WO2013015298A1 - 有機半導体材料 - Google Patents
有機半導体材料 Download PDFInfo
- Publication number
- WO2013015298A1 WO2013015298A1 PCT/JP2012/068781 JP2012068781W WO2013015298A1 WO 2013015298 A1 WO2013015298 A1 WO 2013015298A1 JP 2012068781 W JP2012068781 W JP 2012068781W WO 2013015298 A1 WO2013015298 A1 WO 2013015298A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- formula
- organic semiconductor
- semiconductor material
- organic
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 64
- 239000000463 material Substances 0.000 title claims abstract description 47
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 26
- 125000003545 alkoxy group Chemical group 0.000 claims abstract description 25
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims abstract description 25
- 125000004448 alkyl carbonyl group Chemical group 0.000 claims abstract description 25
- 125000001424 substituent group Chemical group 0.000 claims abstract description 18
- 239000001257 hydrogen Substances 0.000 claims abstract description 17
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 17
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 17
- 125000001072 heteroaryl group Chemical group 0.000 claims abstract description 15
- 125000002950 monocyclic group Chemical group 0.000 claims abstract description 4
- 150000001875 compounds Chemical class 0.000 claims description 73
- 229920000642 polymer Polymers 0.000 claims description 65
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 7
- 125000003118 aryl group Chemical group 0.000 claims description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 3
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical group [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052711 selenium Inorganic materials 0.000 claims description 3
- MABNMNVCOAICNO-UHFFFAOYSA-N selenophene Chemical group C=1C=C[se]C=1 MABNMNVCOAICNO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- 125000004585 polycyclic heterocycle group Chemical group 0.000 claims description 2
- 230000002349 favourable effect Effects 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 45
- 238000006243 chemical reaction Methods 0.000 description 26
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 21
- 239000010409 thin film Substances 0.000 description 20
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 239000000243 solution Substances 0.000 description 13
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 0 C*C(*)CCc1c(C(S)=C)[s]c(*)c1 Chemical compound C*C(*)CCc1c(C(S)=C)[s]c(*)c1 0.000 description 6
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- -1 2-hexyldecyl Chemical group 0.000 description 5
- 229940126214 compound 3 Drugs 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 239000011259 mixed solution Substances 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 238000001226 reprecipitation Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- LFZAGIJXANFPFN-UHFFFAOYSA-N N-[3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-thiophen-2-ylpropyl]acetamide Chemical compound C(C)(C)C1=NN=C(N1C1CCN(CC1)CCC(C=1SC=CC=1)NC(C)=O)C LFZAGIJXANFPFN-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 229940125904 compound 1 Drugs 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- FNQJDLTXOVEEFB-UHFFFAOYSA-N 1,2,3-benzothiadiazole Chemical compound C1=CC=C2SN=NC2=C1 FNQJDLTXOVEEFB-UHFFFAOYSA-N 0.000 description 3
- 239000005964 Acibenzolar-S-methyl Substances 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- IZNFRMRFKBIIGX-UHFFFAOYSA-N [4-(2-decyltetradecyl)thiophen-2-yl]-trimethylstannane Chemical compound CCCCCCCCCCCCC(CCCCCCCCCC)CC1=CSC([Sn](C)(C)C)=C1 IZNFRMRFKBIIGX-UHFFFAOYSA-N 0.000 description 3
- 229940125782 compound 2 Drugs 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- UDGKZGLPXCRRAM-UHFFFAOYSA-N 1,2,5-thiadiazole Chemical compound C=1C=NSN=1 UDGKZGLPXCRRAM-UHFFFAOYSA-N 0.000 description 2
- BWGRDBSNKQABCB-UHFFFAOYSA-N 4,4-difluoro-N-[3-[3-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-yl]-1-thiophen-2-ylpropyl]cyclohexane-1-carboxamide Chemical compound CC(C)C1=NN=C(C)N1C1CC2CCC(C1)N2CCC(NC(=O)C1CCC(F)(F)CC1)C1=CC=CS1 BWGRDBSNKQABCB-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 101710162828 Flavin-dependent thymidylate synthase Proteins 0.000 description 2
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 2
- 101710135409 Probable flavin-dependent thymidylate synthase Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- RJVPHPXQVBVPLV-UHFFFAOYSA-N cyclopenta[2,1-b:3,4-b']dithiophene Chemical compound S1C=CC2=CC3=CCSC3=C21 RJVPHPXQVBVPLV-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- QRPMCZNLJXJVSG-UHFFFAOYSA-N trichloro(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-henicosafluorodecyl)silane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)[Si](Cl)(Cl)Cl QRPMCZNLJXJVSG-UHFFFAOYSA-N 0.000 description 2
- VIFIHLXNOOCGLJ-UHFFFAOYSA-N trichloro(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)silane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CC[Si](Cl)(Cl)Cl VIFIHLXNOOCGLJ-UHFFFAOYSA-N 0.000 description 2
- ZGWZWRHJHVTXEL-UHFFFAOYSA-N trimethyl(thiophen-2-yl)stannane Chemical compound C[Sn](C)(C)C1=CC=CS1 ZGWZWRHJHVTXEL-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical class C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- OHZAHWOAMVVGEL-UHFFFAOYSA-N 2,2'-bithiophene Chemical compound C1=CSC(C=2SC=CC=2)=C1 OHZAHWOAMVVGEL-UHFFFAOYSA-N 0.000 description 1
- FEOWHLLJXAECMU-UHFFFAOYSA-N 4,7-dibromo-2,1,3-benzothiadiazole Chemical compound BrC1=CC=C(Br)C2=NSN=C12 FEOWHLLJXAECMU-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- LBFOIEVVPKIKIN-CBROCEMLSA-O CCC1SN=C(C(C=C(/C2=N/S)Br)=C(C=C3Br)C2=[NH2+])C3=C1 Chemical compound CCC1SN=C(C(C=C(/C2=N/S)Br)=C(C=C3Br)C2=[NH2+])C3=C1 LBFOIEVVPKIKIN-CBROCEMLSA-O 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- MOZTVOICZIVCFC-UHFFFAOYSA-N [1]benzothiolo[7,6-g][1]benzothiole Chemical compound C1=CC2=C(SC=C3)C3=CC=C2C2=C1C=CS2 MOZTVOICZIVCFC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
- C08G61/126—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/151—Copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/12—Copolymers
- C08G2261/124—Copolymers alternating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/14—Side-groups
- C08G2261/141—Side-chains having aliphatic units
- C08G2261/1412—Saturated aliphatic units
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/322—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
- C08G2261/3223—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/324—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
- C08G2261/3243—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/324—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
- C08G2261/3246—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/36—Oligomers, i.e. comprising up to 10 repeat units
- C08G2261/364—Oligomers, i.e. comprising up to 10 repeat units containing hetero atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/40—Polymerisation processes
- C08G2261/41—Organometallic coupling reactions
- C08G2261/414—Stille reactions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/50—Physical properties
- C08G2261/51—Charge transport
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/90—Applications
- C08G2261/91—Photovoltaic applications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/90—Applications
- C08G2261/92—TFT applications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/484—Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
Definitions
- the present invention relates to an organic semiconductor material.
- Non-Patent Documents 1 to 4 disclose organic semiconductor materials having benzothiadiazole.
- Non-Patent Document 5 discloses an organic semiconductor material having benzothiadiazole or naphthobisthiadiazole.
- Non-Patent Documents 1 and 2 there is a problem that the carrier mobility in the organic thin film transistor is not so high and is not at a practical level.
- Non-Patent Documents 2 to 4 have a problem that the photoelectric conversion efficiency is not so high and it is difficult to apply to organic thin-film solar cells.
- Non-Patent Document 5 since the thiophene ring is bonded in the direction perpendicular to the polymer main chain and the alkyl group which is a soluble group is substituted via the thiophene ring, the structure of these side chains is free. High degree. For this reason, when this organic semiconductor material is formed into an organic semiconductor layer, the crystallinity of the material thin film does not increase. When the crystallinity of the thin film is low, the carrier mobility does not increase, so that it is difficult to use as a material for a thin film transistor.
- the present invention has been made in view of the above matters, and an object of the present invention is to provide an organic semiconductor material having good crystallinity and excellent carrier mobility.
- the organic semiconductor material according to the first aspect of the present invention is: Including a skeleton represented by Formula 1 below, It is characterized by that.
- R 1 is hydrogen, an alkyl group, an alkylcarbonyl group, an alkoxy group, and an alkoxycarbonyl group
- m is an integer of 1 or more
- Ar is a monocyclic or condensed polycyclic heterocycle that may have a substituent.
- it is an aromatic ring and a plurality of heteroaromatic rings are linked, the same heteroaromatic ring may be linked or different heteroaromatic rings may be linked.
- a polymer compound having the skeleton as a repeating unit is preferable.
- the monocyclic heteroaromatic ring is preferably a thiophene ring or a selenophene ring.
- the condensed polycyclic heteroaromatic ring is preferably represented by any one of the following formulas 11 to 16.
- X represents an oxygen, sulfur, or selenium atom
- R 2 has hydrogen, an alkyl group, an alkylcarbonyl group, an alkoxy group, an alkoxycarbonyl group, or a substituent.
- R 3 represents an alkyl group, an alkylcarbonyl group, an alkoxy group or an alkoxycarbonyl group.
