WO2013015567A2 - 다공성 탄소 입자 및 이의 제조 방법 - Google Patents

다공성 탄소 입자 및 이의 제조 방법 Download PDF

Info

Publication number
WO2013015567A2
WO2013015567A2 PCT/KR2012/005793 KR2012005793W WO2013015567A2 WO 2013015567 A2 WO2013015567 A2 WO 2013015567A2 KR 2012005793 W KR2012005793 W KR 2012005793W WO 2013015567 A2 WO2013015567 A2 WO 2013015567A2
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
particles
porous carbon
carbon particles
copolymer
Prior art date
Application number
PCT/KR2012/005793
Other languages
English (en)
French (fr)
Other versions
WO2013015567A3 (ko
Inventor
문준혁
유해민
강다영
Original Assignee
서강대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교산학협력단 filed Critical 서강대학교산학협력단
Publication of WO2013015567A2 publication Critical patent/WO2013015567A2/ko
Publication of WO2013015567A3 publication Critical patent/WO2013015567A3/ko
Priority to US14/163,685 priority Critical patent/US9272909B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to a porous carbon particle and a method for producing the porous carbon particle.
  • Pores of porous particles or porous structures can be classified into three types, depending on their diameter size: micropores (less than 2 nm), mesopores (2 nm to 50 nm), and macropores (greater than 50 nm). . Porous particles capable of controlling the pore size have recently been attracting attention because they can be used in various fields including catalysts, separation systems, low dielectric materials, hydrogen storage materials, photonic crystals, electrodes and the like.
  • the porous particles or the porous structure may be manufactured using various materials such as metal oxide, semiconductor, metal, polymer, or carbon, and particularly, in the case of porous carbon particles, excellent surface properties, ion conductivity, corrosion resistance, and low cost manufacturing It has advantages such as cost and can be widely used in various fields.
  • the porous carbon particles show a great difference in efficiency depending on the distribution, the size, the connectivity, the surface area, the surface properties, and the like of the pores included therein, in particular, the size of the pores needs to be controlled according to the purpose of use of the porous carbon particles.
  • the amount of catalyst material can be increased by increasing the specific surface area, but it is difficult to transfer and diffuse the reaction gas.
  • the catalyst utilization efficiency is lowered, and thus, a problem arises in that a fuel cell cannot be manufactured with improved performance.
  • Korean Patent Application No. 10-2003-0087761 discloses an electrode catalyst for a fuel cell supported by a porous carbon structure in which spherical pores having a uniform diameter are arranged in three dimensions regularly and a method of manufacturing the same.
  • a method of producing porous carbon particles using a template is disclosed.
  • porous carbon particles including pores regularly aligned by template replication using zeolites, mesoporous materials, and colloidal crystals.
  • the pores were not regularly aligned and distributed in the particles, and there was a problem in that the pore size could not be controlled according to the purpose of use.
  • the porous carbon particles using the template as described above, there was a disadvantage that it is difficult to simplify the process and reduce the cost.
  • the present inventors can easily increase the pore size by using a copolymer capable of crosslinking the selective polymer particles and carbonizing the selective polymer particles.
  • the present application was completed by the discovery that porous carbon particles can be produced under control.
  • the present application is to provide a method for producing porous carbon particles using a copolymer capable of crosslinking of selective polymer particles and carbonization of selective polymer particles, and porous carbon particles prepared by the method.
  • a first aspect of the present disclosure includes a first step of forming a copolymer particle comprising at least one of particles containing a second polymer in particles containing the first polymer; A second step of crosslinking the first polymer moiety contained in the copolymer particles; And a third step of carbonizing the crosslinked first polymer moiety and selectively removing the second polymer moiety.
  • the second aspect of the present application provides a porous carbon particle prepared according to the manufacturing method of the first aspect of the present application.
  • a copolymer particle including at least one of particles containing a second polymer in a particle containing a first polymer is formed, the first polymer particle is crosslinked, and then the crosslinked first polymer particle is formed.
  • the porous carbon particles prepared according to the present application may include a plurality of pores to provide a wide specific surface area, and to adjust the size and distribution of the pores by adjusting the type and concentration of monomers forming the copolymer. It can be controlled according to the production purpose of the porous carbon particles.
  • the porous carbon particles according to the present application may be applied to various fields, for example, a catalyst, a photocatalyst, an electrode, a photoelectrode, a sensor, an optical sensor, an optoelectronic device, a nanodevice, and the like.
  • FIG. 1 is a flowchart illustrating a process of preparing porous carbon particles according to one embodiment of the present application.
  • FIG. 2 is a SEM photograph of the copolymer (PS-PMMA) (FIG. 2A) and an SEM in the case where the polystyrene (PS) portion of the copolymer (PS-PMMA) is crosslinked. It is a photograph (FIG. 2B).
  • FIG. 3 is a SEM photograph (FIG. 3A), and a TEM photograph (FIG. 3B) of porous carbon particles prepared according to one embodiment of the present application.
  • FIG. 4 shows a CV (Cyclic Voltammogram) (FIG. 4A) of carbon particles prepared using only polystyrene (PS) as a comparative example, and a CV (FIG. 4B) of porous carbon particles prepared according to one embodiment of the present application. It is a graph.
  • CV Cyclic Voltammogram
  • FIG. 5 is a graph showing the specific surface area of carbon particles prepared using only polystyrene (PS) as a comparative example, and the specific surface area of porous carbon particles prepared according to one embodiment of the present application.
  • PS polystyrene
  • a first aspect of the present disclosure includes a first step of forming a copolymer particle comprising at least one of particles containing a second polymer in particles containing the first polymer; A second step of crosslinking the portion of the first polymer particle contained in the copolymer particles; And a third step of carbonizing the crosslinked first polymer moiety and selectively removing the second polymer moiety.
  • the copolymer particles are used to selectively crosslink and carbonize only the first polymer portion and selectively remove the second polymer portion formed in the first polymer to form pores so that the specific surface area and porosity are increased. Further improved carbon particles can be readily produced.
  • FIG. 1 is a flowchart illustrating a process of preparing porous carbon particles according to one embodiment of the present application.
  • a copolymer particle including one or more of particles containing a second polymer in the particles containing the first polymer may include the monomer for forming the first polymer and the monomer.
  • the second polymer may represent a richer domain than the first polymer, but is not limited thereto.
  • the first polymer may be formed by polymerization of an aromatic monomer, but is not limited thereto.
  • the aromatic monomer may include, but is not limited to, one selected from the group consisting of styrene, benzamide, butylene terephthalate, ethylene terephthalate, and combinations thereof.
  • the second polymer may be formed by polymerization of a non-aromatic monomer, but is not limited thereto.
