WO2013014995A1 - 石炭ガスの製造方法およびメタンの製造方法 - Google Patents

石炭ガスの製造方法およびメタンの製造方法 Download PDF

Info

Publication number
WO2013014995A1
WO2013014995A1 PCT/JP2012/062142 JP2012062142W WO2013014995A1 WO 2013014995 A1 WO2013014995 A1 WO 2013014995A1 JP 2012062142 W JP2012062142 W JP 2012062142W WO 2013014995 A1 WO2013014995 A1 WO 2013014995A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
gas
reaction vessel
producing
partial oxidation
Prior art date
Application number
PCT/JP2012/062142
Other languages
English (en)
French (fr)
Inventor
泰樹 並木
小菅 克志
眞須美 糸永
小水流 広行
卓 武田
Original Assignee
新日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄エンジニアリング株式会社 filed Critical 新日鉄エンジニアリング株式会社
Priority to AU2012288216A priority Critical patent/AU2012288216B2/en
Priority to CN201280036566.9A priority patent/CN103703111B/zh
Publication of WO2013014995A1 publication Critical patent/WO2013014995A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1662Conversion of synthesis gas to chemicals to methane
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1846Partial oxidation, i.e. injection of air or oxygen only

Definitions

  • the present invention relates to a method for producing combustible gas or the like by gasifying coal with an oxidizing agent such as oxygen or steam, and in particular, a method for producing coal gas containing hydrogen gas and carbon monoxide gas, and production of methane. Regarding the method.
  • This application claims priority on Japanese Patent Application No. 2011-162102 filed in Japan on July 25, 2011, the contents of which are incorporated herein by reference.
  • gasification furnaces of various configurations such as a fixed bed type, a fluidized bed type and an airflow bed (entrained bed) type have been studied in order to efficiently produce combustible gas by gasifying coal.
  • One of the gas bed type gasification furnaces is one of the recent gasification furnaces because of its large capacity, high load followability, etc., especially when considering applications for power generation. It has become mainstream.
  • a high temperature gas of 1300 to 1800 ° C. mainly composed of hydrogen and carbon monoxide is produced by a partial oxidation reaction of coal using an oxidizing agent such as oxygen and air.
  • the sensible heat of gas is generally recovered with steam or the like.
  • the sensible heat of this high-temperature gas is used in the pyrolysis reaction of coal to produce more gas, tar and BTX (benzene, toluene, xylene), and char.
  • a double two-stage coal pyrolysis gasification furnace that performs an oxidation reaction and performs a pyrolysis reaction of coal in the upper chamber of the gasification furnace has been proposed (see Patent Document 1).
  • the gasification furnace described in Patent Document 1 has the following problems because a large amount of tar is generated by the thermal decomposition reaction of coal.
  • a facility for recycling a part of product gas as hydrogen gas is required in order to reduce the weight of the generated tar.
  • the production amount of the final product is reduced.
  • recovers tar is also needed.
  • cooling is performed when the pyrolysis gas and tar are separated, a loss of heat amount of the pyrolysis gas occurs, and the sensible heat of the generated gas is not effectively used, resulting in a reduction in production efficiency.
  • the present invention has been made to solve the above problems, and provides a method capable of producing coal gas with a low tar content and gasifying coal with high production efficiency.
  • the method for producing coal gas according to the present invention includes a lower reaction vessel in which a housing space is formed, and an upper reaction vessel provided above the lower reaction vessel, wherein the upper reaction vessel is the lower reaction vessel.
  • the coal gas is methanated.
  • coal gas having a small tar content can be produced.
  • methane can be produced with higher production efficiency than before by applying the coal gas having a low tar content to the methane production process.
  • the method for producing coal gas of the present invention uses a specific coal gasification reactor equipped with a lower reaction vessel and an upper reaction vessel, and supplies coal (first coal), oxygen and water vapor to the lower reaction vessel.
  • a hot gas is generated by a partial oxidation reaction.
  • the newly supplied coal is pyrolyzed.
  • it is the method of manufacturing coal gas containing hydrogen gas and carbon monoxide gas.
  • the increase / decrease in the supply amount of the second coal supplied to the upper reaction vessel is adjusted.
  • a known method for producing coal gas can be appropriately applied to other configurations.
  • the manufacturing method of the coal gas of this invention is demonstrated, referring FIG. 1 and FIG.
  • FIG. 1 is a block diagram showing an embodiment of a coal gasification system in which the method for producing coal gas of the present invention is used.
  • the coal gasification system 1 of the present embodiment uses a coal gasification reaction furnace 4 to generate coal gas mainly composed of hydrogen gas and carbon monoxide gas using coal as a raw material, and finally produces methane from the coal gas.
  • Plant equipment for producing products such as methanol or ammonia.
  • the coal gasification system 1 includes a coal pulverization / drying facility 2, a coal supply facility 3, a coal gasification reaction furnace 4, a heat recovery facility 5, a char recovery facility 6, a shift reaction facility 7, and a gas purification facility. 8, a chemical synthesis facility 9, and an air separation facility 10.
  • the outer diameter of coal is not uniform, and depending on the type, coal may contain more water than desired. Therefore, first, in the coal pulverization / drying facility 2, the coal is pulverized so that the outer diameter is in a granular form of, for example, about 0.01 mm to 0.15 mm. Further, after being dried so as to have a predetermined moisture content, it is supplied to the coal supply facility 3. In addition, after the coal pulverization / drying facility 2 to the coal gasification reactor 4, the pulverized coal moves in a sealed space so that the moisture content in the dried coal does not change.
  • the coal is pressurized to a predetermined pressure by a carrier gas or the like in the coal supply facility 3 in order to obtain a state of coal that can be supplied into the coal gasification reactor 4, and then the coal gasification reactor 4. It is conveyed to.
  • the air separation facility 10 compresses and liquefies air. The dried oxygen gas, nitrogen gas, etc. are separated from the liquid air by the difference in boiling point. The oxygen gas separated by the air separation facility 10 is supplied to the coal gasification reactor 4.
  • the coal gasification reactor 4 is used by being incorporated in a part of the coal gasification system 1, and includes coal gas containing hydrogen gas and carbon monoxide gas as main components by causing a partial oxidation reaction of coal in the reactor. Is a device for manufacturing.
  • FIG. 2 is a longitudinal sectional view showing an embodiment of a coal gasification reactor in the present invention.
