WO2013014801A1 - 活性エネルギー線反応硬化型接着剤組成物、ラベルおよびボトル - Google Patents

活性エネルギー線反応硬化型接着剤組成物、ラベルおよびボトル Download PDF

Info

Publication number
WO2013014801A1
WO2013014801A1 PCT/JP2011/067363 JP2011067363W WO2013014801A1 WO 2013014801 A1 WO2013014801 A1 WO 2013014801A1 JP 2011067363 W JP2011067363 W JP 2011067363W WO 2013014801 A1 WO2013014801 A1 WO 2013014801A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive composition
active energy
energy ray
polyester resin
curable adhesive
Prior art date
Application number
PCT/JP2011/067363
Other languages
English (en)
French (fr)
Inventor
泰伸 須堯
秀之 川井
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to PCT/JP2011/067363 priority Critical patent/WO2013014801A1/ja
Publication of WO2013014801A1 publication Critical patent/WO2013014801A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to an active energy ray reaction curable adhesive composition containing at least a copolymerized saturated polyester resin, a (meth) acrylate monomer, and a photoinitiator. More specifically, an adhesive composition for bottle labels that is particularly excellent in adhesiveness to bottle labels mainly composed of a film made of an aromatic resin such as polyethylene terephthalate (hereinafter sometimes abbreviated as PET), or a cleaning property during recycling. It is related with the adhesive composition for bottle labels which is also excellent.
  • (meth) acrylate refers to both acrylate and methacrylate.
  • An active energy ray reaction curable adhesive is generally a (meth) acrylate monomer dissolved in a (meth) acrylic resin and further blended with a photoinitiator. It is used after being reactively cured by irradiation with active energy rays such as ultraviolet rays (hereinafter sometimes abbreviated as UV) and electron beams (hereinafter sometimes abbreviated as EB).
  • active energy rays such as ultraviolet rays (hereinafter sometimes abbreviated as UV) and electron beams (hereinafter sometimes abbreviated as EB).
  • Solvent-soluble adhesives inevitably involve solvent volatilization.
  • the (meth) acrylate monomer is blended as a solvent and reactive monomer, and since it reacts and solidifies upon irradiation with the active energy ray, there is no emission of volatile organic matter, Even in environments where organic solvents cannot be used, they are used in a wide range of fields as so-called solventless adhesives. In particular, it is recognized as an adhesive suitable for packaging foods and pharmaceuticals.
  • Patent Document 1 and Patent Document 2 propose a heat shrink film in which an adhesive portion made of an ultraviolet curable adhesive having a viscosity at 90 ° C. of 3000 mPa ⁇ s or more is proposed. Although the strength can be improved, it does not improve the final adhesive strength after curing.
  • Patent Document 3 proposes a combination of two types of copolymer polyesters having different glass transition temperatures and a monofunctional (meth) acrylate monomer having an aromatic ring. Although this proposal can certainly balance the temporary adhesive force at the time of winding and the final adhesive force after curing, the adhesiveness is still insufficient.
  • the adhesive layer is often whitened by phase separation after the adhesive is applied and cured, and when whitening occurs, the quality of the bottle label deteriorates.
  • the (meth) acrylate monomer having an aromatic ring such as phenoxyethyl acrylate and triloxyethyl acrylate used in Patent Document 3 has relatively good solubility in an aromatic resin, but as described above, It is difficult to obtain an adhesive composition having good adhesiveness.
  • An object of the present invention is to provide an active energy ray reaction curable adhesive composition that exhibits high adhesion to an aromatic film and has good solution stability and does not whiten even after reaction curing.
  • An active energy ray-curable adhesive composition capable of peeling an adhesive layer, a label adhered using the same, and a bottle equipped with the label are provided.
  • the present inventors have achieved a high adhesive strength by using a specific polyester resin and a specific (meth) acrylate monomer.
  • the inventors have found that an active energy ray reaction curable adhesive composition that is excellent and has good solution stability and is transparent even after reaction curing can be obtained, and the present invention has been achieved. It has also been found that the adhesive layer can be easily peeled off by alkali washing by imparting a certain range of concentrations of carboxyl groups to the polyester resin.
  • the present invention is the following active energy ray reaction curable adhesive composition and an adhesive for bottle labels using the same.
  • a resin composition containing at least a copolymerized saturated polyester resin, a (meth) acrylate monomer, and a photoinitiator when the total of the copolymerized saturated polyester resin and the (meth) acrylate monomer is 100 parts by mass 20 to 50 parts by mass of the copolymerized saturated polyester resin and 50 to 80 parts by mass of the (meth) acrylate monomer are blended, and the total amount of the polyhydric alcohol components constituting the copolymerized saturated polyester resin is 100 mol%.
  • the active energy ray reaction curable adhesive composition of the present invention has good solution stability and excellent temporary adhesive strength, and is transparent after curing reaction and has high adhesive strength. When used for adhesion of shrinkable labels, it is excellent in maintaining adhesiveness after shrinkage. Therefore, it is also useful as an adhesive composition for shrink bottle labels. Moreover, if it is an active energy ray reaction hardening type adhesive composition using the specific polyester resin with a large acid value, an adhesive layer can be easily peeled by alkali washing. For this reason, a label adhered using such an adhesive composition and a bottle equipped with the label can be easily recycled.
  • the copolymerized saturated polyester resin used in the present invention needs to be blended in an amount of 20 to 50 parts by mass per 100 parts by mass of the total mass of the copolymerized saturated polyester resin of the present invention and the (meth) acrylate monomer. 45 parts by mass is preferably compounded, and more preferably 30 to 40 parts by mass. If the blending ratio of the copolymerized saturated polyester resin is too low, the adhesive strength to an aromatic film or the like tends to be low, and if it is too high, the viscosity of the adhesive composition tends to be too high and the handling tends to be difficult. .
  • diethylene glycol is required to be 5 mol% or more and 80 mol% or less, preferably 10 mol% or more. It is 70 mol% or less, More preferably, it is 15 mol% or more and 65 mol% or less, More preferably, it is 20 mol% or more and 60 mol% or less. If the ratio of diethylene glycol is too low, the adhesiveness to an aromatic film such as a PET film may be lowered, and if too high, the water resistance may be lowered.
  • the components other than diethylene glycol constituting the copolymerized saturated polyester resin are not particularly limited, and general-purpose acid components and glycol components can be used.
  • the acid component examples include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalene dicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenyletherdicarboxylic acid and other aromatic dibasic acids, p-oxybenzoic acid, Aromatic oxycarboxylic acids such as p- (hydroxyethoxy) benzoic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, dimer acid, and cyclohexanedicarboxylic acid. Two or more selected may be used in combination.
  • the acid component is preferably composed mainly of an aromatic dibasic acid, and has an effect of increasing the adhesive force to an aromatic film such as a PET film.
  • the total of terephthalic acid and isophthalic acid is preferably 75% by mass or more of the acid component constituting the copolymerized saturated polyester resin, more preferably 90% by mass or more, and still more preferably 95% by mass or more. .
  • glycol component examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, and 3-methylpentanediol.
  • high molecular weight glycols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polycaprolactone, and polycarbonate diol may be copolymerized. Moreover, you may use together 2 or more types chosen from these.
  • Examples of the copolymerized saturated polyester resin used in the present invention include 5-sodium sulfoisophthalic acid, 5-potassium sulfoisophthalic acid, sodium sulfoterephthalic acid, 2-sodium sulfo-1,4-butanediol, and 2,5-dimethyl.
  • An acid component and / or glycol component having a sulfonic acid metal base such as -3-sodium sulfo-2,5-hexanediol may be copolymerized. Adhesion may be improved by copolymerizing an acid component and / or glycol component having a sulfonic acid metal base.
  • a tri- or higher functional compound such as trimellitic anhydride, glycerin, trimethylolpropane, pentaerythritol may be copolymerized, and the adhesiveness is increased. May improve.
  • a terminal-modified component such as a lactone or an acid anhydride may be introduced, and the adhesion may be improved.
  • the copolymerized saturated polyester resin used in the present invention has a specific gravity at 30 ° C. of 1.30 or more and 1.40 or less, preferably 1.33 or more and 1.38 or less. If the specific gravity at 30 ° C. is too low, the adhesiveness to aromatic films such as PET film may be reduced. Conversely, if the specific gravity is too high, the solubility in (meth) acrylate monomer tends to be low, and it is dissolved. Even so, the solution stability may deteriorate. In order to set the specific gravity at 30 ° C.
  • the copolymerized saturated polyester resin to 1.30 or more and 1.40 or less, for example, only an aromatic dicarboxylic acid is used as the acid component, and ethylene glycol and diethylene glycol are used as the glycol component, and the ratio of diethylene glycol is changed. What is necessary is just to be 20 mol% or more.