- the organic semiconductor material according to the second aspect of the present invention is: It is represented by any one of the following formulas 21 to 24. It is characterized by that.
- R 1 represents hydrogen, an alkyl group, an alkylcarbonyl group, an alkoxy group or an alkoxycarbonyl group
- n represents a positive real number
- R 4 and R 5 represent hydrogen, an alkyl group
- m represents an integer of 1 or more
- R 3 represents an alkyl group, an alkylcarbonyl group, an alkoxy group or an alkoxycarbonyl group
- R 2 represents , Hydrogen, an alkyl group, an alkylcarbonyl group, an alkoxy group, an alkoxycarbonyl group, or an aromatic ring which may have a substituent.
- the organic semiconductor material according to the present invention has a skeleton in which a heteroaromatic ring is bonded to naphthobisthiadiazole.
- An alkyl group, an alkylcarbonyl group, an alkoxy group or an alkoxycarbonyl group is directly bonded to the heteroaromatic ring as a substituent of the heteroaromatic ring.
- the substituent since the substituent is directly bonded to the conjugated main chain, it exhibits good crystallinity and excellent carrier mobility.
- 3 is a graph showing current density-voltage characteristics of a solar cell element produced using a polymer compound P1.
- 3 is a graph showing current density-voltage characteristics of a solar cell element produced using a polymer compound P3.
- 6 is a graph showing current density-voltage characteristics of a solar cell element produced using a polymer compound P4.
- 3 is a graph showing current density-voltage characteristics of a solar cell element produced using a polymer compound P5.
- A), (B) is a graph which shows the transfer characteristic and output characteristic of the transistor element which each produced using the high molecular compound P2.
- A), (B) is a graph which shows the transfer characteristic and output characteristic of the transistor element which each produced using the high molecular compound P3.
- (A), (B) is a graph which shows the transfer characteristic and output characteristic of the transistor element which each produced using the high molecular compound P4. It is an X-ray-diffraction pattern of the organic-semiconductor layer of the high molecular compound P3. It is an X-ray-diffraction pattern of the organic-semiconductor layer of the high molecular compound P4.
- the organic semiconductor material according to this embodiment has a skeleton represented by Formula 1.
- R 1 is hydrogen, an alkyl group, an alkylcarbonyl group, an alkoxy group or an alkoxycarbonyl group.
- M represents an integer of 1 or more.
- Ar is a monocyclic or condensed polycyclic heteroaromatic ring which may have a substituent. When a plurality of heteroaromatic rings are linked, the same heteroaromatic rings may be linked or different heteroaromatic rings may be linked.
- the organic semiconductor material according to the present embodiment has a naphthobisthiadiazole skeleton, and the naphthobisthiadiazole is an electron deficient (electron acceptor) heteroaromatic condensed ring.
- the organic semiconductor material according to the present embodiment is polarized in the molecule, improving intermolecular interaction and light absorption. Longer wavelengths can be expected and it can be used as P-type organic semiconductor materials such as organic transistors and organic thin-film solar cells.
- the organic semiconductor material according to the present embodiment can be used as an N-type organic semiconductor material.
- the organic semiconductor material may be a low molecular compound, but is preferably a high molecular compound having Formula 1 as a repeating unit.
- the heteroaromatic ring when R 1 is hydrogen, the heteroaromatic ring includes an alkyl group, an alkylcarbonyl group, an alkoxy group, or an alkoxycarbonyl group as a substituent. In this case, the substituent is directly linked to the conjugated main chain.
- the organic semiconductor material according to this embodiment Since the substituent is directly connected to the conjugated main chain of the organic semiconductor material, the organic semiconductor material according to this embodiment has a structure with a low degree of structural freedom and a high orientation. That is, the crystallinity of the organic semiconductor layer obtained by forming the film using the organic semiconductor material according to this embodiment is improved. Further, as shown in the examples described later, the organic semiconductor layer obtained by forming the organic semiconductor material according to the present embodiment has a very short distance of ⁇ - ⁇ stacking of about 3.5 angstroms. As described above, the organic semiconductor material according to the present embodiment has excellent crystallinity and a short ⁇ - ⁇ stacking distance, so that holes or electrons are likely to hop and have excellent carrier mobility.
- the number of the substituents in Formula 1 (in 1 unit) is 1 or more and 4 or less. This is because when the number of substituents is too large, packing when obtaining an organic semiconductor device is deteriorated due to the arrangement effect.
- Examples of the monocyclic heteroaromatic ring include a thiophene ring or a selenophene ring.
- the condensed polycyclic heteroaromatic ring is preferably a skeleton represented by any of the following formulas 11 to 16.
- X represents an oxygen, sulfur or selenium atom.
- R 2 represents hydrogen, an alkyl group, an alkylcarbonyl group, an alkoxy group, an alkoxycarbonyl group, or an aromatic ring that may have a substituent.
- R 3 represents an alkyl group, an alkylcarbonyl group, an alkoxy group, or an alkoxycarbonyl group.
- organic semiconductor material according to the present embodiment include structures represented by the following formulas 21 to 24.
- R 1 represents hydrogen, an alkyl group, an alkylcarbonyl group, an alkoxy group, or an alkoxycarbonyl group
- n represents a positive real number
- m represents an integer of 1 or more
- R 4 and R 5 represent hydrogen, an alkyl group, an alkylcarbonyl group, an alkoxy group, or an alkoxycarbonyl group.
- R 3 represents an alkyl group, an alkylcarbonyl group, an alkoxy group, or an alkoxycarbonyl group.
- R 2 represents hydrogen, an alkyl group, an alkylcarbonyl group, an alkoxy group, an alkoxycarbonyl group, or an aromatic ring that may have a substituent.
- the organic semiconductor material according to the present embodiment has an alkyl group, an alkylcarbonyl group, an alkoxy group, or an alkoxycarbonyl group as a substituent, it is excellent in solubility in an organic solvent.
- a semiconductor element such as an organic transistor or an organic thin film solar cell is manufactured using an organic semiconductor material that is a polymer compound, an organic semiconductor layer is formed by a wet process, which is very effective at that time.
- an organic semiconductor material is dissolved in an organic solvent. Then, an organic semiconductor layer is formed on the substrate or the like by spin coating or the like. Since the organic semiconductor material according to the present embodiment exhibits excellent solubility in an organic solvent, an organic semiconductor layer having a uniform thickness can be easily formed. In addition, since the organic semiconductor material is in a substantially uniformly dispersed form in the solution, a homogeneous organic semiconductor layer is formed.
- the organic thin film solar cell and the organic thin film transistor obtained using the organic semiconductor material according to the present embodiment exhibit good photoelectric conversion efficiency and charge mobility.
- Compound 1 is “Sufur Nitride in Organic Chemistry. Part 19. Selective Formation of Benzo- and Benzobis [1,2,5] thiadiazole Skeleton in the Reaction of Tetranitride with Naphthalenols and Related Compounds; S Mataka, K Takahashi, Y Ikezaki, T Hatta, A Torii, and M Tashiro; Bull. Chem. Soc. Jpn., 64, 68-73, 1991 ”.
- reaction solution was poured into a mixed solution of methanol (100 ml) and hydrochloric acid (2 ml) for reprecipitation.
- the reaction mixture was washed with Soxhlet using methanol and hexane, extracted with Soxhlet using chloroform, and reprecipitated with methanol to obtain polymer compound P1 (45 mg, 25%) as a dark green solid.
- the number average molecular weight of the polymer compound P1 was 12,100, and the weight average molecular weight was 18,000.
- reaction solution was poured into a mixed solution of methanol (100 ml) and hydrochloric acid (2 ml) for reprecipitation.
- the reaction mixture was washed with Soxhlet using methanol and hexane, extracted with Soxhlet using chloroform, and reprecipitated with methanol to obtain a polymer compound (P2) (37 mg, 85%) as a dark green solid. .
- the number average molecular weight of the polymer compound P2 was 5,800, and the weight average molecular weight was 7,600.
- reaction solution was poured into a mixed solution of methanol (100 ml) and hydrochloric acid (2 ml) for reprecipitation.
- the reaction mixture was washed with Soxhlet using methanol, hexane, and chloroform, extracted with Soxhlet using chlorobenzene, and reprecipitated with methanol to obtain polymer compound P3 (98 mg, 74%) as a dark purple solid.
- the number average molecular weight of the polymer compound P3 was 30,000, and the weight average molecular weight was 300,000.
- the reaction mixture was washed with Soxhlet using methanol, hexane and chloroform, extracted with Soxhlet using chlorobenzene, and reprecipitated with methanol to obtain P5 (117 mg, 94%) as a dark purple solid.
- the number average molecular weight of the polymer compound P4 was 52,600, and the weight average molecular weight was 126,000.
- a polymer compound P5 was synthesized. Under a nitrogen atmosphere, distilled chlorobenzene (10 ml) was placed in a three-necked flask and deaerated for 30 minutes. Then 4,7-dibromo-2,1,3 benzothiadiazole (29.4 mg, 0.1 mmol), 4,4′-bis (hexadecyl) -2,6-bis (trimethyltin) cyclopenta [2,1-b : 3,4-b ′]-dithiophene (95.2 mg, 0.1 mmol) and tris (dibenzylideneacetone) dipalladium (2.1 mg, 2 mmol) were added, and the mixture was refluxed for 2 days.
- reaction solution was poured into a mixed solution of methanol (100 ml) and hydrochloric acid (2 ml) for reprecipitation.