  • the coal gasification reaction furnace 4 of the present embodiment is provided with a partial oxidation part (lower reaction vessel) 11 in which an accommodation space 11a is formed, and above the partial oxidation part 11 (D1 in the D direction).
  • the thermal decomposition part (upper reaction container) 13 in which the through-hole 12 which communicates with the storage space 11a of the part 11 and extends in the up-down direction D is formed.
  • the coal gasification reactor 4 is formed of heat-resistant bricks or the like.
  • a preheating unit 14 is provided below the partial oxidation unit 11 (D2 in the D direction).
  • the partial oxidation unit 11 and the preheating unit 14 communicate with each other in the vertical direction D, and the connection portion between the thermal decomposition unit 13 and the partial oxidation unit 11 and the connection portion between the partial oxidation unit 11 and the preheating unit 14 are Each is configured to be thinner than the continuous portion.
  • the partial oxidation part 11 is formed in the substantially cylindrical shape extended in the up-down direction D.
  • a plurality of gasification burners 17 formed in a cylindrical shape extending along a predetermined axis C ⁇ b> 1 are provided on the inner peripheral surface of the partial oxidation unit 11.
  • the predetermined axis C1 may be directed obliquely downward with respect to the horizontal direction, as shown in FIG.
  • the gasification burner 17 is connected to the coal supply facility 3, the air separation facility 10, and the heat recovery facility 5 that generates water vapor by a method described later. Collectively referred to as “carbon etc.”) at a predetermined rate.
  • the plurality of gasification burners 17 are installed on the inner peripheral surface of the partial oxidation unit 11 so as to be in a horizontal position. Further, the directions of the plurality of gasification burners 17 are arranged so as to be twisted with respect to the central axis C ⁇ b> 2 of the partial oxidation unit 11. Further, the direction of the gasification burner 17 may be directed obliquely downward. Further, a cooling means (not shown) is provided on the outer peripheral surface of the partial oxidation unit 11, and this cooling unit can cool the wall surface of the partial oxidation unit 11 heated by the partial oxidation reaction of coal.
  • the thermal decomposition part 13 is formed in a substantially cylindrical shape extending in the vertical direction D.
  • a plurality of coal nozzles 18 for supplying coal to the thermal decomposition part 13 are provided in the middle part in the vertical direction D.
  • the coal nozzle 18 is connected to the coal supply facility 3.
  • the number of coal nozzles 18 is not limited and may be any number.
  • This water vapor nozzle can be provided connected to the heat recovery equipment 5, for example.
  • An end (exit) 12 a above (through D ⁇ b> 1 in the D direction) the through hole 12 of the thermal decomposition unit 13 is connected to the heat recovery equipment 5.
  • the temperature measuring apparatus 20 which measures the temperature of the coal gas which flows out out of the edge part 12a is provided in the edge part 12a.
  • a predetermined amount of water W is accommodated in the preheating unit 14 of the present embodiment, and the slag flowing from the partial oxidation unit 11 can be cooled as will be described later.
  • each gasification burner 17 is arranged as described above, carbon or the like supplied from each gasification burner 17 swirls around the central axis C2 of the partial oxidation unit 11. Further, the gasification burners 17 are directed obliquely downward, so that the carbon or the like supplied from the respective gasification burners 17 can promote convection of carbon or the like below the partial oxidation unit 11. By this convection, carbon or the like does not stagnate in the partial oxidation part 11, and the partial oxidation reaction proceeds well.
  • the inside of the partial oxidation unit 11 is at a high temperature and a high pressure.
  • the temperature and pressure in the partial oxidation portion 11 are preferably 1300 to 1600 ° C., more preferably 1300 to 1400 ° C., and more preferably 2 to 4 MPa because the partial oxidation reaction proceeds well.
  • the pressure is 2 to 3 MPa.
  • the coal becomes high temperature and is thermally decomposed to separate char from volatile gas containing tar and water vapor, and the coal is combusted (partial oxidation reaction). )
  • carbon monoxide gas, carbon dioxide gas, hydrogen gas, and slag (ash) are generated.
  • the slag generated in the partial oxidation part 11 is in a molten state, a part of the slag is cooled by the above cooling means on the inner peripheral surface of the partial oxidation part 11 and adheres to the inner peripheral surface.
  • the other part of the slag falls into the water W in the preheating unit 14 provided below the partial oxidation unit 11 and is cooled and collected.
  • high-temperature gas gas containing carbon monoxide gas, carbon dioxide gas, hydrogen gas, water vapor, etc.
  • tar, char, etc. generated in the partial oxidation part 11 rises in the partial oxidation part 11 while turning, It moves from the partial oxidation part 11 and rises in the thermal decomposition part 13.
  • new coal is supplied from the coal nozzle 18 into the high-temperature gas rising from the partial oxidation unit 11, and pyrolysis gas, tar, char, and the like are generated by the pyrolysis reaction of the new coal. Generated.
  • a part of the carbon in the new coal supplied to the thermal decomposition unit 13 reacts with the carbon dioxide gas in the thermal decomposition unit 13 to become carbon monoxide gas according to the following chemical reaction formula (4). Since the above-described pyrolysis reaction of coal and the gasification reaction of carbon with carbon dioxide gas are endothermic reactions, the high-temperature gas rising from the partial oxidation unit 11 is cooled.
  • the temperature of the coal gas flowing out from the end portion 12a is controlled to 1000 ° C. or higher by adjusting the increase / decrease of the supply amount of the new coal supplied to the thermal decomposition unit 13.
  • the upper limit of the temperature of the coal gas flowing out from the end 12a is preferably controlled to 1200 ° C. or less, and particularly preferably controlled to the range of 1050 to 1150 ° C.
  • the temperature of the coal gas flowing out from the end portion 12a is controlled by adjusting the increase / decrease in the supply amount of the new coal supplied to the thermal decomposition unit 13. Since the pyrolysis of coal in the pyrolysis section 13 is an endothermic reaction, by increasing the supply amount of coal, the temperature of the coal gas flowing out from the end portion 12a can be lowered, and by reducing the supply amount of coal. The temperature of the coal gas flowing out from the end 12a can be increased.
  • the pressure in the pyrolysis section 13 and the gas residence time are preferably 2 to 4 MPa, more preferably 2 to 3 MPa, and the gas residence time is preferably 1 to 5 seconds. More preferably, it is 2 to 3 seconds. Thereby, tar content in coal gas can be reduced more.
  • coal gas whose gas component content ratio is adjusted in the shift reaction facility 7 is supplied to the gas purification facility 8, and carbon dioxide gas or sulfur-containing gas contained in the coal gas is recovered.
