WO2013011945A1 - 熱交換器用扁平管 - Google Patents

熱交換器用扁平管 Download PDF

Info

Publication number
WO2013011945A1
WO2013011945A1 PCT/JP2012/067944 JP2012067944W WO2013011945A1 WO 2013011945 A1 WO2013011945 A1 WO 2013011945A1 JP 2012067944 W JP2012067944 W JP 2012067944W WO 2013011945 A1 WO2013011945 A1 WO 2013011945A1
Authority
WO
WIPO (PCT)
Prior art keywords
mpa
flow path
internal pressure
flat tube
aspect ratio
Prior art date
Application number
PCT/JP2012/067944
Other languages
English (en)
French (fr)
Inventor
継紅 劉
宏和 藤野
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2013011945A1 publication Critical patent/WO2013011945A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins

Definitions

  • the present invention relates to a flat tube for a heat exchanger.
  • the air conditioner includes a heat exchanger that functions as an evaporator, a radiator, or the like.
  • This heat exchanger is mainly composed of fins and heat transfer tubes.
  • a flat heat transfer tube as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 10-132424) can be cited.
  • the heat transfer tube of Patent Document 1 is manufactured by extruding aluminum or an aluminum alloy or the like, and a plurality of flow path holes extending in the longitudinal direction of the heat transfer tube are arranged in the body in the width direction of the heat transfer tube. Is arranged in.
  • a refrigerant flows inside the channel hole, and the heat exchanger performs heat exchange between the refrigerant and a medium (for example, air) passing through the fins.
  • the flow path hole according to Patent Document 1 has a circular cross section substantially orthogonal to the longitudinal direction.
  • a flow passage hole having a circular cross-sectional shape is used for a flat heat transfer tube, the degree of the area occupied by the flow passage hole is compared with the cross-sectional area of the heat transfer tube due to the shape of the flow passage hole. Therefore, it is easy to ensure the pressure resistance against the internal pressure of the flow path hole, but it is difficult to ensure a sufficient refrigerant flow rate.
  • a flat heat transfer tube having a smaller size it is required to better maintain a balance between the pressure resistance against the internal pressure of the flow path hole and the refrigerant flow rate.
  • the subject of this invention is providing the flat tube for heat exchangers which can fully ensure both the pressure strength of a flow-path hole, and the flow volume of a refrigerant
  • a plurality of flow passage holes through which a refrigerant flows are arranged in the major axis direction of the horizontal cross section of the flat tube main body inside the flat tube main body having a flat cross section. Is formed.
  • the cross section of the flow path hole substantially orthogonal to the longitudinal direction of the flat tube main body is rectangular.
  • a value obtained by making the thickness t1 of the partition part partitioning between two adjacent channel holes dimensionless with the first width h of the channel hole along the minor axis direction of the cross section of the flat tube main body is t1 / h.
  • a value obtained by making the outer peripheral thickness t2 that is the thickness from the outer peripheral plane of the flat tube main body to the channel hole non-dimensional with the first width h is t2 / h.
  • the ratio of the second width w and the first width h of the flow path hole along the long axis direction, that is, the aspect ratio w / h is 0.4 ⁇ (w / h) ⁇ 1.5, and the flow path
  • the internal pressure P of the hole is 10.0 MPa ⁇ P ⁇ 40.0 MPa, 0.35 ⁇ (t2 / h) / (t1 / h) ⁇ 1.45 (Formula 1) The relationship is established.
  • This flat tube has the above-described relational expression (Formula 1), so that the size of the flow path hole can be made relatively large, so that a sufficient flow rate of the refrigerant is ensured and the internal pressure P of the flow path hole is reduced. Sufficient pressure strength can be ensured.
  • the flat tube for a heat exchanger according to the second aspect of the present invention is the flat tube for a heat exchanger according to the first aspect, wherein the aspect ratio is 0.5 ⁇ (w / h) ⁇ 1.4, and the channel hole
  • the aspect ratio is 0.5 ⁇ (w / h) ⁇ 1.4
  • the channel hole When the internal pressure P is 10.0 MPa ⁇ P ⁇ 40.0 MPa, 0.40 ⁇ (t2 / h) / (t1 / h) ⁇ 1.40 (Formula 2)
  • This flat tube has the above relational expression (formula 2 when the internal pressure P of the channel hole is 10.0 to 40.0 MPa, particularly when the aspect ratio w / h of the channel hole is 0.5 to 1.4. ) Is established.
  • the flat tube for a heat exchanger according to the third aspect of the present invention is the flat tube for a heat exchanger according to the first or second aspect, wherein the aspect ratio is 0.6 ⁇ (w / h) ⁇ 1.3,
  • the aspect ratio is 0.6 ⁇ (w / h) ⁇ 1.3,
  • the aspect ratio is 0.6 ⁇ (w / h) ⁇ 1.35
  • This flat tube has the above relational expression (formula 3) when the internal pressure P of the channel hole is 10.0 to 40.0 MPa, particularly when the aspect ratio w / h of the channel hole is 0.6 to 1.3. ) Is established.
  • the flat tube for a heat exchanger according to a fourth aspect of the present invention is the flat tube for a heat exchanger according to any one of the first to third aspects, wherein the aspect ratio is 0.7 ⁇ (w / h) ⁇ 1. 2 and the internal pressure P of the channel hole is 10.0 MPa ⁇ P ⁇ 40.0 MPa, 0.45 ⁇ (t2 / h) / (t1 / h) ⁇ 1.30 (Formula 4) The relationship is established.
  • a flat tube for a heat exchanger is the flat tube for a heat exchanger according to any one of the first to fourth aspects, wherein the aspect ratio is 0.8 ⁇ (w / h) ⁇ 1. 1 and the internal pressure P of the channel hole is 10.0 MPa ⁇ P ⁇ 40.0 MPa, 0.45 ⁇ (t2 / h) / (t1 / h) ⁇ 1.25 (Formula 5)
  • This flat tube has the above relational expression (formula 5) when the internal pressure P of the channel hole is 10.0 to 40.0 MPa, particularly when the aspect ratio w / h of the channel hole is 0.8 to 1.1. ) Is established.
  • a flat tube for a heat exchanger is the flat tube for a heat exchanger according to any one of the first to fifth aspects, wherein the aspect ratio is 0.9 ⁇ (w / h) ⁇ 1. And when the internal pressure P of the flow path hole is 10.0 MPa ⁇ P ⁇ 40.0 MPa, 0.45 ⁇ (t2 / h) / (t1 / h) ⁇ 1.20 (Formula 6) The relationship is established. In this flat tube, particularly when the aspect ratio w / h of the flow path hole is 0.9 to 1.0, the above relational expression (formula 6) is obtained when the internal pressure P of the flow path hole is 10.0 to 40.0 MPa. ) Is established. As a result, it is possible to ensure a sufficient pressure resistance against the internal pressure P of the flow path hole while ensuring a sufficient refrigerant flow rate.
  • the flat tube for a heat exchanger according to the seventh aspect of the present invention is the flat tube for a heat exchanger according to the first aspect, wherein the aspect ratio is 0.4 ⁇ (w / h) ⁇ 0.6, and the flow channel hole When the internal pressure P is 10.0 MPa ⁇ P ⁇ 20.0 MPa, 0.70 ⁇ (t2 / h) / (t1 / h) ⁇ 1.31 (Formula 7) The relationship is established.
  • the flat tube for a heat exchanger according to the eighth aspect of the present invention is the flat tube for a heat exchanger according to the first aspect, wherein the aspect ratio is 0.4 ⁇ (w / h) ⁇ 0.6 and the flow path hole When the internal pressure P is 20.0 MPa ⁇ P ⁇ 30.0 MPa, 0.59 ⁇ (t2 / h) / (t1 / h) ⁇ 1.26 (Formula 8) The relationship is established.
  • the aspect ratio w / h of the channel hole is 0.4 to 0.6 and the internal pressure P of the channel hole is 20.0 to 30.0 MPa
  • the above relational expression (formula 8 ) Is established.
  • the flat tube for a heat exchanger according to the ninth aspect of the present invention is the flat tube for a heat exchanger according to the first aspect, wherein the aspect ratio is 0.4 ⁇ (w / h) ⁇ 0.6 and the flow path hole When the internal pressure P is 30.0 MPa ⁇ P ⁇ 40.0 MPa, 0.46 ⁇ (t2 / h) / (t1 / h) ⁇ 1.13 (Formula 9) The relationship is established.
  • the aspect ratio w / h of the channel hole is 0.4 to 0.6 and the internal pressure P of the channel hole is 30.0 to 40.0 MPa
  • the above relational expression (formula 9 ) Is established.
  • the flat tube for a heat exchanger according to the tenth aspect of the present invention is the flat tube for a heat exchanger according to the first aspect, wherein the aspect ratio is 0.6 ⁇ (w / h) ⁇ 0.8 and the flow path hole
  • the aspect ratio is 0.6 ⁇ (w / h) ⁇ 0.8 and the flow path hole
  • the flat tube for a heat exchanger according to the eleventh aspect of the present invention is the flat tube for a heat exchanger according to the first aspect, wherein the aspect ratio is 0.6 ⁇ (w / h) ⁇ 0.8 and the flow path hole When the internal pressure P is 20.0 MPa ⁇ P ⁇ 30.0 MPa, 0.51 ⁇ (t2 / h) / (t1 / h) ⁇ 1.01 (Formula 11) The relationship is established.
  • the aspect ratio w / h of the channel hole is 0.6 to 0.8 and the internal pressure P of the channel hole is 20.0 to 30.0 MPa
  • the above relational expression (formula 11 ) Is established.
  • a flat tube for a heat exchanger according to a twelfth aspect of the present invention is the flat tube for a heat exchanger according to the first aspect, wherein the aspect ratio is 0.6 ⁇ (w / h) ⁇ 0.8 and the flow path hole When the internal pressure P is 30.0 MPa ⁇ P ⁇ 40.0 MPa, 0.40 ⁇ (t2 / h) / (t1 / h) ⁇ 0.89 (Formula 12) The relationship is established.
  • the aspect ratio w / h of the channel hole is 0.6 to 0.8 and the internal pressure P of the channel hole is 30.0 to 40.0 MPa
  • the above relational expression (formula 12 ) Is established.
  • the flat tube for a heat exchanger according to the thirteenth aspect of the present invention is the flat tube for a heat exchanger according to the first aspect, wherein the aspect ratio is 0.8 ⁇ (w / h) ⁇ 1.5 and the flow path hole When the internal pressure P is 10.0 MPa ⁇ P ⁇ 20.0 MPa, 0.45 ⁇ (t2 / h) / (t1 / h) ⁇ 0.95 (Formula 13) The relationship is established.
  • a flat tube for a heat exchanger according to a fourteenth aspect of the present invention is the flat tube for a heat exchanger according to the first aspect, wherein the aspect ratio is 0.8 ⁇ (w / h) ⁇ 1.5, and the flow channel hole When the internal pressure P is 20.0 MPa ⁇ P ⁇ 30.0 MPa, 0.42 ⁇ (t2 / h) / (t1 / h) ⁇ 0.93 (Formula 14) The relationship is established.
  • the aspect ratio w / h of the channel hole is 0.8 to 1.5 and the internal pressure P of the channel hole is 20.0 to 30.0 MPa
  • the above relational expression (formula 14 ) Is established.
  • the flat tube for a heat exchanger according to the fifteenth aspect of the present invention is the flat tube for a heat exchanger according to the first aspect, wherein the aspect ratio is 0.8 ⁇ (w / h) ⁇ 1.5 and the flow path hole
  • the aspect ratio is 0.8 ⁇ (w / h) ⁇ 1.5 and the flow path hole
  • the aspect ratio w / h of the channel hole is 0.8 to 1.5 and the internal pressure P of the channel hole is 30.0 to 40.0 MPa
  • the above relational expression (formula 15 ) Is established.
  • the flat tube for a heat exchanger according to the sixteenth aspect of the present invention is the flat tube for a heat exchanger according to the first aspect, wherein the aspect ratio is 0.7 ⁇ w / h ⁇ 1.5 and the inside of the flow path hole When the pressure P is 10.0 MPa ⁇ P ⁇ 20.0 MPa, 0.45 ⁇ (t2 / h) / (t1 / h) ⁇ 1.00 (Formula 16) The relationship is established.
  • the flat tube for a heat exchanger according to the seventeenth aspect of the present invention is the flat tube for a heat exchanger according to the first aspect, wherein the aspect ratio is 0.4 ⁇ w / h ⁇ 0.7 and the inside of the flow path hole When the pressure P is 10.0 MPa ⁇ P ⁇ 20.0 MPa, 0.67 ⁇ (t2 / h) / (t1 / h) ⁇ 1.30 (Formula 17) The relationship is established.
  • a flat tube for a heat exchanger according to an eighteenth aspect of the present invention is the flat tube for a heat exchanger according to any one of the first to seventeenth aspects, wherein a corrosion-resistant layer is formed on the outer periphery of the flat tube main body. .
  • the outer peripheral thickness t2 is a thickness from the outer peripheral plane of the flat tube main body excluding the corrosion-resistant layer to the flow path hole.
  • this flat tube has a corrosion-resistant layer formed on the outer periphery, the flat tube main body can be prevented from corroding.
  • the outer peripheral thickness t2 excluding the corrosion-resistant layer is used in the above relational expressions (Expression 1) to (Expression 17), from the viewpoint of pressure strength, the outer peripheral thickness t2 including the corrosion-resistant layer Is more severe than when it is used in the above relational expression. Therefore, the flat tube satisfying such a condition can ensure the pressure strength more reliably.
  • the flat tube for a heat exchanger according to a nineteenth aspect of the present invention is the flat tube for a heat exchanger according to any one of the first to eighteenth aspects, wherein the flow path hole has irregularities on its inner wall surface. .
  • the thickness t1 of the partition portion is a thickness when the thickness between adjacent flow path holes is the smallest due to the unevenness.
  • the outer peripheral thickness t2 is a thickness when the thickness from the flat surface of the outer periphery of the flat tube main body to the flow path hole is the smallest due to the unevenness.
  • the flat tube since the thickness t1 and the outer peripheral thickness t2 of the partition portion when it is the smallest due to the unevenness are used in the above relational expressions (Expression 1) to (Expression 17), from the viewpoint of pressure strength, the thickness t1 and the outer peripheral thickness t2 of the partition portion when it becomes the largest due to the unevenness are more severe conditions than when used in the above relational expression. Therefore, the flat tube satisfying such a condition can ensure the pressure strength more reliably.
  • the flat tube for a heat exchanger it is possible to ensure a sufficient pressure resistance against the internal pressure P of the flow path hole while ensuring a sufficient refrigerant flow rate. it can.
  • the flat tube for a heat exchanger according to the eighteenth aspect of the present invention can prevent the flat tube main body from being corroded and can more reliably secure the pressure strength.
  • the flat tube for a heat exchanger according to the nineteenth aspect of the present invention can ensure the pressure strength more reliably.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 2 and a side view when the heat exchanger of FIG. 3 is viewed from the right side.
  • FIG. 6 is a graph showing isobaric lines of pressure resistance of the flat heat transfer tube of FIG. 5 when the aspect ratio w / h of the channel hole ho is 0.4.
  • the outer peripheral thickness t2 at each value (0.4, 0.8, 1.0, 1.4, 1.5) of the aspect ratio w / h and the partition portion