  • the copolymerized saturated polyester resin used in the present invention has an acid value of 100 equivalents / t or more per ton of resin when the adhesive composition of the present invention is used for a label in which peelability by alkali cleaning is important. It is preferably less than 500 equivalents / t. More preferably, it is 150 equivalent / t or more and less than 300 equivalent / t. If the acid value is too low, peeling by alkali cleaning tends to be difficult. Conversely, if the acid value is too high, the polarity of the polyester will increase, and the adhesiveness may deteriorate due to the influence of steam etc. in the label shrinking process. is there.
  • a polyester resin mainly composed of hydroxyl terminal is produced by a conventional method, and then an acid anhydride is added to perform terminal modification. Just do it.
  • Preferred examples of the acid anhydride used here include trimesic anhydride, trimellitic anhydride, ethylene glycol bistrimellitic dianhydride, phthalic anhydride, pyromellitic anhydride, succinic anhydride, 1,8-naphthalic anhydride 1,2-cyclohexanedicarboxylic anhydride, cyclohexane-1,2,3,4-tetradicarboxylic acid 3,4-anhydride, ethylene glycol bisanhydro trimellitate, 5- (2,5-dioxotetrahydro- 3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, naphthalene 1,8: 4,5-tetracarboxylic dianhydride, benzophenone tetracarboxylic dianhydride, etc. .
  • the adhesive composition of this invention is used for the label where the peelability by alkali washing is not important, the acid value of the adhesive
  • the copolymerized saturated polyester resin used in the present invention may be composed of only one type of copolymerized saturated polyester resin, or may be composed of two or more types in combination.
  • the (meth) acrylate monomer constituting the active energy ray reaction curable adhesive composition of the present invention has an aromatic ring and a hydroxyl group.
  • a high adhesive force is obtained, the solubility of the copolymerized saturated polyester resin is good, the solution stability of the adhesive composition is good and the reaction cured
  • the adhesive layer is also transparent.
  • the (meth) acrylate monomer used in the present invention needs to be blended in an amount of 50 to 80 parts by mass per 100 parts by mass of the total mass of the copolymerized saturated polyester resin of the present invention and the (meth) acrylate monomer. 75 parts by weight is preferably blended, and 60 to 70 parts by weight is more preferred. If the blending ratio of the (meth) acrylate monomer is too low, the viscosity of the composition tends to be too high and the handling tends to be difficult, and the final adhesive force after curing tends to be low due to insufficient curing. On the other hand, when the blending ratio of the (meth) acrylate monomer is too high, the viscosity becomes too low and the temporary fixing adhesive force tends to be lowered.
  • Examples of the (meth) acrylate monomer used in the present invention include 2-hydroxy-3-phenoxypropyl (meth) acrylate, p-methoxyphenoxyethyl (meth) acrylate, o-methoxyphenoxyethyl (meth) acrylate, 2- (meth) Acryloyloxyethyl-2-hydroxypropyl phthalate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, (meth) acrylic acid adduct of bisphenol A diglycidyl ether, (meth) acrylic acid of bisphenol F diglycidyl ether Additives and the like.
  • 2-hydroxy-3-phenoxypropyl acrylate and 2-hydroxy-3-phenoxypropyl methacrylate are preferred, and 2-hydroxy-3-phenoxypropyl methacrylate is most preferred because of the solubility and ease of handling of the copolymerized saturated polyester resin used in the present invention.
  • 2-hydroxy-3-phenoxypropyl acrylate is most preferred because of the solubility and ease of handling of the copolymerized saturated polyester resin used in the present invention.
  • the number average molecular weight of the copolymerized saturated polyester resin used in the present invention is preferably from 8000 to 40000. If the molecular weight is too low, the adhesiveness to an aromatic film such as a PET film may be reduced. On the other hand, if the molecular weight is too high, the viscosity of the composition becomes too high and handling becomes difficult. There is a tendency for the solubility of to decrease. More preferably, it is 10,000 or more and 30000 or less.
  • the glass transition temperature of the copolymerized saturated polyester resin used in the present invention (hereinafter sometimes abbreviated as Tg) is not particularly limited, but if it is a resin having a very low Tg, it can be cured as an adhesive. Since there exists a possibility that it may protrude from an adhesive layer with a heat
  • the photoinitiator used in the present invention is not particularly limited.
  • Benzyls such as benzyl, diphenyl disulfide, tetramethylthiuram disulfide, 2-chlorothioxanthone, 2-methylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2, And sulfur-containing compounds such as thioxanthones such as 4-diisopropylthioxanthone and 1-chloro-4-propoxythioxanthone, and pigments such as methylene blue, eosin and fluorescein.
  • thioxanthones such as 4-diisopropylthioxanthone and 1-chloro-4-propoxythioxanthone
  • pigments such as methylene blue, eosin and fluorescein.
  • photoinitiators may be used alone or in combination of two or more.
  • the compounding quantity of these photoinitiators is 0.05 mass part or more and 20 mass parts or less of the whole resin composition, More preferably, it is 0.5 mass part or more and 10 mass parts or less.
  • the viscosity of the adhesive composition of the present invention is 5 to 150 dPa ⁇ s, preferably 15 to 80 dPa ⁇ s, more preferably 25 to 75 dPa ⁇ s at a temperature of 70 ° C. and an angular velocity of 5 rad / s. . If the viscosity is too low, the temporary fixing adhesive force when applying the adhesive composition to the adherend tends to be inferior, and dripping tends to occur during application. On the other hand, if it is too high, coating tends to be difficult and handling tends to be difficult.
  • the adhesive composition of the present invention can be used for bonding of labels of PET bottles and other bottles used in large quantities for beverages and the like.
  • Aromatic resin films such as PET and polystyrene are often used for these labels, and the adhesive composition of the present invention exhibits high adhesion to labels made of these materials.
  • the material is not limited to these materials.
  • this method is used. It is also suitable for bonding such heat shrink labels.
  • the adhesive composition of the present invention may be applied to an adherend so that the thickness is about 1 to 30 ⁇ m and irradiated with UV of about 50 to 300 mJ / cm 2 .
  • used PET bottles are required to be recycled from the environmental aspect. Cleaning is performed at the time of recycling, and an alkaline warm aqueous solution is generally used as the cleaning liquid.
  • the adhesive composition of the present invention in the case where the acid value is in the above preferred range can easily peel off the adhesive layer by washing with alkaline warm water, so a label adhered using this adhesive composition is attached.
  • the bottles that have been used can be easily recycled by a recycling process including an alkali cleaning process that has been used conventionally, or by slightly changing cleaning conditions such as cleaning time, alkali concentration, and temperature.
  • parts means parts by mass.
  • the sample resin was dissolved or diluted in tetrahydrofuran so that the resin concentration was about 0.5% by mass, and filtered through a polytetrafluoroethylene membrane filter having a pore size of 0.5 ⁇ m to obtain a GPC measurement sample.
  • the GPC measurement of the sample was performed.
  • the number average molecular weight in terms of polystyrene of the sample resin was determined, and this was used as the number average molecular weight of the sample resin in the present invention.
  • shodex registered trademark
  • KF-802, 804L, and 806L manufactured by Showa Denko KK were used.
  • Acid value 0.2 g of a sample was dissolved in chloroform, titrated with 0.1 mol / l potassium hydroxide-ethanol solution using phenolphthalein as an indicator, and indicated as the number of equivalents per ton (equivalents / t).
  • Polyester (a-1) has a composition of 50 mol% terephthalic acid, 48 mol% isophthalic acid, 2 mol% 5-sodium sulfoisophthalic acid as an acid component, 40 mol% ethylene glycol as a diol component, and 60 mol% diethylene glycol.
  • the glass transition temperature was 41 ° C.
  • the number average molecular weight was 25000
  • the specific gravity was 1.34 at 30 ° C.
  • Polyester (b-1) > Polyester (a-1) and 376 parts of terephthalic acid, 368 parts of isophthalic acid, 8.7 parts of trimellitic anhydride, 255 parts of ethylene glycol, 403 parts of diethylene glycol, 403 parts of tetrabutyl titanate 0 3 parts were added, and pressure esterification reaction was carried out at 190 to 240 ° C. at 250 kPa for 3 hours. After completion of the esterification reaction, the reaction system was heated from 240 ° C. to 260 ° C. and the pressure inside the system was slowly reduced to 500 Pa over 60 minutes, and a polycondensation reaction was performed at 130 Pa or less for 60 minutes.
  • Polyester (b-1) comprises 50 mol% terephthalic acid as the acid component, 49 mol% isophthalic acid, 1 mol% trimellitic acid, 35 mol% ethylene glycol and 65 mol% diethylene glycol as the diol component, and 1 as TMA for post-addition. It had a mol% composition.
  • the glass transition temperature was 34 ° C.
  • the number average molecular weight was 18000
  • the specific gravity was 1.33 at 30 ° C.
  • Polyester (c-1) was synthesized in the same manner as polyester (b-1) except that only the charged composition was changed. Table 1 shows the measurement results of the composition and properties of the obtained polyester.
  • Polyesters (d-1), (f-1) to (j-1) are the same as polyester (b-1), and polyester (f-1) is the same as polyester (a-1).
  • synthesis was performed by changing only the charged composition.