  • Coal gas refined in the gas purification facility 8 is supplied to the chemical synthesis facility 9, and products such as methane and methanol are produced by various chemical reactions.
  • tar is hardly generated and coal gas with a small tar content (for example, synthesis gas containing H 2 , CO, CH 4 as a main component).
  • a small tar content for example, synthesis gas containing H 2 , CO, CH 4 as a main component.
  • Tar is generated by an initial thermal decomposition reaction of coal that reacts instantaneously, and is decomposed by H 2 , H 2 O, CO 2, etc. in the atmospheric gas and disappears. Therefore, the tar content in coal gas is determined by the balance between the generation and the disappearance due to decomposition. Factors affecting the disappearance due to the decomposition reaction include the composition of the atmospheric gas and, in addition to this, the temperature affecting the reaction rate.
  • the amount of tar produced depends on the amount of coal used as a raw material. From these facts, when producing coal gas using a coal gasification reactor, the present inventors control the amount of tar produced by adjusting the increase or decrease in the amount of coal supplied to the upper reaction vessel. At the same time, the present inventors have found that the temperature of coal gas flowing out from the outlet of the upper reaction vessel can be controlled to 1000 ° C. or higher where tar is hardly generated, and the present invention has been completed.
  • the manufacturing method of this invention can manufacture coal gas with little tar content, like the method described in patent document 1 mentioned above, the facilities for lightening of produced
  • the method for producing methane of the present invention is a method for methanating the coal gas produced by the method for producing coal gas of the present invention.
  • Methane was produced by the coal gasification system of the same embodiment as in FIG. 1 except that the coal gasification reactor of the same embodiment as in FIG. 2 was used and methanation was performed in a chemical synthesis facility.
  • the same reference numerals as those in FIGS. 1 and 2 are used for explanation.
  • the end 12a is provided with a temperature measuring device 20 for measuring the temperature of coal gas flowing out from the outlet (end 12a) of the thermal decomposition unit 13 as shown in FIG. Was manufactured.
  • coal having an outer diameter of 0.15 mm or less, a water content of 5% by mass, and carbon containing 70% by mass in dried coal was used.
  • Coal, oxygen gas and water vapor supplied from the total gasification burner 17 to the partial oxidation unit 11 are coal 500 (kg / h), oxygen gas 300 (Nm 3 / h) and water vapor 40 (kg / h), respectively.
  • the temperature and pressure in the partial oxidation unit 11 were set to a temperature of 1350 ° C. and a pressure of 2.45 MPa, the pressure in the thermal decomposition unit 13 was set to 2.45 MPa, and the gas residence time was set to 2 seconds.
  • the coal supplied to the thermal decomposition part 13 from all the coal nozzles 18 was processed as follows.
  • the tar content contained in coal gas flowing out from the outlet (end portion 12a) of the thermal decomposition unit 13 was measured.
  • a predetermined amount of the generated coal gas is extracted from a sampling nozzle installed at the outlet (end portion 12a) of the thermal decomposition unit 13, and after absorbing the tar in the absorption liquid, the absorption liquid is removed. It was measured by.
  • the temperature of coal gas was controlled at 800 degreeC by supplying coal supplied to the thermal decomposition part 13 from all the coal nozzles 18 at 500 (kg / h) for 24 hours.
  • the temperature of coal gas was controlled to about 1050 degreeC by supplying coal at 200 (kg / h) for 24 hours.
  • the temperature of coal gas was controlled to about 1150 degreeC by supplying coal at 150 (kg / h) for 24 hours.
  • Methanation at the chemical synthesis facility 9 is carried out by using the shift reaction facility 7 and the gas refining facility 8 as upstream processes to increase the volume ratio of hydrogen and carbon monoxide in the coal gas to 3: 1 or more by the following formula. Reaction was performed to produce methane. CO + 3H 2 ⁇ CH 4 + H 2 O
  • FIG. 3 shows the temperature (° C.) of coal gas flowing out from the outlet (end portion 12a) of the thermal decomposition unit 13 in the coal gasification reactor 4 and the conversion rate (mass%) of carbon in the coal into tar. It is a graph which shows a relationship. From the results of FIG. 3, when the temperature of the coal gas was changed from 800 ° C. to 1150 ° C., the conversion rate of carbon in the coal into tar (the tar content contained in the coal gas) was reduced from 6.9% by mass to 0%. It can be seen that the content is significantly reduced to 3% by mass. That is, according to the method for producing coal gas of the present invention, it was confirmed that coal gas having a small tar content can be produced.
  • FIG. 4 is a calculation result comparing the production method of the present invention and a conventional production method (a general method for producing a gas-bed gasifier with only a partial oxidation reaction) for production efficiency when producing methane from coal.
  • FIG. As a general gas-bed gasification furnace, coal gasification efficiency is 80% (the amount of heat) with reference to the Shell process, which is said to have the highest coal gasification efficiency as a currently commercialized gas-bed gasification furnace. Base).
  • methane was produced by controlling the temperature of coal gas flowing out from the outlet (end portion 12a) of the thermal decomposition unit 13 to 1100 ° C.
  • FIG. 1 the production method of the present invention
  • pyrolysis gasification includes both partial oxidation in the partial oxidation unit 11 of the coal gasification reactor 4 and thermal decomposition in the thermal decomposition unit 13.
  • the number shown below the compound indicates the calorific value, and when the calorific value of the raw material coal is 1.00, for example, in the present invention, the reaction efficiency ( ⁇ ) of pyrolysis gasification is 85%, that is, 15% min. Means that a loss of heat has occurred, 73% of which has been converted to CO + H 2 and the remaining 12% has been converted to CH 4 .
  • the manufacturing method of the present invention has a calorific value compared to the conventional manufacturing method. Since the loss is reduced and methane produced by pyrolysis gasification is not subject to production loss in chemical synthesis, it can be seen that the efficiency of producing methane from coal is 10% higher (the present invention) However, the calorific value is larger than that of a method of producing methane using a general gas-bed gasifier (difference 0.06)). That is, from the result of FIG. 4, according to the method for producing methane of the present invention, it was confirmed that methane can be produced with higher production efficiency than the method for producing methane using a general air-bed gasification furnace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Industrial Gases (AREA)