  • the graph showing the ratio (Ao / A) of the cross-sectional area Ao of the flow-path hole to the ratio (t2 / h) / (t1 / h) with thickness t1, and the cross-sectional area A of a flat heat exchanger tube.
  • the outer peripheral thickness t2 at each value (0.4, 0.8, 1.0, 1.4, 1.5) of the aspect ratio w / h and the partition portion
  • the graph showing the ratio (Ao / A) of the cross-sectional area Ao of the flow-path hole to the ratio (t2 / h) / (t1 / h) with thickness t1, and the cross-sectional area A of a flat heat exchanger tube.
  • the outer peripheral thickness t2 at each value (0.4, 0.8, 1.0, 1.4, 1.5) of the aspect ratio w / h and the partition portion
  • the graph showing the ratio (Ao / A) of the cross-sectional area Ao of the flow-path hole to the ratio (t2 / h) / (t1 / h) with thickness t1, and the cross-sectional area A of a flat heat exchanger tube.
  • FIG. 1 is an external view of a heat exchanger 10 including flat heat transfer tubes 41, 42, 43,... According to the present embodiment.
  • the heat exchanger 10 in FIG. 1 is provided inside the outdoor unit of the air conditioner or inside the heat source unit of the hot water supply device, and functions as a refrigerant evaporator or a radiator.
  • the heat exchanger 10 mainly includes a diversion header 20, a merge header 30, a flat heat transfer tube group 40, and fins 50, and has a configuration of a so-called stacked microchannel heat exchanger. is doing.
  • a liquid state refrigerant or a gas-liquid two-phase state refrigerant is fed into the diversion header 20 from the direction R1 in FIG.
  • the refrigerant supplied to the diversion header 20 flows to the merging header 30 by being divided into a plurality of flow path holes ho included in the respective flat heat transfer tubes 41, 42, 43,.
  • the merging header 30 is provided so as to sandwich the fins 50 together with the divergence header 20, and merges the refrigerant that has flowed from the plurality of flow path holes ho included in the plurality of flat heat transfer tubes 41, 42, 43,.
  • the refrigerant is sent out in the direction R2 in FIG.
  • the flat heat transfer tube group 40 is configured by a plurality of flat heat transfer tubes (corresponding to flat tubes for heat exchangers) 41, 42, 43. As shown in FIGS. 3 and 4, the flat heat transfer tubes 41, 42, 43,... Are arranged side by side by a predetermined distance in the vertical direction, but the flat heat transfer tubes 41, Details of 42 and 43 will be described in “(2) Configuration of flat heat transfer tube”.
  • the adjacent flat heat transfer tubes 41, 42, 43,... Is at least one of the adjacent flat heat transfer tubes 41, 42, 43,. It is joined and arranged. More specifically, the fin 50 is adjacent to the adjacent flat heat transfer tubes 41, 42, and between the adjacent flat heat transfer tubes 42, 43, respectively.
  • the first fin 51 and the second fin 52 are provided separately from each other. Each of the first fin 51 and the second fin 52 has a so-called wave shape in which a peak portion and a valley portion are repeatedly formed in a front view of the heat exchanger 10 in FIG. Is formed by.
  • the first fin 51 is disposed so as to be sandwiched between the flat heat transfer tubes 41 and 42, and the upper surface side of the mountain portion is the upper surface of the flat heat transfer tube 42 with respect to the flat surface 141 b that is the lower surface side of the flat heat transfer tube 41.
  • the lower surface side of the valley portion is in contact with the flat surface 142a that is the side.
  • the second fin 52 is disposed so as to be sandwiched between the flat heat transfer tubes 42 and 43, and the upper surface side of the mountain portion is the upper surface of the flat heat transfer tube 43 with respect to the flat surface 142 b that is the lower surface side of the flat heat transfer tube 42.
  • the lower surface side of the valley portion is in contact with the flat surface 143a which is the side.
  • each part which the flat heat-transfer tube group 40 and the fin 50 are contacting as mentioned above is adhering by brazing welding.
  • the heat of the refrigerant flowing in the flat heat transfer tube group 40 is transferred not only to the surface of the flat heat transfer tube group 40 but also to the surfaces of the fins 50. Therefore, the heat transfer area of the heat exchanger 10 is increased, the heat exchange efficiency is improved, and the heat exchanger 10 itself can be made compact.
  • the flat heat transfer tube groups 40 and the fins 50 are alternately stacked in the vertical direction. Therefore, the space
  • the 1st fin 51 and the 2nd fin 52 are formed with a plurality of louvers 60 protruding from the plane portion.
  • the louver 60 is formed by cutting and raising from plate-like aluminum or aluminum alloy, and plays a role of making the fins 50 more easily contact with air.
  • (2) Configuration of flat heat transfer tube The flat heat transfer tubes 41, 42, 43, ... are manufactured by extruding an elastically plastically deformable material such as aluminum or an aluminum alloy. Each of the flat heat transfer tubes 41, 42, 43,... Extends in a direction that intersects (specifically, substantially perpendicular) to the air flow direction F generated by ventilation in the horizontal direction.
  • the flat heat transfer tubes 41, 42, 43,... Have a flat shape in which a cross section substantially perpendicular to the longitudinal direction is crushed from the vertical direction. As shown in FIG. 3, it has flat surfaces 141a, 141b, 142a, 142b, 143a, 143b,... Spreading in a horizontal plane substantially parallel to the air flow direction F.
  • the flat surfaces 141a, 141b, 142a, 142b, 143a, 143b,... are spread horizontally in the vertical upper side and the vertical lower side.
  • the corrosion-resistant layer 150 is formed in the outer periphery of the flat tube main body 141,142,143, ... so that the said main body 141,142,143, ... may be covered. .
  • the corrosion-resistant layer 150 is formed to a thickness of about 0.05 to 0.1 mm by spraying zinc having a smaller ionization tendency than aluminum or an aluminum alloy on the surfaces of the flat tube bodies 141, 142, 143,.
  • the plurality of flow path holes ho extend along the longitudinal direction Y of the flat heat transfer tubes 41, 42, 43,..., And as shown in FIG. , 143,... Are aligned along the air flow direction F. That is, the plurality of flow path holes ho pass through the flat tube bodies 141, 142, 143,..., And as shown in FIG. Are formed side by side in the major axis direction X.
  • the plurality of flow path holes ho are located at predetermined intervals from the adjacent flow path holes ho, and in this embodiment, the portions corresponding to the intervals among the flat tube bodies 141, 142, 143,. Is referred to as “partition 160”, and the predetermined interval is referred to as “thickness t1 of partition 160”. In other words, the two adjacent channel holes ho are partitioned by the partition portion 160. Further, the plurality of flow path holes ho are located at a predetermined thickness t2 away from the flat surfaces 141a, 141b, 142a, 142b, 143a, 143b,... In the flat tube bodies 141, 142, 143,. is doing.
  • the thickness t2 refers to a thickness that does not include the corrosion-resistant layer 150 formed on each flat surface 141a, 141b, 142a, 142b, 143a, 143b. That is, the thickness t2 is derived from the flat surfaces 141a, 141b, 142a, 142b, 143a, 143b,. It is the shortest thickness to each flow path hole ho.
  • the thickness t2 is referred to as “outer peripheral thickness t2”.
  • the plurality of flow path holes ho are the flat tube main bodies 141, except for the flow path holes ho1, ho2 located at both ends of the flat tube main bodies 141, 142, 143,.
  • the cross sections substantially orthogonal to the longitudinal direction Y of 142 and 143 are rectangular.
  • the flow path holes ho1 and ho2 have a D-shape that swells along the ends of the flat tube bodies 141, 142, 143,.
  • the flow path hole ho1 has a D-shape that swells to the left in FIG.
  • the flow path hole ho2 has a D-shape that swells to the right in FIG.
  • the thickness t1 and the outer peripheral thickness t2 of the partition 160 are determined so as to satisfy the following conditions.
  • the second width w of the flow path holes ho (excluding the flow path holes ho1, ho2) along the major axis direction X;
  • the aspect ratio w / h which is the ratio of the flow path hole ho along the minor axis direction Z to the first width h, is “0.4 ⁇ (w / h) ⁇ 1.5”, and the flow path hole
  • the value t1 / h obtained by making the thickness t1 of the partition 160 160 dimensionless with the first width h and the outer peripheral thickness t2 are set to the first width h.
  • the aspect ratio w / h is 0.5 ⁇ (w / h) ⁇ 1.4, and the internal pressure P of the flow path hole ho is 10.0 MPa ⁇ P ⁇ 40.
  • the thickness t1 of the partition 160 and the thickness t2 of the outer periphery are determined so that More specifically, in the above relational expressions (Expression 1) to (Expression 2), the aspect ratio w / h is 0.6 ⁇ (w / h) ⁇ 1.3 and the internal pressure P of the flow path hole ho Is 10.0 MPa ⁇ P ⁇ 40.0 MPa, 0.45 ⁇ (t2 / h) / (t1 / h) ⁇ 1.35 (Formula 3) It is preferable that the thickness t1 of the partition 160 and the thickness t2 of the outer periphery are determined so that
  • the aspect ratio w / h is 0.7 ⁇ (w / h) ⁇ 1.2 and the internal pressure P of the flow path hole ho Is 10.0 MPa ⁇ P ⁇ 40.0 MPa, 0.45 ⁇ (t2 / h) / (t1 / h) ⁇ 1.30 (Formula 4) It is preferable that the thickness t1 of the partition 160 and the thickness t2 of the outer periphery are determined so that More specifically, in the above relational expressions (Expression 1) to (Expression 4), the aspect ratio w / h is 0.8 ⁇ (w / h) ⁇ 1.1 and the internal pressure P of the flow path hole ho Is 10.0 MPa ⁇ P ⁇ 40.0 MPa, 0.45 ⁇ (t2 / h) / (t1 / h) ⁇ 1.25 (Formula 5) It is preferable that the thickness t1 of the partition 160 and the
  • the aspect ratio w / h is 0.9 ⁇ (w / h) ⁇ 1.0 and the internal pressure P of the flow path hole ho Is 10.0 MPa ⁇ P ⁇ 40.0 MPa, 0.45 ⁇ (t2 / h) / (t1 / h) ⁇ 1.20 (Formula 6)
  • the thickness t1 of the partition 160 and the thickness t2 of the outer periphery are determined so that Further, in the following, the ranges of the aspect ratio w / h and the internal pressure P of the flow path hole ho, which are the conditions for satisfying the above relational expression (Formula 1), are subdivided, and the thickness t1, The condition that the outer peripheral thickness t2 is satisfied will be expressed.
  • each range of the aspect ratio w / h and the internal pressure P of the flow path hole ho which is a condition for satisfying the relational expression (Expression 1), is heat exchange using the flat tube according to the present embodiment. It is assumed that the condition for satisfying the thickness t1 of the partition 160 and the thickness t2 of the outer periphery is expressed by subdividing each use of the vessel.
  • the aspect ratio is 0.7 ⁇ (w / h) ⁇ 1.5 in the relational expression (formula 1), and the flow rate
  • the internal pressure P of the passage hole ho is 10.0 MPa ⁇ P ⁇ 20.0 MPa, 0.45 ⁇ (t2 / h) / (t1 / h) ⁇ 1.00
  • the thickness t1 of the partition 160 and the thickness t2 of the outer periphery are determined so that
  • the aspect ratio is 0.4 ⁇ (w / h) ⁇ 0.7 in the relational expression (Formula 1), When the internal pressure P of the flow path hole ho is 10.0 MPa ⁇ P ⁇ 20.0 MPa, 0.67 ⁇ (t2 / h) / (t1 / h) ⁇ 1.30 (Formula 17) It is preferable that the thickness t1 of the partition 160 and the thickness t2 of the outer periphery are determined so that In general, a heat exchanger used in an in-vehicle air conditioner is relatively small in size, and thus is not subject to pressure loss.
  • the ratio of the cross-sectional area of the refrigerant hole in the flat tube cross-sectional area is increased by reducing the aspect ratio (that is, the elongated shape). Therefore, the aspect ratio is a small “0.4 to 0.7”.
  • the aspect ratio of the flat tube of the heat exchanger used for the indoor / outdoor unit is increased to “0.7 to 1.5” compared to the case of the flat tube of the in-vehicle heat exchanger.
  • the above relational expressions (Expression 16) and (Expression 17) hold even when the internal pressure P is 10.0 MPa or less.
  • the range of the internal pressure P that is particularly often used is “10.0 MPa to 20 MPa. .0 MPa ".
  • the thickness of the heat transfer tubes 41, 42, 43,... Can be minimized while ensuring the target pressure resistance and sufficient cross-sectional area of the channel hole. Accordingly, the flat heat transfer tubes 41, 42, 43,... Can be made compact and the cost can be reduced while maintaining a high pressure resistance and a sufficient flow path hole cross-sectional area.
  • the pressure resistance of the flat heat transfer tubes 41, 42, 43,... Where the internal pressure acts in the flow path hole ho can be obtained by performing an elasto-plastic analysis.
  • the pressure strength refers to the maximum strength that can be withstood without breaking the flow path hole ho due to the action of internal pressure.
  • the flat heat transfer tubes 41, 42, 43,... are flatter than the length in the long axis direction X and the length in the short axis direction Z in the cross section of the flat tube bodies 141, 142, 143,. Since the lengths in the longitudinal direction Y of the tube bodies 141, 142, 143,...
  • the deformation in the longitudinal direction Y can be ignored and regarded as a so-called plane strain problem. That is, in this embodiment, only the stress acting on the cross section in the major axis direction X and the minor axis direction Z can be considered.
  • each graph in FIG. 6 shows a numerical analysis by computer simulation when the aspect ratio w / h is 0.4 among the isobaric lines of the internal pressure P when the horizontal axis is t1 / h and the vertical axis is t2 / h. It is an example of the graph which calculated
  • the graph corresponding to each internal pressure P has a portion where the value of t2 / h increases along the vertical axis while t1 / h is substantially constant at the lowest value.
  • each graph in FIG. 6 has a portion where t2 / h is substantially constant at the lowest value, while the value of t1 / h is higher along the horizontal axis.
  • the 6 has an inflection point at which both values of t1 / h and t2 / h are lowest.
  • This inflection point is the point at which t1 / h and t2 / h are the smallest, and the thickness of the partition 160 is such that each value of t1 / h and t2 / h is near the inflection point.
  • FIGS. 12 to 15 show, as an example, the results of the isobaric lines at the aspect ratio w / h values of 0.4, 0.8, 1.0, 1.4, and 1.5.
  • the ratio between the thickness t2 and the thickness t1 of the partition portion 160 (specifically, “(t2 / h) / (t1 / h)”) ”, and the vertical axis“ flat heat transfer tubes 41, 42, 43,.
  • the internal pressure P (here 10.0 MPa, 20.0 MPa, 30.0 MPa, 40.0 MPa) is a graph collectively shown.
  • the cross-sectional area Ao of the flow path hole ho according to the present embodiment is a total value of the cross-sectional areas of all the plurality of flow path holes ho included in one cross section.