- the reaction mixture was washed with Soxhlet using methanol and hexane, extracted with Soxhlet using chloroform, and reprecipitated with methanol to obtain polymer compound P5 (45.7 mg, 85%) as a dark green solid. .
- the number average molecular weight of the polymer compound P5 was 11,000, and the weight average molecular weight was 15,600.
- FIG. 1 shows a graph of current density-voltage characteristics.
- Jsc short circuit current density
- Voc open circuit voltage
- FF fill factor
- the photoelectric conversion efficiency is higher than that of the polymer compound P5 having benzothiadiazole, and usefulness to the solar cell element. It has been shown.
- the photoelectric conversion efficiency is 6.3%, exceeding the world's highest level of 6%. It was shown to be useful.
- transistor elements were prepared using the synthesized polymer compounds P2, P3, and P4, and the transistor characteristics were evaluated.
- the transistor characteristics of the manufactured transistor element were measured by changing the gate voltage Vg to 20 to ⁇ 60 V and the source-drain voltage Vsd to 0 to ⁇ 60 V.
- FIG. 5A shows the transfer characteristic
- FIG. 5B shows the output characteristic. From these characteristics, the hole mobility was calculated to be 0.05 cm 2 / Vs, and the current on / off ratio was calculated to be 4 ⁇ 10 5 .
- FIG. 6A shows the transfer characteristics
- FIG. 6B shows the output characteristics. From these characteristics, the hole mobility was calculated to be 0.54 cm 2 / Vs, and the current on / off ratio was calculated to be 1 ⁇ 10 5 .
- FIG. 7A shows the transfer characteristic
- FIG. 7B shows the output characteristic. From these characteristics, the hole mobility was calculated to be 0.45 cm 2 / Vs, and the current on / off ratio was calculated to be 1 ⁇ 10 6 .
- X-ray diffraction measurement was performed on the organic semiconductor layer of the transistor element using the polymer compounds P3 and P4.
- An X-ray diffraction pattern of the organic semiconductor layer of the polymer compound P3 is shown in FIG.
- the X-ray-diffraction pattern of the organic-semiconductor layer of the high molecular compound P4 is shown in FIG.
- the secondary peak and the tertiary peak appear at around 7-8 ° and around 11-12 ° according to the Out of Plane X-ray diffraction pattern. Such higher order peaks are observed when the crystal structure is good.
- the compounds were synthesized according to the synthesis method of the polymer compounds P3 and P4 described above.
- compound 4 in the above reaction formula is obtained by using 4- (2-hexyldecyl) -2 instead of 4- (2-decyltetradecyl) -2-trimethylstannylthiophene in the synthesis of compound 2 described above.
- the compound was synthesized and used in the same manner as the synthesis of Compound 2 and Compound 3 described above except that trimethylstannylthiophene was used.
- Compound 5 was prepared by using Compound 2 described above except that 2-trimethylstannylthiophene was used instead of 4- (2-decyltetradecyl) -2-trimethylstannylthiophene in the synthesis of Compound 2 described above. It was synthesized and used in the same manner as in the synthesis and the synthesis of Compound 3.
- the number average molecular weight (Mn), the weight average molecular weight (Mw) and the molecular weight distribution (PDI) of the polymer compounds P21 to P34, and the characteristics of the solar cell element produced using the polymer compounds P21 to P34 are summarized in Table 1. .
- Organic semiconductor materials can be used as organic transistors and organic thin-film solar cells because they exhibit good electrolytic mobility and photoelectric conversion efficiency.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Thin Film Transistor (AREA)
- Photovoltaic Devices (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
結晶性が良好であり優れたキャリヤ移動度を有する有機半導体材料を提供する。有機半導体材料は、下式1で示される骨格を有する。式1中、R1は水素、アルキル基、アルキルカルボニル基、アルコキシ基又はアルコキシカルボニル基、mは1以上の整数、Arは置換基を有していてもよい単環若しくは縮合多環の複素芳香環であり、複数の複素芳香環が連結している場合、同一の複素芳香環が連結していても異なる複素芳香環が連結していてもよい。
Description
本発明は、有機半導体材料に関する。
近年、有機半導体材料を利用した有機薄膜トランジスタや有機薄膜太陽電池等の研究開発が盛んである。有機半導体材料を用いた場合、印刷法、スピンコート法等のウエットプロセスによる簡便な方法で薄膜状の有機半導体層を作製できる。このため、無機半導体材料に比べて製造コストが安いとともに、また、薄く柔軟性に優れる半導体素子が得られるといった利点がある。このため、種々の有機半導体材料が盛んに研究開発されている。
例えば、非特許文献1~4には、ベンゾチアジアゾールを有する有機半導体材料が開示されている。また、非特許文献5には、ベンゾチアジアゾール或いはナフトビスチアジアゾールを有する有機半導体材料が開示されている。
Ming Zhang, Hoi Nok Tsao, Wojciech Pisula, Changduk Yang, Ashok K. Mishra, and Klaus Mullen; Field-Effect Transistors Based on a Benzothiadiazole-Cyclopentadithiophene Copolymer; Journal of The American Chemical Society 2007, 129, 3472-3473.
Kok-Haw Ong, Siew-Lay Lim, Huei-Shuan Tan, Hoi-Ka Wong, JunLi,Zhun Ma, Lionel C.H.Moh, Suo-Hon Lim, John C.de Mello, and Zhi-Kuan Chen; A Versatile Low Bandgap Polymer for Air-Stable,High-Mobility Field-Effect Transistors and Efficient Polymer Dolar Cells; ADVANCED MATERIALS,2011,23,1409-1413.
David Muhlbacher, Markus Scharber, Mauro Morana, Zhengguo Zhu, David Waller, Russel Gaudiana, and Christoph Brabec; High Photovoltaic Performance of a Low-Bandgap Polymer; Advanced Materials, 2006, 18, 2884-2889.
Jianhui Hou, Hsiang-Yu Chen, Shaoqing Zhang, Gang Li, and Yang Yang; Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2, 1, 3-Benzothiadiazole; Journal of the American Chemical Society, 2008, 130, 16144-16145.