Abstract

下部反応容器(11)と、上部反応容器(13)とを備えた石炭ガス化反応炉(4)を用いて、水素ガスおよび一酸化炭素ガスを含む石炭ガスの製造方法であって、部分酸化反応により高温ガスを発生させるために、前記下部反応容器(11)に第一の石炭、酸素および水蒸気を供給する工程と、第二の石炭を熱分解させるために、前記上部反応容器(13)に前記高温ガスを導入しながら前記第二の石炭を供給する工程と、前記上部反応容器(13)の出口から流出する石炭ガスの温度を1000℃以上に制御するために、前記上部反応容器(13)に供給する前記第二の石炭の供給量の増減を調節する工程とを備える石炭ガスの製造方法。

Description

石炭ガスの製造方法およびメタンの製造方法
 本発明は、石炭を酸素、水蒸気等の酸化剤でガス化して可燃性ガス等を生産する方法に関するものであり、特に、水素ガスおよび一酸化炭素ガスを含む石炭ガスの製造方法およびメタンの製造方法に関する。
 本願は、2011年07月25日に日本に出願された特願2011-162102号について優先権を主張し、その内容をここに援用する。
 従来、石炭をガス化して可燃性ガス等を効率的に生産するために、固定床型、流動床型および気流床(噴流床)型等の様々な構成のガス化炉が検討されている。その一つである気流床型のガス化炉は、特に発電用としての用途を考慮した場合に、大容量化が容易である、負荷追従性が高い等の理由から、近年におけるガス化炉の主流となっている。
 気流床型のガス化炉では、酸素、空気等の酸化剤を用いた石炭の部分酸化反応により、水素、一酸化炭素を主成分とする1300~1800℃の高温のガスが製造され、この高温ガスの顕熱は、一般的に蒸気等で回収されている。
 この高温ガスの顕熱を石炭の熱分解反応に活用し、ガス、タール・BTX(ベンゼン、トルエン、キシレン)、チャーをより多く製造するガス化炉として、ガス化炉の下室で石炭の部分酸化反応を行い、ガス化炉の上室で石炭の熱分解反応を行う二重二段構造の石炭熱分解ガス化炉が提案されている(特許文献1参照)。
 特許文献1に記載されたガス化炉において、ガス化炉の上室では、ガス化炉の下室で発生する高温の石炭部分酸化ガスに水素ガスと石炭とを混合して、石炭の熱分解反応を起こす。この石炭の熱分解反応によって、水素・一酸化炭素・メタンなどで構成される熱分解ガスと、タール・BTXと、チャーとがそれぞれ発生し、タールと水素ガスとの反応により、タールが改質されてBTXがさらに発生する。
特許第4088363号公報
 特許文献1に記載されたガス化炉では、石炭の熱分解反応により多量のタールが生じているため、以下のような問題点がある。
 特許文献1の方法においては、生成されたタールの軽質化を図るため、製品ガスの一部を水素ガスとしてリサイクルする設備が必要となっている。加えて、製品ガスの一部が消費されるため、最終生成物の生産量が減少してしまう。
 また、製品ガスを調製する際、熱分解ガスとタールとが冷却器によって分離されるため、タールを回収する設備も必要となっている。さらに、熱分解ガスとタールとを分離する際に冷却が行われるため、熱分解ガスがもつ熱量のロスが生じて生成ガスの顕熱が有効に活用されず、製造効率が低下してしまう。
 本発明は、上記の問題点を解決するためになされたものであって、タール含有量の少ない石炭ガスを製造でき、高い製造効率で石炭をガス化できる方法を提供する。
 上記課題を解決するために、本発明は以下の手段を提案している。
 本発明の石炭ガスの製造方法は、内部に収容空間が形成された下部反応容器と、前記下部反応容器の上方に設けられた上部反応容器とを備え、前記上部反応容器は、前記下部反応容器の前記収容空間と連通するとともに上下方向に延びる貫通孔が形成された石炭ガス化反応炉を用いて、水素ガスおよび一酸化炭素ガスを含む石炭ガスの製造方法であって、
 部分酸化反応により高温ガスを発生させるために、前記下部反応容器に第一の石炭、酸素および水蒸気を供給する工程と、
 第二の石炭を熱分解させるために、前記上部反応容器に前記高温ガスを導入しながら前記第二の石炭を供給する工程と、
 前記上部反応容器の出口から流出する石炭ガスの温度を1000℃以上に制御するために、前記上部反応容器に供給する前記第二の石炭の供給量の増減を調節する工程とを備える。
 また、本発明のメタンの製造方法は、前記石炭ガスをメタン化する。
 本発明の石炭ガスの製造方法によれば、タール含有量の少ない石炭ガスを製造できる。
 本発明のメタンの製造方法によれば、上述のタール含有量の少ない石炭ガスをメタン製造プロセスに適用することにより、従来よりも高い製造効率でメタンを製造できる。
本発明の石炭ガスの製造方法が用いられた石炭ガス化システムの一実施形態を示すブロック図である。 本発明における石炭ガス化反応炉の一実施形態を示す縦断面図である。 石炭ガス化反応炉における熱分解部の出口から流出する石炭ガスの温度(℃)と、石炭中の炭素のタールへの転化率(質量%)との関係を示すグラフである。 石炭からメタンを製造する際の製造効率について、本発明の製造方法と従来の製造方法とを比較した計算結果を示す図である。
<石炭ガスの製造方法>
 本発明の石炭ガスの製造方法は、下部反応容器と上部反応容器とを備える特定の石炭ガス化反応炉を用い、前記下部反応容器に石炭(第一の石炭)、酸素および水蒸気を供給することによって、部分酸化反応により高温ガスを発生させる。前記上部反応容器に前記高温ガスを導入しながら新たに石炭(第二の石炭)を供給することによって、この新たに供給する石炭を熱分解させる。上記によって、水素ガスおよび一酸化炭素ガスを含む石炭ガスを製造する方法である。
 かかる製造方法は、前記上部反応容器の出口から流出する石炭ガスの温度を1000℃以上に制御するために、前記上部反応容器に供給する前記第二の石炭の供給量の増減を調節することに特徴があり、その他の構成については、公知の石炭ガスの製造方法を適宜適用できる。