  • the non-aromatic monomers include those selected from the group consisting of methyl methacrylate, acrylate, acrylamide, acrylonitrile, ethylene, vinyl halide, propylene, butylene, and combinations thereof. May be, but is not limited thereto.
  • the first step may include forming the copolymer particles by radically polymerizing a mixture of the monomer forming the first polymer and the monomer forming the second polymer.
  • the radical polymerization method refers to a polymerization reaction proceeding in a free radical state in which a valence at the end of a polymer to be grown has one free electron, and may include an emulsion polymerization method and a dispersion polymerization method. However, it is not limited thereto.
  • the crosslinking is performed in the second step performed after the first step.
  • the crosslinking bond may be selectively formed only in the first polymer part including the aromatic monomers, but the present invention is not limited thereto.
  • the second step may include, but is not limited to, crosslinking the first polymer moiety contained in the copolymer by a Friedelcraft-alkylation reaction.
  • the Friedelcraft-alkylation reaction may be carried out using an alkyl halide in the presence of a Lewis acid catalyst such as aluminum halide or iron halide, but is not particularly limited, and the Lewis acid and the alkyl halide and the Friedel
  • a Lewis acid catalyst such as aluminum halide or iron halide
  • the Friedel-Crafts alkylation reaction is a reaction capable of obtaining an alkylated product through an electrophilic aromatic substitution reaction under a Lewis acid catalyst.
  • an aromatic compound including an aromatic ring such as a benzene ring may be reacted in the presence of an alkyl halide and Lewis acid to cause alkylation of the aromatic ring.
  • a new carbon-carbon bond is formed in an aromatic ring such as a benzene ring through the reaction.
  • the Friedelcraft-alkylation reaction can be represented as Scheme 1:
  • AlCl 3 may use a number of Lewis acid of a will, FeCl 3, etc. in addition to AlCl 3 as the Lewis acid is used as Lewis acid.
  • RX means an alkyl halide, and as the alkyl halide, various alkyl halides known in the art such as CH 3 Cl, (CH 3 ) 2 HCCl, (CH 3 ) 3 CCl, etc. may be used. have.
  • an alkyl halide and a Lewis acid such as AlCl 3 react to form a Lewis acid-base complex, and the Lewis acid-base complex is the alkyl.
  • a cation of an alkyl group derived from a halide and then attacking an aromatic ring having an electron rich in the alkyl cation (ie, carbonium cation) is formed to form a cation in which the alkyl group is bonded to the aromatic ring.
  • a hydrogen atom is removed from a cation having an alkyl group bonded to the aromatic ring, thereby completing an electrophilic aromatic substitution reaction. Will form a carbon bond.
  • the third step may include, but is not limited to, carbonizing the crosslinked first polymer portion by sintering and selectively removing the second polymer portion.
  • the temperature of the sintering may be suitably selected by those skilled in the art in a temperature range sufficient to carbonize the crosslinked first polymer moiety depending on the type of the polymers used, for example, from about 500 ° C. to about 900 ° C., or about 500 To be carried out at a temperature of from about 500 ° C. to about 700 ° C., or from about 600 ° C. to about 900 ° C., or from about 700 ° C. to about 900 ° C., or from about 800 ° C. to about 900 ° C.
  • Selective removal of the second polymer particles may be performed using a solvent capable of selectively dissolving only the second polymer, in addition to being performed by sintering as described above, but is not limited thereto. no.
  • the solvent may be a solvent having the same or similar solubility parameter value as the second polymer.
  • the solvent when the second polymer is PMMA, the solvent may be a solvent having a similar SP value to that of the PMMA. Methylene chloride may be used, but is not limited thereto. Any solvent capable of selectively dissolving only the second polymer may be used without particular limitation.
  • a second aspect of the present application includes a method for producing the first aspect of the present application, that is, a first step of forming copolymer particles containing first polymer particles and one or more second polymer particles formed in the first polymer particles; A second step of crosslinking the first polymer particles; And a third step of carbonizing the crosslinked first polymer particles and selectively removing the second polymer particles.
  • porous carbon particles according to the present application may be applied to various fields such as catalysts or catalyst supports, electrodes, devices, sensors, etc. of various uses.
  • particles containing polystyrene (PS) as particles containing the first polymer and polymethyl methacrylate (PMMA) as particles containing the second polymer are shown.
  • Copolymer (PS-PMMA) particles comprising particles containing were formed.
  • the copolymer (PS-PMMA) comprising a styrene monomer and a methyl methacrylate monomer
  • 2.1 g of styrene and 0.7 g of methyl methacrylate were injected into a flask, and nitrogen was added while increasing the temperature. Injected.
  • 10 mL of an aqueous solution prepared by dissolving 0.12 g of potassium persulfate was injected into the flask.
  • the potassium persulfate was used as an initiator to initiate polymerization for the emulsion polymerization reaction of the styrene and methyl methacrylate.
  • the obtained copolymer (PS-PMMA) has a form including particles containing a plurality of polymethylmethacrylates (PMMA) in particles containing polystyrene (PS).
  • Second step crosslinking of the first polymer-containing particles
  • the Friedelcraft-alkylation reaction was used to selectively crosslink only the polystyrene (PS) portion contained in the copolymer (PS-PMMA) particles.
  • the obtained copolymer (PS-PMMA) particles were dispersed in water and dried in an oven for 24 hours to obtain crosslinked copolymer (PS-PMMA) particles.
  • the crosslinked copolymer (PS-PMMA) particles are those selectively crosslinked only in the polystyrene (PS) portion contained therein.
  • Third step carbonization of the crosslinked first polymer-containing particles and removal of the second polymer-containing particles
  • the polystyrene (PS) portion obtained in the second step the cross-linked copolymer (PS-PMMA) selectively selectively cross-linked into a sintering furnace, nitrogen was injected and heated uniformly until 700 °C After that, by maintaining 700 ° C. for 2 hours and cooling to room temperature, the crosslinked polystyrene (PS) portion was carbonized and the polymethyl methacrylate (PMMA) particles were selectively removed to obtain porous carbon particles. .
  • Figure 2a is a SEM picture of the copolymer (PS-PMMA) particles polymerized in the first step
  • Figure 2b is a cross-linked copolymer containing polystyrene (PS) crosslinked during the second step ( PS-PMMA) particles are SEM pictures
  • Figure 3 shows a SEM picture (Fig. 3a) and a TEM picture (Fig. 3b) of the porous carbon particles obtained through the third step.
  • porous carbon particles were prepared by the same method except that 1.68 g of styrene and 0.42 g of methyl methacrylate were used, and in order to show the specific surface area according to the pores of the thus prepared porous carbon particles.
  • the cyclic voltammetry method was used, and the oxidized peak current (anodic peak current; I pa ), and the reduced peak current (cathodic peak current; I pc ) were measured and shown in Table 1 below:
  • FIG. 4B which is shown as a CV graph
  • the embodiment of the present application has a higher absolute peak current than that of the comparative example (when only PS is used without PMMA). It can be seen that it has a value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

선택적인 입자의 가교 및 선택적인 입자의 탄화가 가능한 공중합체를 이용하여 제조함으로써 기공 크기를 제어할 수 있는 다공성 탄소 입자, 상기 다공성 탄소 입자의 제조 방법, 상기 다공성 탄소 입자를 함유하는 다공성 층을 포함하는 광전극, 및 상기 광전극을 포함하는 염료감응 태양전지에 관한 것이다.

Description

다공성 탄소 입자 및 이의 제조 방법
본원은, 다공성 탄소 입자 및 상기 다공성 탄소 입자의 제조 방법에 관한 것이다.
다공성 입자 또는 다공성 구조체의 기공(pore)은 그 직경 크기에 따라 마이크로포어(2 nm 미만), 메조포어(2 nm 내지 50 nm), 및 매크로포어(50 nm 초과)의 세 가지로 분류될 수 있다. 기공 크기를 제어할 수 있는 다공성 입자는, 촉매, 분리 시스템, 저유전 물질, 수소 저장 물질, 광결정, 전극 등을 포함하여 다양한 분야에서 이용될 수 있어 최근 주목을 받고 있다.
상기 다공성 입자 또는 다공성 구조체는 산화금속, 반도체, 금속, 폴리머, 또는 탄소 등 다양한 물질들을 이용하여 제조될 수 있으며, 특히, 다공성 탄소 입자의 경우, 우수한 표면 특성, 이온 전도성, 내부식성, 및 저렴한 제조 비용 등의 장점을 보유하여 다양한 분야에 폭넓게 이용될 수 있다.
다만, 상기 다공성 탄소 입자는 그것이 포함하는 기공의 분포, 크기, 연결성, 표면적, 표면 특성 등에 따라서 그 효율에 큰 차이를 보이게 되며, 특히 기공의 크기는 상기 다공성 탄소 입자의 사용 목적에 따라 제어될 필요가 있다. 예를 들어, 연료전지의 전극 용도인 경우, 기공 크기가 지나치게 작은 다공성 탄소 입자를 이용하게 되면 비표면적의 증가로 촉매물질의 담지량은 증가시킬 수 있지만, 반응가스 등의 전달 및 확산이 어려워지고, 기공 내부로 고분자 전해질이 침입할 수 없어 촉매 이용효율이 저하되며, 이에 따라 궁극적으로 성능이 향상된 연료전지를 제조할 수 없다는 문제가 발생한다.
한편, 상기 다공성 탄소 입자를 제조하기 위하여, 종래에는 템플릿의 사용이 제안된 바 있었으며, 상기 템플릿으로는 구형 실리카, 또는 라텍스 폴리머 나노입자의 정렬된 응집체에 기초한 콜로이달 결정성 어레이가 사용되고 있었다. 예를 들어, 대한민국 특허출원 10-2003-0087761호는 "균일한 직경을 가진 구형 세공이 3차원적으로 규칙적으로 배열된 다공성 탄소 구조체에 의해 지지된 연료전지용 전극촉매 및 그의 제조 방법"에 대하여 개시하고 있으며, 구체적으로, 템플릿을 이용하여 다공성 탄소 입자를 제조하는 방법을 개시하고 있다. 또한, 최근에는 제올라이트, 메조 다공성 물질, 및 콜로이달 크리스탈을 이용한 템플릿 복제에 의하여 규칙적으로 정렬된 기공들을 포함하는 다공성 탄소 입자를 합성하는 노력이 있었으나, 이와 같은 종래의 기술들을 이용하는 경우 제조된 다공성 탄소 입자 내에는 기공이 규칙적으로 정렬되어 분포하지 않았으며, 사용 목적에 따라 상기 기공 크기를 제어할 수 없다는 문제가 있었다. 또한, 상기와 같이 템플릿을 이용하여 다공성 탄소 입자를 제조하는 경우, 공정의 단순화 및 비용의 절감이 어렵다는 단점이 있었다.
상기 템플릿을 사용하여 다공성 탄소 입자를 제조하는 종래 기술의 문제점들을 해결하기 위하여, 본 발명자들은, 선택적인 고분자 입자의 가교 및 선택적인 고분자 입자의 탄화가 가능한 공중합체를 이용하여, 기공 크기를 용이하게 제어하면서 다공성 탄소 입자를 제조할 수 있음을 발견하여 본원을 완성하였다.
이에, 본원은, 선택적인 고분자 입자의 가교 및 선택적인 고분자 입자의 탄화가 가능한 공중합체를 이용하는 다공성 탄소 입자의 제조 방법 및 상기 방법에 의하여 제조된 다공성 탄소 입자를 제공하고자 한다.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본원의 제 1 측면은, 제 1 중합체를 함유하는 입자 내에 제 2 중합체를 함유하는 입자의 하나 이상을 포함하는 공중합체 입자를 형성하는 제 1 단계; 상기 공중합체 입자에 함유된 상기 제 1 중합체 부분을 가교시키는 제 2 단계; 및 상기 가교된 제 1 중합체 부분을 탄화시키고 상기 제 2 중합체 부분을 선택적으로 제거하는 제 3 단계를 포함하는, 다공성 탄소 입자의 제조 방법을 제공한다.
본원의 제 2 측면은, 상기 본원의 제 1 측면의 제조 방법에 따라 제조되는, 다공성 탄소 입자를 제공한다.
본원에 의하여, 제 1 중합체를 함유하는 입자 내에 제 2 중합체를 함유하는 입자의 하나 이상을 포함하는 공중합체 입자를 형성하고, 상기 제 1 중합체 입자를 가교시킨 뒤, 상기 가교된 제 1 중합체 입자를 탄화시키고 상기 제 2 중합체 부분을 선택적으로 제거하는 것을 포함하는 방법에 의하여 다공성 탄소 입자를 제조함으로써, 다공성 탄소 입자를 용이하고 경제적인 공정에 의하여 단시간에 제조할 수 있다.
또한, 상기 본원에 따라 제조된 다공성 탄소 입자는 다수의 기공들을 포함하고 있어 넓은 비표면적을 제공할 수 있으며, 상기 공중합체를 형성하는 단량체들의 종류 및 농도 등을 조절함으로써 상기 기공들의 크기 및 분포를 상기 다공성 탄소 입자의 제조 목적에 따라 제어할 수 있다. 상기 본원에 따른 다공성 탄소 입자는, 예를 들어, 촉매, 광촉매, 전극, 광전극, 센서, 광센서, 광전소자, 나노소자 등 다양한 분야에 응용될 수 있다.
도 1은 본원의 일 구현예에 따른 다공성 탄소 입자의 제조하는 과정을 나타내는 흐름도이다.
도 2는, 본원의 일 실시예에 있어서, 상기 공중합체(PS-PMMA)의 SEM 사진(도 2a), 및 상기 공중합체(PS-PMMA) 중 상기 폴리스타이렌(PS) 부분을 가교시킨 경우의 SEM 사진(도 2b)이다.