Ming Wang, Xiaowen Hu, Peng Liu, Wei Li, Xiong Gong, Fei Huang, and Yong Cao; A Donor-Acceptor Conjugated Polymer Based on Naphtho[1,2-c:5,6-c]thiadiazole for High Performance Polymer Solar Cells; Journal of The American Chemical Society,01 June 2011, 133, 9638-9641
非特許文献1及び2の有機半導体材料では、有機薄膜トランジスタにおけるキャリヤ移動度がさほど高くなく、実用的な水準にないという問題がある。
非特許文献2~4の有機半導体材料では光電変換効率がさほど高くなく、有機薄膜太陽電池への応用が困難という問題がある。
また、非特許文献5の有機半導体材料は、高分子主鎖に垂直な方向にチオフェン環が結合し、それを介して可溶性基であるアルキル基が置換されているため、これら側鎖の構造自由度が高い。このため、この有機半導体材料を製膜して有機半導体層を形成した場合、材料薄膜の結晶性が高くならない。薄膜の結晶性が低い場合、キャリヤ移動度が高くならないので、薄膜トランジスタ用の材料として用いることは困難である。
本発明は上記事項に鑑みてなされたものであり、その目的とするところは、結晶性が良好であり優れたキャリヤ移動度を有する有機半導体材料を提供することにある。
本発明の第1の観点に係る有機半導体材料は、
下式1で示される骨格を含む、
ことを特徴とする。
(式1中、R1は水素、アルキル基、アルキルカルボニル基、アルコキシ基及びアルコキシカルボニル基、mは1以上の整数、Arは置換基を有していてもよい単環若しくは縮合多環の複素芳香環であり、複数の複素芳香環が連結している場合、同一の複素芳香環が連結していても異なる複素芳香環が連結していてもよい。)
下式1で示される骨格を含む、
ことを特徴とする。
また、前記骨格を繰り返し単位とする高分子化合物であることが好ましい。
また、前記単環の複素芳香環がチオフェン環或いはセレノフェン環であることが好ましい。
また、前記縮合多環の複素芳香環が下式11乃至式16のいずれかで表されることが好ましい。
(式11乃至式16中、Xは酸素、硫黄又はセレン原子を表し、式11及び式12中、R2は水素、アルキル基、アルキルカルボニル基、アルコキシ基、アルコキシカルボニル基又は置換基を有していてもよい芳香環を表し、式16中、R3はアルキル基、アルキルカルボニル基、アルコキシ基又はアルコキシカルボニル基を表す。)
本発明に係る有機半導体材料は、ナフトビスチアジアゾールに複素芳香環が結合した骨格を有している。そして、複素芳香環の置換基としてアルキル基、アルキルカルボニル基、アルコキシ基又はアルコキシカルボニル基が複素芳香環に直接結合している。本発明に係る有機半導体材料では置換基が共役主鎖に直接結合しているので良好な結晶性を示し、優れたキャリヤ移動度を有する。
上記式1中、R1は水素、アルキル基、アルキルカルボニル基、アルコキシ基又はアルコキシカルボニル基である。また、mは1以上の整数を表す。また、Arは置換基を有していてもよい単環若しくは縮合多環の複素芳香環である。複数の複素芳香環が連結している場合では、同一の複素芳香環が連結していても異なる複素芳香環が連結していてもよい。
本実施の形態に係る有機半導体材料は、ナフトビスチアジアゾール骨格を備えており、ナフトビスチアジアゾールは電子欠損性(電子アクセプター性)のヘテロ芳香族縮合環である。ナフトビスチアジアゾール骨格を除く他のユニットが電子供与性(ドナー性)ユニットである場合、本実施の形態に係る有機半導体材料は、分子内に分極が起こり、分子間相互作用の向上や光吸収の長波長化が期待でき、有機トランジスタや有機薄膜太陽電池等のP型有機半導体材料として利用できる。一方、ナフトビスチアジアゾール骨格を除く他のユニットが電子受容性(アクセプター性)ユニットである場合、本実施の形態に係る有機半導体材料はN型有機半導体材料として利用できる。
上記有機半導体材料は、低分子化合物であってもよいが、式1を繰り返し単位とする高分子化合物であることが好ましい。
式1中、R1が水素である場合、複素芳香環に置換基として、アルキル基、アルキルカルボニル基、アルコキシ基又はアルコキシカルボニル基を備える。この場合、置換基は、共役主鎖に直接連結している。
上記置換基は有機半導体材料の共役主鎖に直接連結するため、本実施の形態に係る有機半導体材料は構造自由度が低く、配向性が高い構造である。即ち、本実施の形態に係る有機半導体材料を用いて製膜して得られる有機半導体層の結晶性が良好になる。また、後述の実施例にて示すように、本実施の形態に係る有機半導体材料を製膜して得られる有機半導体層では、π-πスタッキングの距離が3.5オングストローム程度と非常に短い。本実施の形態に係る有機半導体材料はこのように結晶性が良好であり、π-πスタッキングの距離が短いため、ホール又は電子のホッピングが起こりやすく、キャリヤ移動度に優れるといった特性を備える。なお、式1中(1ユニット中)の置換基の数は1以上4以下であることが好ましい。置換基の数が多すぎるとその配置効果により有機半導体デバイスを得る際のパッキングが悪化してしまうからである。
上述の単環の複素芳香環としては、チオフェン環或いはセレノフェン環が挙げられる。
また、縮合多環の複素芳香環として、下式11~式16のいずれかで表される骨格であることが好ましい。式11~式16中、Xは酸素、硫黄又はセレン原子を表す。式11及び式12中、R2は水素、アルキル基、アルキルカルボニル基、アルコキシ基、アルコキシカルボニル基又は置換基を有していてもよい芳香環を表す。式16中、R3はアルキル基、アルキルカルボニル基、アルコキシ基又はアルコキシカルボニル基を表す。
式21乃至式24中、R1は水素、アルキル基、アルキルカルボニル基、アルコキシ基又はアルコキシカルボニル基、nは正の実数を表す。式21中、mは1以上の整数を表し、R4及びR5は水素、アルキル基、アルキルカルボニル基、アルコキシ基又はアルコキシカルボニル基を表す。式23中、R3はアルキル基、アルキルカルボニル基、アルコキシ基又はアルコキシカルボニル基を表す。式24中、R2は、水素、アルキル基、アルキルカルボニル基、アルコキシ基、アルコキシカルボニル基又は置換基を有していてもよい芳香環を表す。
上述したように本実施の形態に係る有機半導体材料は、置換基として、アルキル基、アルキルカルボニル基、アルコキシ基又はアルコキシカルボニル基を有しているので、有機溶媒への溶解性に優れる。特に高分子化合物である有機半導体材料を用いて有機トランジスタや有機薄膜太陽電池等の半導体素子を作製する場合、ウエットプロセスにより有機半導体層が形成されるが、その際に非常に有効である。
ウエットプロセスでは、まず、有機半導体材料を有機溶媒に溶解する。そして、この溶液を基板等の上にスピンコート法等により有機半導体層を形成する。本実施の形態に係る有機半導体材料は有機溶媒に優れた溶解性を示すので、容易に均一な厚みの有機半導体層を形成できる。また、有機半導体材料は溶液中に略均一に分散した形態になるので、均質な有機半導体層が形成される。更に、ナフトビスチアジアゾールにチオフェン環等の5員環が結合した有機半導体材料では、ベンゼン環等に比べて立体障害が緩和されるため、より高配向な分子配列が形成される。従って、本実施の形態に係る有機半導体材料を用いて得られた有機薄膜太陽電池及び有機薄膜トランジスタでは、良好な光電変換効率及び電荷移動度を呈する。
各種高分子化合物(有機半導体材料)を合成し、太陽電池素子及びトランジスタ素子を作製してその特性を評価した。
(高分子化合物P1の合成)
反応溶液に4,8-ジブロモナフト[1,2-c:5,6-c’]ビス[1,2,5]チアジアゾール(以下、化合物1)(40.2mg,0.1mmol)、4,4’-ビス(2-ヘキシルデシル)-2,6-ビス(トリメチルスズ)シクロペンタ[2,1-b:3,4-b’]-ジチオフェン(95.3mg,0.1mmol),テトラキス(トリフェニルホスフィン)-パラジウム(0)(2.3mg,2mmol)、トルエン(5ml)をそれぞれ加えた。アルゴン封入後封管し、μ-ウェーブリアクターを用いて180℃で40分間反応させた。なお、化合物1は、「Sufur Nitride in Organic Chemistry. Part 19. Selective Formation of Benzo- and Benzobis[1,2,5]thiadiazole Skeleton in the Reaction of Tetranitride with Naphthalenols and Related Compounds; S Mataka, K Takahashi, Y Ikezaki, T Hatta, A Torii, and M Tashiro; Bull.Chem.Soc.Jpn.,64,68-73,1991」に従い調製した。
室温まで冷却後、反応溶液をメタノール(100ml)と塩酸(2ml)の混合溶液に注ぎ再沈殿させた。
反応混合物をメタノール、ヘキサンを用いてソックスレー洗浄後、クロロホルムを用いてソックスレー抽出を行い、メタノールを用いて再沈殿させることで高分子化合物P1(45mg,25%)を暗緑色固体として得た。高分子化合物P1の数平均分子量は12,100、重量平均分子量は18,000であった。
反応溶液に4,8-ジブロモナフト[1,2-c:5,6-c’]ビス[1,2,5]チアジアゾール(以下、化合物1)(40.2mg,0.1mmol)、4,4’-ビス(2-ヘキシルデシル)-2,6-ビス(トリメチルスズ)シクロペンタ[2,1-b:3,4-b’]-ジチオフェン(95.3mg,0.1mmol),テトラキス(トリフェニルホスフィン)-パラジウム(0)(2.3mg,2mmol)、トルエン(5ml)をそれぞれ加えた。アルゴン封入後封管し、μ-ウェーブリアクターを用いて180℃で40分間反応させた。なお、化合物1は、「Sufur Nitride in Organic Chemistry. Part 19. Selective Formation of Benzo- and Benzobis[1,2,5]thiadiazole Skeleton in the Reaction of Tetranitride with Naphthalenols and Related Compounds; S Mataka, K Takahashi, Y Ikezaki, T Hatta, A Torii, and M Tashiro; Bull.Chem.Soc.Jpn.,64,68-73,1991」に従い調製した。
室温まで冷却後、反応溶液をメタノール(100ml)と塩酸(2ml)の混合溶液に注ぎ再沈殿させた。
反応混合物をメタノール、ヘキサンを用いてソックスレー洗浄後、クロロホルムを用いてソックスレー抽出を行い、メタノールを用いて再沈殿させることで高分子化合物P1(45mg,25%)を暗緑色固体として得た。高分子化合物P1の数平均分子量は12,100、重量平均分子量は18,000であった。
(高分子化合物P2の合成)
反応溶液に化合物1(20.1mg,0.05mmol)、4,4’-ビス(ヘキサデシル)-2,6-ビス(トリメチルスズ)シクロペンタ[2,1-b:3,4-b’]-ジチオフェン(47.6mg,0.05mmol),テトラキス(トリフェニルホスフィン)-パラジウム(0)(1.16mg,1mmol)、トルエン(5ml)をそれぞれ加えた。アルゴン封入後封管し、μ-ウェーブリアクターを用いて180℃で40分間反応させた。
室温まで冷却後、反応溶液をメタノール(100ml)と塩酸(2ml)の混合溶液に注ぎ再沈殿させた。反応混合物をメタノール、ヘキサンを用いてソックスレー洗浄後、クロロホルムを用いてソックスレー抽出を行い、メタノールを用いて再沈殿させることで高分子化合物(P2)(37mg,85%)を暗緑色固体として得た。高分子化合物P2の数平均分子量は5,800、重量平均分子量は7,600であった。