 以下、本発明の石炭ガスの製造方法について、図1と図2を参照しながら説明する。
 図1は、本発明の石炭ガスの製造方法が用いられた石炭ガス化システムの一実施形態を示すブロック図である。
 本実施形態の石炭ガス化システム1は、石炭ガス化反応炉4を用い、石炭を原料として水素ガスと一酸化炭素ガスを主成分とする石炭ガスを生成し、この石炭ガスから最終的にメタン、メタノール又はアンモニア等の製品を製造するプラント設備である。
 石炭ガス化システム1は、石炭粉砕・乾燥設備2と、石炭供給設備3と、石炭ガス化反応炉4と、熱回収設備5と、チャー回収設備6と、シフト反応設備7と、ガス精製設備8と、化学合成設備9と、空気分離設備10とを備えている。
 一般に石炭は、外径が不均一であり、その種類によって所望の値より多くの水分を含む場合がある。
 そこで、まず、石炭粉砕・乾燥設備2において、石炭は、外径がたとえば0.01mm以上0.15mm以下程度の粒状となるように粉砕される。さらに所定の水分含有量となるように乾燥された後に、石炭供給設備3に供給される。
 なお、石炭粉砕・乾燥設備2の後から石炭ガス化反応炉4までは、乾燥された石炭中の水分含有量が変化しないように、粉砕された石炭は密閉された空間内を移動する。
 続いて、石炭は、石炭ガス化反応炉4内に供給可能な石炭の状態にするために、石炭供給設備3内で搬送ガス等により所定の圧力まで昇圧され、その後、石炭ガス化反応炉4に搬送される。
 一方で、空気分離設備10は、空気を圧縮して液化する。その液体となった空気から、沸点の違いにより、乾燥した酸素ガスや窒素ガス等を分離する。空気分離設備10で分離された酸素ガスは、石炭ガス化反応炉4に供給される。
 石炭ガス化反応炉4は、石炭ガス化システム1の一部に組み込まれて用いられ、石炭を反応炉内で部分酸化反応させることにより、主成分として水素ガスおよび一酸化炭素ガスを含む石炭ガスを製造する装置である。
 図2は、本発明における石炭ガス化反応炉の一実施形態を示す縦断面図である。
 本実施形態の石炭ガス化反応炉4は、内部に収容空間11aが形成された部分酸化部(下部反応容器)11と、部分酸化部11の上方(D方向においてD1)に設けられ、部分酸化部11の収容空間11aと連通し上下方向Dに延びる貫通孔12が形成された熱分解部(上部反応容器)13とを備えている。石炭ガス化反応炉4は、耐熱性のレンガ等で形成されている。
 石炭ガス化反応炉4においては、部分酸化部11の下方(D方向においてD2)に、予熱部14が設けられている。部分酸化部11と予熱部14とは上下方向Dに連通していて、熱分解部13と部分酸化部11との接続部分、および部分酸化部11と予熱部14との接続部分は、これらが連なる部分より細くなるようにそれぞれ構成されている。
 図2に示すように、部分酸化部11は、上下方向Dに延びる略円筒状に形成される。部分酸化部11の内周面上には、所定の軸線C1に沿って延びる円筒状に形成されたガス化バーナー17が複数設けられている。所定の軸線C1は、図2に示すように、水平方向に対して斜め下方に向けられていても良い。
 ガス化バーナー17は、石炭供給設備3、空気分離設備10、および後述する方法で水蒸気を発生する熱回収設備5に接続されていて、部分酸化部11に石炭、酸素ガスおよび水蒸気(以下これらをまとめて「炭素等」と称する。)を所定の割合で供給することができる。複数のガス化バーナー17は、部分酸化部11の内周面上において、相互に水平な位置となるように設置される。また、複数のガス化バーナー17の向きは、部分酸化部11の中心軸線C2に対して相互にねじれの位置となるように配置されている。また、ガス化バーナー17の向きは、斜め下方に向けられていても良い。
 また、部分酸化部11の外周面には不図示の冷却手段が設けられていて、この冷却手段は、石炭の部分酸化反応により加熱される部分酸化部11の壁面を冷却することができる。
 熱分解部13は、上下方向Dに延びる略円筒状に形成される。
 熱分解部13において、上下方向Dの中間部には熱分解部13に石炭を供給する複数の石炭ノズル18が設けられている。石炭ノズル18は、石炭供給設備3に接続されている。
 なお、石炭ノズル18の数は制限されず、幾つでもよい。また、必要に応じて、たとえば、石炭ノズル18の下方(D方向においてD2側)に、熱分解部13に水蒸気を供給する水蒸気ノズルを設けてもよい。この水蒸気ノズルは、たとえば熱回収設備5に接続して設けることができる。
 熱分解部13の貫通孔12の上方(D方向においてD1)の端部(出口)12aは、熱回収設備5に接続されている。
 そして、端部12aには、端部12aから流出する石炭ガスの温度を測定する温度測定装置20が設けられている。
 本実施形態の予熱部14には、所定の量の水Wが収容されていて、後述するように、部分酸化部11から流れ落ちるスラグを冷却できるようになっている。
 上述のように構成された石炭ガス化反応炉4が運転されると、粒状の炭素等は、所定の流速でガス化バーナー17から部分酸化部11内に供給される。それぞれのガス化バーナー17は、上記のように配置されているので、それぞれのガス化バーナー17から供給される炭素等は、部分酸化部11の中心軸線C2の回りを旋回する。また、ガス化バーナー17は、斜め下方に向けられることによって、それぞれのガス化バーナー17から供給される炭素等は、部分酸化部11の下方の炭素等の対流を促すことができる。この対流によって、部分酸化部11に炭素などが停滞することがなく、部分酸化反応が良好に進行する。
 このとき、部分酸化部11内は、高温・高圧になっている。部分酸化部11内の温度と圧力は、部分酸化反応が良好に進行することから、温度を1300~1600℃とすることが好ましく、1300~1400℃とすることがより好ましく、圧力を2~4MPaとすることが好ましく、2~3MPaとすることがより好ましい。
 この環境下で石炭が高温になり、熱分解してチャーと、タールおよび水蒸気等を含む揮発性ガスとが分離するとともに、石炭が燃焼(部分酸化反応)することにより、下記化学反応式(1)~(3)に示すように一酸化炭素ガス、二酸化炭素ガスおよび水素ガスと、スラグ(灰分)が発生する。
 2C+O → 2CO      (1)
 C+O → CO       (2)
 C+HO → CO+H    (3)
 部分酸化部11内で発生したスラグは溶融した状態となっているが、スラグの一部は、部分酸化部11の内周面で上述の冷却手段により冷やされてこの内周面に付着し、スラグのその他の部分は、部分酸化部11の下方に設けられた予熱部14内の水Wに落ちて冷やされ、回収される。
 一方、部分酸化部11内で発生した高温ガス(一酸化炭素ガス、二酸化炭素ガス、水素ガス、水蒸気等を含むガス)、タール、チャー等は、旋回しながら部分酸化部11内を上昇し、部分酸化部11から移動して、熱分解部13内を上昇する。
 熱分解部13では、部分酸化部11から上昇してくる高温ガス中へ、石炭ノズル18から新たな石炭が供給され、この新たな石炭の熱分解反応により、熱分解ガス、タール、チャー等が生成される。
 熱分解部13に供給された新たな石炭中の炭素の一部は、熱分解部13内の二酸化炭素ガスと反応して、下記の化学反応式(4)により一酸化炭素ガスになる。
 上述の石炭の熱分解反応、及び炭素の二酸化炭素ガスによるガス化反応は、吸熱反応であるため、部分酸化部11から上昇してくる高温ガスは冷却される。
 C+CO → 2CO     (4)
 その際、本発明においては、熱分解部13に供給する前記の新たな石炭の供給量の増減を調節して、端部12aから流出する石炭ガスの温度を1000℃以上に制御する。端部12aから流出する石炭ガスの温度は、その上限値としては1200℃以下に制御することが好ましく、1050~1150℃の範囲に制御することが特に好ましい。
 石炭ガスの温度を1000℃以上に制御することにより、タール含有量の少ない石炭ガスを製造できる。石炭ガスの温度を1200℃以下に制御すると、石炭ガス化反応炉4が傷みにくくなり、石炭ガス化反応炉4の耐久性が向上する。
 端部12aから流出する石炭ガスの温度は、熱分解部13に供給する前記の新たな石炭の供給量の増減を調節することにより制御する。熱分解部13での石炭の熱分解は吸熱反応であるため、石炭の供給量を増やすことで、端部12aから流出する石炭ガスの温度を下げることができ、石炭の供給量を減らすことで、端部12aから流出する石炭ガスの温度を上げることができる。
 また、熱分解部13内の圧力およびガス滞留時間は、圧力を2~4MPaとすることが好ましく、2~3MPaとすることがより好ましく、ガス滞留時間を1~5秒間とすることが好ましく、2~3秒間とすることがより好ましい。これによって、石炭ガス中のタール含有量をより低減できる。
 そして、図1に示すように、熱分解部13の出口から、水素ガスおよび一酸化炭素ガスを含む高温の石炭ガスが、チャーとともに搬送され、熱回収設備5に供給される。
 熱回収設備5では、熱分解部13から搬送された石炭ガスと水とを熱交換させることにより、水蒸気が生成される。この水蒸気は前述の石炭粉砕・乾燥設備2およびシフト反応設備7で用いる原料等の目的のために供給される。
 熱回収設備5で冷却された石炭ガスは、熱回収設備5からチャー回収設備6に供給され、石炭ガスに含まれるチャーは、チャー回収設備6で回収される。
 チャー回収設備6を通過した石炭ガスは、シフト反応設備7に供給される。そして、石炭ガス中の一酸化炭素ガスに対する水素ガスの比率を一定の値まで高めるために、シフト反応設備7中に水蒸気が供給される。下記の化学反応式(5)で示されるシフト反応により、石炭ガス中の一酸化炭素ガスが消費され、その代わりに水素ガスが発生する。
 CO + HO → CO + H    (5)
 シフト反応設備7でガス成分の含有比率が調整された石炭ガスは、ガス精製設備8に供給され、石炭ガスに含まれる二酸化炭素ガス、又は硫黄を含むガス等が回収される。
 ガス精製設備8で精製された石炭ガスは化学合成設備9に供給され、種々の化学反応等により、メタンやメタノール等の製品が製造される。
 以上説明したように、本発明の石炭ガスの製造方法によれば、タールがほとんど生成されず、タール含有量の少ない石炭ガス(たとえばH、CO、CHを主成分とする合成ガス等)を製造できる効果が得られる。
 タールは、瞬時に反応する石炭の初期熱分解反応で生成され、雰囲気ガス中のH、HO、CO等により分解されて、消失する。したがって、石炭ガス中のタール含有量は、前記の生成と分解による消失とのバランスで定まる。分解反応による消失に影響する因子としては、雰囲気ガスの組成と、これに加えて反応速度に影響する温度が挙げられる。
 一方で、石炭ガス化反応炉を用いた石炭ガスの製造において、タールの生成量は、原料として使用する石炭量に依存する。
 これらのことから、本発明者らは、石炭ガス化反応炉を用いて石炭ガスを製造する際、上部反応容器に供給する石炭の供給量の増減を調節することにより、タールの生成量を制御すると共に、上部反応容器の出口から流出する石炭ガスの温度を、タールがほとんど生成されない1000℃以上に制御できることを見出し、本発明を完成するに至った。
 また、本発明の製造方法は、タール含有量が少ない石炭ガスを製造できることから、上述した特許文献1に記載された方法のような、生成タールの軽質化のための設備、タール回収のための設備がいずれも不要である。また、製品ガスの消費による最終生成物の生産量の減少がなく、熱分解ガス冷却による熱量のロスもないことから製造効率に優れる。
<メタンの製造方法>
 本発明のメタンの製造方法は、上記本発明の石炭ガスの製造方法により製造される石炭ガスを、メタン化する方法である。その一実施形態として、図1に示す石炭ガス化システム1において、シフト反応プロセスとメタネーションプロセスとを組み合わせる方法が挙げられる。