도 3은, 본원의 일 실시예에 따라 제조된 다공성 탄소 입자의 SEM 사진(도 3a), 및 TEM 사진(도 3b)이다.
도 4는, 비교예로서 폴리스타이렌(PS)만을 이용하여 제조된 탄소 입자의 CV(Cyclic Voltammogram) (도 4a), 및 본원의 일 실시예에 따라 제조된 다공성 탄소 입자의 CV (도 4b)를 나타낸 그래프이다.
도 5는, 비교예로서 폴리스타이렌(PS)만을 이용하여 제조된 탄소 입자의 비표면적, 및 본원의 일 실시예에 따라 제조된 다공성 탄소 입자의 비표면적을 나타낸 그래프이다.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다.
그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로서 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본원 명세서 전체에서, "~하는 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.
이하, 첨부된 도면을 참조하여 본원의 구현예 및 실시예를 상세히 설명한다.
본원의 제 1 측면은, 제 1 중합체를 함유하는 입자 내에 제 2 중합체를 함유하는 입자의 하나 이상을 포함하는 공중합체 입자를 형성하는 제 1 단계; 상기 공중합체 입자에 함유된 상기 제 1 중합체 입자 부분을 가교시키는 제 2 단계; 및 상기 가교된 제 1 중합체 부분을 탄화시키고 상기 제 2 중합체 부분을 선택적으로 제거하는 제 3 단계를 포함하는, 다공성 탄소 입자의 제조 방법을 제공한다.
본원에 있어서, 상기 공중합체 입자를 이용하여 상기 제 1 중합체 부분만을 선택적으로 가교 및 탄화시키고 상기 제 1 중합체 내에 형성되어 있는 상기 제 2 중합체 부분을 선택적으로 제거하여 기공을 형성하여 비표면적 및 다공성이 더욱 향상된 탄소 입자를 용이하게 제조할 수 있다.
도 1은 본원의 일 구현예에 따른 다공성 탄소 입자의 제조하는 과정을 나타내는 흐름도이다.
도 2를 참조하면, 본원의 일 구현예에 있어서, 상기 제 1 중합체를 함유하는 입자 내에 제 2 중합체를 함유하는 입자의 하나 이상을 포함하는 공중합체 입자는, 상기 제 1 중합체 형성용 단량체와 상기 제 2 중합체 형성용 단량체의 공중합에 의하여 제조될 수 있으며, 상기 제 1 중합체를 함유하는 입자는 상기 제 1 중합체가 상기 제 2 중합체에 비하여 풍부하게 함유된 도메인이고, 제 2 중합체를 함유하는 입자는 상기 제 2 중합체가 상기 제 1 중합체에 비하여 풍부하게 함유된 도메인을 나타내는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 제 1 중합체는 방향족 단량체의 중합에 의하여 형성되는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 방향족 단량체는, 스타이렌, 벤즈아마이드, 부틸렌테레프탈레이트, 에틸렌테레프탈레이트, 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 제 2 중합체는 비방향족 단량체의 중합에 의하여 형성되는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 비방향족 단량체는, 메틸메타크릴레이트, 아크릴레이트, 아크릴아마이드, 아크릴로니트릴, 에틸렌, 할로겐화 비닐, 프로필렌, 부틸렌, 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 제 1 단계는, 상기 제 1 중합체를 형성하는 단량체와 상기 제 2 중합체를 형성하는 단량체의 혼합물을 라디칼 중합시킴으로써 상기 공중합체 입자는 형성하는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 라디칼 중합 방법은, 생장되는 중합체의 말단에 있는 원자가 유리 전자 1개를 가지는 자유 라디칼 상태에서 진행되는 중합반응을 의미하는 것으로서, 에멀젼 중합 방법, 및 디스퍼젼(dispersion) 중합 방법을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 제 1 측면의 구현예들에 있어서, 이와 같이 제 1 단계에서 방향족 단량체 및 비방향족 단량체를 모두 포함하는 공중합체 입자가 형성되도록 하는 것은, 상기 제 1 단계에 뒤이어 수행되는 제 2 단계에서 가교 결합 형성을 위하여 프리델크래프트-알킬화(Friedel Crafts alkylation) 반응을 이용할 경우 상기 방향족 단량체들이 포함된 제 1 중합체 부분에서만 선택적으로 가교 결합이 형성될 수 있도록 하기 위한 것이나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 제 2 단계는, 상기 공중합체에 함유된 상기 제 1 중합체 부분을 프리델크래프트-알킬화 반응에 의하여 가교시키는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 프리델크래프트-알킬화 반응은 할로겐화 알루미늄, 할로겐화 철과 같은 루이스 산 촉매의 존재 하에서 알킬 할라이드를 이용하여 수행되는 것일 수 있으나, 특별히 제한되지 않으며, 상기 루이스 산 및 상기 알킬 할라이드 그리고 상기 프리델크래프트-알킬화 반응의 조건 등은 당업계에 공지된 것들 중 당업자가 적의 선택하여 사용할 수 있다.
상기 프리델크래프트-알킬화(Friedel-Crafts alkylation) 반응은 루이스산 촉매 하에서 친전자성 방향족 치환 반응을 통하여 알킬화된 생성물을 수득할 수 있는 반응이다. 예를 들어, 벤젠 고리와 같은 방향족 고리를 포함하는 방향족 화합물을 알킬할라이드(alkyl halide)와 루이스 산(Lewis acid)의 존재 하에서 반응시켜서 상기 방향족 고리에 알킬화(alkylation)가 일어나도록 하는 반응을 의미하는 것으로서, 상기 반응을 통하여 벤젠 고리와 같은 방향족 고리에 새로운 탄소-탄소 결합이 형성되게 된다. 예를 들어, 상기 프리델크래프트-알킬화 반응은, 하기 반응식 1로서 나타낼 수 있다:
[반응식 1]
Figure PCTKR2012005793-appb-I000001
상기 화학 반응식에서 AlCl3는 루이스 산으로서 사용된 것이며, 상기 루이스 산으로서 AlCl3 외에 FeCl3 등의 다양한 루이스 산을 사용할 수 있다. 또한, 상기 화학 반응식에서 RX는 알킬할라이드를 의미하는 것으로서, 상기 알킬할라이드로서 일반적으로 CH3Cl, (CH3)2HCCl, (CH3)3CCl 등 당업계에 공지된 다양한 알킬할라이드를 사용할 수 있다.
상기 프리델크래프트-알킬화 반응의 메커니즘은 하기 반응식 2 및 3으로서 설명될 수 있으나, 이에 제한되는 것은 아니다:
[반응식 2]
Figure PCTKR2012005793-appb-I000002
[반응식 3]
Figure PCTKR2012005793-appb-I000003
구체적으로, 상기 프리델크래프트-알킬화 반응은, 우선, 상기 반응식 2에 나타낸 바와 같이, 알킬할라이드와 AlCl3 과 같은 루이스 산이 반응하여 루이스 산-염기 착물이 형성되며, 상기 루이스 산-염기 착물은 상기 알킬할라이드에서 유래된 알킬기의 양이온을 포함하고, 이어서, 상기 알킬 양이온 (즉, 카르보늄 양이온)이 풍부한 전자를 가지고 있는 방향족 고리를 공격하여 상기 방향족 고리에 상기 알킬기가 결합된 양이온이 형성된다. 이어서, 상기 반응식 3에 나타낸 바와 같이, 상기 방향족 고리에 알킬기가 결합된 양이온으로부터 수소 원자가 제거됨으로써 친전자성 방향족 치환 반응이 완성되어 결과적으로 상기 방향족 고리의 수소 원자가 상기 알킬기에 의하여 치환됨으로써 새로운 탄소-탄소 결합을 형성하게 된다.
본원의 일 구현예에 따르면, 상기 제 3 단계는, 소결에 의하여 상기 가교된 제 1 중합체 부분을 탄화시키고 상기 제 2 중합체 부분을 선택적으로 제거하는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 소결의 온도는 사용하는 상기 중합체들 종류에 따라 상기 가교된 제 1 중합체 부분을 탄화시키기에 충분한 온도 범위에서 당업자가 적의 선택할 수 있으며, 예를 들어, 약 500℃ 내지 약 900℃, 또는 약 500℃ 내지 약 800℃, 또는 약 500℃ 내지 약 700℃, 또는 약 600℃ 내지 약 900℃, 또는 약 700℃ 내지 약 900℃, 또는 약 800℃ 내지 약 900℃의 온도에서 수행되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 제 2 중합체 입자를 선택적으로 제거하는 것은, 상기와 같이 소결에 의하여 수행되는 것 외에, 상기 제 2 중합체만 선택적으로 용해시킬 수 있는 용매(solvent)를 사용하여 수행될 수도 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 용매는 제 2 중합체와 용해도 상수(Solubility Parameter) 값이 동일하거나 유사한 용매를 사용할 수 있으며, 예를 들어 제 2 중합체가 PMMA인 경우 용매로는 상기 PMMA와 SP값이 유사한 용매인 메틸렌 클로라이드(Methylene chloride)를 사용할 수 있으나, 이에 제한되는 것은 아니며, 상기 제 2 중합체만을 선택적으로 용해시킬 수 있는 용매라면 특별히 제한되지 않고 사용할 수 있다.
본원의 제 2 측면은, 상기 본원의 제 1 측면의 제조 방법, 즉, 제 1 중합체 입자와 상기 제 1 중합체 입자 내에 형성된 하나 이상의 제 2 중합체 입자를 함유하는 공중합체 입자를 형성하는 제 1 단계; 상기 제 1 중합체 입자를 가교시키는 제 2 단계; 및 상기 가교된 제 1 중합체 입자를 탄화시키고 상기 제 2 중합체 입자를 선택적으로 제거하는 제 3 단계를 포함하는, 다공성 탄소 입자의 제조 방법에 따라 제조되는, 다공성 탄소 입자를 제공한다.
상기 본원에 따른 다공성 탄소 입자는 다양한 용도의 촉매 또는 촉매 지지체, 전극, 소자, 센서 등 다양한 분야에 응용될 수 있다.
이하, 본원에 대하여 실시예를 이용하여 좀더 구체적으로 설명하지만, 본원이 이에 제한되는 것은 아니다.
[실시예]
1. 다공성 탄소 입자의 제조
본 실시예에서는 도 1과 같은 공정에 의하여, 공중합체(PS-PMMA) 입자의 제조 후 이로부터 다공성 탄소 입자를 제조하였으며, 이하 각 단계를 구체적으로 설명하였다.
- 제 1 단계: 공중합체(PS-PMMA) 입자의 형성
본 실시예의 제 1 단계(도 1에 미도시)에서는, 상기 제 1 중합체를 함유하는 입자로서 폴리스타이렌(PS)을 함유하는 입자 및 상기 제 2 중합체를 함유하는 입자로서 폴리메틸메타크릴레이트(PMMA)를 함유하는 입자를 포함하는 공중합체(PS-PMMA) 입자를 형성하였다.
먼저, 스타이렌 단량체와 메틸메타크릴레이트 단량체를 포함하는 상기 공중합체(PS-PMMA)를 형성하기 위하여, 스타이렌 2.1 g과 메틸메타크릴레이트 0.7 g을 플라스크에 주입하였고, 온도를 증가시키면서 질소를 주입하였다. 상기 플라스크의 온도가 70℃가 되었을 때, 과황산칼륨(Potassium persulfate) 0.12 g을 녹여 만든 수용액 10 mL를 상기 플라스크에 주입하였다. 상기 과황산칼륨은, 상기 스타이렌과 메틸메타크릴레이트의 에멀젼 중합 반응을 위하여 중합을 개시하는 개시제로서 사용되었다. 상기 과황산칼륨 수용액을 주입하고 3 시간 후, 상기 플라스크에 디비닐벤젠(Divinylbenzene) 0.9 g을 주입하여 중합 반응시키고, 그로부터 24 시간이 경과한 후에 수득된 공중합체(PS-PMMA) 입자를 분리하여 수득하였다. 상기 디비닐벤젠은 폴리스타이렌 사이의 결합을 형성하기 위한 링커(linker)로서 사용되었다. 상기 수득된 공중합체(PS-PMMA)는 폴리스타이렌(PS)을 함유하는 입자 내에 다수의 폴리메틸메타크릴레이트(PMMA)를 함유하는 입자를 포함하는 형태를 가진다.
- 제 2 단계: 제 1 중합체-함유 입자의 가교
본 실시예의 제 2 단계에서는, 상기 공중합체(PS-PMMA) 입자에 포함된 폴리스타이렌(PS) 부분만 선택적으로 가교시키기 위하여 프리델크래프트-알킬화 반응을 이용하였다.
먼저, 상기 프리델크래프트-알킬화 반응을 일으키기 위하여, 알킬할라이드로서 클로로포름 30 mL 에 루이스 산으로서 염화알루미늄 1.80 g을 첨가한 용액을 준비하였다. 이후, 상기 클로로포름과 상기 염화알루미늄을 포함하는 용액에 상기 제 1 단계에서 중합된 공중합체(PS-PMMA) 0.3 g을 주입하고 18 시간 동안 반응시켜 상기 공중합체(PS-PMMA) 입자에 포함된 폴리스타이렌(PS) 부분만 선택적으로 프리델크래프트-알킬화 반응시켜 가교시켰다. 상기 반응이 완료된 후, 상기 용액을 원심분리기로 정제하였고, 아세톤과 염산을 이용하여 세척하였다. 그 후, 수득된 공중합체(PS-PMMA) 입자를 물에 분산시키고, 오븐에서 24 시간 동안 건조시킴으로써 가교된 공중합체(PS-PMMA) 입자를 수득하였다. 상기 가교된 공중합체(PS-PMMA) 입자는 그에 포함된 폴리스타이렌 (PS) 부분만 선택적으로 가교된 것이다.
- 제 3 단계: 가교된 제 1 중합체-함유 입자의 탄화 및 제 2 중합체-함유 입자의 제거
본 실시예의 제 3 단계에서는, 상기 제 2 단계에서 가교된 공중합체(PS-PMMA) 입자에 있어서 상기한 바와 같이 선택적으로 가교된 폴리스타이렌 (PS) 부분만을 선택적으로 탄화시키고 상기 제 2 중합체 입자로서 사용된 폴리메틸메타크릴레이트 입자(PMMA)들만을 선택적으로 제거하기 위하여 소결을 이용하였다.
구체적으로, 상기 제 2 단계에서 수득된, 폴리스타이렌(PS) 부분만 선택적으로 가교된 상기 공중합체(PS-PMMA)를 소결로에 넣은 뒤, 질소를 주입하며 700℃가 될 때까지 균일하게 가열하였으며, 그 후에는 2 시간 동안 700℃를 유지한 후 상온까지 냉각시킴으로써, 상기 가교된 폴리스타이렌 (PS) 부분이 탄화되고 상기 폴리메틸메타크릴레이트(PMMA) 입자가 선택적으로 제거됨으로써 다공성 탄소 입자를 수득하였다.
2. 다공성 탄소 입자의 구조 분석
상기 제 1 단계에서 제조된 공중합체(PS-PMMA) 입자, 상기 제 2 단계에서 수득된 가교된 공중합체(PS-PMMA) 입자 및 상기 제 3 단계에서 수득된 다공성 탄소 입자)의 SEM 사진 및/또는 TEM 사진을 도 2 및 도 3에 나타내었다.
구체적으로, 도 2a는 상기 제 1 단계에서 중합된 공중합체(PS-PMMA) 입자의 SEM 사진이고, 도 2b는 상기 제 2 단계를 거치면서 가교된 폴리스타이렌 (PS)를 포함하는 가교된 공중합체(PS-PMMA) 입자의 SEM 사진이며, 도 3은 상기 제 3 단계를 거쳐 수득된 다공성 탄소 입자의 SEM 사진(도 3a) 및 TEM 사진(도 3b)을 나타낸다.
3. 다공성 탄소 입자의 비표면적 분석
상기 제 1 단계에서, 스타이렌 1.68g, 메틸메타크릴레이트 0.42g을 사용한 것을 제외하고는 동일한 방법에 의하여 다공성 탄소 입자를 제조하였고, 이렇게 제조된 다공성 탄소 입자의 기공에 따른 비표면적을 나타내기 위하여 순환전압전류법을 이용하였으며, 이로부터 산화 봉우리 전류(anodic peak current; Ipa), 및 환원 봉우리 전류(cathodic peak current; Ipc)를 측정하여 하기 표 1에 나타내었다:
표 1
측정 대상 PS : PMMA (중량비) Ipa (μA) Ipc (μA)
비교예 1 : 0 -34.3 35.6
실시예 4 : 1 -40.7 53.8
상기 표 1, 및 이를 CV 그래프로 나타낸 도 4를 참조함으로써, 비교예 (PMMA를 사용하지 않고 PS 만 사용한 경우, 도 4a)에 비하여 본원의 실시예(도 4b) 쪽이 더 높은 봉우리 전류의 절대값을 가진다는 것을 알 수 있었다.
또한, 상기 표 1의 비교예 및 실시예의 다공성 탄소 입자 각각의 비표면적을 특정하여 하기 표 2에 나타내었다:
표 2
비교예 (PS : PMMA = 1 : 0) 실시예 (PS : PMMA = 4 : 1)
비표면적 (m2/g) 212.9089 1134.9323
상기 표 2, 및 이를 그래프로서 나타낸 도 5를 참조함으로써, 비교예 (PMMA를 사용하지 않고 PS 만 사용한 경우)에 비하여 본원의 실시예 쪽이 더 큰 비표면적을 가짐을 알 수 있었다.
상기 실험 데이터들, 즉, 표 1 및 표 2, 및 도 4 및 도 5를 참조하면, 상기 비교예와 같이 단일 중합체를 이용하여 형성된 다공성 탄소 입자에 비하여, 본원의 실시예에서와 같이 공중합체를 형성하여 다공성 탄소 입자를 제조하는 경우 상기 다공성 탄소 입자가 더 많은 기공을 포함함을 알 수 있다. 이에, 본원에 의하여 더욱 증가된 비표면적을 가지는 다공성 탄소 입자를 용이하게 형성할 수 있음을 알 수 있다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성요소들도 결합된 형태로 실시될 수도 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.

Claims (11)

  1. 제 1 중합체를 함유하는 입자 내에 제 2 중합체를 함유하는 입자의 하나 이상을 포함하는 공중합체 입자를 형성하는 제 1 단계;
    상기 공중합체 입자에 함유된 상기 제 1 중합체 부분을 가교시키는 제 2 단계; 및
    상기 가교된 제 1 중합체 부분을 탄화시키고 상기 제 2 중합체 부분을 선택적으로 제거하는 제 3 단계
    를 포함하는,
    다공성 탄소 입자의 제조 방법.
  2. 제 1 항에 있어서,
    상기 제 1 중합체는 방향족 단량체의 중합에 의하여 형성되는 것인, 다공성 탄소 입자의 제조 방법.
  3. 제 2 항에 있어서,
    상기 방향족 단량체는, 스타이렌, 벤즈아마이드, 부틸렌테레프탈레이트, 에틸렌테레프탈레이트, 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것인, 다공성 탄소 입자의 제조 방법.
  4. 제 1 항에 있어서,
    상기 제 2 중합체는 비방향족 단량체의 중합에 의하여 형성되는 것인, 다공성 탄소 입자의 제조 방법.
  5. 제 4 항에 있어서,
    상기 비방향족 단량체는, 메틸메타크릴레이트, 아크릴레이트, 아크릴아마이드, 아크릴로니트릴, 할로겐화 비닐, 에틸렌, 프로필렌, 부틸렌, 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것인, 다공성 탄소 입자의 제조 방법.
  6. 제 1 항에 있어서,
    상기 제 2 단계는, 상기 공중합체 입자에 함유된 상기 제 1 중합체 부분을 프리델크래프트-알킬화 반응에 의하여 가교시키는 것을 포함하는 것인, 다공성 탄소 입자의 제조 방법.
  7. 제 1 항에 있어서,
    상기 제 1 단계는, 상기 제 1 중합체를 형성하는 단량체와 상기 제 2 중합체를 형성하는 단량체의 혼합물을 라디칼 중합시킴으로써 상기 공중합체 입자를 형성하는 것을 포함하는 것인, 다공성 탄소 입자의 제조 방법.
  8. 제 1 항에 있어서,
    상기 제 3 단계는, 소결에 의하여 상기 가교된 제 1 중합체 부분을 탄화시키고 상기 제 2 중합체 입자를 선택적으로 제거하는 것을 포함하는 것인, 다공성 탄소 입자의 제조 방법.
  9. 제 8 항에 있어서,
    상기 소결은 500℃ 내지 900℃의 온도에서 수행되는 것을 포함하는, 다공성 탄소 입자의 제조 방법.
  10. 제 1 항에 있어서,
    상기 제 2 중합체 입자를 선택적으로 제거하는 것은 용매에 의하여 용해시켜 제거하는 것을 포함하는 것인, 다공성 탄소 입자의 제조 방법.
  11. 제 1 항 내지 제 10 항 중 어느 한 항에 따라 제조되는,
    다공성 탄소 입자.
PCT/KR2012/005793 2011-07-26 2012-07-20 다공성 탄소 입자 및 이의 제조 방법 WO2013015567A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/163,685 US9272909B2 (en) 2011-07-26 2014-01-24 Porous carbon particle and producing method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0074015 2011-07-26
KR1020110074015A KR101289079B1 (ko) 2011-07-26 2011-07-26 다공성 탄소 입자 및 이의 제조 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/163,685 Continuation US9272909B2 (en) 2011-07-26 2014-01-24 Porous carbon particle and producing method of the same