反応溶液に化合物1(20.1mg,0.05mmol)、4,4’-ビス(ヘキサデシル)-2,6-ビス(トリメチルスズ)シクロペンタ[2,1-b:3,4-b’]-ジチオフェン(47.6mg,0.05mmol),テトラキス(トリフェニルホスフィン)-パラジウム(0)(1.16mg,1mmol)、トルエン(5ml)をそれぞれ加えた。アルゴン封入後封管し、μ-ウェーブリアクターを用いて180℃で40分間反応させた。
室温まで冷却後、反応溶液をメタノール(100ml)と塩酸(2ml)の混合溶液に注ぎ再沈殿させた。反応混合物をメタノール、ヘキサンを用いてソックスレー洗浄後、クロロホルムを用いてソックスレー抽出を行い、メタノールを用いて再沈殿させることで高分子化合物(P2)(37mg,85%)を暗緑色固体として得た。高分子化合物P2の数平均分子量は5,800、重量平均分子量は7,600であった。
(高分子化合物P3の合成)
以下のように、段階的に高分子化合物P3を合成した。
以下のように、段階的に高分子化合物P3を合成した。
(4,8-ビス(4-(2-デシルテトラデシル)チオフェン-2-イル)-ナフト[1,2-c:5,6-c’]ビス[1,2,5]チアジアゾール(以下、化合物2)の合成)
窒素雰囲気下、トルエン25mlを三口フラスコに入れ30分間脱気した。その後、化合物1(201mg,0.5mmol)、4-(2-デシルテトラデシル)-2-トリメチルスタニルチオフェン(584mg,1mmol)、テトラキス(トリフェニルホスフィン)-パラジウム(0)(11.5mg,10 mol)を加え14時間還流させた。
室温まで冷却後、飽和フッ化カリウム水溶液に注ぎ、塩化メチレンを加え抽出した。
水、飽和食塩水でそれぞれ洗浄後、硫酸マグネシウムを加え乾燥させた。その後、ろ過、濃縮を行い、ヘキサン:塩化メチレン=2:1の混合溶媒を移動相とするカラムクロマトグラフィーにより単離することで化合物2(454mg,84%)を赤色固体として得た。
窒素雰囲気下、トルエン25mlを三口フラスコに入れ30分間脱気した。その後、化合物1(201mg,0.5mmol)、4-(2-デシルテトラデシル)-2-トリメチルスタニルチオフェン(584mg,1mmol)、テトラキス(トリフェニルホスフィン)-パラジウム(0)(11.5mg,10 mol)を加え14時間還流させた。
室温まで冷却後、飽和フッ化カリウム水溶液に注ぎ、塩化メチレンを加え抽出した。
水、飽和食塩水でそれぞれ洗浄後、硫酸マグネシウムを加え乾燥させた。その後、ろ過、濃縮を行い、ヘキサン:塩化メチレン=2:1の混合溶媒を移動相とするカラムクロマトグラフィーにより単離することで化合物2(454mg,84%)を赤色固体として得た。
(4,8-ビス(4-(2-デシルテトラデシル)-5-ブロモチオフェン-2-イル)-ナフト[1,2-c:5,6-c’]ビス[1,2,5]チアジアゾール(以下、化合物3)の合成)
窒素雰囲気下、化合物2(270mg,0.25mmol)、THF(15ml)を三口フラスコに加え、0℃に冷却した。
そこに、N-ブロモスクシンイミド(89mg,0.5mmol)を加え、室温に戻し4時間攪拌した。
その後、反応溶液を炭酸カルシウム水溶液に注ぎ、塩化メチレンを加え抽出した。
水、飽和食塩水でそれぞれ洗浄後、硫酸マグネシウムを加え乾燥させた。
その後、ろ過、濃縮を行い、ヘキサン:塩化メチレン=2:1の混合溶媒を移動相とするカラムクロマトグラフィーにより単離することで化合物3(242mg,78%)を赤色固体として得た。
窒素雰囲気下、化合物2(270mg,0.25mmol)、THF(15ml)を三口フラスコに加え、0℃に冷却した。
そこに、N-ブロモスクシンイミド(89mg,0.5mmol)を加え、室温に戻し4時間攪拌した。
その後、反応溶液を炭酸カルシウム水溶液に注ぎ、塩化メチレンを加え抽出した。
水、飽和食塩水でそれぞれ洗浄後、硫酸マグネシウムを加え乾燥させた。
その後、ろ過、濃縮を行い、ヘキサン:塩化メチレン=2:1の混合溶媒を移動相とするカラムクロマトグラフィーにより単離することで化合物3(242mg,78%)を赤色固体として得た。
(高分子化合物P3の合成)
反応容器に化合物3(124.0mg,0.1mmol)、2,7-ビス(トリメチルスタニル)ナフト[1,2-b:5,6-b’]ジチオフェン(56.6mg,0.1mmol),テトラキス(トリフェニルホスフィン)-パラジウム(0)(2.3mg,2mmol)、トルエン(5ml)をそれぞれ加えた。
アルゴン封入後封管し、μ-ウェーブリアクターを用いて180℃で40分間反応させた。
室温まで冷却後、反応溶液をメタノール(100ml)と塩酸(2ml)の混合溶液に注ぎ再沈殿させた。
反応混合物をメタノール、ヘキサン、クロロホルムを用いてソックスレー洗浄後、クロロベンゼンを用いてソックスレー抽出を行い、メタノールを用いて再沈殿させることで高分子化合物P3(98mg,74%)を暗紫色固体として得た。
高分子化合物P3の数平均分子量は30,000、重量平均分子量は300,000であった。
反応容器に化合物3(124.0mg,0.1mmol)、2,7-ビス(トリメチルスタニル)ナフト[1,2-b:5,6-b’]ジチオフェン(56.6mg,0.1mmol),テトラキス(トリフェニルホスフィン)-パラジウム(0)(2.3mg,2mmol)、トルエン(5ml)をそれぞれ加えた。
アルゴン封入後封管し、μ-ウェーブリアクターを用いて180℃で40分間反応させた。
室温まで冷却後、反応溶液をメタノール(100ml)と塩酸(2ml)の混合溶液に注ぎ再沈殿させた。
反応混合物をメタノール、ヘキサン、クロロホルムを用いてソックスレー洗浄後、クロロベンゼンを用いてソックスレー抽出を行い、メタノールを用いて再沈殿させることで高分子化合物P3(98mg,74%)を暗紫色固体として得た。
高分子化合物P3の数平均分子量は30,000、重量平均分子量は300,000であった。
(高分子化合物P4の合成)
反応容器に化合物3(124.0mg,0.1mmol)、2-2’-ビス(トリメチルスズ)ビチオフェン(49.2mg,0.1mmol),テトラキス(トリフェニルホスフィン)-パラジウム(0)(2.3mg,2mmol)、トルエン(5ml)をそれぞれ加えた。
アルゴン封入後封管し、μ-ウェーブリアクターを用いて180℃で40分間反応させた。
室温まで冷却後、反応溶液をメタノール(100ml)と塩酸(2ml)の混合溶液に注ぎ再沈殿させた。
反応混合物をメタノール、ヘキサン、クロロホルムを用いてソックスレー洗浄後、クロロベンゼンを用いてソックスレー抽出を行い、メタノールを用いて再沈殿させることでP5(117mg,94%)を暗紫色固体として得た。
高分子化合物P4の数平均分子量は52,600、重量平均分子量は126,000であった。
反応容器に化合物3(124.0mg,0.1mmol)、2-2’-ビス(トリメチルスズ)ビチオフェン(49.2mg,0.1mmol),テトラキス(トリフェニルホスフィン)-パラジウム(0)(2.3mg,2mmol)、トルエン(5ml)をそれぞれ加えた。
アルゴン封入後封管し、μ-ウェーブリアクターを用いて180℃で40分間反応させた。
室温まで冷却後、反応溶液をメタノール(100ml)と塩酸(2ml)の混合溶液に注ぎ再沈殿させた。
反応混合物をメタノール、ヘキサン、クロロホルムを用いてソックスレー洗浄後、クロロベンゼンを用いてソックスレー抽出を行い、メタノールを用いて再沈殿させることでP5(117mg,94%)を暗紫色固体として得た。
高分子化合物P4の数平均分子量は52,600、重量平均分子量は126,000であった。
また、比較例として高分子化合物P5を合成した。
窒素雰囲気下、蒸留クロロベンゼン(10ml)を三口フラスコに入れ、30分間脱気を行った。
その後4,7-ジブロモ-2,1,3ベンゾチアジアゾール(29.4mg,0.1mmol)、4,4’-ビス(ヘキサデシル)-2,6-ビス(トリメチルスズ)シクロペンタ[2,1-b:3,4-b’]-ジチオフェン(95.2mg,0.1mmol),トリス(ジベンジリデンアセトン)ジパラジウム(2.1mg,2mmol)、をそれぞれ加え、2日間還流させた。室温まで冷却後、反応溶液をメタノール(100ml)と塩酸(2ml)の混合溶液に注ぎ再沈殿させた。
反応混合物をメタノール、ヘキサンを用いてソックスレー洗浄後、クロロホルムを用いてソックスレー抽出を行い、メタノールを用いて再沈殿させることで高分子化合物P5(45.7mg,85%)を暗緑色固体として得た。高分子化合物P5の数平均分子量は11,000、重量平均分子量は15,600であった。
窒素雰囲気下、蒸留クロロベンゼン(10ml)を三口フラスコに入れ、30分間脱気を行った。
その後4,7-ジブロモ-2,1,3ベンゾチアジアゾール(29.4mg,0.1mmol)、4,4’-ビス(ヘキサデシル)-2,6-ビス(トリメチルスズ)シクロペンタ[2,1-b:3,4-b’]-ジチオフェン(95.2mg,0.1mmol),トリス(ジベンジリデンアセトン)ジパラジウム(2.1mg,2mmol)、をそれぞれ加え、2日間還流させた。室温まで冷却後、反応溶液をメタノール(100ml)と塩酸(2ml)の混合溶液に注ぎ再沈殿させた。
反応混合物をメタノール、ヘキサンを用いてソックスレー洗浄後、クロロホルムを用いてソックスレー抽出を行い、メタノールを用いて再沈殿させることで高分子化合物P5(45.7mg,85%)を暗緑色固体として得た。高分子化合物P5の数平均分子量は11,000、重量平均分子量は15,600であった。
続いて、合成した高分子化合物P1、P3、P4、P5を用いて太陽電池素子を作製し、光電変換効率を評価した。
(高分子化合物P1を用いた太陽電池素子の評価)
ITO膜を付けたガラス基板上に、高分子化合物P1及びフラーレン誘導体であるC61PCBM(phenyl C61-butyric acid methyl ester)を含むオルトジクロロベンゼン溶液(高分子化合物P1/PCBMの重量比=1/1)を用いて、スピンコートにより光活性層を作製した(膜厚約100nm)。次に、真空蒸着機によりフッ化リチウムを厚さ5nmで蒸着し、次いでAlを厚さ100nmで蒸着して有機薄膜太陽電池を得た。得られた有機薄膜太陽電池の形状は、Φ2mmの円であり、面積は0.0314cm2であった。
ITO膜を付けたガラス基板上に、高分子化合物P1及びフラーレン誘導体であるC61PCBM(phenyl C61-butyric acid methyl ester)を含むオルトジクロロベンゼン溶液(高分子化合物P1/PCBMの重量比=1/1)を用いて、スピンコートにより光活性層を作製した(膜厚約100nm)。次に、真空蒸着機によりフッ化リチウムを厚さ5nmで蒸着し、次いでAlを厚さ100nmで蒸着して有機薄膜太陽電池を得た。得られた有機薄膜太陽電池の形状は、Φ2mmの円であり、面積は0.0314cm2であった。
得られた有機薄膜太陽電池にソーラシミュレーター(AM1.5Gフィルター、放射照度100mW/cm2)を用いて一定の光を照射し、発生する電流と電圧を測定した。図1に電流密度-電圧特性のグラフを示す。
得られた図1から短絡電流密度(Jsc)、開放電圧(Voc)、フィルファクター(FF)を求めたところ、Jsc(短絡電流密度)=8.82mA/cm2、Voc(開放電圧)=0.74V、FF(フィルファクター)=0.45であった。光電変換効率(η)を、式η=(Jsc×Voc×FF)/100より算出したところ、3.0%であった。
(高分子化合物P3を用いた太陽電池素子の評価)
高分子化合物P3/C61PCBM=1/1にした以外は、上記と同様にして有機薄膜太陽電池を作製し、その特性を評価した。図2に示す電流密度-電圧特性が得られ、Jsc=7.50mA/cm2、Voc=0.83V、FF=0.60、ηは3.8%であった。
高分子化合物P3/C61PCBM=1/1にした以外は、上記と同様にして有機薄膜太陽電池を作製し、その特性を評価した。図2に示す電流密度-電圧特性が得られ、Jsc=7.50mA/cm2、Voc=0.83V、FF=0.60、ηは3.8%であった。
(高分子化合物P4を用いた太陽電池素子の評価)