  • the ratio Ao / A of the cross-sectional area Ao of the channel hole ho to the cross-sectional area A is the highest. That is, when the thickness t1 and the outer peripheral thickness t2 of the partition 160 have values that are the vertices of the respective graphs, the pressure strength against each internal pressure P is maximized, and the cross-sectional area of the flow path hole ho Ao is also the largest. 7-11, when the aspect ratio w / h is a constant value, the lower the internal pressure P, the lower the cross sectional area A of the flat heat transfer tubes 41, 42, 43,.
  • the ratio Ao / A of the cross-sectional area Ao of the flow path hole ho occupying is increased.
  • the aspect ratio w / h is a constant value
  • the larger the internal pressure P the greater the outer peripheral thickness t2 related to the vertices of the graph and the thickness of the partition 160.
  • the ratio (t2 / h) / (t1 / h) with t1 tends to be small. According to the vertices in each graph of FIGS.
  • the ratio of the respective values t2 / h and t1 / h obtained by making the outer peripheral thickness t2 and the thickness t1 of the partition 160 160 dimensionless with the first width h of the flow path hole ho. Is varied by using the internal pressure P and the aspect ratio w / h as parameters, and the ratio Ao / of the cross-sectional area Ao of the channel hole ho occupying the cross-sectional area A of the flat heat transfer tubes 41, 42, 43,.
  • a method of observing A is adopted. By such a method, it is possible to easily obtain a condition when the size of each flow path hole ho is maximized while maintaining a high pressure resistance.
  • the optimum thickness t1 and outer peripheral thickness t2 of the partition 160 can be obtained quickly, and the heat transfer effect of the heat exchanger 10 itself can be improved.
  • the aspect ratio w / h is 0.4
  • the ratio of the outer peripheral thickness t2 to the thickness t1 of the partition 160 (t2 / h).
  • a / (t1 / h) is about 1.154
  • the ratio Ao / A of the cross-sectional area Ao of the channel hole ho to the cross-sectional area A of the flat heat transfer tubes 41, 42, 43,. .82 can be read.
  • the thickness t1 of the partition 160 can be determined to be about 200 ⁇ m, for example, and the outer peripheral thickness t2 can be determined to be about 230.8 ⁇ m.
  • each range of (t2 / h) / (t1 / h) expressed in the relational expressions (Expression 1) to (Expression 6) and (Expression 7) to (Expression 17) is the numerical value in Tables 2 to 13.
  • it is a range with a margin. That is, the values of (t2 / h) / (t1 / h) shown in Tables 2 to 13 are the values when different aspect ratios w / h and internal pressure P are combined (for example, as shown in FIG. It is a value obtained from each value of t1 / h and t2 / h at the inflection point (of each graph).
  • each value of (t2 / h) / (t1 / h) is near the inflection point of the graph as shown in FIG. desirable.
  • the values of t1 / h and t2 / h at the inflection point are those of A1100-O or A1050-O.
  • the ratio of (t2 / h) / (t1 / h) is almost the same value.
  • the internal pressure P (specifically 10.0 to 20.0 MPa) and the aspect ratio corresponding to all of the above relational expressions (Expression 7) (Expression 10) (Expression 13) If w / h is 0.4 to 1.5, 0.60 ⁇ (t2 / h) / (t1 / h) ⁇ 1.16 (Formula 30) It is confirmed that the above condition is more preferable.
  • Internal pressure P (specifically, 20.0 to 30.0 MPa) corresponding to all of the above relational expressions (Expression 8), (Expression 11), and (Expression 14), and an aspect ratio w / h is 0.4 to 1.5.
  • the internal pressure P (specifically, 10.0 to 20.0 MPa) corresponding to the relational expression (Expression 16) and the aspect ratio w / h is 0.4 to 0. .7, 0.60 ⁇ (t2 / h) / (t1 / h) ⁇ 0.85 (Formula 33) It is confirmed that the above condition is more preferable. If the internal pressure P (specifically, 10.0 to 20.0 MPa) corresponding to the above relational expression (Expression 17) and the aspect ratio w / h is 0.7 to 1.5, 0.80 ⁇ (t2 / h) / (t1 / h) ⁇ 1.16 (Formula 34) It is confirmed that the above condition is more preferable.
  • the aspect ratio w / h and the internal pressure P corresponding to the above relational expression (formula 6) specifically, the aspect ratio w / h is 0.9 to 1.0, and the internal pressure P is 10.0 to 40) 0.0 MPa
  • 0.54 ⁇ (t2 / h) / (t1 / h) ⁇ 0.77 it is confirmed that the above condition is more preferable.
  • the flat heat transfer tubes 41, 42, 43,... have a transverse cross section inside the flat tube bodies 141, 142, 143,.
  • a plurality of rectangular channel holes ho are arranged in the long axis direction X.
  • the thickness t1 of the partition part 160 between two adjacent flow-path holes ho is made into the flow-path hole ho along the short-axis direction Z of the cross section of flat tube main body 141,142,143, ....
  • the dimensionless value with the first width h is t1 / h
  • the outer peripheral thickness t2 of the flat tube bodies 141, 142, 143,... Is dimensionless with the first width h as t2 / h.
  • the ratio between the second width w and the first width h of the flow path hole ho along the long axis direction X that is, the aspect ratio w / h is 0.4 ⁇ (w / h) ⁇ 1.5,
  • the internal pressure P of the flow path hole ho is 10.0 MPa ⁇ P ⁇ 40.0 MPa, 0.35 ⁇ (t2 / h) / (t1 / h) ⁇ 1.45
  • the thickness t1 and the outer peripheral thickness t2 of the partition 160 are determined so that
  • the flat heat transfer tubes 41, 42, 43,... have the aspect ratio w / h of the flow path hole ho of 0.5 ⁇ (w / h) ⁇ 1.4.
  • the internal pressure of the flow path hole ho is 10.0 to 40.0 MPa
  • 0.40 ⁇ (t2 / h) / (t1 / h) ⁇ 1.40 (Formula 2) Is configured to hold. Thereby, it is possible to ensure a sufficient pressure resistance against the internal pressure P of the flow path hole ho while ensuring a sufficient refrigerant flow rate.
  • the flat heat transfer tubes 41, 42, 43,... have the aspect ratio w / h of the flow path hole ho of 0.6 ⁇ (w / h) ⁇ 1.3,
  • the internal pressure P of the flow path hole ho is 10.0 MPa ⁇ P ⁇ 40.0 MPa, 0.45 ⁇ (t2 / h) / (t1 / h) ⁇ 1.35 (Formula 3) Is configured to hold. Thereby, it is possible to ensure a sufficient pressure resistance against the internal pressure of the flow path hole ho while securing a sufficient refrigerant flow rate.
  • the present embodiment have the aspect ratio w / h of the flow path hole ho of 0.7 ⁇ (w / h) ⁇ 1.2.
  • the internal pressure P of the flow path hole ho is 10.0 MPa ⁇ P ⁇ 40.0 MPa, 0.45 ⁇ (t2 / h) / (t1 / h) ⁇ 1.30 (Formula 4) Is configured to hold. Thereby, it is possible to ensure a sufficient pressure resistance against the internal pressure P of the flow path hole ho while ensuring a sufficient refrigerant flow rate.
  • the flat heat transfer tubes 41, 42, 43,... have the aspect ratio w / h of the channel hole ho of 0.8 ⁇ (w / h) ⁇ 1.1, When the internal pressure P of the flow path hole ho is 10.0 MPa ⁇ P ⁇ 40.0 MPa, 0.45 ⁇ (t2 / h) / (t1 / h) ⁇ 1.25 (Formula 5) Is configured to hold. Thereby, it is possible to ensure a sufficient pressure resistance against the internal pressure P of the flow path hole ho while ensuring a sufficient refrigerant flow rate. (4-6) In particular, the flat heat transfer tubes 41, 42, 43,...
  • the present embodiment have the aspect ratio w / h of the flow path hole ho of 0.9 ⁇ (w / h) ⁇ 1.0,
  • the internal pressure P of the flow path hole ho is 10.0 MPa ⁇ P ⁇ 40.0 MPa, 0.45 ⁇ (t2 / h) / (t1 / h) ⁇ 1.20 (Formula 6) Is configured to hold. Thereby, it is possible to ensure a sufficient pressure resistance against the internal pressure P of the flow path hole ho while ensuring a sufficient refrigerant flow rate.
  • the flat heat transfer tubes 41, 42, 43,... have the aspect ratio w / h of the flow path hole ho of 0.4 ⁇ (w / h) ⁇ 0.6, When the internal pressure P of the flow path hole ho is 10.0 MPa ⁇ P ⁇ 20.0 MPa, 0.70 ⁇ (t2 / h) / (t1 / h) ⁇ 1.31 (Formula 7) Is configured to hold. Thereby, it is possible to ensure a sufficient pressure resistance against the internal pressure P of the flow path hole ho while ensuring a sufficient refrigerant flow rate. (4-8) In particular, the flat heat transfer tubes 41, 42, 43,...
  • the present embodiment have the aspect ratio w / h of the flow path hole ho of 0.4 ⁇ (w / h) ⁇ 0.6,
  • the internal pressure P of the flow path hole ho is 20.0 MPa ⁇ P ⁇ 30.0 MPa, 0.59 ⁇ (t2 / h) / (t1 / h) ⁇ 1.26 (Formula 8) Is configured to hold. Thereby, it is possible to ensure a sufficient pressure resistance against the internal pressure P of the flow path hole ho while ensuring a sufficient refrigerant flow rate.
  • the flat heat transfer tubes 41, 42, 43,... have the aspect ratio w / h of the flow path hole ho of 0.4 ⁇ (w / h) ⁇ 0.6,
  • the internal pressure P of the flow path hole ho is 30.0 MPa ⁇ P ⁇ 40.0 MPa, 0.46 ⁇ (t2 / h) / (t1 / h) ⁇ 1.13 (Formula 9) Is configured to hold. Thereby, it is possible to ensure a sufficient pressure resistance against the internal pressure P of the flow path hole ho while ensuring a sufficient refrigerant flow rate.
  • the present embodiment have the aspect ratio w / h of the flow path hole ho of 0.6 ⁇ (w / h) ⁇ 0.8,
  • the internal pressure P of the flow path hole ho is 10.0 MPa ⁇ P ⁇ 20.0 MPa, 0.62 ⁇ (t2 / h) / (t1 / h) ⁇ 1.15 (Formula 10) Is configured to hold.
  • the flat heat transfer tubes 41, 42, 43,... have the aspect ratio w / h of the flow path hole ho of 0.6 ⁇ (w / h) ⁇ 0.8,
  • the internal pressure P of the flow path hole ho is 20.0 MPa ⁇ P ⁇ 30.0 MPa, 0.51 ⁇ (t2 / h) / (t1 / h) ⁇ 1.01 (Formula 11) Is configured to hold. Thereby, it is possible to ensure a sufficient pressure resistance against the internal pressure P of the flow path hole ho while ensuring a sufficient refrigerant flow rate.
  • the present embodiment have the aspect ratio w / h of the flow path hole ho of 0.6 ⁇ (w / h) ⁇ 0.8,
  • the internal pressure P of the flow path hole ho is 30.0 MPa ⁇ P ⁇ 40.0 MPa, 0.40 ⁇ (t2 / h) / (t1 / h) ⁇ 0.89 (Formula 12) Is configured to hold.
  • the flat heat transfer tubes 41, 42, 43,... have the aspect ratio w / h of the channel hole ho of 0.8 ⁇ (w / h) ⁇ 1.5,
  • the internal pressure P of the flow path hole ho is 10.0 MPa ⁇ P ⁇ 20.0 MPa, 0.45 ⁇ (t2 / h) / (t1 / h) ⁇ 0.95 (Formula 13) Is configured to hold. Thereby, it is possible to ensure a sufficient pressure resistance against the internal pressure P of the flow path hole ho while ensuring a sufficient refrigerant flow rate.
  • the present embodiment have the aspect ratio w / h of the channel hole ho of 0.8 ⁇ (w / h) ⁇ 1.5,
  • the internal pressure P of the flow path hole ho is 20.0 MPa ⁇ P ⁇ 30.0 MPa, 0.42 ⁇ (t2 / h) / (t1 / h) ⁇ 0.93 (Formula 14) Is configured to hold. Thereby, it is possible to ensure a sufficient pressure resistance against the internal pressure P of the flow path hole ho while ensuring a sufficient refrigerant flow rate.
  • the flat heat transfer tubes 41, 42, 43,... have the aspect ratio w / h of the channel hole ho of 0.8 ⁇ (w / h) ⁇ 1.5,
  • the internal pressure P of the flow path hole ho is 30.0 MPa ⁇ P ⁇ 40.0 MPa, 0.39 ⁇ (t2 / h) / (t1 / h) ⁇ 0.82 (Formula 15) Is configured to hold. Thereby, it is possible to ensure a sufficient pressure resistance against the internal pressure P of the flow path hole ho while ensuring a sufficient refrigerant flow rate.
  • the aspect ratio of the flow path hole ho is 0.7 ⁇ w / h ⁇ 1.5.
  • the internal pressure P of the flow path hole ho is 10.0 MPa ⁇ P ⁇ 20.0 MPa, 0.45 ⁇ (t2 / h) / (t1 / h) ⁇ 1.00 (Formula 16)
  • the internal pressure P of the flow path hole is secured while ensuring a sufficient refrigerant flow rate. It is possible to ensure a sufficient strength against pressure.
  • a corrosion-resistant layer 150 is formed on the outer periphery of the main bodies 141, 142, 143,.
  • the thickness of the corrosion-resistant layer 150 is excluded from the outer peripheral thickness t2 in 1) to (Expression 6) and (Expression 7) to (Expression 17). Thereby, it can prevent that the flat tube main body 141,142,143, ... corrodes by the corrosion-resistant layer 150.
  • FIG. from the viewpoint of pressure strength, the outer peripheral thickness t2 including the corrosion-resistant layer 150 is more than that used in the relational expressions (Expression 1) to (Expression 6) and (Expression 7) to (Expression 17). It will be a severe condition. Therefore, the flat heat transfer tubes 41, 42, 43,... Satisfying such a condition can ensure the pressure strength more reliably.
  • the thicknesses t1 and t2 are not constant, However, in Modification A, the thicknesses t1 and t2 are the minimum thicknesses in consideration of the unevenness.
  • the thicknesses t1 and t2 when the thickness is minimized due to the unevenness are used in the above relational expressions (Expression 1) to (Expression 6), (Expression 7) to (Expression 17), etc. Therefore, the thicknesses t1 and t2 when the thickness becomes the largest due to the unevenness are larger than those used in the above relational expressions (Expression 1) to (Expression 6), (Expression 7) to (Expression 17), etc. It will be a severe condition. Therefore, the flat heat transfer tubes 41, 42, 43,... Satisfying such a condition can ensure the pressure strength more reliably. (5-2) Modification B In the said embodiment, the case where the flat heat exchanger tubes 41, 42, 43, ...
  • the flat heat transfer tube according to the present invention may be formed of a material other than aluminum and an aluminum alloy, as long as it is formed of a material that can be elastically plastically deformed.
  • Other materials include copper and iron.
  • the thickness t1 of the partition 160 when the ratio Ao / A of the cross-sectional area Ao of the flow path hole ho occupying the cross-sectional area A of the flat heat transfer tubes 41, 42, 43,.
  • the outer peripheral thickness t2 was determined by the above relational expressions (Expression 1) to (Expression 6), (Expression 7) to (Expression 17), and the like.
  • the thickness t1 and the outer peripheral thickness t2 of the partition 160 may be determined in consideration of the refrigerant flow rate and the like.
  • the flat tube for a heat exchanger according to the present invention can ensure a sufficient pressure resistance against the internal pressure of the flow path hole while ensuring a sufficient refrigerant flow rate.
  • the flat tube for heat exchangers according to the present invention can be applied to a flat heat transfer tube among heat transfer tubes of a heat exchanger used in a hot water supply device, a refrigeration device, and an air conditioner.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 流路穴の内部圧力に対する十分な耐圧強度を確保しつつ、十分な冷媒流量を確保する。扁平伝熱管(41,42,43,・・・)は、扁平管本体(141,142,143,・・・)の内部に、横断面が矩形状である流路穴(ho)が当該本体(141,142,143,・・・)の横断面の長軸方向(X)に並んで形成されている。流路穴(ho)間の仕切り部(160)の厚さ(t1)を、流路穴(ho)の第1幅(h)で無次元化した値を(t1/h)とし、扁平管本体(141,142,143,・・・)の外周から流路穴(ho)までの厚さである外周厚さ(t2)を、第1幅(h)で無次元化した値を(t2/h)とする。長軸方向(X)に沿った流路穴(ho)の第2幅(w)と第1幅(h)との比率、即ちアスペクト比(w/h)が、0.4≦(w/h)≦1.5であると共に、流路穴(ho)の内部圧力(P)が10.0MPa≦P≦40.0MPaの場合、0.35≦(t2/h)/(t1/h)≦1.45の関係が成立する。

Description

熱交換器用扁平管
 本発明は、熱交換器用扁平管に関する。
 空気調和装置には、蒸発器や放熱器等として機能する熱交換器が含まれている。この熱交換器は、主としてフィン及び伝熱管によって構成されている。伝熱管の種類としては、その断面が円形状である伝熱管の他、特許文献1(特開平10-132424号公報)に開示されているような、扁平形状の伝熱管が挙げられる。
 特許文献1の伝熱管は、アルミニウムまたはアルミニウム合金等を押し出し形成することによって製造されており、その本体には、伝熱管の長手方向に延びる複数の流路穴が、伝熱管の幅方向に並んで配置されている。流路穴の内部には冷媒が流れ、熱交換器は、当該冷媒とフィンを通る媒体(例えば、空気等)との間で熱交換を行う。
 特許文献1に係る流路穴は、長手方向に略直交する断面が円形の形状となっている。このように、断面形状が円形である流路穴が扁平形状の伝熱管に用いられると、流路穴の形状の都合上、伝熱管の横断面積に対し流路穴の占める面積の度合いが比較的小さくなるため、流路穴の内部圧力に対する耐圧強度を確保することが容易であるが、十分な冷媒流量を確保することは困難となる。特に、サイズのより小さい扁平形状の伝熱管を設計する際には、流路穴の内部圧力に対する耐圧強度と冷媒流量とのバランスを、より良く保つことが要求される。
 本発明の課題は、流路穴の耐圧強度及び冷媒の流量を共に十分に確保できる熱交換器用の扁平管を提供することにある。
 本発明の第1観点に係る熱交換器用扁平管は、断面が扁平形状である扁平管本体の内部に、冷媒が流れる複数の流路穴が扁平管本体の横断面の長軸方向に並んで形成されている。扁平管本体の長手方向に略直交する流路穴の断面は、矩形形状である。隣り合う2つの流路穴の間を仕切る仕切り部の厚さt1を、扁平管本体の横断面の短軸方向に沿った流路穴の第1幅hで無次元化した値をt1/hとする。かつ、扁平管本体の外周の平面から流路穴までの厚さである外周厚さt2を、第1幅hで無次元化した値をt2/hとする。長軸方向に沿った流路穴の第2幅wと第1幅hとの比率、即ちアスペクト比w/hが、0.4≦(w/h)≦1.5であると共に、流路穴の内部圧力Pが10.0MPa≦P≦40.0MPaの場合、
0.35≦(t2/h)/(t1/h)≦1.45 (式1)
の関係が成立する。
 この扁平管は、上記関係式(式1)が成り立つことにより、流路穴のサイズを比較的大きく取ることができるために十分な冷媒流量を確保しつつも、流路穴の内部圧力Pに対する十分な耐圧強度を確保することができる。
 本発明の第2観点に係る熱交換器用扁平管は、第1観点に係る熱交換器用扁平管において、アスペクト比が0.5≦(w/h)≦1.4であると共に、流路穴の内部圧力Pが10.0MPa≦P≦40.0MPaの場合、
0.40≦(t2/h)/(t1/h)≦1.40 (式2)
の関係が成立する。
 この扁平管は、特に流路穴のアスペクト比w/hが0.5~1.4である場合、流路穴の内部圧力Pが10.0~40.0MPaにて上記関係式(式2)が成り立つように構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴の内部圧力Pに対する十分な耐圧強度を確保することができる。
 本発明の第3観点に係る熱交換器用扁平管は、第1または第2観点に係る熱交換器用扁平管において、アスペクト比が0.6≦(w/h)≦1.3であると共に、流路穴の内部圧力Pが10.0MPa≦P≦40.0MPaの場合、
0.45≦(t2/h)/(t1/h)≦1.35 (式3)
の関係が成立する。
 この扁平管は、特に流路穴のアスペクト比w/hが0.6~1.3である場合、流路穴の内部圧力Pが10.0~40.0MPaにて上記関係式(式3)が成り立つように構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴の内部圧力Pに対する十分な耐圧強度を確保することができる。
 本発明の第4観点に係る熱交換器用扁平管は、第1から第3観点のいずれか1つに係る熱交換器用扁平管において、アスペクト比が0.7≦(w/h)≦1.2であると共に、流路穴の内部圧力Pが10.0MPa≦P≦40.0MPaの場合、
0.45≦(t2/h)/(t1/h)≦1.30 (式4)
の関係が成立する。
 この扁平管は、特に流路穴のアスペクト比w/hが0.7~1.2である場合、流路穴の内部圧力Pが10.0~40.0MPaにて上記関係式(式4)が成り立つように構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴の内部圧力Pに対する十分な耐圧強度を確保することができる。
 本発明の第5観点に係る熱交換器用扁平管は、第1から第4観点のいずれか1つに係る熱交換器用扁平管において、アスペクト比が0.8≦(w/h)≦1.1であると共に、流路穴の内部圧力Pが10.0MPa≦P≦40.0MPaの場合、
0.45≦(t2/h)/(t1/h)≦1.25 (式5)
の関係が成立する。
 この扁平管は、特に流路穴のアスペクト比w/hが0.8~1.1である場合、流路穴の内部圧力Pが10.0~40.0MPaにて上記関係式(式5)が成り立つように構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴の内部圧力Pに対する十分な耐圧強度を確保することができる。
 本発明の第6観点に係る熱交換器用扁平管は、第1から第5観点のいずれか1つに係る熱交換器用扁平管において、アスペクト比が0.9≦(w/h)≦1.0であると共に、流路穴の内部圧力Pが10.0MPa≦P≦40.0MPaの場合、
0.45≦(t2/h)/(t1/h)≦1.20 (式6)
の関係が成立する。
 この扁平管は、特に流路穴のアスペクト比w/hが0.9~1.0である場合、流路穴の内部圧力Pが10.0~40.0MPaにて上記関係式(式6)が成り立つように構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴の内部圧力Pに対する十分な耐圧強度を確保することができる。
 本発明の第7観点に係る熱交換器用扁平管は、第1観点に係る熱交換器用扁平管において、アスペクト比が0.4≦(w/h)≦0.6であると共に、流路穴の内部圧力Pが10.0MPa≦P≦20.0MPaの場合、
0.70≦(t2/h)/(t1/h)≦1.31 (式7)
の関係が成立する。
 この扁平管は、特に流路穴のアスペクト比w/hが0.4~0.6であり、流路穴の内部圧力Pが10.0~20.0MPaの場合、上記関係式(式7)が成り立つように構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴の内部圧力Pに対する十分な耐圧強度を確保することができる。
 本発明の第8観点に係る熱交換器用扁平管は、第1観点に係る熱交換器用扁平管において、アスペクト比が0.4≦(w/h)≦0.6であると共に、流路穴の内部圧力Pが20.0MPa<P≦30.0MPaの場合、
0.59≦(t2/h)/(t1/h)≦1.26 (式8)
の関係が成立する。
 この扁平管は、特に流路穴のアスペクト比w/hが0.4~0.6であり、流路穴の内部圧力Pが20.0~30.0MPaの場合、上記関係式(式8)が成り立つように構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴の内部圧力Pに対する十分な耐圧強度を確保することができる。
 本発明の第9観点に係る熱交換器用扁平管は、第1観点に係る熱交換器用扁平管において、アスペクト比が0.4≦(w/h)≦0.6であると共に、流路穴の内部圧力Pが30.0MPa<P≦40.0MPaの場合、
0.46≦(t2/h)/(t1/h)≦1.13 (式9)
の関係が成立する。
 この扁平管は、特に流路穴のアスペクト比w/hが0.4~0.6であり、流路穴の内部圧力Pが30.0~40.0MPaの場合、上記関係式(式9)が成り立つように構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴の内部圧力Pに対する十分な耐圧強度を確保することができる。
 本発明の第10観点に係る熱交換器用扁平管は、第1観点に係る熱交換器用扁平管において、アスペクト比が0.6<(w/h)≦0.8であると共に、流路穴の内部圧力Pが10.0MPa≦P≦20.0MPaの場合、
0.62≦(t2/h)/(t1/h)≦1.15 (式10)
の関係が成立する。
 この扁平管は、特に流路穴のアスペクト比w/hが0.6~0.8であり、流路穴の内部圧力Pが10.0~20.0MPaの場合、上記関係式(式10)が成り立つように構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴の内部圧力Pに対する十分な耐圧強度を確保することができる。
 本発明の第11観点に係る熱交換器用扁平管は、第1観点に係る熱交換器用扁平管において、アスペクト比が0.6<(w/h)≦0.8であると共に、流路穴の内部圧力Pが20.0MPa<P≦30.0MPaの場合、
0.51≦(t2/h)/(t1/h)≦1.01 (式11)
の関係が成立する。
 この扁平管は、特に流路穴のアスペクト比w/hが0.6~0.8であり、流路穴の内部圧力Pが20.0~30.0MPaの場合、上記関係式(式11)が成り立つように構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴の内部圧力Pに対する十分な耐圧強度を確保することができる。
 本発明の第12観点に係る熱交換器用扁平管は、第1観点に係る熱交換器用扁平管において、アスペクト比が0.6<(w/h)≦0.8であると共に、流路穴の内部圧力Pが30.0MPa<P≦40.0MPaの場合、
0.40≦(t2/h)/(t1/h)≦0.89 (式12)
の関係が成立する。
 この扁平管は、特に流路穴のアスペクト比w/hが0.6~0.8であり、流路穴の内部圧力Pが30.0~40.0MPaの場合、上記関係式(式12)が成り立つように構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴の内部圧力Pに対する十分な耐圧強度を確保することができる。
 本発明の第13観点に係る熱交換器用扁平管は、第1観点に係る熱交換器用扁平管において、アスペクト比が0.8<(w/h)≦1.5であると共に、流路穴の内部圧力Pが10.0MPa≦P≦20.0MPaの場合、
0.45≦(t2/h)/(t1/h)≦0.95 (式13)
の関係が成立する。
 この扁平管は、特に流路穴のアスペクト比w/hが0.8~1.5であり、流路穴の内部圧力Pが10.0~20.0MPaの場合、上記関係式(式13)が成り立つように構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴の内部圧力Pに対する十分な耐圧強度を確保することができる。
 本発明の第14観点に係る熱交換器用扁平管は、第1観点に係る熱交換器用扁平管において、アスペクト比が0.8<(w/h)≦1.5であると共に、流路穴の内部圧力Pが20.0MPa<P≦30.0MPaの場合、
0.42≦(t2/h)/(t1/h)≦0.93 (式14)
の関係が成立する。
 この扁平管は、特に流路穴のアスペクト比w/hが0.8~1.5であり、流路穴の内部圧力Pが20.0~30.0MPaの場合、上記関係式(式14)が成り立つように構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴の内部圧力Pに対する十分な耐圧強度を確保することができる。
 本発明の第15観点に係る熱交換器用扁平管は、第1観点に係る熱交換器用扁平管において、アスペクト比が0.8<(w/h)≦1.5であると共に、流路穴の内部圧力Pが30.0MPa<P≦40.0MPaの場合、
0.39≦(t2/h)/(t1/h)≦0.82 (式15)
の関係が成立する。
 この扁平管は、特に流路穴のアスペクト比w/hが0.8~1.5であり、流路穴の内部圧力Pが30.0~40.0MPaの場合、上記関係式(式15)が成り立つように構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴の内部圧力Pに対する十分な耐圧強度を確保することができる。
 本発明の第16観点に係る熱交換器用扁平管は、第1観点に係る熱交換器用扁平管において、アスペクト比が0.7<w/h≦1.5であると共に、流路穴の内部圧力Pが10.0MPa≦P≦20.0MPaの場合、
0.45≦(t2/h)/(t1/h)≦1.00 (式16)
の関係が成立する。
 この扁平管は、特に流路穴のアスペクト比w/hが0.7~1.5であり、流路穴の内部圧力Pが10.0~20.0MPaの場合、上記関係式(式16)が成り立つように構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴の内部圧力Pに対する十分な耐圧強度を確保することができる。特に、本発明に係る熱交換器用扁平管は、空気調和装置の室内外機における熱交換器の扁平管として用いられても、十分な冷媒流量の確保と十分な耐圧強度を確保できる。
 本発明の第17観点に係る熱交換器用扁平管は、第1観点に係る熱交換器用扁平管において、アスペクト比が0.4≦w/h≦0.7であると共に、流路穴の内部圧力Pが10.0MPa≦P≦20.0MPaの場合、
0.67≦(t2/h)/(t1/h)≦1.30 (式17)
の関係が成立する。
 この扁平管は、特に流路穴のアスペクト比w/hが0.4~0.7であり、流路穴の内部圧力Pが10.0~20.0MPaの場合、上記関係式(式17)が成り立つように構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴の内部圧力Pに対する十分な耐圧強度を確保することができる。特に、本発明に係る熱交換器用扁平管は、車載用の空気調和装置における熱交換器の扁平管として用いられても、十分な冷媒流量の確保と十分な耐圧強度を確保できる。
 本発明の第18観点に係る熱交換器用扁平管は、第1から第17観点のいずれか1つに係る熱交換器用扁平管において、扁平管本体の外周には、耐食層が形成されている。そして、外周厚さt2は、耐食層を除く扁平管本体の外周の平面から流路穴までの厚さである。
 この扁平管は、外周に耐食層が形成されているため、扁平管本体が腐食するのを防ぐことができる。特に、本発明では、この耐食層を除いた外周厚さt2が上記関係式(式1)~(式17)にて用いられるため、耐圧強度の観点からすると、耐食層を含む外周厚さt2が上記関係式に用いられる場合に比してより厳しい条件となる。従って、このような条件を満たす扁平管は、耐圧強度をより確実に確保できるものとなる。
 本発明の第19観点に係る熱交換器用扁平管は、第1から第18観点のいずれか1つに係る熱交換器用扁平管において、流路穴は、その内側壁面において凹凸を有している。仕切り部の厚さt1とは、隣り合う流路穴の間の厚さが凹凸によって最も小さくなる場合の厚さである。外周厚さt2とは、扁平管本体の外周の平面から流路穴までの厚さが凹凸によって最も小さくなる場合の厚さである。
 この扁平管によると、凹凸によって最も小さくなる場合の仕切り部の厚さt1及び外周厚さt2が上記関係式(式1)~(式17)にて用いられるため、耐圧強度の観点からすると、凹凸によって最も大きくなる場合の仕切り部の厚さt1及び外周厚さt2が上記関係式に用いられる場合に比してより厳しい条件となる。従って、このような条件を満たす扁平管は、耐圧強度をより確実に確保できるものとなる。
 本発明の第1観点から第17観点のいずれかに係る熱交換器用扁平管によると、十分な冷媒流量を確保しつつも、流路穴の内部圧力Pに対する十分な耐圧強度を確保することができる。
 本発明の第18観点に係る熱交換器用扁平管は、扁平管本体が腐食するのを防ぐことができると共に、耐圧強度をより確実に確保できるものとなる。
 本発明の第19観点に係る熱交換器用扁平管は、耐圧強度をより確実に確保できるものとなる。