 上記本発明の石炭ガスの製造方法により製造される、タール含有量の少ない石炭ガスをメタン化することで、熱量のロスが低減され、従来よりも高い製造効率でメタンを製造できる。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこれら実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更等も含まれる。
 図2と同じ実施形態の石炭ガス化反応炉を用い、化学合成設備でメタン化を行う他は図1と同じ実施形態の石炭ガス化システムによりメタンを製造した。以下、図1および図2で付した符号と同じ符号を用いて説明する。
 石炭ガス化反応炉4において、端部12aには、図2に示すように、熱分解部13の出口(端部12a)から流出する石炭ガスの温度を測定する温度測定装置20を設けてメタンの製造を行った。
 原料として、外径が0.15mm以下、水分含有量が5質量%、乾燥された石炭中に炭素70質量%を含有する石炭を用いた。
 全ガス化バーナー17から部分酸化部11に供給する石炭、酸素ガスおよび水蒸気は、石炭500(kg/h)、酸素ガス300(Nm/h)、水蒸気40(kg/h)で、それぞれ100時間供給した。
 部分酸化部11内の温度と圧力は、温度1350℃、圧力2.45MPaとし、熱分解部13内の圧力を2.45MPaとし、ガス滞留時間を2秒間とした。
 さらに、全石炭ノズル18から熱分解部13に供給する石炭は以下のように処理が行われた。
 熱分解部13の出口(端部12a)から流出する石炭ガスに含まれるタール含有量を測定した。
 タール含有量は、熱分解部13の出口(端部12a)に設置したサンプリングノズルから生成石炭ガスの一部を所定量抜き出し、吸収液にタールを吸収させた後、当該吸収液を除去することにより測定した。
 全石炭ノズル18から熱分解部13に供給する石炭を500(kg/h)で24時間供給することにより、石炭ガスの温度を800℃に制御した。
 同様に、石炭を200(kg/h)で24時間供給することにより、石炭ガスの温度を1050℃程度に制御した。
 同様に、石炭を150(kg/h)で24時間供給することにより、石炭ガスの温度を1150℃程度に制御した。
 化学合成設備9でのメタン化は、上流プロセスであるシフト反応設備7及びガス精製設備8で、石炭ガス中の水素と一酸化炭素との体積比を3:1以上にすることにより次式の反応を行い、メタンを製造した。
 CO+3H→ CH+H
 図3は、石炭ガス化反応炉4における熱分解部13の出口(端部12a)から流出する石炭ガスの温度(℃)と、石炭中の炭素のタールへの転化率(質量%)との関係を示すグラフである。
 図3の結果から、石炭ガスの温度を800℃から1150℃に変化させたところ、石炭中の炭素のタールへの転化率(石炭ガスに含まれるタール含有量)が6.9質量%から0.3質量%へ顕著に減少していることが分かる。すなわち、本発明の石炭ガスの製造方法によれば、タール含有量の少ない石炭ガスを製造できることが確認できた。
 図4は、石炭からメタンを製造する際の製造効率について、本発明の製造方法と従来の製造方法(部分酸化反応だけの一般的な気流層ガス化炉の製造方法)とを比較した計算結果を示す図である。
 一般的な気流層ガス化炉としては、現在商用化されている気流層ガス化炉として最も石炭ガス化効率が高いといわれている、Shellプロセスを参考に、石炭ガス化効率を80%(熱量ベース)として計算した。
 本発明の製造方法においては、熱分解部13の出口(端部12a)から流出する石炭ガスの温度を1100℃に制御してメタン製造を行った。
 図4中、「熱分解ガス化」は、石炭ガス化反応炉4の部分酸化部11における部分酸化と、熱分解部13における熱分解の両方を包含する。
 化合物の下に示す数字は発熱量を示し、原料の石炭の発熱量を1.00とした際、たとえば本発明においては、熱分解ガス化の反応効率(η)が85%、すなわち15%分は熱量にロスが生じ、その73%分がCO+Hに転換され、残りの12%分がCHに転換されたことを意味する。
 図4において、本発明の製造方法では、石炭を熱分解ガス化する際、石炭(1.00)から、反応効率(η)85%で、石炭ガスとしてCO+H(0.73)とCH(0.12)とが製造された。
 次に、石炭ガスをメタン化する際、CO+H(0.73)から、反応効率(η)74%で、CH(0.54)が製造され、前記熱分解ガス化により得たCH(0.12)と合わせて、石炭(1.00)からは全部でCH(0.66)が製造された。
 従来の製造方法では、石炭をガス化(部分酸化)する際、石炭(1.00)から、反応効率(η)80%で、石炭ガスとしてCO+H(0.80)が製造された。
 次に、石炭ガスをメタン化する際、CO+H(0.80)から、反応効率(η)74%で、CH(0.60)が製造され、石炭(1.00)からはCH(0.60)が製造された。
 本発明の製造方法と従来の製造方法(部分酸化反応だけの一般的な気流層ガス化炉の製造方法)との対比から、本発明の製造方法は、従来の製造方法に比べて、熱量のロスが低減されていること、及び、熱分解ガス化により製造されたメタンは化学合成における製造ロスを受けないことから、石炭からメタンを製造する効率が10%高いことが分かる(本発明の方が一般的な気流層ガス化炉を用いてメタンを製造する方法よりも発熱量の値が大きい(その差0.06))。すなわち、図4の結果から、本発明のメタンの製造方法によれば、一般的な気流層ガス化炉を用いてメタンを製造する方法よりも高い製造効率でメタンを製造できることが確認できた。
 4 石炭ガス化反応炉
 11 部分酸化部(下部反応容器)
 12 貫通孔
 12a 端部
 13 熱分解部(上部反応容器)
 17 ガス化バーナー
 18 石炭ノズル
 20 温度測定装置

Claims (2)

  1.  内部に収容空間が形成された下部反応容器と、前記下部反応容器の上方に設けられた上部反応容器とを備え、前記上部反応容器は、前記下部反応容器の前記収容空間と連通するとともに上下方向に延びる貫通孔が形成された石炭ガス化反応炉を用いて、水素ガスおよび一酸化炭素ガスを含む石炭ガスの製造方法であって、
     部分酸化反応により高温ガスを発生させるために、前記下部反応容器に第一の石炭、酸素および水蒸気を供給する工程と、
     第二の石炭を熱分解させるために、前記上部反応容器に前記高温ガスを導入しながら前記第二の石炭を供給する工程と、
     前記上部反応容器の出口から流出する石炭ガスの温度を1000℃以上に制御するために、前記上部反応容器に供給する前記第二の石炭の供給量の増減を調節する工程とを備える石炭ガスの製造方法。
  2.  請求項1に記載の石炭ガスの製造方法であって、
     前記石炭ガスをメタン化するメタンの製造方法。
PCT/JP2012/062142 2011-07-25 2012-05-11 石炭ガスの製造方法およびメタンの製造方法 WO2013014995A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2012288216A AU2012288216B2 (en) 2011-07-25 2012-05-11 Production method of coal gas and methane
CN201280036566.9A CN103703111B (zh) 2011-07-25 2012-05-11 煤气的制造方法以及甲烷的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011162102A JP5827511B2 (ja) 2011-07-25 2011-07-25 石炭ガスの製造方法およびメタンの製造方法
JP2011-162102 2011-07-25

Publications (1)

Publication Number Publication Date
WO2013014995A1 true WO2013014995A1 (ja) 2013-01-31

Family

ID=47600855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062142 WO2013014995A1 (ja) 2011-07-25 2012-05-11 石炭ガスの製造方法およびメタンの製造方法

Country Status (4)

Country Link
JP (1) JP5827511B2 (ja)
CN (1) CN103703111B (ja)
AU (1) AU2012288216B2 (ja)
WO (1) WO2013014995A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10668167B2 (en) 2016-06-02 2020-06-02 Abbvie Inc. Glucocorticoid receptor agonist and immunoconjugates thereof
US10818608B2 (en) 2017-04-10 2020-10-27 Credo Technology Group Limited Cage-shielded interposer inductances

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016173248A1 (en) * 2015-04-30 2016-11-03 Beijing Shantie Technology Co., Ltd. Flash ironmaking system and method
CN106336903B (zh) * 2016-10-21 2019-04-16 中国化学工程第六建设有限公司 煤制气的发生装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121604A (en) * 1976-03-01 1977-10-13 Gen Electric Process for conversion of coal into synthetic natural gas
JPH11302666A (ja) * 1998-04-15 1999-11-02 Nippon Steel Corp 石炭の気流床ガス化方法および装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN168599B (ja) * 1985-11-29 1991-05-04 Dow Chemical Co
CN1226395C (zh) * 2001-11-08 2005-11-09 国家电力公司热工研究院 两段式干煤粉气化炉
US8460410B2 (en) * 2008-08-15 2013-06-11 Phillips 66 Company Two stage entrained gasification system and process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121604A (en) * 1976-03-01 1977-10-13 Gen Electric Process for conversion of coal into synthetic natural gas
JPH11302666A (ja) * 1998-04-15 1999-11-02 Nippon Steel Corp 石炭の気流床ガス化方法および装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10668167B2 (en) 2016-06-02 2020-06-02 Abbvie Inc. Glucocorticoid receptor agonist and immunoconjugates thereof
US10818608B2 (en) 2017-04-10 2020-10-27 Credo Technology Group Limited Cage-shielded interposer inductances

Also Published As

Publication number Publication date
AU2012288216A1 (en) 2014-03-06
JP2013023653A (ja) 2013-02-04
AU2012288216B2 (en) 2015-07-02
JP5827511B2 (ja) 2015-12-02
CN103703111A (zh) 2014-04-02
CN103703111B (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
US9481839B2 (en) Hot oxygen nozzle and uses thereof in gasifiers
CA2755353C (en) Two stage dry feed gasification system and process
JP6371809B2 (ja) 二重急冷を伴う二段階ガス化
JP2015505292A (ja) 二酸化炭素の一酸化炭素への変換方法及び装置
CN102492478A (zh) 新型两段式多喷嘴加压气化炉及其气化方法
JP2010121049A (ja) 有機物原料のガス化装置及び方法
JP5827511B2 (ja) 石炭ガスの製造方法およびメタンの製造方法
JP2009120633A (ja) 石炭熱分解ガス化炉の操業方法
JP5450799B2 (ja) 石炭ガス化システムおよび石炭ガス化方法
JP5386635B2 (ja) 石炭ガス化反応炉の運転方法および石炭ガス化反応炉
WO2010063205A1 (zh) 利用生物质制造合成气的高温气化工艺方法及系统
JP4438791B2 (ja) アンモニア製造方法及び装置
JP2014074144A (ja) 三塔式循環流動層による石炭/バイオマス共ガス化方法及びその装置
JP3904161B2 (ja) 水素・一酸化炭素混合ガスの製造方法および製造装置
KR20130106853A (ko) 간접가열 가스화 동안 코크스를 생산하기 위한 방법 및 장치
US20230203389A1 (en) Method for gasification of carbonaceous feedstock and device for implementing same
CN104927922B (zh) 移动床加压煤气化生产富甲烷煤气的工艺和装置
CN103484180A (zh) 一种燃煤自供热的催化气化制天然气的工艺和系统
AU2012256839B2 (en) Coal gasification system
JP5552157B2 (ja) 石炭ガス化炉
JPH11302665A (ja) バイオマスと化石燃料を用いたガス化方法
CN205953496U (zh) 一种制备富氢气体和电石的系统
JP5851116B2 (ja) 石炭ガス化システム
JP4863889B2 (ja) 石炭の水素化熱分解方法
KR101416154B1 (ko) 복합식 가스화장치 및 가스화방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12818351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012288216

Country of ref document: AU

Date of ref document: 20120511

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12818351

Country of ref document: EP

Kind code of ref document: A1