高分子化合物P4/C61PCBM=1/1.5にした以外は、上記と同様にして有機薄膜太陽電池を作製し、その特性を評価した。図3に示す電流密度-電圧特性が得られ、Jsc=12.0mA/cm2、Voc=0.76V、FF=0.69、ηは6.3%であった。
高分子化合物P4/C61PCBM=1/1.5にした以外は、上記と同様にして有機薄膜太陽電池を作製し、その特性を評価した。図3に示す電流密度-電圧特性が得られ、Jsc=12.0mA/cm2、Voc=0.76V、FF=0.69、ηは6.3%であった。
(高分子化合物P5を用いた太陽電池素子の評価)
高分子化合物P5/C61PCBM=1/1にした以外は、上記と同様にして有機薄膜太陽電池を作製し、その特性を評価した。図4に示すような電流密度-電圧特性が得られ、Jsc=5.64mA/cm2、Voc=0.63V、FF=0.35であり、ηは1.2%であった。
高分子化合物P5/C61PCBM=1/1にした以外は、上記と同様にして有機薄膜太陽電池を作製し、その特性を評価した。図4に示すような電流密度-電圧特性が得られ、Jsc=5.64mA/cm2、Voc=0.63V、FF=0.35であり、ηは1.2%であった。
ナフトビスチアジアゾールを有する高分子化合物P1、P3、P4を用いた太陽電池素子では、ベンゾチアジアゾールを有する高分子化合物P5に比べ、いずれも光電変換効率は高い値であり、太陽電池素子への有用性が示された。特に、ナフトビスチアジアゾールに複数のチオフェン環が結合した骨格を繰り返し単位とする高分子化合物P4では、光電変換効率が6.3%と、現在の世界最高レベルである6%を超えており、非常に有用であることが示された。
続いて、合成した高分子化合物P2、P3、P4を用いてトランジスタ素子を作製し、トランジスタ特性を評価した。
(高分子化合物P2を用いたトランジスタ素子の評価)
ゲート電極となる、200nmのシリコン酸化膜を有する高濃度にドーピングされたn型シリコン基板を十分洗浄した後、ヘキサメチルジシラザン(HMDS)を用いて、基板のシリコン酸化膜表面をシラン処理した。高分子化合物P2をオルトジクロロベンゼンに溶解して3g/Lの溶液を作製し、メンブランフィルターでろ過した後、上記表面処理した基板上にスピンコート法により約50nmの高分子化合物P2薄膜を作製した。この薄膜を窒素雰囲気下にて、150℃で30分加熱した。次に金を真空蒸着して、高分子薄膜上にチャネル長50μm、チャネル幅1.5mmのソース電極、ドレイン電極を作製した。
ゲート電極となる、200nmのシリコン酸化膜を有する高濃度にドーピングされたn型シリコン基板を十分洗浄した後、ヘキサメチルジシラザン(HMDS)を用いて、基板のシリコン酸化膜表面をシラン処理した。高分子化合物P2をオルトジクロロベンゼンに溶解して3g/Lの溶液を作製し、メンブランフィルターでろ過した後、上記表面処理した基板上にスピンコート法により約50nmの高分子化合物P2薄膜を作製した。この薄膜を窒素雰囲気下にて、150℃で30分加熱した。次に金を真空蒸着して、高分子薄膜上にチャネル長50μm、チャネル幅1.5mmのソース電極、ドレイン電極を作製した。
作製したトランジスタ素子に、ゲート電圧Vgを20~-60V、ソース・ドレイン間電圧Vsdを0~-60Vに変化させてトランジスタ特性を測定した。図5(A)に伝達特性、図5(B)に出力特性を示す。これらの特性から、ホール移動度は0.05cm2/Vs、電流のオン・オフ比は4×105と算出された。
(高分子化合物P3を用いたトランジスタ素子の評価)
高分子化合物P3を用い、シラン処理剤としてパーフルオロデシルトリクロロシラン(FDTS)を用いた以外は、上記と同様にしてトランジスタ素子を作製し、評価した。図6(A)に伝達特性、図6(B)に出力特性を示す。これらの特性から、ホール移動度は0.54cm2/Vs、電流のオン・オフ比は1×105と算出された。
高分子化合物P3を用い、シラン処理剤としてパーフルオロデシルトリクロロシラン(FDTS)を用いた以外は、上記と同様にしてトランジスタ素子を作製し、評価した。図6(A)に伝達特性、図6(B)に出力特性を示す。これらの特性から、ホール移動度は0.54cm2/Vs、電流のオン・オフ比は1×105と算出された。
(高分子化合物P4を用いたトランジスタ素子の評価)
高分子化合物P4を用い、シラン処理剤としてパーフルオロデシルトリクロロシラン(FDTS)を用いた以外は、上記と同様にしてトランジスタ素子を作製し、評価した。図7(A)に伝達特性、図7(B)に出力特性を示す。これらの特性から、ホール移動度は0.45cm2/Vs、電流のオン・オフ比は1×106と算出された。
高分子化合物P4を用い、シラン処理剤としてパーフルオロデシルトリクロロシラン(FDTS)を用いた以外は、上記と同様にしてトランジスタ素子を作製し、評価した。図7(A)に伝達特性、図7(B)に出力特性を示す。これらの特性から、ホール移動度は0.45cm2/Vs、電流のオン・オフ比は1×106と算出された。
また、高分子化合物P3、P4を用いたトランジスタ素子の有機半導体層のX線回折測定を行った。高分子化合物P3の有機半導体層のX線回折パターンを図8に示す。また、高分子化合物P4の有機半導体層のX線回折パターンを図9に示す。
いずれの高分子化合物P3、P4の有機半導体層についても、Out of Plane X線回折パターンをみると、7~8°付近と11~12°付近に二次ピークと三次ピークが出現している。このような高次ピークは良好な結晶構造である場合に観測されるピークである。
更に、いずれの高分子化合物P3、P4の有機半導体層についても、In plane X線回折パターンをみると、2θ=25.3°にピークが確認でき、π-πスタッキング距離は3.5オングストロームであり、高分子主鎖同士の間隔が非常に狭いことがわかる。
これらから、高分子化合物P3、P4の有機半導体層では、高分子主鎖同士の間隔が狭く、良好な結晶構造であることから、電子のホッピングが生じやすいので、上記のように良好な電荷移動度(上記ではホール移動度)を示したと考えられる。
(高分子化合物P21~P34の合成)
下記反応式に示したように、更に、種々の高分子化合物(高分子化合物P21~高分子化合物P34)を合成した。
下記反応式に示したように、更に、種々の高分子化合物(高分子化合物P21~高分子化合物P34)を合成した。
上記の高分子化合物P21~P34の合成においては、上述した高分子化合物P3、P4の合成方法に準じて合成した。
なお、上記の反応式中の化合物4は、上述した化合物2の合成において、4-(2-デシルテトラデシル)-2-トリメチルスタニルチオフェンの代わりに、4-(2-ヘキシルデシル)-2-トリメチルスタニルチオフェンを用いた以外、上述した化合物2の合成及び化合物3の合成と同様にして合成し用いた。また、化合物5は、上述した化合物2の合成において、4-(2-デシルテトラデシル)-2-トリメチルスタニルチオフェンの代わりに、2-トリメチルスタニルチオフェンを用いた以外、上述した化合物2の合成及び化合物3の合成と同様にして合成し用いた。
(高分子化合物P21~P34を用いた太陽電池素子及びトランジスタ素子の評価)
それぞれの高分子化合物P21~P34を用いて、上述した太陽電池素子の作製方法に準じて太陽電池素子を作製し、その特性を評価した。また、それぞれの高分子化合物P21~P34を用いて、上述したトランジスタ素子の作成方法に準じてトランジスタ素子を作製し、その特性を評価した。
それぞれの高分子化合物P21~P34を用いて、上述した太陽電池素子の作製方法に準じて太陽電池素子を作製し、その特性を評価した。また、それぞれの高分子化合物P21~P34を用いて、上述したトランジスタ素子の作成方法に準じてトランジスタ素子を作製し、その特性を評価した。
高分子化合物P21~P34の数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(PDI)、並びに、高分子化合物P21~P34を用いて作製した太陽電池素子の特性(短絡電流密度(Jsc)、開放電圧(Voc)、フィルファクター(FF)、光電変換効率(η))及びトランジスタの特性(キャリヤ移動度(μ)、オン・オフ比(on/off))を表1にまとめた。
なお、本発明は、本発明の範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。
本出願は、2011年7月25日に出願された日本国特許出願2011-162625号に基づく。本明細書中に、日本国特許出願2011-162625号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
有機半導体材料は、良好な電解移動度や光電変換効率を示すので、有機トランジスタや有機薄膜太陽電池として利用可能である。
Claims (5)
- 前記骨格を繰り返し単位とする高分子化合物である、
ことを特徴とする請求項1に記載の有機半導体材料。 - 前記単環の複素芳香環がチオフェン環或いはセレノフェン環である、
ことを特徴とする請求項1又は2に記載の有機半導体材料。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013525733A JP5924783B2 (ja) | 2011-07-25 | 2012-07-25 | ウエットプロセス用有機半導体材料 |
US14/234,572 US20140163188A1 (en) | 2011-07-25 | 2012-07-25 | Organic semiconductor material |
EP12818369.6A EP2738829A4 (en) | 2011-07-25 | 2012-07-25 | ORGANIC SEMICONDUCTOR MATERIAL |
CN201280036486.3A CN103703583A (zh) | 2011-07-25 | 2012-07-25 | 有机半导体材料 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-162625 | 2011-07-25 | ||
JP2011162625 | 2011-07-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013015298A1 true WO2013015298A1 (ja) | 2013-01-31 |
Family
ID=47601139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/068781 WO2013015298A1 (ja) | 2011-07-25 | 2012-07-25 | 有機半導体材料 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140163188A1 (ja) |
EP (1) | EP2738829A4 (ja) |
JP (1) | JP5924783B2 (ja) |
CN (1) | CN103703583A (ja) |
WO (1) | WO2013015298A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013159726A (ja) * | 2012-02-07 | 2013-08-19 | Sumitomo Chemical Co Ltd | 高分子化合物およびそれを用いた有機トランジスタ |
CN103897156A (zh) * | 2014-04-02 | 2014-07-02 | 国家纳米科学中心 | 一种带噻吩侧链的萘并二噻吩类二维共轭聚合物、制备方法及其用途 |
WO2014104979A1 (en) * | 2012-12-28 | 2014-07-03 | Agency For Science, Technology And Research | P-type semiconducting polymers and related methods |
CN104031245A (zh) * | 2014-06-24 | 2014-09-10 | 国家纳米科学中心 | 一种聚合物光伏材料、制备方法及其用途 |