  • Tables 1 and 2 show the measurement results of the composition and properties of the obtained polyester.
  • polyester (e-1) It was.
  • Polyester (e-1) comprises 49 mol% terephthalic acid, 49 mol% isophthalic acid, 2 mol% trimellitic acid as the acid component, 70 mol% ethylene glycol, 30 mol% diethylene glycol as the diol component, and post-added ⁇ -caprolactone As a composition of 10 mol%.
  • the glass transition temperature was 38 ° C.
  • the number average molecular weight was 16000
  • the specific gravity was 1.35 at 30 ° C.
  • TPA terephthalic acid
  • IPA isophthalic acid
  • GCM 5-sodium sulfoisophthalic acid
  • SA sebacic acid
  • TMA trimellitic acid
  • DEG diethylene glycol EG: ethylene glycol
  • NPG neopentyl glycol
  • CL ⁇ -caprolactone
  • Example 1 After mixing 30 parts of polyester (a-1) and 64 parts of 2-hydroxy-3-phenoxypropyl acrylate to completely dissolve polyester (a-1), 3 parts of 1-hydroxycyclohexyl phenyl ketone as a photoinitiator Then, 3 parts of 2-hydroxy-2-methylpropiophenone was blended to obtain an active energy ray reaction curable adhesive composition. Subsequently, the characteristics of the adhesive composition were evaluated by a method described separately. Table 3 shows the composition of the adhesive composition and the evaluation results of the adhesive composition characteristics.
  • Tables 3 and 4 show the composition of the adhesive composition and the evaluation results of the adhesive composition characteristics.
  • ⁇ Method for evaluating properties of adhesive composition> ⁇ Viscosity> Using an rheometer AR550 manufactured by TA Instruments, the adhesive composition was sandwiched and heated in an aluminum pan with a diameter of 25 mm, and the angular velocity was changed from 250 rad / s to 1 rad / s by fixing the temperature at 70 ° C. The dynamic viscosity was measured, and the value of the dynamic viscosity when the angular velocity 5 rad / s was taken as the viscosity in this patent.
  • Transmittance 95% or more
  • Transmittance 90% or more and less than 95%
  • Transmittance less than 90%
  • Thickness 25 ⁇ m (according to JIS C2318)
  • Transparency 5% haze (according to JIS K7136)
  • Shrinkage The shrinkage when immersed in hot water at 90 ° C. for 10 seconds is 40% in the vertical direction and 7% in the horizontal direction.
  • ⁇ Adhesion evaluation method> Using the active energy ray reaction curable adhesives obtained in the examples and comparative examples, a laminated laminate film was prepared in the same manner as in the above ⁇ transparent transparency evaluation method>, and then the laminated laminated film was cut to a width of 15 mm. A tensile test was performed at a temperature of 23 ° C. and a humidity of 50% in a T-shaped (180 °) peeling mode and a tensile speed of 100 mm / min to measure the adhesive strength after curing.
  • ⁇ Shrinkage resistance evaluation method> A laminated laminate film obtained in the same manner as in the above ⁇ Method for evaluating transparency after curing> was cut to a width of 15 mm to obtain a strip-shaped test piece having a length of 100 mm. This was poured into warm water at 90 ° C., allowed to shrink for 30 seconds, and then allowed to cool at room temperature. The edge of the test piece cut to a width of 15 mm was observed and evaluated according to the following four levels. (Double-circle): A blur cannot be detected visually from the end surface in the width direction. ⁇ : Swelling of less than 1 mm in the width direction from the end face. ⁇ : Swelling of 1 mm or more and less than 2 mm in the width direction from the end face. X: 2 mm or more of rolling in the width direction from the end face, or peeling of the entire surface.
  • polyester (a-2) was returned to normal pressure with nitrogen, cooled to 220 ° C., 17 parts of trimellitic anhydride was added, and an addition reaction was performed to obtain polyester (a-2).
  • Polyester (a-2) comprises 50 mol% terephthalic acid as an acid component, 48 mol% isophthalic acid, 2 mol% 5-sodiumsulfoisophthalic acid, 40 mol% ethylene glycol as a diol component, 60 mol% diethylene glycol, and post-addition. It had a composition of 2 mol% as TMA.
  • the glass transition temperature was 41 ° C.
  • the number average molecular weight was 26000
  • the specific gravity was 1.35 at 30 ° C.
  • the acid value was 165 equivalent / t.
  • polyester (b-2) After completion of the polycondensation, the inside of the can was returned to normal pressure with nitrogen and then cooled to 220 ° C., and 17 parts of trimellitic anhydride, ethylene glycol bistrimellitic dianhydride (Rikacide (registered trademark) TMEG manufactured by Shin Nippon Rika Co., Ltd.) -200 (hereinafter sometimes abbreviated as TMEG) 18 parts were added to carry out an addition reaction to obtain polyester (b-2).
  • TMEG ethylene glycol bistrimellitic dianhydride
  • Polyester (b-2) has an acid component of 50 mol% terephthalic acid, 49 mol% isophthalic acid, 1 mol% trimellitic acid, 35 mol% ethylene glycol, 65 mol% diethylene glycol as a diol component, and 2 TMA as a post-addition. It had a composition of 1 mol% as mol% and TMEG.
  • the glass transition temperature was 34 ° C.
  • the number average molecular weight was 18000
  • the specific gravity was 1.34 at 30 ° C.
  • the acid value was 280 equivalent / t.
  • polyesters (c-2) to (e-2) and (g-2) to (j-2) were synthesized in the same manner as polyester (b-2) except that only the charged composition was changed.
  • Table 5 shows the measurement results of the composition and properties of the obtained polyester.
  • polyester (f-2) ⁇ Synthesis example of polyester (f-2)>
  • a reaction vessel equipped with a stirrer, thermometer, and distillation condenser 440 parts of dimethyl terephthalate, 422 parts of dimethyl isophthalate, 27 parts of dimethyl ester of 5-sodium sulfoisophthalic acid, 332 parts of ethylene glycol, 378 parts of diethylene glycol, tetra 0.3 parts of butyl titanate was added, and a transesterification reaction was carried out at 170 to 220 ° C. under normal pressure for 3 hours.
  • the temperature of the reaction system was raised from 220 ° C. to 260 ° C., and the pressure inside the system was slowly reduced to 500 Pa over 60 minutes. Further, a polycondensation reaction was performed at 130 Pa or less for 60 minutes to obtain polyester (f-2).
  • Polyester (f-2) has a composition of 50 mol% terephthalic acid, 48 mol% isophthalic acid, 2 mol% 5-sodiumsulfoisophthalic acid as an acid component, 40 mol% ethylene glycol as a diol component, and 60 mol% diethylene glycol.
  • the glass transition temperature was 40 ° C.
  • the number average molecular weight was 25000
  • the specific gravity was 1.36 at 30 ° C.
  • the acid value was 10 equivalent / t.
  • Polyesters (f-2) to (j-2) are copolymerized saturated polyester resins that can be used in the present invention in applications where the peelability due to alkali washing is not considered. For convenience, it was treated as a comparative copolyester.
  • TPA, IPA, GCM, SA, TMA, DEG, EG, and NPG have the same meaning as described above
  • TMEG is ethylene glycol bistrimellitic dianhydride (Ricacid TMEG-200 manufactured by Shin Nippon Rika Co., Ltd.).
  • Example 8 30 parts of polyester (a-2) and 64 parts of 2-hydroxy-3-phenoxypropyl acrylate were mixed to completely dissolve polyester (a-2), and then 3 parts of 1-hydroxycyclohexyl phenyl ketone as a photoinitiator Then, 3 parts of 2-hydroxy-2-methylpropiophenone was blended to obtain an active energy ray reaction curable adhesive composition. Subsequently, the characteristics of the adhesive composition were evaluated by a method described separately. Table 7 shows the composition of the adhesive composition and the evaluation results of the adhesive composition characteristics.
  • Example 9 to 12 Active energy ray reaction curable adhesive compositions of Examples 9 to 12 and Comparative Examples 9 to 18 were obtained in the same manner as in Example 8.
  • Tables 7 and 8 show the composition of the adhesive composition and the evaluation results of the adhesive composition characteristics.
  • the viscosity, solution stability evaluation method, post-curing transparency evaluation method, adhesion evaluation method, and shrinkage resistance adhesion evaluation method are the same as those described above.
  • ⁇ Alkali detergency evaluation method> The active energy ray reaction curable adhesives obtained in Examples and Comparative Examples were applied on a transparent PET film (Toyobo Ester (registered trademark) film E5101) having a thickness of 50 ⁇ m so as to have a thickness of 5 ⁇ m. ) UV irradiation was carried out using a Toshiba UV lamp H8000L / 2 so that the irradiation amount was 150 mJ / cm 2 .
  • the adhesive-coated film was cut into a width of 30 ⁇ 15 mm, immersed in a 1.5% aqueous sodium hydroxide solution, heated to 80 ° C. and stirred for 10 minutes, and the detergency was evaluated in the following four stages.
  • X 50 mass% or more of the adhesive remains in the PET film.
  • Examples 8 to 12 have superior performance in terms of solution stability, adhesion, transparency after curing, shrink-resistant adhesion, and alkali cleaning properties compared to Comparative Examples 9 to 18. I understand.
  • the active energy ray reaction curable adhesive composition of the present invention is transparent and high in adhesive strength even after reaction curing, and is excellent in maintaining adhesiveness after shrinkage when used for adhesion of shrinkable labels. Therefore, it is particularly suitable for bonding a heat-shrinkable label made of an aromatic resin such as a PET film, and is useful as an adhesive for a shrinkable bottle label. Furthermore, the adhesive composition using the copolymerized saturated polyester resin having a specific acid value can easily peel the adhesive layer by washing with alkaline warm water. Therefore, it is particularly suitable for bonding heat-shrinkable labels made of aromatic resins such as PET films, and when used as an adhesive for shrinkable bottle labels, a bolt that can be easily recycled can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

 硬化後透明でかつ芳香族系のフィルムに対する高い接着性を示す活性エネルギー線反応硬化型接着剤組成物およびこれを用いたボトルラベル用接着剤を提供する。少なくとも共重合飽和ポリエステル樹脂と(メタ)アクリレートモノマーと光開始剤とを含有する樹脂組成物において、前記共重合飽和ポリエステル樹脂と前記(メタ)アクリレートモノマーの合計を100質量部としたとき前記共重合飽和ポリエステル樹脂が20~50質量部、前記(メタ)アクリレートモノマーが50~80質量部配合されており、前記共重合飽和ポリエステル樹脂を構成する多価アルコール成分の全量を100モル%としたとき、ジエチレングリコールが5~80モル%であり、前記共重合飽和ポリエステル樹脂の30℃における比重が1.30~1.40であり、前記(メタ)アクリレートモノマーが芳香環と水酸基を有するものであることを特徴とする活性エネルギー線反応硬化型接着剤組成物。

Description

活性エネルギー線反応硬化型接着剤組成物、ラベルおよびボトル
 本発明は少なくとも共重合飽和ポリエステル樹脂と(メタ)アクリレートモノマーと光開始剤とを含有する活性エネルギー線反応硬化型接着剤組成物に関する。さらに詳しくはポリエチレンテレフタレート(以下、PETと略記する場合がある)等の芳香族系樹脂からなるフィルムから主としてなるボトルラベルに対する接着性に特に優れるボトルラベル用接着剤組成物、あるいはリサイクル時の洗浄性にも優れるボトルラベル用接着剤組成物に関する。なお、本発明において、(メタ)アクリレートとは、アクリレートとメタクリレートの双方を指すものである。
 活性エネルギー線反応硬化型の接着剤は、一般的には(メタ)アクリレートモノマーに(メタ)アクリル系樹脂を溶解しさらに光開始剤を配合したものであり、被接着材料に塗布された後、紫外線(以下、UVと略記する場合がある)や電子線(以下、EBと略記する場合がある)などの活性エネルギー線を照射して反応硬化させて使用される。
 溶剤溶解型の接着剤は接着に際して溶剤の揮散を必然的に伴う。これに対し活性エネルギー線反応硬化型の接着剤においては(メタ)アクリレートモノマーが溶剤兼反応性モノマーとして配合されており、活性エネルギー線の照射により反応し固化するので揮発性有機物の排出がなく、有機溶剤の使用できない環境でも、いわゆる無溶剤型の接着剤として幅広い分野で利用されている。特に食品や医薬品の包装に適する接着剤であると認識されている。
 ところが、飲料用等に大量に使用されているペットボトルやその他のボトル類のラベルには、PETやポリスチレンのような芳香族樹脂系のフィルムが使用されることが多く、(メタ)アクリル系樹脂と(メタ)アクリレートモノマーから主としてなる接着剤では接着力が不足するという問題がある。また、近年フィルムをボトルに巻いた後、熱収縮させボトルの形状に沿わせる手法を取ることが多く、ますます高い接着力が必要になっている。
 特許文献1および特許文献2には90℃における粘度が3000mPa・s以上の紫外線硬化型接着剤からなる接着部が形成されている熱収縮フィルムが提案されているが、巻きつけ時の仮止め接着力を向上させることはできるが、硬化後の最終的な接着力を向上させるものではない。
 接着力の改良方策としては、例えば、特許文献3では、ガラス転移温度の異なる2種の共重合ポリエステルと芳香環を有する単官能(メタ)アクリレートモノマーとの組み合わせが提案されている。この提案では、確かに巻きつけ時の仮止め接着力と硬化後の最終的な接着力のバランスが取れるが、接着性に関してはまだまだ不十分である。
 一般的に被着体と接着剤の溶解度パラメータ(SP値)が近いほど接着力の向上には有利であるとされており、従って芳香族系のフィルムに適する接着剤を得るためには芳香族系樹脂を配合することが有利であることが推定できる。しかしながら、芳香族系樹脂は一般に(メタ)アクリレートモノマーへの溶解性が低く、ほとんどの(メタ)アクリレートモノマーへは溶解しないか、溶解しても溶液安定性が乏しく、相分離したり白濁することがあり透明な接着剤が得られないことが多い。
 また、未硬化状態では透明な接着剤が得られても、接着剤を塗布、硬化した後に相分離して接着層が白化することが多く、白化を起こすとボトルラベルの品位が悪くなる。
 特許文献3で使用されているフェノキシエチルアクリレートやトリロキシエチルアクリレート等の芳香環を有する(メタ)アクリレートモノマーは比較的芳香族系樹脂の溶解性は良好であるが、これでは先に述べたとおり良好な接着性をもった接着剤組成物を得ることは困難である。
 他方、使用済みのペットボトルにはリサイクルする工程があり、そのためにはペットボトルの洗浄の際に接着剤が容易にペットボトルから剥がれる必要がある。接着力が良好であり、なおかつ洗浄により接着層をペットボトルから容易に剥がすことのできる接着剤はいまだ提案されていない。
特開2007-308164号公報 特開2007-308165号公報 特許3758085号公報
 本発明の目的は芳香族系のフィルムに対する高い接着性を示しかつ溶液安定性良好で反応硬化させた後でも白化することのない活性エネルギー線反応硬化型接着剤組成物や、さらに洗浄により容易に接着層を剥離することができる活性エネルギー線硬化型接着剤組成物、およびこれらを用いて接着されたラベル、さらには前記ラベルを装着されたボトルを提供することにある。
 本発明者等は、本発明の目的を達成すべく活性エネルギー線反応硬化型樹脂組成物を鋭意検討した結果、特定のポリエステル樹脂と特定の(メタ)アクリレートモノマーを使用することにより、接着力に優れかつ溶液安定性良好で反応硬化させた後でも透明である活性エネルギー線反応硬化型接着剤組成物を得られることを見出し、本発明に到達した。また、ポリエステル樹脂に一定範囲の濃度のカルボキシル基を付与することで、アルカリ洗浄によって容易に接着層を剥離させ得ることも見出している。
 すなわち、本発明は以下の活性エネルギー線反応硬化型接着剤組成物およびこれを用いたボトルラベル用接着剤である。
  (1) 少なくとも共重合飽和ポリエステル樹脂と(メタ)アクリレートモノマーと光開始剤とを含有する樹脂組成物において、前記共重合飽和ポリエステル樹脂と前記(メタ)アクリレートモノマーの合計を100質量部としたとき前記共重合飽和ポリエステル樹脂が20~50質量部、前記(メタ)アクリレートモノマーが50~80質量部配合されており、前記共重合飽和ポリエステル樹脂を構成する多価アルコール成分の全量を100モル%としたとき、ジエチレングリコールが5モル%以上、80モル%以下であり、前記共重合飽和ポリエステル樹脂の30℃における比重が1.30以上1.40以下であり、前記(メタ)アクリレートモノマーが芳香環と水酸基を有するものであることを特徴とする活性エネルギー線反応硬化型接着剤組成物。
  (2) 前記共重合飽和ポリエステル樹脂の酸化が100当量/t以上500当量/t未満であることを特徴とする(1)記載の活性エネルギー線反応硬化型接着剤組成物。
  (3) 前記(メタ)アクリレートモノマーが2-ヒドロキシ-3-フェノキシプロピルアクリレートまたは/および2-ヒドロキシ-3-フェノキシプロピルメタクリレートであることを特徴とする(1)または(2)に記載の活性エネルギー線反応硬化型接着剤組成物。
  (4) 前記共重合飽和ポリエステル樹脂の数平均分子量が8000以上40000以下であることを特徴とする(1)~(3)のいずれかに記載の活性エネルギー線反応硬化型接着剤組成物。
  (5) 温度70℃、角速度5rad/sにおける動的粘度が5dPa・s以上150dPa・s以下である(1)~(4)のいずれかに記載の活性エネルギー線反応硬化型接着剤組成物。
  (6) (1)~(5)のいずれかに記載の活性エネルギー線反応硬化型接着剤組成物を用いたボトルラベル用接着剤組成物。
  (7) (1)~(5)のいずれかに記載の活性エネルギー線反応硬化型接着剤組成物によって接着されたラベル。
  (8) (1)~(5)のいずれかに記載の活性エネルギー線反応硬化型接着剤組成物によって接着された熱収縮性ラベル。
  (9) (7)または(8)に記載のラベルが装着されたボトル。
 本発明の活性エネルギー線反応硬化型接着剤組成物は溶液安定性良好で仮止め接着力に優れ、なおかつ硬化反応後も透明であり接着強度が高い。収縮性ラベルの接着に用いた場合には、収縮後の接着性保持にも優れる。よって、収縮ボトルラベル用の接着剤組成物としても有用である。また、酸価の大きい特定のポリエステル樹脂を用いた活性エネルギー線反応硬化型接着剤組成物であれば、アルカリ洗浄によって容易に接着層を剥離させることができる。このため、このような接着剤組成物を用いて接着されたラベルおよび前記ラベルを装着したボトルは、リサイクル容易となる。
 本発明に用いられる共重合飽和ポリエステル樹脂は、本発明の共重合飽和ポリエステル樹脂と(メタ)アクリレートモノマーの合計質量100質量部あたり20~50質量部配合されていることが必要であり、25~45質量部配合されていることが好ましく、30~40質量部配合されていることがさらに好ましい。共重合飽和ポリエステル樹脂の配合比率が低すぎると芳香族系フィルム等への接着力が低くなる傾向にあり、高すぎると接着剤組成物の粘度が高くなりすぎて取り扱いが困難となる傾向がある。
 前記共重合飽和ポリエステル樹脂は、これを構成する多価アルコール成分の全量を100モル%としたとき、ジエチレングリコールが5モル%以上80モル%以下であることが必要であり、好ましくは10モル%以上70モル%以下、より好ましくは15モル%以上65モル%以下、さらに好ましくは20モル%以上60モル%以下である。ジエチレングリコールの比率が低すぎるとPETフィルム等芳香族系のフィルムへの接着性が低下することがあり、高すぎると耐水性が低下することがある。
 前記共重合飽和ポリエステル樹脂を構成するジエチレングリコール以外の成分としては、特に限定されることなく汎用の酸成分、グリコール成分を用いることができる。
 前記酸成分としては例えばテレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸等の芳香族二塩基酸、p-オキシ安息香酸、p-(ヒドロキシエトキシ)安息香酸などの芳香族オキシカルボン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、ダイマー酸、シクロヘキサンジカルボン酸等の脂肪族ジカルボン酸があげられ、これらから選ばれる2種以上を併用しても良い。前記酸成分は芳香族二塩基酸から主としてなるものが好ましく、PETフィルム等の芳香族系のフィルムに対する接着力を高める効果がある。テレフタル酸とイソフタル酸の合計が共重合飽和ポリエステル樹脂を構成する酸成分の75質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることが更に好ましい。
 また、前記グリコール成分としてはエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、3-メチルペンタンジオール、1,6-ヘキサンジオール、ノナンジオール、メチルオクタンジオール、ネオペンチルグリコール、ジプロピレングリコール、2-ブチル-2-エチル-1,3-プロパンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、シクロヘキサンジメタノール、ダイマージオール、ネオペンチルグリコールヒドロキシピバレート、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物、水素化ビスフェノールAのエチレンオキサイド付加物、水素化ビスフェノールAのプロピレンオキサイド付加物等が挙げられる。また、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリカプロラクトン、ポリカーボネートジオール等の高分子量グリコールを共重合しても良い。また、これらから選ばれる2種以上を併用しても良い。
 本発明に用いられる前記共重合飽和ポリエステル樹脂には、5-ナトリウムスルホイソフタル酸、5-カリウムスルホイソフタル酸、ナトリウムスルホテレフタル酸、2-ナトリウムスルホ-1,4-ブタンジオール、2,5-ジメチル-3-ナトリウムスルホ-2,5-ヘキサンジオール等のスルホン酸金属塩基を有する酸成分および/またはグリコール成分を共重合しても良い。スルホン酸金属塩基を有する酸成分および/またはグリコール成分を共重合することにより、接着性が向上する場合がある。
 また、本発明に用いられる共重合飽和ポリエステル樹脂の原料の一部として、無水トリメリット酸、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の三官能以上の化合物を共重合してもよく、接着性が向上する場合がある。また、ポリエステルを重合後、ラクトンや酸無水物等による末端変性成分を導入しても良く、接着性が向上する場合がある。
 本発明に用いられる共重合飽和ポリエステル樹脂は、30℃における比重が1.30以上1.40以下であることを特徴とし、好ましくは1.33以上1.38以下である。30℃における比重が低すぎるとPETフィルム等芳香族系のフィルムへの接着性が低下することがあり、逆に高すぎると(メタ)アクリレートモノマーへの溶解性が低くなる傾向にあり、また溶解しても溶液安定性が悪くなることがある。共重合飽和ポリエステル樹脂の30℃における比重を1.30以上1.40以下とするには、例えば酸成分として芳香族ジカルボン酸のみ使用し、グリコール成分にエチレングリコールとジエチレングリコールを使用しジエチレングリコールの比率を20モル%以上とすればよい。
 また本発明に用いられる共重合飽和ポリエステル樹脂は、本発明の接着剤組成物がアルカリ洗浄による剥離性が重視されるラベルに用いられる場合は、樹脂1トン当たりの酸価が100当量/t以上500当量/t未満であることが好ましい。より好ましくは150当量/t以上300当量/t未満である。酸価が低すぎるとアルカリ洗浄による剥離が困難となる傾向にあり、逆に酸価が高すぎるとポリエステルの極性が高くなり、ラベル収縮工程で蒸気などの影響を受け接着性が低下することがある。樹脂1トン当たりの酸価が100当量/t以上500当量/t未満のポリエステル樹脂にするには、例えば定法により主として水酸基末端からなるポリエステル樹脂を製造後、酸無水物を投入し末端変性を行えばよい。ここで用いる酸無水物の好ましい例としては、無水トリメシン酸、無水トリメリット酸、エチレングリコールビストリメリテート二無水物、無水フタル酸、無水ピロメリット酸、無水コハク酸、無水1,8-ナフタル酸、無水1,2-シクロヘキサンジカルボン酸、シクロヘキサンー1,2,3,4-テトラジカルボン酸3,4-無水物、エチレングリコールビスアンヒドロトリメリテート、5-(2,5-ジオキソテトラヒドロー3-フラニル)-3-メチルー3-シクロヘキセンー1,2-ジカルボン酸無水物、ナフタレン1,8:4,5-テトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物等を挙げることができる。なお、本発明の接着剤組成物がアルカリ洗浄による剥離性が重視されないラベルに用いられる場合は、共重合飽和ポリエステル樹脂の酸価が上記好適範囲を外れても構わない。
 本発明に用いられる共重合飽和ポリエステル樹脂は、ただ1種類の共重合飽和ポリエステル樹脂で構成されてもいても良いし、2種類以上組み合わせて構成されても問題ない。
 本発明の活性エネルギー線反応硬化型接着剤組成物を構成する前記(メタ)アクリレートモノマーは芳香環と水酸基を有することを特徴とする。このような(メタ)アクリレートモノマーを用いることにより、高い接着力が得られ、なおかつ共重合飽和ポリエステル樹脂の溶解性が良好となり、接着剤組成物の溶液安定性が良好でありかつ反応硬化後の接着剤層も透明となる。
 本発明に用いられる(メタ)アクリレートモノマーは、本発明の共重合飽和ポリエステル樹脂と(メタ)アクリレートモノマーの合計質量100質量部あたり50~80質量部配合されていることが必要であり、55~75質量部配合されていることが好ましく、60~70質量部配合されていることがさらに好ましい。(メタ)アクリレートモノマーの配合比率が低すぎると組成物の粘度が高くなりすぎて取り扱いが困難になる傾向があり、また硬化不足により硬化後の最終接着力が低くなる傾向にある。一方、(メタ)アクリレートモノマーの配合比率が高すぎると粘度が低くなりすぎて仮止め接着力が低下する傾向がある。
 本発明に用いられる(メタ)アクリレートモノマーとしては2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、p-メトキシフェノキシエチル(メタ)アクリレート、o-メトキシフェノキシエチル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシエチルフタレート、ビスフェノールAジグリシジルエーテルの(メタ)アクリル酸付加物、ビスフェノールFジグリシジルエーテルの(メタ)アクリル酸付加物等があげられる。
 中でも、本発明に用いられる共重合飽和ポリエステル樹脂の溶解性や取り扱いやすさから、2-ヒドロキシ-3-フェノキシプロピルアクリレート、2-ヒドロキシ-3-フェノキシプロピルメタクリレートが好ましく、最も好ましいのは2-ヒドロキシ-3-フェノキシプロピルアクリレートである。
 本発明に用いられる共重合飽和ポリエステル樹脂の数平均分子量は、8000以上40000以下が好ましい。分子量が低すぎるとPETフィルム等芳香族系のフィルムへの接着性が低下することがあり、逆に高すぎると組成物の粘度が高くなりすぎて取り扱いが困難になるとともに(メタ)アクリレートモノマーへの溶解性が低下する傾向がある。より好ましくは10000以上30000以下である。
 本発明に用いる共重合飽和ポリエステル樹脂のガラス転移温度(以下、Tgと略記する場合がある)は特に限定されるものではないが、あまりTgの低い樹脂であると接着剤として硬化させた後も熱によって接着層からはみ出すおそれがあるため、常温より高い方が好ましく、40℃以上がさらに好ましい。
 本発明で用いる光開始剤としては特に限定されるものではないが、例えば、クロロアセトフェノン、4-フェノキシジクロロアセトフェノン、4-t-ブチルトリクロロアセトフェノン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニル(4-ドデシル)プロパン-1-オン、4-(2-ヒドロキシエトキシフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、フェニル-2-ヒドロキシ-2-プロピルケトン、ヒドロキシアセトフェノン、α-アミノアセトフェノンなどのアセトフェノン類、ベンジルジメチルケタール(2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン)などのケタール類、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾインアルキルエーテル、α-メチルベンゾインなどのベンゾイン類、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、p-クロルベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、4,4’-(ジメチルアミノ)ベンゾフェノン、p-ジメチルアミノベンゾフェノン、〔4-(メチルフェニルチオ)フェニル〕フェニルメタノンなどのベンゾフェノン類、9,10-アントラキノン、1-クロルアントラキノン、2-クロルアントラキノン、2-エチルアントラキノンなどのアントラキノン類、2-ヒドロシ-2-メチルプロピオフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロピオフェノンなどのプロピオフェノン類、ジベンゾスベロンなどのスベロン類、ミヒラーケトン(4,4-ビス(ジメチルアミノ)ベンゾフェノン)などのミヒラーケトン類、ベンジルなどのベンジル類、ジフェニルジスルフィド、テトラメチルチウラムジスルフィド、2-クロロチオキサントン、2-メチルチオキサントン、イソプロピルチオキサントン、2,4-ジクロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン、1-クロロ-4-プロポキシチオキサントンなどのチオキサントン類などの含イオウ化合物類、メチレンブルー、エオシン、フルオレセインなどの色素類などが挙げられる。その他に1,1-ジクロロアセトフェノン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、アゾビスイソブチルニトリル、ベンゾイルパーオキサイド、ジ-tert-ブチルパーオキサイド、2,4,6-トリメチロールベンゾフェノン、4-メチルベンゾフェノン、2-ヒドロキシ-2-メチル-1-〔4-(1-メチルビニル)フェニル)プロパノン、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、2,2-ジクロロ-p-フェノキシアセトフェノン、1-フェニル-1,2-プロパンジオン-2(o-エトキシカルボニル)オキシム、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、メチルフェニルグリオキシエステル、9,10-フェナンスレンキノン、カンファーキノン、1-〔4-(2-ヒドロキシエトキシ)-フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、フェナンスレンキノン、1,4-ジベンゾイルベンゼン、10-ブチル-2-クロロアクリドン、2,2’-ビス(o-クロロフェニル)-4,5,4’,5’-テトラキス(3,4,5-トリメトキシフェニル)-1,2’-ビイミダゾール、2,2’-ビス(o-クロロフェニル)-4,5,4’,5’-テトラフェニル-1,2’-ビイミダゾール、2-ベンゾイルナフタレン、4-ベンゾイルビフェニル、4-ベンゾイルジフェニルエーテル、アクリル化ベンゾフェノンなどもある。