本実施形態に係る熱交換器の外観図。 図1においてAで示す部分の拡大図。 本実施形態に係る熱交換器の概略斜視図。 図2においてIV-IVで示す面で切断した場合の横断面であって、図3の熱交換器を右側から見た場合の側面図。 本実施形態に係る扁平伝熱管の外観図。 図5の扁平伝熱管の耐圧強度の等圧線を示すグラフであって、流路穴hoのアスペクト比w/hが0.4である場合のグラフ。 アスペクト比w/hが0.4である場合の、内部圧力Pの各値(10.0MPa~40.0MPa)における外周厚さt2と仕切り部の厚さt1との比率(t2/h)/(t1/h)、及び扁平伝熱管の横断面積Aに占める流路穴の横断面積Aoの割合(Ao/A)を表すグラフ。 アスペクト比w/hが0.8である場合の、内部圧力Pの各値(10.0MPa~40.0MPa)における外周厚さt2と仕切り部の厚さt1との比率(t2/h)/(t1/h)、及び扁平伝熱管の横断面積Aに占める流路穴の横断面積Aoの割合(Ao/A)を表すグラフ。 アスペクト比w/hが1.0である場合の、内部圧力Pの各値(10.0MPa~40.0MPa)における外周厚さt2と仕切り部の厚さt1との比率(t2/h)/(t1/h)、及び扁平伝熱管の横断面積Aに占める流路穴の横断面積Aoの割合(Ao/A)を表すグラフ。 アスペクト比w/hが1.4である場合の、内部圧力Pの各値(10.0MPa~40.0MPa)における外周厚さt2と仕切り部の厚さt1との比率(t2/h)/(t1/h)、及び扁平伝熱管の横断面積Aに占める流路穴の横断面積Aoの割合(Ao/A)を表すグラフ。 アスペクト比w/hが1.5である場合の、内部圧力Pの各値(10.0MPa~40.0MPa)における外周厚さt2と仕切り部の厚さt1との比率(t2/h)/(t1/h)、及び扁平伝熱管の横断面積Aに占める流路穴の横断面積Aoの割合(Ao/A)を表すグラフ。 内部圧力Pが10.0MPaである場合の、アスペクト比w/hの各値(0.4,0.8,1.0,1.4,1.5)における外周厚さt2と仕切り部の厚さt1との比率(t2/h)/(t1/h)、及び扁平伝熱管の横断面積Aに占める流路穴の横断面積Aoの割合(Ao/A)を表すグラフ。 内部圧力Pが20.0MPaである場合の、アスペクト比w/hの各値(0.4,0.8,1.0,1.4,1.5)における外周厚さt2と仕切り部の厚さt1との比率(t2/h)/(t1/h)、及び扁平伝熱管の横断面積Aに占める流路穴の横断面積Aoの割合(Ao/A)を表すグラフ。 内部圧力Pが30.0MPaである場合の、アスペクト比w/hの各値(0.4,0.8,1.0,1.4,1.5)における外周厚さt2と仕切り部の厚さt1との比率(t2/h)/(t1/h)、及び扁平伝熱管の横断面積Aに占める流路穴の横断面積Aoの割合(Ao/A)を表すグラフ。 内部圧力Pが40.0MPaである場合の、アスペクト比w/hの各値(0.4,0.8,1.0,1.4,1.5)における外周厚さt2と仕切り部の厚さt1との比率(t2/h)/(t1/h)、及び扁平伝熱管の横断面積Aに占める流路穴の横断面積Aoの割合(Ao/A)を表すグラフ。 変形例Aに係る扁平伝熱管の外観図。
 以下、本発明に係る熱交換器用の扁平管について、図面を参照しつつ詳述する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。
 <第1実施形態>
 (1)熱交換器の構成
 図1は、本実施形態に係る扁平伝熱管41,42,43,・・・を含む熱交換器10の外観図である。図1の熱交換器10は、空気調和装置の室外ユニット内部や、給湯装置の熱源ユニット内部に設けられ、冷媒の蒸発器または放熱器として機能する。
 熱交換器10は、図1に示すように、主として、分流ヘッダ20、合流ヘッダ30、扁平伝熱管群40、及びフィン50を備えており、いわゆる積層型のマイクロチャンネル熱交換器の構成を有している。
 尚、以下の説明においては、「上」「下」「右」、「左」「鉛直」、「水平」等の方向を示す表現を適宜用いているが、これらは、熱交換器10が図1の状態で設置された状態での各方向を表す。また、図1に示されるように、熱交換器10が見える側を「正面側」とし、「上面側」および「下面側」は、正面側を基準として把握されるものとする。
 また、本実施形態に係る冷媒の種類としては、HFC等の低圧冷媒の他、CO2等の高圧冷媒が挙げられる。
 分流ヘッダ20及び合流ヘッダ30は、その長手方向が共に鉛直方向となっており、扁平伝熱管群40が連結されている。具体的には、分流ヘッダ20及び合流ヘッダ30は、互いに所定距離離れて並列に延びており、その長手方向に沿って扁平伝熱管群40における各扁平伝熱管41,42,43・・・が配列するようにして連結されている。
 分流ヘッダ20には、図1における方向R1から、液状態の冷媒や気液二相状態の冷媒が送り込まれる。分流ヘッダ20に供給された冷媒は、各扁平伝熱管41,42,43,・・・が有する複数の流路穴hoに別れて、合流ヘッダ30まで流れる。
 合流ヘッダ30は、分流ヘッダ20と共にフィン50を挟むようにして設けられており、複数の扁平伝熱管41,42,43,・・・が有する複数の流路穴hoから流れてきた冷媒を合流させ、図1における方向R2に冷媒を送り出す。
 扁平伝熱管群40は、複数の扁平伝熱管(熱交換器用扁平管に相当)41,42,43,によって構成されている。扁平伝熱管41,42,43,・・・は、図3及び図4に示すように、それぞれ鉛直方向に所定距離離れて並んで配置されているが、本実施形態に係る扁平伝熱管41,42,43の詳細については、「(2)扁平伝熱管の構成」にて説明する。
 フィン50は、図2~4に示すように、少なくとも隣接する扁平伝熱管41,42,43,・・・の間において、隣接する扁平伝熱管41,42,43,・・・の少なくともいずれかに接合されて配置されている。
 より具体的には、フィン50は、隣接する扁平伝熱管41,42の間、隣接する扁平伝熱管42,43の間のように、それぞれ隣接する扁平伝熱管41,42,43,・・・の間において、互いに分離して設けられている第1フィン51及び第2フィン52等を有する。第1フィン51及び第2フィン52は、それぞれ、図1における熱交換器10の正面視において山部分と谷部分とが繰り返して形成された、いわゆる波形状を有しており、アルミニウムまたはアルミニウム合金によって形成されている。
 第1フィン51は、扁平伝熱管41,42に挟まれるようにして配置されており、扁平伝熱管41の下面側である扁平面141bに対して山部分の上面側が、扁平伝熱管42の上面側である扁平面142aに対して谷部分の下面側が、それぞれ接している。第2フィン52は、扁平伝熱管42,43に挟まれるようにして配置されており、扁平伝熱管42の下面側である扁平面142bに対して山部分の上面側が、扁平伝熱管43の上面側である扁平面143aに対して谷部分の下面側が、それぞれ接している。そして、扁平伝熱管群40とフィン50とが上述のようにして接している各部分は、ロウ付け溶接によって固着されている。これにより、扁平伝熱管群40内を流れる冷媒の熱は、扁平伝熱管群40の表面だけではなく、フィン50の表面にも伝熱されるようになる。従って、熱交換器10の伝熱面積を増大させ、熱交換効率を向上させて、熱交換器10自体をコンパクト化させることができている。また、本実施形態に係る熱交換器10は、扁平伝熱管群40とフィン50とが鉛直方向に交互に積み重ねられている。そのため、各扁平伝熱管41,42,43,・・・の間隔は、介在するフィン50によって容易に確保することができ、熱交換器10の組立作業性を向上させることができる。
 また、第1フィン51及び第2フィン52は、平面部から突出する複数のルーバ60が形成されている。ルーバ60は、板状のアルミニウムまたはアルミニウム合金から切り起こし形成されており、フィン50を空気とより接触しやすくさせる役割を担っている。
 (2)扁平伝熱管の構成
 扁平伝熱管41,42,43,・・・は、アルミニウムまたはアルミニウム合金などの弾塑性変形可能な材料を押出成形することで製造されている。扁平伝熱管41,42,43,・・・はいずれも、水平方向において、通風により生じる空気流れ方向Fに交差(具体的には、略直交)する方向に延びている。そして、各扁平伝熱管41,42,43,・・・における扁平管本体141,142,143,・・・は、その長手方向に略直交する断面が鉛直方向から押しつぶされたような扁平形状を有しており、図3に示すように、空気流れ方向Fに対して略平行な水平面状に広がっている扁平面141a,141b,142a,142b,143a,143b・・・を有している。扁平面141a,141b,142a,142b,143a,143b・・・は、鉛直上側及び鉛直下側において水平方向に広がっており、扁平面141aと141b、扁平面142aと142b、扁平面143aと143bは、それぞれ対応する扁平管本体141,142,143,・・・において対向している。このように、扁平面141a,141b,142a,142b,143a,143b・・・が水平に広がっているため、扁平伝熱管41,42,43,・・・は、当該管が水平方向から傾斜して配置される場合に比して、水平方向に沿って流れている空気流れFに対する通風抵抗を小さく抑えることができる。
 そして、図5に示すように、扁平管本体141,142,143,・・・の外周には、当該本体141,142,143,・・・を覆うようにして耐食層150が形成されている。耐食層150は、扁平管本体141,142,143,・・・の表面にアルミニウムまたはアルミニウム合金よりもイオン化傾向の小さい亜鉛を溶射することによって約0.05~0.1mmの厚さに形成されためっき層であり、扁平管本体141,142,143,・・・の防食を目的として当該本体141,142,143,・・・の表面に施されている。
 このような各扁平伝熱管41,42,43,・・・は、図3及び図4に示すように、扁平管本体141,142,143,・・・の内部において、空気流れ方向Fに略直交する方向に冷媒が流れるための複数の流路穴hoを有しており、いわゆる多穴管と呼ばれる伝熱管となっている。複数の流路穴hoは、図5に示すように、扁平伝熱管41,42,43,・・・の長手方向Yに沿って延びると共に、図4に示すように、扁平管本体141,142,143,・・・内において空気流れ方向Fに沿って並んで形成されている。即ち、複数の流路穴hoは、扁平管本体141,142,143,・・・を貫通するようにして、図5に示すように扁平管本体141,142,143,・・・の横断面の長軸方向Xに並んで形成されている。
 複数の流路穴hoは、それぞれ隣の流路穴hoから所定間隔あけて位置しており、本実施形態では、扁平管本体141,142,143,・・・のうち当該間隔に該当する箇所を、「仕切り部160」、所定間隔を「仕切り部160の厚さt1」と言う。即ち、隣り合う2つの流路穴hoの間は、仕切り部160によって仕切られている。また、複数の流路穴hoは、扁平管本体141,142,143,・・・における各扁平面141a,141b,142a,142b,143a,143b・・・から所定の厚さt2だけ離れて位置している。特に、本実施形態では、当該厚さt2は、各扁平面141a,141b,142a,142b,143a,143b・・・上に形成された耐食層150を含まない厚さを言う。即ち、当該厚さt2は、耐食層150を除く扁平管本体141,142,143,・・・の扁平面141a,141b,142a,142b,143a,143b・・・(即ち、外周の平面)から各流路穴hoまでの最短の厚さである。以下では、当該厚さt2を、「外周厚さt2」と言う。
 このように、本実施形態に係る扁平伝熱管41,42,43,・・・は、扁平形状の多穴管を採用しているため、冷媒側の熱伝達率が向上している。
 そして、複数の流路穴hoは、扁平管本体141,142,143,・・・における長軸方向Xの両端に位置する流路穴ho1,ho2を除き(図5)、扁平管本体141,142,143の長手方向Yに略直交する断面が矩形形状となっている。一方、流路穴ho1,ho2は、長手方向Yに略直交する断面が扁平形状の扁平管本体141,142,143,・・・の端部に沿って膨らんだD型形状となっている。具体的に、流路穴ho1は、図5の左側に膨らんだD型形状となっており、流路穴ho2は、図5の右側に膨らんだD型形状となっている。
 特に、本実施形態に係る扁平伝熱管41,42,43,・・・では、仕切り部160の厚さt1及び外周厚さt2が、以下の条件を満たすようにして決定されている。具体的には、扁平管本体141,142,143,・・・の横断面のうち、長軸方向Xに沿った流路穴ho(流路穴ho1,ho2を除く)の第2幅wと、短軸方向Zに沿った流路穴hoの第1幅hとの比率であるアスペクト比w/hが“0.4≦(w/h)≦1.5”であって、流路穴hoの内部圧力Pが10.0MPa≦P≦40.0MPaの場合、仕切り部160の厚さt1を第1幅hで無次元化した値t1/h、及び外周厚さt2を第1幅hで無次元化した値t2/hが、
0.35≦(t2/h)/(t1/h)≦1.45 (式1)
となるように、仕切り部160の厚さt1、外周の厚さt2が決定されている。
 特に、上記関係式(式1)において、アスペクト比w/hが0.5≦(w/h)≦1.4であると共に、流路穴hoの内部圧力Pが10.0MPa≦P≦40.0MPaの場合には、
0.40≦(t2/h)/(t1/h)≦1.40 (式2)
となるように、仕切り部160の厚さt1、外周の厚さt2が決定されていることが好ましい。
 更に詳細には、上記関係式(式1)~(式2)において、アスペクト比w/hが0.6≦(w/h)≦1.3であると共に、流路穴hoの内部圧力Pが10.0MPa≦P≦40.0MPaの場合には、
0.45≦(t2/h)/(t1/h)≦1.35 (式3)
となるように、仕切り部160の厚さt1、外周の厚さt2が決定されていることが好ましい。
 更に詳細には、上記関係式(式1)~(式3)において、アスペクト比w/hが0.7≦(w/h)≦1.2であると共に、流路穴hoの内部圧力Pが10.0MPa≦P≦40.0MPaの場合には、
0.45≦(t2/h)/(t1/h)≦1.30 (式4)
となるように、仕切り部160の厚さt1、外周の厚さt2が決定されていることが好ましい。
 更に詳細には、上記関係式(式1)~(式4)において、アスペクト比w/hが0.8≦(w/h)≦1.1であると共に、流路穴hoの内部圧力Pが10.0MPa≦P≦40.0MPaの場合には、
0.45≦(t2/h)/(t1/h)≦1.25 (式5)
となるように、仕切り部160の厚さt1、外周の厚さt2が決定されていることが好ましい。
 更に詳細には、上記関係式(式1)~(式5)において、アスペクト比w/hが0.9≦(w/h)≦1.0であると共に、流路穴hoの内部圧力Pが10.0MPa≦P≦40.0MPaの場合には、
0.45≦(t2/h)/(t1/h)≦1.20 (式6)
となるように、仕切り部160の厚さt1、外周の厚さt2が決定されていることが好ましい。
 更に、以下では、上記関係式(式1)を満たす際の条件であるアスペクト比w/h及び流路穴hoの内部圧力Pの各範囲を細分化させて、仕切り部160の厚さt1、外周の厚さt2が満たされる条件を表すこととする。
 上記関係式(式1)において、アスペクト比が0.4≦(w/h)≦0.6であると共に、流路穴hoの内部圧力Pが10.0MPa≦P≦20.0MPaの場合には、
0.70≦(t2/h)/(t1/h)≦1.31 (式7)
となるように、仕切り部160の厚さt1、外周の厚さt2が決定されていることが好ましい。
 上記関係式(式1)において、アスペクト比が0.4≦(w/h)≦0.6であると共に、流路穴hoの内部圧力Pが20.0MPa<P≦30.0MPaの場合、
0.59≦(t2/h)/(t1/h)≦1.26 (式8)
となるように、仕切り部160の厚さt1、外周の厚さt2が決定されていることが好ましい。
 上記関係式(式1)において、アスペクト比が0.4≦(w/h)≦0.6であると共に、流路穴hoの内部圧力Pが30.0MPa<P≦40.0MPaの場合、
0.46≦(t2/h)/(t1/h)≦1.13 (式9)
となるように、仕切り部160の厚さt1、外周の厚さt2が決定されていることが好ましい。
 上記関係式(式1)において、アスペクト比が0.6<(w/h)≦0.8であると共に、流路穴hoの内部圧力Pが10.0MPa≦P≦20.0MPaの場合、
0.62≦(t2/h)/(t1/h)≦1.15 (式10)
となるように、仕切り部160の厚さt1、外周の厚さt2が決定されていることが好ましい。
 上記関係式(式1)において、アスペクト比が0.6<(w/h)≦0.8であると共に、流路穴hoの内部圧力Pが20.0MPa<P≦30.0MPaの場合、
0.51≦(t2/h)/(t1/h)≦1.01 (式11)
となるように、仕切り部160の厚さt1、外周の厚さt2が決定されていることが好ましい。
 上記関係式(式1)において、アスペクト比が0.6<(w/h)≦0.8であると共に、流路穴hoの内部圧力Pが30.0MPa<P≦40.0MPaの場合、
0.40≦(t2/h)/(t1/h)≦0.89 (式12)
となるように、仕切り部160の厚さt1、外周の厚さt2が決定されていることが好ましい。
 上記関係式(式1)において、アスペクト比が0.8<(w/h)≦1.5であると共に、流路穴hoの内部圧力Pが10.0MPa≦P≦20.0MPaの場合、
0.45≦(t2/h)/(t1/h)≦0.95 (式13)
となるように、仕切り部160の厚さt1、外周の厚さt2が決定されていることが好ましい。
 上記関係式(式1)において、アスペクト比が0.8<(w/h)≦1.5であると共に、流路穴hoの内部圧力Pが20.0MPa<P≦30.0MPaの場合、
0.42≦(t2/h)/(t1/h)≦0.93 (式14)
となるように、仕切り部160の厚さt1、外周の厚さt2が決定されていることが好ましい。
 上記関係式(式1)において、アスペクト比が0.8<(w/h)≦1.5であると共に、流路穴hoの内部圧力Pが30.0MPa<P≦40.0MPaの場合、
0.39≦(t2/h)/(t1/h)≦0.82 (式15)
となるように、仕切り部160の厚さt1、外周の厚さt2が決定されていることが好ましい。
 更に、以下では、上記関係式(式1)を満たす際の条件であるアスペクト比w/h及び流路穴hoの内部圧力Pの各範囲を、本実施形態に係る扁平管を用いた熱交換器の用途毎細分化させて、仕切り部160の厚さt1、外周の厚さt2が満たされる条件を表すこととする。
 空気調和装置の室内外機に利用される熱交換器の扁平管については、上記関係式(式1)において、アスペクト比が0.7<(w/h)≦1.5であると共に、流路穴hoの内部圧力Pが10.0MPa≦P≦20.0MPaの場合、
0.45≦(t2/h)/(t1/h)≦1.00 (式16)
となるように、仕切り部160の厚さt1、外周の厚さt2が決定されていることが好ましい。
 また、車載用の空気調和装置に利用される熱交換器の扁平管については、上記関係式(式1)において、アスペクト比が0.4≦(w/h)≦0.7であると共に、流路穴hoの内部圧力Pが10.0MPa≦P≦20.0MPaの場合、
0.67≦(t2/h)/(t1/h)≦1.30 (式17)
となるように、仕切り部160の厚さt1、外周の厚さt2が決定されていることが好ましい。
 一般的には、車載用の空気調和装置に利用される熱交換器は、そのサイズが比較的小さいため、圧力損失がつきにくい。そのため、車載用の空気調和装置に利用される熱交換器用扁平管においては、アスペクト比を小さくする(即ち、細長い形状)ことで、扁平管断面積に占める冷媒穴の断面積の割合を、大きく確保することが可能となる、従って、アスペクト比は“0.4~0.7”と小さめになっている。
 これに対し、室内外機に利用される熱交換器は、そのサイズが比較的大きくなるため、アスペクト比が小さいと圧力損失が増大してしまい、熱交換器の性能の確保が困難となる。そのため、室内外機に利用される熱交換器の扁平管においては、車載用の熱交換器における扁平管の場合に比べてアスペクト比を“0.7~1.5”と大きくしている。
 なお、上記関係式(式16)(式17)は、内部圧力Pが10.0MPa以下であっても成立するが、ここでは、特に良く用いられる内部圧力Pの範囲として“10.0MPa~20.0MPa”と表している。
 上記関係式(式1)~(式17)が成立するようにして仕切り部160の厚さt1及び外周の厚さt2が決定されることで、扁平伝熱管41,42,43,・・は目標とする耐圧強度及び十分な流路穴断面積を確保しつつ、当該伝熱管41,42,43,・・・の厚さを最も薄くすることができる。従って、高い耐圧強度及び十分な流路穴断面積を保ちつつも、扁平伝熱管41,42,43,・・・のコンパクト化及びコストダウンを図ることができる。
 (3)実施例
  (3-1)解析手法
 ここで、上記関係式(式1)~(式17)について詳述する。
 流路穴hoにおいて内部圧力が作用する扁平伝熱管41,42,43,・・・の耐圧強度は、弾塑性解析を行うことによって求めることができる。ここで、耐圧強度とは、内部圧力の作用により流路穴hoが破壊されずに耐えられることのできる、最大の強度を言う。扁平伝熱管41,42,43,・・・では、扁平管本体141,142,143,・・・の横断面における長軸方向Xの長さ及び短軸方向Zの長さに比べて、扁平管本体141,142,143,・・・の長手方向Yの長さが十分に長いため、本実施形態では、長手方向Yの変形を無視して、いわゆる平面ひずみ問題として捉えることができる。つまり、本実施形態では、長軸方向X及び短軸方向Zの横断面に働く応力のみを考えることができる。
 そこで、流路穴hoの横断面におけるアスペクト比w/hが0.4~1.5となるように、流路穴hoの第1幅h及び第2幅wを変化させつつ、流路穴hoの内部圧力Pを10.0MPa~40.0Maの範囲内で変化させ、仕切り部160の厚さt1と外周厚さt2とが同時に破裂する場合の、破裂直前における各値t1/h,t2/h等を解析したところ、図6のような等圧線図を得ることができる。図6は、横軸にt1/h、縦軸にt2/hをとった場合における内部圧力Pの等圧線のうち、特にアスペクト比w/hが0.4である場合を、コンピュータシミュレーションにより数値解析して求め、これを示したグラフの一例である。
 図6によると、各内部圧力Pに対応するグラフは、t1/hが最も低い値でほぼ一定となりつつ、t2/hの値が縦軸に沿うようにして高くなっている部分を有する。逆に、図6の各グラフは、t2/hが最も低い値でほぼ一定となりつつ、t1/hの値が横軸に沿うようにして高くなっている部分を有する。更に、図6の各グラフは、t1/h及びt2/hの両方の値が最も低くなる変曲点を有している。この変曲点は、t1/hとt2/hとがそれぞれ一番小さくなる点であり、t1/h及びt2/hの各値が変曲点付近となるようにして仕切り部160の厚さt1及び外周厚さt2が決定されることで、同じ耐圧強度を有する中では一番流路穴hoの面積が大きく取れることとなる。従って、変曲点付近、特に変曲点においては、扁平伝熱管41,42,43,・・・を構成する材料(具体的には、アルミニウムまたはアルミニウム合金など)が一番少なくて済むこととなる。
 また、図6では、各内部圧力P(具体的には、10.0MPa~40.0MPa)における変曲点それぞれを結ぶと、図6の一点鎖線で示しているように、t1/hの値が大きくなるにつれてt2/hの値も大きくなる、いわゆる右肩上がりのカーブを描くグラフとなる。
 なお、ここでは、扁平伝熱管41,42,43,・・・の材料として、純アルミニウム系であるA1100-OまたはA1050-Oを用いて解析を行っている。A1100-OまたはA1050-Oの材料物性を、表1に表す。
 表1.A1100-OまたはA1050-Oの材料物性
Figure JPOXMLDOC01-appb-T000001
 このように、アルミニウム等の弾塑性変形可能な材料では、弾性限界である降伏応力と比較して、弾塑性変形後についには塑性破壊したときの引張強度がはるかに大きいため、弾塑性変形を考慮した耐圧設計をすれば、扁平伝熱管41,42,43,・・・・の寸法をはるかにコンパクトにでき、更なる薄型化を図ることができる。
 図6と同様にして、他のアスペクト比w/h(具体的には、アスペクト比w/hが0.5~1.5の範囲)についての等圧線を求める。図7~11は、一例として、内部圧力Pの各値(ここでは、10.0MPa,20.0MPa,30.0MPa,40.0MPa)における等圧線それぞれの結果を、横軸を「外周厚さt2と仕切り部160の厚さt1との比(具体的には、“(t2/h)/(t1/h)”)」、縦軸を「扁平伝熱管41,42,43,・・・の横断面積Aに占める流路穴hoの横断面積Aoの割合(つまり、“Ao/A”)」として、各アスペクト比w/hの値0.4,0.8,1.0,1.4,1.5毎にまとめて表したグラフである。図12~図15は、一例として、アスペクト比w/hの各値0.4,0.8,1.0,1.4,1.5における等圧線それぞれの結果を、横軸を「外周厚さt2と仕切り部160の厚さt1との比(具体的には、“(t2/h)/(t1/h)”)」、縦軸を「扁平伝熱管41,42,43,・・・の横断面積Aに占める流路穴hoの横断面積Aoの割合(具体的には“Ao/A”)」として、内部圧力P(ここでは、10.0MPa,20.0MPa,30.0MPa,40.0MPa)毎にまとめて表したグラフである。なお、本実施形態に係る流路穴hoの横断面積Aoは、1つの横断面中に含まれる複数の流路穴ho全ての横断面積を、合計した値である。
 図7~11,12~15における各グラフの頂点は、図6のようにして求めた等圧線における変曲点に対応しており、いずれの頂点においても、扁平伝熱管41,42,43,・・・の横断面積Aに占める流路穴hoの横断面積Aoの割合Ao/Aは、一番高くなっている。つまり、仕切り部160の厚さt1及び外周厚さt2が、それぞれ各グラフの頂点となる値を有することによって、各内部圧力Pに対する耐圧強度が一番大きくなると共に、流路穴hoの横断面積Aoも一番大きくなる。
 特に、図7~11の各グラフにおける頂点によると、アスペクト比w/hが一定値の場合には、内部圧力Pが低い程、扁平伝熱管41,42,43,・・・の横断面積Aに占める流路穴hoの横断面積Aoの割合Ao/Aが高くなることがわかる。更に、図7~11の各グラフにおける頂点によると、アスペクト比w/hが一定値の場合には、内部圧力Pが大きい程、グラフの頂点に係る外周厚さt2と仕切り部160の厚さt1との比(t2/h)/(t1/h)は小さくなる方向にある。図12~15の各グラフにおける頂点によると、内部圧力Pが一定値の場合には、アスペクト比w/hが小さい程、扁平伝熱管41,42,43,・・・の横断面積Aに占める流路穴hoの横断面積Aoの割合Ao/Aが高くなると共に、外周厚さt2と仕切り部160の厚さt1との比(t2/h)/(t1/h)は大きくなる方向にあることがわかる。
 上述したように、本実施形態では、外周厚さt2と仕切り部160の厚さt1とを流路穴hoの第1幅hにて無次元化した各値t2/h,t1/hの比率を、内部圧力P及びアスペクト比w/hをパラーメータとして用いることで可変させ、扁平伝熱管41,42,43,・・・の横断面積Aに占める流路穴hoの横断面積Aoの割合Ao/Aを観察する手法を採用している。このような手法により、高い耐圧強度を保ちつつも各流路穴hoの大きさが最も大きくなる場合の条件を簡単に求めることができる。従って、最適な仕切り部160の厚さt1及び外周厚さt2をスピーディに求めることができ、かつ熱交換器10自体の伝熱効果の向上を図ることができる。例えば、図7~15から、内部圧力Pが10.0MPaの場合には、アスペクト比w/hが0.4、外周厚さt2と仕切り部160の厚さt1との比(t2/h)/(t1/h)が約1.154の場合に、扁平伝熱管41,42,43,・・・の横断面積Aに占める流路穴hoの横断面積Aoの割合Ao/Aが最も高く0.82となることが読み取れる。この場合、仕切り部160の厚さt1を例えば約200μm、外周厚さt2を約230.8μmと決定することができる。
  (3-2)解析結果のまとめ
 上述した解析手法を用いて、内部圧力Pを10.0MPa~40.0MPaの範囲内にて5MPa刻みで変化させると共に、アスペクト比w/hを0.4~1.5の範囲内にて0.1ずつ変化させて、扁平伝熱管41,42,43,・・・の横断面積Aに占める流路穴hoの横断面積Aoの割合Ao/Aが最大となり目標の耐圧強度が得られる場合における、外周厚さt2、仕切り部160の厚さt1、及びこれらの比(t2/h)/(t1/h)を、表2~13にまとめる。なお、既に述べたが、扁平伝熱管41,42,43,・・・の材料としては、表1に示した材料物性を有するA1100-OまたはA1050-Oを用いている。
表2.アスペクト比w/hが0.4の場合
Figure JPOXMLDOC01-appb-T000002
 上記表2によると、アスペクト比w/hが0.4で一定であり、内部圧力Pが10.0~40.0MPaの場合においては、好ましくは
0.75≦(t2/h)/(t1/h)≦1.16 (式18)
の条件を満たすことが確認される。
表3.アスペクト比w/hが0.5の場合
Figure JPOXMLDOC01-appb-T000003
 上記表3によると、アスペクト比w/hが0.5で一定であり、内部圧力Pが10.0~40.0MPaの場合においては、好ましくは
0.66≦(t2/h)/(t1/h)≦1.12 (式19)
の条件を満たすことが確認される。
表4.アスペクト比w/hが0.6の場合
Figure JPOXMLDOC01-appb-T000004
 上記表4によると、アスペクト比w/hが0.6で一定であり、内部圧力Pが10.0~40.0MPaの場合においては、好ましくは
0.61≦(t2/h)/(t1/h)≦1.01 (式20)
の条件を満たすことが確認される。
表5.アスペクト比w/hが0.7の場合
Figure JPOXMLDOC01-appb-T000005
 上記表5によると、アスペクト比w/hが0.7で一定であり、内部圧力Pが10.0~40.0MPaの場合においては、好ましくは
0.58≦(t2/h)/(t1/h)≦0.85 (式21)
の条件を満たすことが確認される。
表6.アスペクト比w/hが0.8の場合
Figure JPOXMLDOC01-appb-T000006
 上記表6によると、アスペクト比w/hが0.8で一定であり、内部圧力Pが10.0~40.0MPaの場合においては、好ましくは
0.55≦(t2/h)/(t1/h)≦0.80 (式22)
の条件を満たすことが確認される。
表7.アスペクト比w/hが0.9の場合
Figure JPOXMLDOC01-appb-T000007
 上記表7によると、アスペクト比w/hが0.9で一定であり、内部圧力Pが10.0~40.0MPaの場合においては、好ましくは
0.55≦(t2/h)/(t1/h)≦0.77 (式23)
の条件を満たすことが確認される。
表8.アスペクト比w/hが1.0の場合
Figure JPOXMLDOC01-appb-T000008
 上記表8によると、アスペクト比w/hが1.0で一定であり、内部圧力Pが10.0~40.0MPaの場合においては、好ましくは
0.54≦(t2/h)/(t1/h)≦0.75 (式24)
の条件を満たすことが確認される。
表9.アスペクト比w/hが1.1の場合
Figure JPOXMLDOC01-appb-T000009
 上記表9によると、アスペクト比w/hが1.1で一定であり、内部圧力Pが10.0~40.0MPaの場合においては、好ましくは
0.54≦(t2/h)/(t1/h)≦0.73 (式25)
の条件を満たすことが確認される。
表10.アスペクト比w/hが1.2の場合
Figure JPOXMLDOC01-appb-T000010
 上記表10によると、アスペクト比w/hが1.2で一定であり、内部圧力Pが10.0~40.0MPaの場合においては、好ましくは
0.54≦(t2/h)/(t1/h)≦0.71 (式26)
の条件を満たすことが確認される。
表11.アスペクト比w/hが1.3の場合
Figure JPOXMLDOC01-appb-T000011
 上記表11によると、アスペクト比w/hが1.3で一定であり、内部圧力Pが10.0~40.0MPaの場合においては、好ましくは
0.54≦(t2/h)/(t1/h)≦0.70 (式27)
の条件を満たすことが確認される。
表12.アスペクト比w/hが1.4の場合
Figure JPOXMLDOC01-appb-T000012
 上記表12によると、アスペクト比w/hが1.4で一定であり、内部圧力Pが10.0~40.0MPaの場合においては、好ましくは
“0.55≦(t2/h)/(t1/h)≦0.70” (式28)
の条件を満たすことが確認される。
表13.アスペクト比w/hが1.5の場合
Figure JPOXMLDOC01-appb-T000013
 上記表13によると、アスペクト比w/hが1.5で一定であり、内部圧力Pが10.0~40.0MPaの場合においては、好ましくは
0.55≦(t2/h)/(t1/h)≦0.70 (式29)
の条件を満たすことが確認される。
 そして、これらの表2~13によると、内部圧力Pが10.0~40.0MPaの範囲に適合する(t2/h)/(t1/h)は、既に述べた関係式(式1)~(式6)を満たす範囲であることが確認される。更に、これらの表2~13によると、内部圧力Pが10.0~20.0MPa,20.0MPa~30.0MPa,30.0MPa~40.0MPaの各範囲において、かつアスペクト比w/hが0.4~0.6,0.6~0.8,0.8~1.5の各範囲に適合する(t2/h)/(t1/h)は、既に述べた関係式(式7)~(式17)を満たす範囲であることが確認される。
 即ち、上記関係式(式1)~(式6),(式7)~(式17)において表された(t2/h)/(t1/h)の各範囲は、表2~13における数値に、マージンを取った範囲となっている。つまり、表2~13に示した(t2/h)/(t1/h)の各値は、異なるアスペクト比w/hと内部圧力Pとを組み合わせた場合の、(例えば、図6のような各グラフの)変曲点におけるt1/h及びt2/hの各値から求めた値である。しかしながら、実際には、公差等の考慮も必要であり、よって(t2/h)/(t1/h)の各値が図6のようなグラフの変曲点近傍となるように設計することが望ましい。また、表1に示したA1100-OまたはA1050-Oの以外の材料(例えば、A3003等)では、変曲点におけるt1/h及びt2/hの各値は、A1100-OまたはA1050-Oのそれとは異なるものの、(t2/h)/(t1/h)の比は概ね同じ値になる。よって、表2~13の変曲点における(t2/h)/(t1/h)の各数値にマージンを取った範囲は、(式1)~(式6),(式7)~(式17)となる。
 そして、これらの表2~13によると、上記関係式(式7)(式10)(式13)全てに対応する内部圧力P(具体的には、10.0~20.0MPa)かつアスペクト比w/hが0.4~1.5であれば、
0.60≦(t2/h)/(t1/h)≦1.16 (式30)
の条件を満たすことがより好ましいことが確認される。
 上記関係式(式8)(式11)(式14)全てに対応する内部圧力P(具体的には、20.0~30.0MPa)かつアスペクト比w/hが0.4~1.5であれば、
0.57≦(t2/h)/(t1/h)≦1.11 (式31)
の条件を満たすことがより好ましいことが確認される。
 上記関係式(式9)(式12)(式15)全てに対応する内部圧力P(具体的には、30.0~40.0MPa)かつアスペクト比w/hが0.4~1.5であれば、
0.54≦(t2/h)/(t1/h)≦0.98 (式32)
の条件を満たすことがより好ましいことが確認される。
 また、これらの表2~13によると、上記関係式(式16)に対応する内部圧力P(具体的には、10.0~20.0MPa)かつアスペクト比w/hが0.4~0.7であれば、
0.60≦(t2/h)/(t1/h)≦0.85 (式33)
の条件を満たすことがより好ましいことが確認される。
 上記関係式(式17)に対応する内部圧力P(具体的には、10.0~20.0MPa)かつアスペクト比w/hが0.7~1.5であれば、
0.80≦(t2/h)/(t1/h)≦1.16 (式34)
の条件を満たすことがより好ましいことが確認される。
 更に、これらの表2~13によると、上記関係式(式1)に対応するアスペクト比w/h及び内部圧力Pの場合(具体的には、アスペクト比w/hが0.4~1.5、内部圧力Pが10.0~40.0MPa)、更に詳細には、
0.54≦(t2/h)/(t1/h)≦1.16 (式35)
の条件を満たすことがより好ましいことが確認される。
 上記関係式(式2)に対応するアスペクト比w/h及び内部圧力Pの場合(具体的には、アスペクト比w/hが0.5~1.4、内部圧力Pが10.0~40.0MPa)、更に詳細には、
0.54≦(t2/h)/(t1/h)≦1.12 (式36)
の条件を満たすことがより好ましいことが確認される。
 上記関係式(式3)に対応するアスペクト比w/h及び内部圧力Pの場合(具体的には、アスペクト比w/hが0.6~1.3、内部圧力Pが10.0~40.0MPa)、更に詳細には、
0.54≦(t2/h)/(t1/h)≦1.01 (式37)
の条件を満たすことがより好ましいことが確認される。
 上記関係式(式4)に対応するアスペクト比w/h及び内部圧力Pの場合(具体的には、アスペクト比w/hが0.7~1.2、内部圧力Pが10.0~40.0MPa)、更に詳細には、
0.54≦(t2/h)/(t1/h)≦0.85 (式38)
の条件を満たすことがより好ましいことが確認される。
 上記関係式(式5)に対応するアスペクト比w/h及び内部圧力Pの場合(具体的には、アスペクト比w/hが0.8~1.1、内部圧力Pが10.0~40.0MPa)、更に詳細には、
0.54≦(t2/h)/(t1/h)≦0.80 (式39)
の条件を満たすことがより好ましいことが確認される。
 上記関係式(式6)に対応するアスペクト比w/h及び内部圧力Pの場合(具体的には、アスペクト比w/hが0.9~1.0、内部圧力Pが10.0~40.0MPa)、更に詳細には、
0.54≦(t2/h)/(t1/h)≦0.77 (式40)
の条件を満たすことがより好ましいことが確認される。
 (4)特徴
  (4-1)
 本実施形態に係る扁平伝熱管41,42,43,・・・は、図5に示すように、断面が扁平形状である扁平管本体141,142,143,・・・の内部に、横断面が矩形形状の複数の流路穴hoが長軸方向Xに並んで形成されている。そして、隣り合う2つの流路穴hoの間の仕切り部160の厚さt1を、扁平管本体141,142,143,・・・の横断面の短軸方向Zに沿った流路穴hoの第1幅hで無次元化した値をt1/hとし、かつ扁平管本体141,142,143,・・・の外周厚さt2を、第1幅hで無次元化した値をt2/hとする。長軸方向Xに沿った流路穴hoの第2幅wと第1幅hとの比率、即ちアスペクト比w/hが、0.4≦(w/h)≦1.5であると共に、流路穴hoの内部圧力Pが10.0MPa≦P≦40.0MPaの場合、
0.35≦(t2/h)/(t1/h)≦1.45 (式1)
が成立するように、仕切り部160の厚さt1及び外周厚さt2が決定されている。
 これにより、流路穴hoのサイズを比較的大きく取ることができるために十分な冷媒流量を確保しつつも、流路穴hoの内部圧力Pに対する十分な耐圧強度を確保することができる。
  (4-2)
 特に、本実施形態に係る扁平伝熱管41,42,43,・・・は、流路穴hoのアスペクト比w/hが0.5≦(w/h)≦1.4である場合において、流路穴hoの内部圧力が10.0~40.0MPaの場合には、
0.40≦(t2/h)/(t1/h)≦1.40 (式2)
が成立するようにして構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴hoの内部圧力Pに対する十分な耐圧強度を確保することができる。
  (4-3)
 特に、本実施形態に係る扁平伝熱管41,42,43,・・・は、流路穴hoのアスペクト比w/hが0.6≦(w/h)≦1.3である場合において、流路穴hoの内部圧力Pが10.0MPa≦P≦40.0MPaの場合には、
0.45≦(t2/h)/(t1/h)≦1.35 (式3)
が成立するようにして構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴hoの内部圧力に対する十分な耐圧強度を確保することができる。
  (4-4)
 特に、本実施形態に係る扁平伝熱管41,42,43,・・・は、流路穴hoのアスペクト比w/hが0.7≦(w/h)≦1.2である場合において、流路穴hoの内部圧力Pが10.0MPa≦P≦40.0MPaの場合には、
0.45≦(t2/h)/(t1/h)≦1.30 (式4)
が成立するようにして構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴hoの内部圧力Pに対する十分な耐圧強度を確保することができる。
  (4-5)
 特に、本実施形態に係る扁平伝熱管41,42,43,・・・は、流路穴hoのアスペクト比w/hが0.8≦(w/h)≦1.1である場合において、流路穴hoの内部圧力Pが10.0MPa≦P≦40.0MPaの場合には、
0.45≦(t2/h)/(t1/h)≦1.25 (式5)
が成立するようにして構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴hoの内部圧力Pに対する十分な耐圧強度を確保することができる。
  (4-6)
 特に、本実施形態に係る扁平伝熱管41,42,43,・・・は、流路穴hoのアスペクト比w/hが0.9≦(w/h)≦1.0である場合において、流路穴hoの内部圧力Pが10.0MPa≦P≦40.0MPaの場合には、
0.45≦(t2/h)/(t1/h)≦1.20 (式6)
が成立するようにして構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴hoの内部圧力Pに対する十分な耐圧強度を確保することができる。
  (4-7)
 特に、本実施形態に係る扁平伝熱管41,42,43,・・・は、流路穴hoのアスペクト比w/hが0.4≦(w/h)≦0.6である場合において、流路穴hoの内部圧力Pが10.0MPa≦P≦20.0MPaの場合には、
0.70≦(t2/h)/(t1/h)≦1.31 (式7)
が成立するようにして構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴hoの内部圧力Pに対する十分な耐圧強度を確保することができる。
  (4-8)
 特に、本実施形態に係る扁平伝熱管41,42,43,・・・は、流路穴hoのアスペクト比w/hが0.4≦(w/h)≦0.6である場合において、流路穴hoの内部圧力Pが20.0MPa<P≦30.0MPaの場合には、
0.59≦(t2/h)/(t1/h)≦1.26 (式8)
が成立するようにして構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴hoの内部圧力Pに対する十分な耐圧強度を確保することができる。
  (4-9)
 特に、本実施形態に係る扁平伝熱管41,42,43,・・・は、流路穴hoのアスペクト比w/hが0.4≦(w/h)≦0.6である場合において、流路穴hoの内部圧力Pが30.0MPa<P≦40.0MPaの場合には、
0.46≦(t2/h)/(t1/h)≦1.13 (式9)
が成立するようにして構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴hoの内部圧力Pに対する十分な耐圧強度を確保することができる。
  (4-10)
 特に、本実施形態に係る扁平伝熱管41,42,43,・・・は、流路穴hoのアスペクト比w/hが0.6<(w/h)≦0.8である場合において、流路穴hoの内部圧力Pが10.0MPa≦P≦20.0MPaの場合には、
0.62≦(t2/h)/(t1/h)≦1.15 (式10)
が成立するようにして構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴hoの内部圧力Pに対する十分な耐圧強度を確保することができる。
  (4-11)
 特に、本実施形態に係る扁平伝熱管41,42,43,・・・は、流路穴hoのアスペクト比w/hが0.6<(w/h)≦0.8である場合において、流路穴hoの内部圧力Pが20.0MPa<P≦30.0MPaの場合には、
0.51≦(t2/h)/(t1/h)≦1.01 (式11)
が成立するようにして構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴hoの内部圧力Pに対する十分な耐圧強度を確保することができる。
  (4-12)
 特に、本実施形態に係る扁平伝熱管41,42,43,・・・は、流路穴hoのアスペクト比w/hが0.6<(w/h)≦0.8である場合において、流路穴hoの内部圧力Pが30.0MPa<P≦40.0MPaの場合には、
0.40≦(t2/h)/(t1/h)≦0.89 (式12)
が成立するようにして構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴hoの内部圧力Pに対する十分な耐圧強度を確保することができる。
  (4-13)
 特に、本実施形態に係る扁平伝熱管41,42,43,・・・は、流路穴hoのアスペクト比w/hが0.8<(w/h)≦1.5である場合において、流路穴hoの内部圧力Pが10.0MPa≦P≦20.0MPaの場合には、
0.45≦(t2/h)/(t1/h)≦0.95 (式13)
が成立するようにして構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴hoの内部圧力Pに対する十分な耐圧強度を確保することができる。
  (4-14)
 特に、本実施形態に係る扁平伝熱管41,42,43,・・・は、流路穴hoのアスペクト比w/hが0.8<(w/h)≦1.5である場合において、流路穴hoの内部圧力Pが20.0MPa<P≦30.0MPaの場合には、
0.42≦(t2/h)/(t1/h)≦0.93 (式14)
が成立するようにして構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴hoの内部圧力Pに対する十分な耐圧強度を確保することができる。
  (4-15)
 特に、本実施形態に係る扁平伝熱管41,42,43,・・・は、流路穴hoのアスペクト比w/hが0.8<(w/h)≦1.5である場合において、流路穴hoの内部圧力Pが30.0MPa<P≦40.0MPaの場合には、
0.39≦(t2/h)/(t1/h)≦0.82 (式15)
が成立するようにして構成されている。これにより、十分な冷媒流量を確保しつつも、流路穴hoの内部圧力Pに対する十分な耐圧強度を確保することができる。
  (4-16)
 特に、本実施形態に係る扁平伝熱管41,42,43,・・・が、室外機において用いられる際、流路穴hoのアスペクト比が0.7<w/h≦1.5である場合において、流路穴hoの内部圧力Pが10.0MPa≦P≦20.0MPaの場合には、
0.45≦(t2/h)/(t1/h)≦1.00 (式16)
の関係が成立するようにして構成されている。これにより、室内外機の熱交換器において本実施形態に係る扁平伝熱管41,42,43,・・・が用いられるとしても、十分な冷媒流量を確保しつつ、流路穴の内部圧力Pに対する十分な耐圧強度を確保することができる。
  (4-17)
 特に、本実施形態に係る扁平伝熱管41,42,43,・・・が、車載用の空気調和装置における熱交換器の伝熱管として用いられる際、流路穴hoのアスペクト比が0.4≦w/h≦0.7である場合において、流路穴hoの内部圧力Pが10.0MPa≦P≦20.0MPaの場合には、
0.67≦(t2/h)/(t1/h)≦1.30 (式17)
の関係が成立するようにして構成されている。これにより、車載用の空気調和装置の熱交換器において本実施形態に係る扁平伝熱管41,42,43,・・・が用いられるとしても、十分な冷媒流量を確保しつつ、流路穴の内部圧力Pに対する十分な耐圧強度を確保することができる。
  (4-18)
 更に、本実施形態に係る扁平伝熱管41,42,43,・・・には、当該本体141,142,143,・・・の外周に耐食層150が形成されており、上記関係式(式1)~(式6),(式7)~(式17)における外周厚さt2からは、この耐食層150の厚さが除かれている。
 これにより、耐食層150によって扁平管本体141,142,143,・・・が腐食するのを防ぐことができる。更に、耐圧強度の観点からすると、耐食層150を含む外周厚さt2が上記関係式(式1)~(式6),(式7)~(式17)に用いられる場合に比してより厳しい条件となる。従って、このような条件を満たす扁平伝熱管41,42,43,・・・は、耐圧強度をより確実に確保できるものとなる。
 (5)変形例
  (5-1)変形例A
 上記実施形態では、図5に示すように、流路穴hoの横断面は矩形形状であって、その内側壁面は凹凸のない形状である場合について説明した。しかし、本変形例Aに係る扁平伝熱管41,42,43,・・・は、図16に示すように、流路穴hoの横断面が矩形形状ではあるが、その内側壁面において凹凸を有している、いわゆるディンプル形状であってもよい。
 この場合、図16に示すように、仕切り部160の厚さt1には、隣り合う流路穴hoの間の厚さが凹凸によって最も小さくなる場合の厚さが該当する。外周厚さt2には、扁平管本体141,142,143,・・・の外周の平面(即ち、図4に係る扁平面141a,141b,142a,142b,143a,143b,・・・から流路穴hoまでの厚さが凹凸によって最も小さくなる場合の厚さが該当する。つまり、流路穴hoの内側壁面に凹凸があることによって、各厚さt1、t2は、一定とはならず、この凹凸の影響を受けることとなる。しかし、本変形例Aでは、各厚さt1,t2として、この凹凸を考慮してそれぞれ最小となる場合の厚さを用いる。
 これにより、凹凸によって最も小さくなる場合の各厚さt1,t2が上記関係式(式1)~(式6),(式7)~(式17)等にて用いられるため、耐圧強度の観点からすると、凹凸によって最も大きくなる場合の各厚さt1,t2が上記関係式(式1)~(式6),(式7)~(式17)等に用いられる場合に比して、より厳しい条件となる。従って、このような条件を満たす扁平伝熱管41,42,43,・・・は、耐圧強度をより確実に確保できるものとなる。
  (5-2)変形例B
 上記実施形態では、扁平伝熱管41,42,43,・・・が、アルミニウムまたはアルミニウム合金を押出成型することによって製造されている場合について説明した。しかし、本発明に係る扁平伝熱管は、弾塑性変形可能な材料で形成されていればよいため、アルミニウム及びアルミニウム合金以外の材料で形成されていてもよい。その他の材料としては、銅や鉄等が挙げられる。
  (5-3)変形例C
 上記実施形態では、扁平伝熱管41,42,43,・・・の横断面積Aに占める流路穴hoの横断面積Aoの割合Ao/Aが最大となる場合における仕切り部160の厚さt1、及び外周厚さt2を、上記関係式(式1)~(式6),(式7)~(式17)等によって決定した。
 しかし、上記関係式に加えて、更に冷媒流量などを考慮して、仕切り部160の厚さt1及び外周厚さt2を決定してもよい。
 本発明に係る熱交換器用扁平管は、十分な冷媒流量を確保しつつも、流路穴の内部圧力に対する十分な耐圧強度を確保することができる。本発明に係る熱交換器用扁平管は、給湯装置や冷凍装置、空気調和装置にて用いられる熱交換器の伝熱管のうち、扁平形状である伝熱管に適用することができる。
10 熱交換器
20 分流ヘッダ
30 合流ヘッダ
40 扁平伝熱管群
41,42,43,・・・ 扁平伝熱管
50 フィン
51 第1フィン
52 第2フィン
141,142,143,・・・ 扁平管本体
141a,141b,142a,142b,143a,143b,・・・ 扁平面
150 耐食層
160 仕切り部
ho 流路穴
t1 仕切り部の厚さ
t2 扁平管本体の扁平面から流路穴までの外周の厚さ
h 扁平管本体の横断面の短軸方向Zに沿った流路穴の第1幅
w 扁平管本体の横断面の長軸方向Xに沿った流路穴の第2幅
特開平10-132424号公報

Claims (19)

  1.  断面が扁平形状である扁平管本体(141,142,143,・・・)の内部に、冷媒が流れる複数の流路穴(Ho)が前記扁平管本体の横断面の長軸方向(X)に並んで形成された熱交換器用扁平管(41,42,43,・・・)であって、
     前記流路穴は、前記扁平管本体の長手方向(Y)に略直交する断面が矩形形状であって、
     隣り合う2つの前記流路穴の間を仕切る仕切り部(160)の厚さt1を前記扁平管本体の横断面の短軸方向(Z)に沿った前記流路穴の第1幅hで無次元化した値をt1/hとし、かつ、前記扁平管本体の外周の平面から前記流路穴までの厚さである外周厚さt2を前記第1幅hで無次元化した値をt2/hとし、
     前記長軸方向(X)に沿った前記流路穴の第2幅wと前記第1幅hとの比率であるアスペクト比w/hが0.4≦(w/h)≦1.5であると共に、前記流路穴の内部圧力Pが10.0MPa≦P≦40.0MPaの場合、
    0.35≦(t2/h)/(t1/h)≦1.45 (式1)
    の関係が成立する、
    熱交換器用扁平管(41,42,43,・・・)。
  2.  前記アスペクト比が0.5≦(w/h)≦1.4であると共に、前記流路穴の内部圧力Pが10.0MPa≦P≦40.0MPaの場合、
    0.40≦(t2/h)/(t1/h)≦1.40 (式2)
    の関係が成立する、
    請求項1に記載の熱交換器用扁平管(41,42,43,・・・)。
  3.  前記アスペクト比が0.6≦(w/h)≦1.3であると共に、前記流路穴の内部圧力Pが10.0MPa≦P≦40.0MPaの場合、
    0.45≦(t2/h)/(t1/h)≦1.35 (式3)
    の関係が成立する、
    請求項1又は2に記載の熱交換器用扁平管(41,42,43,・・・)。
  4.  前記アスペクト比が0.7≦(w/h)≦1.2であると共に、前記流路穴の内部圧力Pが10.0MPa≦P≦40.0MPaの場合、
    0.45≦(t2/h)/(t1/h)≦1.30 (式4)
    の関係が成立する、
    請求項1から3のいずれか1項に記載の熱交換器用扁平管(41,42,43,・・・)。
  5.  前記アスペクト比が0.8≦(w/h)≦1.1であると共に、前記流路穴の内部圧力Pが10.0MPa≦P≦40.0MPaの場合、
    0.45≦(t2/h)/(t1/h)≦1.25 (式5)
    の関係が成立する、
    請求項1から4のいずれか1項に記載の熱交換器用扁平管(41,42,43,・・・)。
  6.  前記アスペクト比が0.9≦(w/h)≦1.0であると共に、前記流路穴の内部圧力Pが10.0MPa≦P≦40.0MPaの場合、
    0.45≦(t2/h)/(t1/h)≦1.20 (式6)
    の関係が成立する、
    請求項1から5のいずれか1項に記載の熱交換器用扁平管(41,42,43,・・・)。
  7.  前記アスペクト比が0.4≦(w/h)≦0.6であると共に、前記流路穴の内部圧力Pが10.0MPa≦P≦20.0MPaの場合、
    0.70≦(t2/h)/(t1/h)≦1.31 (式7)
    の関係が成立する、
    請求項1に記載の熱交換器用扁平管(41,42,43,・・・)。
  8.  前記アスペクト比が0.4≦(w/h)≦0.6であると共に、前記流路穴の内部圧力Pが20.0MPa<P≦30.0MPaの場合、
    0.59≦(t2/h)/(t1/h)≦1.26 (式8)
    の関係が成立する、
    請求項1に記載の熱交換器用扁平管(41,42,43,・・・)。
  9.  前記アスペクト比が0.4≦(w/h)≦0.6であると共に、前記流路穴の内部圧力Pが30.0MPa<P≦40.0MPaの場合、
    0.46≦(t2/h)/(t1/h)≦1.13 (式9)
    の関係が成立する、
    請求項1に記載の熱交換器用扁平管(41,42,43,・・・)。
  10.  前記アスペクト比が0.6<(w/h)≦0.8であると共に、前記流路穴の内部圧力Pが10.0MPa≦P≦20.0MPaの場合、
    0.62≦(t2/h)/(t1/h)≦1.15 (式10)
    の関係が成立する、
    請求項1に記載の熱交換器用扁平管(41,42,43,・・・)。
  11.  前記アスペクト比が0.6<(w/h)≦0.8であると共に、前記流路穴の内部圧力Pが20.0MPa<P≦30.0MPaの場合、
    0.51≦(t2/h)/(t1/h)≦1.01 (式11)
    の関係が成立する、
    請求項1に記載の熱交換器用扁平管(41,42,43,・・・)。
  12.  前記アスペクト比が0.6<(w/h)≦0.8であると共に、前記流路穴の内部圧力Pが30.0MPa<P≦40.0MPaの場合、
    0.40≦(t2/h)/(t1/h)≦0.89 (式12)
    の関係が成立する、
    請求項1に記載の熱交換器用扁平管(41,42,43,・・・)。
  13.  前記アスペクト比が0.8<(w/h)≦1.5であると共に、前記流路穴の内部圧力Pが10.0MPa≦P≦20.0MPaの場合、
    0.45≦(t2/h)/(t1/h)≦0.95 (式13)
    の関係が成立する、
    請求項1に記載の熱交換器用扁平管(41,42,43,・・・)。
  14.  前記アスペクト比が0.8<(w/h)≦1.5であると共に、前記流路穴の内部圧力Pが20.0MPa<P≦30.0MPaの場合、
    0.42≦(t2/h)/(t1/h)≦0.93 (式14)
    の関係が成立する、
    請求項1に記載の熱交換器用扁平管(41,42,43,・・・)。
  15.  前記アスペクト比が0.8<(w/h)≦1.5であると共に、前記流路穴の内部圧力Pが30.0MPa<P≦40.0MPaの場合、
    0.39≦(t2/h)/(t1/h)≦0.82 (式15)
    の関係が成立する、
    請求項1に記載の熱交換器用扁平管(41,42,43,・・・)。
  16.  前記アスペクト比が0.7<w/h≦1.5であると共に、前記流路穴の内部圧力Pが10.0MPa≦P≦20.0MPaの場合、
    0.45≦(t2/h)/(t1/h)≦1.00 (式16)
    の関係が成立する、
    請求項1に記載の熱交換器用扁平管(41,42,43,・・・)。
  17.  前記アスペクト比が0.4≦w/h≦0.7であると共に、前記流路穴の内部圧力Pが10.0MPa≦P≦20.0MPaの場合、
    0.67≦(t2/h)/(t1/h)≦1.30 (式17)
    の関係が成立する、
    請求項1に記載の熱交換器用扁平管(41,42,43,・・・)。
  18.  前記扁平管本体の外周には、耐食層(150)が形成されており、
     前記外周厚さt2は、前記耐食層を除く前記扁平管本体の外周の平面から前記流路穴までの厚さである、
    請求項1から17のいずれか1項に記載の熱交換器用扁平管(41,42,43,・・・)。
  19.  前記流路穴は、その内側壁面において凹凸を有しており、
     前記仕切り部の厚さt1とは、隣り合う前記流路穴の間の厚さが前記凹凸によって最も小さくなる場合の厚さであって、
     前記外周厚さt2とは、前記扁平管本体の外周の平面から前記流路穴までの厚さが前記凹凸によって最も小さくなる場合の厚さである、
    請求項1から18のいずれか1項に記載の熱交換器用扁平管(41,42,43,・・・)。
PCT/JP2012/067944 2011-07-20 2012-07-13 熱交換器用扁平管 WO2013011945A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-159330 2011-07-20
JP2011159330A JP2013024472A (ja) 2011-07-20 2011-07-20 熱交換器用扁平管

Publications (1)

Publication Number Publication Date
WO2013011945A1 true WO2013011945A1 (ja) 2013-01-24

Family

ID=47558123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067944 WO2013011945A1 (ja) 2011-07-20 2012-07-13 熱交換器用扁平管

Country Status (2)

Country Link
JP (1) JP2013024472A (ja)
WO (1) WO2013011945A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3058211A1 (fr) * 2016-10-27 2018-05-04 Valeo Systemes Thermiques Echangeur thermique
WO2021241619A1 (ja) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 熱交換器および冷蔵庫

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021081081A (ja) * 2019-11-14 2021-05-27 ダイキン工業株式会社 伝熱管、及び、熱交換器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356488A (ja) * 1999-06-11 2000-12-26 Showa Alum Corp 熱交換器用チューブ
JP2005037113A (ja) * 2003-06-23 2005-02-10 Denso Corp 熱交換器
JP2006322699A (ja) * 2005-04-20 2006-11-30 Showa Denko Kk 熱交換器
JP2007232233A (ja) * 2006-02-28 2007-09-13 Showa Denko Kk 熱交換器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356488A (ja) * 1999-06-11 2000-12-26 Showa Alum Corp 熱交換器用チューブ
JP2005037113A (ja) * 2003-06-23 2005-02-10 Denso Corp 熱交換器
JP2006322699A (ja) * 2005-04-20 2006-11-30 Showa Denko Kk 熱交換器
JP2007232233A (ja) * 2006-02-28 2007-09-13 Showa Denko Kk 熱交換器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3058211A1 (fr) * 2016-10-27 2018-05-04 Valeo Systemes Thermiques Echangeur thermique
WO2021241619A1 (ja) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 熱交換器および冷蔵庫

Also Published As

Publication number Publication date
JP2013024472A (ja) 2013-02-04

Similar Documents

Publication Publication Date Title
US8074708B2 (en) Heat exchanger
CN108139183B (zh) 热交换器
US20080121385A1 (en) Heat dissipation fin for heat exchangers
US20070169922A1 (en) Microchannel, flat tube heat exchanger with bent tube configuration
JP5147894B2 (ja) 冷媒分配器、及び、蒸発器
JP2010139088A (ja) 熱交換器
WO2013031528A1 (ja) 熱交換器
JP2007093023A (ja) 熱交換器
WO2013011945A1 (ja) 熱交換器用扁平管
WO2015059832A1 (ja) 熱交換器及びその熱交換器を用いた冷凍サイクル装置
JP4122670B2 (ja) 熱交換器
US10317147B2 (en) Tank and heat exchanger
CN110785622B (zh) 热交换器用管
JP6826133B2 (ja) 熱交換器及び冷凍サイクル装置
JP2007093024A (ja) 熱交換器
JP2013139915A (ja) 熱交換用扁平管及び熱交換器
WO2019167840A1 (ja) 熱交換器
US10302373B2 (en) Heat exchanger
JP2008249241A (ja) 熱交換器
JP2013185721A (ja) 熱交換用扁平管及び熱交換器
JP2009008347A (ja) 熱交換器
JP2007187381A (ja) 熱交換器
JP2009250600A (ja) 銅製扁平伝熱管
JP5574737B2 (ja) 熱交換器
JP2009281703A (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12814187

Country of ref document: EP

Kind code of ref document: A1