Publications (2)

Publication Number Publication Date
WO2013015567A2 true WO2013015567A2 (ko) 2013-01-31
WO2013015567A3 WO2013015567A3 (ko) 2013-04-04

Family

ID=47601623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005793 WO2013015567A2 (ko) 2011-07-26 2012-07-20 다공성 탄소 입자 및 이의 제조 방법

Country Status (3)

Country Link
US (1) US9272909B2 (ko)
KR (1) KR101289079B1 (ko)
WO (1) WO2013015567A2 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129845A1 (ko) * 2012-02-27 2013-09-06 서강대학교산학협력단 다공성 탄소 입자, 및 이의 제조 방법
KR101442197B1 (ko) 2012-02-27 2014-09-22 서강대학교산학협력단 다공성 탄소 입자, 및 이의 제조 방법
US9731249B2 (en) * 2014-04-15 2017-08-15 Ut-Battelle, Llc Polymeric molecular sieve membranes for gas separation
CN107580587A (zh) * 2015-04-30 2018-01-12 小利兰·斯坦福大学托管委员会 微孔/介孔碳
IT201700073326A1 (it) * 2017-06-30 2018-12-30 Sol Spa Procedimento di preparazione di un materiale micro- e mesoporoso adsorbente per gas e materiale micro- e mesoporoso adsorbente così ottenuto.
CN108557798B (zh) * 2018-05-29 2021-07-16 上海应用技术大学 一种利用星状聚合物可控制备过渡金属负载的含氮多孔碳复合材料的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263268A (en) * 1978-11-21 1981-04-21 Shandon Southern Products Limited Preparation of porous carbon
JP2003327473A (ja) * 2002-05-14 2003-11-19 Asahi Kasei Corp 多孔質炭素焼結体の製造方法
KR100924214B1 (ko) * 2006-12-08 2009-10-29 주식회사 엘지화학 분무 건조 또는 분무 열분해를 이용한 중형 다공성 탄소구조체의 제조 방법 및 분무 건조용 조성물

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7115305B2 (en) * 2002-02-01 2006-10-03 California Institute Of Technology Method of producing regular arrays of nano-scale objects using nano-structured block-copolymeric materials
KR100574030B1 (ko) 2003-12-04 2006-04-26 한남대학교 산학협력단 균일한 직경을 가진 구형 세공이 3 차원적으로 규칙적으로배열된 다공성 탄소 구조체에 의해 지지된 연료전지용전극 촉매 및 그의 제조 방법
US20060057051A1 (en) * 2004-09-10 2006-03-16 Sheng Dai Highly ordered porous carbon materials having well defined nanostructures and method of synthesis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263268A (en) * 1978-11-21 1981-04-21 Shandon Southern Products Limited Preparation of porous carbon
JP2003327473A (ja) * 2002-05-14 2003-11-19 Asahi Kasei Corp 多孔質炭素焼結体の製造方法
KR100924214B1 (ko) * 2006-12-08 2009-10-29 주식회사 엘지화학 분무 건조 또는 분무 열분해를 이용한 중형 다공성 탄소구조체의 제조 방법 및 분무 건조용 조성물

Also Published As

Publication number Publication date
KR20130012702A (ko) 2013-02-05
US9272909B2 (en) 2016-03-01
KR101289079B1 (ko) 2013-07-22
WO2013015567A3 (ko) 2013-04-04
US20140205531A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
WO2013015567A2 (ko) 다공성 탄소 입자 및 이의 제조 방법
WO2014092501A1 (ko) 공중합물 캡핑제를 이용한 은 나노와이어 제조방법
CN110137426B (zh) 一种含有ptc涂层极片的制备方法及锂离子电池
WO2011078585A2 (ko) 전기화학 장치
WO2015196854A1 (zh) 复合隔膜及其制备方法,以及锂离子电池
WO2014185730A1 (ko) 중공형 실리콘계 입자, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지용 음극 활물질
CN108878965A (zh) 一种基于3d打印技术的凝胶聚合物电解质制备方法
WO2019182356A1 (ko) 고강도 그래핀 복합섬유 및 이의 제조방법
KR101348865B1 (ko) 젤화물질을 이용한 나노 구조 복합체의 제조방법
KR20120066349A (ko) 탄소/실리콘 복합나노입자 및 그 제조방법
WO2021086011A1 (ko) 온도 자극반응성 공중합체, 이를 포함하는 나노섬유 구조체 및 나노섬유 구 조체 제조방법
WO2015152636A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020032684A1 (en) Graphene wet spinning coagulation bath and method for manufacturing graphene oxide fiber using the same
KR101393493B1 (ko) 구형의 탄소 입자, 및 이의 제조 방법
WO2015065121A1 (ko) 역오팔 구조의 다공성 기재를 포함하는 전기화학소자용 다공성 분리막 및 이의 제조 방법
KR101442197B1 (ko) 다공성 탄소 입자, 및 이의 제조 방법
KR20170058561A (ko) 내재적 미세기공성 고분자를 이용한 다공성 탄소구조체 및 이를 포함하는 전지용 전극
CN113540689A (zh) 一种高热稳定性电池隔膜及其制备方法和应用
CN113745754A (zh) 一种高耐热隔膜及其制备方法和应用
WO2011090233A1 (ko) 광간섭 리소그래피를 이용한 다공성 탄소 구조체의 제조 방법 및 이에 의한 다공성 탄소 구조체
WO2013129845A1 (ko) 다공성 탄소 입자, 및 이의 제조 방법
CN108017784B (zh) 杂化导电水凝胶其制备方法和应用
WO2022220336A1 (ko) 이차전지 분리막 코팅용 바인더 및 이를 포함하는 이차전지
WO2020138552A1 (ko) PAN-Fe2O3 자성복합체 및 그 제조방법
WO2015057025A1 (ko) 이온전달 소재, 이를 포함하는 전해질막 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817627

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817627

Country of ref document: EP

Kind code of ref document: A2