 これらの光開始剤は単独で使用しても良いし、2種以上併用しても良い。これらの光開始剤の配合量は、樹脂組成物全体の0.05質量部以上、20質量部以下、より好ましくは0.5質量部以上、10質量部以下である。
 本発明の接着剤組成物の粘度は、温度70℃、角速度5rad/sにおける動的粘度が5~150dPa・sであり、好ましくは15~80dPa・s、より好ましくは25~75dPa・sである。粘度が低すぎると被接着物に接着剤組成物を塗工する際の仮止め接着力が劣る傾向にあり、また塗工時に垂れが生じやすい傾向にある。逆に高すぎると塗工しにくくなり取り扱いも困難な傾向になる。
 本発明の接着剤組成物の代表的な使用方法として、飲料用等に大量に使用されているペットボトルやその他のボトル類のラベルの接着に用いることを挙げることができる。これらのラベルにはPETやポリスチレンのような芳香族樹脂系のフィルムが使用されることが多く、本発明の接着剤組成物はこれらの素材からなるラベルに対して高い接着性を示すが、ラベルの素材はこれらのものに限定されるものではない。近年、ラベルをボトルに巻いた後、熱収縮させボトルの形状に沿わせる手法が取られることが多く、ますます高い接着力が必要になっているが、本発明の好ましい実施態様においては、このような熱収縮ラベルの接着にも好適である。
 本発明の接着剤組成物を使用する場合は、厚みが1~30μm程度となるように接着剤組成物を被着体に塗布し、50~300mJ/cm程度のUVを照射すればよい。
 他方、使用済みペットボトルは環境面からリサイクルが求められている。リサイクルに際しては洗浄が行われ、洗浄液には一般にアルカリ温水溶液が用いられている。酸価を前記の好適範囲にした場合の本発明の接着剤組成物はアルカリ温水洗浄によって接着剤層を容易に剥離することができるので、この接着剤組成物を用いて接着されたラベルを装着されたボトルは、従来から使用されているアルカリ洗浄工程を含むリサイクル工程によって、あるいは洗浄時間やアルカリ濃度、温度等の洗浄条件の若干変更によって、容易にリサイクルできる。
 以下、実施例により本発明を具体的に説明する。実施例中、単に部とあるのは質量部を示す。
<ポリエステル樹脂の特性評価方法>
1.組成
 クロロホルム-dに試料樹脂を溶解し、VARIAN社製400MHz-NMR装置を用い、H-NMRスペクトルにより樹脂組成および組成比を求めた。
2.数平均分子量
 試料樹脂を、樹脂濃度が0.5質量%程度となるようにテトラヒドロフランに溶解または希釈し、孔径0.5μmのポリ四フッ化エチレン製メンブランフィルターで濾過し、GPC測定試料とした。テトラヒドロフランを移動相とし、島津製作所社製のゲル浸透クロマトグラフ(GPC)Prominence(登録商標)を用い、示差屈折計(RI計)を検出器として、カラム温度30℃、流量1ml/分にて樹脂試料のGPC測定を行った。数平均分子量既知の単分散ポリスチレンのGPC測定結果を用いて試料樹脂のポリスチレン換算数平均分子量を求め、それを本発明における試料樹脂の数平均分子量とした。ただしカラムは昭和電工(株)製のshodex(登録商標) KF-802、804L、806Lを用いた。
3.ガラス転移温度
 試料樹脂5mgをアルミニウム製サンプルパンに入れて密封し、セイコーインスツルメンツ(株)製の示差走査熱量分析計(DSC)DSC-220を用いて、200℃まで、昇温速度20℃/分にて測定し、ガラス転移温度以下のベースラインの延長線と遷移部における最大傾斜を示す接線との交点の温度を求めた。
4.比重
 30℃の塩化カルシウム水溶液に試料樹脂の樹脂片を投入し、塩化カルシウムまたは水を追加して塩化カルシウム水溶液の比重を調整して樹脂片が浮上も沈降もせず水溶液中に留まるように調整した。次いでその水溶液の30℃での比重を浮沈式標準比重計を用いて測定し、試料樹脂の30℃における比重とした。
5.酸価
 試料0.2gをクロロホルムに溶解し、フェノールフタレインを指示薬として0.1mol/lの水酸化カリウム-エタノール溶液で滴定し、1トンあたりの当量数(当量/t)で示した。
<共重合飽和ポリエステル樹脂の合成>
<ポリエステル(a-1)の合成例>
 撹拌機、温度計、留出用冷却器を装備した反応缶内にジメチルテレフタレート440部、ジメチルイソフタレート422部、5-ナトリウムスルホイソフタル酸ジメチルエステル27部、エチレングリコール338部、ジエチレングリコール385部、テトラブチルチタネート0.3部加え、170~220℃で常圧3時間エステル交換反応を行った。次いで、反応系を220℃から260℃まで昇温するとともに系内をゆっくり減圧してゆき、60分かけて500Paとした。そしてさらに130Pa以下で60分間重縮合反応を行い、ポリエステル(a-1)を得た。
 ポリエステル(a-1)は、酸成分としてテレフタル酸50モル%、イソフタル酸48モル%、5-ナトリウムスルホイソフタル酸2モル%、ジオール成分としてエチレングリコール40モル%、ジエチレングリコール60モル%の組成を有していた。またガラス転移温度は41℃、数平均分子量は25000、比重は30℃で1.34であった。
<ポリエステル(b-1)の合成例>
 ポリエステル(a-1)と合成例の場合と同様の反応缶内にテレフタル酸376部、イソフタル酸368部、無水トリメリット酸8.7部、エチレングリコール255部、ジエチレングリコール403部、テトラブチルチタネート0.3部加え、190~240℃まで250kPaで3時間加圧エステル化反応を行った。エステル化反応終了後、反応系を240℃から260℃まで昇温するとともに系内をゆっくり減圧してゆき、60分かけて500Paとし、さらに130Pa以下で60分間重縮合反応を行った。重縮合終了後缶内を窒素で常圧に戻した後220℃に冷却し、無水トリメリット酸(以下、TMAと略記する場合がある)8.7部を投入して付加反応を行い、ポリエステル(b-1)を得た。
 ポリエステル(b-1)は、酸成分としてテレフタル酸50モル%、イソフタル酸49モル%、トリメリット酸1モル%、ジオール成分としてエチレングリコール35モル%、ジエチレングリコール65モル%、後付加のTMAとして1モル%の組成を有していた。またガラス転移温度は34℃、数平均分子量は18000、比重は30℃で1.33であった。
<ポリエステル(c-1)の合成例>
 ポリエステル(c-1)は、ポリエステル(b-1)と同様にして、但し、仕込み組成のみ変更して合成を行った。得られたポリエステルの組成及び特性の測定結果を表1に示す。
<ポリエステル(d-1)、(f-1)~(j-1)の合成例>
 ポリエステル(d-1)、(g-1)~(j-1)は、ポリエステル(b-1)と同様にして、ポリエステル(f-1)は、ポリエステル(a-1)と同様にして、但し、仕込み組成のみ変更して合成を行った。得られたポリエステルの組成及び特性の測定結果を表1および表2に示す。
<ポリエステル(e-1)の合成例>
 ポリエステル(a-1)の合成例の場合と同様の反応缶内にテレフタル酸368部、イソフタル酸368部、無水トリメリット酸17.4部、エチレングリコール368部、ジエチレングリコール210部、テトラブチルチタネート0.3部加え、190~240℃まで250kPaで3時間加圧エステル化反応を行った。エステル化反応終了後、反応系を240℃から260℃まで昇温するとともに系内をゆっくり減圧してゆき、60分かけて500Paとし、さらに130Pa以下で60分間重縮合反応を行った。重縮合終了後缶内を窒素で常圧に戻した後210℃に冷却し、ε-カプロラクトン52部を仕込んで1時間加熱攪拌し、開環付加反応を行い、ポリエステル(e-1)を得た。
 ポリエステル(e-1)は、酸成分としてテレフタル酸49モル%、イソフタル酸49モル%、トリメリット酸2モル%、ジオール成分としてエチレングリコール70モル%、ジエチレングリコール30モル%、後付加のε-カプロラクトンとして10モル%の組成を有していた。またガラス転移温度は38℃、数平均分子量は16000、比重は30℃で1.35であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 尚、表1および表2中の組成に関する記号は以下の意味である。
 TPA:テレフタル酸
 IPA:イソフタル酸
 GCM:5-ナトリウムスルホイソフタル酸
 SA  :セバシン酸
 TMA:トリメリット酸
 DEG:ジエチレングリコール
 EG :エチレングリコール
 NPG:ネオペンチルグリコール
 CL :ε-カプロラクトン
<実施例1>
 ポリエステル(a-1)30部、2-ヒドロキシ-3-フェノキシプロピルアクリレート64部を混合し、ポリエステル(a-1)を完全に溶解させた後、光開始剤として1-ヒドロキシシクロヘキシルフェニルケトン3部、2-ヒドロキシ-2-メチルプロピオフェノン3部を配合し、活性エネルギー線反応硬化型接着剤組成物を得た。次いで別記する方法により、接着剤組成物の特性を評価した。接着剤組成物の配合組成および接着剤組成物特性の評価結果を表3に示す。
<実施例2~7、比較例1~8>
 実施例1と同様の方法で実施例2~7及び比較例1~8の活性エネルギー線反応硬化型接着剤組成物を得た。接着剤組成物の配合組成および接着剤組成物特性の評価結果を表3および表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 尚、表3および表4中の組成に関する記号は以下の意味である。
(メタ)アクリレートモノマー
  Ma:2-ヒドロキシ-3-フェノキシプロピルアクリレート
  Mb:2-ヒドロキシ-3-フェノキシプロピルメタクリレート
  Mc:2-アクリロイルオキシエチル-2-ヒドロキシエチルフタレート
  Md:フェノキシエチルアクリレート
  Me:2-ヒドロキシ-1,3-ジメタクリロキシプロパン
  Mf:4-ヒドロキシブチルアクリレート
光開始剤
  Ra:1-ヒドロキシシクロヘキシルフェニルケトン
  Rb:2-ヒドロキシ-2-メチルプロピオフェノン
  Rc:2,2-ジメトキシ-2-フェニルアセトフェノン
<接着剤組成物の特性評価方法>
<粘度>
 TAインスツルメント社製レオメーターAR550を用いて、直径25mmのアルミニウム製パン内に接着剤組成物を挟み込んで加熱し、温度70℃に固定して250rad/sから1rad/sまで角速度を変化させて動的粘度の測定を行い、そのうち角速度=5rad/sのときの動的粘度の値を本特許における粘度とした。
<溶液安定性評価法>
 実施例および比較例で得られた活性エネルギー線反応硬化型接着剤組成物を5℃に冷却して24時間放置し溶液の状態を目視で確認し、ついで25℃に暖めて4時間経過した後の溶液の状態を目視で観察した。
  ◎:5℃で透明な均一溶液、25℃でも透明な均一溶液
  ○:5℃では白濁、25℃に戻すと透明な均一溶液
  △:5℃では白濁、25℃に戻しても白濁
  ×:5℃では沈降物あり、25℃に戻しても沈降物が残存
<硬化後透明性評価方法>
 実施例および比較例で得られた活性エネルギー線反応硬化型接着剤を厚さ25μmの透明熱収縮性PETフィルム上に厚みが5μmになるよう塗布し、同じフィルムでラミネートした後、次いで(株)東芝製UVランプH8000L/2を用いて照射量が150mJ/cmになるようUV照射し、ラミネート積層フィルムを作成した。そのラミネート積層フィルムを日立(株)製の分光光度計U-3210を用いて、波長550nmにおいて透過度を測定し透明性を下記の3段階で評価した。
 ○:透過度95%以上
 △:透過度90%以上95%未満
 ×:透過度90%未満
 なお、上記評価において用いた透明熱収縮性PETフィルムの仕様は以下のとおりである。
 厚さ:25μm(JIS C2318にて)
 透明性:ヘイズ5%(JIS K7136にて)
 収縮性:90℃の熱水に10秒間浸漬したときの収縮率が、縦方向40%、横方向7%
<接着性評価方法>
 実施例および比較例で得られた活性エネルギー線反応硬化型接着剤を前記<硬化後透明性評価方法>と同様にしてラミネート積層フィルムを作成し、その後そのラミネート積層フィルムを15mm幅に切断して、温度23℃、湿度50%雰囲気下でT字(180°)剥離モード、引張速度100mm/分で引っ張り試験を行い、硬化後の接着力を測定した。
<耐収縮接着性評価方法>
 前記<硬化後透明性評価方法>と同様にして得たラミネート積層フィルムを15mm幅に切断して、長さ100mmの短冊状の試験片とした。これを90℃の温水の中に投入し30秒放置して収縮させ、次いで常温下で放冷した。試験片の15mm幅に切断した端面の捲れ具合を観察し、下記の4段階で評価した。
 ◎:端面から幅方向に目視で捲れを検知できない。
 ○:端面から幅方向に1mm未満の捲れ上がりあり。
 △:端面から幅方向に1mm以上2mm未満の捲れ上がりあり。
 ×:端面から幅方向に2mm以上の捲れあがり、または全面剥がれあり。
 表3と表4で示すとおり、実施例1~5は比較例1~8に比べて接着性、耐収縮接着性において卓越した性能を有することがわかる。
 以下では、特定酸価の共重合飽和ポリエステル樹脂を用いた接着剤組成物について、アルカリ洗浄性も含めて、その特性を検討した。
<共重合飽和ポリエステル樹脂の合成>
<ポリエステル(a-2)の合成例>
 撹拌機、温度計、留出用冷却器を装備した反応缶内にジメチルテレフタレート433部、ジメチルイソフタレート415部、5-ナトリウムスルホイソフタル酸ジメチルエステル26部、エチレングリコール332部、ジエチレングリコール378部、テトラブチルチタネート0.3部加え、170~220℃で常圧3時間エステル交換反応を行った。次いで、反応系を220℃から260℃まで昇温するとともに系内をゆっくり減圧してゆき、60分かけて500Paとし、さらに130Pa以下で60分間重縮合反応を行った。重縮合終了後缶内を窒素で常圧に戻した後220℃に冷却し、無水トリメリット酸17部を投入し、付加反応を行い、ポリエステル(a-2)を得た。
 ポリエステル(a-2)は、酸成分としてテレフタル酸50モル%、イソフタル酸48モル%、5-ナトリウムスルホイソフタル酸2モル%、ジオール成分としてエチレングリコール40モル%、ジエチレングリコール60モル%、後付加のTMAとして2モル%の組成を有していた。またガラス転移温度は41℃、数平均分子量は26000、比重は30℃で1.35、酸価は165当量/tであった。
<ポリエステル(b-2)の合成例>
 ポリエステル(a-2)の合成例の場合と同様の反応缶内にテレフタル酸363部、イソフタル酸355部、無水トリメリット酸8.4部、エチレングリコール246部、ジエチレングリコール389部、テトラブチルチタネート0.3部加え、190~240℃まで250kPaで3時間加圧エステル化反応を行った。エステル化反応終了後、反応系を240℃から260℃まで昇温するとともに系内をゆっくり減圧してゆき、60分かけて500Paとし、さらに130Pa以下で60分間重縮合反応を行なった。重縮合終了後缶内を窒素で常圧に戻した後220℃に冷却し、無水トリメリット酸17部、エチレングリコールビストリメリテート二無水物(新日本理化(株)製リカシッド(登録商標)TMEG-200、以下TMEGと略記する場合がある)18部を投入して付加反応をおこないポリエステル(b-2)を得た。
 ポリエステル(b-2)は、酸成分としてテレフタル酸50モル%、イソフタル酸49モル%、トリメリット酸1モル%、ジオール成分としてエチレングリコール35モル%、ジエチレングリコール65モル%、後付加のTMAとして2モル%、TMEGとして1モル%の組成を有していた。またガラス転移温度は34℃、数平均分子量は18000、比重は30℃で1.34、酸価は280当量/tであった。
<ポリエステル(c-2)~(e-2)、(g-2)~(j-2)の合成例>
 ポリエステル(c-2)~(e-2)、(g-2)~(j-2)は、ポリエステル(b-2)と同様にして、但し、仕込み組成のみ変更して合成を行った。得られたポリエステルの組成及び特性の測定結果を表5に示す。
<ポリエステル(f-2)の合成例>
 撹拌機、温度計、留出用冷却器を装備した反応缶内にジメチルテレフタレート440部、ジメチルイソフタレート422部、5-ナトリウムスルホイソフタル酸ジメチルエステル27部、エチレングリコール332部、ジエチレングリコール378部、テトラブチルチタネート0.3部加え、170~220℃で常圧3時間エステル交換反応を行った。次いで、反応系を220℃から260℃まで昇温するとともに系内をゆっくり減圧してゆき、60分かけて500Paとした。そしてさらに130Pa以下で60分間重縮合反応を行い、ポリエステル(f-2)を得た。
 ポリエステル(f-2)は、酸成分としてテレフタル酸50モル%、イソフタル酸48モル%、5-ナトリウムスルホイソフタル酸2モル%、ジオール成分としてエチレングリコール40モル%、ジエチレングリコール60モル%の組成を有していた。またガラス転移温度は40℃、数平均分子量は25000、比重は30℃で1.36、酸価は10当量/tであった。
 なお、ポリエステル(f-2)~(j-2)は、アルカリ洗浄による剥離性が考慮されない用途においては本発明で使用し得る共重合飽和ポリエステル樹脂であるが、アルカリ洗浄性を検討するため、便宜上、比較共重合ポリエステルとして扱った。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 なお、表5および表6中の組成に関する記号は以下の意味である。
 TPA、IPA、GCM、SA、TMA、DEG、EG、NPGは前記と同じ意味であり、TMEGはエチレングリコールビストリメリテート二無水物(新日本理化(株)製リカシッドTMEG-200)である。
<実施例8>
 ポリエステル(a-2)30部、2-ヒドロキシ-3-フェノキシプロピルアクリレート64部を混合し、ポリエステル(a-2)を完全に溶解させた後、光開始剤として1-ヒドロキシシクロヘキシルフェニルケトン3部、2-ヒドロキシ-2-メチルプロピオフェノン3部を配合し、活性エネルギー線反応硬化型接着剤組成物を得た。次いで別記する方法により、接着剤組成物の特性を評価した。接着剤組成物の配合組成および接着剤組成物特性の評価結果を表7に示す。
<実施例9~12、比較例9~18>
 実施例8と同様の方法で実施例9~12及び比較例9~18の活性エネルギー線反応硬化型接着剤組成物を得た。接着剤組成物の配合組成および接着剤組成物特性の評価結果を表7および表8に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 粘度、溶液安定性評価法、硬化後透明性評価方法、接着性評価方法、耐収縮接着性評価方法については、前記した評価方法と同じである。
<アルカリ洗浄性評価法>
 実施例および比較例で得られた活性エネルギー線反応硬化型接着剤を厚さ50μmの透明PETフィルム(東洋紡エステル(登録商標)フィルムE5101)上に厚みが5μmになるように塗布し、次いで(株)東芝製UVランプH8000L/2を用いて照射量が150mJ/cmになるようUV照射した。その接着剤塗布フィルムを30×15mm幅に切断して、1.5%の水酸化ナトリウム水溶液中に浸漬させ80℃に昇温後10分間攪拌し、洗浄性を下記の4段階で評価した。
 ◎:接着剤がPETフィルムに全く残存していない。
 ○:接着剤の5質量%未満がPETフィルムに残存。
 △:接着剤の5質量%以上50質量%未満がPETフィルムに残存。
 ×:接着剤の50質量%以上がPETフィルムに残存。
 表7と表8で示すとおり、実施例8~12は比較例9~18に比べて溶液安定性、接着性、硬化後透明性、耐収縮接着性、アルカリ洗浄性において卓越した性能を有することがわかる。
 本発明の活性エネルギー線反応硬化型接着剤組成物は反応硬化後も透明でかつ接着強度が高く、収縮性ラベルの接着に用いた場合には収縮後の接着性保持にも優れる。よって、特にPETフィルム等の芳香族系樹脂からなる熱収縮性ラベルの接着に適し、収縮ボトルラベル用の接着剤として有用である。さらに、特定の酸価の共重合飽和ポリエステル樹脂を用いた接着剤組成物は、アルカリ温水洗浄によって容易に接着層を剥離することができる。よって、特にPETフィルム等の芳香族系樹脂からなる熱収縮性ラベルの接着に適している上に、収縮ボトルラベル用の接着剤として用いると、リサイクル容易なボルトを得ることができる。