WO2015029432A1 (ja) * | 2013-08-30 | 2015-03-05 | Jx日鉱日石エネルギー株式会社 | 光電変換素子 |
US20150284504A1 (en) * | 2014-04-02 | 2015-10-08 | National Chiao Tung University | Heterocyclic compounds and the synthesis method thereof |
JP2016174169A (ja) * | 2016-05-06 | 2016-09-29 | コニカミノルタ株式会社 | 有機光電変換素子 |
WO2017047808A1 (ja) * | 2015-09-18 | 2017-03-23 | 三菱化学株式会社 | コポリマー、光電変換素子、太陽電池及び太陽電池モジュール |
WO2018123207A1 (ja) | 2016-12-27 | 2018-07-05 | 国立大学法人大阪大学 | ナフトビスカルコゲナジアゾール誘導体及びその製造方法 |
WO2019039369A1 (ja) * | 2017-08-23 | 2019-02-28 | 国立大学法人広島大学 | 高分子化合物及びその製造方法、それを含む有機半導体材料並びにそれを含む有機太陽電池 |
JP2021038288A (ja) * | 2019-08-30 | 2021-03-11 | 国立大学法人広島大学 | 高分子化合物、高分子化合物の合成方法、有機薄膜太陽電池材料及び有機薄膜太陽電池 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9252365B2 (en) * | 2011-10-27 | 2016-02-02 | The University Of Akron | P-type transition metal oxide-based films serving as hole transport layers in organic optoelectronic devices |
CN106632999A (zh) * | 2016-09-06 | 2017-05-10 | 华南理工大学 | 一种含萘[1,2‑c;5,6‑c]二[1,2,5]噻二唑的聚合物半导体材料及其制备方法与应用 |
US11713371B2 (en) * | 2017-12-04 | 2023-08-01 | Korea Research Institute Of Chemical Technology | Polar functional group-partially introduced polymer, preparation method therefor, and organic electronic element containing same |
TWI821439B (zh) * | 2018-10-30 | 2023-11-11 | 日本國立大學法人大阪大學 | 化合物及其製造方法以及使用該化合物的有機半導體材料 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010107100A1 (ja) * | 2009-03-17 | 2010-09-23 | 住友化学株式会社 | 化合物及びそれを用いた素子 |
CN102060982A (zh) * | 2010-12-03 | 2011-05-18 | 华南理工大学 | 含萘[1,2-c:5,6-c]二[1,2,5]噻二唑的有机半导体材料及其应用 |
WO2011078248A1 (ja) * | 2009-12-25 | 2011-06-30 | 住友化学株式会社 | 高分子化合物、これを含む薄膜及びインク組成物 |
WO2011078246A1 (ja) * | 2009-12-25 | 2011-06-30 | 住友化学株式会社 | 高分子化合物、これを含む薄膜及びインク組成物 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5359173B2 (ja) * | 2007-12-05 | 2013-12-04 | 東レ株式会社 | 光起電力素子用電子供与性有機材料、光起電力素子用材料および光起電力素子 |
-
2012
- 2012-07-25 EP EP12818369.6A patent/EP2738829A4/en not_active Withdrawn
- 2012-07-25 WO PCT/JP2012/068781 patent/WO2013015298A1/ja active Application Filing
- 2012-07-25 US US14/234,572 patent/US20140163188A1/en not_active Abandoned
- 2012-07-25 CN CN201280036486.3A patent/CN103703583A/zh active Pending
- 2012-07-25 JP JP2013525733A patent/JP5924783B2/ja not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010107100A1 (ja) * | 2009-03-17 | 2010-09-23 | 住友化学株式会社 | 化合物及びそれを用いた素子 |
WO2011078248A1 (ja) * | 2009-12-25 | 2011-06-30 | 住友化学株式会社 | 高分子化合物、これを含む薄膜及びインク組成物 |
WO2011078246A1 (ja) * | 2009-12-25 | 2011-06-30 | 住友化学株式会社 | 高分子化合物、これを含む薄膜及びインク組成物 |
CN102060982A (zh) * | 2010-12-03 | 2011-05-18 | 华南理工大学 | 含萘[1,2-c:5,6-c]二[1,2,5]噻二唑的有机半导体材料及其应用 |
Non-Patent Citations (8)
Title |
---|
DAVID MUHLBACHER; MARKUS SCHARBER; MAURO MORANA; ZHENGGUO ZHU; DAVID WALLER; RUSSEL GAUDIANA; CHRISTOPH BRABEC: "High Photovoltaic Performance of a Low-Bandgap Polymer", ADVANCED MATERIALS, vol. 18, 2006, pages 2884 - 2889 |
JIANHUI HOU; HSIANG-YU CHEN; SHAOQING ZHANG; GANG LI; YANG YANG: "Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 130, 2008, pages 16144 - 16145 |
KOK-HAW ONG; SIEW-LAY LIM; HUEI-SHUAN TAN; HOI-KA WONG; JUNLI; ZHUN MA; LIONEL C. H. MOH; SUO-HON LIM; JOHN C. DE MELLO; ZHI-KUAN: "A Versatile Low Bandgap Polymer for Air-Stable, High-Mobility Field-Effect Transistors and Efficient Polymer Dolar Cells", ADVANCED MATERIALS, vol. 23, 2011, pages 1409 - 1413 |
MING WANG ET AL.: "Donor-Acceptor Conjugated Polymer Based on Naphtho[1,2-c:5,6-c]bis[1,2,5] thiadiazole for High-Performance Polymer Solar Cells", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 133, 1 June 2011 (2011-06-01), pages 9638 - 9641, XP055066844 * |
MING WANG; XIAOWEN HU; PENG LIU; WEI LI; XIONG GONG; FEI HUANG; YONG CAO: "A Donor-Acceptor Conjugated Polymer Based on Naphtho[l,2-c:5,6-c]thiadiazole for High Performance Polymer Solar Cells", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,0, vol. 133, June 2011 (2011-06-01), pages 9638 - 9641 |
MING ZHANG; HOI NOK TSAO; WOJCIECH PISULA; CHANGDUK YANG; ASHOK K. MISHRA; KLAUS MULLEN: "Field-Effect Transistors Based on a Benzothiadiazole-Cyclopentadithiophene Copolymer", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 129, 2007, pages 3472 - 3473 |
S MATAKA; K TAKAHASHI; Y IKEZAKI; T HATTA; A TORII; M TASHIRO: "Sufur Nitride in Organic Chemistry. Part 19. Selective Formation of Benzo- and Benzobis[1,2,5]thiadiazole Skeleton in the Reaction of Tetranitride with Naphthalenols and Related Compounds", BULL. CHEM. SOC. JPN., vol. 64, 1991, pages 68 - 73 |
See also references of EP2738829A4 |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013159726A (ja) * | 2012-02-07 | 2013-08-19 | Sumitomo Chemical Co Ltd | 高分子化合物およびそれを用いた有機トランジスタ |
US10439141B2 (en) | 2012-12-28 | 2019-10-08 | Agency For Science, Technology And Research | P-type semiconducting polymers and related methods |
WO2014104979A1 (en) * | 2012-12-28 | 2014-07-03 | Agency For Science, Technology And Research | P-type semiconducting polymers and related methods |
US9799831B2 (en) | 2012-12-28 | 2017-10-24 | Agency For Science, Technology And Research | P-type semiconducting polymers and related methods |
WO2015029432A1 (ja) * | 2013-08-30 | 2015-03-05 | Jx日鉱日石エネルギー株式会社 | 光電変換素子 |
JP2015050297A (ja) * | 2013-08-30 | 2015-03-16 | Jx日鉱日石エネルギー株式会社 | 光電変換素子 |
US20150284504A1 (en) * | 2014-04-02 | 2015-10-08 | National Chiao Tung University | Heterocyclic compounds and the synthesis method thereof |
CN103897156A (zh) * | 2014-04-02 | 2014-07-02 | 国家纳米科学中心 | 一种带噻吩侧链的萘并二噻吩类二维共轭聚合物、制备方法及其用途 |
CN104031245A (zh) * | 2014-06-24 | 2014-09-10 | 国家纳米科学中心 | 一种聚合物光伏材料、制备方法及其用途 |
CN104031245B (zh) * | 2014-06-24 | 2016-05-18 | 国家纳米科学中心 | 一种聚合物光伏材料、制备方法及其用途 |
WO2017047808A1 (ja) * | 2015-09-18 | 2017-03-23 | 三菱化学株式会社 | コポリマー、光電変換素子、太陽電池及び太陽電池モジュール |
JPWO2017047808A1 (ja) * | 2015-09-18 | 2018-07-05 | 三菱ケミカル株式会社 | コポリマー、光電変換素子、太陽電池及び太陽電池モジュール |
JP2016174169A (ja) * | 2016-05-06 | 2016-09-29 | コニカミノルタ株式会社 | 有機光電変換素子 |
KR20190097124A (ko) | 2016-12-27 | 2019-08-20 | 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 | 나프토비스칼코게나디아졸 유도체 및 그 제조 방법 |
US10793584B2 (en) | 2016-12-27 | 2020-10-06 | Osaka University | Naphthobischalcogenadiazole derivative and production method therefor |
WO2018123207A1 (ja) | 2016-12-27 | 2018-07-05 | 国立大学法人大阪大学 | ナフトビスカルコゲナジアゾール誘導体及びその製造方法 |
WO2019039369A1 (ja) * | 2017-08-23 | 2019-02-28 | 国立大学法人広島大学 | 高分子化合物及びその製造方法、それを含む有機半導体材料並びにそれを含む有機太陽電池 |
JPWO2019039369A1 (ja) * | 2017-08-23 | 2020-07-30 | 国立大学法人広島大学 | 高分子化合物及びその製造方法、それを含む有機半導体材料並びにそれを含む有機太陽電池 |
JP7162847B2 (ja) | 2017-08-23 | 2022-10-31 | 国立大学法人広島大学 | 高分子化合物及びその製造方法、それを含む有機半導体材料並びにそれを含む有機太陽電池 |
JP2021038288A (ja) * | 2019-08-30 | 2021-03-11 | 国立大学法人広島大学 | 高分子化合物、高分子化合物の合成方法、有機薄膜太陽電池材料及び有機薄膜太陽電池 |
JP7214119B2 (ja) | 2019-08-30 | 2023-01-30 | 国立大学法人広島大学 | 高分子化合物、高分子化合物の合成方法、有機薄膜太陽電池材料及び有機薄膜太陽電池 |
Also Published As
Publication number | Publication date |
---|---|
CN103703583A (zh) | 2014-04-02 |
US20140163188A1 (en) | 2014-06-12 |
EP2738829A4 (en) | 2015-07-08 |
JP5924783B2 (ja) | 2016-05-25 |
JPWO2013015298A1 (ja) | 2015-02-23 |
EP2738829A1 (en) | 2014-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5924783B2 (ja) | ウエットプロセス用有機半導体材料 | |
Li et al. | Non-fullerene polymer solar cells based on a selenophene-containing fused-ring acceptor with photovoltaic performance of 8.6% | |
Wang et al. | Effects of fluorination on the properties of thieno [3, 2-b] thiophene-bridged donor–π–acceptor polymer semiconductors | |
Du et al. | High efficiency solution-processed two-dimensional small molecule organic solar cells obtained via low-temperature thermal annealing | |
Shin et al. | Synthesis and characterization of 2, 1, 3-benzoselenadiazole-based conjugated polymers for organic photovoltaic cells | |
Chen et al. | Efficient polymer solar cells based on a new benzo [1, 2-b: 4, 5-b′] dithiophene derivative with fluorinated alkoxyphenyl side chain | |
Fan et al. | Donor–acceptor copolymers based on benzo [1, 2-b: 4, 5-b′] dithiophene and pyrene-fused phenazine for high-performance polymer solar cells | |
Chen et al. | Enhanced efficiency of polymer solar cells by improving molecular aggregation and broadening the absorption spectra | |
Qian et al. | Modulating molecular aggregation by facile heteroatom substitution of diketopyrrolopyrrole based small molecules for efficient organic solar cells | |
Kim et al. | Synthesis and photovoltaic properties of benzo [1, 2-b: 4, 5-b′] dithiophene derivative-based polymers with deep HOMO levels | |
KR101743241B1 (ko) | 높은 전자 이동도를 갖는 ndi계 공중합체 및 이의 합성방법 | |
Zhang et al. | Vinylidenedithiophenmethyleneoxindole: a centrosymmetric building block for donor–acceptor copolymers | |
Hai et al. | Naphthodifuran alternating quinoxaline copolymers with a bandgap of∼ 1.2 eV and their photovoltaic characterization | |
Liu et al. | Improved open-circuit voltage of benzodithiophene based polymer solar cells using bulky terthiophene side group | |
Dong et al. | Donor–acceptor conjugated polymers based on two-dimensional thiophene derivatives for bulk heterojunction solar cells | |
Gao et al. | Efficient polymer solar cells based on poly (thieno [2, 3-f] benzofuran-co-thienopyrroledione) with a high open circuit voltage exceeding 1 V | |
Ma et al. | Small molecules based on tetrazine unit for efficient performance solution-processed organic solar cells | |
Fan et al. | Fluorination as an effective tool to increase the photovoltaic performance of indacenodithiophene-alt-quinoxaline based wide-bandgap copolymers | |
Wang et al. | Novel triphenylamine-based copolymers for all-polymer solar cells | |
Feng et al. | Triphenylamine modified bis-diketopyrrolopyrrole molecular donor materials with extended conjugation for bulk heterojunction solar cells | |
Kim et al. | Molecular design and ordering effects of alkoxy aromatic donor in a DPP copolymer on OTFTs and OPVs | |
Luponosov et al. | Effects of bridging atom and π-bridge length on physical and photovoltaic properties of A–π-D–π-A oligomers for solution-processed organic solar cells | |
Kim et al. | Structure-property relationship of DA type copolymers based on thienylenevinylene for organic electronics | |
Kim et al. | Effect of side chains on phenanthrene based DA type copolymers for polymer solar cells | |
Tu et al. | Side-chain engineering of diindenocarbazole-based large bandgap copolymers toward high performance polymer solar cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12818369 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2013525733 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14234572 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |