the exposed region of the p-well PW.
  • a p-type impurity region PIR8 is formed in the exposed p-well PW region.
  • the injection conditions for halo injection will be described.
  • the implantation conditions from the directions E1 and E2 are the same implantation conditions (implantation conditions A)
  • the implantation conditions from the directions E3 and E4 are the same implantation conditions (implantation conditions B).
  • the implantation conditions from the directions E5 and E6 are the same implantation conditions (implantation conditions C)
  • the implantation conditions from the directions E7 and E8 are the same implantation conditions (implantation conditions D).
  • the halo region AHS of the access transistors AT1 and AT2 is formed by injection from the direction E2 (injection condition A) and the direction E6 (injection condition C), and the halo region AHB is formed by injection from the direction E5 (injection condition C). Is done.
  • the halo region DHS of the drive transistors DT1 and DT2 is formed by implantation from the direction E3 (implantation condition B) and the direction E7 (implantation condition D), and the halo region DHB is implanted from the direction E8 (implantation condition D). Formed by.
  • the impurity concentration of the halo region AHS is higher than the impurity concentration of the halo region AHB
  • the impurity concentration of the halo region DHS is higher than the impurity concentration of the halo region DHE
  • the impurity concentration of the halo region AHS and the impurity concentration of the halo region DHS are set so that the impurity concentration is the same as the impurity concentration, and the impurity concentration in the halo region DHE is lower than the impurity concentration in the halo region AHB.
  • resist mask RMH2 resist mask RME1
  • implantation mask B extension implantation
  • extension implantation phosphorus or the like is implanted using the resist mask RMH2 (resist mask RME1) as an implantation mask (implantation mask B) (extension implantation).
  • resist mask RME1 as an implantation mask, for example, phosphorus or arsenic is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby exposing the region of the p-well PW exposed.
  • An extension region ER is formed from the surface of the substrate to a predetermined depth. Thereafter, the resist mask RME1 is removed.
  • a resist mask RME2 that covers the NMIS region RN and exposes the PMIS region RP is formed (implantation mask C).
  • phosphorus or arsenic is implanted into the semiconductor substrate SUB, thereby forming a halo region (not shown) in the element formation region RP.
  • an extension region is formed by implanting boron into the semiconductor substrate SUB. Thereafter, the resist mask RME2 is removed.
  • a silicon oxide film and a silicon nitride film are sequentially formed so as to cover the gate structure G (access gate electrode AG1, drive gate electrode DG1, etc.).
  • a silicon oxide film and a silicon nitride film are sequentially formed so as to cover the gate structure G (access gate electrode AG1, drive gate electrode DG1, etc.).
  • sidewall spacers SW made of the silicon oxide film SO and the silicon nitride film SNI are formed on both side surfaces of the gate structure G (see FIG. (See FIG. 128).
  • a resist mask (not shown) that exposes the NMIS region RN and covers the PMIS region RP is formed.
  • phosphorus or arsenic is implanted into the semiconductor substrate SUB, so that the source / drain regions SD ( 128) is formed. Thereafter, the resist mask is removed.
  • a resist mask (not shown) that covers the NMIS region RN and exposes the PMIS region RP is formed.
  • boron is implanted into the semiconductor substrate using the resist mask as an implantation mask, thereby forming source / drain regions (not shown) from the exposed surface of the element formation region FRP to a predetermined depth. Thereafter, the resist mask is removed.
  • the source / drain region SD, the extension region ER, and the halo region HR are activated by thermally diffusing the implanted impurities by performing a predetermined annealing process.
  • the source / drain region SD, the extension region ER, and the halo region HR expand in the horizontal direction and the vertical (depth) direction.
  • a metal silicide film such as nickel silicide is formed on the surface of each polysilicon film of the exposed source / drain region SD, access gate electrode AG1, and drive gate electrode DG1 by a salicide process. SCL is formed.
  • a stress liner film SL such as a silicon nitride film is formed so as to cover the access gate electrode AG1 and the drive gate electrode DG1.
  • An interlayer insulating film IL1 such as TEOS is formed so as to cover the stress liner film SL.
  • the interlayer insulating film IL1 is anisotropically etched to form a contact hole CH exposing the metal silicide film SCL.
  • the plug PG including the barrier metal film BA1 and the tungsten film TL1 is formed in the contact hole CH.
  • an etching stopper film ES such as a silicon nitride film and an interlayer insulating film IL2 such as a silicon oxide film are formed so as to cover the plug PG.
  • a groove exposing the surface of the plug PG is formed.
  • the copper wiring CW1 including the barrier metal film BA2 and the copper film CL2 is formed in the trench. Copper wiring CW1 corresponds to the first metal wiring.
  • an interlayer insulating film (not shown) is formed so as to cover the copper wiring CW1.
  • Vias BLV1, / SNV1, VDDV1, / BLV1, / SNV1, and SNV1 are formed in the interlayer insulating film by a method similar to the method of forming the plug PG.
  • an interlayer insulating film (not shown) is formed so as to cover the vias BLV1, / SNV1, VDDV1, / BLV1, / SNV1, and SNV1.
  • Second metal wirings BLM2, / SNM2, SNM2, and VDDM2 are formed in the interlayer insulating film by a method similar to the method of forming copper wiring CW1.
  • an interlayer insulating film (not shown) is formed so as to cover the second metal wirings BLM2, / SNM2, SNM2, and VDDM2.
  • Vias BLV2, / BLV2, VDDV2 (see FIG. 113) are formed in the interlayer insulating film by a method similar to the method of forming the plug PG.
  • an interlayer insulating film (not shown) is formed so as to cover the vias BLV2, / BLV2, VDDV2.
  • Third metal wirings VDDM3, BLM3, / BLM3 (see FIG. 113) are formed in the interlayer insulating film by a method similar to the method of forming copper wiring CW1.
  • the main part of the SRAM memory cell is formed.
  • the halo region AHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and the halo region AHB having a relatively low impurity concentration is formed on the bit line BL ( / BL) side.
  • halo region DHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and halo region DHE having a relatively low impurity concentration is formed on the ground wiring VSS side. ing.
  • the current flowing through the access transistor AT1 (AT2) from the bit line BL (/ BL) side toward the storage node SN (/ SN) side is suppressed.
  • the current flowing through the drive transistor DT1 (DT2) can be easily increased from the storage node SN (/ SN) side toward the ground wiring (VSS) side.
  • the ⁇ ratio can be increased and the read margin can be increased.
  • the current flowing through the drive transistors DT1 and DT2 is only the current flowing from the storage node side to the ground wiring side during the read operation.
  • the halo region DHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side
  • the halo region DHE having a relatively low impurity concentration is formed on the ground wiring (VSS) side.
  • the threshold voltages of the transistors DT1 and DT2 can be relatively lowered to enable high-speed operation during reading.
  • the halo regions AHB and AHS of the access transistors AT1 and AT2 and the halo regions DHE and DHS of the drive transistors DT1 and DT2 are formed of the resist mask RMH1 (implantation mask A) and the resist mask RMH2 (implantation mask B). ).
  • the halo regions of the load transistors LT1, LT2 are formed by a resist mask (implantation mask D).
  • the impurity concentration of the halo region DHE is lower than the impurity concentration of the halo region AHB.
  • the implantation conditions A to D may be set so that the impurity concentration of the halo region DHE is higher than the impurity concentration of the halo region AHB. In this case, as described in the first embodiment, leakage current from drive transistors DT1 and DT2 can be suppressed.
  • the implantation conditions A to D may all be set to the same implantation condition so that the impurity concentration of the halo region DHE and the impurity concentration of the halo region AHB are the same.
  • the impurity concentration of the halo region AHS is higher than the impurity concentration of the halo region AHB
  • the impurity concentration of the halo region DHS is the impurity concentration of the halo region DHE. It becomes higher than the concentration. Thereby, both the read margin and the write margin can be increased.
  • Embodiment 10 Here, another example of a semiconductor device including SRAM memory cells called vertical cells will be described.
  • FIG. 132 is a plan view showing a layout of transistors constituting memory cells of the SRAM cell array and contacts connected to the transistors. A region surrounded by a dotted line (thick line) constitutes one memory cell.
  • element formation regions FRN and FRP that are electrically isolated from each other are defined by forming an element isolation region ISR by an element isolation insulating film.
  • ISR element isolation region
  • a portion (element formation region FRNX) extending in parallel to the X direction and a portion (element formation region FRNY) extending in parallel to the Y direction are provided.
  • access transistors AT1 and AT2 and drive transistors DT1 and DT2 are formed as n-channel MIS transistors. Access transistors AT1 and AT2 are arranged in element formation region FRNY, and drive transistors DT1 and DT2 are arranged in element formation region FRNX. Access gate electrodes AG1, AG2 of access transistors AT1, AT2 are formed to extend in parallel with the X direction and cross element forming region FRNY. Drive gate electrodes DG1 and DG2 of drive transistors DT1 and DT2 are formed to extend in parallel to the Y direction and cross element formation region FRNX.
  • a ground wiring is electrically connected to a portion (source / drain region) of the element formation region FRN sandwiched between the drive gate electrode DG1 of the drive transistor DT1 and the drive gate electrode DG2 of the drive transistor DT2.
  • the element formation region FRP extends in parallel with the X direction and is arranged at a distance from the element formation region FRN (FRNX).
  • load transistors LT1 and LT2 are formed as p-channel type MIS transistors.
  • the load gate electrodes LG1, LG2 of the load transistors LT1, LT2 are formed to extend in parallel to the Y direction and cross the element formation region FRP.
  • a power supply wiring is electrically connected to a portion (source / drain region) of the element formation region FRP sandwiched between the load gate electrode LG1 of the load transistor LT1 and the load gate electrode LG2 of the load transistor LT2.
  • FIG. 133 is a cross sectional view taken along a cross sectional line CXXXIII-CXXXIII passing through the gate electrode of drive transistor DT1 and access transistor AT1.
  • the region S where the n-type source / drain region SDS is formed which is electrically connected to the storage node (contact SNC) and the bit line are electrically connected (contact BLC).
  • An access gate electrode AG1 of the access transistor AT1 is formed on a region sandwiched between the region B where the n-type source / drain region SDB is formed.
  • halo region AHS is formed as p-type halo region HR so as to be adjacent to source / drain region SDS, and halo region AHB is adjacent to source / drain region SDB. Is formed.
  • a drive gate electrode DG1 of the drive transistor DT1 is formed on a region sandwiched by the region S where the source / drain region SDS is formed.
  • a halo region DHS is formed as a p-type halo region HR adjacent to the source / drain region SDS, and the halo region DHE is adjacent to the source / drain region SDE. Is formed. Note that the same members as those of the semiconductor device illustrated in FIG. 5 (Embodiment 1) are denoted by the same reference numerals, and description thereof will not be repeated.
  • FIG. 134 is a plan view showing a connection structure between a transistor and a first metal wiring in one memory cell.
  • FIG. 135 is a plan view showing a connection structure between the first metal wiring and the second metal wiring.
  • One of the pair of source / drain regions SD (source / drain region SDB) of the access transistor AT1 is connected to the second bit line BL via the contact plug BLC (plug PG), the first metal wiring BLM1, and the via BLV1. It is electrically connected to the metal wiring BLM2.
  • the other of the pair of source / drain regions SD (source / drain region SDS) of the access transistor AT1 is connected to the load transistor LT1 via the contact SNC (plug PG), the first metal wiring SNM1 (copper wiring CW1) and the contact SNLC.
  • the source / drain region SDS of the access transistor AT1 is electrically connected to the load gate electrode LG2 of the load transistor LT2 and the drive gate electrode DG2 of the drive transistor DT2 via the first metal wiring SNM1 (copper wiring CW1). Connected.
  • source / drain region SDS of the access transistor AT1 is electrically connected to one of the pair of source / drain regions (source / drain region SDS) of the drive transistor DT1.
  • Access gate electrode AG1 of access transistor AT1 is formed as a part of word line WL.
  • the other of the pair of source / drain regions (source / drain region SDE) of the drive transistor DT1 is connected to the second metal wiring VSSM2 as a ground wiring through the contact VSSC (plug PG), the first metal wiring VSSM1, and the via VSSV1. Is electrically connected.
  • the other of the pair of source / drain regions of the load transistor LT1 is electrically connected to a first metal wiring VDDM1 (copper wiring CW1) as a power supply wiring through a contact VDDC.
  • One of the pair of source / drain regions SD (source / drain region SDB) of access transistor AT2 is connected via contact plug / BLC (plug / PG), first metal interconnection / BLM1 (copper interconnection CW1), and via / BLV1. Thus, it is electrically connected to the second metal wiring / BLM2 as the bit line / BL.
  • the other of the pair of source / drain regions SD (source / drain region SDS) of the access transistor AT2 is connected via the contact / SNC (plug PG), the first metal wiring / SNM1 (copper wiring CW1) and the contact / SNLC.
  • the load transistor LT2 is electrically connected to one of the pair of source / drain regions.
  • the source / drain region SDS of the access transistor AT2 is connected to the load gate electrode LG1 of the load transistor LT1 and the drive gate electrode DG1 of the drive transistor DT1 through the first metal wiring / SNM1 (copper wiring CW1) and the contact / SNGC. Are electrically connected to each other.
  • the source / drain region SDS of the access transistor AT2 is electrically connected to one of the pair of source / drain regions (source / drain region SDS) of the drive transistor DT2.
  • Access gate electrode AG2 of access transistor AT2 is formed as part of word line WL.
  • the other of the pair of source / drain regions (source / drain region SDE) of the drive transistor DT2 is electrically connected to the first metal wiring VSSM1 (copper wiring CW1) as the ground wiring through the contact VSSC (plug PG). It is connected.
  • the other of the pair of source / drain regions of the load transistor LT2 is electrically connected to a first metal wiring VDDM1 (copper wiring CW1) as a power supply wiring through a contact VDDC.
  • a predetermined photoengraving process is performed to form a resist mask RMH1 serving as an implantation mask for forming the halo region (implantation mask A).
  • the resist mask RMH1 has a side surface located on the side of the region S where the source / drain region electrically connected to the storage node is to be formed in the gate structure G to be the access gate electrode AG1 (AG2).
  • the gate structure G to be the drive gate electrode DG1 (DG2) the side surface located on the region S side and the region S are formed to be exposed by the opening pattern.
  • the resist mask RMH1 has a side surface located on the side of the region B where the source / drain region electrically connected to the bit line is to be formed in the gate structure G to be the access gate electrodes AG1, AG2. It is formed so as to cover the region B. Further, the resist mask RMH1 has a side surface located on the side of the region E where the source / drain region electrically connected to the ground wiring is formed in the gate structure G to be the drive gate electrodes DG1 and DG2, The region E is formed so as to cover the PMIS region RP.
  • boron is implanted from a predetermined direction using the resist mask RMH1 as an implantation mask (halo implantation A). Boron implantation is performed in the same manner as boron implantation shown in FIGS. 115 to 119 (Embodiment 9).
  • boron is implanted obliquely with respect to the direction perpendicular to the main surface of the semiconductor substrate SUB from the direction E1 to p into the exposed element formation region FRN.
  • a type impurity region (not shown) is formed.
  • boron is implanted obliquely with respect to the direction perpendicular to the main surface of the semiconductor substrate SUB from the direction E2, thereby forming a p-type impurity region (not shown) in the exposed element formation region FRN.
  • boron is implanted from the direction E3 obliquely with respect to a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby forming a p-type impurity region (not shown) in the exposed element formation region FRN.
  • boron is implanted obliquely from the direction E4 with respect to the direction perpendicular to the main surface of the semiconductor substrate SUB, thereby forming a p-type impurity region (not shown) in the exposed element formation region FRN.
  • the resist mask RMH1 is removed.
  • a predetermined photoengraving process is performed to form a resist mask RMH2 serving as an implantation mask for forming the halo region (implantation mask B).
  • the resist mask RMH2 is formed so as to expose the NMIS region RN and cover the PMIS region RP.
  • boron is implanted from a predetermined direction using the resist mask RMH2 as an implantation mask (halo implantation B). Boron implantation is performed in the same manner as boron implantation shown in FIGS. 120 to 124 (Embodiment 9).
  • boron is implanted obliquely with respect to the direction perpendicular to the main surface of the semiconductor substrate SUB from the direction E5 to p into the exposed element formation region FRN.
  • a type impurity region (not shown) is formed.
  • boron is implanted obliquely with respect to the direction perpendicular to the main surface of the semiconductor substrate SUB from the direction E6, thereby forming a p-type impurity region (not shown) in the exposed element formation region FRN.
  • p-type impurity regions are formed in the exposed element formation regions FRN by implanting boron obliquely from the direction E7 with respect to the direction perpendicular to the main surface of the semiconductor substrate SUB.
  • boron is implanted obliquely with respect to the direction perpendicular to the main surface of the semiconductor substrate SUB from the direction E8, thereby forming a p-type impurity region (not shown) in the exposed element formation region FRN.
  • a part of the p-type impurity region thus formed becomes a halo region.
  • the injection conditions for halo injection will be described.
  • the implantation conditions from the directions E1 and E2 are the same implantation conditions (implantation conditions A)
  • the implantation conditions from the directions E3 and E4 are the same implantation conditions (implantation conditions B).
  • the implantation conditions from the directions E5 and E6 are the same implantation conditions (implantation conditions C)
  • the implantation conditions from the directions E7 and E8 are the same implantation conditions (implantation conditions D).
  • the halo region AHS of the access transistors AT1 and AT2 is formed by injection from the direction E2 (injection condition A) and the direction E6 (injection condition C), and the halo region AHB is formed by injection from the direction E5 (injection condition C). Is done.
  • the halo region DHS of the drive transistors DT1 and DT2 is formed by implantation from the direction E3 (implantation condition B) and the direction E7 (implantation condition D), and the halo region DHB is implanted from the direction E8 (implantation condition D). Formed by.
  • the impurity concentration of the halo region AHS is higher than the impurity concentration of the halo region AHB
  • the impurity concentration of the halo region DHS is higher than the impurity concentration of the halo region DHE
  • the impurity concentration of the halo region AHS and the impurity concentration of the halo region DHS are set so that the impurity concentration is the same as the impurity concentration, and the impurity concentration in the halo region DHE is lower than the impurity concentration in the halo region AHB.
  • phosphorus or the like is implanted (extension implantation) using the resist mask RMH2 (resist mask RME1) as an implantation mask (implantation mask B).
  • resist mask RME1 resist mask used as an implantation mask
  • phosphorus or arsenic is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby exposing the region of the p-well PW exposed.
  • An extension region ER is formed from the surface to a predetermined depth (see FIG. 133). Thereafter, the resist mask RME1 is removed.
  • a resist mask (not shown) that covers the NMIS region RN and exposes the PMIS region RP is formed (implantation mask C).
  • phosphorus or arsenic is implanted into the semiconductor substrate SUB, thereby forming a halo region (not shown) in the element formation region RP.
  • an extension region (not shown) is formed by implanting boron into the semiconductor substrate SUB. Thereafter, the resist mask is removed.
  • the first metal wiring (copper wiring CW1) is formed through steps similar to those shown in FIGS. 128 to 131 (Embodiment 9) (see FIG. 133). Thereafter, an interlayer insulating film (not shown) is formed so as to cover copper wiring CW1. Vias BLV1, / BLV1, and VSSV1 (see FIG. 135) are formed in the interlayer insulating film by a method similar to the method of forming the plug PG. Next, an interlayer insulating film (not shown) is formed so as to cover the vias BLV1, / BLV1, and VSSV1. Second metal wirings BLM2, / BLM2, VSSM2 (see FIG. 135) are formed in the interlayer insulating film by a method similar to the method of forming copper wiring CW1. Thus, the main part of the SRAM memory cell is formed.
  • each transistor of the SRAM memory cell is electrically connected by the first metal wiring and the second metal wiring.
  • the manufacturing cost can be reduced as compared with a wiring structure in which each transistor is electrically connected by the first metal wiring, the second metal wiring, and the third metal wiring.
  • the halo region AHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and the halo region AHB having a relatively low impurity concentration is formed on the bit line. It is formed on the BL (/ BL) side.
  • halo region DHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and halo region DHE having a relatively low impurity concentration is formed on the ground wiring VSS side. ing.
  • both the read margin and the write margin can be increased.
  • the halo region DHS having a relatively high impurity concentration is formed on the storage node SN (/ SN) side, and the halo region DHE having a relatively low impurity concentration is connected to the ground wiring (VSS). ) Side, the threshold voltages of the drive transistors DT1 and DT2 can be relatively lowered to enable high-speed operation during reading.
  • the halo regions AHB and AHS of the access transistors AT1 and AT2 and the halo regions DHE and DHS of the drive transistors DT1 and DT2 are formed of the resist mask RMH1 (implantation mask A) and the resist mask RMH2 (implantation mask B). ).
  • the halo regions of the load transistors LT1, LT2 are formed by a resist mask (implantation mask C).
  • the impurity concentration of the halo region DHE is lower than the impurity concentration of the halo region AHB.
  • the implantation conditions A to D may be set so that the impurity concentration of the halo region DHE is higher than the impurity concentration of the halo region AHB. In this case, as described in the first embodiment, leakage current from drive transistors DT1 and DT2 can be suppressed.
  • the implantation conditions A to D may all be set to the same implantation condition so that the impurity concentration of the halo region DHE and the impurity concentration of the halo region AHB are the same.
  • the impurity concentration of the halo region AHS is higher than the impurity concentration of the halo region AHB
  • the impurity concentration of the halo region DHS is the impurity concentration of the halo region DHE. It becomes higher than the concentration. Thereby, both the read margin and the write margin can be increased.
  • Embodiment 11 a semiconductor device including an SRAM memory cell called a vertical cell will be described.
  • the impurity concentration of the halo region AHS on the side connected to the storage nodes SN and / SN among the pair of halo regions HR is set to the bit lines BL and / BL. Is set higher than the impurity concentration of the halo region AHB on the side connected to.
  • the impurity concentration of the halo region DHT on the side connected to the storage nodes SN and / SN and the halo region on the side connected to the ground wiring VSS is set to the same impurity concentration.
  • the impurity concentration of the halo region DHT is set lower than the impurity concentration of the halo region AHB. Since the configuration other than this is the same as that of the equivalent circuit shown in FIG. 3, the same reference numerals are given to the same members, and the description thereof will not be repeated.
  • FIG. 140 is a plan view showing a layout of transistors constituting memory cells of the SRAM cell array and contacts connected to the transistors.
  • a region surrounded by a dotted line (thick line) constitutes one memory cell.
  • a halo region DHT is formed as the halo region of drive transistors DT1 and DT2. Since the configuration other than this is the same as the layout shown in FIG. 109, the same members are denoted by the same reference numerals, and the description thereof will not be repeated.
  • a halo region DHT is formed as a p-type halo region HR so as to be adjacent to the source / drain region SDS, and in the source / drain region SDE.
  • a halo region DHT is formed so as to be adjacent to each other. Since the configuration other than this is the same as the configuration shown in FIG. 110, the same members are denoted by the same reference numerals, and description thereof will not be repeated.
  • a predetermined photoengraving process is performed to form a resist mask RMH1 serving as an implantation mask for forming a halo region.
  • the resist mask RMH1 includes a side surface located on the side of the region S where the source / drain region electrically connected to the storage node is to be formed in the gate structure G to be the access gate electrodes AG1 and AG2, and the region S, a gate structure G to be the drive gate electrodes DG1 and DG2, and a region E in which a source / drain region electrically connected to the ground wiring is to be formed are exposed.
  • the resist mask RMH1 has a side surface located on the side of the region B where the source / drain region electrically connected to the bit line is to be formed in the gate structure G to be the access gate electrodes AG1, AG2. It is formed so as to cover the region B and the second element formation region FRP.
  • boron is implanted from a predetermined direction using the resist mask RMH1 as an implantation mask (halo implantation A).
  • resist mask RMH1 as an implantation mask
  • the p-type impurity region (not shown) is formed in the exposed region of the p-well PW. Thereafter, the resist mask RMH1 is removed.
  • a resist mask RMH2 serving as an implantation mask for forming the halo region is formed (implantation mask B).
  • the resist mask RMH2 is located in the element formation region FRNY among the gate structure G to be the access gate electrodes AG1 and AG2 and the region S in which the source / drain region electrically connected to the storage node is to be formed. A portion and a region B where a source / drain region electrically connected to the bit line is to be formed are exposed.
  • the resist mask RMH2 is electrically connected to the storage node and the gate structure G to be the drive gate electrodes DG1 and DG2, the region E in which source / drain regions electrically connected to the ground wiring are formed, and the storage node.
  • the region S is formed so as to cover the portion located in the element formation region FRNX and the second element formation region FRP.
  • boron is implanted from a predetermined direction using the resist mask RMH2 as an implantation mask (halo implantation B).
  • halo implantation B boron is implanted from a predetermined direction using the resist mask RMH2 as an implantation mask.
  • resist mask RMH2 as an implantation mask
  • the p-type impurity region (not shown) is formed in the exposed region of the p-well PW. Thereafter, the resist mask RMH2 is removed.
  • the injection conditions from directions E1, E2 (injection condition A), directions E3, E4 (injection condition B), directions E5, E6 (injection condition C), and directions E7, E8 (injection condition D) are the halo region DHT.
  • the impurity concentration of the halo region DHT is set to the same impurity concentration, and the impurity concentration of the halo region DHT is set to be lower than the impurity concentration of the halo region AHB.
  • a predetermined photoengraving process is performed to form a resist mask RME1 serving as an implantation mask for forming the halo region (implantation mask C).
  • the resist mask RME1 is formed so as to expose the NMIS region RN and cover the PMIS region RP.
  • phosphorus or the like is implanted using the resist mask RME1 as an implantation mask (extension implantation).
  • the resist mask RME1 as an implantation mask, for example, phosphorus or arsenic is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby extending a predetermined depth from the surface of the exposed p-well region.
  • An extension region ER is formed (see FIG. 141). Thereafter, the resist mask RME1 is removed.
  • a resist mask (not shown) that covers the NMIS region RN and exposes the PMIS region RP is formed (implantation mask D).
  • phosphorus or arsenic is implanted into the semiconductor substrate SUB, thereby forming a halo region (not shown) in the element formation region RP.
  • an extension region (not shown) is formed by implanting boron into the semiconductor substrate SUB. Thereafter, the resist mask is removed.
  • the impurity concentration of the halo region AHB of the access transistors AT1 and AT2 is set higher than the impurity concentration of the halo region DHT of the drive transistors DT1 and DT2.
  • the impurity concentration of the halo region DHT is lower than the impurity concentration of the halo region AHB, and the read speed can be improved in the read operation.
  • both the read margin and the write margin can be increased.
  • the photolithography mask for forming the halo region can be reduced as compared with the semiconductor device according to the comparative example.
  • Embodiment 12 Here, another example of a semiconductor device including SRAM memory cells called vertical cells will be described.
  • the impurity concentration of the halo region AHS connected to the storage nodes SN and / SN in the pair of halo regions HR is set to the bit lines BL and / BL. Is set higher than the impurity concentration of the halo region AHB on the side connected to.
  • the impurity concentration of the halo region DHT on the side connected to the storage nodes SN and / SN and the halo region on the side connected to the ground wiring VSS is set to the same impurity concentration.
  • the impurity concentration of the halo region DHT is set to be substantially the same as the impurity concentration of the halo region AHB. Since the configuration other than this is the same as that of the equivalent circuit shown in FIG. 3, the same reference numerals are given to the same members, and the description thereof will not be repeated.
  • FIG. 146 is a plan view showing a layout of transistors constituting memory cells of the SRAM cell array and contacts connected to the transistors. As shown in FIG. 146, a halo region DHT is formed as the halo region of drive transistors DT1 and DT2. Since the configuration other than this is the same as the layout shown in FIG. 109, the same members are denoted by the same reference numerals, and the description thereof will not be repeated.
  • FIG. 147 is a sectional view taken along a sectional line CXLVII-CXLVII passing through the gate electrode of the drive transistor DT1 and the access transistor AT1.
  • a halo region DHT is formed as a p-type halo region HR so as to be adjacent to the source / drain region SDS, and in the source / drain region SDE.
  • a halo region DHT is formed so as to be adjacent to each other. Since the configuration other than this is the same as the configuration shown in FIG. 110, the same members are denoted by the same reference numerals, and description thereof will not be repeated.
  • a method for manufacturing the semiconductor device described above will be described.
  • a resist mask RMH1 serving as an implantation mask for forming a halo region is formed.
  • the resist mask RMH1 includes a side surface located on the side of the region S where the source / drain region electrically connected to the storage node is to be formed in the gate structure G to be the access gate electrodes AG1 and AG2, and the region S is formed so as to expose a portion located in the element formation region FRNY.
  • the resist mask RMH1 has a side surface located on the side of the region B where the source / drain region electrically connected to the bit line is to be formed in the gate structure G to be the access gate electrodes AG1, AG2. It is formed so as to cover the region B and the element formation region FRP.
  • the resist mask RMH1 includes an element formation region FRNX among the gate structure G to be the drive gate electrodes DG1 and DG2, the region E in which the source / drain region to which the ground wiring is connected is formed, and the region S. It is formed so that the part located in may be covered.
  • boron is implanted from a predetermined direction using the resist mask RMH1 as an implantation mask (halo implantation A).
  • the p-type impurity region (not shown) is formed in the exposed region of the p-well PW. Thereafter, the resist mask RMH1 is removed.
  • a resist mask RMH2 serving as an implantation mask for forming the halo region is formed (implantation mask B).
  • the resist mask RMH2 is electrically connected to the bit structure, the gate structure G to be the access gate electrodes AG1, AG2, the region S in which the source / drain regions electrically connected to the storage node are formed, and the bit line.
  • the source / drain region is formed so as to expose the region B where the source / drain region is to be formed.
  • the resist mask RMH2 is formed so as to expose the gate structure G to be the drive gate electrodes DG1 and DG2 and the region E in which the source / drain regions electrically connected to the ground wiring are to be formed.
  • the resist mask RMH2 is formed so as to cover the element formation region FRP.
  • boron is implanted from a predetermined direction using the resist mask RMH2 as an implantation mask (halo implantation B).
  • the p-type impurity region (not shown) is formed in the exposed region of the p-well PW.
  • the injection conditions from directions E1, E2 (injection condition A), directions E3, E4 (injection condition B), directions E5, E6 (injection condition C), and directions E7, E8 (injection condition D) are the halo region DHT.
  • the impurity concentration of the halo region DHT is set to the same impurity concentration, and the impurity concentration of the halo region DHT and the impurity concentration of the halo region AHB are set to the same impurity concentration.
  • phosphorus or the like is implanted (extension implantation) using the resist mask RMH2 (resist mask RME1) as an implantation mask (implantation mask B).
  • resist mask RME1 resist mask
  • phosphorus or arsenic is implanted into the semiconductor substrate SUB from a direction perpendicular to the main surface of the semiconductor substrate SUB, thereby exposing the exposed p-well region.
  • An extension region ER is formed from the surface to a predetermined depth (see FIG. 147). Thereafter, the resist mask RME1 is removed.
  • a resist mask (not shown) that covers the NMIS region RN and exposes the PMIS region RP is formed (implantation mask C).
  • phosphorus or arsenic is implanted into the semiconductor substrate SUB, thereby forming a halo region (not shown) in the element formation region RP.
  • an extension region (not shown) is formed by implanting boron into the semiconductor substrate SUB. Thereafter, the resist mask is removed.
  • copper wiring CW1 is formed as the first metal wiring (see FIG. 147). Thereafter, a multilayer wiring structure is formed on the copper wiring CW1, and the main part of the SRAM memory cell is formed.
  • the impurity concentration of the halo region AHB of the access transistors AT1 and AT2 and the impurity concentration of the halo region DHT of the drive transistors DT1 and DT2 are set to substantially the same impurity concentration. Yes.
  • the impurity concentration of the halo region DHT is lower than the impurity concentration of the halo region AHB.
  • both the read margin and the write margin can be increased.
  • the photolithography mask for forming the halo region can be reduced as compared with the semiconductor device according to the comparative example.
  • the present invention is effectively used for a semiconductor device having SRAM memory cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Ceramic Engineering (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Semiconductor Memories (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 SRAMメモリセルにおけるアクセスゲート電極(AG1)の直下の領域では、ソース・ドレイン領域(SDS)に隣接するようにハロ領域(AHS)が形成され、ソース・ドレイン領域(SDB)に隣接するようにハロ領域(AHB)が形成されている。ドライブゲート電極(DG1)の直下の領域では、ソース・ドレイン領域(SDS)に隣接するようにハロ領域(DHS)が形成され、ソース・ドレイン領域(SDE)に隣接するようにハロ領域(DHE)が形成されている。ハロ領域(AHS)の不純物濃度はハロ領域(AHB)の不純物濃度よりも高く、ハロ領域(DHS)の不純物濃度はハロ領域(DHE)の不純物濃度よりも高く設定されている。ハロ領域(AHB)の不純物濃度とハロ領域(DHE)の不純物濃度とは異なる。

Description

半導体装置およびその製造方法
 本発明は半導体装置およびその製造方法に関し、特に、SRAMメモリセルを備えた半導体装置と、そのような半導体装置の製造方法とに関するものである。
 半導体装置の一形態に、SOC(System On Chip)と称される半導体装置がある。この種の半導体装置では、複数のロジック回路およびメモリセル等が1つのチップに搭載されている。ここで、そのような半導体装置のメモリセルとして、SRAM(Static Random Access Memory)を適用した半導体装置について説明する。
 SRAMメモリセルは、2つのインバータをクロスカップリングさせたフリップフロップと、2つのアクセストランジスタとにより構成される。フリップフロップには、クロスカップリングさせた2つのストレージノードが設けられている。2つのストレージノードでは、一方のストレージノードの電位がハイレベルとされ、他方のストレージノードの電位がローレベルに設定された双安定状態が存在する。所定の電源電位が印加されている限り、その状態が保持されて、その状態が情報としての「1」または「0」として記憶されることになる。
 一般的な6つのトランジスタを備えたSRAMメモリセルでは、ストレージノードと接地電位との間にドライブトランジスタが接続され、ストレージノードと電源電位との間にロードトランジスタが接続されている。また、ストレージノードとビット線との間にアクセストランジスタが接続されている。データの書き込みと読み出しは、アクセストランジスタを介して行われる。
 読み出しマージンを確保するため、データを読み出す際にはアクセストランジスタのしきい値電圧を高くして、アクセストランジスタの電流に対するドライブトランジスタの電流の比(β比)を高くすることが求められる。一方、書き込みマージンを確保するために、データを書き込む際にはアクセストランジスタのしきい値電圧を低くして、ロードトランジスタの電流に対するアクセストランジスタの電流の比(γ比)を高くすることが求められる。
 このような要求に応えるアクセストランジスタとして、非特許文献1あるいは非特許文献2に記載されたSRAMメモリセルでは、しきい値電圧を調整するために、1対のハロ(Halo)領域の不純物濃度を非対称としたアクセストランジスタが提案されている。すなわち、1対のハロ(Halo)領域のうち、ストレージノードに接続されている側のハロ領域の不純物濃度を、ビット線に接続されている側のハロ領域の不純物濃度よりも高くしたアクセストランジスタが提案されている。なお、ハロ領域とは、微細化されるトランジスタにおいて、ショートチャネル効果を抑制するために形成される不純物領域である。また、ハロ領域を形成するイオン注入は、ポケット注入とも称される。一方、非特許文献3では、SRAMを構成するトランジスタのしきい値電圧のばらつきを抑えるためのレイアウトが提案されている。
Jae-Joon Kim, Aditya Bansal, Rahul Rao, Shih-Hsien Lo, and Ching-Te Chuang, "Relaxing Conflict Between Read Stability and Writability in 6T SRAM Cell Using Asymmetric Transistors", IEEE ELECTRON DEVICE LETTERS, VOL.30, NO.8, AUGUST 2009. Koji Nii et al., "A 0.5V 100MHz PD-SOI SRAM with Enhanced Read Stability and Write Margin by Asymmetric MOSFET and Forward Body Bias", Solid-State Circuits Conference Digest of Technical Papers(ISSCC), Feb. 2010, pp.356-357. Shigeki Ohbayashi et al., "A 65-nm SoC Embedded 6T-SRAM Designed for Manufacturability With Read and Write Operation Stabilizing Circuits", IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL.42, No.4, APRIL 2007, pp.820-829.
 しかしながら、上述したアクセストランジスタを備えたSRAMでは、次のような問題点があった。
 ハロ領域は、アクセストランジスタの他に、ドライブトランジスタやロードトランジスタにも形成される。ドライブトランジスタおよびロードトランジスタにそれぞれ形成される1対のハロ領域の不純物濃度は同じ不純物濃度(対称)とされる。アクセストランジスタとドライブトランジスタとしてNMIS(N channel type metal Insulator Semiconductor)トランジスタが形成され、そのハロ領域はp型の不純物領域として形成される。一方、ロードトランジスタとしてPMIS(P channel type metal Insulator Semiconductor)トランジスタが形成され、そのハロ領域はn型の不純物領域として形成される。
 上述したSRAM(メモリセル)では、アクセストランジスタ、ドライブトランジスタおよびロードトランジスタのそれぞれに対して、それぞれ不純物濃度が同じ1対のハロ領域を形成するために、注入マスクとして3つのレジストマスクが形成される。そして、アクセストランジスタに対しては、1対のハロ領域のうちの一方のハロ領域の不純物濃度を他方のハロ領域の不純物濃度よりも高くするために、注入マスクとして、さらに1つのレジストマスクが形成される。こうして、従来のSRAMを備えた半導体装置では、SRAMメモリセルをなす各トランジスタのハロ領域を形成するために、少なくとも4つの注入マスクが必要とされる。
 本発明は、従来のSRAMを備えた半導体装置に対して改善を提案するものであり、その1つの目的は、注入マスクの低減が図られる半導体装置を提供することであり、他の目的は、そのような半導体装置の製造方法を提供することである。
 本発明の一実施の形態に係る半導体装置は、スタティックランダムアクセスメモリを有する半導体装置であって、ストレージノードと、ビット線対と、接地配線と、第1素子形成領域および第2素子形成領域と、アクセストランジスタと、ドライブトランジスタと有している。ストレージノードは、データを記憶する第1ストレージノードおよび第2ストレージノードを含む。ビット線対は、データの入出力を行う。接地配線には接地電位が印加される。第1素子形成領域および第2素子形成領域は、半導体基板の主表面における所定の領域に素子分離絶縁膜によってそれぞれ規定されている。アクセストランジスタは、第1素子形成領域に形成され、互いに距離を隔てられた第1導電型の第1ソース・ドレイン領域および第2ソース・ドレイン領域、ならびに、第1ソース・ドレイン領域と第2ソース・ドレイン領域とによって挟まれた領域上に位置するアクセスゲート電極を含む。ドライブトランジスタは、第1素子形成領域に形成され、互いに距離を隔てられた第1導電型の第3ソース・ドレイン領域および第4ソース・ドレイン領域、ならびに、第3ソース・ドレイン領域と第4ソース・ドレイン領域とによって挟まれた領域上に位置するドライブゲート電極を含む。アクセストランジスタは、第1不純物濃度を有する第2導電型の第1ハロ領域と、第2不純物濃度を有する第2導電型の第2ハロ領域とを備えている。第1ハロ領域は、アクセスゲート電極の直下の領域において、ビット線対の所定のビット線に電気的に接続されている第1ソース・ドレイン領域に隣接するように形成されている。第2ハロ領域は、アクセスゲート電極の直下の領域において、ストレージノードに電気的に接続されている第2ソース・ドレイン領域に隣接するように形成されている。ドライブトランジスタは、第3不純物濃度を有する第2導電型の第3ハロ領域と、第4不純物濃度を有する第2導電型の第4ハロ領域とを備えている。第3ハロ領域は、ドライブゲート電極の直下の領域において、ストレージノードに電気的に接続されている第3ソース・ドレイン領域に隣接するように形成されている。第4ハロ領域は、ドライブゲート電極の直下の領域において、接地配線に電気的に接続されている第4ソース・ドレイン領域に隣接するように形成されている。第2不純物濃度は第1不純物濃度よりも高く設定されている。第3不純物濃度は第4不純物濃度よりも高く設定されている。第1不純物濃度と第4不純物濃度とは異なる不純物濃度に設定されている(請求項1)。
 本発明に係る他の実施の形態に係る半導体装置は、スタティックランダムアクセスメモリを有する半導体装置であって、ストレージノードと、第1ビット線対および第2ビット線対と、接地配線と、第1素子形成領域および第2素子形成領域と、第1アクセストランジスタと、ドライブトランジスタと、第2アクセストランジスタとを有している。ストレージノードは、データを記憶する第1ストレージノードおよび第2ストレージノードを含む。第1ビット線対および第2ビット線対は、データの入出力をそれぞれ行う。接地配線には接地電位が印加される。第1素子形成領域および第2素子形成領域は、半導体基板の主表面における所定の領域に素子分離絶縁膜によってそれぞれ規定されている。第1アクセストランジスタは、第1素子形成領域に形成され、互いに距離を隔てられた第1導電型の第1ソース・ドレイン領域および第2ソース・ドレイン領域、ならびに、第1ソース・ドレイン領域と第2ソース・ドレイン領域とによって挟まれた領域上に位置する第1アクセスゲート電極を含む。ドライブトランジスタは、第1素子形成領域に形成され、互いに距離を隔てられた第1導電型の第3ソース・ドレイン領域および第4ソース・ドレイン、ならびに、第3ソース・ドレイン領域と第4ソース・ドレインとによって挟まれた領域上に位置するドライブゲート電極を含む。第2アクセストランジスタは、第1素子形成領域に形成され、互いに距離を隔てられた第1導電型の第5ソース・ドレインおよび第6ソース・ドレイン、ならびに、第5ソース・ドレインと第6ソース・ドレインとによって挟まれた領域上に位置する第2アクセスゲート電極を含む。第1アクセストランジスタは、第1不純物濃度を有する第2導電型の第1ハロ領域と、第2不純物濃度を有する第2導電型の第2ハロ領域とを備えている。第1ハロ領域は、第1アクセスゲート電極の直下の領域において、第1ビット線対の所定のビット線に電気的に接続されている第1ソース・ドレイン領域に隣接するように形成されている。第2ハロ領域は、第1アクセスゲート電極の直下の領域において、ストレージノードに電気的に接続されている第2ソース・ドレイン領域に隣接するように形成されている。ドライブトランジスタは、第3不純物濃度を有する第2導電型の第3ハロ領域と、第4不純物濃度を有する第2導電型の第4ハロ領域とを備えている。第3ハロ領域は、ドライブゲート電極の直下の領域において、ストレージノードに電気的に接続されている第3ソース・ドレイン領域に隣接するように形成されている。第4ハロ領域は、ドライブゲート電極の直下の領域において、接地配線に電気的に接続されている第4ソース・ドレインに隣接するように形成されている。第2アクセストランジスタは、第5不純物濃度を有する第2導電型の第5ハロ領域と、第6不純物濃度を有する第2導電型の第6ハロ領域とを備えている。第5ハロ領域は、第2アクセスゲート電極の直下の領域において、第2ビット線対の所定のビット線に電気的に接続されている第5ソース・ドレインに隣接するように形成されている。第6ハロ領域は、第2アクセスゲート電極の直下の領域において、ストレージノードに電気的に接続されている第6ソース・ドレインに隣接するように形成されている。第2不純物濃度は、第1不純物濃度よりも高く設定されている。第3不純物濃度は、第4不純物濃度よりも高く設定されている。第1不純物濃度と第4不純物濃度とは異なる不純物濃度に設定されている。第5不純物濃度は第6不純物濃度よりも低く設定されている(請求項4)。
 本発明に係るさらに他の実施の形態に係る半導体装置は、スタティックランダムアクセスメモリを有する半導体装置であって、ストレージノードと、第1ビット線対および第2ビット線対と、接地配線と、第1素子形成領域および第2素子形成領域と、第1アクセストランジスタと、第1ドライブトランジスタと、第2アクセストランジスタと、第2ドライブトランジスタとを有している。ストレージノードは、データを記憶する第1ストレージノードおよび第2ストレージノードを含む。第1ビット線対および第2ビット線対は、データの入出力をそれぞれ行う。接地配線には接地電位が印加される。第1素子形成領域および第2素子形成領域は、半導体基板の主表面における所定の領域に素子分離絶縁膜によってそれぞれ規定されている。第1アクセストランジスタは、第1素子形成領域に形成され、互いに距離を隔てられた第1導電型の第1ソース・ドレイン領域および第2ソース・ドレイン領域、ならびに、第1ソース・ドレイン領域と第2ソース・ドレイン領域とによって挟まれた領域上に位置する第1アクセスゲート電極を含む。第1ドライブトランジスタは、第1素子形成領域に形成され、互いに距離を隔てられた第1導電型の第3ソース・ドレイン領域および第4ソース・ドレイン、ならびに、第3ソース・ドレイン領域と第4ソース・ドレインとによって挟まれた領域上に位置する第1ドライブゲート電極を含む。第2アクセストランジスタは、第1素子形成領域に形成され、互いに距離を隔てられた第1導電型の第5ソース・ドレインおよび第6ソース・ドレイン、ならびに、第5ソース・ドレインと第6ソース・ドレインとによって挟まれた領域上に位置する第2アクセスゲート電極を含む。第2ドライブトランジスタは、第1素子形成領域に形成され、互いに距離を隔てられた第1導電型の第7ソース・ドレインおよび第8ソース・ドレイン、ならびに、第7ソース・ドレインと第8ソース・ドレインとによって挟まれた領域上に位置する第2ドライブゲート電極を含む。第1アクセストランジスタは、第1不純物濃度を有する第2導電型の第1ハロ領域と、第2不純物濃度を有する第2導電型の第2ハロ領域とを備えている。第1ハロ領域は、第1アクセスゲート電極の直下の領域において、第1ビット線対の所定のビット線に電気的に接続されている第1ソース・ドレイン領域に隣接するように形成されている。第2ハロ領域は、アクセスゲート電極の直下の領域において、ストレージノードに電気的に接続されている第2ソース・ドレイン領域に隣接するように形成されている。第1ドライブトランジスタは、第3不純物濃度を有する第2導電型の第3ハロ領域と、第4不純物濃度を有する第2導電型の第4ハロ領域とを備えている。第3ハロ領域は、第1ドライブゲート電極の直下の領域において、ストレージノードに電気的に接続されている第3ソース・ドレイン領域に隣接するように形成されている。第4ハロ領域は、第1ドライブゲート電極の直下の領域において、接地配線に電気的に接続されている第4ソース・ドレインに隣接するように形成されている。第2アクセストランジスタは、第5不純物濃度を有する第2導電型の第5ハロ領域と、第6不純物濃度を有する第2導電型の第6ハロ領域とを備えている。第5ハロ領域は、第2アクセスゲート電極の直下の領域において、第2ビット線対の所定のビット線に電気的に接続されている第5ソース・ドレインに隣接するように形成されている。第6ハロ領域は、第2アクセスゲート電極の直下の領域において、ストレージノードに電気的に接続されている第6ソース・ドレインに隣接するように形成されている。第2ドライブトランジスタは、第7不純物濃度を有する第2導電型の第7ハロ領域と、第8不純物濃度を有する第2導電型の第8ハロ領域とを備えている。第7ハロ領域は、第2ドライブゲート電極の直下の領域において、ストレージノードに電気的に接続されている第7ソース・ドレインに隣接するように形成されている。第8ハロ領域は、第2ドライブゲート電極の直下の領域において、接地配線に電気的に接続されている第8ソース・ドレインに隣接するように形成されている。第2不純物濃度は、第1不純物濃度よりも高く設定されている。第3不純物濃度は、第4不純物濃度よりも高く設定されている。第1不純物濃度と第4不純物濃度とは異なる不純物濃度に設定されている。第5不純物濃度は第6不純物濃度よりも低く設定されている。第7不純物濃度は第8不純物濃度よりも高く設定されている(請求項8)。
 本発明に係るさらに他の実施の形態に係る半導体装置は、スタティックランダムアクセスメモリを有する半導体装置であって、ストレージノードと、第1ビット線対と、読み出しビット線と、接地配線と、第1素子形成領域および第2素子形成領域と、第1アクセストランジスタと、第1ドライブトランジスタと、第2ドライブトランジスタと、第2アクセストランジスタとを有している。ストレージノードは、データを記憶する第1ストレージノードおよび第2ストレージノードを含む。第1ビット線対は、データの入出力を行う。読み出しビット線は、データの出力を行う。接地配線には接地電位が印加される。第1素子形成領域および第2素子形成領域は、半導体基板の主表面における所定の領域に素子分離絶縁膜によってそれぞれ規定されている。第1アクセストランジスタは、第1素子形成領域に形成され、互いに距離を隔てられた第1導電型の第1ソース・ドレイン領域および第2ソース・ドレイン領域、ならびに、第1ソース・ドレイン領域と第2ソース・ドレイン領域とによって挟まれた領域上に位置する第1アクセスゲート電極を含む。第1ドライブトランジスタは、第1素子形成領域に形成され、互いに距離を隔てられた第1導電型の第3ソース・ドレイン領域および第4ソース・ドレイン、ならびに、第3ソース・ドレイン領域と第4ソース・ドレインとによって挟まれた領域上に位置する第1ドライブゲート電極を含む。第2ドライブトランジスタは、第1素子形成領域に形成され、互いに距離を隔てられた第1導電型の第5ソース・ドレインおよび第6ソース・ドレイン、ならびに、第5ソース・ドレインと第6ソース・ドレインとによって挟まれた領域上に位置する第2ドライブゲート電極を含む。第2アクセストランジスタは、第1素子形成領域に形成され、互いに距離を隔てられた第1導電型の第7ソース・ドレインおよび第8ソース・ドレイン、ならびに、第7ソース・ドレインと第8ソース・ドレインとによって挟まれた領域上に位置する第2アクセスゲート電極を含む。第1アクセストランジスタは、第1不純物濃度を有する第2導電型の第1ハロ領域と、第2不純物濃度を有する第2導電型の第2ハロ領域とを備えている。第1ハロ領域は、第1アクセスゲート電極の直下の領域において、第1ビット線対の所定のビット線に電気的に接続されている第1ソース・ドレイン領域に隣接するように形成されている。第2ハロ領域は、第1アクセスゲート電極の直下の領域において、ストレージノードに電気的に接続されている第2ソース・ドレイン領域に隣接するように形成されている。第1ドライブトランジスタは、第3不純物濃度を有する第2導電型の第3ハロ領域と、第4不純物濃度を有する第2導電型の第4ハロ領域とを備えている。第3ハロ領域は、第1ドライブゲート電極の直下の領域において、ストレージノードに電気的に接続されている第3ソース・ドレイン領域に隣接するように形成されている。第4ハロ領域は、第1ドライブゲート電極の直下の領域において、接地配線に電気的に接続されている第4ソース・ドレインに隣接するように形成されている。第2ドライブトランジスタは、第5不純物濃度を有する第2導電型の第5ハロ領域と、第6不純物濃度を有する第2導電型の第6ハロ領域とを備えている。第5ハロ領域は、第2ドライブゲート電極の直下の領域において、接地配線に電気的に接続されている第5ソース・ドレインに隣接するように形成されている。第6ハロ領域は、第2ドライブゲート電極の直下の領域において、ストレージノードに電気的に接続されている第6ソース・ドレインに隣接するように形成されている。第2アクセストランジスタは、第7不純物濃度を有する第2導電型の第7ハロ領域と、第8不純物濃度を有する第2導電型の第8ハロ領域とを備えている。第7ハロ領域は、第2アクセスゲート電極の直下の領域において、ストレージノードに電気的に接続されている第7ソース・ドレインに隣接するように形成されている。第8ハロ領域は、第2アクセスゲート電極の直下の領域において、読み出しビット線に電気的に接続されている第8ソース・ドレインに隣接するように形成されている。第2不純物濃度は、第1不純物濃度よりも高く設定されている。第3不純物濃度は、第4不純物濃度よりも高く設定されている。第1不純物濃度と第4不純物濃度とは異なる不純物濃度に設定されている。第5不純物濃度と第6不純物濃度とは同じ不純物濃度に設定されている。第7不純物濃度と第8不純物濃度とは同じ不純物濃度に設定されている(請求項10)。
 本発明に係るさらに他の実施の形態に係る半導体装置は、スタティックランダムアクセスメモリを有する半導体装置であって、ストレージノードと、ビット線対と、接地配線と、第1素子形成領域および第2素子形成領域と、アクセストランジスタと、ドライブトランジスタとを有している。ストレージノードは、データを記憶する第1ストレージノードおよび第2ストレージノードを含む。ビット線対は、データの入出力を行う。接地配線には、接地電位が印加される。第1素子形成領域および第2素子形成領域は、半導体基板の主表面における所定の領域に素子分離絶縁膜によってそれぞれ規定されている。アクセストランジスタは、第1素子形成領域に形成され、互いに距離を隔てられた第1導電型の第1ソース・ドレイン領域および第2ソース・ドレイン領域、ならびに、第1ソース・ドレイン領域と第2ソース・ドレイン領域とによって挟まれた領域上に、第1方向に沿って位置するアクセスゲート電極を含む。ドライブトランジスタは、第1素子形成領域に形成され、互いに距離を隔てられた第1導電型の第3ソース・ドレイン領域および第4ソース・ドレイン、ならびに、第3ソース・ドレイン領域と第4ソース・ドレインとによって挟まれた領域上に、第1方向と交差する第2方向に沿って位置するドライブゲート電極を含む。アクセストランジスタは、第1不純物濃度を有する第2導電型の第1ハロ領域と、第2不純物濃度を有する第2導電型の第2ハロ領域とを備えている。第1ハロ領域は、アクセスゲート電極の直下の領域において、ビット線対の所定のビット線に電気的に接続されている第1ソース・ドレイン領域に隣接するように形成されている。第2ハロ領域は、アクセスゲート電極の直下の領域において、ストレージノードに電気的に接続されている第2ソース・ドレイン領域に隣接するように形成されている。ドライブトランジスタは、第3不純物濃度を有する第2導電型の第3ハロ領域と、第4不純物濃度を有する第2導電型の第4ハロ領域とを備えている。第3ハロ領域は、ドライブゲート電極の直下の領域において、ストレージノードに電気的に接続されている第3ソース・ドレイン領域に隣接するように形成されている。第4ハロ領域は、ドライブゲート電極の直下の領域において、接地配線に電気的に接続されている第4ソース・ドレインに隣接するように形成されている。第2不純物濃度は、第1不純物濃度よりも高く設定されている。第3不純物濃度と第4不純物濃度とは同じ不純物濃度に設定されている。第3不純物濃度および第4不純物濃度は、第1不純物濃度と同じ不純物濃度か、第1不純物濃度よりも低く設定されている(請求項11)。
 本発明のさらに他の実施の形態に係る半導体装置の製造方法は、スタティックランダムアクセスメモリを有する半導体装置の製造方法であって、以下の工程を備えている。半導体基板の主表面に素子分離絶縁膜を形成することにより、第1導電型のトランジスタが形成されるべき第1素子形成領域および第2導電型のトランジスタが形成されるべき第2素子形成領域をそれぞれ規定する。第1素子形成領域において、互いに距離を隔てられた、ビット線対の所定のビット線に電気的に接続される第1ソース・ドレイン領域が形成されることになる第1領域と、ストレージノードに電気的に接続される第2ソース・ドレイン領域が形成されることになる第2領域との間に挟まれた領域上に、アクセスゲート構造を形成するとともに、互いに距離を隔てられた、ストレージノードに電気的に接続される第3ソース・ドレイン領域が形成されることになる第3領域と、接地配線に電気的に接続される第4ソース・ドレイン領域が形成されることになる第4領域との間に挟まれた領域上に、ドライブゲート構造を形成する。アクセスゲート構造における、第2領域の側に位置する第1側面を露出するとともに、第2領域、ドライブゲート構造、第3領域および第4領域を露出し、アクセスゲート構造における、第1領域の側に位置する第2側面、第1領域および第2素子形成領域を覆う第1ハロ注入マスクを形成する。第1ハロ注入マスクを介して、露出した半導体基板の領域に対し、主表面に垂直な方向から傾斜した角度をもって、第2導電型の第1不純物を注入する。ドライブゲート構造における、第3領域の側に位置する第1側面を露出するとともに、第3領域、アクセスゲート構造、第1領域および第2領域を露出し、ドライブゲート構造における、第4領域の側に位置する第2側面、第4領域および第2素子形成領域を覆う第2ハロ注入マスクを形成する。第2ハロ注入マスクを介して、露出した半導体基板の領域に対し、主表面に垂直な方向から傾斜した角度をもって、第2導電型の第2不純物を注入する。第1導電型の不純物を注入することにより、第1ソース・ドレイン領域、第2ソース・ドレイン領域、第3ソース・ドレイン領域および第4ソース・ドレイン領域を形成する。第2導電型の第1不純物を注入し、第2導電型の第2不純物を注入し、第1ソース・ドレイン領域~第4ソース・ドレイン領域を形成することにより、アクセスゲート構造の直下の領域では、第1ソース・ドレイン領域に隣接するように、第1不純物濃度を有する第2導電型の第1ハロ領域が形成されるとともに、第2ソース・ドレイン領域に隣接するように、第1不純物濃度よりも高い第2不純物濃度を有する第2導電型の第2ハロ領域が形成される。また、ドライブゲート構造の直下の領域では、第3ソース・ドレイン領域に隣接するように、第3不純物濃度を有する第2導電型の第3ハロ領域が形成されるとともに、第4ソース・ドレイン領域に隣接するように、第3不純物濃度よりも低く第1不純物濃度とは異なる第4不純物濃度を有する第2導電型の第4ハロ領域が形成される(請求項12)。
 本発明のさらに他の実施の形態に係る半導体装置の製造方法は、スタティックランダムアクセスメモリを有する半導体装置の製造方法であって、以下の工程を備えている。半導体基板の主表面に素子分離絶縁膜を形成することにより、第1導電型のトランジスタが形成されるべき第1素子形成領域および第2導電型のトランジスタが形成されるべき第2素子形成領域をそれぞれ規定する。第1素子形成領域において、互いに距離を隔てられた、第1ビット線対の所定のビット線に電気的に接続される第1ソース・ドレイン領域が形成されることになる第1領域と、ストレージノードに電気的に接続される第2ソース・ドレイン領域が形成されることになる第2領域との間に挟まれた領域上に、第1アクセスゲート構造を形成する。互いに距離を隔てられた、ストレージノードに電気的に接続される第3ソース・ドレイン領域が形成されることになる第3領域と、接地配線に電気的に接続される第4ソース・ドレイン領域が形成されることになる第4領域との間に挟まれた領域上に、第1ドライブゲート構造を形成する。互いに距離を隔てられた、第1ビット線対とは異なる第2ビット線対の所定のビット線に電気的に接続される第5ソース・ドレイン領域が形成されることになる第5領域と、ストレージノードに電気的に接続される第6ソース・ドレイン領域が形成されることになる第6領域との間に挟まれた領域上に、第2アクセスゲート構造を形成する。第1アクセスゲート構造における、第2領域の側に位置する第1側面、第2領域、第1ドライブゲート構造、第3領域、第4領域、第2アクセスゲート構造における、第6領域の側に位置する第1側面および第6領域を露出し、第1アクセスゲート構造における、第1領域の側に位置する第2側面、第1領域、第2アクセスゲート構造における、第5領域の側に位置する第2側面、第5領域および第2素子形成領域を覆う第1ハロ注入マスクを形成する。第1ハロ注入マスクを介して、露出した半導体基板の領域に対し、主表面に垂直な方向から傾斜した角度をもって、第2導電型の第1不純物を注入する。第1ドライブゲート構造における、第3領域の側に位置する第1側面、第3領域、第1アクセスゲート構造、第1領域、第2領域、第2アクセスゲート構造、第5領域、第6領域を露出し、第1ドライブゲート構造における、第4領域の側に位置する第2側面、第4領域および第2素子形成領域を覆う第2ハロ注入マスクを形成する。第2ハロ注入マスクを介して、露出した半導体基板の領域に対し、主表面に垂直な方向から傾斜した角度をもって、第2導電型の第2不純物を注入する。第1導電型の不純物を注入することにより、第1ソース・ドレイン領域、第2ソース・ドレイン領域、第3ソース・ドレイン領域、第4ソース・ドレイン領域、第5ソース・ドレイン領域および第6ソース・ドレイン領域を形成する。第2導電型の第1不純物を注入し、第2導電型の第2不純物を注入し、第1ソース・ドレイン領域~第6ソース・ドレイン領域を形成することにより、第1アクセスゲート構造の直下の領域では、第1ソース・ドレイン領域に隣接するように、第1不純物濃度を有する第2導電型の第1ハロ領域が形成されるとともに、第2ソース・ドレイン領域に隣接するように、第1不純物濃度よりも高い第2不純物濃度を有する第2導電型の第2ハロ領域が形成される。また、第1ドライブゲート構造の直下の領域では、第3ソース・ドレイン領域に隣接するように、第3不純物濃度を有する第2導電型の第3ハロ領域が形成されるとともに、第4ソース・ドレイン領域に隣接するように、第3不純物濃度よりも低く第1不純物濃度とは異なる第4不純物濃度を有する第2導電型の第4ハロ領域が形成さる。さらに、第2アクセスゲート構造の直下の領域では、第5ソース・ドレイン領域に隣接するように、第5不純物濃度を有する第2導電型の第5ハロ領域が形成されるとともに、第6ソース・ドレイン領域に隣接するように、第5不純物濃度よりも高い第6不純物濃度を有する第2導電型の第6ハロ領域が形成される(請求項15)。
 本発明のさらに他の実施の形態に係る半導体装置の製造方法は、スタティックランダムアクセスメモリを有する半導体装置の製造方法であって、以下の工程を備えている。半導体基板の主表面に素子分離絶縁膜を形成することにより、第1導電型のトランジスタが形成されるべき第1素子形成領域および第2導電型のトランジスタが形成されるべき第2素子形成領域をそれぞれ規定する。第1素子形成領域において、互いに距離を隔てられた、ビット線対の所定のビット線に電気的に接続される第1ソース・ドレイン領域が形成されることになる第1領域と、ストレージノードに電気的に接続される第2ソース・ドレイン領域が形成されることになる第2領域との間に挟まれた領域上に、第1方向に沿ってアクセスゲート構造を形成する。互いに距離を隔てられた、ストレージノードに電気的に接続される第3ソース・ドレイン領域が形成されることになる第3領域と、接地配線に電気的に接続される第4ソース・ドレイン領域が形成されることになる第4領域との間に挟まれた領域上に、第1方向と交差する第2方向に沿ってドライブゲート構造を形成する。アクセスゲート構造における、第2領域の側に位置する第1側面、第2領域、ドライブゲート構造における、第3領域の側に位置する第1側面および第3領域を露出する開口部を有し、アクセスゲート構造における、第1領域の側に位置する第2側面、第1領域、ドライブゲート構造における、第4領域の側に位置する第2側面、第4領域および第2素子形成領域を覆う第1ハロ注入マスクを形成する。第1ハロ注入マスクを介して、開口部に露出した半導体基板の領域に対し、主表面に垂直な方向から傾斜した角度をもって、第1方向の一方と他方とから、および、第2方向の一方と他方とから、それぞれ第2導電型の第1不純物を注入する。アクセスゲート構造、第1領域、第2領域、ドライブゲート構造、第3領域および第4領域を露出し、第2素子形成領域を覆う第2ハロ注入マスクを形成する。第2ハロ注入マスクを介して、露出した半導体基板の領域に対し、主表面に垂直な方向から傾斜した角度をもって、第1方向の一方と他方とから、および、第2方向の一方と他方とから、それぞれ第2導電型の第2不純物を注入する。第1導電型の不純物を注入することにより、第1ソース・ドレイン領域、第2ソース・ドレイン領域、第3ソース・ドレイン領域および第4ソース・ドレイン領域を形成する。第2導電型の第1不純物を注入し、第2導電型の第2不純物を注入し、第1ソース・ドレイン領域~第4ソース・ドレイン領域を形成することにより、アクセスゲート構造の直下の領域では、第1ソース・ドレイン領域に隣接するように、第1不純物濃度を有する第2導電型の第1ハロ領域が形成されるとともに、第2ソース・ドレイン領域に隣接するように、第1不純物濃度よりも高い第2不純物濃度を有する第2導電型の第2ハロ領域が形成される。また、ドライブゲート構造の直下の領域では、第3ソース・ドレイン領域に隣接するように、第3不純物濃度を有する第2導電型の第3ハロ領域が形成されるとともに、第4ソース・ドレイン領域に隣接するように、第3不純物濃度よりも低い第4不純物濃度を有する第2導電型の第4ハロ領域が形成される(請求項21)。
 本発明の各実施の形態に係る半導体装置によれば、第1ハロ領域~第4ハロ領域を含むハロ領域を形成するためのマスクを低減することができる。また、読み出しマージンと書き込みマージンの双方を向上させることができる。
 本発明の各実施の形態に係る半導体装置の製造方法によれば、第1ハロ領域~第4ハロ領域を含むハロ領域を形成するためのマスクを低減することができる。
本発明の実施の形態1に係る、SRAMを備えた半導体装置の配置関係の一例を示す平面図である。 同実施の形態において、図1に示す点線枠内のSRAMメモリセルの構成を示す平面図である。 同実施の形態において、SRAMメモリセルの等価回路を示す図である。 同実施の形態において、SRAMメモリセルの配置パターンを示す平面図である。 同実施の形態において、図4に示す断面線V-Vにおける断面図である。 同実施の形態において、各トランジスタと第1金属配線との接続構造を示す平面図である。 同実施の形態において、第1金属配線と第2金属配線との接続構造を示す平面図である。 同実施の形態において、第2金属配線と第3金属配線との接続構造を示す平面図である。 同実施の形態において、アクセストランジスタを示す部分拡大断面図である。 同実施の形態において、アクセストランジスタのハロ領域の不純物濃度プロファイルを示すグラフである。 同実施の形態において、半導体装置の製造方法の一工程を示す断面図である。 同実施の形態において、図11に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図12に示す断面線XIII-XIIIにおける断面図である。 同実施の形態において、図13に示す工程の後に行われる工程を示す断面図である。 同実施の形態において、図14に示す工程の後に行われる工程を示す断面図である。 同実施の形態において、図15に示す工程の後に行われる工程を示す断面図である。 同実施の形態において、図16に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図17に示す工程の後に行われる工程を示す断面図であり、図17に示す断面線XVIII-XVIIIに対応する断面線における断面図である。 同実施の形態において、図18に示す工程の後に行われる工程を示す断面図である。 同実施の形態において、図19に示す工程が終了した時点でのボロンの注入の様子を示す平面図である。 同実施の形態において、図19に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図21に示す工程の後に行われる工程を示す断面図であり、図21に示す断面線XXII-XXIIに対応する断面線における断面図である。 同実施の形態において、図22に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図23に示す工程の後に行われる工程を示す断面図であり、図21に示す断面線XXII-XXIIに対応する断面線における断面図である。 同実施の形態において、図24に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図25に示す工程の後に行われる工程を示す断面図であり、図25に示す断面線XXVI-XXVIに対応する断面線における断面図である。 同実施の形態において、図26に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図27に示す工程の後に行われる工程を示す断面図である。 同実施の形態において、図28に示す工程の後に行われる工程を示す断面図であり、図25に示す断面線XXVI-XXVIに対応する断面線における断面図である。 同実施の形態において、図29に示す工程の後に行われる工程を示す断面図である。 同実施の形態において、図30に示す工程の後に行われる工程を示す断面図である。 同実施の形態において、SRAMメモリセルにおける読み出し動作時における電流の流れと、書き込み動作時における電流の流れを示す図である。 同実施の形態において、アクセストランジスタのハロ領域の不純物濃度およびドライブトランジスタのそれぞれのハロ領域の不純物濃度の高低関係の一例を示すグラフである。 同実施の形態において、アクセストランジスタまたはドライブトランジスタを流れる電流を示す図である。 同実施の形態において、アクセストランジスタまたはドライブトランジスタにおけるゲート電圧に対する電流特性を示すグラフである。 同実施の形態において、アクセストランジスタとドライブトランジスタを流れる電流の大小関係を示すグラフである。 比較例に係る半導体装置におけるSRAMメモリセルの配置パターンを示す平面図である。 比較例に係る半導体装置の製造方法の一工程を示す平面図である。 図38に示す工程の後に行われる工程を示す平面図である。 図39に示す工程の後に行われる工程を示す平面図である。 図40に示す工程の後に行われる工程を示す平面図である。 本発明の実施の形態2に係る第1例の半導体装置におけるSRAMメモリセルの等価回路を示す図である。 同実施の形態において、SRAMメモリセルの配置パターンを示す平面図である。 同実施の形態において、図43に示す断面線XLIV-XLIVにおける断面図である。 同実施の形態において、各トランジスタと第1金属配線との接続構造を示す平面図である。 同実施の形態において、第1金属配線と第2金属配線との接続構造を示す平面図である。 同実施の形態において、第2金属配線と第3金属配線との接続構造を示す平面図である。 同実施の形態において、第1例の半導体装置の製造方法の一工程を示す平面図である。 同実施の形態において、図48に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図49に示す工程の後に行われる工程を示す平面図である。 本発明の実施の形態2に係る第2例の半導体装置におけるSRAMメモリセルの配置パターンを示す図である。 同実施の形態において、図51に示す断面線LII-LIIにおける断面図である。 同実施の形態において、各トランジスタと第1金属配線との接続構造を示す平面図である。 同実施の形態において、第1金属配線と第2金属配線との接続構造を示す平面図である。 同実施の形態において、第2金属配線と第3金属配線との接続構造を示す平面図である。 同実施の形態において、第2例の半導体装置の製造方法の一工程を示す平面図である。 同実施の形態において、図56に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図57に示す工程の後に行われる工程を示す平面図である。 本発明の実施の形態2に係る第3例の半導体装置におけるSRAMメモリセルの等価回路を示す図である。 同実施の形態において、SRAMメモリセルの配置パターンを示す平面図である。 同実施の形態において、図60に示す断面線LXI-LXIにおける断面図である。 同実施の形態において、各トランジスタと第1金属配線との接続構造を示す平面図である。 同実施の形態において、第1金属配線と第2金属配線との接続構造を示す平面図である。 同実施の形態において、第2金属配線と第3金属配線との接続構造を示す平面図である。 同実施の形態において、第2例の半導体装置の製造方法の一工程を示す平面図である。 同実施の形態において、図65に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図66に示す工程の後に行われる工程を示す平面図である。 本発明の実施の形態3に係る半導体装置におけるSRAMメモリセルの配置パターンを示す平面図である。 同実施の形態において、図68に示す断面線LXIX-LXIXにおける断面図である。 同実施の形態において、各トランジスタと第1金属配線との接続構造を示す平面図である。 同実施の形態において、第1金属配線と第2金属配線との接続構造を示す平面図である。 同実施の形態において、第2金属配線と第3金属配線との接続構造を示す平面図である。 同実施の形態において、半導体装置の製造方法の一工程を示す平面図である。 同実施の形態において、図73に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図74に示す工程の後に行われる工程を示す平面図である。 本発明の実施の形態4に係る半導体装置におけるSRAMメモリセルの等価回路を示す図である。 同実施の形態において、SRAMメモリセルの配置パターンを示す平面図である。 同実施の形態において、図77に示す断面線LXXVIII-LXXVIIIにおける断面図である。 同実施の形態において、図77に示す断面線LXXIX-LXXIXにおける断面図である。 同実施の形態において、半導体装置の製造方法の一工程を示す平面図である。 同実施の形態において、図80に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図81に示す工程の後に行われる工程を示す平面図である。 本発明の実施の形態5に係る半導体装置におけるSRAMメモリセルの配置パターンを示す平面図である。 同実施の形態において、半導体装置の製造方法の一工程を示す平面図である。 同実施の形態において、図84に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図85に示す工程の後に行われる工程を示す平面図である。 本発明の実施の形態6に係る半導体装置におけるSRAMメモリセルの等価回路を示す図である。 同実施の形態において、SRAMメモリセルの配置パターンを示す平面図である。 同実施の形態において、図88に示す断面線LXXXIX-LXXXIXにおける断面図である。 同実施の形態において、半導体装置の製造方法の一工程を示す平面図である。 同実施の形態において、図90に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図91に示す工程の後に行われる工程を示す平面図である。 本発明の実施の形態7に係る半導体装置におけるSRAMメモリセルの等価回路を示す図である。 同実施の形態において、半導体装置の製造方法の一工程を示す平面図である。 同実施の形態において、図94に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図95に示す工程の後に行われる工程を示す平面図である。 本発明の実施の形態8に係る第1例の半導体装置におけるSRAMメモリセルの等価回路を示す図である。 同実施の形態において、SRAMメモリセルの配置パターンを示す平面図である。 同実施の形態において、図98に示す断面線XCIX-XCIXにおける断面図である。 同実施の形態において、第1例の半導体装置の製造方法の一工程を示す平面図である。 同実施の形態において、図100に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図101に示す工程の後に行われる工程を示す平面図である。 本発明の実施の形態8に係る第2例の半導体装置におけるSRAMメモリセルの等価回路を示す図である。 同実施の形態において、第2例の半導体装置の製造方法の一工程を示す平面図である。 同実施の形態において、図104に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図105に示す工程の後に行われる工程を示す平面図である。 本発明の実施の形態9に係る半導体装置におけるSRAMメモリセルのレイアウトを示す図である。 同実施の形態において、SRAMメモリセルの等価回路を示す図である。 同実施の形態において、SRAMメモリセルの配置パターンを示す平面図である。 同実施の形態において、図109に示す断面線CX-CXにおける断面図である。 同実施の形態において、各トランジスタと第1金属配線との接続構造を示す平面図である。 同実施の形態において、第1金属配線と第2金属配線との接続構造を示す平面図である。 同実施の形態において、第2金属配線と第3金属配線との接続構造を示す平面図である。 同実施の形態において、半導体装置の製造方法の一工程を示す断面図である。 同実施の形態において、図114に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図115に示す工程の後に行われる工程を示す断面図であり、図115に示す断面線CXVI-CXVIに対応する断面線における断面図である。 同実施の形態において、図116に示す工程の後に行われる工程を示す断面図であり、図115に示す断面線CXVI-CXVIに対応する断面線における断面図である。 同実施の形態において、図117に示す工程の後に行われる工程を示す断面図であり、図115に示す断面線CXVI-CXVIに対応する断面線における断面図である。 同実施の形態において、図118に示す工程の後に行われる工程を示す断面図であり、図115に示す断面線CXVI-CXVIに対応する断面線における断面図である。 同実施の形態において、図119に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図120に示す工程の後に行われる工程を示す断面図であり、図120に示す断面線CXXI-CXXIに対応する断面線における断面図である。 同実施の形態において、図121に示す工程の後に行われる工程を示す断面図であり、図120に示す断面線CXXI-CXXIに対応する断面線における断面図である。 同実施の形態において、図122に示す工程の後に行われる工程を示す断面図であり、図120に示す断面線CXXI-CXXIに対応する断面線における断面図である。 同実施の形態において、図123に示す工程の後に行われる工程を示す断面図であり、図120に示す断面線CXXI-CXXIに対応する断面線における断面図である。 同実施の形態において、図124に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図125に示す工程の後に行われる工程を示す断面図であり、図125に示す断面線CXXVI-CXXVIに対応する断面線における断面図である。 同実施の形態において、図126に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図127に示す工程の後に行われる工程を示す断面図であり、図127に示す断面線CXXVIII-CXXVIIIに対応する断面線における断面図である。 同実施の形態において、図128に示す工程の後に行われる工程を示す断面図である。 同実施の形態において、図129に示す工程の後に行われる工程を示す断面図である。 同実施の形態において、図130に示す工程の後に行われる工程を示す断面図である。 本発明の実施の形態10に係る半導体装置におけるSRAMメモリセルの配置パターンを示す平面図である。 同実施の形態において、図132に示す断面線CXXXIII-CXXXIIIにおける断面図である。 同実施の形態において、各トランジスタと第1金属配線との接続構造を示す平面図である。 同実施の形態において、第1金属配線と第2金属配線との接続構造を示す平面図である。 同実施の形態において、半導体装置の製造方法の一工程を示す平面図である。 同実施の形態において、図136に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図137に示す工程の後に行われる工程を示す平面図である。 本発明の実施の形態11に係る半導体装置におけるSRAMメモリセルの等価回路を示す図である。 同実施の形態において、SRAMメモリセルの配置パターンを示す平面図である。 同実施の形態において、図140に示す断面線CXLI-CXLIにおける断面図である。 同実施の形態において、半導体装置の製造方法の一工程を示す平面図である。 同実施の形態において、図142に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図143に示す工程の後に行われる工程を示す平面図である。 本発明の実施の形態12に係る半導体装置におけるSRAMメモリセルの等価回路を示す図である。 同実施の形態において、SRAMメモリセルの配置パターンを示す平面図である。 同実施の形態において、図146に示す断面線CXLVII-CXLVIIにおける断面図である。 同実施の形態において、半導体装置の製造方法の一工程を示す平面図である。 同実施の形態において、図148に示す工程の後に行われる工程を示す平面図である。 同実施の形態において、図149に示す工程の後に行われる工程を示す平面図である。
 実施の形態1
 まず、メモリセルとしてSRAMを適用したSOCと称される半導体装置の一例について説明する。図1に示すように、半導体装置SCDでは、マイクロコントロールユニット、アナログデジタル変換器、デジタルアナログ変換器、バスコントローラなど、それぞれ特定の機能を実現する複数のロジック回路LC、そのロジック回路のいくつかに接続されてデータを一時記憶するSRAM部SR等が1つのチップに搭載されている。ロジック回路LCおよびSRAM部SRを取り囲むように、IO領域IOが形成されている。図2に示すように、SRAM部SRは、行列状に配置された複数のメモリセルを有したSRAMメモリセルアレイMA、XデコーダXD、YデコーダYD、センスアンプSA、ライトドライバWDおよび主制御回路MCを備えている。
 次に、SRAMメモリセルの等価回路について説明する。図3に示すように、SRAMメモリセルは、2つのインバータをクロスカップリングさせたフリップフロップと、2つのアクセストランジスタAT1,AT2とにより構成される。フリップフロップには、クロスカップリングさせた2つのストレージノードSN,/SNが設けられている。アクセストランジスタAT1,AT2は、ストレージノードSN,/SNとビット線BL,/BLとの間に接続されている。アクセストランジスタAT1,AT2のゲートは、ワード線WLに接続されている。
 フリップフロップでは、ストレージノードSN,/SNと接地配線(VSS)との間にドライブトランジスタDT1,DT2が接続されている。また、ストレージノードSN,/SNと電源配線(VDD)との間にロードトランジスタLT1,LT2が接続されている。ドライブトランジスタDT1のゲート、ロードトランジスタLT1のゲートおよびストレージノード/SNが互いに電気的に接続されている。また、ドライブトランジスタDT2のゲート、ロードトランジスタLT2のゲートおよびストレージノードSNが互いに電気的に接続されている。
 データの読み出しおよび書き込み前には、ビット線BL、/BLはともにHレベルにプリチャージされる。たとえば、ストレージノードSN、/SNにそれぞれHレベル、Lレベルを記憶するメモリセルにおいて、データを読み出す際には、オンしているドライブトランジスタDT2がビット線/BLにチャージされた電荷をアクセストランジスタAT2を介して引き抜き、ビット線/BLの電位を下げる。図示しないセンスアンプがビット線/BLの電圧低下を検知する。また、同メモリセルのデータを書き換える際には、図示しないライトドライバがHレベルにチャージされたビット線BLおよびアクセストランジスタAT1を介してストレージノードN1にチャージされた電荷を引き抜く動作を行う。
[規則91に基づく訂正 15.05.2013] 
 本半導体装置の複数のSRAMメモリセルのそれぞれにおいて、アクセストランジスタAT1,AT2では、それぞれに形成される1対のハロ領域HRのうち、ストレージノードSN,/SNに接続されているソース・ドレイン領域に隣接するハロ領域AHSの不純物濃度が、ビット線BL,/BLに接続されているソース・ドレイン領域に隣接するハロ領域AHBの不純物濃度よりも高く設定されている。また、ドライブトランジスタDT1,DT2では、それぞれに形成される1対のハロ領域HRのうち、ストレージノードSN,/SNに接続されているソース・ドレイン領域に隣接するハロ領域DHSの不純物濃度が、接地配線(VSS)に接続されているソース・ドレイン領域に隣接するハロ領域DHEの不純物濃度よりも高く設定されている。さらに、ハロ領域AHBの不純物濃度とハロ領域DHEの不純物濃度とは、異なる不純物濃度に設定され、ここでは、ハロ領域DHEの不純物濃度がハロ領域AHBの不純物濃度よりも低く設定されている。
 次に、SRAMメモリセルの構造について説明する。図4は、SRAMセルアレイのメモリセルを構成するトランジスタおよびそのトランジスタに接続するコンタクトのレイアウトを示す平面図である。この平面図において、点線で囲まれる領域のそれぞれが一つのSRAMメモリセルを構成する。各SRAMメモリセルのトランジスタおよびコンタクトは、その隣接するメモリセルと鏡面対称に配置される。代表的にSRAMメモリセルMA1は、アクセストランジスタAT1,AT2、ドライブトランジスタDT1,DT2およびロードトランジスタLT1,LT2を有する。
 半導体基板SUBの主表面では、素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離された素子形成領域FRN,FRPが規定されている。素子形成領域FRNはNMIS領域RNに形成されている。素子形成領域FRNには、nチャネル型のMISトランジスタとして、アクセストランジスタAT1,AT2とドライブトランジスタDT1,DT2が形成されている。素子形成領域FRPはPMIS領域RPに形成されている。素子形成領域FRPには、pチャネル型のMISトランジスタとして、ロードトランジスタLT1,LT1が形成されている。
 アクセストランジスタAT1,AT2のアクセスゲート電極AG1,AG2と、ドライブトランジスタDT1,DT2のドライブゲート電極DG1,DG2は、素子形成領域FRNを横切るように形成されている。ロードトランジスタLT1,LT2のロードゲート電極LG1,LG2は、素子形成領域FRPを横切るように形成されている。また、アクセスゲート電極AG1,AG2、ドライブゲート電極DG1,DG2およびロードゲート電極LG1,LG2は、いずれも一方向に延在するように形成されている。
 図5は、図4において互いに隣接するSRAMメモリセルMA1、MA2のドライブトランジスタDT1、アクセストランジスタAT1を通る断面線V-Vに沿った断面図である。図5に示すように、ストレージノードに電気的に接続(コンタクトSNC)されているn型のソース・ドレイン領域SDSが形成されている領域Sと、ビット線に電気的に接続(コンタクトBLC)されているn型のソース・ドレイン領域SDBが形成されている領域Bとによって挟まれた領域上に、アクセストランジスタAT1のアクセスゲート電極AG1が形成されている。アクセスゲート電極AG1の直下の領域では、p型のハロ領域HRとして、ソース・ドレイン領域SDSに隣接するようにハロ領域AHSが形成され、また、ソース・ドレイン領域SDBに隣接するようにハロ領域AHBが形成されている。
 また、接地配線に電気的に接続(コンタクトVSSC)されているn型のソース・ドレイン領域SDEが形成されている領域Eと、ストレージノードに電気的に接続(コンタクトSNC)されているn型のソース・ドレイン領域SDSが形成されている領域Sとによって挟まれた領域上に、ドライブトランジスタDT1のドライブゲート電極DG1が形成されている。ドライブゲート電極DG1の直下の領域では、p型のハロ領域HRとして、ソース・ドレイン領域SDSに隣接するようにハロ領域DHSが形成され、また、ソース・ドレイン領域SDEに隣接するようにハロ領域DHEが形成されている。
 各ソース・ドレイン領域SDには、その表面から所定の深さにわたりエクステンション領域ERが形成され、さらに、金属シリサイド膜SCLが形成されている。アクセスゲート電極AG1およびドライブゲート電極DG1等を覆うように、シリコン窒化膜等のストレスライナー膜SLが形成されている。そのストレスライナー膜SLを覆うように、シリコン酸化膜(たとえばTEOS(Tetra Ethyl Ortho Silicate)膜)等の層間絶縁膜IL1が形成されている。層間絶縁膜IL1およびストレスライナー膜SLを貫通して金属シリサイド膜SCL(ソース・ドレイン領域SD)に電気的に接続されるプラグPGが形成されている。プラグPGは、TiN膜等のバリア金属膜BA1とタングステン膜TL1を含んでいる。
 ソース・ドレイン領域SDEに位置する金属シリサイド膜SCLに電気的に接続されるプラグPGは、コンタクトVSSCを構成する。また、ソース・ドレイン領域SDSに位置する金属シリサイド膜SCLに電気的に接続されるプラグPGは、コンタクトSNC(またはストレージノード)を構成する。そして、ソース・ドレイン領域SDBに位置する金属シリサイド膜SCLに電気的に接続されるプラグPGは、コンタクトBLCを構成する。
 プラグPGを覆うように、層間絶縁膜IL1上にシリコン窒化膜等のエッチングストッパ膜ESが形成されている。そのエッチングストッパ膜ES上にシリコン酸化膜等の層間絶縁膜IL2が形成されている。層間絶縁膜IL2およびエッチングストッパ膜ESを貫通してプラグPGに電気的に接続される銅配線CW1が形成されている。銅配線CW1はTaN膜等のバリア金属膜BA2と銅膜CL1とを含み、第1金属配線を構成する。図5では図示されていないが、第1金属配線より上層にさらに多層の金属配線が形成される。
 次に、各トランジスタを電気的に接続する多層配線構造について説明する。図6は、トランジスタと第1金属配線との接続構造を示す平面図である。図7は、第1金属配線と第2金属配線との接続構造を示す平面図である。図8は、第2金属配線と第3金属配線との接続構造を示す平面図である。図6~図8は、1つのメモリセルに対する多層配線構造を示すものであるが、その隣接するSRAMメモリセル上の多層配線構造は、図6~図8と鏡面対称に配線パターンが形成されるので、SRAMメモリセルMA1について主に説明する。
 アクセストランジスタAT1の1対のソース・ドレイン領域SDの一方(ソース・ドレイン領域SDB)は、コンタクトBLC(プラグPG)、第1金属配線BLM1(銅配線CW1)およびヴィアBLV1を介して、ビット線BLとしての第2金属配線BLM2に電気的に接続されている。アクセストランジスタAT1の1対のソース・ドレイン領域SDの他方(ソース・ドレイン領域SDS)は、コンタクトSNC(プラグPG)、第1金属配線SNM1(銅配線CW1)およびコンタクトLGCを介して、ロードトランジスタLT1の1対のソース・ドレイン領域の一方と、ロードトランジスタLT2のロードゲート電極LG2と、ドライブトランジスタDT2のドライブゲート電極DG2とに、それぞれ電気的に接続されている。
 また、アクセストランジスタAT1の1対のソース・ドレイン領域の他方(ソース・ドレイン領域SDS)は、ドライブトランジスタDT1の1対のソース・ドレイン領域の一方(ソース・ドレイン領域SDS)に電気的に接続されている。アクセストランジスタAT1のアクセスゲート電極AG1は、コンタクトWLC(プラグPG)、第1金属配線WLM1(銅配線CW1)、ヴィアBLV1、第2金属配線WLM2およびヴィアWLV2を介して、ワード線WLとしての第3金属配線WLM3に電気的に接続されている。
 ドライブトランジスタDT1の1対のソース・ドレイン領域の他方(ソース・ドレイン領域SDE)は、コンタクトVSSC(プラグPG)、第1金属配線VSSM1(銅配線CW1)、ヴィアVSSV1、第2金属配線VSSM2およびヴィアVSSV2を介して、接地電位が与えられる接地配線VSSとしての第3金属配線VSSM3に電気的に接続されている。ロードトランジスタLT1の1対のソース・ドレイン領域の他方は、コンタクトVDDC、第1金属配線VDDM1(銅配線CW1)およびヴィアVDDV1を介して、電源配線VDDとしての第2金属配線VDDM2に電気的に接続されている。
 アクセストランジスタAT2の1対のソース・ドレイン領域の一方は、コンタクト/BLC(プラグPG)、第1金属配線/BLM1(銅配線CW1)およびヴィア/BLV1を介して、ビット線/BLとしての第2金属配線/BLM2に電気的に接続されている。アクセストランジスタAT2の1対のソース・ドレイン領域の他方は、コンタクト/SCN(プラグPG)、第1金属配線/SNM1およびコンタクト/LGCを介して、ロードトランジスタLT2の1対のソース・ドレイン領域の一方と、ロードトランジスタLT1のロードゲート電極LG1と、ドライブトランジスタDT1のドライブゲート電極DG1とに、それぞれ電気的に接続されている。また、アクセストランジスタAT2の1対のソース・ドレイン領域の他方は、ドライブトランジスタDT2の1対のソース・ドレイン領域の一方に電気的に接続されている。
 アクセストランジスタAT2のアクセスゲート電極AG2は、コンタクトWLC、第1金属配線WLM1(銅配線CW1)、ヴィアWLV1、第2金属配線WLM2およびヴィアWLV2を介して、ワード線WLとしての第3金属配線WLM3に電気的に接続されている。ドライブトランジスタDT2の1対のソース・ドレイン領域の他方は、コンタクトVSSC(プラグPG)、第1配線VSSM1(銅配線CW1)、ヴィアVSSV1、第2金属配線VSSM2およびヴィアVSSV2を介して、接地電位が与えられる接地配線VSSとしての第3金属配線VSSM3に電気的に接続されている。ロードトランジスタLT2の1対のソース・ドレイン領域の他方は、コンタクトVDDC、第1金属配線VDDM1(銅配線CW1)およびヴィアVDDV1を介して、電源電位が与えられる電源配線Vddとしての第2金属配線VDDM2に電気的に接続されている。
 こうして、SRAMメモリセルMA1では、コンタクトWLCにはワード線WLが接続される。コンタクトVSSCには接地配線VSSが接続される。コンタクトVDDCには電源配線VDDが接続される。コンタクトBLCにはビット線BLが接続され、コンタクト/BLCにはビット線/BLが接続される。また、コンタクトSNCがストレージノードSNを構成し、コンタクト/SNCがストレージノード/SNを構成する。
 また、SRAMメモリセルMA1に隣接するSRAMメモリセルMA2では、コンタクトSNCはSRAMメモリセルMA2のストレージノードSNを構成する。コンタクトVSSCには接地配線VSSが接続される。ビット線BLに接続されるコンタクトBLCはSRAMメモリセルMA1とSRAMメモリセルMA2とで共有される。
 次に、アクセストランジスタの構造について詳しく説明する。なお、断面構造として、図4に示す断面線V-Vに対応する断面線に沿った断面構造を示す。図9に示すように、素子形成領域FRN(図4参照)を横切るように形成されたアクセストランジスタAT1(AT2)のアクセスゲート電極AG1は、SiON等の界面層(Inter Layer)SF上に、それぞれLaを含有したHfO2、HfSiONなど所定の誘電率を有するHigh-k膜HK、TiNなど所定の仕事関数を有する金属膜MLおよびポリシリコン膜PSを積層させる態様で形成され、ポリシリコン膜PSの表面にはさらにニッケルシリサイド等の金属シリサイド膜SCLが形成されている。
 アクセスゲート電極AG1(AG2)の両側面上には、たとえばシリコン窒化膜等のオフセットスペーサOSが形成されている。そのオフセットスペーサOSの上には、シリコン酸化膜SOとシリコン窒化膜SNIからなるサイドウォールスペーサSWが形成されている。
 アクセスゲート電極AG1(AG2)を挟んで、アクセスゲート電極AG1(AG1)が延在する方向と直交(ゲート長方向)する一方の素子形成領域の部分には、ハロ領域AHS、エクステンション領域ER、ソース・ドレイン領域SDおよび金属シリサイド膜SCLが形成されている。一方、アクセスゲート電極AG1(AG1)が延在する方向と直交する他方の素子形成領域の部分には、ハロ領域AHB、エクステンション領域ER、ソース・ドレイン領域SDおよび金属シリサイド膜SCLが形成されている。
 図9に示すように、ハロ領域AHS,AHBは、一対のソース・ドレイン領域SDの互いに対向する部分にそれぞれ隣接した領域にあり、サイドウォールスペーサSWの直下の領域からアクセスゲート電極AG1(AG2)の直下の領域に達するように形成されている。ハロ領域HRの不純物濃度は1×1018/cm3~1×1019/cm3のオーダであるが、本半導体装置では、ハロ領域AHSの不純物濃度は、ハロ領域AHBの不純物濃度よりも高く設定されている。
 図10に、ハロ領域の不純物濃度プロファイルを示す。横軸は、アクセスゲート電極AG1(AG2)の側面下端部の半導体基板の表面の部分からの深さ(矢印F1,F2)を示し、縦軸はP型不純物の不純物濃度を示す。ハロ領域AHS,AHBでは、アクセスゲート電極AG1(AG2)の側面下端部の半導体基板の表面の部分において、ハロ領域AHSの不純物濃度は、ハロ領域AHBの不純物濃度よりも高い。また、それぞれ表面から所定の深さf1、f2において不純物濃度のピーク(極大値)が最初に現れる。ハロ領域AHSの不純物濃度のピークは、ハロ領域AHBの不純物濃度のピークよりも高く、ハロ領域AHSでは約6×1018/cm3であり、ハロ領域AHBでは約5×1018/cm3である。なお、SRAMメモリセルのエクステンション領域ER(図5、図9参照)の不純物濃度は5×1020/cm3~1×1021/cm3であり、ソース・ドレイン領域SD(図5、図9参照)の不純物濃度は約5×1021/cm3である。
 上述したように、本半導体装置では、ハロ領域として、アクセスゲート電極AG1,AG2の直下の領域に形成されるハロ領域AHS,AHBの他に、ドライブゲート電極DG1の直下の領域に形成されるハロ領域DHS,DHEがある(図5参照)。ハロ領域DHS,DHEでは、ハロ領域DHSの不純物濃度が、ハロ領域DHEの不純物濃度よりも高く設定されている。また、ハロ領域DHSの不純物濃度は、ハロ領域AHBの不純物濃度よりも高く設定され、ハロ領域DHEの不純物濃度は、ハロ領域AHBの不純物濃度よりも低く設定されている。後述するように、本半導体装置では、ハロ領域AHS,AHB,DHS,DHEのそれぞれの不純物濃度が当該高低関係を有することで、読み出しマージンおよび書き込みマージンの双方を上げることができる。
 次に、上述した半導体装置の製造方法について説明する。半導体装置には、SRAM回路の他にロジック回路等も含まれるが、ここでは、SRAMメモリセルのアクセストランジスタおよびドライブトランジスタを形成する方法を中心に説明する。
 まず、半導体基板SUBの主表面に素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離される素子形成領域FRN,FRPが規定される(図4参照)。次に、図11に示すように、素子形成領域FRNにpウェルPWが形成される。次に、半導体基板SUBの表面上に、界面層SFを介在させて、所定の誘電率を有するHigh-k膜HK、所定の仕事関数を有する金属膜MLおよびポリシリコン膜PSを積層させる態様で、アクセスゲート電極AG1となるゲート構造Gと、ドライブゲート電極DG1となるゲート構造Gが形成される。次に、ゲート構造Gを覆うように半導体基板SUB上に、たとえばシリコン窒化膜(図示せず)が形成される。次に、そのシリコン窒化膜に異方性エッチングを施すことにより、ゲート構造Gの両側面にオフセットスペーサOSが形成される。
 次に、図12および図13に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH1が形成される(注入マスクA)。レジストマスクRMH1は、SRAMメモリセル領域MA1(図4参照)では、アクセスゲート電極AG1(AG2)となるゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sの側に位置する側面と、その領域Sと、ドライブゲート電極DG1(DG2)となるゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eとを、開口パターンによって露出するように形成される。
 一方、レジストマスクRMH1は、アクセスゲート電極AG1となるゲート構造Gにおける、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bの側に位置する側面と、その領域Bとを覆うように形成される。
 また、レジストマスクRMH1は、SRAMメモリセルMA2(図4参照)では、アクセスゲート電極AG1(AG2)となるゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sが配置されている側に位置する側面と、その領域Sと、ドライブゲート電極DG1(DG2)となるゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eとを、開口パターンによって露出するように形成される。
 すなわち、レジストマスクRMH1の個々の開口部は、互いに隣接する2つのSRAMメモリセルMA1,MA2等を跨いで形成され、一方のSRAMメモリセルMA1のアクセスゲート電極となるゲート構造Gにおける、領域Sの側に位置する側面から、他方のSRAMメモリセルMA2のアクセスゲート電極となるゲート構造Gにおける、領域Sの側に位置する側面までの領域を連続的に露出する。
 一方、レジストマスクRMH1は、SRAMメモリセルMA1のアクセスゲート電極となるゲート構造Gにおける、領域Bの側に位置する側面から、SRAMメモリセルMA2のアクセスゲート電極となるゲート構造における、領域Bの側に位置する側面までの領域を覆うとともに、PMIS領域RPを覆うように形成される。
 次に、図14に示すように、レジストマスクRMH1を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜め(θ=約7度)に注入することにより、露出したpウェルPWの領域にp型不純物領域PIR1が形成される。次に、図15に示すように、同じレジストマスクRMH1を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜め(θ=約7度)に注入することにより、露出したpウェルPWの領域にp型不純物領域PIR2が形成される(ハロ注入A)。なお、図14に示す工程の注入と図15に示す工程の注入では、同じ注入量および同じ注入エネルギーをもってボロンが注入される。
 次に、図16に示すように、レジストマスクRMH1が除去される。このとき、素子形成領域FRNにおける領域Bには、不純物領域は形成されていない。次に、図17に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH2が形成される(注入マスクB)。
 レジストマスクRMH2は、一つのSRAMメモリセル領域では、ドライブゲート電極DG1(DG2)となるゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sが配置されている側に位置する側面と、その領域Sと、アクセスゲート電極AG1(AG2)となるゲート構造Gと、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bとを、開口パターンによって露出するように形成される。
 一方、レジストマスクRMH2は、ドライブゲート電極DG1となるゲート構造Gにおける、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eが配置されている側に位置する側面と、その領域Eと、素子形成領域FRPとを覆うように形成される。
 次に、図18に示すように、レジストマスクRMH2を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜め(θ=約7度)に注入することにより、露出した領域pウェルPWの領域にp型不純物領域PIR3が形成される。次に、図19に示すように、同じレジストマスクRMH2を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜め(θ=約7度)に注入することにより、露出したpウェルPWの領域にp型不純物領域PIR4が形成される(ハロ注入B)。なお、図18に示す工程の注入と図19に示す工程の注入では、同じ注入量および同じ注入エネルギーをもってボロンが注入される。
 ハロ注入A(図14および図15)とハロ注入B(図18および図19)とにおいて、ここでは、ハロ領域(AHB)の不純物濃度がハロ領域(DHE)の不純物濃度よりも高くなるように、ハロ注入Bの注入量がハロ注入Aの注入量よりも高くように注入条件を設定する。なお、ハロ注入の注入量としては、ハロ領域(AHB)の不純物濃度とハロ領域(DHE)の不純物濃度とが異なってくるような注入量であればよく、ハロ注入Bの注入量がハロ注入Aの注入量よりも低くなるような注入条件に設定してもよい。
 こうして、図20に示すように、領域Bでは、p型不純物領域PIR3,PIR4が形成され、領域Eでは、p型不純物領域PIR1,PIR2が形成され、領域Sでは、p型不純物領域PIR1,PIR2,PIR3,PIR4が形成される。p型不純物領域PIR1,PIR2,PIR3,PIR4の一部がハロ領域となる。
 次に、図21に示すように、NMIS領域RNを露出し、PMIS領域RPを覆うレジストマスクRME1が形成される(注入マスクC)。次に、図22に示すように、そのレジストマスクRME1を注入マスクとして、たとえば、リンまたは砒素を、半導体基板SUBの主表面にほぼ垂直な方向から半導体基板SUB内に注入することにより、露出したpウェルPWの領域の表面から所定の深さにわたりエクステンション領域ERが形成される(エクステンション注入)。その後、レジストマスクRME1が除去される。なお、エクステンション注入は、ハロ注入Aおよびハロ注入Bよりも前に行うこともできる。
 次に、図23に示すように、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスクRME2が形成される(注入マスクD)。次に、素子形成領域FRNにハロ領域となるp型不純物領域PIR1,PIR2,PIR3,PIR4を形成する工程と同様にして、レジストマスクRME2を注入マスクとして、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から露出した半導体基板SUB内に注入することにより、素子形成領域FRPにハロ領域(図示せず)が形成される。次に、ボロンを、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、エクステンション領域(図示せず)が形成される。その後、レジストマスクRME2が除去される。
 次に、ゲート構造G(アクセスゲート電極AG1、AG2、ドライブゲート電極DG1、DG2等)を覆うように、たとえばシリコン酸化膜とシリコン窒化膜(図示せず)が順次形成される。次に、そのシリコン酸化膜とシリコン窒化膜に異方性エッチングを施すことにより、図24に示すように、ゲート構造Gの両側面上に、シリコン酸化膜SOとシリコン窒化膜SNIからなるサイドウォールスペーサSWが形成される。
 次に、図25に示すように、NMIS領域RNを露出し、PMIS領域RPを覆うレジストマスクRMSD1が形成される。次に、図26に示すように、レジストマスクRMSD1(図25)およびサイドウォールスペーサSW等を注入マスクとして、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、露出したpウェルPWの領域の表面から所定の深さにわたりソース・ドレイン領域SDが形成される。その後、レジストマスクRMSD1が除去される。
 次に、図27に示すように、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスクRMSD2が形成される。次に、レジストマスクRMSD2およびサイドウォールスペーサSW等を注入マスクとして、ボロンを、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、露出した素子形成領域FRPの表面から所定の深さにわたりソース・ドレイン領域(図示せず)が形成される。その後、レジストマスクRMSD2が除去される。
 次に、図28に示すように、所定のアニール処理を施すことにより、注入された不純物を熱拡散させることによって、ソース・ドレイン領域SD、エクステンション領域ERおよびハロ領域HRを活性化させる。このとき、不純物が熱拡散することで、ソース・ドレイン領域SD、エクステンション領域ERおよびハロ領域HRは、横方向と縦(深さ)方向に広がることになる。
 次に、図29に示すように、サリサイドプロセスにより、露出しているソース・ドレイン領域SDおよびアクセスゲート電極AG1およびドライブゲート電極DG1等のポリシリコン膜の表面に、たとえばニッケルシリサイド等の金属シリサイド膜SCLが形成される。次に、図30に示すように、アクセスゲート電極AG1およびドライブゲート電極DG1等を覆うように、たとえば、シリコン窒化膜等のストレスライナー膜SLが形成される。そのストレスライナー膜SLを覆うように、シリコン酸化膜(たとえばTEOS膜)等の層間絶縁膜IL1が形成される。
 次に、層間絶縁膜IL1に異方性エッチングを施すことにより、金属シリサイド膜SCLを露出するコンタクトホールCH(図31参照)が形成される。次に、コンタクトホールCHの内壁を覆うように、チタンナイトライド(TiN)等のバリア金属膜BA1(図31参照)が形成され、さらに、そのバリア金属膜BA1の上にコンタクトホールCH内を充填するようにタングステン膜TL1(図31参照)が形成される。次に、化学的機械研磨処理(CMP:Chemical Mechanical Polishing)を施すことにより、層間絶縁膜IL1の上面上に位置するバリア金属膜およびタングステン膜の部分が除去されて、図31に示すように、コンタクトホールCH内に、バリア金属膜BA1とタングステン膜TL1を含むプラグPGが形成される。
 次に、図5に示すように、プラグPGを覆うように、シリコン窒化膜等のエッチングストッパ膜ESが形成される。そのエッチングストッパ膜ES上に、シリコン酸化膜等の層間絶縁膜IL2が形成される。次に、プラグPGの表面を露出する溝が形成される。次に、溝の内壁を覆うように、たとえばタンタルナイトライド(TaN)等のバリア金属膜BA2が形成され、さらに、そのバリア金属膜BA2の上に溝内を充填するように銅膜CL1が形成される。次に、化学的機械研磨処理を施すことにより、層間絶縁膜IL2の上面上に位置するバリア金属膜および銅膜の部分が除去されて、溝内に、バリア金属膜BA2と銅膜CL1を含む銅配線CW1が形成される。銅配線CW1は、第1金属配線に対応する。
 この後、銅配線CW1を覆うように層間絶縁膜(図示せず)が形成される。その層間絶縁膜に、プラグPGを形成する方法と同様の方法によって、ヴィアVSSV1,WLV1,BLV1,VDDV1,/BLV1(図7参照)が形成される。次に、ヴィアVSSV1,WLV1,BLV1,VDDV1,/BLV1を覆うように、層間絶縁膜(図示せず)が形成される。その層間絶縁膜に、銅配線CW1を形成する方法と同様の方法によって、第2金属配線VSSM2,WLM2,BLM2,VDDM2,/BLM2(図7参照)が形成される。
 次に、第2金属配線VSSM2,WLM2,BLM2,VDDM2,/BLM2を覆うように、層間絶縁膜(図示せず)が形成される。その層間絶縁膜に、プラグPGを形成する方法と同様の方法によって、ヴィアVSSV2,WLV2(図8参照)が形成される。次に、ヴィアVSSV2,WLV2を覆うように、層間絶縁膜(図示せず)が形成される。その層間絶縁膜に、銅配線CW1を形成する方法と同様の方法によって、第3金属配線VSSM3,WLM3(図8参照)が形成される。こうして、SRAMメモリセルの主要部分が形成される。
 一般的に、SRAMメモリセルの読出しマージンを確保するためにはβ比を高くすることが望ましく、書込みマージンを確保するためにはγ比を高くすることが望ましいことが知られている。図32に示すように、読み出し動作においては、電流は、ビット線BL(/BL)からアクセストランジスタAT1(AT2)およびドライブトランジスタDT1(DT2)を経て接地配線へ流れる。一方、書き込み動作においては、電流は、電源配線からロードトランジスタLT1(LT2)およびアクセストランジスタAT1(AT2)を経てビット線BL(/BL)へ流れる。
 ここで、β比は、アクセストランジスタAT1(AT2)に対するドライブトランジスタDT1(DT2)の電流比(ただし、アクセストランジスタとドライブトランジスタとの間で、ソース対ゲート電圧およびソース対ドレイン電圧はともに同一)で表される。γ比は、ロードトランジスタLT1(LT2)に対するアクセストランジスタAT1(AT2)の電流比(アクセストランジスタとロードトランジスタとの間で、ソース対ゲート電圧およびソース対ドレイン電圧はともに同一)で表される。
 読出しマージンおよび書込みマージンの双方を確保する手段として、電流の流れる向きにより電流特性が異なるという非対称な性質をもつトランジスタをアクセストランジスタとドライブトランジスタに用いることが有効である。図33に示すように、本半導体装置では、1対のハロ領域AHS,AHBをもつアクセストランジスタAT1、AT2において、ハロ領域AHSの不純物濃度がハロ領域AHBの不純物濃度よりも高く設定されている。また、1対のハロ領域DHS,DHEをもつドライブトランジスタDT1,DT2において、ハロ領域DHSの不純物濃度がハロ領域DHEの不純物濃度よりも高く設定されている。さらに、本半導体装置では、ドライブトランジスタDT1,DT2のハロ領域DHEの不純物濃度は、アクセストランジスタAT1,AT2のハロ領域AHBの不純物濃度よりも低く設定されている。
 図34に示すように、アクセストランジスタAT1,AT2(ドライブトランジスタDT1,DT2)において、相対的に不純物濃度が高いハロ領域AHS(DHS)が形成された側に位置するソース・ドレイン領域から相対的に不純物濃度が低いハロ領域AHB(DHE)が形成された側に位置するソース・ドレイン領域に向かって流れる電流を電流IFとし、その逆方向に向かって流れる電流を電流IRとする。同一のソース対ドレイン電圧における、電流IF,IRとソース対ゲート電圧Vgsとの関係を図35に示す。
 図35に示すように、ハロ領域AHS(DHS)側のソース・ドレイン領域からハロ領域AHB(DHE)側のソース・ドレイン領域に電流が流れる際のトランジスタのしきい値電圧は、その逆のハロ領域AHB(DHE)側のソース・ドレイン領域からハロ領域AHS(DHS)側のソース・ドレイン領域に電流が流れる際のトランジスタのしきい値電圧よりも低くなる。
 図32および図33に示すように、上述した半導体装置のアクセストランジスタAT1(AT2)では、不純物濃度が相対的に高いハロ領域AHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域AHBがビット線BL(/BL)側に形成されている。また、ドライブトランジスタDT1(DT2)では、不純物濃度が相対的に高いハロ領域DHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域DHEが接地配線VSS側に形成されている。
 このため、図36に示すように、読出し動作においては、ビット線側からストレージノード側へ向かってアクセストランジスタに流れる電流(電流IRA)を抑えやすくすることができ、ストレージノード側から接地配線側へ向かってドライブトランジスタに流れる電流(電流IFD)を増加させやすくすることができる。これにより、β比(IFD/IRA)を高くすることができて、読み出しマージンを上げることができる。
[規則91に基づく訂正 15.05.2013] 
 また、書き込み動作においては、ストレージノード側からビット線側へ向かってアクセストランジスタに流れる電流(電流IFA)を増加させやすくすることができる。これにより、γ比(IFA/ロードトランジスタを流れる電流)を高くすることができて、書き込みマージンを上げることができる。こうして、上述した半導体装置では、読み出しマージンと書き込みマージンとの双方を上げることができる。
 さらに、ドライブトランジスタDT1,DT2を流れる電流は、読み出し動作時におけるストレージノード側から接地配線側へ向かって流れる電流だけである。このため、不純物濃度が相対的に高いハロ領域DHSをストレージノードSN(/SN)側に形成し、不純物濃度が相対的に低いハロ領域DHEを接地配線(VSS)側に形成することで、ドライブトランジスタDT1,DT2のしきい値電圧を相対的に低くして、読み出し時における高速動作を可能にすることができる。
 なお、本半導体装置では、ドライブトランジスタDT1,DT2のハロ領域DHEの不純物濃度は、アクセストランジスタAT1,AT2のハロ領域AHBの不純物濃度よりも低く設定されている場合について説明したが、ドライブトランジスタDT1,DT2のハロ領域DHEの不純物濃度が、アクセストランジスタAT1,AT2のハロ領域AHBの不純物濃度よりも高く設定されている場合には、読み出し動作時における、ドライブトランジスタDT1,DT2からのリーク電流を抑制することができる。
 加えて本半導体装置では、このようなアクセストランジスタAT1,AT2およびドライブトランジスタDT1,DT2を含む各トランジスタのハロ領域を形成するための注入マスクとなるレジストマスクを削減することができる。このことについて比較例を交えて説明する。
 比較例に係る半導体装置では、まず、図37に示すように、半導体基板101の主表面に素子分離絶縁膜102を形成することによって、互いに電気的に分離された素子形成領域103a,103bが規定される。次に、素子形成領域103aを横切るように、アクセストランジスタALのアクセスゲート電極ALG、アクセストランジスタARのアクセスゲート電極ARG、ドライブトランジスタNLのドライブゲート電極NLGおよびドライブトランジスタNRのドライブゲート電極NRGが、それぞれ所定の位置に形成される。また、素子形成領域103bを横切るように、ロードトランジスタPLのロードゲート電極PLGおよびロードトランジスタPRのロードゲート電極PRGが、それぞれ所定の位置に形成される。なお、図37では、2つ分のSRAMメモリセル(点線枠152a、152b)が示されている。
 次に、ハロ領域等を形成する工程について説明する。図38に示すように、まず、アクセストランジスタAL,ARのハロ領域を形成するためのレジストマスク131が形成される。レジストマスク131は、点線枠152a内のSRAMメモリセルのアクセストランジスタARが形成される領域RARと、点線枠152b内のSRAMメモリセルのアクセストランジスタALが形成される領域RALを露出し、他の領域を覆うように形成される。
 次に、レジストマスク131を注入マスクとして、p型の不純物を斜めイオン注入によって露出した素子形成領域103aに注入することによりハロ領域が形成される。このとき、領域RALでは、アクセストランジスタALに対してドライブトランジスタNL側に位置する素子形成領域103aの部分に、より多くのp型の不純物が注入される。また、領域RARでは、アクセストランジスタARに対してドライブトランジスタNR側に位置する素子形成領域103aの部分に、より多くのp型の不純物が注入される。こうして、アクセストランジスタAL,ARでは、不純物濃度が非対称のハロ領域が形成される。その後、レジストマスク131が除去される。
 次に、図39に示すように、他のアクセストランジスタAL,ARのハロ領域を形成するためのレジストマスク132が形成される。レジストマスク132は、点線枠152a内のSRAMメモリセルのアクセストランジスタALが形成される領域RALと、点線枠152b内のSRAMメモリセルのアクセストランジスタARが形成される領域RARを露出し、他の領域を覆うように形成される。
 次に、レジストマスク132を注入マスクとして、p型の不純物を斜めイオン注入によって露出した素子形成領域103aに注入することによりハロ領域が形成される。このとき、領域RALでは、アクセストランジスタALに対してドライブトランジスタNL側に位置する素子形成領域103aの部分に、より多くのp型の不純物が注入される。また、領域RARでは、アクセストランジスタARに対してドライブトランジスタNR側に位置する素子形成領域103aの部分に、より多くのp型の不純物が注入される。こうして、アクセストランジスタAL,ARでは、不純物濃度が非対称のハロ領域が形成される。その後、レジストマスク132が除去される。
 次に、図40に示すように、ロードトランジスタPL,PRのハロ領域とエクステンション領域を形成するためのレジストマスク133が形成される。レジストマスク133は、点線枠152a内のSRAMメモリセルのロードトランジスタPL,PRが形成される領域と、点線枠152b内のSRAMメモリセルのロードトランジスタPL,PRが形成される領域を露出し、アクセストランジスタAL,ARおよびドライブトランジスタNL,NRが形成される領域を覆うように形成される。
 次に、レジストマスク133を注入マスクとして、n型の不純物を斜めイオン注入によって露出した素子形成領域103bに注入することによりハロ領域が形成される。また、レジストマスク133を注入マスクとして、p型の不純物を露出した素子形成領域103bに注入することによりエクステンション領域が形成される。その後、レジストマスク133が除去される。
 次に、図41に示すように、ドライブトランジスタNL,NRのハロ領域を形成するためのレジストマスク134が形成される。レジストマスク134は、点線枠152a内のSRAMメモリセルのロードトランジスタNL,NRが形成される領域RNL,RNRと、点線枠152b内のSRAMメモリセルのロードトランジスタNL,NRが形成される領域RNL,RNRとを露出し、他の領域を覆うように形成される。次に、レジストマスク134を注入マスクとして、p型の不純物を斜めイオン注入によって露出した素子形成領域103aに注入することによりハロ領域が形成される。その後、レジストマスク134が除去される。
 こうして、比較例に係る半導体装置では、非対称のハロ領域を備えたSRAMメモリセルが形成されることになる。このSRAMメモリセルにおいて、非対称のハロ領域を含むハロ領域を形成するための注入マスクとして、レジストマスク131、レジストマスク132、レジストマスク133およびレジストマスク134の少なくとも4つのレジストマスクが必要とされる。
 比較例に係る半導体装置に対して、上述した半導体装置では、アクセストランジスタAT1,AT2の非対称のハロ領域とドライブトランジスタDT1,DT2のハロ領域は、レジストマスクRMH1(注入マスクA)とレジストマスクRMH2(注入マスクB)とにより形成される。また、ロードトランジスタLT1,LT2のハロ領域はレジストマスクRME2(注入マスクD)により形成される。
 すなわち、SRAMメモリセルを構成する各トランジスタのハロ領域を形成するために、比較例に係る半導体装置では少なくとも4つの注入マスク(レジストマスク)が必要とされるのに対して、上述した半導体装置では3つの注入マスク(レジストマスク)によって各トランジスタのハロ領域を形成することができることになる。これにより、レジストマスクをパターニングするための写真製版マスクを少なくとも1枚削減することができ、その結果、生産コストの低減に寄与することができる。
 なお、上述した半導体装置のアクセストランジスタとドライブトランジスタでは、注入マスクAおよび注入マスクBを用いてそれぞれハロ注入Aとハロ注入Bを行った後に、注入マスクCを用いてエクステンション注入を行う場合を例に挙げて説明したが、エクステンション注入を行った後に、ハロ注入を行うようにしてもよい。この場合には、まず、注入マスクCを用いてエクステンション注入を行った後、注入マスクAを用いてハロ注入Aを行い、注入マスクBを用いてハロ注入Bを行うようにしてもよい。
 また、注入マスクA,Bとして形成されるレジストマスクRMH1,RMH2では、開口部(抜きのパターン)として、隣接するアクセス(ドライブ)ゲート電極間の間隔に比べて十分に大きい開口部が形成される。これにより、ボロン(p型の不純物)を斜めに注入しても、レジストマスクによってボロンが遮蔽されることなく、ボロンを注入すべき領域に確実に注入することができる。
 実施の形態2
 (第1例)
 前述した半導体装置では、SRAMメモリセルの書き込みと読み出しを行うために、1対のアクセストランジスタAT1,AT2を備えた場合について説明した。ここでは、書き込みおよび読み出しポートとして、さらに、1対のアクセストランジスタを備えた、デュアルポートのSRAMメモリセルを備えた半導体装置の第1例について説明する。
 まず、そのSRAMメモリセルの等価回路について説明する。図42に示すように、デュアルポートのSRAMメモリセルでは、ワード線として、ワード線WLAとワード線WLBとが設けられている。また、ビット線対として、ビット線対BLA,/BLAとビット線対BLB,/BLBとが設けられている。
 1対のアクセストランジスタAT1,AT2は、ストレージノードSN,/SNとビット線BLA,/BLAとの間に接続されている。アクセストランジスタAT1,AT2のゲートは、ワード線WLAに接続されている。1対のアクセストランジスタAT3,AT4は、ストレージノードSN,/SNとビット線BLB,/BLBとの間に接続されている。アクセストランジスタAT3,AT4のゲートは、ワード線WLBに接続されている。
 アクセストランジスタAT1,AT2では、それぞれに形成される1対のハロ領域HRのうち、ストレージノードSN,/SNに接続されているソース・ドレイン領域に隣接するハロ領域AHSの不純物濃度が、ビット線BLA,/BLAに接続されているソース・ドレイン領域に隣接するハロ領域AHBの不純物濃度よりも高く設定されている。また、ドライブトランジスタDT1,DT2では、それぞれに形成される1対のハロ領域HRのうち、ストレージノードSN,/SNに接続されているソース・ドレイン領域に隣接するハロ領域DHSの不純物濃度が、接地配線(VSS)に接続されているソース・ドレイン領域に隣接するハロ領域DHEの不純物濃度よりも高く設定されている。
 アクセストランジスタAT3,AT4では、それぞれに形成される1対のハロ領域HRのうち、ストレージノードSN,/SNに接続されているソース・ドレイン領域に隣接するハロ領域AHSの不純物濃度が、ビット線BLB,/BLBに接続されているソース・ドレイン領域に隣接するハロ領域AHBの不純物濃度よりも高く設定されている。なお、これ以外の構成については、図3に示す等価回路と同様なので、同一部材には同一符号を付しその説明を繰り返さないこととする。
 次に、SRAMメモリセルの構造について説明する。図43は、SRAMセルアレイのメモリセルを構成するトランジスタおよびそのトランジスタに接続するコンタクトのレイアウトを示す平面図である。この平面図において、点線で囲まれる領域のそれぞれが一つのSRAMメモリセルを構成する。
 半導体基板SUBの主表面では、素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離された素子形成領域FRN,FRPが規定されている。素子形成領域FRNはNMIS領域RNに形成されている。
 nチャネル型のMISトランジスタとして、素子形成領域FRNには、アクセストランジスタAT1,AT3,AT2,AT4と、ドライブトランジスタDT1,DT2とが形成されている。一方、pチャネル型のMISトランジスタとして、素子形成領域FRPには、ロードトランジスタLT1,LT2が形成されている。
 アクセストランジスタAT1が形成されている素子形成領域FRNと、アクセストランジスタAT2が形成されている素子形成領域FRNと、ドライブトランジスタDT1が形成されている素子形成領域FRNとは、素子分離領域ISRによって互いに電気的に分離されている。また、アクセストランジスタAT3が形成されている素子形成領域FRNと、アクセストランジスタAT4が形成されている素子形成領域FRNと、ドライブトランジスタDT2が形成されている素子形成領域FRNとは、素子分離領域ISRによって互いに電気的に分離されている。
 アクセストランジスタAT1,AT2のアクセスゲート電極AG1,AG2は、共通の電極として、素子形成領域FRNを横切るように形成されている。また、アクセストランジスタAT3,AT4のアクセスゲート電極AG3,AG4は、共通の電極として、素子形成領域FRNを横切るように形成されている。ドライブトランジスタDT1,DT2のドライブゲート電極DG1,DG2は、素子形成領域FRNを横切るように形成されている。さらに、ドライブゲート電極DG1,DG2が形成される素子形成領域FNRは、ドライブゲート電極DG1,DG2のゲート幅は、たとえば、アクセストランジスタAT1,AT2(AT3,AT4)のゲート幅よりも長くなるように形成されている。
 一方、ロードトランジスタLT1,LT2のロードゲート電極LG1,LG2は、素子形成領域FRPを横切るように形成されている。また、アクセスゲート電極AG1,AG2,AG3,AG4、ドライブゲート電極DG1,DG2およびロードゲート電極LG1,LG2は、いずれも一方向に延在するように形成されている。
 図44は、図43において、SRAMメモリセルのドライブトランジスタDT1とアクセストランジスタAT1を通る断面線XLIV-XLIVに沿った断面図である。図44に示すように、ストレージノードに電気的に接続(コンタクトSNC)されているn型のソース・ドレイン領域SDSが形成されている領域Sと、ビット線に電気的に接続(コンタクトBLAC)されているn型のソース・ドレイン領域SDBが形成されている領域Bとによって挟まれた領域上に、アクセストランジスタAT1のアクセスゲート電極AG1が形成されている。アクセスゲート電極AG1の直下の領域では、p型のハロ領域HRとして、ソース・ドレイン領域SDSに隣接するようにハロ領域AHSが形成され、また、ソース・ドレイン領域SDBに隣接するようにハロ領域AHBが形成されている。
 また、接地配線に電気的に接続(コンタクトVSSC)されているn型のソース・ドレイン領域SDEが形成されている領域Eと、ストレージノードに電気的に接続(コンタクトSNC)されているn型のソース・ドレイン領域SDSが形成されている領域Sとによって挟まれた領域上に、ドライブトランジスタDT1のドライブゲート電極DG1が形成されている。ドライブゲート電極DG1の直下の領域では、p型のハロ領域HRとして、ソース・ドレイン領域SDSに隣接するようにハロ領域DHSが形成され、また、ソース・ドレイン領域SDEに隣接するようにハロ領域DHEが形成されている。なお、図5(実施の形態1)に係る半導体装置と同じ部材については同一符号を付し、その説明を繰り返さないこととする。
 図44では図示されていないが、第1金属配線より上層にさらに多層の金属配線が形成されている。次に、その各トランジスタを電気的に接続する多層配線構造について説明する。図45は、1つのメモリセルにおけるトランジスタと第1金属配線との接続構造を示す平面図である。図46は、第1金属配線と第2金属配線との接続構造を示す平面図である。図47は、第2金属配線と第3金属配線との接続構造を示す平面図である。
 アクセストランジスタAT1(AT2)の1対のソース・ドレイン領域の一方は、コンタクトBLAC(/BLAC)、第1金属配線BLAM1(/BLAM1)およびヴィアBLAV1(/BLAV1)を介して、ビット線BLA(/BLA)としての第2金属配線BLAM2(/BLAM2)に電気的に接続されている。
 アクセストランジスタAT1(AT2)のゲート電極AG1(AG2)は、コンタクトWLAC、第1金属配線WLAM1、ヴィアWLAV1、第2金属配線WLAM2およびヴィアWLAV2を介して、ワード線WLAとしての第3金属配線WLAM3に電気的に接続されている。
 アクセストランジスタAT3(AT4)の1対のソース・ドレイン領域の一方は、コンタクトBLBC(/BLBC)、第1金属配線BLBM1(/BLBM1)およびヴィアBLBV1(/BLBV1)を介して、ビット線BLB(/BLB)としての第2金属配線BLBM2(/BLBM2)に電気的に接続されている。
 アクセストランジスタAT3(AT4)のゲート電極AG3(AG4)は、コンタクトWLBC、第1金属配線WLBM1、ヴィアWLBV1、第2金属配線WLBM2およびヴィアWLBV2を介して、ワード線WLBとしての第3金属配線WLBM3に電気的に接続されている。
 アクセストランジスタAT1(AT3)の1対のソース・ドレイン領域の他方は、コンタクトSNC、第1金属配線SNM1およびコンタクトSNGCを介して、ロードトランジスタLT2のロードゲート電極LG2と、ドライブトランジスタDT2のドライブゲート電極DG2とに、それぞれ電気的に接続されている。
 アクセストランジスタAT2(AT4)の1対のソース・ドレイン領域の他方は、コンタクト/SNC、第1金属配線/SNM1およびコンタクト/SNGCを介して、ロードトランジスタLT1のロードゲート電極LG1と、ドライブトランジスタDT1のドライブゲート電極DG1とに、それぞれ電気的に接続されている。
 また、アクセストランジスタAT1(AT3)の1対のソース・ドレイン領域の他方は、コンタクトSNC、第1金属配線SNM1およびコンタクトSNCを介して、ドライブトランジスタDT1の1対のソース・ドレイン領域の一方に電気的に接続されている。
 アクセストランジスタAT2(AT4)の1対のソース・ドレイン領域の他方は、コンタクト/SNC、第1金属配線/SNM1およびコンタクト/SNCを介して、ドライブトランジスタDT2の1対のソース・ドレイン領域の一方に電気的に接続されている。
 さらに、アクセストランジスタAT1(AT3)の1対のソース・ドレイン領域の他方は、コンタクトSNC、第1金属配線SNM1およびコンタクトSNLCを介して、ロードトランジスタLT1の1対のソース・ドレイン領域の一方に電気的に接続されている。
 アクセストランジスタAT2(AT4)の1対のソース・ドレイン領域の他方は、コンタクト/SNC、第1金属配線/SNM1およびコンタクト/SNLCを介して、ロードトランジスタLT2の1対のソース・ドレイン領域の一方に電気的に接続されている。
 次に、上述した半導体装置の製造方法について説明する。まず、半導体基板SUBの主表面に素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離される素子形成領域FRN,FRPが規定される(図43参照)。次に、前述した図11に示す工程と同様の工程を経て、アクセスゲート電極AG1,AG2,AG3,AG4、ドライブゲート電極DG1,DG2およびロードゲート電極LG1,LG2となるゲート構造Gがそれぞれ形成される(図48参照)。次に、ゲート構造Gの両側面にオフセットスペーサ(図示せず)が形成される。
 次に、図48に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH1が形成される(注入マスクA)。レジストマスクRMH1は、アクセスゲート電極AG1,AG2(AG3,AG4)となるそれぞれのゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sの側に位置する側面と、その領域Sと、ドライブゲート電極DG1(DG2)となるゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eとを、開口パターンによって露出するように形成される。
 一方、レジストマスクRMH1は、アクセスゲート電極AG1,AG2(AG3,AG4)となるゲート構造Gにおける、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bの側に位置する側面と、その領域Bとを覆うとともに、PMIS領域RPを覆うように形成される。
 次に、レジストマスクRMH1を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される。次に、同じレジストマスクRMH1を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される(ハロ注入A)。なお、このハロ注入Aでは、同じ注入量および同じ注入エネルギーをもってボロンが注入される。その後、レジストマスクRMH1が除去される。
 次に、図49に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH2が形成される(注入マスクB)。レジストマスクRMH2は、ドライブゲート電極DG1(DG2)となるゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sが配置されている側に位置する側面と、その領域Sと、アクセスゲート電極AG1,AG2(AG3,AG4)となるゲート構造Gと、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bとを、開口パターンによって露出するように形成される。
 一方、レジストマスクRMH2は、ドライブゲート電極DG1(DG2)となるゲート構造Gにおける、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eが配置されている側に位置する側面と、その領域Eと、素子形成領域FRPとを覆うように形成される。
 次に、レジストマスクRMH2を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出した領域pウェルの領域にp型不純物領域(図示せず)が形成される。次に、同じレジストマスクRMH2を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される(ハロ注入B)。なお、このハロ注入Bでは、同じ注入量および同じ注入エネルギーをもってボロンが注入される。
 ハロ注入Aとハロ注入Bとにおいて、ここでは、ハロ領域(AHB)の不純物濃度がハロ領域(DHE)の不純物濃度よりも高くなるように、ハロ注入Bの注入量がハロ注入Aの注入量よりも高くように注入条件を設定する。なお、ハロ注入の注入量としては、ハロ領域(AHB)の不純物濃度とハロ領域(DHE)の不純物濃度とが異なってくるような注入量であればよく、ハロ注入Bの注入量がハロ注入Aの注入量よりも低くなるような注入条件に設定してもよい。
 次に、図50に示すように、NMIS領域RNを露出し、PMIS領域RPを覆うレジストマスクRME1が形成される(注入マスクC)。次に、そのレジストマスクRME1を注入マスクとして、たとえば、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、露出したpウェルPWの領域の表面から所定の深さにわたりエクステンション領域ER(図44参照)が形成される(エクステンション注入)。その後、レジストマスクRME1が除去される。なお、エクステンション注入は、ハロ注入Aおよびハロ注入Bよりも前に行うこともできる。
 次に、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスク(図示せず)が形成される(注入マスクD)。次に、素子形成領域FRNにハロ領域となるp型不純物領域を形成する工程と同様にして、そのレジストマスクを注入マスクとして、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から露出した半導体基板SUB内に注入することにより、素子形成領域FRPにハロ領域(図示せず)が形成される。次に、ボロンを、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、エクステンション領域(図示せず)が形成される。その後、そのレジストマスクが除去される。
 次に、前述した図28~図31に示す工程と同様の工程を経て、図44に示すように、第1金属配線として、銅配線CW1が形成される。その後、銅配線CW1の上に、図46および図47に示される多層配線構造が形成されて、SRAMメモリセルの主要部分が形成される。
 デュアルポートのSRAMメモリセルを備えた本半導体装置では、アクセストランジスタAT1,AT2、AT3,AT3のそれぞれに、ハロ領域AHS,AHBが形成されている。アクセストランジスタAT1(AT2)では、不純物濃度が相対的に高いハロ領域AHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域AHBがビット線BLA(/BLA)側に形成されている。アクセストランジスタAT3(AT4)では、不純物濃度が相対的に高いハロ領域AHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域AHBがビット線BLB(/BLB)側に形成されている。
 また、ドライブトランジスタDT1,DT2のそれぞれに、ハロ領域DHS,DHBが形成されている。不純物濃度が相対的に高いハロ領域DHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域DHEが接地配線VSS側に形成されている。さらに、ドライブトランジスタDT1,DT2のゲート幅は、アクセストランジスタAT1,AT2(AT3,AT4)のゲート幅よりも長くなるように設定されている。
 このため、実施の形態1において説明したように、読出し動作においては、ビット線(BLA(/BLA),BLB(/BLB))側からストレージノード(SN(/SN))側へ向かって、アクセストランジスタ(AT1(AT2),AT3(AT4))に流れる電流を抑えやすくすることができるとともに、ストレージノード(SN(/SN))側から接地配線(VSS)側へ向かって、ドライブトランジスタDT1(DT2)に流れる電流をさらに増加させやすくすることができる。これにより、β比を高くすることができて、読み出しマージンをさらに上げることができる。
[規則91に基づく訂正 15.05.2013] 
 また、書き込み動作においては、ストレージノード(SN(/SN))側からビット線(BLA(/BLA),BLB(/BLB))側へ向かって、アクセストランジスタ(AT1(AT2),AT3(AT4))に流れる電流(電流IFA)を増加させやすくすることができる。これにより、γ比を高くすることができて、書き込みマージンを上げることができる。こうして、第1例に係る半導体装置では、読み出しマージンと書き込みマージンとの双方を上げることができる。
 さらに、実施の形態1において説明したように、ドライブトランジスタDT1,DT2を流れる電流は、読み出し動作時におけるストレージノード側から接地配線側へ向かって流れる電流だけである。このため、不純物濃度が相対的に高いハロ領域DHSをストレージノードSN(/SN)側に形成し、不純物濃度が相対的に低いハロ領域DHEを接地配線(VSS)側に形成することで、ドライブトランジスタDT1,DT2のしきい値電圧を相対的に低くして、読み出し時における高速動作を可能にすることができる。
 一方、実施の形態1において説明したように、ドライブトランジスタDT1,DT2におけるハロ領域DHEの不純物濃度を、アクセストランジスタAT1,AT2のハロ領域AHBの不純物濃度よりも高く設定した場合には、読み出し動作時における、ドライブトランジスタDT1,DT2からのリーク電流を抑制することができる。
 さらに、上述した半導体装置では、アクセストランジスタAT1,AT2,AT3,AT4のハロ領域AHB,AHSと、ドライブトランジスタDT1,DT2のハロ領域DHE,DHSは、レジストマスクRMH1(注入マスクA)とレジストマスクRMH2(注入マスクB)とにより形成される。また、ロードトランジスタLT1,LT2のハロ領域はレジストマスク(注入マスクD)により形成される。これにより、比較例に係る半導体装置の場合よりも、ハロ領域を形成するための写真製版マスクを1枚削減することができる。
 (第2例)
 ここでは、デュアルポートのSRAMメモリセルを備えた半導体装置の第2例について説明する。まず、SRAMメモリセルの等価回路図は、第1例に係る半導体装置におけるSRAMメモリセルの等価回路(図42参照)と同じなので、その説明を繰り返さないこととする。
 次に、SRAMメモリセルの構造について説明する。図51は、SRAMセルアレイのメモリセルを構成するトランジスタおよびそのトランジスタに接続するコンタクトのレイアウトを示す平面図である。この平面図において、点線で囲まれる領域のそれぞれが一つのSRAMメモリセルを構成する。
 半導体基板SUBの主表面では、素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離された素子形成領域FRN,FRPが規定されている。素子形成領域FRNはNMIS領域RNに形成されている。
 nチャネル型のMISトランジスタとして、素子形成領域FRNには、アクセストランジスタAT1,AT3,AT2,AT4と、ドライブトランジスタDT1,DT2とが形成されている。一方、pチャネル型のMISトランジスタとして、素子形成領域FRPには、ロードトランジスタLT1,LT2が形成されている。
 アクセストランジスタAT1が形成されている素子形成領域FRNと、アクセストランジスタAT3が形成されている素子形成領域FRNと、ドライブトランジスタDT1が形成されている素子形成領域FRNとは互いに繋がっている。また、アクセストランジスタAT2が形成されている素子形成領域FRNと、アクセストランジスタAT4が形成されている素子形成領域FRNと、ドライブトランジスタDT2が形成されている素子形成領域FRNとは互いに繋がっている。さらに、ドライブゲート電極DG1,DG2が形成される素子形成領域FNRは、ドライブゲート電極DG1,DG2のゲート幅は、たとえば、アクセストランジスタAT1,AT2(AT3,AT4)のゲート幅よりも長くなるように形成されている。
 一方、ロードトランジスタLT1,LT2のロードゲート電極LG1,LG2は、素子形成領域FRPを横切るように形成されている。また、アクセスゲート電極AG1,AG2,AG3,AG4、ドライブゲート電極DG1,DG2およびロードゲート電極LG1,LG2は、いずれも一方向に延在するように形成されている。
 図52は、図51において、SRAMメモリセルのドライブトランジスタDT1とアクセストランジスタAT1を通る断面線LII-LIIに沿った断面図である。図52に示すように、ストレージノードに電気的に接続(コンタクトSNC)されているn型のソース・ドレイン領域SDSが形成されている領域Sと、ビット線に電気的に接続(コンタクトBLAC)されているn型のソース・ドレイン領域SDBが形成されている領域Bとによって挟まれた領域上に、アクセストランジスタAT1のアクセスゲート電極AG1が形成されている。アクセスゲート電極AG1の直下の領域では、p型のハロ領域HRとして、ソース・ドレイン領域SDSに隣接するようにハロ領域AHSが形成され、また、ソース・ドレイン領域SDBに隣接するようにハロ領域AHBが形成されている。
 また、接地配線に電気的に接続(コンタクトVSSC)されているn型のソース・ドレイン領域SDEが形成されている領域Eと、ストレージノードに電気的に接続(コンタクトSNC)されているn型のソース・ドレイン領域SDSが形成されている領域Sとによって挟まれた領域上に、ドライブトランジスタDT1のドライブゲート電極DG1が形成されている。ドライブゲート電極DG1の直下の領域では、p型のハロ領域HRとして、ソース・ドレイン領域SDSに隣接するようにハロ領域DHSが形成され、また、ソース・ドレイン領域SDEに隣接するようにハロ領域DHEが形成されている。なお、第1例に係る半導体装置と同じ部材については同一符号を付し、その説明を繰り返さないこととする。
 次に、各トランジスタを電気的に接続する多層配線構造について説明する。図53は、1つのメモリセルにおけるトランジスタと第1金属配線との接続構造を示す平面図である。図54は、第1金属配線と第2金属配線との接続構造を示す平面図である。図55は、第2金属配線と第3金属配線との接続構造を示す平面図である。
 アクセストランジスタAT1(AT2)の1対のソース・ドレイン領域の一方は、コンタクトBLAC(/BLAC)、第1金属配線BLAM1(/BLAM1)およびヴィアBLAV1(/BLAV1)を介して、ビット線BLA(/BLA)としての第2金属配線BLAM2(/BLAM2)に電気的に接続されている。
 アクセストランジスタAT1(AT2)のゲート電極AG1(AG2)は、コンタクトWLAC、第1金属配線WLAM1、ヴィアWLAV1、第2金属配線WLAM2およびヴィアWLAV2を介して、ワード線WLAとしての第3金属配線WLAM3に電気的に接続されている。
 アクセストランジスタAT3(AT4)の1対のソース・ドレイン領域の一方は、コンタクトBLBC(/BLBC)、第1金属配線BLBM1(/BLBM1)およびヴィアBLBV1(/BLBV1)を介して、ビット線BLB(/BLB)としての第2金属配線BLBM2(/BLBM2)に電気的に接続されている。
 アクセストランジスタAT3(AT4)のゲート電極AG3(AG4)は、コンタクトWLBC、第1金属配線WLBM1、ヴィアWLBV1、第2金属配線WLBM2およびヴィアWLBV2を介して、ワード線WLBとしての第3金属配線WLBM3に電気的に接続されている。
 アクセストランジスタAT1(AT3)の1対のソース・ドレイン領域の他方は、コンタクトSNC、第1金属配線SNM1およびコンタクトSNLCを介して、ロードトランジスタLT2のロードゲート電極LG2と、ドライブトランジスタDT2のドライブゲート電極DG2とに、それぞれ電気的に接続されている。
 アクセストランジスタAT2(AT4)の1対のソース・ドレイン領域の他方は、コンタクト/SNC、第1金属配線/SNM1およびコンタクト/SNLCを介して、ロードトランジスタLT1のロードゲート電極LG1と、ドライブトランジスタDT1のドライブゲート電極DG1とに、それぞれ電気的に接続されている。
 また、アクセストランジスタAT1(AT3)の1対のソース・ドレイン領域の他方は、ドライブトランジスタDT1の1対のソース・ドレイン領域の一方に電気的に接続されている。アクセストランジスタAT2(AT4)の1対のソース・ドレイン領域の他方は、ドライブトランジスタDT2の1対のソース・ドレイン領域の一方に電気的に接続されている。
 さらに、アクセストランジスタAT1(AT3)の1対のソース・ドレイン領域の他方は、コンタクトSNC、第1金属配線SNM1およびコンタクトSNLCを介して、ロードトランジスタLT1の1対のソース・ドレイン領域の一方に電気的に接続されている。アクセストランジスタAT2(AT4)の1対のソース・ドレイン領域の他方は、コンタクト/SNC、第1金属配線/SNM1およびコンタクト/SNLCを介して、ロードトランジスタLT2の1対のソース・ドレイン領域の一方に電気的に接続されている。
 次に、上述した半導体装置の製造方法について説明する。まず、半導体基板SUBの主表面に素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離される素子形成領域FRN,FRPが規定される(図52参照)。次に、図11に示す工程と同様の工程を経て、アクセスゲート電極AG1,AG2,AG3,AG4、ドライブゲート電極DG1,DG2およびロードゲート電極LG1,LG2となるゲート構造Gがそれぞれ形成される(図56参照)。次に、ゲート構造Gの両側面にオフセットスペーサ(図示せず)が形成される。
 次に、図56に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH1が形成される(注入マスクA)。レジストマスクRMH1は、アクセスゲート電極AG1,AG3(AG2,AG4)となるそれぞれのゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sの側に位置する側面と、その領域Sと、ドライブゲート電極DG1(DG2)となるゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eとを、開口パターンによって露出するように形成される。
 一方、レジストマスクRMH1は、アクセスゲート電極AG1,AG3(AG2,AG4)となるゲート構造Gにおける、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bの側に位置する側面と、その領域Bとを覆うとともに、PMIS領域RPを覆うように形成される。
 次に、レジストマスクRMH1を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される。次に、同じレジストマスクRMH1を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される(ハロ注入A)。なお、このハロ注入Aでは、同じ注入量および同じ注入エネルギーをもってボロンが注入される。その後、レジストマスクRMH1が除去される。
 次に、図57に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH2が形成される(注入マスクB)。レジストマスクRMH2は、ドライブゲート電極DG1(DG2)となるゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sが配置されている側に位置する側面と、その領域Sと、アクセスゲート電極AG1,AG3(AG2,AG4)となるゲート構造Gと、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bとを、開口パターンによって露出するように形成される。
 一方、レジストマスクRMH2は、ドライブゲート電極DG1(DG2)となるゲート構造Gにおける、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eが配置されている側に位置する側面と、その領域Eと、PMIS領域RPとを覆うように形成される。
 次に、レジストマスクRMH2を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出した領域pウェルの領域にp型不純物領域(図示せず)が形成される。次に、同じレジストマスクRMH2を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される(ハロ注入B)。なお、このハロ注入Bでは、同じ注入量および同じ注入エネルギーをもってボロンが注入される。
 ハロ注入Aとハロ注入Bとにおいて、ここでは、ハロ領域(AHB)の不純物濃度がハロ領域(DHE)の不純物濃度よりも高くなるように、ハロ注入Bの注入量がハロ注入Aの注入量よりも高くように注入条件を設定する。なお、ハロ注入の注入量としては、ハロ領域(AHB)の不純物濃度とハロ領域(DHE)の不純物濃度とが異なってくるような注入量であればよく、ハロ注入Bの注入量がハロ注入Aの注入量よりも低くなるような注入条件に設定してもよい。
 次に、図58に示すように、NMIS領域RNを露出し、PMIS領域RPを覆うレジストマスクRME1が形成される(注入マスクC)。次に、そのレジストマスクRME1を注入マスクとして、たとえば、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、露出したpウェルPWの領域の表面から所定の深さにわたりエクステンション領域ER(図52参照)が形成される(エクステンション注入)。その後、レジストマスクRME1が除去される。なお、エクステンション注入は、ハロ注入Aおよびハロ注入Bよりも前に行うこともできる。
 次に、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスク(図示せず)が形成される(注入マスクD)。次に、素子形成領域FRNにハロ領域となるp型不純物領域を形成する工程と同様にして、そのレジストマスクを注入マスクとして、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から露出した半導体基板SUB内に注入することにより、素子形成領域FRPにハロ領域(図示せず)が形成される。次に、ボロンを、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、エクステンション領域(図示せず)が形成される。その後、そのレジストマスクが除去される。
 次に、図28~図31に示す工程(実施の形態1)と同様の工程を経て、図52に示すように、第1金属配線として、銅配線CW1が形成される。その後、銅配線CW1の上に、図54および図55に示される多層配線構造が形成されて、SRAMメモリセルの主要部分が形成される。
 デュアルポートのSRAMメモリセルを備えた本半導体装置のアクセストランジスタAT1(AT2)では、不純物濃度が相対的に高いハロ領域AHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域AHBがビット線BLA(/BLA)側に形成されている。アクセストランジスタAT3(AT4)では、不純物濃度が相対的に高いハロ領域AHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域AHBがビット線BLB(/BLB)側に形成されている。
[規則91に基づく訂正 15.05.2013] 
 また、ドライブトランジスタDT1,DT2では、不純物濃度が相対的に高いハロ領域DHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域DHEが接地配線VSS側に形成されている。さらに、ドライブトランジスタDT1,DT2のゲート幅は、アクセストランジスタAT1,AT2(AT3,AT4)のゲート幅よりも長くなるように設定されている。
 このため、実施の形態1において説明したように、読出し動作においては、ビット線(BLA(/BLA),BLB(/BLB))側からストレージノード(SN(/SN))側へ向かって、アクセストランジスタ(AT1(AT2),AT3(AT4))に流れる電流を抑えやすくすることができるとともに、ストレージノード(SN(/SN))側から接地配線(VSS)側へ向かって、ドライブトランジスタDT1(DT2)に流れる電流をさらに増加させやすくすることができる。これにより、β比を高くすることができて、読み出しマージンをさらに上げることができる。
[規則91に基づく訂正 15.05.2013] 
 また、書き込み動作においては、ストレージノード(SN(/SN))側からビット線(BLA(/BLA),BLB(/BLB))側へ向かって、アクセストランジスタ(AT1(AT2),AT3(AT4))に流れる電流(電流IFA)を増加させやすくすることができる。これにより、γ比を高くすることができて、書き込みマージンを上げることができる。こうして、第2例に係る半導体装置では、読み出しマージンと書き込みマージンとの双方を上げることができる。
 さらに、実施の形態1において説明したように、ドライブトランジスタDT1,DT2を流れる電流は、読み出し動作時におけるストレージノード側から接地配線側へ向かって流れる電流だけである。このため、不純物濃度が相対的に高いハロ領域DHSをストレージノードSN(/SN)側に形成し、不純物濃度が相対的に低いハロ領域DHEを接地配線(VSS)側に形成することで、ドライブトランジスタDT1,DT2のしきい値電圧を相対的に低くして、読み出し時における高速動作を可能にすることができる。
 一方、実施の形態1において説明したように、ドライブトランジスタDT1,DT2におけるハロ領域DHEの不純物濃度を、アクセストランジスタAT1,AT2のハロ領域AHBの不純物濃度よりも高く設定した場合には、読み出し動作時における、ドライブトランジスタDT1,DT2からのリーク電流を抑制することができる。
 さらに、上述した半導体装置では、アクセストランジスタAT1,AT2,AT3,AT4のハロ領域AHB,AHSと、ドライブトランジスタDT1,DT2のハロ領域DHE,DHSは、レジストマスクRMH1(注入マスクA)とレジストマスクRMH2(注入マスクB)とにより形成される。また、ロードトランジスタLT1,LT2のハロ領域はレジストマスク(注入マスクD)により形成される。これにより、比較例に係る半導体装置の場合よりも、ハロ領域を形成するための写真製版マスクを1枚削減することができる。
 (第3例)
 ここでは、デュアルポートのSRAMメモリセルを備えた半導体装置の第3例について説明する。
 まず、そのSRAMメモリセルの等価回路について説明する。図59に示すように、このデュアルポートのSRAMメモリセルでは、ドライブトランジスタとして、4つのドライブトランジスタDT1A,DT1B,DT2A,DT2Bを備えている。ドライブトランジスタDT1A,DT1Bは、第1例あるいは第2例のドライブトランジスタDT1を2つのドライブトランジスタに分けたものである。また、ドライブトランジスタDT2A,DT2Bは、第1例あるいは第2例のドライブトランジスタDT2を2つのドライブトランジスタに分けたものである。
 ドライブトランジスタDT1A,DT1Bでは、それぞれに形成される1対のハロ領域HRのうち、ストレージノードSNに接続されているソース・ドレイン領域に隣接するハロ領域DHSの不純物濃度が、接地配線(VSS)に接続されているソース・ドレイン領域に隣接するハロ領域DHEの不純物濃度よりも高く設定されている。また、ドライブトランジスタDT2A,DT2Bでは、それぞれに形成される1対のハロ領域HRのうち、ストレージノード/SNに接続されているソース・ドレイン領域に隣接するハロ領域DHSの不純物濃度が、接地配線(VSS)に接続されているソース・ドレイン領域に隣接するハロ領域DHEの不純物濃度よりも高く設定されている。なお、これ以外の構成については、図42に示す等価回路と同様なので、同一部材には同一符号を付しその説明を繰り返さないこととする。
 次に、SRAMメモリセルの構造について説明する。図60は、SRAMセルアレイのメモリセルを構成するトランジスタおよびそのトランジスタに接続するコンタクトのレイアウトを示す平面図である。この平面図において、点線で囲まれる領域のそれぞれが一つのSRAMメモリセルを構成する。
 半導体基板SUBの主表面では、素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離された素子形成領域FRN,FRPが規定されている。素子形成領域FRNはNMIS領域RNに形成されている。
 nチャネル型のMISトランジスタとして、素子形成領域FRNには、アクセストランジスタAT1,AT3,AT2,AT4と、ドライブトランジスタDT1,DT2とが形成されている。ドライブトランジスタDT1は、ドライブトランジスタDT1AとドライブトランジスタDT1Bとを並列接続させたものであり、ドライブトランジスタDT2は、ドライブトランジスタDT2AとドライブトランジスタDT2Bとを並列接続させたものである。一方、pチャネル型のMISトランジスタとして、素子形成領域FRPには、ロードトランジスタLT1,LT2が形成されている。
 アクセストランジスタAT1が形成されている素子形成領域FRNとドライブトランジスタDT1Aが形成されている素子形成領域FRNとは繋がっている。アクセストランジスタAT3が形成されている素子形成領域FRNとドライブトランジスタDT1Bが形成されている素子形成領域FRNとは繋がっている。ドライブトランジスタDT1A等が形成されている素子形成領域FRNと、ドライブトランジスタDT1B等が形成されている素子形成領域FRNとは、素子分離領域ISRによって互いに電気的に分離されている。
 アクセストランジスタAT2が形成されている素子形成領域FRNとドライブトランジスタDT2Aが形成されている素子形成領域FRNとは繋がっている。アクセストランジスタAT2が形成されている素子形成領域FRNとドライブトランジスタDT2Bが形成されている素子形成領域FRNとは繋がっている。ドライブトランジスタDT2A等が形成されている素子形成領域FRNと、ドライブトランジスタDT2B等が形成されている素子形成領域FRNとは、素子分離領域ISRによって互いに電気的に分離されている。
 ドライブトランジスタDT1A,DT1Bのドライブゲート電極DG1は、ドライブトランジスタDT1の共通のドライブゲート電極として、素子分離領域ISRによって分離された2つの素子形成領域FRNを横切るように形成されている。また、ドライブトランジスタDT2A,DT2Bのドライブゲート電極DG2は、ドライブトランジスタDT2の共通のドライブゲート電極として、素子分離領域ISRによって分離された2つの素子形成領域FRNを横切るように形成されている。
 一方、ロードトランジスタLT1,LT2のロードゲート電極LG1,LG2は、素子形成領域FRPを横切るように形成されている。また、アクセスゲート電極AG1,AG2,AG3,AG4、ドライブゲート電極DG1,DG2およびロードゲート電極LG1,LG2は、いずれも一方向に延在するように形成されている。
 図61は、図60において、SRAMメモリセルのドライブトランジスタDT1AとアクセストランジスタAT1を通る断面線LXI-LXIに沿った断面図である。図61に示すように、ストレージノードに電気的に接続(コンタクトSNC)されているn型のソース・ドレイン領域SDSが形成されている領域Sと、ビット線に電気的に接続(コンタクトBLAC)されているn型のソース・ドレイン領域SDBが形成されている領域Bとによって挟まれた領域上に、アクセストランジスタAT1のアクセスゲート電極AG1が形成されている。アクセスゲート電極AG1の直下の領域では、p型のハロ領域HRとして、ソース・ドレイン領域SDSに隣接するようにハロ領域AHSが形成され、また、ソース・ドレイン領域SDBに隣接するようにハロ領域AHBが形成されている。
 また、接地配線に電気的に接続(コンタクトVSSC)されているn型のソース・ドレイン領域SDEが形成されている領域Eと、ストレージノードに電気的に接続(コンタクトSNC)されているn型のソース・ドレイン領域SDSが形成されている領域Sとによって挟まれた領域上に、ドライブトランジスタDT1Aのドライブゲート電極DG1が形成されている。ドライブゲート電極DG1の直下の領域では、p型のハロ領域HRとして、ソース・ドレイン領域SDSに隣接するようにハロ領域DHSが形成され、また、ソース・ドレイン領域SDEに隣接するようにハロ領域DHEが形成されている。なお、第1例に係る半導体装置と同じ部材については同一符号を付し、その説明を繰り返さないこととする。
 次に、各トランジスタを電気的に接続する多層配線構造について説明する。図62は、1つのメモリセルにおけるトランジスタと第1金属配線との接続構造を示す平面図である。図63は、第1金属配線と第2金属配線との接続構造を示す平面図である。図64は、第2金属配線と第3金属配線との接続構造を示す平面図である。
 アクセストランジスタAT1(AT2)の1対のソース・ドレイン領域の一方は、コンタクトBLAC(/BLAC)、第1金属配線BLAM1(/BLAM1)およびヴィアBLAV1(/BLAV1)を介して、ビット線BLA(/BLA)としての第2金属配線BLAM2(/BLAM2)に電気的に接続されている。
 アクセストランジスタAT1(AT2)のゲート電極AG1(AG2)は、コンタクトWLAC、第1金属配線WLAM1、ヴィアWLAV1、第2金属配線WLAM2およびヴィアWLAV2を介して、ワード線WLAとしての第3金属配線WLAM3に電気的に接続されている。
 アクセストランジスタAT3(AT4)の1対のソース・ドレイン領域の一方は、コンタクトBLBC(/BLBC)、第1金属配線BLBM1(/BLBM1)およびヴィアBLBV1(/BLBV1)を介して、ビット線BLB(/BLB)としての第2金属配線BLBM2(/BLBM2)に電気的に接続されている。
 アクセストランジスタAT3(AT4)のゲート電極AG3(AG4)は、コンタクトWLBC、第1金属配線WLBM1、ヴィアWLBV1、第2金属配線WLBM2およびヴィアWLBV2を介して、ワード線WLBとしての第3金属配線WLBM3に電気的に接続されている。
 アクセストランジスタAT1(AT3)の1対のソース・ドレイン領域の他方は、コンタクトSNC、第1金属配線SNM1およびコンタクトSNLCを介して、ロードトランジスタLT2のロードゲート電極LG2と、ドライブトランジスタDT2Bのドライブゲート電極DG2と、ドライブゲートトランジスタDT2Aのドライブゲート電極DG2とに、それぞれ電気的に接続されている。
 アクセストランジスタAT2(AT4)の1対のソース・ドレイン領域の他方は、コンタクト/SNC、第1金属配線/SNM1およびコンタクト/SNLCを介して、ロードトランジスタLT1のロードゲート電極LG1と、ドライブトランジスタDT1Aのドライブゲート電極DG1と、ドライブトランジスタDT1Bのドライブゲート電極DG1とに、それぞれ電気的に接続されている。
 また、アクセストランジスタAT1(AT3)の1対のソース・ドレイン領域の他方は、ドライブトランジスタDT1A(DT1B)の1対のソース・ドレイン領域の一方に電気的に接続されている。アクセストランジスタAT2(AT4)の1対のソース・ドレイン領域の他方は、ドライブトランジスタDT2A(DT2B)の1対のソース・ドレイン領域の一方に電気的に接続されている。
 さらに、アクセストランジスタAT1(AT3)の1対のソース・ドレイン領域の他方は、コンタクトSNC、第1金属配線SNM1およびコンタクトSNLCを介して、ロードトランジスタLT1の1対のソース・ドレイン領域の一方に電気的に接続されている。アクセストランジスタAT2(AT4)の1対のソース・ドレイン領域の他方は、コンタクト/SNC、第1金属配線/SNM1およびコンタクト/SNLCを介して、ロードトランジスタLT2の1対のソース・ドレイン領域の一方に電気的に接続されている。
 次に、上述した半導体装置の製造方法について説明する。まず、半導体基板SUBの主表面に素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離される素子形成領域FRN,FRPが規定される(図60参照)。次に、図11に示す工程と同様の工程を経て、アクセスゲート電極AG1,AG2,AG3,AG4、ドライブゲート電極DG1,DG2およびロードゲート電極LG1,LG2となるゲート構造Gがそれぞれ形成される(図65参照)。次に、ゲート構造Gの両側面にオフセットスペーサ(図示せず)が形成される。
 次に、図65に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH1が形成される(注入マスクA)。レジストマスクRMH1は、アクセスゲート電極AG1,AG3(AG2,AG4)となるそれぞれのゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sの側に位置する側面と、その領域Sと、ドライブゲート電極DG1(DG2)となるゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eとを、開口パターンによって露出するように形成される。
 一方、レジストマスクRMH1は、アクセスゲート電極AG1,AG3(AG2,AG4)となるゲート構造Gにおける、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bの側に位置する側面と、その領域Bとを覆うとともに、PMIS領域RPを覆うように形成される。
 次に、レジストマスクRMH1を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される。次に、同じレジストマスクRMH1を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される(ハロ注入A)。なお、このハロ注入Aでは、同じ注入量および同じ注入エネルギーをもってボロンが注入される。その後、レジストマスクRMH1が除去される。
 次に、図66に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH2が形成される(注入マスクB)。レジストマスクRMH2は、ドライブゲート電極DG1(DG2)となるゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sが配置されている側に位置する側面と、その領域Sと、アクセスゲート電極AG1,AG3(AG2,AG4)となるゲート構造Gと、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bとを、開口パターンによって露出するように形成される。
 一方、レジストマスクRMH2は、ドライブゲート電極DG1(DG2)となるゲート構造Gにおける、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eが配置されている側に位置する側面と、その領域Eと、PMIS領域RPとを覆うように形成される。
 次に、レジストマスクRMH2を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出した領域pウェルの領域にp型不純物領域(図示せず)が形成される。次に、同じレジストマスクRMH2を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される(ハロ注入B)。なお、このハロ注入Bでは、同じ注入量および同じ注入エネルギーをもってボロンが注入される。
 ハロ注入Aとハロ注入Bとにおいて、ここでは、ハロ領域(AHB)の不純物濃度がハロ領域(DHE)の不純物濃度よりも高くなるように、ハロ注入Bの注入量がハロ注入Aの注入量よりも高くように注入条件を設定する。なお、ハロ注入の注入量としては、ハロ領域(AHB)の不純物濃度とハロ領域(DHE)の不純物濃度とが異なってくるような注入量であればよく、ハロ注入Bの注入量がハロ注入Aの注入量よりも低くなるような注入条件に設定してもよい。
 次に、図67に示すように、NMIS領域RNを露出し、PMIS領域RPを覆うレジストマスクRME1が形成される(注入マスクC)。次に、そのレジストマスクRME1を注入マスクとして、たとえば、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、露出したpウェルPWの領域の表面から所定の深さにわたりエクステンション領域ER(図61参照)が形成される(エクステンション注入)。その後、レジストマスクRME1が除去される。なお、エクステンション注入は、ハロ注入Aおよびハロ注入Bよりも前に行うこともできる。
 次に、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスク(図示せず)が形成される(注入マスクD)。次に、素子形成領域FRNにハロ領域となるp型不純物領域を形成する工程と同様にして、そのレジストマスクを注入マスクとして、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から露出した半導体基板SUB内に注入することにより、素子形成領域FRPにハロ領域(図示せず)が形成される。次に、ボロンを、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、エクステンション領域(図示せず)が形成される。その後、そのレジストマスクが除去される。
 次に、図28~図31に示す工程(実施の形態1)と同様の工程を経て、図61に示すように、第1金属配線として、銅配線CW1が形成される。その後、銅配線CW1の上に、図63および図64に示される多層配線構造が形成されて、SRAMメモリセルの主要部分が形成される。
[規則91に基づく訂正 15.05.2013] 
 デュアルポートのSRAMメモリセルを備えた本半導体装置のアクセストランジスタAT1,AT3(AT2,AT4)では、不純物濃度が相対的に高いハロ領域AHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域AHBがビット線BLA、/BLA(BLB,/BLB)側に形成されている。また、ドライブトランジスタDT1,DT2では、不純物濃度が相対的に高いハロ領域DHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域DHEが接地配線VSS側に形成されている。さらに、本半導体装置では、第2例に係る半導体装置と比較して、ドライブトランジスタDT1,DT2がそれぞれ形成される素子形成領域FRNが2つに分けられている。
 第2例に係る半導体装置では、図51に示すように、ドライブトランジスタDT1(DT2)、アクセストランジスタAT1(AT2)およびアクセストランジスタAT3(AT4)が形成される素子形成領域FRNは互いに繋がっており、その素子形成領域FRNのパターンには、屈曲した部分(屈曲パターン)がある。このような屈曲パターンは、半導体装置の微細化に伴って写真製版処理によるパターニングが難しくなるため、仕上がりパターン(形状)が丸みを帯びるようになる。
 第3例に係る半導体装置では、ドライブトランジスタDT1,DT2がそれぞれ形成される素子形成領域FRNが2つに分けられていることで、そのような屈曲パターンがなくなる。このため、仕上がりパターンとして丸みを帯びる部分がなくなり、マスクのずれ等に起因する特性のばらつきを抑えることができる。
 また、ドライブトランジスタDT1,DT2のゲート幅は、ドライブトランジスタDT1,DT2がそれぞれ形成される素子形成領域FRNが2つに分けられている分、第2例に係る半導体装置の場合に比べて短くなるが、ドライブトランジスタDT1(DT2)のゲート幅としては、アクセストランジスタAT1,AT3(AT2,AT4)のそれぞれのゲート幅よりも長い。
 このため、実施の形態1において説明したように、読出し動作においては、ビット線(BLA(/BLA),BLB(/BLB))側からストレージノード(SN(/SN))側へ向かって、アクセストランジスタ(AT1(AT2),AT3(AT4))に流れる電流を抑えやすくすることができるとともに、ストレージノード(SN(/SN))側から接地配線(VSS)側へ向かって、ドライブトランジスタDT1(DT2)に流れる電流を増加させやすくすることができる。これにより、β比を高くすることができて、読み出しマージンを上げることができる。
[規則91に基づく訂正 15.05.2013] 
 また、書き込み動作においては、ストレージノード(SN(/SN))側からビット線(BLA(/BLA),BLB(/BLB))側へ向かって、アクセストランジスタ(AT1(AT2),AT3(AT4))に流れる電流(電流IFA)を増加させやすくすることができる。これにより、γ比を高くすることができて、書き込みマージンを上げることができる。こうして、第3例に係る半導体装置では、読み出しマージンと書き込みマージンとの双方を上げることができる。
 さらに、実施の形態1において説明したように、ドライブトランジスタDT1,DT2を流れる電流は、読み出し動作時におけるストレージノード側から接地配線側へ向かって流れる電流だけである。このため、不純物濃度が相対的に高いハロ領域DHSをストレージノードSN(/SN)側に形成し、不純物濃度が相対的に低いハロ領域DHEを接地配線(VSS)側に形成することで、ドライブトランジスタDT1,DT2のしきい値電圧を相対的に低くして、読み出し時における高速動作を可能にすることができる。
 一方、実施の形態1において説明したように、ドライブトランジスタDT1,DT2におけるハロ領域DHEの不純物濃度を、アクセストランジスタAT1,AT2のハロ領域AHBの不純物濃度よりも高く設定した場合には、読み出し動作時における、ドライブトランジスタDT1,DT2からのリーク電流を抑制することができる。
 さらに、上述した半導体装置では、アクセストランジスタAT1,AT2,AT3,AT4のハロ領域AHB,AHSと、ドライブトランジスタDT1,DT2のハロ領域DHE,DHSは、レジストマスクRMH1(注入マスクA)とレジストマスクRMH2(注入マスクB)とにより形成される。また、ロードトランジスタLT1,LT2のハロ領域はレジストマスク(注入マスクD)により形成される。これにより、比較例に係る半導体装置の場合よりも、ハロ領域を形成するための写真製版マスクを1枚削減することができる。
 実施の形態3
 ここでは、デュアルポートのSRAMメモリセルを備えた半導体装置の他の例について説明する。まず、SRAMメモリセルの等価回路は、図42に示される等価回路と同じなので、その説明を繰り返さないことする。
 次に、SRAMメモリセルの構造について説明する。図68は、SRAMセルアレイのメモリセルを構成するトランジスタおよびそのトランジスタに接続するコンタクトのレイアウトを示す平面図である。この平面図において、点線で囲まれる領域のそれぞれが一つのSRAMメモリセルを構成する。
 半導体基板SUBの主表面では、素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離された素子形成領域FRN,FRPが規定されている。素子形成領域FRNはNMIS領域RNに形成されている。
 nチャネル型のMISトランジスタとして、素子形成領域FRNには、アクセストランジスタAT1,AT2,AT3,AT4と、ドライブトランジスタDT1,DT2が形成されている。一方、pチャネル型のMISトランジスタとして、素子形成領域FRPには、ロードトランジスタLT1,LT1が形成されている。
 アクセストランジスタAT1が形成されている素子形成領域FRNと、アクセストランジスタAT2およびドライブトランジスタDT2が形成されている素子形成領域FRNとは、素子分離領域ISRによって互いに電気的に分離されている。また、アクセストランジスタAT4が形成されている素子形成領域FRNと、アクセストランジスタAT3およびドライブトランジスタDT1が形成されている素子形成領域FRNとは、素子分離領域ISRによって互いに電気的に分離されている。
 アクセストランジスタAT1,AT2のアクセスゲート電極AG1,AG2は、共通の電極として、素子形成領域FRNを横切るように形成されている。また、アクセストランジスタAT3,AT4のアクセスゲート電極AG3,AG4は、共通の電極として、素子形成領域FRNを横切るように形成されている。ドライブトランジスタDT1のドライブゲート電極DG1は、アクセストランジスタAT3が形成されている素子形成領域FRNを横切るように形成されている。ドライブトランジスタDT2のドライブゲート電極DG2は、アクセストランジスタAT2が形成されている素子形成領域FRNを横切るように形成されている。
 一方、ロードトランジスタLT1,LT2のロードゲート電極LG1,LG2は、素子形成領域FRPを横切るように形成されている。また、アクセスゲート電極AG1,AG2,AG3,AG4、ドライブゲート電極DG1,DG2およびロードゲート電極LG1,LG2は、いずれも一方向に延在するように形成されている。
 図69は、図68において、SRAMメモリセルのドライブトランジスタDT2とアクセストランジスタAT2を通る断面線LXIX-LXIXに沿った断面図である。図69に示すように、ストレージノードに電気的に接続(コンタクト/SNC)されているn型のソース・ドレイン領域SDSが形成されている領域Sと、ビット線に電気的に接続(コンタクト/BLAC)されているn型のソース・ドレイン領域SDBが形成されている領域Bとによって挟まれた領域上に、アクセストランジスタAT2のアクセスゲート電極AG2が形成されている。アクセスゲート電極AG2の直下の領域では、p型のハロ領域HRとして、ソース・ドレイン領域SDSに隣接するようにハロ領域AHSが形成され、また、ソース・ドレイン領域SDBに隣接するようにハロ領域AHBが形成されている。
 また、接地配線に電気的に接続(コンタクトVSSC)されているn型のソース・ドレイン領域SDEが形成されている領域Eと、ストレージノードに電気的に接続(コンタクト/SNC)されているn型のソース・ドレイン領域SDSが形成されている領域Sとによって挟まれた領域上に、ドライブトランジスタDT2のドライブゲート電極DG2が形成されている。ドライブゲート電極DG2の直下の領域では、p型のハロ領域HRとして、ソース・ドレイン領域SDSに隣接するようにハロ領域DHSが形成され、また、ソース・ドレイン領域SDEに隣接するようにハロ領域DHEが形成されている。なお、図5(実施の形態1)に示す半導体装置と同じ部材については同一符号を付し、その説明を繰り返さないこととする。
 次に、各トランジスタを電気的に接続する多層配線構造について説明する。図70は、1つのメモリセルにおけるトランジスタと第1金属配線との接続構造を示す平面図である。図71は、第1金属配線と第2金属配線との接続構造を示す平面図である。図72は、第2金属配線と第3金属配線との接続構造を示す平面図である。
 アクセストランジスタAT1(AT2)の1対のソース・ドレイン領域の一方は、コンタクトBLAC(/BLAC)、第1金属配線BLAM1(/BLAM1)およびヴィアBLAV1(/BLAV1)を介して、ビット線BLA(/BLA)としての第2金属配線BLAM2(/BLAM2)に電気的に接続されている。
 アクセストランジスタAT1(AT2)のゲート電極AG1(AG2)は、コンタクトWLAC、第1金属配線WLAM1、ヴィアWLAV1、第2金属配線WLAM2およびヴィアWLAV2を介して、ワード線WLAとしての第3金属配線WLAM3に電気的に接続されている。
 アクセストランジスタAT3(AT4)の1対のソース・ドレイン領域の一方は、コンタクトBLBC(/BLBC)、第1金属配線BLBM1(/BLBM1)およびヴィアBLBV1(/BLBV1)を介して、ビット線BLB(/BLB)としての第2金属配線BLBM2(/BLBM2)に電気的に接続されている。
 アクセストランジスタAT3(AT4)のゲート電極AG3(AG4)は、コンタクトWLBC、第1金属配線WLBM1、ヴィアWLBV1、第2金属配線WLBM2およびヴィアWLBV2を介して、ワード線WLBとしての第3金属配線WLBM3に電気的に接続されている。
 アクセストランジスタAT1の1対のソース・ドレイン領域の他方は、コンタクトSNCを介して、ロードトランジスタLT2のロードゲート電極LG2と、ドライブトランジスタDT2のドライブゲート電極DG2とに電気的に接続されている。
 アクセストランジスタAT3の1対のソース・ドレイン領域の他方は、コンタクトSNC、第1金属配線SNM1およびコンタクトLGCを介して、ロードトランジスタLT2のロードゲート電極LG2と、ドライブトランジスタDT2のドライブゲート電極DG2とに電気的に接続されている。
 アクセストランジスタAT2の1対のソース・ドレイン領域の他方は、コンタクト/SNC、第1金属配線/SNM1およびコンタクト/LGCを介して、ロードトランジスタLT1のロードゲート電極LG1と、ドライブトランジスタDT1のドライブゲート電極DG1とに電気的に接続されている。
 アクセストランジスタAT4の1対のソース・ドレイン領域の他方は、コンタクト/SNCを介して、ロードトランジスタLT1のロードゲート電極LG1と、ドライブトランジスタDT1のドライブゲート電極DG1とに電気的に接続されている。
 次に、上述した半導体装置の製造方法について説明する。まず、半導体基板SUBの主表面に素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離される素子形成領域FRN,FRPが規定される(図68参照)。次に、図11に示す工程と同様の工程を経て、アクセスゲート電極AG1,AG2,AG3,AG4、ドライブゲート電極DG1,DG2およびロードゲート電極LG1,LG2となるゲート構造Gがそれぞれ形成される(図73参照)。次に、ゲート構造Gの両側面にオフセットスペーサ(図示せず)が形成される。
 次に、図73に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH1が形成される(注入マスクA)。レジストマスクRMH1は、アクセスゲート電極AG1,AG2(AG3,AG4)となるそれぞれのゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sの側に位置する側面と、その領域Sと、ドライブゲート電極DG2(DG1)となるゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eとを、開口パターンによって露出するように形成される。
 一方、レジストマスクRMH1は、アクセスゲート電極AG1,AG2(AG3,AG4)となるゲート構造Gにおける、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bの側に位置する側面と、その領域Bとを覆うとともに、PMIS領域RPを覆うように形成される。
 次に、レジストマスクRMH1を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される。次に、同じレジストマスクRMH1を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される(ハロ注入A)。なお、このハロ注入Aでは、同じ注入量および同じ注入エネルギーをもってボロンが注入される。その後、レジストマスクRMH1が除去される。
 次に、図74に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH2が形成される(注入マスクB)。レジストマスクRMH2は、ドライブゲート電極DG1(DG2)となるゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sが配置されている側に位置する側面と、その領域Sと、アクセスゲート電極AG1,AG2(AG3,AG4)となるゲート構造Gと、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bとを、開口パターンによって露出するように形成される。
 一方、レジストマスクRMH2は、ドライブゲート電極DG1(DG2)となるゲート構造Gにおける、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eが配置されている側に位置する側面と、その領域Eと、素子形成領域FRPとを覆うように形成される。
 次に、レジストマスクRMH2を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出した領域pウェルの領域にp型不純物領域(図示せず)が形成される。次に、同じレジストマスクRMH2を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される(ハロ注入B)。なお、このハロ注入Bでは、同じ注入量および同じ注入エネルギーをもってボロンが注入される。
 ハロ注入Aとハロ注入Bとにおいて、ここでは、ハロ領域(AHB)の不純物濃度がハロ領域(DHE)の不純物濃度よりも高くなるように、ハロ注入Bの注入量がハロ注入Aの注入量よりも高くように注入条件を設定する。なお、ハロ注入の注入量としては、ハロ領域(AHB)の不純物濃度とハロ領域(DHE)の不純物濃度とが異なってくるような注入量であればよく、ハロ注入Bの注入量がハロ注入Aの注入量よりも低くなるような注入条件に設定してもよい。
 次に、図75に示すように、NMIS領域RNを露出し、PMIS領域RPを覆うレジストマスクRME1が形成される(注入マスクC)。次に、そのレジストマスクRME1を注入マスクとして、たとえば、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、露出したpウェルPWの領域の表面から所定の深さにわたりエクステンション領域ER(図69参照)が形成される(エクステンション注入)。その後、レジストマスクRME1が除去される。なお、エクステンション注入は、ハロ注入Aおよびハロ注入Bよりも前に行うこともできる。
 次に、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスク(図示せず)が形成される(注入マスクD)。次に、素子形成領域FRNにハロ領域となるp型不純物領域を形成する工程と同様にして、そのレジストマスクを注入マスクとして、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から露出した半導体基板SUB内に注入することにより、素子形成領域FRPにハロ領域(図示せず)が形成される。次に、ボロンを、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、エクステンション領域(図示せず)が形成される。その後、そのレジストマスクが除去される。
 次に、図28~図31に示す工程(実施の形態1)と同様の工程を経て、図69に示すように、第1金属配線として、銅配線CW1が形成される。その後、銅配線CW1の上に、図71および図72に示される多層配線構造が形成されて、SRAMメモリセルの主要部分が形成される。
 デュアルポートのSRAMメモリセルを備えた本半導体装置では、アクセストランジスタAT1,AT2、AT3,AT3のそれぞれに、ハロ領域AHS,AHBが形成されている。アクセストランジスタAT1(AT2)では、不純物濃度が相対的に高いハロ領域AHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域AHBがビット線BLA(/BLA)側に形成されている。アクセストランジスタAT3(AT4)では、不純物濃度が相対的に高いハロ領域AHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域AHBがビット線BLB(/BLB)側に形成されている。
 また、ドライブトランジスタDT1,DT2のそれぞれに、ハロ領域DHS,DHBが形成されている。不純物濃度が相対的に高いハロ領域DHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域DHEが接地配線VSS側に形成されている。
 このため、実施の形態1において説明したように、読出し動作においては、ビット線(BLA(/BLA),BLB(/BLB))側からストレージノード(SN(/SN))側へ向かって、アクセストランジスタ(AT1(AT2),AT3(AT4))に流れる電流を抑えやすくすることができるとともに、ストレージノード(SN(/SN))側から接地配線(VSS)側へ向かって、ドライブトランジスタDT1(DT2)に流れる電流を増加させやすくすることができる。これにより、β比を高くすることができて、読み出しマージンを上げることができる。
[規則91に基づく訂正 15.05.2013] 
 また、書き込み動作においては、ストレージノード(SN(/SN))側からビット線(BLA(/BLA),BLB(/BLB))側へ向かって、アクセストランジスタ(AT1(AT2),AT3(AT4))に流れる電流(電流IFA)を増加させやすくすることができる。これにより、γ比を高くすることができて、書き込みマージンを上げることができる。こうして、本半導体装置では、読み出しマージンと書き込みマージンとの双方を上げることができる。
 さらに、実施の形態1において説明したように、ドライブトランジスタDT1,DT2を流れる電流は、読み出し動作時におけるストレージノード側から接地配線側へ向かって流れる電流だけである。このため、不純物濃度が相対的に高いハロ領域DHSをストレージノードSN(/SN)側に形成し、不純物濃度が相対的に低いハロ領域DHEを接地配線(VSS)側に形成することで、ドライブトランジスタDT1,DT2のしきい値電圧を相対的に低くして、読み出し時における高速動作を可能にすることができる。
 一方、実施の形態1において説明したように、ドライブトランジスタDT1,DT2におけるハロ領域DHEの不純物濃度を、アクセストランジスタAT1,AT2のハロ領域AHBの不純物濃度よりも高く設定した場合には、読み出し動作時における、ドライブトランジスタDT1,DT2からのリーク電流を抑制することができる。
 さらに、上述した半導体装置では、アクセストランジスタAT1,AT2,AT3,AT4のハロ領域AHB,AHSと、ドライブトランジスタDT1,DT2のハロ領域DHE,DHSは、レジストマスクRMH1(注入マスクA)とレジストマスクRMH2(注入マスクB)とにより形成される。また、ロードトランジスタLT1,LT2のハロ領域はレジストマスク(注入マスクD)により形成される。これにより、比較例に係る半導体装置の場合よりも、ハロ領域を形成するための写真製版マスクを1枚削減することができる。
[規則91に基づく訂正 15.05.2013] 
 実施の形態4
 ここでは、デュアルポートのSRAMメモリセルを備えた半導体装置として、4つのアクセストランジスタ、4つのドライブトランジスタおよび2つのロードトランジスタを備えた半導体装置について説明する。
 まず、そのSRAMメモリセルの等価回路は、図59(実施の形態2の第3例)に示される等価回路と基本的に同じである。図76に示すように、デュアルポートのSRAMメモリセルでは、ドライブトランジスタDT1とドライブトランジスタDT3とは、ストレージノードSNと接地配線(VSS)との間に並列に接続されている。ドライブトランジスタDT2とドライブトランジスタDT4とは、ストレージノード/SNと接地配線(VSS)との間に並列に接続されている。
 ドライブトランジスタDT1,DT3(DT2,DT4)では、それぞれに形成される1対のハロ領域HRのうち、ストレージノードSN(/SN)に接続されているソース・ドレイン領域に隣接するハロ領域DHSの不純物濃度が、接地配線(VSS)に接続されているソース・ドレイン領域に隣接するハロ領域DHEの不純物濃度よりも高く設定されている。なお、これ以外の構成については、図59に示される等価回路と同様なので、同一部材には同一符号を付しその説明を繰り返さないこととする。
 次に、SRAMメモリセルの構造について説明する。図77は、SRAMセルアレイのメモリセルを構成するトランジスタおよびそのトランジスタに接続するコンタクトのレイアウトを示す平面図である。この平面図において、点線で囲まれる領域のそれぞれが一つのSRAMメモリセルを構成する。
 半導体基板SUBの主表面では、素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離された素子形成領域FRN,FRPが規定されている。素子形成領域FRNはNMIS領域RNに形成されている。素子形成領域FRPはPMIS領域RPに形成されている。
 nチャネル型のMISトランジスタとして、素子形成領域FRNには、アクセストランジスタAT1,AT3,AT2,AT4と、ドライブトランジスタDT1,DT2、DT3,DT4とが形成されている。一方、pチャネル型のMISトランジスタとして、素子形成領域FRPには、ロードトランジスタLT1,LT2が形成されている。
 アクセストランジスタAT1が形成されている素子形成領域FRNとアクセストランジスタAT3が形成されている素子形成領域FRNとは繋がっている。ドライブトランジスタDT1が形成されている素子形成領域FRNとドライブトランジスタDT3が形成されている素子形成領域FRNとは繋がっている。アクセストランジスタAT1,AT3が形成されている素子形成領域FRNと、ドライブトランジスタDT1,DT3が形成されている素子形成領域FRNとは、素子分離領域ISRによって互いに電気的に分離されている。
 アクセストランジスタAT2が形成されている素子形成領域FRNとアクセストランジスタAT4が形成されている素子形成領域FRNとは繋がっている。ドライブトランジスタDT2が形成されている素子形成領域FRNとドライブトランジスタDT4が形成されている素子形成領域FRNとは繋がっている。アクセストランジスタAT2,AT4が形成されている素子形成領域FRNと、ドライブトランジスタDT2,DT4が形成されている素子形成領域FRNとは、素子分離領域ISRによって互いに電気的に分離されている。
 ドライブトランジスタDT1,DT3のドライブゲート電極DG1,DG3は、共通のゲート電極(ゲート構造)を屈曲させて、それぞれ素子形成領域FRNを横切るように形成されている。また、ドライブトランジスタDT2,DT4のドライブゲート電極DG2,DG4は、共通のゲート電極(ゲート構造)を屈曲させて、それぞれ素子形成領域FRNを横切るように形成されている。
 図78は、図77において、SRAMメモリセルのアクセストランジスタAT3とアクセストランジスタAT3を通る断面線LXXVIII-LXXVIIIに沿った断面図である。また、図79は、図77において、ドライブトランジスタDT1とドライブトランジスタDT3を通る断面線LXXIX-LXXIXに沿った断面図である。
 図78に示すように、ストレージノードに電気的に接続(コンタクトSNC)されているn型のソース・ドレイン領域SDSが形成されている領域Sと、ビット線に電気的に接続(コンタクトBLAC)されているn型のソース・ドレイン領域SDBが形成されている領域Bとによって挟まれた領域上に、アクセストランジスタAT1のアクセスゲート電極AG1が形成されている。アクセスゲート電極AG1の直下の領域では、p型のハロ領域HRとして、ソース・ドレイン領域SDSに隣接するようにハロ領域AHSが形成され、ソース・ドレイン領域SDBに隣接するようにハロ領域AHBが形成されている。
 また、ストレージノードに電気的に接続(コンタクトSNC)されているn型のソース・ドレイン領域SDSが形成されている領域Sと、ビット線に電気的に接続(コンタクトBLBC)されているn型のソース・ドレイン領域SDBが形成されている領域Bとによって挟まれた領域上に、アクセストランジスタAT3のアクセスゲート電極AG3が形成されている。アクセスゲート電極AG3の直下の領域では、p型のハロ領域HRとして、ソース・ドレイン領域SDSに隣接するようにハロ領域AHSが形成され、ソース・ドレイン領域SDBに隣接するようにハロ領域AHBが形成されている。
 図79に示すように、ストレージノードに電気的に接続(コンタクトSNC)されているn型のソース・ドレイン領域SDSが形成されている領域Sと、接地配線に電気的に接続(コンタクトVSSC)されているn型のソース・ドレイン領域SDEが形成されている領域Eとによって挟まれた領域上に、ドライブトランジスタDT1のドライブゲート電極DG1が形成されている。ドライブゲート電極DG1の直下の領域では、p型のハロ領域HRとして、ソース・ドレイン領域SDSに隣接するようにハロ領域DHSが形成され、ソース・ドレイン領域SDEに隣接するようにハロ領域DHEが形成されている。
 また、ストレージノードに電気的に接続(コンタクトSNC)されているn型のソース・ドレイン領域SDSが形成されている領域Sと、接地配線に電気的に接続(コンタクトVSSC)されているn型のソース・ドレイン領域SDEが形成されている領域Eとによって挟まれた領域上に、ドライブトランジスタDT3のドライブゲート電極DG3が形成されている。ドライブゲート電極DG3の直下の領域では、p型のハロ領域HRとして、ソース・ドレイン領域SDSに隣接するようにハロ領域DHSが形成され、ソース・ドレイン領域SDEに隣接するようにハロ領域DHEが形成されている。
 なお、これ以外の構成については、図61等に示される構造と同様なので、同一部材には同一符号を付し、その説明を繰り返さないこととする。また、図78および図79に示される第1金属配線より上層では、多層の金属配線等によって、図76に示されるSRAMメモリセルの等価回路に対応した多層配線構造(図示せず)が形成されている。
 次に、上述した半導体装置の製造方法について説明する。まず、半導体基板SUBの主表面に素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離される素子形成領域FRN,FRPが規定される(図77参照)。次に、図11に示す工程と同様の工程を経て、アクセスゲート電極AG1,AG2,AG3,AG4、ドライブゲート電極DG1,DG2,DG3,DG4およびロードゲート電極LG1,LG2となるゲート構造Gがそれぞれ形成される(図80参照)。次に、ゲート構造Gの両側面にオフセットスペーサが形成される。
 次に、図80に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH1が形成される(注入マスクA)。レジストマスクRMH1は、アクセスゲート電極AG1,AG3(AG2,AG4)となるそれぞれのゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sの側に位置する側面と、その領域Sとを露出するとともに、ドライブゲート電極DG1,DG3(DG2,DG4)となるゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eと、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sとを露出するように形成される。
 一方、レジストマスクRMH1は、アクセスゲート電極AG1,AG3(AG2,AG4)となるゲート構造Gにおける、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bの側に位置する側面と、その領域Bとを覆うとともに、PMIS領域RPを覆うように形成される。
 次に、レジストマスクRMH1を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される。次に、同じレジストマスクRMH1を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される(ハロ注入A)。なお、このハロ注入Aでは、同じ注入量および同じ注入エネルギーをもってボロンが注入される。その後、レジストマスクRMH1が除去される。
 次に、図81に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH2が形成される(注入マスクB)。レジストマスクRMH2は、アクセスゲート電極AG1,AG3(AG2,AG4)となるそれぞれのゲート構造Gと、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sと、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bとを露出するとともに、ドライブゲート電極DG1,DG3(DG2,DG4)となるゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sが配置されている側に位置する側面と、その領域Sとを露出するように形成される。
 一方、レジストマスクRMH2は、ドライブゲート電極DG1,DG3(DG2,DG4)となるゲート構造Gにおける、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eが配置されている側に位置する側面と、その領域Eと、素子形成領域FRPとを覆うように形成される。
 次に、レジストマスクRMH2を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出した領域pウェルの領域にp型不純物領域(図示せず)が形成される。次に、同じレジストマスクRMH2を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される(ハロ注入B)。なお、このハロ注入Bでは、同じ注入量および同じ注入エネルギーをもってボロンが注入される。
 ハロ注入Aとハロ注入Bとにおいて、ここでは、ハロ領域(AHB)の不純物濃度がハロ領域(DHE)の不純物濃度よりも高くなるように、ハロ注入Bの注入量がハロ注入Aの注入量よりも高くように注入条件を設定する。なお、ハロ注入の注入量としては、ハロ領域(AHB)の不純物濃度とハロ領域(DHE)の不純物濃度とが異なってくるような注入量であればよく、ハロ注入Bの注入量がハロ注入Aの注入量よりも低くなるような注入条件に設定してもよい。
 次に、図82に示すように、NMIS領域RNを露出し、PMIS領域RPを覆うレジストマスクRME1が形成される(注入マスクC)。次に、そのレジストマスクRME1を注入マスクとして、たとえば、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、露出したpウェルPWの領域の表面から所定の深さにわたりエクステンション領域ER(図78、図79参照)が形成される(エクステンション注入)。その後、レジストマスクRME1が除去される。なお、エクステンション注入は、ハロ注入Aおよびハロ注入Bよりも前に行うこともできる。
 次に、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスク(図示せず)が形成される(注入マスクD)。次に、素子形成領域FRNにハロ領域となるp型不純物領域を形成する工程と同様にして、そのレジストマスクを注入マスクとして、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から露出した半導体基板SUB内に注入することにより、素子形成領域FRPにハロ領域(図示せず)が形成される。次に、ボロンを、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、エクステンション領域(図示せず)が形成される。その後、そのレジストマスクが除去される。
 次に、図28~図31に示す工程(実施の形態1)と同様の工程を経て、図78または図79に示すように、第1金属配線として、銅配線CW1が形成される。その後、銅配線CW1の上に多層配線構造が形成されて、SRAMメモリセルの主要部分が形成される。
 デュアルポートのSRAMメモリセルを備えた本半導体装置のアクセストランジスタAT1(AT2)では、不純物濃度が相対的に高いハロ領域AHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域AHBがビット線BLA(/BLA)側に形成されている。アクセストランジスタAT3(AT4)では、不純物濃度が相対的に高いハロ領域AHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域AHBがビット線BLB(/BLB)側に形成されている。
[規則91に基づく訂正 15.05.2013] 
 また、ドライブトランジスタDT1,DT3(DT2,DT4)では、不純物濃度が相対的に高いハロ領域DHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域DHEが接地配線VSS側に形成されている。さらに、ドライブトランジスタDT1とドライブトランジスタDT3とは並列に接続され、ドライブトランジスタDT2とドライブトランジスタDT4とは並列に接続されている。
 このため、実施の形態1において説明したように、読出し動作においては、ビット線(BLA(/BLA),BLB(/BLB))側からストレージノード(SN(/SN))側へ向かって、アクセストランジスタ(AT1(AT2),AT3(AT4))に流れる電流を抑えやすくすることができるとともに、ストレージノード(SN(/SN))側から接地配線(VSS)側へ向かって、ドライブトランジスタDT1,DT3(DT2,DT4)に流れる電流をさらに増加させやすくすることができる。これにより、β比を高くすることができて、読み出しマージンをさらに上げることができる。
[規則91に基づく訂正 15.05.2013] 
 また、書き込み動作においては、ストレージノード(SN(/SN))側からビット線(BLA(/BLA),BLB(/BLB))側へ向かって、アクセストランジスタ(AT1(AT2),AT3(AT4))に流れる電流(電流IFA)を増加させやすくすることができる。これにより、γ比を高くすることができて、書き込みマージンを上げることができる。こうして、第2例に係る半導体装置では、読み出しマージンと書き込みマージンとの双方を上げることができる。
 さらに、実施の形態1において説明したように、ドライブトランジスタDT1,DT3(DT2,DT4)を流れる電流は、読み出し動作時におけるストレージノード側から接地配線側へ向かって流れる電流だけである。このため、不純物濃度が相対的に高いハロ領域DHSをストレージノードSN(/SN)側に形成し、不純物濃度が相対的に低いハロ領域DHEを接地配線(VSS)側に形成することで、ドライブトランジスタDT1,DT2(DT2,DT4)のしきい値電圧を相対的に低くして、読み出し時における高速動作を可能にすることができる。
 一方、実施の形態1において説明したように、ドライブトランジスタDT1,DT3,DT2,DT4におけるハロ領域DHEの不純物濃度を、アクセストランジスタAT1(AT3),AT2(AT4)のハロ領域AHBの不純物濃度よりも高く設定した場合には、読み出し動作時における、ドライブトランジスタDT1,DT3,DT2,DT4からのリーク電流を抑制することができる。
 さらに、上述した半導体装置では、アクセストランジスタAT1,AT2,AT3,AT4のハロ領域AHB,AHSと、ドライブトランジスタDT1,DT3,DT2,DT4のハロ領域DHE,DHSは、レジストマスクRMH1(注入マスクA)とレジストマスクRMH2(注入マスクB)とにより形成される。また、ロードトランジスタLT1,LT2のハロ領域はレジストマスク(注入マスクD)により形成される。これにより、比較例に係る半導体装置の場合よりも、ハロ領域を形成するための写真製版マスクを1枚削減することができる。
[規則91に基づく訂正 15.05.2013] 
 実施の形態5
 ここでは、デュアルポートのSRAMメモリセルを備えた半導体装置として、4つのアクセストランジスタ、4つのドライブトランジスタおよび2つのロードトランジスタを備えた半導体装置の他の例について説明する。
 まず、そのSRAMメモリセルの等価回路は、図76(実施の形態4)の等価回路と同じなので、その説明を繰り返さないこととする。
 次に、SRAMメモリセルの構造について説明する。図83は、SRAMセルアレイのメモリセルを構成するトランジスタおよびそのトランジスタに接続するコンタクトのレイアウトを示す平面図である。この平面図において、点線で囲まれる領域のそれぞれが一つのSRAMメモリセルを構成する。
 半導体基板SUBの主表面では、素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離された素子形成領域FRN,FRPが規定されている。素子形成領域FRNはNMIS領域RNに形成されている。素子形成領域FRPはPMIS領域RPに形成されている。
 nチャネル型のMISトランジスタとして、素子形成領域FRNには、アクセストランジスタAT1,AT2,AT3,AT4と、ドライブトランジスタDT1,DT2、DT3,DT4とが形成されている。一方、pチャネル型のMISトランジスタとして、素子形成領域FRPには、ロードトランジスタLT1,LT2が形成されている。
 アクセストランジスタAT1が形成されている素子形成領域FRNと、ドライブトランジスタDT1が形成されている素子形成領域FRNと、ドライブトランジスタDT2が形成されている素子形成領域FRNと、アクセストランジスタAT2が形成されている素子形成領域FRNとは繋がっている。また、アクセストランジスタAT3が形成されている素子形成領域FRNと、ドライブトランジスタDT3が形成されている素子形成領域FRNと、ドライブトランジスタDT4が形成されている素子形成領域FRNと、アクセストランジスタAT4が形成されている素子形成領域FRNとは繋がっている。
 アクセストランジスタAT1,AT2およびドライブトランジスタDT1,DT2が形成されている素子形成領域FRNと、アクセストランジスタAT3,AT4およびドライブトランジスタDT3,DT4が形成されている素子形成領域FRNとは、素子分離領域ISRによって互いに電気的に分離されている。
 ドライブトランジスタDT1,DT3のドライブゲート電極DG1,DG3およびロードトランジスタLT1のロードゲート電極LG1は、共通のゲート電極(ゲート構造)によって形成されている。ドライブトランジスタDT1とドライブトランジスタDT3とは並列に接続されている。ドライブゲート電極DG1とドライブゲート電極DG3との間に、ロードゲート電極LG1が位置する。
 また、ドライブトランジスタDT2,DT4のドライブゲート電極DG2,DG4およびロードトランジスタLT2のロードゲート電極LG2は、共通のゲート電極(ゲート構造)によって形成されている。ドライブトランジスタDT2とドライブトランジスタDT4とは並列に接続されている。ドライブゲート電極DG2とドライブゲート電極DG4との間に、ロードゲート電極LG2が位置する。
 さらに、半導体基板の表面上には、アクセストランジスタAT1~AT4、ドライブトランジスタDT1~DT3およびロードトランジスタLT1,LT2を、等価回路に対応するように接続する多層配線構造(図示せず)が形成されている。
 次に、上述した半導体装置の製造方法について説明する。まず、半導体基板SUBの主表面に素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離される素子形成領域FRN,FRPが規定される(図83参照)。次に、図11に示す工程と同様の工程を経て、アクセスゲート電極AG1,AG2,AG3,AG4、ドライブゲート電極DG1,DG2,DG3,DG4およびロードゲート電極LG1,LG2となるゲート構造Gがそれぞれ形成される(図84参照)。次に、ゲート構造Gの両側面にオフセットスペーサが形成される。
 次に、図84に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH1が形成される(注入マスクA)。レジストマスクRMH1は、アクセスゲート電極AG1,AG2(AG3,AG4)となるそれぞれのゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sの側に位置する側面と、その領域Sとを露出するとともに、ドライブゲート電極DG1,DG2(DG3,DG4)となるゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eとを、開口パターンによって露出するように形成される。
 一方、レジストマスクRMH1は、アクセスゲート電極AG1,AG2(AG3,AG4)となるゲート構造Gにおける、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bの側に位置する側面と、その領域Bとを覆うとともに、PMIS領域RPを覆うように形成される。
 次に、レジストマスクRMH1を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される。次に、同じレジストマスクRMH1を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される(ハロ注入A)。なお、このハロ注入Aでは、同じ注入量および同じ注入エネルギーをもってボロンが注入される。その後、レジストマスクRMH1が除去される。
 次に、図85に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH2が形成される(注入マスクB)。レジストマスクRMH2は、アクセスゲート電極AG1,AG2(AG3,AG4)となるそれぞれのゲート構造Gと、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sと、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bとを露出するとともに、ドライブゲート電極DG1,DG2(DG3,DG4)となるゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sが配置されている側に位置する側面とを、開口パターンによって露出するように形成される。
 一方、レジストマスクRMH2は、ドライブゲート電極DG1,DG2(DG3,DG4)となるゲート構造Gにおける、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eが配置されている側に位置する側面と、その領域Eと、素子形成領域FRPとを覆うように形成される。
 次に、レジストマスクRMH2を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出した領域pウェルの領域にp型不純物領域(図示せず)が形成される。次に、同じレジストマスクRMH2を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される(ハロ注入B)。なお、このハロ注入Bでは、同じ注入量および同じ注入エネルギーをもってボロンが注入される。
 ハロ注入Aとハロ注入Bとにおいて、ここでは、ハロ領域(AHB)の不純物濃度がハロ領域(DHE)の不純物濃度よりも高くなるように、ハロ注入Bの注入量がハロ注入Aの注入量よりも高くように注入条件を設定する。なお、ハロ注入の注入量としては、ハロ領域(AHB)の不純物濃度とハロ領域(DHE)の不純物濃度とが異なってくるような注入量であればよく、ハロ注入Bの注入量がハロ注入Aの注入量よりも低くなるような注入条件に設定してもよい。
 次に、図86に示すように、NMIS領域RNを露出し、PMIS領域RPを覆うレジストマスクRME1が形成される(注入マスクC)。次に、そのレジストマスクRME1を注入マスクとして、たとえば、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、露出したpウェルPWの領域の表面から所定の深さにわたりエクステンション領域(図示せず)が形成される(エクステンション注入)。その後、レジストマスクRME1が除去される。なお、エクステンション注入は、ハロ注入Aおよびハロ注入Bよりも前に行うこともできる。
 次に、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスク(図示せず)が形成される(注入マスクD)。次に、素子形成領域FRNにハロ領域となるp型不純物領域を形成する工程と同様にして、そのレジストマスクを注入マスクとして、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から露出した半導体基板SUB内に注入することにより、素子形成領域FRPにハロ領域(図示せず)が形成される。次に、ボロンを、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、エクステンション領域(図示せず)が形成される。その後、そのレジストマスクが除去される。
 次に、図28~図31に示す工程(実施の形態1)と同様の工程を経て、第1金属配線(図示せず)が形成される。その後、第1金属配線の上に多層配線構造が形成されて、SRAMメモリセルの主要部分が形成される。
 デュアルポートのSRAMメモリセルを備えた本半導体装置のアクセストランジスタAT1(AT2)では、不純物濃度が相対的に高いハロ領域AHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域AHBがビット線BLA(/BLA)側に形成されている。アクセストランジスタAT3(AT4)では、不純物濃度が相対的に高いハロ領域AHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域AHBがビット線BLB(/BLB)側に形成されている。
[規則91に基づく訂正 15.05.2013] 
 また、ドライブトランジスタDT1,DT3(DT2,DT4)では、不純物濃度が相対的に高いハロ領域DHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域DHEが接地配線VSS側に形成されている。さらに、ドライブトランジスタDT1とドライブトランジスタDT3とは並列に接続され、ドライブトランジスタDT2とドライブトランジスタDT4とは並列に接続されている。
 これにより、実施の形態4において説明した半導体装置のSRAMメモリセルと同様に、読み出しマージンと書き込みマージンとの双方を上げることができる。また、読み出し時における高速動作を可能にすることができる。さらに、比較例に係る半導体装置の場合よりも、ハロ領域を形成するための写真製版マスクを1枚削減することができる。
 実施の形態6
 ここでは、読み出し専用ポートを備えた3ポートのSRAMメモリセルを有する半導体装置について説明する。
 まず、そのSRAMメモリセルの等価回路について説明する。図87に示すように、3ポートのSRAMメモリセルでは、読み出し用のビット線として、ビット線RBLAとビット線RBLBとが設けられている。また、読み出し用のワード線として、読み出しワード線RWLAと、読み出しワード線RWLBとが設けられている。
 アクセストランジスタAT3のゲートは、読み出しワード線RWLAに接続され、アクセストランジスタAT3の1対のソース・ドレイン領域の一方は、ビット線RBLAに接続されている。アクセストランジスタAT4のゲートは、読み出しワード線RWLBに接続され、アクセストランジスタAT4の1対のソース・ドレイン領域の一方は、ビット線RBLBに接続されている。
 ドライブトランジスタDT3のゲートは、ドライブトランジスタDT1のゲートとロードトランジスタLT1のゲートとに接続されている。ドライブトランジスタDT3の1対のソース・ドレイン領域の一方は、アクセストランジスタAT3の1対のソース・ドレイン領域の他方に接続されている。ドライブトランジスタDT3の1対のソース・ドレイン領域の他方は、接地配線(VSS)に接続されている。
 ドライブトランジスタDT4のゲートは、ドライブトランジスタDT2のゲートとロードトランジスタLT2のゲートとに接続されている。ドライブトランジスタDT4の1対のソース・ドレイン領域の一方は、アクセストランジスタAT4の1対のソース・ドレイン領域の他方に接続されている。ドライブトランジスタDT4の1対のソース・ドレイン領域の他方は、接地配線(VSS)に接続されている。
 アクセストランジスタAT3,AT4の1対のハロ領域AHT,AHTと、ドライブトランジスタDT3,DT4の1対のハロ領域DHT,DHTは、ドライブトランジスタDT1,DT2の1対のハロ領域HR(ハロ領域DHS,DHE)のうち、ハロ領域DHEの不純物濃度と同じ不純物濃度となるように形成されている。なお、これ以外の構成については、図3に示す等価回路と同様なので、同一部材には同一符号を付しその説明を繰り返さないこととする。
 読み出し専用ポートでは、アクセストランジスタAT3,AT4をオンしたときの読み出しビット線RBLA,RBLBの電位の変動を検知することによって、データが読み出される。
 まず、ストレージノードSN,/SNの電荷に対応して、ドライブトランジスタDT3,DT4では、一方がオンの状態で、他方がオフの状態になる。その状態でアクセストランジスタAT3,AT4をオンしたときに、ドライブトランジスタDT3(DT4)がオン状態のポートでは、読み出しビット線RBLA(RBLB)にプリチャージされた電荷が、アクセストランジスタAT3(AT4)およびドライブトランジスタDT3(DT4)を経て接地配線へ引き抜かれて、読み出しビット線RBLA(RBLB)の電位が下がる。
 一方、ドライブトランジスタDT3(DT4)がオフ状態のポートでは、読み出しビット線RBLA(RBLB)にプリチャージされた電荷は引き抜かれず、読み出しビット線RBLA(RBLB)の電位は変動しない。こうして、プリチャージされた読み出しビット線RBLA(RBLB)の電位の変動を検知することによって、データが読み出されることになる。
 次に、SRAMメモリセルの構造について説明する。図88は、SRAMセルアレイのメモリセルを構成するトランジスタおよびそのトランジスタに接続するコンタクトのレイアウトを示す平面図である。この平面図において、点線で囲まれる領域のそれぞれが一つのSRAMメモリセルを構成する。
 半導体基板SUBの主表面では、素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離された素子形成領域FRN,FRPが規定されている。素子形成領域FRNはNMIS領域RNに形成されている。素子形成領域FRPはPMIS領域RPに形成されている。
 nチャネル型のMISトランジスタとして、素子形成領域FRNには、アクセストランジスタAT1,AT2,AT3,AT4と、ドライブトランジスタDT1,DT2、DT3,DT4とが形成されている。一方、pチャネル型のMISトランジスタとして、素子形成領域FRPには、ロードトランジスタLT1,LT2が形成されている。
 アクセストランジスタAT1が形成されている素子形成領域FRNと、ドライブトランジスタDT1が形成されている素子形成領域FRNとは繋がっている。アクセストランジスタAT3が形成されている素子形成領域FRNと、ドライブトランジスタDT3が形成されている素子形成領域FRNとは繋がっている。アクセストランジスタAT1およびドライブトランジスタDT1とが形成されている素子形成領域FRNと、アクセストランジスタAT3およびドライブトランジスタDT3とが形成されている素子形成領域FRNとは、素子分離領域ISRによって電気的に分離されている。
 アクセストランジスタAT2が形成されている素子形成領域FRNと、ドライブトランジスタDT2が形成されている素子形成領域FRNとは繋がっている。アクセストランジスタAT4が形成されている素子形成領域FRNと、ドライブトランジスタDT4が形成されている素子形成領域FRNとは繋がっている。アクセストランジスタAT2およびドライブトランジスタDT2とが形成されている素子形成領域FRNと、アクセストランジスタAT4およびドライブトランジスタDT4とが形成されている素子形成領域FRNとは、素子分離領域ISRによって電気的に分離されている。
 図89は、図88において、SRAMメモリセルのアクセストランジスタAT1とドライブトランジスタDT1を通る断面線LXXXIX-LXXXIXに沿った断面図である。図89に示す断面構造は、図5に示す断面構造と同じである。このため、同一部材に同一符号を付して、その説明を繰り返さないこととする。また、図89に示される第1金属配線より上層では、多層の金属配線等によって、図87に示されるSRAMメモリセルの等価回路に対応した構造(図示せず)が形成されている。
 次に、上述した半導体装置の製造方法について説明する。まず、半導体基板SUBの主表面に素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離される素子形成領域FRN,FRPが規定される(図88参照)。次に、図11に示す工程と同様の工程を経て、アクセスゲート電極AG1,AG2,AG3,AG4、ドライブゲート電極DG1,DG2,DG3,DG4およびロードゲート電極LG1,LG2となるゲート構造Gがそれぞれ形成される(図90参照)。次に、ゲート構造Gの両側面にオフセットスペーサが形成される。
 次に、図90に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH1が形成される(注入マスクA)。レジストマスクRMH1は、まず、アクセスゲート電極AG1,AG2となるそれぞれのゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sの側に位置する側面と、その領域Sとを露出するとともに、ドライブゲート電極DG1,DG2となるゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eとを露出するように形成される。
 さらに、レジストマスクRMH1は、アクセスゲート電極AG3,AG4となるそれぞれのゲート構造Gと、読み取りビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域RBと、ドライブゲート電極DG3,DG4となるそれぞれのゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eと、アクセスゲート電極AG3(AG4)となるゲート構造Gとドライブゲート電極DG3(DG4)となるゲート構造Gとによって挟まれた素子形成領域FRNの部分とを露出するように形成される。
 一方、レジストマスクRMH1は、アクセスゲート電極AG1,AG2となるゲート構造Gにおける、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bの側に位置する側面と、その領域Bとを覆うとともに、PMIS領域RPを覆うように形成される。
 次に、レジストマスクRMH1を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される。次に、同じレジストマスクRMH1を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される(ハロ注入A)。なお、このハロ注入Aでは、同じ注入量および同じ注入エネルギーをもってボロンが注入される。その後、レジストマスクRMH1が除去される。
 次に、図91に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH2が形成される(注入マスクB)。レジストマスクRMH2は、アクセスゲート電極AG1,AG2となるそれぞれのゲート構造Gと、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sと、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bとを露出するとともに、ドライブゲート電極DG1,DG2となるゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sが配置されている側に位置する側面とを露出するように形成される。
 一方、レジストマスクRMH2は、ドライブゲート電極DG1,DG2となるゲート構造Gにおける、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eが配置されている側に位置する側面と、その領域Eと、素子形成領域FRPとを覆うように形成される。
 さらに、レジストマスクRMH2は、アクセスゲート電極AG3,AG4となるそれぞれのゲート構造Gと、読み取りビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域RBと、ドライブゲート電極DG3,DG4となるそれぞれのゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eと、アクセスゲート電極AG3(AG4)となるゲート構造Gとドライブゲート電極DG3(DG4)となるゲート構造Gとによって挟まれた素子形成領域FRNの部分とを覆うように形成される。
 次に、レジストマスクRMH2を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出した領域pウェルの領域にp型不純物領域(図示せず)が形成される。次に、同じレジストマスクRMH2を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される(ハロ注入B)。なお、このハロ注入Bでは、同じ注入量および同じ注入エネルギーをもってボロンが注入される。
 ハロ注入Aとハロ注入Bとにおいて、ここでは、ハロ領域(AHB)の不純物濃度がハロ領域(DHE)の不純物濃度よりも高くなるように、ハロ注入Bの注入量がハロ注入Aの注入量よりも高くように注入条件を設定する。なお、ハロ注入の注入量としては、ハロ領域(AHB)の不純物濃度とハロ領域(DHE)の不純物濃度とが異なってくるような注入量であればよく、ハロ注入Bの注入量がハロ注入Aの注入量よりも低くなるような注入条件に設定してもよい。
 また、アクセストランジスタAT3,AT4に形成されるハロ領域AHTおよびドライブトランジスタDG3,DG4に形成されるハロ領域DHTは、ハロ注入Aによって形成されることなり、ハロ領域AHT,DHTの不純物濃度は、ドライブトランジスタDG1,DG2のハロ領域DHEの不純物濃度と同じ不純物濃度になる。
 次に、図92に示すように、NMIS領域RNを露出し、PMIS領域RPを覆うレジストマスクRME1が形成される(注入マスクC)。次に、そのレジストマスクRME1を注入マスクとして、たとえば、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、露出したpウェルPWの領域の表面から所定の深さにわたりエクステンション領域ER(図89参照)が形成される(エクステンション注入)。その後、レジストマスクRME1が除去される。なお、エクステンション注入は、ハロ注入Aおよびハロ注入Bよりも前に行うこともできる。
 次に、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスク(図示せず)が形成される(注入マスクD)。次に、素子形成領域FRNにハロ領域となるp型不純物領域を形成する工程と同様にして、そのレジストマスクを注入マスクとして、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から露出した半導体基板SUB内に注入することにより、素子形成領域FRPにハロ領域(図示せず)が形成される。次に、ボロンを、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、エクステンション領域(図示せず)が形成される。その後、そのレジストマスクが除去される。
 次に、図28~図31に示す工程(実施の形態1)と同様の工程を経て、図89に示すように、第1金属配線として、銅配線CW1が形成される。その後、銅配線CW1の上に多層配線構造が形成されて、SRAMメモリセルの主要部分が形成される。
 上述したSRAMメモリセルを備えた半導体装置では、読み出し専用ポートが設けられている。読み出し専用ポートを構成するアクセストランジスタAT3,AT4およびドライブトランジスタDT3,DT4では、アクセストランジスタAT3,AT4の1対のハロ領域AHT,AHTと、ドライブトランジスタDT3,DT4の1対のハロ領域DHT,DHTは、ドライブトランジスタDT1,DT2の1対のハロ領域HR(ハロ領域DHS,DHE)のうち、ハロ領域DHEの不純物濃度と同じ不純物濃度となるように形成されている。
 本半導体装置では、このドライブトランジスタDT1,DT2のハロ領域DHEの不純物濃度は、アクセストランジスタAT1,AT2のハロ領域AHBの不純物濃度よりも低く設定されている。このため、読み出しポートにおけるハロ領域AHT,DHTの不純物濃度は、ハロ領域AHBの不純物濃度よりも低くなる。これにより、読み出し専用ポートによる読み出し動作では、読み出し速度を向上させることができる。
 また、本半導体装置では、読み取りワード線RWLAと読み取りワード線RWLBとを共通にし、読み出しビット線RBLAと読み出しビット線RBLBとを差動読み出しとして使用する場合には、2ポートのSRAMとして使用することも可能になる。
[規則91に基づく訂正 15.05.2013] 
 さらに、本半導体装置のアクセストランジスタAT1(AT2)では、不純物濃度が相対的に高いハロ領域AHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域AHBがビット線BL(/BL)側に形成されている。また、ドライブトランジスタDT1,DT2では、不純物濃度が相対的に高いハロ領域DHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域DHEが接地配線VSS側に形成されている。
 これにより、実施の形態1において説明した半導体装置のSRAMメモリセルと同様に、読み出しマージンと書き込みマージンとの双方を上げることができる。また、読み出し時における高速動作を可能にすることができる。さらに、比較例に係る半導体装置の場合よりも、ハロ領域を形成するための写真製版マスクを1枚削減することができる。
 実施の形態7
 ここでは、読み出し専用ポートを備えた3ポートのSRAMメモリセルを有する半導体装置の他の例について説明する。
 まず、そのSRAMメモリセルの等価回路について説明する。図93に示すように、アクセストランジスタAT3,AT4の1対のハロ領域AHT,AHTと、ドライブトランジスタDT3,DT4の1対のハロ領域DHT,DHTは、アクセストランジスタAT1,AT2の1対のハロ領域HR(ハロ領域AHS,AHB)のうち、ハロ領域AHBの不純物濃度と同じ不純物濃度となるように形成されている。なお、これ以外の構成については、図87に示す等価回路と同様なので、同一部材には同一符号を付しその説明を繰り返さないこととする。
 また、SRAMセルアレイのメモリセルを構成するトランジスタおよびそのトランジスタに接続するコンタクトのレイアウトは、図88に示されるレイアウトと同じレイアウトである。また、図88に示す断面線に対応する断面線に沿った断面構造は、図89に示される断面構造と同じである。このため、レイアウトと断面構造について、その説明を繰り返さないこととする。
 次に、上述した半導体装置の製造方法について説明する。まず、半導体基板SUBの主表面に素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離される素子形成領域FRN,FRPが規定される(図94参照)。次に、図11に示す工程と同様の工程を経て、アクセスゲート電極AG1,AG2,AG3,AG4、ドライブゲート電極DG1,DG2,DG3,DG4およびロードゲート電極LG1,LG2となるゲート構造Gがそれぞれ形成される(図94参照)。次に、ゲート構造Gの両側面にオフセットスペーサが形成される。
 次に、図94に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH1が形成される(注入マスクA)。レジストマスクRMH1は、アクセスゲート電極AG1,AG2となるそれぞれのゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sの側に位置する側面と、その領域Sとを露出するとともに、ドライブゲート電極DG1,DG2となるゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eとを露出するように形成される。
 一方、レジストマスクRMH1は、アクセスゲート電極AG1,AG2となるゲート構造Gにおける、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bの側に位置する側面と、その領域Bとを覆うように形成される。
 さらに、レジストマスクRMH1は、アクセスゲート電極AG3,AG4となるそれぞれのゲート構造Gと、読み取りビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域RBと、ドライブゲート電極DG3,DG4となるそれぞれのゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eと、アクセスゲート電極AG3(AG4)となるゲート構造Gとドライブゲート電極DG3(DG4)となるゲート構造Gとによって挟まれた素子形成領域FRNの部分と、PMIS領域RPとを覆うように形成される。
 次に、レジストマスクRMH1を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される。次に、同じレジストマスクRMH1を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される(ハロ注入A)。なお、このハロ注入Aでは、同じ注入量および同じ注入エネルギーをもってボロンが注入される。その後、レジストマスクRMH1が除去される。
 次に、図95に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH2が形成される(注入マスクB)。レジストマスクRMH2は、アクセスゲート電極AG1,AG2となるそれぞれのゲート構造Gと、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sと、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bとを露出するとともに、ドライブゲート電極DG1,DG2となるゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sが配置されている側に位置する側面とを露出するように形成される。
 さらに、レジストマスクRMH2は、アクセスゲート電極AG3,AG4となるそれぞれのゲート構造Gと、読み取りビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域RBと、ドライブゲート電極DG3,DG4となるそれぞれのゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eと、アクセスゲート電極AG3(AG4)となるゲート構造Gとドライブゲート電極DG3(DG4)となるゲート構造Gとによって挟まれた素子形成領域FRNの部分とを露出するように形成される。
 一方、レジストマスクRMH2は、ドライブゲート電極DG1,DG2となるゲート構造Gにおける、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eが配置されている側に位置する側面と、その領域Eと、素子形成領域FRPとを覆うように形成される。
 次に、レジストマスクRMH2を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出した領域pウェルの領域にp型不純物領域(図示せず)が形成される。次に、同じレジストマスクRMH2を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される(ハロ注入B)。なお、このハロ注入Bでは、同じ注入量および同じ注入エネルギーをもってボロンが注入される。
 ハロ注入Aとハロ注入Bとにおいて、ここでは、ハロ領域(AHB)の不純物濃度がハロ領域(DHE)の不純物濃度よりも高くなるように、ハロ注入Bの注入量がハロ注入Aの注入量よりも高くように注入条件を設定する。なお、ハロ注入の注入量としては、ハロ領域(AHB)の不純物濃度とハロ領域(DHE)の不純物濃度とが異なってくるような注入量であればよく、ハロ注入Bの注入量がハロ注入Aの注入量よりも低くなるような注入条件に設定してもよい。
 また、アクセストランジスタAT3,AT4に形成されるハロ領域AHTおよびドライブトランジスタDG3,DG4に形成されるハロ領域DHTは、ハロ注入Bによって形成されることなり、ハロ領域AHT,DHTの不純物濃度は、アクセストランジスタAG1,AG2のハロ領域AHBの不純物濃度と同じ不純物濃度になる。
 次に、図96に示すように、NMIS領域RNを露出し、PMIS領域RPを覆うレジストマスクRME1が形成される(注入マスクC)。次に、そのレジストマスクRME1を注入マスクとして、たとえば、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、露出したpウェルPWの領域の表面から所定の深さにわたりエクステンション領域ER(図示せず)が形成される(エクステンション注入)。その後、レジストマスクRME1が除去される。なお、エクステンション注入は、ハロ注入Aおよびハロ注入Bよりも前に行うこともできる。
 次に、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスク(図示せず)が形成される(注入マスクD)。次に、素子形成領域FRNにハロ領域となるp型不純物領域を形成する工程と同様にして、そのレジストマスクを注入マスクとして、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から露出した半導体基板SUB内に注入することにより、素子形成領域FRPにハロ領域(図示せず)が形成される。次に、ボロンを、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、エクステンション領域(図示せず)が形成される。その後、そのレジストマスクが除去される。
 次に、図28~図31に示す工程(実施の形態1)と同様の工程を経て、第1金属配線として、銅配線CW1が形成される(図89参照)。その後、銅配線CW1の上に多層配線構造が形成されて、SRAMメモリセルの主要部分が形成される。
 上述したSRAMメモリセルを備えた半導体装置では、読み出し専用ポートが設けられている。読み出し専用ポートを構成するアクセストランジスタAT3,AT4およびドライブトランジスタDT3,DT4では、アクセストランジスタAT3,AT4の1対のハロ領域AHT,AHTと、ドライブトランジスタDT3,DT4の1対のハロ領域DHT,DHTは、アクセストランジスタAT1,AT2の1対のハロ領域HR(ハロ領域AHS,AHB)のうち、ハロ領域AHBの不純物濃度と同じ不純物濃度となるように形成されている。
 本半導体装置では、このアクセストランジスタAT1,AT2のハロ領域AHBの不純物濃度は、ドライブトランジスタDT1,DT2のハロ領域DHEの不純物濃度よりも高く設定されている。このため、読み出しポートにおけるハロ領域AHT,DHTの不純物濃度は、ハロ領域DHEの不純物濃度よりも高くなる。これにより、読み出し専用ポートによる読み出し動作では、読み出し時におけるドライブトランジスタDT3,DT4からのリーク電流を抑制することができる。
 また、本半導体装置では、読み取りワード線RWLAと読み取りワード線RWLBとを共通にし、読み出しビット線RBLAと読み出しビット線RBLBとを差動読み出しとして使用する場合には、2ポートのSRAMとして使用することも可能になる。
[規則91に基づく訂正 15.05.2013] 
 さらに、本半導体装置のアクセストランジスタAT1(AT2)では、不純物濃度が相対的に高いハロ領域AHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域AHBがビット線BL(/BL)側に形成されている。また、ドライブトランジスタDT1,DT2では、不純物濃度が相対的に高いハロ領域DHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域DHEが接地配線VSS側に形成されている。
 これにより、実施の形態1において説明した半導体装置のSRAMメモリセルと同様に、読み出しマージンと書き込みマージンとの双方を上げることができる。また、読み出し時における高速動作を可能にすることができる。さらに、比較例に係る半導体装置の場合よりも、ハロ領域を形成するための写真製版マスクを1枚削減することができる。
 実施の形態8
 (第1例)
 ここでは、読み出し専用ポートを備えた2ポートのSRAMメモリセルを有する半導体装置について説明する。
 まず、そのSRAMメモリセルの等価回路について説明する。図97に示すように、2ポートのSRAMメモリセルでは、読み出し用のビット線として、ビット線RBLが設けられ、また、読み出し用のワード線として、読み出しワード線RWLが設けられている。アクセストランジスタAT3のゲートは、読み出しワード線RWLに接続され、アクセストランジスタAT3の1対のソース・ドレイン領域の一方は、ビット線RBLに接続されている。
 ドライブトランジスタDT3のゲートは、ドライブトランジスタDT2のゲートとロードトランジスタLT2のゲートとに接続されている。ドライブトランジスタDT3の1対のソース・ドレイン領域の一方は、アクセストランジスタAT3の1対のソース・ドレイン領域の他方に接続されている。ドライブトランジスタDT3の1対のソース・ドレイン領域の他方は、接地配線(VSS)に接続されている。
 アクセストランジスタAT3の1対のハロ領域AHT,AHTと、ドライブトランジスタDT3の1対のハロ領域DHT,DHTは、ドライブトランジスタDT1,DT2の1対のハロ領域HR(ハロ領域DHS,DHE)のうち、ハロ領域DHEの不純物濃度と同じ不純物濃度となるように形成されている。なお、これ以外の構成については、図3に示す等価回路と同様なので、同一部材には同一符号を付しその説明を繰り返さないこととする。
 読み出し専用ポートでは、アクセストランジスタAT3をオンしたときの読み出しビット線RBLの電位の変動を検知することによって、データが読み出される。
 次に、SRAMメモリセルの構造について説明する。図98は、SRAMセルアレイのメモリセルを構成するトランジスタおよびそのトランジスタに接続するコンタクトのレイアウトを示す平面図である。この平面図において、点線で囲まれる領域のそれぞれが一つのSRAMメモリセルを構成する。
 半導体基板SUBの主表面では、素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離された素子形成領域FRN,FRPが規定されている。素子形成領域FRNはNMIS領域RNに形成されている。素子形成領域FRPはPMIS領域RPに形成されている。
 nチャネル型のMISトランジスタとして、素子形成領域FRNには、アクセストランジスタAT1,AT2,AT3と、ドライブトランジスタDT1,DT2、DT3とが形成されている。一方、pチャネル型のMISトランジスタとして、素子形成領域FRPには、ロードトランジスタLT1,LT2が形成されている。
 アクセストランジスタAT1が形成されている素子形成領域FRNと、ドライブトランジスタDT1が形成されている素子形成領域FRNとは繋がっている。アクセストランジスタAT2が形成されている素子形成領域FRNと、ドライブトランジスタDT2が形成されている素子形成領域FRNとは繋がっている。アクセストランジスタAT3が形成されている素子形成領域FRNと、ドライブトランジスタDT3が形成されている素子形成領域FRNとは繋がっている。
 アクセストランジスタAT1およびドライブトランジスタDT1とが形成されている素子形成領域FRNと、アクセストランジスタAT2およびドライブトランジスタDT2とが形成されている素子形成領域FRNと、アクセストランジスタAT3およびドライブトランジスタDT3とが形成されている素子形成領域FRNとは、素子分離領域ISRによって電気的に分離されている。
 図99は、図98において、SRAMメモリセルのアクセストランジスタAT1とドライブトランジスタDT1を通る断面線XCIX-XCIXに沿った断面図である。図99に示す断面構造は、図5に示す断面構造と同じである。このため、同一部材に同一符号を付して、その説明を繰り返さないこととする。また、図99に示される第1金属配線より上層では、多層の金属配線等によって、図97に示されるSRAMメモリセルの等価回路に対応した構造(図示せず)が形成されている。
 次に、上述した半導体装置の製造方法について説明する。まず、半導体基板SUBの主表面に素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離される素子形成領域FRN,FRPが規定される(図98参照)。次に、図11に示す工程と同様の工程を経て、アクセスゲート電極AG1,AG2,AG3,AG4、ドライブゲート電極DG1,DG2,DG3,DG4およびロードゲート電極LG1,LG2となるゲート構造Gがそれぞれ形成される(図100参照)。次に、ゲート構造Gの両側面にオフセットスペーサが形成される。
 次に、図100に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH1が形成される(注入マスクA)。レジストマスクRMH1は、まず、アクセスゲート電極AG1,AG2となるそれぞれのゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sの側に位置する側面と、その領域Sとを露出するとともに、ドライブゲート電極DG1,DG2となるゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eとを露出するように形成される。
 さらに、レジストマスクRMH1は、アクセスゲート電極AG3となるゲート構造Gと、読み取りビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域RBと、ドライブゲート電極DG3となるゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eと、アクセスゲート電極AG3となるゲート構造Gとドライブゲート電極DG3となるゲート構造Gとによって挟まれた素子形成領域FRNの部分とを露出するように形成される。
 一方、レジストマスクRMH1は、アクセスゲート電極AG1,AG2となるゲート構造Gにおける、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bの側に位置する側面と、その領域Bとを覆うとともに、PMIS領域RPを覆うように形成される。
 次に、レジストマスクRMH1を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される。次に、同じレジストマスクRMH1を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される(ハロ注入A)。なお、このハロ注入Aでは、同じ注入量および同じ注入エネルギーをもってボロンが注入される。その後、レジストマスクRMH1が除去される。
 次に、図101に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH2が形成される(注入マスクB)。レジストマスクRMH2は、アクセスゲート電極AG1,AG2となるそれぞれのゲート構造Gと、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sと、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bとを露出するとともに、ドライブゲート電極DG1,DG2となるゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sが配置されている側に位置する側面とを露出するように形成される。
 一方、レジストマスクRMH2は、ドライブゲート電極DG1,DG2となるゲート構造Gにおける、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eが配置されている側に位置する側面と、その領域Eと、素子形成領域FRPとを覆うように形成される。
 さらに、レジストマスクRMH2は、アクセスゲート電極AG3となるゲート構造Gと、読み取りビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域RBと、ドライブゲート電極DG3となるゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eと、アクセスゲート電極AG3となるゲート構造Gとドライブゲート電極DG3となるゲート構造Gとによって挟まれた素子形成領域FRNの部分とを覆うように形成される。
 次に、レジストマスクRMH2を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出した領域pウェルの領域にp型不純物領域(図示せず)が形成される。次に、同じレジストマスクRMH2を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される(ハロ注入B)。なお、このハロ注入Bでは、同じ注入量および同じ注入エネルギーをもってボロンが注入される。
 ハロ注入Aとハロ注入Bとにおいて、ここでは、ハロ領域(AHB)の不純物濃度がハロ領域(DHE)の不純物濃度よりも高くなるように、ハロ注入Bの注入量がハロ注入Aの注入量よりも高くように注入条件を設定する。なお、ハロ注入の注入量としては、ハロ領域(AHB)の不純物濃度とハロ領域(DHE)の不純物濃度とが異なってくるような注入量であればよく、ハロ注入Bの注入量がハロ注入Aの注入量よりも低くなるような注入条件に設定してもよい。
 また、アクセストランジスタAT3に形成されるハロ領域AHTおよびドライブトランジスタDG3に形成されるハロ領域DHTは、ハロ注入Aによって形成されることなり、ハロ領域AHT,DHTの不純物濃度は、ドライブトランジスタDG1,DG2のハロ領域DHEの不純物濃度と同じ不純物濃度になる。
 次に、図102に示すように、NMIS領域RNを露出し、PMIS領域RPを覆うレジストマスクRME1が形成される(注入マスクC)。次に、そのレジストマスクRME1を注入マスクとして、たとえば、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、露出したpウェルPWの領域の表面から所定の深さにわたりエクステンション領域ER(図99参照)が形成される(エクステンション注入)。その後、レジストマスクRME1が除去される。なお、エクステンション注入は、ハロ注入Aおよびハロ注入Bよりも前に行うこともできる。
 次に、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスク(図示せず)が形成される(注入マスクD)。次に、素子形成領域FRNにハロ領域となるp型不純物領域を形成する工程と同様にして、そのレジストマスクを注入マスクとして、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から露出した半導体基板SUB内に注入することにより、素子形成領域FRPにハロ領域(図示せず)が形成される。次に、ボロンを、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、エクステンション領域(図示せず)が形成される。その後、そのレジストマスクが除去される。
 次に、図28~図31に示す工程(実施の形態1)と同様の工程を経て、図99に示すように、第1金属配線として、銅配線CW1が形成される。その後、銅配線CW1の上に多層配線構造が形成されて、SRAMメモリセルの主要部分が形成される。
 上述したSRAMメモリセルを備えた半導体装置では、読み出し専用ポートが設けられている。読み出し専用ポートを構成するアクセストランジスタAT3およびドライブトランジスタDT3では、ハロ領域AHT,DHTの不純物濃度は、ハロ領域AHBの不純物濃度よりも低く設定されている。これにより、読み出し専用ポートによる読み出し動作では、読み出し速度を向上させることができる。
[規則91に基づく訂正 15.05.2013] 
 また、本半導体装置のアクセストランジスタAT1(AT2)では、不純物濃度が相対的に高いハロ領域AHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域AHBがビット線BL(/BL)側に形成されている。また、ドライブトランジスタDT1,DT2では、不純物濃度が相対的に高いハロ領域DHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域DHEが接地配線VSS側に形成されている。
 これにより、実施の形態1において説明した半導体装置のSRAMメモリセルと同様に、読み出しマージンと書き込みマージンとの双方を上げることができる。また、読み出し時における高速動作を可能にすることができる。さらに、比較例に係る半導体装置の場合よりも、ハロ領域を形成するための写真製版マスクを1枚削減することができる。
 (第2例)
 ここでは、読み出し専用ポートを備えた2ポートのSRAMメモリセルを有する半導体装置の他の例について説明する。
 まず、そのSRAMメモリセルの等価回路について説明する。図103に示すように、アクセストランジスタAT3の1対のハロ領域AHT,AHTと、ドライブトランジスタDT3の1対のハロ領域DHT,DHTは、アクセストランジスタAT1,AT2の1対のハロ領域HR(ハロ領域AHS,AHB)のうち、ハロ領域AHBの不純物濃度と同じ不純物濃度となるように形成されている。なお、これ以外の構成については、図97に示す等価回路と同様なので、同一部材には同一符号を付しその説明を繰り返さないこととする。
 次に、SRAMメモリセルの構造は、アクセストランジスタAT3のハロ領域AHTと、ドライブトランジスタDT3のハロ領域DHTの不純物濃度が、アクセストランジスタAT1,AT2のハロ領域AHBの不純物濃度と同じ不純物濃度である点を除いて、第1例に係る半導体装置と同様なので、その説明を繰り返さないこととする。
 次に、上述した半導体装置の製造方法について説明する。第1例に係る半導体装置と同様に、ゲート構造Gが形成された後、図104に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH1が形成される(注入マスクA)。レジストマスクRMH1は、アクセスゲート電極AG1,AG2となるそれぞれのゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sの側に位置する側面と、その領域Sとを露出するとともに、ドライブゲート電極DG1,DG2となるゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eとを露出するように形成される。
 一方、レジストマスクRMH1は、アクセスゲート電極AG1,AG2となるゲート構造Gにおける、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bの側に位置する側面と、その領域Bとを覆うように形成される。
 さらに、レジストマスクRMH1は、アクセスゲート電極AG3となるゲート構造Gと、読み取りビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域RBと、ドライブゲート電極DG3となるゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eと、アクセスゲート電極AG3となるゲート構造Gとドライブゲート電極DG3となるゲート構造Gとによって挟まれた素子形成領域FRNの部分と、PMIS領域RPとを覆うように形成される。
 次に、レジストマスクRMH1を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される。次に、同じレジストマスクRMH1を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される(ハロ注入A)。なお、このハロ注入Aでは、同じ注入量および同じ注入エネルギーをもってボロンが注入される。その後、レジストマスクRMH1が除去される。
 次に、図105に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH2が形成される(注入マスクB)。レジストマスクRMH2は、アクセスゲート電極AG1,AG2となるそれぞれのゲート構造Gと、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sと、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bとを露出するとともに、ドライブゲート電極DG1,DG2となるゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sが配置されている側に位置する側面とを露出するように形成される。
 さらに、レジストマスクRMH2は、アクセスゲート電極AG3となるゲート構造Gと、読み取りビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域RBと、ドライブゲート電極DG3となるゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eと、アクセスゲート電極AG3となるゲート構造Gとドライブゲート電極DG3となるゲート構造Gとによって挟まれた素子形成領域FRNの部分とを露出するように形成される。
 一方、レジストマスクRMH2は、ドライブゲート電極DG1,DG2となるゲート構造Gにおける、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eが配置されている側に位置する側面と、その領域Eと、素子形成領域FRPとを覆うように形成される。
 次に、レジストマスクRMH2を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出した領域にp型不純物領域(図示せず)が形成される。次に、同じレジストマスクRMH2を注入マスクとして、ボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出したpウェルの領域にp型不純物領域(図示せず)が形成される(ハロ注入B)。なお、このハロ注入Bでは、同じ注入量および同じ注入エネルギーをもってボロンが注入される。
 ハロ注入Aとハロ注入Bとにおいて、ここでは、ハロ領域(AHB)の不純物濃度がハロ領域(DHE)の不純物濃度よりも高くなるように、ハロ注入Bの注入量がハロ注入Aの注入量よりも高くように注入条件を設定する。なお、ハロ注入の注入量としては、ハロ領域(AHB)の不純物濃度とハロ領域(DHE)の不純物濃度とが異なってくるような注入量であればよく、ハロ注入Bの注入量がハロ注入Aの注入量よりも低くなるような注入条件に設定してもよい。
 また、アクセストランジスタAT3に形成されるハロ領域AHTおよびドライブトランジスタDG3に形成されるハロ領域DHTは、ハロ注入Bによって形成されることなり、ハロ領域AHT,DHTの不純物濃度は、アクセストランジスタAG1,AG2のハロ領域AHBの不純物濃度と同じ不純物濃度になる。
 次に、図106に示すように、NMIS領域RNを露出し、PMIS領域RPを覆うレジストマスクRME1が形成される(注入マスクC)。次に、そのレジストマスクRME1を注入マスクとして、たとえば、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、露出したpウェルPWの領域の表面から所定の深さにわたりエクステンション領域ER(図示せず)が形成される(エクステンション注入)。その後、レジストマスクRME1が除去される。なお、エクステンション注入は、ハロ注入Aおよびハロ注入Bよりも前に行うこともできる。
 次に、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスク(図示せず)が形成される(注入マスクD)。次に、素子形成領域FRNにハロ領域となるp型不純物領域を形成する工程と同様にして、そのレジストマスクを注入マスクとして、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から露出した半導体基板SUB内に注入することにより、素子形成領域FRPにハロ領域(図示せず)が形成される。次に、ボロンを、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、エクステンション領域(図示せず)が形成される。その後、そのレジストマスクが除去される。
 次に、図28~図31に示す工程(実施の形態1)と同様の工程を経て、第1金属配線として、銅配線CW1が形成される(図99参照)。その後、銅配線CW1の上に多層配線構造が形成されて、SRAMメモリセルの主要部分が形成される。
 上述したSRAMメモリセルを備えた半導体装置では、読み出し専用ポートが設けられている。読み出し専用ポートを構成するアクセストランジスタAT3およびドライブトランジスタDT3では、ハロ領域AHT,DHTの不純物濃度は、ハロ領域DHEの不純物濃度よりも高く設定されている。これにより、読み出し専用ポートによる読み出し動作では、読み出し時におけるドライブトランジスタDT3からのリーク電流を抑制することができる。また、第1例に係る半導体装置におけるSRAMメモリセルと同様に、読み出しマージンと書き込みマージンとの双方を上げることができる。また、読み出し時における高速動作を可能にすることができる。さらに、比較例に係る半導体装置の場合よりも、ハロ領域を形成するための写真製版マスクを1枚削減することができる。
 実施の形態9
 ここでは、縦型セルと称されるSRAMメモリセルを備えた半導体装置について説明する。図107に示すように、SRAMメモリセルSR(MA)は、半導体基板の主表面に複数行複数列の行列状に配置された複数のメモリセルを有する。この半導体装置のSRAMメモリセルでは、個々のSRAMメモリセルが、鏡面対称(X反転)になるように反転されて配置された配置パターンが形成されている。
 次に、SRAMメモリセルの等価回路について説明する。図108に示すように、SRAMメモリセルの等価回路は、図3に示される等価回路と同じであるため、同一部材には同一符号を付す。アクセストランジスタAT1,AT2では、1対のハロ領域HRのうち、ストレージノードSN,/SNに接続されている側のハロ領域AHSの不純物濃度が、ビット線BL,/BLに接続されている側のハロ領域AHBの不純物濃度よりも高く設定されている。また、ドライブトランジスタDT1,DT2では、1対のハロ領域HRのうち、ストレージノードSN,/SNに接続されている側のハロ領域DHSの不純物濃度が、接地配線VSSに接続されている側のハロ領域DHEの不純物濃度よりも高く設定されている。また、ハロ領域DHEの不純物濃度は、ハロ領域AHBの不純物濃度よりも低く設定されている。
 次に、SRAMメモリセルの構造について説明する。図109は、SRAMセルアレイのメモリセルを構成するトランジスタおよびそのトランジスタに接続するコンタクトのレイアウトを示す平面図である。半導体基板SUBの主表面では、素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離された素子形成領域FRN,FRPが規定されている。素子形成領域FRNには、X方向に平行に延在する部分(素子形成領域FRNX)と、Y方向に平行に延在する部分(素子形成領域FRNY)とが設けられている。
 素子形成領域FRNには、nチャネル型のMISトランジスタとして、アクセストランジスタAT1,AT2とドライブトランジスタDT1,DT2が形成されている。アクセストランジスタAT1,AT2は素子形成領域FRNYに配置され、ドライブトランジスタDT1,DT2が素子形成領域FRNXに配置されている。アクセストランジスタAT1,AT2のアクセスゲート電極AG1,AG2は、X方向に平行に延在して素子形成領域FRNYを横切るように形成されている。ドライブトランジスタDT1,DT2のドライブゲート電極DG1,DG2は、Y方向に平行に延在して素子形成領域FRNXを横切るように形成されている。
 アクセストランジスタAT1が形成されている素子形成領域FRNY(FRN)と、ドライブトランジスタD1が形成されている素子形成領域FRNX(FRN)とは繋がっている。アクセストランジスタAT2が形成されている素子形成領域FRNY(FRN)と、ドライブトランジスタD2が形成されている素子形成領域FRNX(FRN)とは繋がっている。アクセストランジスタAT1およびドライブトランジスタD1が形成されている素子形成領域FRNと、アクセストランジスタAT2およびドライブトランジスタD2が形成されている素子形成領域FRNとは、素子分離領域ISRによって電気的に分離されている。
 素子形成領域FRPは、X方向に平行に延在し、素子形成領域FRN(FRNX)と距離を隔てて配置されている。素子形成領域FRPには、pチャネル型のMISトランジスタとしてロードトランジスタLT1,LT2が形成されている。ロードトランジスタLT1,LT2のロードゲート電極LG1,LG2は、Y方向に平行に延在して素子形成領域FRPを横切るように形成されている。
 図110は、ドライブトランジスタDT1のゲート電極とアクセストランジスタAT1を通る断面線CX-CXに沿った断面図である。図110に示すように、ストレージノードに電気的に接続(コンタクトSNC)されているn型のソース・ドレイン領域SDSが形成されている領域Sと、ビット線に電気的に接続(コンタクトBLC)されているn型のソース・ドレイン領域SDBが形成されている領域Bとによって挟まれた領域上に、アクセストランジスタAT1のアクセスゲート電極AG1が形成されている。
 アクセスゲート電極AG1の直下の領域では、p型のハロ領域HRとして、ソース・ドレイン領域SDSに隣接するようにハロ領域AHSが形成され、また、ソース・ドレイン領域SDBに隣接するようにハロ領域AHBが形成されている。
 また、接地配線に電気的に接続(コンタクトVSSC)されているn型のソース・ドレイン領域SDEが形成されている領域Eと、ストレージノードに電気的に接続(コンタクトSNC)されているn型のソース・ドレイン領域SDSが形成されている領域Sとによって挟まれた領域上に、ドライブトランジスタDT1のドライブゲート電極DG1が形成されている。ドライブゲート電極DG1の直下の領域では、p型のハロ領域HRとして、ソース・ドレイン領域SDSに隣接するようにハロ領域DHSが形成され、また、ソース・ドレイン領域SDEに隣接するようにハロ領域DHEが形成されている。なお、図5(実施の形態1)に示す半導体装置と同じ部材については同一符号を付し、その説明を繰り返さないこととする。
 次に、各トランジスタを電気的に接続する多層配線構造について説明する。図111は、1つのメモリセルにおけるトランジスタと第1金属配線との接続構造を示す平面図である。図112は、第1金属配線と第2金属配線との接続構造を示す平面図である。図113は、第2金属配線と第3金属配線との接続構造を示す平面図である。
 アクセストランジスタAT1の1対のソース・ドレイン領域SDの一方(ソース・ドレイン領域SDB)は、コンタクトプラグBLC(プラグPG)、第1金属配線BLM1(銅配線CW1)、ヴィアBLV1、第2金属配線BLM2およびヴィアBLV2を介して、ビット線BLとしての第3金属配線BLM3に電気的に接続されている。
 アクセストランジスタAT1の1対のソース・ドレイン領域SDの他方(ソース・ドレイン領域SDS)は、コンタクトSNC(プラグPG)、第1金属配線SNM1(銅配線CW1)およびコンタクトSNLCを介して、ロードトランジスタLT1の1対のソース・ドレイン領域の一方と電気的に接続されている。さらに、アクセストランジスタAT1のソース・ドレイン領域SDSは、第1金属配線SNM1(銅配線CW1)、ヴィアSNV1、第2金属配線SNM2、ヴィアSNV1、第1金属配線SNM1およびコンタクトSNGCを介して、ロードトランジスタLT2のロードゲート電極LG2と、ドライブトランジスタDT2のドライブゲート電極DG2とに、それぞれ電気的に接続されている。
 また、アクセストランジスタAT1のソース・ドレイン領域SDSは、ドライブトランジスタDT1の1対のソース・ドレイン領域の一方(ソース・ドレイン領域SDS)に電気的に接続されている。アクセストランジスタAT1のアクセスゲート電極AG1は、ワード線WLの一部として形成されている。
 ドライブトランジスタDT1の1対のソース・ドレイン領域の他方(ソース・ドレイン領域SDE)は、コンタクトVSSC(プラグPG)を介して、接地配線としての第1金属配線VSSM1(銅配線CW1)に電気的に接続されている。ロードトランジスタLT1の1対のソース・ドレイン領域の他方は、コンタクトVDDC、第1金属配線VDDM1(銅配線CW1)、ヴィアVDDV1、第2金属配線VDDM2およびヴィアVDDV2を介して、電源配線としての第3金属配線VDDM3に電気的に接続されている。
 アクセストランジスタAT2の1対のソース・ドレイン領域SDの一方(ソース・ドレイン領域SDB)は、コンタクトプラグ/BLC(プラグ/PG)、第1金属配線/BLM1(銅配線CW1)、ヴィア/BLV1、第2金属配線/BLM2およびヴィア/BLV2を介して、ビット線/BLとしての第3金属配線/BLM3に電気的に接続されている。
 アクセストランジスタAT2の1対のソース・ドレイン領域SDの他方(ソース・ドレイン領域SDS)は、コンタクト/SNC(プラグPG)、第1金属配線/SNM1(銅配線CW1)およびコンタクト/SNLCを介して、ロードトランジスタLT2の1対のソース・ドレイン領域の一方と電気的に接続されている。さらに、アクセストランジスタAT2のソース・ドレイン領域SDSは、第1金属配線/SNM1(銅配線CW1)、ヴィア/SNV1、第2金属配線/SNM2、ヴィア/SNV1、第1金属配線/SNM1およびコンタクト/SNGCを介して、ロードトランジスタLT1のロードゲート電極LG1と、ドライブトランジスタDT1のドライブゲート電極DG1とに、それぞれ電気的に接続されている。
 また、アクセストランジスタAT2のソース・ドレイン領域SDSは、ドライブトランジスタDT2の1対のソース・ドレイン領域の一方(ソース・ドレイン領域SDS)に電気的に接続されている。アクセストランジスタAT2のアクセスゲート電極AG2は、ワード線WLの一部として形成されている。
 ドライブトランジスタDT2の1対のソース・ドレイン領域の他方(ソース・ドレイン領域SDE)は、コンタクトVSSC(プラグPG)を介して、接地配線としての第1金属配線VSSM1(銅配線CW1)に電気的に接続されている。ロードトランジスタLT2の1対のソース・ドレイン領域の他方は、コンタクトVDDC、第1金属配線VDDM1(銅配線CW1)、ヴィアVDDV1、第2金属配線VDDM2およびヴィアVDDV2を介して、電源配線としての第3金属配線VDDM3に電気的に接続されている。
 次に、上述した半導体装置の製造方法について説明する。まず、半導体基板SUBの主表面に素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離された素子形成領域FRN,FRPが規定される(図109参照)。次に、図114に示すように、素子形成領域FRNにpウェルPWが形成される。次に、半導体基板SUBの表面上に、界面層SFを介在させて、所定の誘電率を有するHigh-k膜HK、所定の仕事関数を有する金属膜MLおよびポリシリコン膜PSを積層させる態様で、アクセスゲート電極AG1となるゲート構造Gと、ドライブゲート電極DG1となるゲート構造Gが形成される。次に、ゲート構造Gを覆うように半導体基板SUB上に、たとえばシリコン窒化膜(図示せず)が形成される。次に、そのシリコン窒化膜に異方性エッチングを施すことにより、ゲート構造Gの両側面にオフセットスペーサOSが形成される。
 次に、図115に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH1が形成される(注入マスクA)。レジストマスクRMH1は、アクセスゲート電極AG1,AG2となるゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sの側に位置する側面と、その領域Sと、ドライブゲート電極DG1,DG2となるゲート構造Gにおける、領域Sが配置されている側に位置する側面とを、開口パターンによって露出するように形成される。
 一方、レジストマスクRMH1は、アクセスゲート電極AG1,AG2となるゲート構造Gにおける、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bの側に位置する側面と、その領域Bと、ドライブゲート電極DG1,DG2となるゲート構造Gにおける、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eの側に位置する側面と、その領域Eと、第2素子形成領域FRPとを覆うように形成される。
 次に、レジストマスクRMH1を注入マスクとして、所定の方向からボロンが注入される(ハロ注入A)。まず、図116に示すように、レジストマスクRMH1を注入マスクとして、ボロンを方向E1(図115参照)から、半導体基板SUBの主表面に垂直な方向に対し斜め(θ=約7度)に注入することにより、露出したpウェルPWの領域に、p型不純物領域PIR1が形成される。
 次に、図117に示すように、レジストマスクRMH1を注入マスクとして、ボロンを方向E2(図115参照)から、半導体基板SUBの主表面に垂直な方向に対し斜め(θ=約7度)に注入することにより、露出したpウェルPWの領域にp型不純物領域PIR2が形成される。
 次に、図118に示すように、レジストマスクRMH1を注入マスクとして、ボロンを方向E3(図115参照)から、半導体基板SUBの主表面に垂直な方向に対し斜め(θ=約7度)に注入することにより、露出したpウェルPWの領域にp型不純物領域PIR3が形成される。
 次に、図119に示すように、レジストマスクRMH1を注入マスクとして、ボロンを方向E4(図115参照)から、半導体基板SUBの主表面に垂直な方向に対し斜め(θ=約7度)に注入することにより、露出したpウェルPWの領域にp型不純物領域PIR4が形成される。その後、レジストマスクRMH1が除去される。
 次に、図120に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH2が形成される(注入マスクB)。レジストマスクRMH2は、NMIS領域RNを露出し、PMIS領域RPを覆うように形成される。
 次に、レジストマスクRMH2を注入マスクとして、所定の方向からボロンが注入される(ハロ注入B)。まず、図121に示すように、レジストマスクRMH2を注入マスクとして、ボロンを方向E5(図120参照)から、半導体基板SUBの主表面に垂直な方向に対し斜め(θ=約7度)に注入することにより、露出したpウェルPWの領域に、p型不純物領域PIR5が形成される。
 次に、図122に示すように、レジストマスクRMH2を注入マスクとして、ボロンを方向E6(図120参照)から、半導体基板SUBの主表面に垂直な方向に対し斜め(θ=約7度)に注入することにより、露出したpウェルPWの領域にp型不純物領域PIR6が形成される。
 次に、図123に示すように、レジストマスクRMH2を注入マスクとして、ボロンを方向E7(図120参照)から、半導体基板SUBの主表面に垂直な方向に対し斜め(θ=約7度)に注入することにより、露出したpウェルPWの領域にp型不純物領域PIR7が形成される。
 次に、図124に示すように、レジストマスクRMH2を注入マスクとして、ボロンを方向E8(図120参照)から、半導体基板SUBの主表面に垂直な方向に対し斜め(θ=約7度)に注入することにより、露出したpウェルPWの領域にp型不純物領域PIR8が形成される。こうして形成されるp型不純物領域PIR1,PIR2,PIR3,PIR4,PIR5,PIR6,PIR7,PIR8の一部がハロ領域となる。
 ここで、ハロ注入の注入条件について説明する。ハロ注入Aでは、方向E1と方向E2からの注入条件は同じ注入条件(注入条件A)とされ、方向E3と方向E4からの注入条件は同じ注入条件(注入条件B)とされる。また、ハロ注入Bでは、方向E5と方向E6からの注入条件は同じ注入条件(注入条件C)とされ、方向E7と方向E8からの注入条件は同じ注入条件(注入条件D)とされる。
 アクセストランジスタAT1,AT2のハロ領域AHSは、方向E2(注入条件A)と方向E6(注入条件C)からの注入によって形成され、ハロ領域AHBは、方向E5(注入条件C)からの注入によって形成される。一方、ドライブトランジスタDT1,DT2のハロ領域DHSは、方向E3(注入条件B)と方向E7(注入条件D)からの注入によって形成され、ハロ領域DHBは、方向E8(注入条件D)からの注入によって形成される。
 本半導体装置では、ハロ領域AHSの不純物濃度がハロ領域AHBの不純物濃度よりも高く、ハロ領域DHSの不純物濃度がハロ領域DHEの不純物濃度よりも高く、ハロ領域AHSの不純物濃度とハロ領域DHSの不純物濃度とは同じ不純物濃度となり、ハロ領域DHEの不純物濃度がハロ領域AHBの不純物濃度よりも低くなるように、注入条件A~Dが設定される。
 次に、図125に示すように、レジストマスクREMH2を除去することなく、レジストマスクRMH2(レジストマスクRME1)を注入マスク(注入マスクB)として、リン等が注入される(エクステンション注入)。図126に示すように、レジストマスクRME1を注入マスクとして、たとえば、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、露出したpウェルPWの領域の表面から所定の深さにわたりエクステンション領域ERが形成される。その後、レジストマスクRME1が除去される。
 次に、図127に示すように、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスクRME2が形成される(注入マスクC)。次に、レジストマスクRME2を注入マスクとして、リンまたは砒素を半導体基板SUB内に注入することにより、素子形成領域RPにハロ領域(図示せず)が形成される。次に、ボロンを半導体基板SUB内に注入することにより、エクステンション領域(図示せず)が形成される。その後、レジストマスクRME2が除去される。
 次に、ゲート構造G(アクセスゲート電極AG1、ドライブゲート電極DG1等)を覆うように、たとえばシリコン酸化膜とシリコン窒化膜(図示せず)が順次形成される。次に、そのシリコン酸化膜とシリコン窒化膜に異方性エッチングを施すことにより、ゲート構造Gの両側面上に、シリコン酸化膜SOとシリコン窒化膜SNIからなるサイドウォールスペーサSWが形成される(図128参照)。
 次に、NMIS領域RNを露出し、PMIS領域RPを覆うレジストマスク(図示せず)が形成される。次に、そのレジストマスクおよびサイドウォールスペーサSW等を注入マスクとして、リンまたは砒素を半導体基板SUB内に注入することにより、露出したpウェルPWの表面から所定の深さにわたりソース・ドレイン領域SD(図128参照)が形成される。その後、そのレジストマスクが除去される。
 次に、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスク(図示せず)が形成される。次に、そのレジストマスクを注入マスクとして、ボロンを半導体基板内に注入することにより、露出した素子形成領域FRPの表面から所定の深さにわたりソース・ドレイン領域(図示せず)が形成される。その後、そのレジストマスクが除去される。
 次に、図128に示すように、所定のアニール処理を施すことにより、注入された不純物を熱拡散させることによって、ソース・ドレイン領域SD、エクステンション領域ERおよびハロ領域HRを活性化させる。このとき、不純物が熱拡散することで、ソース・ドレイン領域SD、エクステンション領域ERおよびハロ領域HRは、横方向と縦(深さ)方向に広がることになる。
 次に、図129に示すように、サリサイドプロセスにより、露出しているソース・ドレイン領域SD、アクセスゲート電極AG1およびドライブゲート電極DG1のそれぞれのポリシリコン膜の表面に、ニッケルシリサイド等の金属シリサイド膜SCLが形成される。次に、図130に示すように、アクセスゲート電極AG1およびドライブゲート電極DG1を覆うように、シリコン窒化膜等のストレスライナー膜SLが形成される。そのストレスライナー膜SLを覆うように、TEOS等の層間絶縁膜IL1が形成される。
 次に、図131に示すように、層間絶縁膜IL1に異方性エッチングを施すことにより、金属シリサイド膜SCLを露出するコンタクトホールCHが形成される。次に、そのコンタクトホールCH内に、バリア金属膜BA1とタングステン膜TL1を含むプラグPGが形成される。
 次に、図110に示すように、プラグPGを覆うように、シリコン窒化膜等のエッチングストッパ膜ESおよびシリコン酸化膜等の層間絶縁膜IL2が形成される。次に、プラグPGの表面を露出する溝が形成される。次に、その溝内に、バリア金属膜BA2と銅膜CL2を含む銅配線CW1が形成される。銅配線CW1は第1金属配線に対応する。
 この後、銅配線CW1を覆うように層間絶縁膜(図示せず)が形成される。その層間絶縁膜に、プラグPGを形成する方法と同様の方法によりヴィアBLV1、/SNV1、VDDV1、/BLV1、/SNV1、SNV1(図112参照)が形成される。次に、ヴィアBLV1、/SNV1、VDDV1、/BLV1、/SNV1、SNV1を覆うように、層間絶縁膜(図示せず)が形成される。その層間絶縁膜に、銅配線CW1を形成する方法と同様の方法によって、第2金属配線BLM2、/SNM2、SNM2、VDDM2が形成される。
 次に、第2金属配線BLM2、/SNM2、SNM2、VDDM2を覆うように、層間絶縁膜(図示せず)が形成される。その層間絶縁膜に、プラグPGを形成する方法と同様の方法によって、ヴィアBLV2,/BLV2,VDDV2(図113参照)が形成される。次に、ヴィアBLV2,/BLV2,VDDV2を覆うように、層間絶縁膜(図示せず)が形成される。その層間絶縁膜に、銅配線CW1を形成する方法と同様の方法によって、第3金属配線VDDM3、BLM3、/BLM3(図113参照)が形成される。こうしてSRAMメモリセルの主要部分が形成される。
[規則91に基づく訂正 15.05.2013] 
 本半導体装置のアクセストランジスタAT1(AT2)では、不純物濃度が相対的に高いハロ領域AHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域AHBがビット線BL(/BL)側に形成されている。また、ドライブトランジスタDT1,DT2では、不純物濃度が相対的に高いハロ領域DHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域DHEが接地配線VSS側に形成されている。
 これにより、実施の形態1において説明したように、読出し動作においては、ビット線BL(/BL)側からストレージノードSN(/SN)側へ向かって、アクセストランジスタAT1(AT2)に流れる電流を抑えやすくすることができるとともに、ストレージノードSN(/SN)側から接地配線(VSS)側へ向かって、ドライブトランジスタDT1(DT2)に流れる電流を増加させやすくすることができる。これにより、β比を高くすることができて、読み出しマージンを上げることができる。
[規則91に基づく訂正 15.05.2013] 
 また、書き込み動作においては、ストレージノードSN(/SN)側からビット線BL(/BL)側へ向かって、アクセストランジスタAT1(AT2)に流れる電流を増加させやすくすることができる。これにより、γ比を高くすることができて、書き込みマージンを上げることができる。こうして、本半導体装置では、読み出しマージンと書き込みマージンとの双方を上げることができる。
 さらに、実施の形態1において説明したように、ドライブトランジスタDT1,DT2を流れる電流は、読み出し動作時におけるストレージノード側から接地配線側へ向かって流れる電流だけである。このため、不純物濃度が相対的に高いハロ領域DHSをストレージノードSN(/SN)側に形成し、不純物濃度が相対的に低いハロ領域DHEを接地配線(VSS)側に形成することで、ドライブトランジスタDT1,DT2のしきい値電圧を相対的に低くして、読み出し時における高速動作を可能にすることができる。
 また、上述した半導体装置では、アクセストランジスタAT1,AT2のハロ領域AHB,AHSと、ドライブトランジスタDT1,DT2のハロ領域DHE,DHSは、レジストマスクRMH1(注入マスクA)とレジストマスクRMH2(注入マスクB)とにより形成される。また、ロードトランジスタLT1,LT2のハロ領域はレジストマスク(注入マスクD)により形成される。これにより、比較例に係る半導体装置の場合よりも、ハロ領域を形成するための写真製版マスクを1枚削減することができる。
 なお、上述した半導体装置では、ハロ領域DHEの不純物濃度がハロ領域AHBの不純物濃度よりも低い場合について説明した。ハロ領域DHE,AHBの不純物濃度としては、ハロ領域DHEの不純物濃度がハロ領域AHBの不純物濃度よりも高くなるように、注入条件A~Dを設定してもよい。この場合には、実施の形態1において説明したように、ドライブトランジスタDT1,DT2からのリーク電流を抑制することができる。
 また、ハロ領域DHEの不純物濃度とハロ領域AHBの不純物濃度とが同じ不純物濃度となるように、注入条件A~Dをすべて同じ注入条件に設定してもよい。この場合であっても、アクセストランジスタAT1,AT2では、ハロ領域AHSの不純物濃度はハロ領域AHBの不純物濃度よりも高く、ドライブトランジスタDT1,DT2では、ハロ領域DHSの不純物濃度がハロ領域DHEの不純物濃度よりも高くなる。これにより、読み出しマージンと書き込みマージンとの双方を上げることができる。
 実施の形態10
 ここでは、縦型セルと称されるSRAMメモリセルを備えた半導体装置の他の例について説明する。
 まず、SRAMメモリセルの等価回路は、前述した図108または図3に示される等価回路と同じある。次に、SRAMメモリセルの構造について説明する。図132は、SRAMセルアレイのメモリセルを構成するトランジスタおよびそのトランジスタに接続するコンタクトのレイアウトを示す平面図である。点線(太線)によって囲まれた領域が一つのメモリセルを構成する。半導体基板SUBの主表面では、素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離された素子形成領域FRN,FRPが規定されている。素子形成領域FRNには、X方向に平行に延在する部分(素子形成領域FRNX)と、Y方向に平行に延在する部分(素子形成領域FRNY)とが設けられている。
 素子形成領域FRNには、nチャネル型のMISトランジスタとして、アクセストランジスタAT1,AT2とドライブトランジスタDT1,DT2が形成されている。アクセストランジスタAT1,AT2は素子形成領域FRNYに配置され、ドライブトランジスタDT1,DT2が素子形成領域FRNXに配置されている。アクセストランジスタAT1,AT2のアクセスゲート電極AG1,AG2は、X方向に平行に延在して素子形成領域FRNYを横切るように形成されている。ドライブトランジスタDT1,DT2のドライブゲート電極DG1,DG2は、Y方向に平行に延在して素子形成領域FRNXを横切るように形成されている。
 アクセストランジスタAT1が形成されている素子形成領域FRNYと、ドライブトランジスタD1が形成されている素子形成領域FRNXと、ドライブトランジスタD2が形成されている素子形成領域FRNXと、アクセストランジスタAT2が形成されている素子形成領域FRNYとは繋がっている。ドライブトランジスタDT1のドライブゲート電極DG1とドライブトランジスタDT2のドライブゲート電極DG2とによって挟まれた素子形成領域FRNの部分(ソース・ドレイン領域)に、接地配線が電気的に接続されている。
 素子形成領域FRPは、X方向に平行に延在し、素子形成領域FRN(FRNX)と距離を隔てて配置されている。素子形成領域FRPには、pチャネル型のMISトランジスタとしてロードトランジスタLT1,LT2が形成されている。ロードトランジスタLT1,LT2のロードゲート電極LG1,LG2は、Y方向に平行に延在して素子形成領域FRPを横切るように形成されている。ロードトランジスタLT1のロードゲート電極LG1とロードトランジスタLT2のロードゲート電極LG2とによって挟まれた素子形成領域FRPの部分(ソース・ドレイン領域)に、電源配線が電気的に接続されている。
 図133は、ドライブトランジスタDT1のゲート電極とアクセストランジスタAT1を通る断面線CXXXIII-CXXXIIIに沿った断面図である。図133に示すように、ストレージノードに電気的に接続(コンタクトSNC)されているn型のソース・ドレイン領域SDSが形成されている領域Sと、ビット線に電気的に接続(コンタクトBLC)されているn型のソース・ドレイン領域SDBが形成されている領域Bとによって挟まれた領域上に、アクセストランジスタAT1のアクセスゲート電極AG1が形成されている。
 アクセスゲート電極AG1の直下の領域では、p型のハロ領域HRとして、ソース・ドレイン領域SDSに隣接するようにハロ領域AHSが形成され、また、ソース・ドレイン領域SDBに隣接するようにハロ領域AHBが形成されている。
 また、接地配線に電気的に接続(コンタクトVSSC)されているn型のソース・ドレイン領域SDEが形成されている領域Eと、ストレージノードに電気的に接続(コンタクトSNC)されているn型のソース・ドレイン領域SDSが形成されている領域Sとによって挟まれた領域上に、ドライブトランジスタDT1のドライブゲート電極DG1が形成されている。ドライブゲート電極DG1の直下の領域では、p型のハロ領域HRとして、ソース・ドレイン領域SDSに隣接するようにハロ領域DHSが形成され、また、ソース・ドレイン領域SDEに隣接するようにハロ領域DHEが形成されている。なお、図5(実施の形態1)に示す半導体装置と同じ部材については同一符号を付し、その説明を繰り返さないこととする。
 次に、各トランジスタを電気的に接続する多層配線構造について説明する。図134は、1つのメモリセルにおけるトランジスタと第1金属配線との接続構造を示す平面図である。図135は、第1金属配線と第2金属配線との接続構造を示す平面図である。
 アクセストランジスタAT1の1対のソース・ドレイン領域SDの一方(ソース・ドレイン領域SDB)は、コンタクトプラグBLC(プラグPG)、第1金属配線BLM1およびヴィアBLV1を介して、ビット線BLとしての第2金属配線BLM2に電気的に接続されている。
 アクセストランジスタAT1の1対のソース・ドレイン領域SDの他方(ソース・ドレイン領域SDS)は、コンタクトSNC(プラグPG)、第1金属配線SNM1(銅配線CW1)およびコンタクトSNLCを介して、ロードトランジスタLT1の1対のソース・ドレイン領域の一方と電気的に接続されている。さらに、アクセストランジスタAT1のソース・ドレイン領域SDSは、第1金属配線SNM1(銅配線CW1)を介して、ロードトランジスタLT2のロードゲート電極LG2と、ドライブトランジスタDT2のドライブゲート電極DG2とに、それぞれ電気的に接続されている。
 また、アクセストランジスタAT1のソース・ドレイン領域SDSは、ドライブトランジスタDT1の1対のソース・ドレイン領域の一方(ソース・ドレイン領域SDS)に電気的に接続されている。アクセストランジスタAT1のアクセスゲート電極AG1は、ワード線WLの一部として形成されている。
 ドライブトランジスタDT1の1対のソース・ドレイン領域の他方(ソース・ドレイン領域SDE)は、コンタクトVSSC(プラグPG)、第1金属配線VSSM1およびヴィアVSSV1を介して、接地配線としての第2金属配線VSSM2に電気的に接続されている。ロードトランジスタLT1の1対のソース・ドレイン領域の他方は、コンタクトVDDCを介して、電源配線としての第1金属配線VDDM1(銅配線CW1)に電気的に接続されている。
 アクセストランジスタAT2の1対のソース・ドレイン領域SDの一方(ソース・ドレイン領域SDB)は、コンタクトプラグ/BLC(プラグ/PG)、第1金属配線/BLM1(銅配線CW1)およびヴィア/BLV1を介して、ビット線/BLとしての第2金属配線/BLM2に電気的に接続されている。
 アクセストランジスタAT2の1対のソース・ドレイン領域SDの他方(ソース・ドレイン領域SDS)は、コンタクト/SNC(プラグPG)、第1金属配線/SNM1(銅配線CW1)およびコンタクト/SNLCを介して、ロードトランジスタLT2の1対のソース・ドレイン領域の一方と電気的に接続されている。さらに、アクセストランジスタAT2のソース・ドレイン領域SDSは、第1金属配線/SNM1(銅配線CW1)およびコンタクト/SNGCを介して、ロードトランジスタLT1のロードゲート電極LG1と、ドライブトランジスタDT1のドライブゲート電極DG1とに、それぞれ電気的に接続されている。
 また、アクセストランジスタAT2のソース・ドレイン領域SDSは、ドライブトランジスタDT2の1対のソース・ドレイン領域の一方(ソース・ドレイン領域SDS)に電気的に接続されている。アクセストランジスタAT2のアクセスゲート電極AG2は、ワード線WLの一部として形成されている。
 ドライブトランジスタDT2の1対のソース・ドレイン領域の他方(ソース・ドレイン領域SDE)は、コンタクトVSSC(プラグPG)を介して、接地配線としての第1金属配線VSSM1(銅配線CW1)に電気的に接続されている。ロードトランジスタLT2の1対のソース・ドレイン領域の他方は、コンタクトVDDCを介して、電源配線としての第1金属配線VDDM1(銅配線CW1)に電気的に接続されている。
 次に、上述した半導体装置の製造方法について説明する。まず、半導体基板SUBの主表面に素子分離絶縁膜による素子分離領域ISRを形成することによって、互いに電気的に分離された素子形成領域FRN,FRPが規定される(図132参照)。次に、素子形成領域FRNにpウェルPW(図133参照)が形成される。次に、図114に示す工程と同様の工程を経て、アクセスゲート電極AG1,AG2、ドライブゲート電極DG1,DG2およびロードゲート電極LG1,LG2となるゲート構造Gがそれぞれ形成される(図136参照)。次に、ゲート構造Gの両側面にオフセットスペーサ(図示せず)が形成される。
 次に、図136に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH1が形成される(注入マスクA)。レジストマスクRMH1は、まず、アクセスゲート電極AG1(AG2)となるゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sの側に位置する側面と、ドライブゲート電極DG1(DG2)となるゲート構造Gにおける、領域Sの側に位置する側面と、その領域Sとを、開口パターンによって露出するように形成される。
 一方、レジストマスクRMH1は、アクセスゲート電極AG1,AG2となるゲート構造Gにおける、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bの側に位置する側面と、その領域Bとを覆うように形成される。さらに、レジストマスクRMH1は、ドライブゲート電極DG1,DG2となるゲート構造Gにおける、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eの側に位置する側面と、その領域Eとを覆うとともに、PMIS領域RPを覆うように形成される。
 次に、レジストマスクRMH1を注入マスクとして、所定の方向からボロンが注入される(ハロ注入A)。ボロンの注入は、図115~図119(実施の形態9)に示されるボロンの注入と同じ要領で行われる。
 まず、図136に示すように、レジストマスクRMH1を注入マスクとして、ボロンを方向E1から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出した素子形成領域FRNにp型不純物領域(図示せず)が形成される。次に、ボロンを方向E2から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出した素子形成領域FRNにp型不純物領域(図示せず)が形成される。
 次に、ボロンを方向E3から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出した素子形成領域FRNにp型不純物領域(図示せず)が形成される。次に、ボロンを方向E4から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出した素子形成領域FRNにp型不純物領域(図示せず)が形成される。その後、レジストマスクRMH1が除去される。
 次に、図137に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH2が形成される(注入マスクB)。レジストマスクRMH2は、NMIS領域RNを露出し、PMIS領域RPを覆うように形成される。
 次に、レジストマスクRMH2を注入マスクとして、所定の方向からボロンが注入される(ハロ注入B)。ボロンの注入は、図120~図124(実施の形態9)に示されるボロンの注入と同じ要領で行われる。
 まず、図137に示すように、レジストマスクRMH2を注入マスクとして、ボロンを方向E5から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出した素子形成領域FRNにp型不純物領域(図示せず)が形成される。次に、ボロンを方向E6から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出した素子形成領域FRNにp型不純物領域(図示せず)が形成される。
 次に、ボロンを方向E7から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出した素子形成領域FRNにp型不純物領域(図示せず)が形成される。次に、ボロンを方向E8から、半導体基板SUBの主表面に垂直な方向に対し斜めに注入することにより、露出した素子形成領域FRNにp型不純物領域(図示せず)が形成される。こうして形成されるp型不純物領域の一部がハロ領域となる。
 ここで、ハロ注入の注入条件について説明する。ハロ注入Aでは、方向E1と方向E2からの注入条件は同じ注入条件(注入条件A)とされ、方向E3と方向E4からの注入条件は同じ注入条件(注入条件B)とされる。また、ハロ注入Bでは、方向E5と方向E6からの注入条件は同じ注入条件(注入条件C)とされ、方向E7と方向E8からの注入条件は同じ注入条件(注入条件D)とされる。
 アクセストランジスタAT1,AT2のハロ領域AHSは、方向E2(注入条件A)と方向E6(注入条件C)からの注入によって形成され、ハロ領域AHBは、方向E5(注入条件C)からの注入によって形成される。一方、ドライブトランジスタDT1,DT2のハロ領域DHSは、方向E3(注入条件B)と方向E7(注入条件D)からの注入によって形成され、ハロ領域DHBは、方向E8(注入条件D)からの注入によって形成される。
 本半導体装置では、ハロ領域AHSの不純物濃度がハロ領域AHBの不純物濃度よりも高く、ハロ領域DHSの不純物濃度がハロ領域DHEの不純物濃度よりも高く、ハロ領域AHSの不純物濃度とハロ領域DHSの不純物濃度とは同じ不純物濃度となり、ハロ領域DHEの不純物濃度がハロ領域AHBの不純物濃度よりも低くなるように、注入条件A~Dが設定される。
 次に、レジストマスクREMH2を除去することなく、レジストマスクRMH2(レジストマスクRME1)を注入マスク(注入マスクB)として、リン等が注入される(エクステンション注入)。図138に示すように、レジストマスクRME1を注入マスクとして、たとえば、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、露出したpウェルPWの領域の表面から所定の深さにわたりエクステンション領域ERが形成される(図133参照)。その後、レジストマスクRME1が除去される。
 次に、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスク(図示せず)が形成される(注入マスクC)。次に、そのレジストマスクを注入マスクとして、リンまたは砒素を半導体基板SUB内に注入することにより、素子形成領域RPにハロ領域(図示せず)が形成される。次に、ボロンを半導体基板SUB内に注入することにより、エクステンション領域(図示せず)が形成される。その後、そのレジストマスクが除去される。
 次に、図128~図131(実施の形態9)に示す工程と同様の工程を経て、第1金属配線(銅配線CW1)が形成される(図133参照)。この後、銅配線CW1を覆うように層間絶縁膜(図示せず)が形成される。その層間絶縁膜に、プラグPGを形成する方法と同様の方法によりヴィアBLV1、/BLV1、VSSV1(図135参照)が形成される。次に、ヴィアBLV1、/BLV1、VSSV1を覆うように、層間絶縁膜(図示せず)が形成される。その層間絶縁膜に、銅配線CW1を形成する方法と同様の方法によって、第2金属配線BLM2、/BLM2,VSSM2(図135参照)が形成される。こうしてSRAMメモリセルの主要部分が形成される。
 本半導体装置では、SRAMメモリセルの各トランジスタは、第1金属配線と第2金属配線とによって電気的に接続されている。これにより、各トランジスタが、第1金属配線、第2金属配線および第3金属配線によって電気的に接続されている配線構造と比べると、製造コストを削減することができる。
[規則91に基づく訂正 15.05.2013] 
 また、本半導体装置のアクセストランジスタAT1(AT2)では、不純物濃度が相対的に高いハロ領域AHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域AHBがビット線BL(/BL)側に形成されている。また、ドライブトランジスタDT1,DT2では、不純物濃度が相対的に高いハロ領域DHSがストレージノードSN(/SN)側に形成され、不純物濃度が相対的に低いハロ領域DHEが接地配線VSS側に形成されている。これにより、実施の形態1において説明したように、読み出しマージンと書き込みマージンとの双方を上げることができる。
 さらに、実施の形態1において説明したように、不純物濃度が相対的に高いハロ領域DHSをストレージノードSN(/SN)側に形成し、不純物濃度が相対的に低いハロ領域DHEを接地配線(VSS)側に形成することで、ドライブトランジスタDT1,DT2のしきい値電圧を相対的に低くして、読み出し時における高速動作を可能にすることができる。
 また、上述した半導体装置では、アクセストランジスタAT1,AT2のハロ領域AHB,AHSと、ドライブトランジスタDT1,DT2のハロ領域DHE,DHSは、レジストマスクRMH1(注入マスクA)とレジストマスクRMH2(注入マスクB)とにより形成される。また、ロードトランジスタLT1,LT2のハロ領域はレジストマスク(注入マスクC)により形成される。これにより、比較例に係る半導体装置の場合よりも、ハロ領域を形成するための写真製版マスクを削減することができる。
 なお、上述した半導体装置では、ハロ領域DHEの不純物濃度がハロ領域AHBの不純物濃度よりも低い場合について説明した。ハロ領域DHE,AHBの不純物濃度としては、ハロ領域DHEの不純物濃度がハロ領域AHBの不純物濃度よりも高くなるように、注入条件A~Dを設定してもよい。この場合には、実施の形態1において説明したように、ドライブトランジスタDT1,DT2からのリーク電流を抑制することができる。
 また、ハロ領域DHEの不純物濃度とハロ領域AHBの不純物濃度とが同じ不純物濃度となるように、注入条件A~Dをすべて同じ注入条件に設定してもよい。この場合であっても、アクセストランジスタAT1,AT2では、ハロ領域AHSの不純物濃度はハロ領域AHBの不純物濃度よりも高く、ドライブトランジスタDT1,DT2では、ハロ領域DHSの不純物濃度がハロ領域DHEの不純物濃度よりも高くなる。これにより、読み出しマージンと書き込みマージンとの双方を上げることができる。
 実施の形態11
 ここでは、縦型セルと称されるSRAMメモリセルを備えた半導体装置について説明する。
 まず、そのSRAMメモリセルの等価回路について説明する。図139に示すように、アクセストランジスタAT1,AT2では、1対のハロ領域HRのうち、ストレージノードSN,/SNに接続されている側のハロ領域AHSの不純物濃度が、ビット線BL,/BLに接続されている側のハロ領域AHBの不純物濃度よりも高く設定されている。
 また、ドライブトランジスタDT1,DT2の1対のハロ領域HRのうち、ストレージノードSN,/SNに接続されている側のハロ領域DHTの不純物濃度と、接地配線VSSに接続されている側のハロ領域DHTの不純物濃度とは同じ不純物濃度に設定されている。また、そのハロ領域DHTの不純物濃度は、ハロ領域AHBの不純物濃度よりも低く設定されている。なお、これ以外の構成については、図3に示す等価回路と同様なので、同一部材には同一符号を付し、その説明を繰り返さないこととする。
 次に、SRAMメモリセルの構造について説明する。図140は、SRAMセルアレイのメモリセルを構成するトランジスタおよびそのトランジスタに接続するコンタクトのレイアウトを示す平面図である。点線(太線)によって囲まれた領域が一つのメモリセルを構成する。図140に示すように、ドライブトランジスタDT1,DT2のハロ領域として、ハロ領域DHTが形成されている。なお、これ以外の構成については、図109に示すレイアウトと同様なので、同一部材には同一符号を付し、その説明を繰り返さないこととする。
 図141は、ドライブトランジスタDT1のゲート電極とアクセストランジスタAT1を通る断面線CXLI-CXLIに沿った断面図である。図141に示すように、ドライブゲート電極DG1の直下の領域では、p型のハロ領域HRとして、ソース・ドレイン領域SDSに隣接するようにハロ領域DHTが形成され、また、ソース・ドレイン領域SDEに隣接するようにハロ領域DHTが形成されている。なお、これ以外の構成については、図110に示す構成と同様なので、同一部材については同一符号を付し、その説明を繰り返さないこととする。
 次に、上述した半導体装置の製造方法について説明する。実施の形態9と同様に、ゲート構造Gが形成された後、図142に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH1が形成される(注入マスクA)。レジストマスクRMH1は、アクセスゲート電極AG1,AG2となるゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sの側に位置する側面と、その領域Sと、ドライブゲート電極DG1,DG2となるゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eとを露出するように形成される。
 一方、レジストマスクRMH1は、アクセスゲート電極AG1,AG2となるゲート構造Gにおける、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bの側に位置する側面と、その領域Bと、第2素子形成領域FRPとを覆うように形成される。
 次に、レジストマスクRMH1を注入マスクとして、所定の方向からボロンが注入される(ハロ注入A)。図142に示すように、レジストマスクRMH1を注入マスクとして、ボロンを方向E1、方向E2、方向E3および方向E4のそれぞれから、半導体基板SUBの主表面に垂直な方向に対し斜め(θ=約7度)に注入することにより、露出したpウェルPWの領域に、p型不純物領域(図示せず)が形成される。その後、レジストマスクRMH1が除去される。
 次に、図143に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH2が形成される(注入マスクB)。レジストマスクRMH2は、アクセスゲート電極AG1,AG2となるゲート構造Gと、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sのうち、素子形成領域FRNYに位置する部分と、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bとを露出するように形成される。
 一方、レジストマスクRMH2は、ドライブゲート電極DG1,DG2となるゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eと、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sのうち、素子形成領域FRNXに位置する部分と、第2素子形成領域FRPとを覆うように形成される。
 次に、レジストマスクRMH2を注入マスクとして、所定の方向からボロンが注入される(ハロ注入B)。図143に示すように、レジストマスクRMH2を注入マスクとして、ボロンを方向E5、方向E6、方向E7および方向E8のそれぞれから、半導体基板SUBの主表面に垂直な方向に対し斜め(θ=約7度)に注入することにより、露出したpウェルPWの領域に、p型不純物領域(図示せず)が形成される。その後、レジストマスクRMH2が除去される。なお、方向E1,E2(注入条件A)、方向E3,E4(注入条件B)、方向E5,E6(注入条件C)、方向E7,E8(注入条件D)からの注入条件は、ハロ領域DHTの不純物濃度とハロ領域DHTの不純物濃度とが同じ不純物濃度になり、また、そのハロ領域DHTの不純物濃度がハロ領域AHBの不純物濃度よりも低くなるように設定される。
 次に、図144に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRME1が形成される(注入マスクC)。レジストマスクRME1は、NMIS領域RNを露出し、PMIS領域RPを覆うように形成される。
 次に、レジストマスクRME1を注入マスクとして、リン等が注入される(エクステンション注入)。レジストマスクRME1を注入マスクとして、たとえば、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、露出したpウェルの領域の表面から所定の深さにわたりエクステンション領域ERが形成される(図141参照)。その後、レジストマスクRME1が除去される。
 次に、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスク(図示せず)が形成される(注入マスクD)。次に、そのレジストマスクを注入マスクとして、リンまたは砒素を半導体基板SUB内に注入することにより、素子形成領域RPにハロ領域(図示せず)が形成される。次に、ボロンを半導体基板SUB内に注入することにより、エクステンション領域(図示せず)が形成される。その後、そのレジストマスクが除去される。
 次に、図28~図31に示す工程(実施の形態1)と同様の工程を経て、第1金属配線として、銅配線CW1が形成される(図141参照)。その後、銅配線CW1の上に多層配線構造が形成されて、SRAMメモリセルの主要部分が形成される。
 上述したSRAMメモリセルを備えた半導体装置では、アクセストランジスタAT1,AT2のハロ領域AHBの不純物濃度は、ドライブトランジスタDT1,DT2のハロ領域DHTの不純物濃度よりも高く設定されている。これにより、ハロ領域DHTの不純物濃度は、ハロ領域AHBの不純物濃度よりも低くなり、読み出し動作では、読み出し速度を向上させることができる。また、読み出しマージンと書き込みマージンとの双方を上げることができる。さらに、比較例に係る半導体装置の場合よりも、ハロ領域を形成するための写真製版マスクを削減することができる。
 実施の形態12
 ここでは、縦型セルと称されるSRAMメモリセルを備えた半導体装置の他の例について説明する。
 まず、そのSRAMメモリセルの等価回路について説明する。図145に示すように、アクセストランジスタAT1,AT2では、1対のハロ領域HRのうち、ストレージノードSN,/SNに接続されている側のハロ領域AHSの不純物濃度が、ビット線BL,/BLに接続されている側のハロ領域AHBの不純物濃度よりも高く設定されている。
 また、ドライブトランジスタDT1,DT2の1対のハロ領域HRのうち、ストレージノードSN,/SNに接続されている側のハロ領域DHTの不純物濃度と、接地配線VSSに接続されている側のハロ領域DHTの不純物濃度とは同じ不純物濃度に設定されている。また、そのハロ領域DHTの不純物濃度は、ハロ領域AHBの不純物濃度と実質的に同じ不純物濃度に設定されている。なお、これ以外の構成については、図3に示す等価回路と同様なので、同一部材には同一符号を付し、その説明を繰り返さないこととする。
 次に、SRAMメモリセルの構造について説明する。図146は、SRAMセルアレイのメモリセルを構成するトランジスタおよびそのトランジスタに接続するコンタクトのレイアウトを示す平面図である。図146に示すように、ドライブトランジスタDT1,DT2のハロ領域として、ハロ領域DHTが形成されている。なお、これ以外の構成については、図109に示すレイアウトと同様なので、同一部材には同一符号を付し、その説明を繰り返さないこととする。
 図147は、ドライブトランジスタDT1のゲート電極とアクセストランジスタAT1を通る断面線CXLVII-CXLVIIに沿った断面図である。図147に示すように、ドライブゲート電極DG1の直下の領域では、p型のハロ領域HRとして、ソース・ドレイン領域SDSに隣接するようにハロ領域DHTが形成され、また、ソース・ドレイン領域SDEに隣接するようにハロ領域DHTが形成されている。なお、これ以外の構成については、図110に示す構成と同様なので、同一部材については同一符号を付し、その説明を繰り返さないこととする。
 次に、上述した半導体装置の製造方法について説明する。実施の形態9と同様に、ゲート構造Gが形成された後、図148に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH1が形成される(注入マスクA)。
 レジストマスクRMH1は、アクセスゲート電極AG1,AG2となるゲート構造Gにおける、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sの側に位置する側面と、その領域Sのうち、素子形成領域FRNYに位置する部分とを露出するように形成される。
 一方、レジストマスクRMH1は、アクセスゲート電極AG1,AG2となるゲート構造Gにおける、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bの側に位置する側面と、その領域Bと、素子形成領域FRPとを覆うように形成される。
 さらに、レジストマスクRMH1は、ドライブゲート電極DG1,DG2となるゲート構造Gと、接地配線が接続されるソース・ドレイン領域が形成されることになる領域Eと、領域Sのうち、素子形成領域FRNXに位置する部分を覆うように形成される。
 次に、レジストマスクRMH1を注入マスクとして、所定の方向からボロンが注入される(ハロ注入A)。図148に示すように、レジストマスクRMH1を注入マスクとして、ボロンを方向E1、方向E2、方向E3および方向E4のそれぞれから、半導体基板SUBの主表面に垂直な方向に対し斜め(θ=約7度)に注入することにより、露出したpウェルPWの領域に、p型不純物領域(図示せず)が形成される。その後、レジストマスクRMH1が除去される。
 次に、図149に示すように、所定の写真製版処理を施すことにより、ハロ領域を形成するための注入マスクとなるレジストマスクRMH2が形成される(注入マスクB)。レジストマスクRMH2は、アクセスゲート電極AG1,AG2となるゲート構造Gと、ストレージノードに電気的に接続されるソース・ドレイン領域が形成されることになる領域Sと、ビット線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Bとを露出するように形成される。
 さらに、レジストマスクRMH2は、ドライブゲート電極DG1,DG2となるゲート構造Gと、接地配線に電気的に接続されるソース・ドレイン領域が形成されることになる領域Eとを露出するように形成される。一方、レジストマスクRMH2は、素子形成領域FRPとを覆うように形成される。
 次に、レジストマスクRMH2を注入マスクとして、所定の方向からボロンが注入される(ハロ注入B)。図149に示すように、レジストマスクRMH2を注入マスクとして、ボロンを方向E5、方向E6、方向E7および方向E8のそれぞれから、半導体基板SUBの主表面に垂直な方向に対し斜め(θ=約7度)に注入することにより、露出したpウェルPWの領域に、p型不純物領域(図示せず)が形成される。なお、方向E1,E2(注入条件A)、方向E3,E4(注入条件B)、方向E5,E6(注入条件C)、方向E7,E8(注入条件D)からの注入条件は、ハロ領域DHTの不純物濃度とハロ領域DHTの不純物濃度とが同じ不純物濃度になり、また、そのハロ領域DHTの不純物濃度とハロ領域AHBの不純物濃度とが同じ不純物濃度となるように設定される。
 次に、レジストマスクRMH2を除去することなく、レジストマスクRMH2(レジストマスクRME1)を注入マスク(注入マスクB)として、リン等が注入される(エクステンション注入)。図150に示すように、レジストマスクRME1を注入マスクとして、たとえば、リンまたは砒素を、半導体基板SUBの主表面に垂直な方向から半導体基板SUB内に注入することにより、露出したpウェルの領域の表面から所定の深さにわたりエクステンション領域ERが形成される(図147参照)。その後、レジストマスクRME1が除去される。
 次に、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスク(図示せず)が形成される(注入マスクC)。次に、そのレジストマスクを注入マスクとして、リンまたは砒素を半導体基板SUB内に注入することにより、素子形成領域RPにハロ領域(図示せず)が形成される。次に、ボロンを半導体基板SUB内に注入することにより、エクステンション領域(図示せず)が形成される。その後、そのレジストマスクが除去される。
 次に、図28~図31に示す工程(実施の形態1)と同様の工程を経て、第1金属配線として、銅配線CW1が形成される(図147参照)。その後、銅配線CW1の上に多層配線構造が形成されて、SRAMメモリセルの主要部分が形成される。
 上述したSRAMメモリセルを備えた半導体装置では、アクセストランジスタAT1,AT2のハロ領域AHBの不純物濃度と、ドライブトランジスタDT1,DT2のハロ領域DHTの不純物濃度とは実質的に同じ不純物濃度に設定されている。これにより、ハロ領域DHTの不純物濃度が、ハロ領域AHBの不純物濃度よりも低い場合に比べて、読み出し動作時のリーク電流を抑制することができる。また、読み出しマージンと書き込みマージンとの双方を上げることができる。さらに、比較例に係る半導体装置の場合よりも、ハロ領域を形成するための写真製版マスクを削減することができる。
 今回開示された実施の形態は例示であってこれに制限されるものではない。本発明は上記で説明した範囲ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。
 本発明は、SRAMメモリセルを備えた半導体装置に有効に利用される。
 SUB 半導体基板、ISR 素子分離領域、FRN 素子形成領域、FRP 素子形成領域、RN NMIS領域、RP PMIS領域、AT1,AT2,AT3,AT4 アクセストランジスタ、DT1,DT2,DT3,DT4 ドライブトランジスタ、LT1,LT2 ロードトランジスタ、PW Pウェル、SF 界面膜、HK High-k膜、ML 金属膜、PS ポリシリコン膜、AG1,AG2,AG3,AG4 アクセスゲート電極、DG1,DG2,DG3,DG4 ドライブゲート電極、LG1,LG2 ロードゲート電極、G ゲート構造、OSオフセットスペーサ、ER エクステンション領域、SD,SDS,SDB,SDE ソース・ドレイン領域、HR,AHB,AHS,DHS,DHE ,DHT ハロ領域、SW サイドウォールスペーサ、SCL 金属シリサイド膜、SL ストレスライナー膜、IL1 層間絶縁膜、CH コンタクトホール、BA1 バリア金属膜、TL1 タングステン膜、PG プラグ、ES エッチングストッパ膜、IL2 層間絶縁膜、BA2 バリア金属膜、CL1 銅膜、CW1 銅配線、WLC,VSSC,SNC,BLC,VDDC,LGC,/LGC,VDDC,/BLC,/SNC,VSSC,WLC コンタクト、WLP,VSSP,SNP,BLP,VDDP,LGP,/LGP,VDDP,/BLP,/SNP,VSSP,WLP プラグ、WLM1,VSSM1,SNM1,BLM1,VDDM1,SNM1,/SNM1,VDDM1,/BLM1,/SNM1,VSSM1,WLM1 第1金属配線、WLV1,VSSV1,BLV1,VDDV1,VDDV1,/BLV1,VSSV1,WLV1 第1ヴィア、WLM2,VSSM2,BLM2,VDDM2,VDDM2,/BLM2,VSSM2,WLM2 第2金属配線、WLV2,VSSV2,VSSV2,WLV2 第2ヴィア、WLM3,VSSM3 第3金属配線、SCD 半導体装置、SR SRAM部、MA SRAMメモリセルアレイ、MA1,MA2 SRAMメモリセル、XD Xデコーダ、YD Yデコーダ、SA センスアンプ、WD ライトドライバ、MC 主制御回路、LC ロジック回路、IO IO領域。

Claims (24)

  1.  スタティックランダムアクセスメモリを有する半導体装置であって、
     データを記憶する第1ストレージノード(SN)および第2ストレージノード(/SN)を含むストレージノード(SN,/SN)と、
     データの入出力を行うビット線対(BL,/BL)と、
     接地電位が印加される接地配線(VSS)と、
     半導体基板(SUB)の主表面における所定の領域に素子分離絶縁膜によってそれぞれ規定された、第1素子形成領域(FRN)および第2素子形成領域(FRP)と、
     前記第1素子形成領域(FRN)に形成され、互いに距離を隔てられた第1導電型の第1ソース・ドレイン領域(SDB)および第2ソース・ドレイン領域(SDS)、ならびに、前記第1ソース・ドレイン領域(SDB)と前記第2ソース・ドレイン領域(SDS)とによって挟まれた領域上に位置するアクセスゲート電極(AG1,AG2)を含むアクセストランジスタ(AT1,AT2)と、
     前記第1素子形成領域(FRN)に形成され、互いに距離を隔てられた第1導電型の第3ソース・ドレイン領域(SDS)および第4ソース・ドレイン領域(SDE)、ならびに、前記第3ソース・ドレイン領域(SDS)と前記第4ソース・ドレイン領域(SDE)とによって挟まれた領域上に位置するドライブゲート電極(DG1,DG2)を含むドライブトランジスタ(DT1,DT2)と
    を有し、
     前記アクセストランジスタ(AT1,AT2)は、
     前記アクセスゲート電極(AG1,AG2)の直下の領域において、前記ビット線対(BL,/BL)の所定のビット線に電気的に接続されている前記第1ソース・ドレイン領域(SDB)に隣接するように形成された、第1不純物濃度を有する第2導電型の第1ハロ領域(AHB)と、
     前記アクセスゲート電極(AG1,AG2)の直下の領域において、前記ストレージノード(SN,/SN)に電気的に接続されている前記第2ソース・ドレイン領域(SDS)に隣接するように形成された、第2不純物濃度を有する第2導電型の第2ハロ領域(AHS)と
    を備え、
     前記ドライブトランジスタ(DT1,DT2)は、
     前記ドライブゲート電極(DG1,DG2)の直下の領域において、前記ストレージノード(SN,/SN)に電気的に接続されている前記第3ソース・ドレイン領域(SDS)に隣接するように形成された、第3不純物濃度を有する第2導電型の第3ハロ領域(DHS)と、
     前記ドライブゲート電極(DG1,DG2)の直下の領域において、前記接地配線(VSS)に電気的に接続されている前記第4ソース・ドレイン領域(SDE)に隣接するように形成された、第4不純物濃度を有する第2導電型の第4ハロ領域(DHE)と
    を備え、
     前記第2不純物濃度は、前記第1不純物濃度よりも高く、
     前記第3不純物濃度は、前記第4不純物濃度よりも高く、
     前記第1不純物濃度と前記第4不純物濃度とは異なる不純物濃度に設定された、半導体装置。
  2.  前記第2ソース・ドレイン領域(SDS)と前記第3ソース・ドレイン領域(SDS)は、共通のソース・ドレイン領域として、前記第1素子形成領域(FRN)に形成された、請求項1記載の半導体装置。
  3.  前記共通のソース・ドレイン領域は、屈曲するように形成され、
     前記アクセスゲート電極(AG1,AG2)は第1方向に沿って配置され、前記ドライブゲート電極(DG1,DG2)は、前記第1方向と交差する第2方向に沿って配置された、請求項2記載の半導体装置。
  4.  スタティックランダムアクセスメモリを有する半導体装置であって、
     データを記憶する第1ストレージノード(SN)および第2ストレージノード(/SN)を含むストレージノード(SN,/SN)と、
     データの入出力をそれぞれ行う第1ビット線対(BLA,/BLA)および第2ビット線対(BLB,/BLB)と、
     接地電位が印加される接地配線(VSS)と、
     半導体基板(SUB)の主表面における所定の領域に素子分離絶縁膜によってそれぞれ規定された、第1素子形成領域(FRN)および第2素子形成領域(FRP)と、
     前記第1素子形成領域(FRN)に形成され、互いに距離を隔てられた第1導電型の第1ソース・ドレイン領域(SDB)および第2ソース・ドレイン領域(SDS)、ならびに、前記第1ソース・ドレイン領域(SDB)と前記第2ソース・ドレイン領域(SDS)とによって挟まれた領域上に位置する第1アクセスゲート電極(AG1,AG2)を含む第1アクセストランジスタ(AT1,AT2)と、
     前記第1素子形成領域(FRN)に形成され、互いに距離を隔てられた第1導電型の第3ソース・ドレイン領域(SDS)および第4ソース・ドレイン(SDE)、ならびに、前記第3ソース・ドレイン領域(SDS)と前記第4ソース・ドレイン(SDE)とによって挟まれた領域上に位置するドライブゲート電極(DG1,DG2)を含むドライブトランジスタ(DT1,DT2)と、
     前記第1素子形成領域(FRN)に形成され、互いに距離を隔てられた第1導電型の第5ソース・ドレイン(SDB)および第6ソース・ドレイン(SDS)、ならびに、前記第5ソース・ドレイン(SDB)と前記第6ソース・ドレイン(SDS)とによって挟まれた領域上に位置する第2アクセスゲート電極(AG3,AG4)を含む第2アクセストランジスタ(AT3,AT4)と
    を有し、
     前記第1アクセストランジスタ(AT1,AT2)は、
     前記第1アクセスゲート電極(AG1,AG2)の直下の領域において、前記第1ビット線対(BLA,/BLA)の所定のビット線に電気的に接続されている前記第1ソース・ドレイン領域(SDB)に隣接するように形成された、第1不純物濃度を有する第2導電型の第1ハロ領域(AHB)と、
     前記第1アクセスゲート電極(AG1,AG2)の直下の領域において、前記ストレージノード(SN,/SN)に電気的に接続されている前記第2ソース・ドレイン領域(SDS)に隣接するように形成された、第2不純物濃度を有する第2導電型の第2ハロ領域(AHS)と
    を備え、
     前記ドライブトランジスタ(DT1,DT2)は、
     前記ドライブゲート電極(DG1,DG2)の直下の領域において、前記ストレージノード(SN,/SN)に電気的に接続されている前記第3ソース・ドレイン領域(SDS)に隣接するように形成された、第3不純物濃度を有する第2導電型の第3ハロ領域(DHS)と、
     前記ドライブゲート電極(DG1,DG2)の直下の領域において、前記接地配線(VSS)に電気的に接続されている前記第4ソース・ドレイン(SDE)に隣接するように形成された、第4不純物濃度を有する第2導電型の第4ハロ領域(DHE)と
    を備え、
     前記第2アクセストランジスタ(AT3,AT4)は、
     前記第2アクセスゲート電極(AG3,AG4)の直下の領域において、前記第2ビット線対(BLB,/BLB)の所定のビット線に電気的に接続されている前記第5ソース・ドレイン(SDB)に隣接するように形成された、第5不純物濃度を有する第2導電型の第5ハロ領域(AHB)と、
     前記第2アクセスゲート電極(AG3,AG4)の直下の領域において、前記ストレージノード(SN,/SN)に電気的に接続されている前記第6ソース・ドレイン(SDS)に隣接するように形成された、第6不純物濃度を有する第2導電型の第6ハロ領域(AHS)と
    を備え、
     前記第2不純物濃度は、前記第1不純物濃度よりも高く、
     前記第3不純物濃度は、前記第4不純物濃度よりも高く、
     前記第1不純物濃度と前記第4不純物濃度とは異なる不純物濃度に設定され、
     前記第5不純物濃度は前記第6不純物濃度よりも低く設定された、半導体装置。
  5.  前記第1素子形成領域(FRN)は、前記素子分離絶縁膜によってそれぞれ規定された、第1部、第2部および第3部を含み、
     前記第1アクセストランジスタ(AT1,AT2)は前記第1部に形成され、
     前記ドライブトランジスタ(DT1,DT2)は前記第2部に形成され、
     前記第2アクセストランジスタ(AT3,AT4)は前記第3部に形成された、請求項4記載の半導体装置。
  6.  前記第1素子形成領域(FRN)では、前記第2ソース・ドレイン領域(SDS)、前記第3ソース・ドレイン領域(SDS)および前記第6ソース・ドレイン(SDS)は共通のソース・ドレイン領域として形成された、請求項4記載の半導体装置。
  7.  前記第1素子形成領域(FRN)は、前記素子分離絶縁膜によってそれぞれ規定された第1部および第2部を含み、
     前記第1アクセストランジスタ(AT1,AT2)は前記第1部に形成され、
     前記ドライブトランジスタ(DT1,DT2)および前記第2アクセストランジスタ(AT3,AT4)は、前記第2部に形成され、
     前記第3ソース・ドレイン領域(SDS)と前記第6ソース・ドレイン(SDS)とは、共通のソース・ドレイン領域として形成された、請求項4記載の半導体装置。
  8.  スタティックランダムアクセスメモリを有する半導体装置であって、
     データを記憶する第1ストレージノード(SN)および第2ストレージノード(/SN)を含むストレージノード(SN,/SN)と、
     データの入出力をそれぞれ行う第1ビット線対(BLA,/BLA)および第2ビット線対(BLB,/BLB)と、
     接地電位が印加される接地配線(VSS)と、
     半導体基板(SUB)の主表面における所定の領域に素子分離絶縁膜によってそれぞれ規定された、第1素子形成領域(FRN)および第2素子形成領域(FRP)と、
     前記第1素子形成領域(FRN)に形成され、互いに距離を隔てられた第1導電型の第1ソース・ドレイン領域(SDB)および第2ソース・ドレイン領域(SDS)、ならびに、前記第1ソース・ドレイン領域(SDB)と前記第2ソース・ドレイン領域(SDS)とによって挟まれた領域上に位置する第1アクセスゲート電極(AG1,AG2)を含む第1アクセストランジスタ(AT1,AT2)と、
     前記第1素子形成領域(FRN)に形成され、互いに距離を隔てられた第1導電型の第3ソース・ドレイン領域(SDS)および第4ソース・ドレイン(SDE)、ならびに、前記第3ソース・ドレイン領域(SDS)と前記第4ソース・ドレイン(SDE)とによって挟まれた領域上に位置する第1ドライブゲート電極(DG1,DG2)を含む第1ドライブトランジスタ(DT1,DT2)と、
     前記第1素子形成領域(FRN)に形成され、互いに距離を隔てられた第1導電型の第5ソース・ドレイン(SDB)および第6ソース・ドレイン(SDS)、ならびに、前記第5ソース・ドレイン(SDB)と前記第6ソース・ドレイン(SDS)とによって挟まれた領域上に位置する第2アクセスゲート電極(AG3,AG4)を含む第2アクセストランジスタ(AT3,AT4)と、
     前記第1素子形成領域(FRN)に形成され、互いに距離を隔てられた第1導電型の第7ソース・ドレイン(SDS)および第8ソース・ドレイン(SDE)、ならびに、前記第7ソース・ドレイン(SDS)と前記第8ソース・ドレイン(SDE)とによって挟まれた領域上に位置する第2ドライブゲート電極(DG3,DG4)を含む第2ドライブトランジスタ(DT3,DT4)と
    を有し、
     前記第1アクセストランジスタ(AT1,AT2)は、
     前記第1アクセスゲート電極(AG1,AG2)の直下の領域において、前記第1ビット線対(BLA,/BLA)の所定のビット線に電気的に接続されている前記第1ソース・ドレイン領域(SDB)に隣接するように形成された、第1不純物濃度を有する第2導電型の第1ハロ領域(AHB)と、
     前記アクセスゲート電極の直下の領域において、前記ストレージノード(SN,/SN)に電気的に接続されている前記第2ソース・ドレイン領域(SDS)に隣接するように形成された、第2不純物濃度を有する第2導電型の第2ハロ領域(AHS)と
    を備え、
     前記第1ドライブトランジスタ(DT1,DT2)は、
     前記第1ドライブゲート電極(DG1,DG2)の直下の領域において、前記ストレージノード(SN,/SN)に電気的に接続されている前記第3ソース・ドレイン領域(SDS)に隣接するように形成された、第3不純物濃度を有する第2導電型の第3ハロ領域(DHS)と、
     前記第1ドライブゲート電極(DG1,DG2)の直下の領域において、前記接地配線(VSS)に電気的に接続されている前記第4ソース・ドレイン(SDE)に隣接するように形成された、第4不純物濃度を有する第2導電型の第4ハロ領域(DHE)と
    を備え、
     前記第2アクセストランジスタ(AT3,AT4)は、
     前記第2アクセスゲート電極(AG3,AG4)の直下の領域において、前記第2ビット線対(BLB,/BLB)の所定のビット線に電気的に接続されている前記第5ソース・ドレイン(SDB)に隣接するように形成された、第5不純物濃度を有する第2導電型の第5ハロ領域(AHB)と、
     前記第2アクセスゲート電極(AG3,AG4)の直下の領域において、前記ストレージノード(SN,/SN)に電気的に接続されている前記第6ソース・ドレイン(SDS)に隣接するように形成された、第6不純物濃度を有する第2導電型の第6ハロ領域(AHS)と
    を備え、
     前記第2ドライブトランジスタ(DT3,DT4)は、
     前記第2ドライブゲート電極(DG3,DG4)の直下の領域において、前記ストレージノード(SN,/SN)に電気的に接続されている前記第7ソース・ドレイン(SDS)に隣接するように形成された、第7不純物濃度を有する第2導電型の第7ハロ領域(DHS)と、
     前記第2ドライブゲート電極(DG3,DG4)の直下の領域において、前記接地配線(VSS)に電気的に接続されている前記第8ソース・ドレイン(SDE)に隣接するように形成された、第8不純物濃度を有する第2導電型の第8ハロ領域(DHE)と
    を備え、
     前記第2不純物濃度は、前記第1不純物濃度よりも高く、
     前記第3不純物濃度は、前記第4不純物濃度よりも高く、
     前記第1不純物濃度と前記第4不純物濃度とは異なる不純物濃度に設定され、
     前記第5不純物濃度は前記第6不純物濃度よりも低く、
     前記第7不純物濃度は前記第8不純物濃度よりも高く設定された、半導体装置。
  9.  前記第1素子形成領域(FRN)は、前記素子分離絶縁膜によってそれぞれ規定された第1部および第2部を含み、
     前記第1アクセストランジスタ(AT1,AT2)および前記第1ドライブトランジスタ(DT1,DT2)は、前記第1部に形成されて、前記第2ソース・ドレイン領域(SDS)と前記第3ソース・ドレイン領域(SDS)とは共通のソース・ドレイン領域とされ、
     前記第2アクセストランジスタ(AT3,AT4)および前記第2ドライブトランジスタ(DT3,DT4)は、前記第2部に形成されて、前記第6ソース・ドレイン(SDS)と前記第7ソース・ドレイン(SDS)とは共通のソース・ドレイン領域とされた、請求項8記載の半導体装置。
  10.  スタティックランダムアクセスメモリを有する半導体装置であって、
     データを記憶する第1ストレージノード(SN)および第2ストレージノード(/SN)を含むストレージノード(SN,/SN)と、
     データの入出力を行う第1ビット線対(BL,/BL)と、
     データの出力を行う読み出しビット線(RBL,(RBLA,RBLB))と、
     接地電位が印加される接地配線(VSS)と、
     半導体基板(SUB)の主表面における所定の領域に素子分離絶縁膜によってそれぞれ規定された、第1素子形成領域(FRN)および第2素子形成領域(FRP)と、
     前記第1素子形成領域(FRN)に形成され、互いに距離を隔てられた第1導電型の第1ソース・ドレイン領域(SDB)および第2ソース・ドレイン領域(SDS)、ならびに、前記第1ソース・ドレイン領域(SDB)と前記第2ソース・ドレイン領域(SDS)とによって挟まれた領域上に位置する第1アクセスゲート電極(AG1,AG2)を含む第1アクセストランジスタ(AT1,AT2)と、
     前記第1素子形成領域(FRN)に形成され、互いに距離を隔てられた第1導電型の第3ソース・ドレイン領域(SDS)および第4ソース・ドレイン(SDE)、ならびに、前記第3ソース・ドレイン領域(SDS)と前記第4ソース・ドレイン(SDE)とによって挟まれた領域上に位置する第1ドライブゲート電極(DG1,DG2)を含む第1ドライブトランジスタ(DT1,DT2)と、
     前記第1素子形成領域(FRN)に形成され、互いに距離を隔てられた第1導電型の第5ソース・ドレイン(SDB)および第6ソース・ドレイン(SDS)、ならびに、前記第5ソース・ドレイン(SDB)と前記第6ソース・ドレイン(SDS)とによって挟まれた領域上に位置する第2ドライブゲート電極(DG3,DG4)を含む第2ドライブトランジスタ(DT3,DT4)と、
     前記第1素子形成領域(FRN)に形成され、互いに距離を隔てられた第1導電型の第7ソース・ドレイン(SDS)および第8ソース・ドレイン(SDE)、ならびに、前記第7ソース・ドレイン(SDS)と前記第8ソース・ドレイン(SDE)とによって挟まれた領域上に位置する第2アクセスゲート電極(AG3,AG4)を含む第2アクセストランジスタ(AT3,AT4)と、
    を有し、
     前記第1アクセストランジスタ(AT1,AT2)は、
     前記第1アクセスゲート電極(AG1,AG2)の直下の領域において、前記第1ビット線対(BL,/BL)の所定のビット線に電気的に接続されている前記第1ソース・ドレイン領域(SDB)に隣接するように形成された、第1不純物濃度を有する第2導電型の第1ハロ領域(AHB)と、
     前記第1アクセスゲート電極(AG1,AG2)の直下の領域において、前記ストレージノード(SN,/SN)に電気的に接続されている前記第2ソース・ドレイン領域(SDS)に隣接するように形成された、第2不純物濃度を有する第2導電型の第2ハロ領域(AHS)と
    を備え、
     前記第1ドライブトランジスタ(DT1,DT2)は、
     前記第1ドライブゲート電極(DG1,DG2)の直下の領域において、前記ストレージノード(SN,/SN)に電気的に接続されている前記第3ソース・ドレイン領域(SDS)に隣接するように形成された、第3不純物濃度を有する第2導電型の第3ハロ領域(DHS)と、
     前記第1ドライブゲート電極(DG1,DG2)の直下の領域において、前記接地配線(VSS)に電気的に接続されている前記第4ソース・ドレイン(SDE)に隣接するように形成された、第4不純物濃度を有する第2導電型の第4ハロ領域(DHE)と
    を備え、
     前記第2ドライブトランジスタ(DT3,DT4)は、
     前記第2ドライブゲート電極(DG3,DG4)の直下の領域において、前記接地配線(VSS)に電気的に接続されている前記第5ソース・ドレイン(SDB)に隣接するように形成された、第5不純物濃度を有する第2導電型の第5ハロ領域(AHB)と、
     前記第2ドライブゲート電極(DG3,DG4)の直下の領域において、前記ストレージノード(SN,/SN)に電気的に接続されている前記第6ソース・ドレイン(SDS)に隣接するように形成された、第6不純物濃度を有する第2導電型の第6ハロ領域(AHS)と
    を備え、
     前記第2アクセストランジスタ(AT3,AT4)は、
     前記第2アクセスゲート電極(AG3,AG4)の直下の領域において、前記ストレージノード(SN,/SN)に電気的に接続されている前記第7ソース・ドレイン(SDS)に隣接するように形成された、第7不純物濃度を有する第2導電型の第7ハロ領域(DHS)と、
     前記第2アクセスゲート電極(AG3,AG4)の直下の領域において、前記読み出しビット線(RBL,(RBLA,RBLB))に電気的に接続されている前記第8ソース・ドレイン(SDE)に隣接するように形成された、第8不純物濃度を有する第2導電型の第8ハロ領域(DHE)と
    を備え、
     前記第2不純物濃度は、前記第1不純物濃度よりも高く、
     前記第3不純物濃度は、前記第4不純物濃度よりも高く、
     前記第1不純物濃度と前記第4不純物濃度とは異なる不純物濃度に設定され、
     前記第5不純物濃度と前記第6不純物濃度とは同じ不純物濃度に設定され、
     前記第7不純物濃度と前記第8不純物濃度とは同じ不純物濃度に設定された、半導体装置。
  11.  スタティックランダムアクセスメモリを有する半導体装置であって、
     データを記憶する第1ストレージノード(SN)および第2ストレージノード(/SN)を含むストレージノード(SN,/SN)と、
     データの入出力を行うビット線対(BL,/BL)と、
     接地電位が印加される接地配線(VSS)と、
     半導体基板(SUB)の主表面における所定の領域に素子分離絶縁膜によってそれぞれ規定された、第1素子形成領域(FRN)および第2素子形成領域(FRP)と、
     前記第1素子形成領域(FRN)に形成され、互いに距離を隔てられた第1導電型の第1ソース・ドレイン領域(SDB)および第2ソース・ドレイン領域(SDS)、ならびに、前記第1ソース・ドレイン領域(SDB)と前記第2ソース・ドレイン領域(SDS)とによって挟まれた領域上に、第1方向に沿って位置するアクセスゲート電極(AG1,AG2)を含むアクセストランジスタ(AT1,AT2)と、
     前記第1素子形成領域(FRN)に形成され、互いに距離を隔てられた第1導電型の第3ソース・ドレイン領域(SDS)および第4ソース・ドレイン(SDE)、ならびに、前記第3ソース・ドレイン領域(SDS)と前記第4ソース・ドレイン(SDE)とによって挟まれた領域上に、前記第1方向と交差する第2方向に沿って位置するドライブゲート電極(DG1,DG2)を含むドライブトランジスタ(DT1,DT2)と、
    を有し、
     前記アクセストランジスタ(AT1,AT2)は、
     前記アクセスゲート電極(AG1,AG2)の直下の領域において、前記ビット線対(BL,/BL)の所定のビット線に電気的に接続されている前記第1ソース・ドレイン領域(SDB)に隣接するように形成された、第1不純物濃度を有する第2導電型の第1ハロ領域(AHB)と、
     前記アクセスゲート電極(AG1,AG2)の直下の領域において、前記ストレージノード(SN,/SN)に電気的に接続されている前記第2ソース・ドレイン領域(SDS)に隣接するように形成された、第2不純物濃度を有する第2導電型の第2ハロ領域(AHS)と
    を備え、
     前記ドライブトランジスタ(DT1,DT2)は、
     前記ドライブゲート電極(DG1,DG2)の直下の領域において、前記ストレージノード(SN,/SN)に電気的に接続されている前記第3ソース・ドレイン領域(SDS)に隣接するように形成された、第3不純物濃度を有する第2導電型の第3ハロ領域(DHS)と、
     前記ドライブゲート電極(DG1,DG2)の直下の領域において、前記接地配線(VSS)に電気的に接続されている前記第4ソース・ドレイン(SDE)に隣接するように形成された、第4不純物濃度を有する第2導電型の第4ハロ領域(DHE)と
    を備え、
     前記第2不純物濃度は、前記第1不純物濃度よりも高く、
     前記第3不純物濃度と前記第4不純物濃度とは同じ不純物濃度にされ、
     前記第3不純物濃度および前記第4不純物濃度は、前記第1不純物濃度と同じ不純物濃度か、前記第1不純物濃度よりも低く設定された、半導体装置。
  12.  スタティックランダムアクセスメモリを有する半導体装置の製造方法であって、
     半導体基板(SUB)の主表面に素子分離絶縁膜を形成することにより、第1導電型のトランジスタ(AT1,AT2,DT1,DT2)が形成されるべき第1素子形成領域(FRN)および第2導電型のトランジスタ(LT1,LT2)が形成されるべき第2素子形成領域(FRP)をそれぞれ規定する工程と、
     前記第1素子形成領域(FRN)において、互いに距離を隔てられた、ビット線対(BL,/BL)の所定のビット線に電気的に接続される第1ソース・ドレイン領域(SDB)が形成されることになる第1領域(B)と、ストレージノード(SN,/SN)に電気的に接続される第2ソース・ドレイン領域(SDS)が形成されることになる第2領域(S)との間に挟まれた領域上に、アクセスゲート構造(AG1,AG2)を形成するとともに、互いに距離を隔てられた、前記ストレージノード(SN,/SN)に電気的に接続される第3ソース・ドレイン領域(SDS)が形成されることになる第3領域(S)と、接地配線(VSS)に電気的に接続される第4ソース・ドレイン領域(SDE)が形成されることになる第4領域(E)との間に挟まれた領域上に、ドライブゲート構造(DG1,DG2)を形成する工程を含む、ゲート構造を形成する工程と、
     前記アクセスゲート構造(AG1,AG2)における、前記第2領域(S)の側に位置する第1側面を露出するとともに、前記第2領域(S)、前記ドライブゲート構造(DG1,DG2)、前記第3領域(S)および前記第4領域(E)を露出し、前記アクセスゲート構造(AG1,AG2)における、前記第1領域(B)の側に位置する第2側面、前記第1領域(B)および前記第2素子形成領域(FRP)を覆う第1ハロ注入マスク(RMH1)を形成する工程と、
     前記第1ハロ注入マスク(RMH1)を介して、露出した前記半導体基板(SUB)の領域に対し、前記主表面に垂直な方向から傾斜した角度をもって、第2導電型の第1不純物を注入する工程と、
     前記ドライブゲート構造(DG1,DG2)における、前記第3領域(S)の側に位置する第1側面を露出するとともに、前記第3領域(S)、前記アクセスゲート構造(AG1,AG2)、前記第1領域(B)および前記第2領域(S)を露出し、前記ドライブゲート構造(DG1,DG2)における、前記第4領域(E)の側に位置する第2側面、前記第4領域(E)および前記第2素子形成領域(FRP)を覆う第2ハロ注入マスク(RMH2)を形成する工程と、
     前記第2ハロ注入マスク(RMH2)を介して、露出した前記半導体基板(SUB)の領域に対し、前記主表面に垂直な方向から傾斜した角度をもって、第2導電型の第2不純物を注入する工程と、
     第1導電型の不純物を注入することにより、前記第1ソース・ドレイン領域(SDB)、前記第2ソース・ドレイン領域(SDS)、前記第3ソース・ドレイン領域(SDS)および前記第4ソース・ドレイン領域(SDE)を形成する工程と、
    を備え、
     第2導電型の前記第1不純物を注入し、第2導電型の前記第2不純物を注入し、前記第1ソース・ドレイン領域(SDB)~前記第4ソース・ドレイン領域(SDE)を形成することにより、
     前記アクセスゲート構造(AG1,AG2)の直下の領域では、前記第1ソース・ドレイン領域(SDB)に隣接するように、第1不純物濃度を有する第2導電型の第1ハロ領域(AHB)が形成されるとともに、前記第2ソース・ドレイン領域(SDS)に隣接するように、前記第1不純物濃度よりも高い第2不純物濃度を有する第2導電型の第2ハロ領域(AHS)が形成され、
     前記ドライブゲート構造(DG1,DG2)の直下の領域では、前記第3ソース・ドレイン領域(SDS)に隣接するように、第3不純物濃度を有する第2導電型の第3ハロ領域(DHS)が形成されるとともに、前記第4ソース・ドレイン領域(SDE)に隣接するように、前記第3不純物濃度よりも低く前記第1不純物濃度とは異なる第4不純物濃度を有する第2導電型の第4ハロ領域(DHE)が形成される、半導体装置の製造方法。
  13.  前記第1ハロ注入マスク(RMH1)を形成する工程では、前記第1ハロ注入マスク(RMH1)のパターンとして、前記アクセスゲート構造(AG1,AG2)における、前記第2領域(S)の側に位置する第1側面を露出するとともに、前記第2領域(S)、前記ドライブゲート構造(DG1,DG2)、前記第3領域(S)および前記第4領域(E)を露出する第1開口部が形成され、
     前記第2ハロ注入マスク(RMH2)を形成する工程では、前記第2ハロ注入マスク(RMH2)のパターンとして、前記ドライブゲート構造(DG1,DG2)における、前記第3領域(S)の側に位置する第1側面を露出するとともに、前記第3領域(S)、前記アクセスゲート構造(AG1,AG2)、前記第1領域(B)および前記第2領域(S)を露出する第2開口部が形成される、請求項12記載の半導体装置の製造方法。
  14.  前記第1素子形成領域(FRN)を規定する工程では、前記第2領域(S)と前記第3領域(S)とは共通の領域として規定される、請求項13記載の半導体装置の製造方法。
  15.  スタティックランダムアクセスメモリを有する半導体装置の製造方法であって、
     半導体基板(SUB)の主表面に素子分離絶縁膜を形成することにより、第1導電型のトランジスタ(AT1,AT2,AT3,AT4,DT1,DT2)が形成されるべき第1素子形成領域(FRN)および第2導電型のトランジスタ(LT1,LT2)が形成されるべき第2素子形成領域(FRP)をそれぞれ規定する工程と、
     前記第1素子形成領域(FRN)において、互いに距離を隔てられた、第1ビット線対(BLA,/BLA)の所定のビット線に電気的に接続される第1ソース・ドレイン領域(SDB)が形成されることになる第1領域(B)と、ストレージノード(SN,/SN)に電気的に接続される第2ソース・ドレイン領域(SDS)が形成されることになる第2領域(S)との間に挟まれた領域上に、第1アクセスゲート構造(AG1,AG2)を形成し、互いに距離を隔てられた、前記ストレージノード(SN,/SN)に電気的に接続される第3ソース・ドレイン領域(SDS)が形成されることになる第3領域(S)と、接地配線(VSS)に電気的に接続される第4ソース・ドレイン領域(SDE)が形成されることになる第4領域(E)との間に挟まれた領域上に、第1ドライブゲート構造(DG1,DG2)を形成し、互いに距離を隔てられた、前記第1ビット線対(BLA,/BLA)とは異なる第2ビット線対(BLB,/BLB)の所定のビット線に電気的に接続される第5ソース・ドレイン領域(SDB)が形成されることになる第5領域(B)と、前記ストレージノード(SN,/SN)に電気的に接続される第6ソース・ドレイン領域(SDS)が形成されることになる第6領域(S)との間に挟まれた領域上に、第2アクセスゲート構造(AG3,AG4)を形成する工程を含む、ゲート構造を形成する工程と、
     前記第1アクセスゲート構造(AG1,AG2)における、前記第2領域(S)の側に位置する第1側面、前記第2領域(S)、前記第1ドライブゲート構造(DG1,DG2)、前記第3領域(S)、前記第4領域(E)、前記第2アクセスゲート構造(AG3,AG4)における、前記第6領域(S)の側に位置する第1側面および前記第6領域(S)を露出し、前記第1アクセスゲート構造(AG1,AG2)における、前記第1領域(B)の側に位置する前記第2側面、前記第1領域(B)、前記第2アクセスゲート構造(AG3,AG4)における、前記第5領域(B)の側に位置する第2側面、前記第5領域(B)および前記第2素子形成領域(FRP)を覆う第1ハロ注入マスク(RMH1)を形成する工程と、
     前記第1ハロ注入マスク(RMH1)を介して、露出した前記半導体基板(SUB)の領域に対し、前記主表面に垂直な方向から傾斜した角度をもって、第2導電型の第1不純物を注入する工程と、
     前記第1ドライブゲート構造(DG1,DG2)における、前記第3領域(S)の側に位置する第1側面、前記第3領域(S)、前記第1アクセスゲート構造(AG1,AG2)、前記第1領域(B)、前記第2領域(S)、前記第2アクセスゲート構造(AG3,AG4)、前記第5領域(B)、前記第6領域(S)を露出し、前記第1ドライブゲート構造(DG1,DG2)における、前記第4領域(E)の側に位置する第2側面、前記第4領域(E)および前記第2素子形成領域(FRP)を覆う第2ハロ注入マスク(RMH2)を形成する工程と、
     前記第2ハロ注入マスク(RMH2)を介して、露出した前記半導体基板(SUB)の領域に対し、前記主表面に垂直な方向から傾斜した角度をもって、第2導電型の第2不純物を注入する工程と、
     第1導電型の不純物を注入することにより、前記第1ソース・ドレイン領域(SDB)、前記第2ソース・ドレイン領域(SDS)、前記第3ソース・ドレイン領域(SDS)、前記第4ソース・ドレイン領域(SDE)、前記第5ソース・ドレイン領域(SDB)および前記第6ソース・ドレイン領域(SDS)を形成する工程と、
    を備え、
     第2導電型の前記第1不純物を注入し、第2導電型の前記第2不純物を注入し、前記第1ソース・ドレイン領域(SDB)~前記第6ソース・ドレイン領域(SDS)を形成することにより、
     前記第1アクセスゲート構造(AG1,AG2)の直下の領域では、前記第1ソース・ドレイン領域(SDB)に隣接するように、第1不純物濃度を有する第2導電型の第1ハロ領域(AHB)が形成されるとともに、前記第2ソース・ドレイン領域(SDS)に隣接するように、前記第1不純物濃度よりも高い第2不純物濃度を有する第2導電型の第2ハロ領域(AHS)が形成され、
     前記第1ドライブゲート構造(DG1,DG2)の直下の領域では、前記第3ソース・ドレイン領域(SDS)に隣接するように、第3不純物濃度を有する第2導電型の第3ハロ領域(DHS)が形成されるとともに、前記第4ソース・ドレイン領域(SDE)に隣接するように、前記第3不純物濃度よりも低く前記第1不純物濃度とは異なる第4不純物濃度を有する第2導電型の第4ハロ領域(DHE)が形成され、
     前記第2アクセスゲート構造(AG3,AG4)の直下の領域では、前記第5ソース・ドレイン領域(SDB)に隣接するように、第5不純物濃度を有する第2導電型の第5ハロ領域(AHB)が形成されるとともに、前記第6ソース・ドレイン領域(SDS)に隣接するように、前記第5不純物濃度よりも高い第6不純物濃度を有する第2導電型の第6ハロ領域(AHS)が形成される、半導体装置の製造方法。
  16. [規則91に基づく訂正 15.05.2013] 
     前記第1素子形成領域(FRN)を規定する工程では、前記第1素子形成領域(FRN)として、第1部、第2部および第3部が規定され、
     前記ゲート構造を形成する工程では、
     前記第1アクセスゲート構造、前記第1領域(B)および前記第2領域(S)は、前記第1部に形成され、
     前記第1ドライブゲート構造(DG1,DG2)、前記第3領域(S)および前記第4領域(E)は、前記第2部に形成され、
     前記第2アクセスゲート構造(AG3,AG4)、前記第5領域(B)および前記第6領域(S)は、前記第3部に形成される、請求項15記載の半導体装置の製造方法。
  17.  前記第1素子形成領域(FRN)を規定する工程では、前記第2領域(S)、前記第3領域(S)および前記第6領域(S)は共通の領域として規定された、請求項15記載の半導体装置の製造方法。
  18.  前記第1素子形成領域(FRN)を規定する工程では、前記第3領域(S)と前記第6領域(S)とは共通の領域として規定された、請求項15記載の半導体装置の製造方法。
  19.  前記ゲート構造を形成する工程は、互いに距離を隔てられた、前記ストレージノード(SN,/SN)に電気的に接続される第7ソース・ドレイン領域(SDS)が形成されることになる第7領域(S)と、前記接地配線(VSS)に電気的に接続される第8ソース・ドレイン領域(SDE)が形成されることになる第8領域(E)との間に挟まれた領域上に、第2ドライブゲート構造(DG3,DG4)を形成する工程を含み、
     前記第1ハロ注入マスク(RMH1)を形成する工程は、前記第2ドライブゲート構造(DG3,DG4)、前記第7領域(S)および前記第8領域(E)を露出する工程を含み、
     前記第2ハロ注入マスク(RMH2)を形成する工程は、前記第2ドライブゲート構造(DG3,DG4)における、前記第7領域(S)の側に位置する第1側面および前記第7領域(S)を露出し、前記第2ドライブゲート構造(DG3,DG4)における、前記第8領域(E)の側に位置する第2側面および前記第8領域(E)を覆う工程を含み、
     第2導電型の前記第1不純物を注入し、第2導電型の前記第2不純物を注入し、前記第7ソース・ドレイン領域(SDS)および前記第8ソース・ドレイン領域(SDE)を形成することにより、前記第2ドライブゲート構造(DG3,DG4)の直下の領域では、前記第7ソース・ドレイン領域(SDS)に隣接するように、第7不純物濃度を有する第2導電型の第7ハロ領域が形成されるとともに、前記第8ソース・ドレイン領域(SDE)に隣接するように、前記第7不純物濃度よりも低い第8不純物濃度を有する第2導電型の第8ハロ領域(DHE)が形成される、請求項15記載の半導体装置の製造方法。
  20.  前記第1素子形成領域(FRN)を規定する工程では、前記第1素子形成領域(FRN)として、第1部および第2部が規定され、
     前記ゲート構造を形成する工程では、
     前記第1アクセスゲート構造(AG1,AG2)、前記第1領域(B)、前記第2領域(S)、前記第1ドライブゲート構造(DG1,DG2)、前記第3領域(S)および前記第4領域(E)は、前記第1部に形成され、
     前記第2アクセスゲート構造(AG3,AG4)、前記第5領域(B)、前記第6領域(S)、前記第2ドライブゲート構造(DG3,DG4)、前記第7領域(S)および前記第8領域(E)は、前記第2部に形成され、
     前記第2領域(S)と前記第3領域(S)とが共通の領域とされ、
     前記第6領域(S)と前記第7領域(S)とが共通の領域とされた、請求項19記載の半導体装置の製造方法。
  21.  スタティックランダムアクセスメモリを有する半導体装置の製造方法であって、
     半導体基板(SUB)の主表面に素子分離絶縁膜を形成することにより、第1導電型のトランジスタ(AT1,AT2,DT1,DT2)が形成されるべき第1素子形成領域(FRN)および第2導電型のトランジスタ(LT1,LT2)が形成されるべき第2素子形成領域(FRP)をそれぞれ規定する工程と、
     前記第1素子形成領域(FRN)において、互いに距離を隔てられた、ビット線対(BL,/BL)の所定のビット線に電気的に接続される第1ソース・ドレイン領域(SDB)が形成されることになる第1領域(B)と、ストレージノード(SN,/SN)に電気的に接続される第2ソース・ドレイン領域(SDS)が形成されることになる第2領域(S)との間に挟まれた領域上に、第1方向に沿ってアクセスゲート構造(AG1,AG2)を形成するとともに、互いに距離を隔てられた、前記ストレージノード(SN,/SN)に電気的に接続される第3ソース・ドレイン領域(SDS)が形成されることになる第3領域(S)と、接地配線(VSS)に電気的に接続される第4ソース・ドレイン領域(SDE)が形成されることになる第4領域(E)との間に挟まれた領域上に、前記第1方向と交差する第2方向に沿ってドライブゲート構造(DG1,DG2)を形成する工程を含む、ゲート構造を形成する工程と、
     前記アクセスゲート構造(AG1,AG2)における、前記第2領域(S)の側に位置する第1側面、前記第2領域(S)、前記ドライブゲート構造(DG1,DG2)における、前記第3領域(S)の側に位置する第1側面および前記第3領域(S)を露出する開口部を有し、前記アクセスゲート構造(AG1,AG2)における、前記第1領域(B)の側に位置する第2側面、前記第1領域(B)、前記ドライブゲート構造(DG1,DG2)における、前記第4領域(E)の側に位置する第2側面、前記第4領域(E)および前記第2素子形成領域(FRP)を覆う第1ハロ注入マスク(RMH1)を形成する工程と、
     前記第1ハロ注入マスク(RMH1)を介して、前記開口部に露出した前記半導体基板(SUB)の領域に対し、前記主表面に垂直な方向から傾斜した角度をもって、前記第1方向の一方と他方とから、および、前記第2方向の一方と他方とから、それぞれ第2導電型の第1不純物を注入する工程と、
     前記アクセスゲート構造(AG1,AG2)、前記第1領域(B)、前記第2領域(S)、前記ドライブゲート構造(DG1,DG2)、前記第3領域(S)および前記第4領域(E)を露出し、前記第2素子形成領域(FRP)を覆う第2ハロ注入マスク(RMH2)を形成する工程と、
     前記第2ハロ注入マスク(RMH2)を介して、露出した前記半導体基板(SUB)の領域に対し、前記主表面に垂直な方向から傾斜した角度をもって、前記第1方向の一方と他方とから、および、前記第2方向の一方と他方とから、それぞれ第2導電型の第2不純物を注入する工程と、
     第1導電型の不純物を注入することにより、前記第1ソース・ドレイン領域(SDB)、前記第2ソース・ドレイン領域(SDS)、前記第3ソース・ドレイン領域(SDS)および前記第4ソース・ドレイン領域(SDE)を形成する工程と、
    を備え、
     第2導電型の前記第1不純物を注入し、第2導電型の前記第2不純物を注入し、前記第1ソース・ドレイン領域(SDB)~前記第4ソース・ドレイン領域(SDE)を形成することにより、
     前記アクセスゲート構造(AG1,AG2)の直下の領域では、前記第1ソース・ドレイン領域(SDB)に隣接するように、第1不純物濃度を有する第2導電型の第1ハロ領域(AHB)が形成されるとともに、前記第2ソース・ドレイン領域(SDS)に隣接するように、前記第1不純物濃度よりも高い第2不純物濃度を有する第2導電型の第2ハロ領域(AHS)が形成され、
     前記ドライブゲート構造(DG1,DG2)の直下の領域では、前記第3ソース・ドレイン領域(SDS)に隣接するように、第3不純物濃度を有する第2導電型の第3ハロ領域(DHS)が形成されるとともに、前記第4ソース・ドレイン領域(SDE)に隣接するように、前記第3不純物濃度よりも低い第4不純物濃度を有する第2導電型の第4ハロ領域(DHE)が形成される、半導体装置の製造方法。
  22.  前記第1素子形成領域(FRN)を規定する工程では、前記第2領域(S)と前記第3領域(S)とは共通の領域として屈曲する態様で規定される、請求項21記載の半導体装置の製造方法。
  23.  第2導電型の前記第1不純物を注入する工程および第2導電型の前記第2不純物を注入する工程では、前記第4ハロ領域(DHE)の前記第4不純物濃度が、前記第1ハロ領域(AHB)の前記第1不純物濃度とは異なるように注入される、請求項21記載の半導体装置の製造方法。
  24.  第2導電型の前記第1不純物を注入する工程および第2導電型の前記第2不純物を注入する工程では、前記第4ハロ領域(DHE)の前記第4不純物濃度は、前記第1ハロ領域(AHB)の前記第1不純物濃度と同じ不純物濃度になるように注入される、請求項21記載の半導体装置の製造方法。
PCT/JP2011/067443 2011-07-29 2011-07-29 半導体装置およびその製造方法 WO2013018156A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2011/067443 WO2013018156A1 (ja) 2011-07-29 2011-07-29 半導体装置およびその製造方法
US14/236,067 US10032781B2 (en) 2011-07-29 2011-07-29 Static random access memory device with halo regions having different impurity concentrations
CN201180072497.2A CN103703556B (zh) 2011-07-29 2011-07-29 半导体器件及其制造方法
JP2013526624A JP5658822B2 (ja) 2011-07-29 2011-07-29 半導体装置およびその製造方法
TW101119829A TWI569417B (zh) 2011-07-29 2012-06-01 Semiconductor device and manufacturing method thereof
US16/014,920 US10217751B2 (en) 2011-07-29 2018-06-21 Static random access memory device with halo regions having different impurity concentrations
US16/239,835 US10510761B2 (en) 2011-07-29 2019-01-04 Static random access memory device with halo regions having different impurity concentrations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/067443 WO2013018156A1 (ja) 2011-07-29 2011-07-29 半導体装置およびその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/236,067 A-371-Of-International US10032781B2 (en) 2011-07-29 2011-07-29 Static random access memory device with halo regions having different impurity concentrations
US16/014,920 Division US10217751B2 (en) 2011-07-29 2018-06-21 Static random access memory device with halo regions having different impurity concentrations

Publications (2)

Publication Number Publication Date
WO2013018156A1 WO2013018156A1 (ja) 2013-02-07
WO2013018156A9 true WO2013018156A9 (ja) 2013-08-08

Family

ID=47628729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067443 WO2013018156A1 (ja) 2011-07-29 2011-07-29 半導体装置およびその製造方法

Country Status (5)

Country Link
US (3) US10032781B2 (ja)
JP (1) JP5658822B2 (ja)
CN (1) CN103703556B (ja)
TW (1) TWI569417B (ja)
WO (1) WO2013018156A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019411A1 (ja) * 2013-08-06 2015-02-12 ルネサスエレクトロニクス株式会社 半導体集積回路装置
JP6224401B2 (ja) * 2013-10-04 2017-11-01 ルネサスエレクトロニクス株式会社 半導体メモリ
KR102324627B1 (ko) * 2014-10-31 2021-11-10 삼성전자주식회사 자기 저항 소자를 포함하는 반도체 소자
US9859286B2 (en) * 2014-12-23 2018-01-02 International Business Machines Corporation Low-drive current FinFET structure for improving circuit density of ratioed logic in SRAM devices
US10134734B2 (en) * 2016-06-30 2018-11-20 Qualcomm Incorporated Fin field effect transistor (FET) (FinFET) complementary metal oxide semiconductor (CMOS) circuits employing single and double diffusion breaks for increased performance
US10685703B2 (en) * 2018-09-12 2020-06-16 Nxp B.V. Transistor body bias control circuit for SRAM cells
EP3742476A1 (en) * 2019-05-20 2020-11-25 Infineon Technologies AG Method of implanting an implant species into a substrate at different depths
WO2020255801A1 (ja) * 2019-06-17 2020-12-24 株式会社ソシオネクスト 半導体記憶装置
CN111129005B (zh) * 2019-12-25 2023-09-19 上海华力集成电路制造有限公司 一种双口静态随机存储单元版图结构
WO2021161808A1 (ja) * 2020-02-10 2021-08-19 国立研究開発法人科学技術振興機構 双安定回路、電子回路、記憶回路および処理装置
CN113593618B (zh) * 2021-07-30 2023-04-28 电子科技大学 适用于差分sram存储单元的存算一体化存储阵列结构

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2682411B2 (ja) * 1993-12-13 1997-11-26 日本電気株式会社 半導体記憶装置
JP4885365B2 (ja) 2000-05-16 2012-02-29 ルネサスエレクトロニクス株式会社 半導体装置
JP4044721B2 (ja) * 2000-08-15 2008-02-06 株式会社ルネサステクノロジ 半導体集積回路装置の製造方法
US6466489B1 (en) * 2001-05-18 2002-10-15 International Business Machines Corporation Use of source/drain asymmetry MOSFET devices in dynamic and analog circuits
US6934182B2 (en) * 2003-10-03 2005-08-23 International Business Machines Corporation Method to improve cache capacity of SOI and bulk
WO2006101068A1 (ja) * 2005-03-22 2006-09-28 Fujitsu Limited 半導体装置及びその製造方法
JP5307966B2 (ja) * 2005-03-30 2013-10-02 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 半導体装置の製造方法
US8216903B2 (en) * 2005-09-29 2012-07-10 Texas Instruments Incorporated SRAM cell with asymmetrical pass gate
US7384839B2 (en) * 2005-09-29 2008-06-10 Texas Instruments Incorporated SRAM cell with asymmetrical transistors for reduced leakage
JPWO2007063988A1 (ja) * 2005-12-02 2009-05-07 日本電気株式会社 半導体装置およびその製造方法
US7436696B2 (en) * 2006-04-28 2008-10-14 Taiwan Semiconductor Manufacturing Company, Ltd. Read-preferred SRAM cell design
JP2008147570A (ja) * 2006-12-13 2008-06-26 Fujitsu Ltd 半導体メモリおよびスタティックメモリセルの製造方法
JP2009152468A (ja) * 2007-12-21 2009-07-09 Fujitsu Microelectronics Ltd 半導体装置
US8139400B2 (en) * 2008-01-22 2012-03-20 International Business Machines Corporation Enhanced static random access memory stability using asymmetric access transistors and design structure for same
US7813162B2 (en) * 2008-02-28 2010-10-12 International Business Machines Corporation SRAM cell having asymmetric pass gates
US8036022B2 (en) * 2008-08-12 2011-10-11 International Business Machines Corporation Structure and method of using asymmetric junction engineered SRAM pass gates, and design structure
US8144540B2 (en) * 2009-04-14 2012-03-27 Taiwan Semiconductor Manufacturing Co., Ltd. Two-port 8T SRAM design
JP2012195320A (ja) * 2009-07-29 2012-10-11 Panasonic Corp 半導体装置
US8193062B2 (en) * 2009-09-25 2012-06-05 International Business Machines Corporation Asymmetric silicon-on-insulator SRAM cell
US8638594B1 (en) * 2009-12-02 2014-01-28 Altera Corporation Integrated circuits with asymmetric transistors
JP5561823B2 (ja) * 2010-02-05 2014-07-30 ルネサスエレクトロニクス株式会社 半導体装置の製造方法および半導体装置
US8138797B1 (en) * 2010-05-28 2012-03-20 Altera Corporation Integrated circuits with asymmetric pass transistors
JP5433788B2 (ja) * 2010-08-05 2014-03-05 ルネサスエレクトロニクス株式会社 半導体装置

Also Published As

Publication number Publication date
WO2013018156A1 (ja) 2013-02-07
TWI569417B (zh) 2017-02-01
CN103703556B (zh) 2017-02-22
US20180342522A1 (en) 2018-11-29
US20140191338A1 (en) 2014-07-10
US10032781B2 (en) 2018-07-24
TW201314871A (zh) 2013-04-01
JPWO2013018156A1 (ja) 2015-02-23
JP5658822B2 (ja) 2015-01-28
US10510761B2 (en) 2019-12-17
CN103703556A (zh) 2014-04-02
US20190139966A1 (en) 2019-05-09
US10217751B2 (en) 2019-02-26

Similar Documents

Publication Publication Date Title
JP5658822B2 (ja) 半導体装置およびその製造方法
US10483268B2 (en) Semiconductor device including memory cell array with transistors disposed in different active regions
JP5561823B2 (ja) 半導体装置の製造方法および半導体装置
US8169030B2 (en) Semiconductor memory device and production method thereof
US9305633B2 (en) SRAM cell and cell layout method
US8373235B2 (en) Semiconductor memory device and production method therefor
JP5345092B2 (ja) スタティックランダムアクセスメモリ(sram)セルとその製造方法
US9293189B2 (en) Integrated circuits with SRAM cells having additional read stacks
CN111524889A (zh) 静态随机存取存储器
US12009818B2 (en) Dual-port SRAM
US20230035789A1 (en) Dual-port sram
JP5917738B2 (ja) 半導体装置および半導体チップ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013526624

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14236067

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11870451

Country of ref document: EP

Kind code of ref document: A1