Claims (9)

  1.  少なくとも共重合飽和ポリエステル樹脂と(メタ)アクリレートモノマーと光開始剤とを含有する樹脂組成物において、前記共重合飽和ポリエステル樹脂と前記(メタ)アクリレートモノマーの合計を100質量部としたとき前記共重合飽和ポリエステル樹脂が20~50質量部、前記(メタ)アクリレートモノマーが50~80質量部配合されており、前記共重合飽和ポリエステル樹脂を構成する多価アルコール成分の全量を100モル%としたとき、ジエチレングリコールが5モル%以上、80モル%以下であり、前記共重合飽和ポリエステル樹脂の30℃における比重が1.30以上1.40以下であり、前記(メタ)アクリレートモノマーが芳香環と水酸基を有するものであることを特徴とする活性エネルギー線反応硬化型接着剤組成物。
  2.  前記共重合飽和ポリエステル樹脂の酸化が100当量/t以上500当量/t未満であることを特徴とする請求項1に記載の活性エネルギー線反応硬化型接着剤組成物。
  3.  前記(メタ)アクリレートモノマーが2-ヒドロキシ-3-フェノキシプロピルアクリレートまたは/および2-ヒドロキシ-3-フェノキシプロピルメタクリレートであることを特徴とする請求項1または2に記載の活性エネルギー線反応硬化型接着剤組成物。
  4.  前記共重合飽和ポリエステル樹脂の数平均分子量が8000以上40000以下であることを特徴とする請求項1~3のいずれかに記載の活性エネルギー線反応硬化型接着剤組成物。
  5.  温度70℃、角速度5rad/sにおける動的粘度が5dPa・s以上150dPa・s以下である請求項1~4のいずれかに記載の活性エネルギー線反応硬化型接着剤組成物。
  6.  請求項1~5のいずれかに記載の活性エネルギー線反応硬化型接着剤組成物を用いたボトルラベル用接着剤組成物。
  7.  請求項1~5のいずれかに記載の活性エネルギー線反応硬化型接着剤組成物によって接着されたラベル。
  8.  請求項1~5のいずれかに記載の活性エネルギー線反応硬化型接着剤組成物によって接着された熱収縮性ラベル。
  9.  請求項7または8に記載のラベルが装着されたボトル。
PCT/JP2011/067363 2011-07-28 2011-07-28 活性エネルギー線反応硬化型接着剤組成物、ラベルおよびボトル WO2013014801A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/067363 WO2013014801A1 (ja) 2011-07-28 2011-07-28 活性エネルギー線反応硬化型接着剤組成物、ラベルおよびボトル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/067363 WO2013014801A1 (ja) 2011-07-28 2011-07-28 活性エネルギー線反応硬化型接着剤組成物、ラベルおよびボトル

Publications (1)

Publication Number Publication Date
WO2013014801A1 true WO2013014801A1 (ja) 2013-01-31

Family

ID=47600684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067363 WO2013014801A1 (ja) 2011-07-28 2011-07-28 活性エネルギー線反応硬化型接着剤組成物、ラベルおよびボトル

Country Status (1)

Country Link
WO (1) WO2013014801A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2889347A1 (en) * 2013-12-31 2015-07-01 Armstrong World Industries, Inc. Polyester adhesive
CN112266758A (zh) * 2020-10-13 2021-01-26 深圳市安博瑞新材料科技有限公司 一种含微胶囊的聚氨酯单组份胶黏剂及其制备方法
CN114921183A (zh) * 2022-06-30 2022-08-19 浙江锋凌新材料科技有限公司 一种经济型uv水解胶及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170089A (ja) * 1985-01-23 1986-07-31 東洋紡績株式会社 フレキシブルプリント配線板
JP2003238608A (ja) * 2002-02-18 2003-08-27 Toyobo Co Ltd 活性エネルギー線反応型樹脂組成物及びこれを用いた積層体
JP2007308164A (ja) * 2006-05-18 2007-11-29 Asai Bussan Kk 熱収縮性フィルムおよびフィルム付き物品
JP2011148962A (ja) * 2009-12-21 2011-08-04 Toyobo Co Ltd 活性エネルギー線反応硬化型接着剤組成物、ラベルおよびボトル
JP2011162599A (ja) * 2010-02-05 2011-08-25 Toyobo Co Ltd 洗浄性に優れる活性エネルギー線反応硬化型接着剤組成物、ラベルおよびボトル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170089A (ja) * 1985-01-23 1986-07-31 東洋紡績株式会社 フレキシブルプリント配線板
JP2003238608A (ja) * 2002-02-18 2003-08-27 Toyobo Co Ltd 活性エネルギー線反応型樹脂組成物及びこれを用いた積層体
JP2007308164A (ja) * 2006-05-18 2007-11-29 Asai Bussan Kk 熱収縮性フィルムおよびフィルム付き物品
JP2011148962A (ja) * 2009-12-21 2011-08-04 Toyobo Co Ltd 活性エネルギー線反応硬化型接着剤組成物、ラベルおよびボトル
JP2011162599A (ja) * 2010-02-05 2011-08-25 Toyobo Co Ltd 洗浄性に優れる活性エネルギー線反応硬化型接着剤組成物、ラベルおよびボトル

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2889347A1 (en) * 2013-12-31 2015-07-01 Armstrong World Industries, Inc. Polyester adhesive
CN112266758A (zh) * 2020-10-13 2021-01-26 深圳市安博瑞新材料科技有限公司 一种含微胶囊的聚氨酯单组份胶黏剂及其制备方法
CN114921183A (zh) * 2022-06-30 2022-08-19 浙江锋凌新材料科技有限公司 一种经济型uv水解胶及其制备方法

Similar Documents

Publication Publication Date Title
EP2694603B1 (en) Radiation curable compositions
US6503961B1 (en) Active energy beam-curable adhesive composition
JP2011140228A (ja) 易接着性熱可塑性樹脂フィルム
JPWO2013046889A1 (ja) 接着剤組成物、積層体およびポリエステルポリオール
JP2010274646A (ja) 成型用積層ポリエステルフィルム
JP5493940B2 (ja) 積層ポリエステルフィルム
WO2013014801A1 (ja) 活性エネルギー線反応硬化型接着剤組成物、ラベルおよびボトル
JP5454185B2 (ja) 活性エネルギー線反応硬化型接着剤組成物、ラベルおよびボトル
JP5454186B2 (ja) 洗浄性に優れる活性エネルギー線反応硬化型接着剤組成物、ラベルおよびボトル
JP2003292857A (ja) 活性エネルギー線反応型電気絶縁インキおよびそれを用いた積層体
KR20130027518A (ko) 하드 코트 도료 및 성형체
JP6424621B2 (ja) ポリエステル樹脂水性分散体およびこれを用いた接着剤組成物
JP6003089B2 (ja) バイオマスプラスチック塗料
JP2006213860A (ja) ポリエステル樹脂、それを用いた水分散体および接着剤
JP5560530B2 (ja) 共重合ポリエステル樹脂
JP2009256503A (ja) 硬化性組成物及び光情報媒体
JP3758085B2 (ja) 活性エネルギー線反応型樹脂組成物及びこれを用いた積層体
WO2020149082A1 (ja) 共重合ポリエステルおよび水分散体
JP2009263657A (ja) プラスチック用非水系コーティング剤組成物
JPS5821430A (ja) 印刷性のすぐれたポリエステルフイルム
JP2010274647A (ja) 白色積層ポリエステルフィルム
JP2021001254A (ja) 顔料分散性、および熱安定性に優れたポリエステル樹脂
TWI827588B (zh) 輻射固化組成物
JP2013177496A (ja) バイオマスプラスチック塗料
JP6592629B1 (ja) 樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP