WO2013011796A1 - 交通評価装置、コンピュータプログラム及び交通評価方法 - Google Patents

交通評価装置、コンピュータプログラム及び交通評価方法 Download PDF

Info

Publication number
WO2013011796A1
WO2013011796A1 PCT/JP2012/065810 JP2012065810W WO2013011796A1 WO 2013011796 A1 WO2013011796 A1 WO 2013011796A1 JP 2012065810 W JP2012065810 W JP 2012065810W WO 2013011796 A1 WO2013011796 A1 WO 2013011796A1
Authority
WO
WIPO (PCT)
Prior art keywords
traffic
link
traffic volume
vehicle
evaluation
Prior art date
Application number
PCT/JP2012/065810
Other languages
English (en)
French (fr)
Inventor
肇 榊原
西村 茂樹
正之 神野
泰史 大上
誠 千賀
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011159365A external-priority patent/JP5310802B2/ja
Priority claimed from JP2011159366A external-priority patent/JP5267621B2/ja
Priority claimed from JP2011175247A external-priority patent/JP5310807B2/ja
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US14/233,409 priority Critical patent/US9014955B2/en
Publication of WO2013011796A1 publication Critical patent/WO2013011796A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0145Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control

Definitions

  • the present invention relates to a traffic evaluation apparatus that outputs a traffic evaluation index by simulated running of a plurality of simulated vehicles, a computer program for realizing the traffic evaluation apparatus, and a traffic evaluation method using the traffic evaluation apparatus.
  • traffic information such as traffic volume (for example, OD traffic volume) including vehicle start / end point information, vehicle travel speed, acceleration / deceleration characteristics, etc. is handled as input data.
  • the OD traffic volume is the traffic volume between the starting point (starting point) and the ending point (destination point) of the vehicle. For example, survey statistical data obtained as a result of statistical surveys conducted regularly by the country or local government Etc. are used.
  • the purpose of the traffic simulator is to evaluate or estimate in advance the impact after traffic environment changes such as traffic regulation due to construction, accidents or disasters, new construction of roads, improvement of intersections, etc.
  • the traffic simulator includes a movement model of the vehicle, that is, a calculation formula imitating the behavior of the vehicle in advance, and by applying the above input data to the calculation formula, roads such as single intersections, routes, and urban areas
  • Outputs traffic evaluation indicators such as traffic congestion on the network and travel time, or environmental indicators such as carbon dioxide contained in exhaust gas.
  • the road network is composed of a plurality of links (for example, a road connecting the intersection and the intersection having two directions, up and down) and a node (for example, an intersection) where the links intersect.
  • the traffic simulator uses the input OD traffic volume to generate traffic volume (traffic volume flowing into the link) and disappearance traffic volume (traffic volume flowing out of the link) at each link of the road network. Ask for. Then, the traffic simulator generates the number of vehicles corresponding to the generated traffic volume at each link, and deletes the number of vehicles corresponding to the lost traffic volume to obtain the traffic jam length and the like.
  • the time axis data is converted into the space axis data using the travel time of the specific vehicle obtained from the vehicle detectors provided at both ends of the section and the vehicle sensor data obtained in time series.
  • a method for obtaining a traffic jam length by projecting is disclosed (see Patent Document 1).
  • the input data such as the vehicle traveling speed, acceleration / deceleration characteristics, and OD traffic volume coincide with the actual traffic information. Should be set as follows. However, it is difficult to measure the behavior of individual vehicles, the OD traffic volume, and the like in detail for each link of the road network, for example, to match the actual traffic information, and there is a difference between the two. For this reason, when the traffic evaluation index is obtained by the traffic simulator, there is a problem that the actual traffic evaluation index cannot be reproduced as a result of accumulation of the difference as the simulation time elapses.
  • the traffic jam length is obtained as a traffic evaluation index by a traffic simulator
  • parameters such as the vehicle running speed and the outflow rate at the intersection can be adjusted.
  • reproducibility was obtained.
  • the vehicle traveling speed or the intersection runoff rate is adjusted, the number of vehicles arriving on the downstream route (link), etc.
  • further downstream adjustments are required.
  • the influence of the adjustment also affects other routes intersecting at the intersection.
  • the subject road network has a problem that the obtained traffic jam length does not match the actually measured value and lacks reproducibility.
  • the purpose of the evaluation by the traffic simulator is to compare the current traffic evaluation index (for example, traffic volume, congestion length, queue length or travel time) with the traffic evaluation index after setting the evaluation conditions. Since the reproducibility of the current traffic evaluation index by the simulator is an important factor that is the basis for comparison, it has been desired to improve the reproducibility of the traffic simulator.
  • the conventional traffic simulator can be used for construction or traffic accidents. It has not been studied how to apply the correction term in the case where the resulting traffic regulation occurs, that is, after evaluation conditions are set different from the current conditions.
  • the present invention has been made in view of such circumstances, a traffic evaluation apparatus capable of comparing traffic evaluation indexes before and after setting evaluation conditions, a computer program for realizing the traffic evaluation apparatus, and the traffic evaluation apparatus
  • the purpose is to provide a traffic evaluation method.
  • a traffic evaluation apparatus is a traffic evaluation apparatus that outputs a traffic evaluation index by simulating traveling of one or a plurality of links constituting a road network based on individual start / end point information.
  • Evaluation condition setting means for setting an evaluation condition for evaluating a traffic evaluation index including a congestion length, a congestion length estimation means for estimating an estimated congestion length of a vehicle at an arbitrary link, and an evaluation condition by the evaluation condition setting means Based on the measured traffic jam length of the vehicle at the link for each arbitrary period and the estimated traffic jam length estimated by the traffic jam length estimation means, the link does not depend on the origin / destination information at the link for each period.
  • a generation means for generating a corrected arrival traffic volume that does not depend on the corrected departure traffic volume or the start / end point information, and a record for recording the corrected departure traffic volume or the corrected arrival traffic volume generated by the generation means for each period. And after setting the evaluation condition by the evaluation condition setting means, the corrected departure traffic volume recorded by the recording means is released by the link for each cycle, and the corrected arrival traffic volume recorded by the recording means is And a discharge recovery means for recovery by a link.
  • the traffic evaluation apparatus is a traffic evaluation apparatus that outputs a traffic evaluation index by simulating traveling of one or more links constituting a road network based on each start / end point information.
  • An evaluation condition setting means for setting an evaluation condition for evaluating a traffic evaluation index including a traffic volume, a traffic amount estimating means for estimating an estimated traffic volume at an arbitrary link, and an evaluation condition are set by the evaluation condition setting means Before starting, a corrected departure that does not depend on the origin / destination information at the link for each cycle based on the measured traffic volume of the vehicle at the link at any cycle and the estimated traffic volume estimated by the traffic volume estimation means Generation means for generating a corrected arrival traffic volume that does not depend on the traffic volume or the start / end point information, and a recording means for recording the corrected departure traffic volume or the corrected arrival traffic volume generated by the generation means for each period Then, after setting the evaluation condition by the evaluation condition setting means, the corrected departure traffic volume recorded by the recording means is released by the link and the corrected arrival traffic volume recorded by the recording means is released.
  • the traffic evaluation apparatus is the traffic evaluation apparatus according to the first or second aspect, wherein after the evaluation condition is set by the evaluation condition setting means, the corrected arrival traffic volume is set at an arbitrary cycle by an arbitrary link by the discharge collection means.
  • a first comparison means for comparing the corrected arrival traffic volume to be collected and the traffic volume at the link is provided, and the discharge collection means has a corrected corrected arrival traffic volume that is larger than the traffic volume at the link.
  • the traffic volume on the link is collected as the corrected arrival traffic volume, and the difference traffic volume between the corrected arrival traffic volume and the traffic volume on the link is added to the corrected arrival traffic volume in the next cycle of the cycle. It is comprised by these.
  • a traffic evaluation apparatus is the traffic evaluation device according to any one of the first invention to the third invention, wherein after the evaluation condition is set by the evaluation condition setting means, the corrected starting traffic volume is set by an arbitrary link by the discharge collection means.
  • a second comparing means for comparing the corrected starting traffic volume to be released and the traffic volume that can be discharged to the link is provided, and the discharge collecting means has the corrected starting traffic volume to be discharged as the link.
  • the amount of traffic that can be released to the link is released as a corrected starting traffic, and the difference between the released corrected starting traffic and the traffic that can be released to the link is It is configured to add to the corrected starting traffic volume of the next cycle.
  • the traffic evaluation apparatus is the traffic evaluation device according to the fourth aspect, wherein the releasable traffic that calculates the traffic volume that can be discharged from the link is calculated by the difference between the number of vehicles that can exist on the link and the number of vehicles that exist on the link An amount calculating means is provided.
  • a traffic evaluation device is a traffic evaluation device that outputs a traffic evaluation index by simulating traveling one or a plurality of links constituting a road network based on individual start / end point information.
  • An evaluation condition setting means for setting an evaluation condition for evaluating a traffic evaluation index including a queue length, a signal information acquiring means for acquiring signal information of an intersection on the downstream side of an arbitrary link for each arbitrary period, and Before setting the evaluation condition by the evaluation condition setting means, a queue length estimation means for estimating a queue length in a direction intersecting with the oncoming vehicle at the intersection of the cycle, and a signal for the link at the intersection, A determination unit that determines whether or not a condition that is red in the current cycle and blue in the most recent cycle is satisfied; and when the determination unit determines that the condition is not satisfied, the wait A collection means for collecting the number of vehicles corresponding to a length obtained by subtracting a predetermined length from the queue length estimated by the queue length estimation means, and the number of vehicles collected by
  • a traffic evaluation device is a traffic evaluation device that outputs a traffic evaluation index by simulating traveling one or a plurality of links constituting a road network based on individual start / end point information. Based on the estimation means for estimating a traffic evaluation index at an arbitrary link, the measured traffic evaluation index at the link and the estimated traffic evaluation index estimated by the estimation means, the start / end point information at the link every arbitrary period.
  • a generating unit that generates a corrected starting traffic amount that does not depend on the traffic information or a corrected arrival traffic amount that does not depend on the start / end point information, and the generating unit is a vehicle that could not be discharged to the link as a corrected starting traffic amount in the most recent cycle. When there is a vehicle, the vehicle is preferentially discharged to the link in the current cycle.
  • a computer program executes a step of outputting a traffic evaluation index to a computer by each of a plurality of vehicles simulating one or a plurality of links constituting a road network based on individual start / end information.
  • the computer program for causing the computer to set a step for estimating the estimated congestion length of the vehicle at an arbitrary link and an evaluation condition for evaluating a traffic evaluation index including the congestion length, an arbitrary period is set.
  • the corrected departure traffic volume that does not depend on the start / end point information at the link or the corrected arrival traffic volume that does not depend on the start / end point information for each cycle Generating the corrected corrected starting traffic volume or corrected arriving traffic volume for each period, and the evaluation condition After was boss, for each of the periods, the recorded correction starting traffic released by the link, the recorded correction arrived traffic, characterized in that and a step of recovering at the link.
  • a computer program executes a step of outputting a traffic evaluation index to a computer by simulating traveling of one or a plurality of links constituting a road network based on individual start / end point information.
  • the computer program for causing the computer to estimate the estimated traffic volume at an arbitrary link, and before setting an evaluation condition for evaluating a traffic evaluation index including the traffic volume, the computer program for each arbitrary period Based on the actual measured traffic volume of the vehicle at the link and the estimated estimated traffic volume, a corrected departure traffic volume that does not depend on the origin / endpoint information at the link or a corrected arrival traffic volume that does not depend on the origin / endpoint information is generated for each cycle.
  • a computer program executes a step of outputting a traffic evaluation index to a computer by each of a plurality of vehicles simulating one or a plurality of links constituting a road network based on individual start / end point information
  • the computer program intersects with an oncoming straight vehicle at an intersection on the downstream side of the link at an arbitrary period.
  • Estimating a direction queue length determining whether a signal for the link at the intersection is red in the current period and blue in the most recent period; and If it is determined that the condition is not satisfied, the number of vehicles corresponding to a length obtained by subtracting a predetermined length from the estimated queue length is linked to the link. And a step of recording the number of collected vehicles for each cycle, and a step of collecting the recorded number of vehicles by the link for each cycle after setting the evaluation condition. It is characterized by.
  • a traffic evaluation method is a traffic evaluation method for outputting a traffic evaluation index by simulating traveling of one or a plurality of links constituting a road network based on individual start / end point information.
  • the evaluation method before setting an evaluation condition for evaluating a traffic evaluation index including a traffic congestion index including a step of estimating an estimated traffic congestion length of a vehicle at an arbitrary link, the link at an arbitrary cycle A step of generating a corrected departure traffic amount that does not depend on the origin / endpoint information or a corrected arrival traffic amount that does not depend on the origin / endpoint information at the link, based on the measured actual traffic jam length and the estimated traffic jam length of each vehicle. And the generated corrected departure traffic volume or corrected arrival traffic volume for each cycle, and after setting the evaluation conditions, the recorded corrected departure traffic volume is Releasing the link, characterized in that the recorded correction arriving traffic and recovering in the link.
  • a traffic evaluation method is a traffic evaluation method for outputting a traffic evaluation index by simulating traveling of one or a plurality of links constituting a road network based on individual start / end point information.
  • the evaluation method before setting an evaluation condition for evaluating an estimated traffic volume at an arbitrary link and an evaluation condition for evaluating a traffic evaluation index including the traffic volume, the vehicle of the link at an arbitrary cycle is set.
  • the step of recording the generated corrected departure traffic volume or the corrected arrival traffic volume for each cycle, and after setting the evaluation condition, the recorded corrected departure traffic volume for each cycle is stored in the link.
  • the released characterized in that the recorded correction arriving traffic and recovering in the link.
  • a traffic evaluation method is a traffic evaluation method in which a plurality of vehicles each output a traffic evaluation index by simulating one or more links constituting a road network based on individual start / end point information.
  • the evaluation method before setting the evaluation condition for evaluating the traffic evaluation index including the step of acquiring the signal information of the intersection on the downstream side of the arbitrary link every arbitrary period and the queue length, the period The queue length in the direction intersecting with the oncoming straight vehicle at the intersection, and the condition that the signal for the link at the intersection is red in the current cycle and blue in the latest cycle is satisfied Determining whether or not to perform the operation and, if it is determined that the condition is not satisfied, whether the number of vehicles corresponding to a length obtained by subtracting a predetermined length from the estimated queue length is the link
  • the estimated congestion length of the vehicle at an arbitrary link is estimated.
  • the corrected departure traffic volume that does not depend on the departure / end point information or the corrected arrival traffic volume that does not depend on the departure / end point information is generated.
  • the starting point traffic volume (corrected starting traffic volume) as the corrected starting traffic volume of any link corresponds to the number of vehicles released at that link (the number of vehicles released), and the end traffic volume as the corrected arrival traffic volume of any link.
  • the (corrected arrival traffic volume) corresponds to the number of vehicles collected by the link (the number of collected vehicles). Further, the starting point traffic volume or the end point traffic volume generated for each cycle may be zero.
  • the evaluation conditions include, for example, traffic measures such as traffic regulation due to construction, accidents or disasters, new road construction, changes in traffic environment such as improvement of intersections, provision of traffic information, and adjustment of traffic signal control.
  • the arbitrary period is a period for obtaining a correction term (correction value) for bringing the current traffic evaluation index close to the actual measurement value.
  • the period is 10 seconds, 50 seconds, 1 minute, 5 minutes, or the like. It can be set accordingly.
  • the starting point traffic volume or the end point traffic volume is recorded for each link. Then, after setting the evaluation conditions, the recorded starting point traffic volume is released by the link and the recorded end point traffic volume is collected by the link for each cycle. For example, if the starting point traffic volume or the end point traffic volume is generated as 9:00, 9:05, 9:10,... In a cycle of every 5 minutes from the time 9:00 before setting the evaluation condition, After setting the conditions, the starting traffic volume at the same time (cycle) generated before setting the evaluation conditions is released in the period, that is, 5:00, 9:05, 9:10,. Collect end point traffic volume and output traffic evaluation index.
  • the traffic evaluation index is, for example, traffic jam length, travel time, traffic volume, queue length, and the like.
  • the recorded starting traffic volume is released every same period, and the recorded end traffic volume is collected every same period. Because it is reflected in the traffic simulator by means, traffic conditions (traffic evaluation index) such as traffic volume, congestion length, travel time, carbon dioxide emissions at the time of reproduction of the current situation and assumed cases (cases where the current conditions and traffic conditions have changed)
  • traffic conditions traffic evaluation index
  • the traffic situation can be relatively compared, and the traffic evaluation index can be compared before and after setting the evaluation condition.
  • the estimated traffic volume of the vehicle at an arbitrary link is estimated.
  • the corrected departure traffic volume that does not depend on the departure / end point information or the corrected arrival traffic volume that does not depend on the departure / end point information is generated.
  • the starting point traffic volume (corrected starting traffic volume) as the corrected starting traffic volume of any link corresponds to the number of vehicles released at that link (the number of vehicles released), and the end traffic volume as the corrected arrival traffic volume of any link.
  • the (corrected arrival traffic volume) corresponds to the number of vehicles collected by the link (the number of collected vehicles). Further, the starting point traffic volume or the end point traffic volume generated for each cycle may be zero.
  • the evaluation conditions include, for example, traffic measures such as traffic regulation due to construction, accidents or disasters, new road construction, changes in traffic environment such as improvement of intersections, provision of traffic information, and adjustment of traffic signal control.
  • the arbitrary period is a period for obtaining a correction term (correction value) for bringing the current traffic evaluation index close to the actual measurement value.
  • the period is 10 seconds, 50 seconds, 1 minute, 5 minutes, or the like. It can be set accordingly.
  • the starting point traffic volume or the end point traffic volume is recorded for each link. Then, after setting the evaluation conditions, the recorded starting point traffic volume is released by the link and the recorded end point traffic volume is collected by the link for each cycle. For example, if the starting point traffic volume or the end point traffic volume is generated as 9:00, 9:05, 9:10,... In a cycle of every 5 minutes from the time 9:00 before setting the evaluation condition, After setting the conditions, the starting traffic volume at the same time (cycle) generated before setting the evaluation conditions is released in the period, that is, 5:00, 9:05, 9:10,. Collect end point traffic volume and output traffic evaluation index.
  • the traffic evaluation index is, for example, traffic jam length, travel time, traffic volume, queue length, and the like.
  • the recorded starting traffic volume is released every same period, and the recorded end traffic volume is collected every same period. Because it is reflected in the traffic simulator by means, traffic conditions (traffic evaluation index) such as traffic volume, congestion length, travel time, carbon dioxide emissions at the time of reproduction of the current situation and assumed cases (cases where the current conditions and traffic conditions have changed)
  • traffic conditions traffic evaluation index
  • the traffic situation can be relatively compared, and the traffic evaluation index can be compared before and after setting the evaluation condition.
  • the end point traffic volume to be collected is compared with the traffic volume at the link.
  • the traffic volume on the link is the traffic volume based on the start / end point information, and is the traffic volume on the link obtained as a result of the simulated running of the simulated vehicle. If the end traffic volume to be collected is greater than the traffic volume on the link, the traffic volume on the link is recovered as the end traffic volume, and the difference traffic volume between the end traffic volume and the traffic volume on the link is the current cycle. Is added to the end point traffic volume of the next cycle. That is, the differential traffic is carried over to the next cycle. Thereby, it is possible to prevent a situation in which the correction term cannot be collected from the road on the simulation at the time of the assumed case calculation, that is, in the simulation after setting the evaluation conditions.
  • the starting traffic volume to be released is compared with the traffic volume that can be discharged to the link.
  • the traffic volume that can be released is released as the starting traffic volume, and the difference traffic volume between the end traffic volume and the traffic volume that can be released to the link Is added to the starting traffic volume of the next cycle of the current cycle. That is, the differential traffic is carried over to the next cycle.
  • the traffic volume that can be discharged from the link is calculated from the difference between the number of vehicles that can exist on the link and the number of vehicles that exist on the link.
  • the number of vehicles that can exist on the link can be obtained, for example, by dividing the length of the link by the average vehicle interval (for example, 8 m).
  • the number of vehicles existing on the link can be, for example, the number of vehicles stopped on the link in the cycle.
  • the signal information of the intersection on the downstream side of an arbitrary link is acquired every arbitrary period.
  • the arbitrary period is a period (correction period) for obtaining a correction term (correction value) for bringing the current traffic evaluation index close to an actual measurement value.
  • traffic evaluation such as 10 seconds, 50 seconds, 1 minute, 5 minutes, etc. It can be set as appropriate according to the contents of the index.
  • the queue length in the direction intersecting with the oncoming straight vehicle at the intersection of the cycle is estimated.
  • the direction intersecting with the oncoming straight vehicle is, for example, a right turn direction in left-hand traffic as in Japan, and a left turn direction in right-hand traffic as in the United States. In the following description, it is assumed that the vehicle is on the left side as in Japan, and the direction intersecting with the oncoming vehicle is the right turn direction.
  • the signal for the link at the intersection ie, the signal at the intersection for vehicles traveling on the link towards the intersection
  • the signal for the link at the intersection is red in the current cycle and blue in the most recent cycle Determine whether or not.
  • the current cycle is the current cycle (correction cycle) when the correction term is obtained, and the latest cycle is the correction cycle immediately before the current correction cycle. For example, when the correction cycle is 10 seconds, if the current cycle is the current time, the latest cycle is the time 10 seconds before the current time.
  • the condition that the current cycle is red and the latest cycle is blue is a condition for determining the switching of the signal, and it is determined whether or not the blue signal (blue arrow) is switched to the red signal. Yes.
  • the case where the condition is not satisfied is, for example, when the correction cycle is set to 10 seconds, the time point 10 seconds before the current time point and the current time point are both red signals, and when the red signal is switched to the blue signal, whichever This is also the case for a green light.
  • the condition is not satisfied, the number of vehicles corresponding to the length obtained by subtracting the predetermined length from the estimated queue length is collected from the link.
  • the predetermined length is a length from the position of the intersection (stop viewing position) and corresponds to a position where the vehicle is collected. That is, the remaining vehicle obtained by subtracting the vehicle corresponding to the predetermined length from the vehicle waiting for the right turn is collected from the right turn lane in the simulation so that the straight lane is not blocked.
  • the number of collected vehicles is recorded for each link. Then, after setting the evaluation conditions, the recorded number of vehicles is collected by the link for each cycle. For example, if the vehicle is collected at a time interval of 10 seconds from 9:00 hours before setting the evaluation conditions, the evaluation conditions are set, that is, every time from 9:00 to 10 seconds before setting the evaluation conditions. The collected number of vehicles is collected at the same time (cycle) on the link, and a traffic evaluation index is output.
  • the traffic evaluation index is, for example, traffic jam length, travel time, traffic volume, queue length, and the like. Depending on the period, there may be no vehicle to be collected before setting the evaluation conditions. In this case, the vehicle is not collected at the same cycle after setting the evaluation conditions.
  • the correction term stored at the correction period is reflected in the traffic simulator by the same means at the time of the current reproduction.
  • Traffic conditions traffic evaluation indicators
  • the traffic evaluation index can be compared before and after setting the evaluation conditions.
  • a traffic evaluation index at an arbitrary link is estimated.
  • the traffic evaluation index is, for example, traffic jam length, traffic volume, queue length, and the like.
  • the corrected departure traffic volume that does not depend on the start / end point information at the link or the corrected arrival traffic volume that does not depend on the start / end point information for each link Is generated.
  • the starting point traffic volume (corrected starting traffic volume) as the corrected starting traffic volume of any link corresponds to the number of vehicles released at that link (the number of vehicles released), and the end traffic volume as the corrected arrival traffic volume of any link.
  • the (corrected arrival traffic volume) corresponds to the number of vehicles collected by the link (the number of collected vehicles). Further, the starting point traffic volume or the end point traffic volume generated for each cycle may be zero.
  • the arbitrary period is a period for obtaining a correction term (correction value) for bringing the current traffic evaluation index close to the actual measurement value.
  • the period is 10 seconds, 50 seconds, 1 minute, 5 minutes, or the like. It can be set accordingly.
  • the vehicle is preferentially released to the link in the current cycle. That is, when the vehicle is released, the vehicle is collected from the link by the most recent (previous) correction cycle, and if there is a vehicle that has not been released again at the link downstream intersection in the current correction cycle, the vehicle is Preferentially release on the link. As a result, vehicles that have not been re-released can be quickly eliminated.
  • traffic evaluation indices can be compared before and after setting evaluation conditions.
  • FIG. 4 is a flowchart showing a processing procedure before setting an evaluation condition of the traffic simulator according to the first embodiment.
  • 4 is a flowchart showing a processing procedure before setting an evaluation condition of the traffic simulator according to the first embodiment.
  • FIG. 10 is a schematic diagram illustrating an example of traffic volume correction by the traffic simulator according to the second embodiment.
  • FIG. 10 is a block diagram illustrating a configuration example of a traffic simulator according to a third embodiment. It is a schematic diagram which shows obstruction
  • FIG. 10 is a flowchart illustrating a processing procedure when reproducing the current state of the traffic simulator according to the third embodiment.
  • 12 is a flowchart illustrating a processing procedure after setting evaluation conditions of the traffic simulator according to the third embodiment. It is explanatory drawing which shows an example of the vehicle on a link. It is explanatory drawing which shows an example of the method of collect
  • FIG. 3 is an explanatory diagram illustrating an example of a general-purpose computer that implements the traffic simulator according to the first to third embodiments.
  • FIG. 1 is a schematic diagram showing an example of vehicle behavior in a traffic simulator which is an example of a traffic evaluation apparatus according to the present embodiment.
  • the traffic simulator outputs a traffic evaluation index by simulated traveling of a plurality of simulated vehicles (hereinafter also referred to as vehicles).
  • the traffic simulator has, as input data, for example, a traffic volume including start / end point information of vehicle travel (for example, OD traffic volume, O is Origin, D is Destination), vehicle travel speed, acceleration / deceleration characteristics, etc. Traffic information is treated as given.
  • the OD traffic volume is the traffic volume between the starting point (starting point) and the ending point (destination point) of the vehicle.
  • the generated traffic volume and the extinguished traffic volume for each administrative unit such as a city or town.
  • the starting point and the ending point of the vehicle may be a point (link) unit or an area unit.
  • survey statistical data obtained as a result of a statistical survey regularly conducted by the national or local government is used.
  • the traffic simulator contains a movement model of the vehicle, that is, a calculation formula that simulates the behavior of the vehicle in advance, and by applying the above input data to the calculation formula, a plurality of vehicles are simulated and run. It outputs traffic evaluation indexes such as traffic congestion length and travel time in road networks such as single intersections, routes and urban areas.
  • the road network is composed of a plurality of links (for example, a road connecting the intersection and the intersection having two directions, up and down) and a node (for example, an intersection) where the links intersect.
  • the FIG. 1 illustrates three nodes and two links as a part of the road network.
  • FIG. 2 is a schematic diagram showing an example of vehicle start / end information.
  • a traffic evaluation index is reproduced by a traffic simulator
  • the starting and ending point information of vehicle travel is set at both end points of the road.
  • a relatively complicated road network in which a plurality of routes such as urban areas intersect, in order to reproduce the traffic having the starting point (starting point) inside and outside the simulation area S and the traffic having the destination point (ending point), Information on starting point (starting point) and ending point (destination point) of driving is given to the vehicle.
  • the road network is composed of a plurality of nodes corresponding to intersections and roads connecting the intersections as links.
  • the simulation area S is set in part or all of the road network. Outside the simulation area S are start and end points A1, A2,... A12. Further, inside the simulation area S, there are start point / end points B1, B2, and B3. Note that the start point and end point are examples, and are not limited to the example of FIG.
  • an outside traffic having an origin A5 and an end point A6 an outside traffic having an origin A5 and an end point B1, an inside traffic having an origin B2 and an end point B3,
  • Each vehicle is given a starting point and an ending point based on the OD traffic volume and the like, and the behavior of the vehicle such as a travel route from the starting point to the ending point can be obtained according to the vehicle movement model.
  • FIG. 3 is an explanatory diagram showing an example of the OD traffic volume.
  • the traffic volume in the case of the starting point / end points A1, A5, A6, A10, and A12 in FIG. 2 is given.
  • the example of a starting point end point is an example, and is not limited to this.
  • FIG. 4 is a schematic diagram showing an example of generated traffic volume and extinguished traffic volume based on a given OD traffic volume.
  • the traffic simulator calculates the generated traffic volume and the disappeared traffic volume at each link in the simulation area S based on a given OD traffic volume.
  • the generated traffic volume exists upstream of the link 1 and the extinct traffic volume exists downstream of the link 1.
  • traffic may be generated or disappeared in the middle of the link 1.
  • inflow traffic and outflow traffic from other links exist.
  • the traffic simulator (traffic evaluation device) according to the present embodiment improves the reproducibility of the traffic evaluation index by correcting the difference (estimation error) between the estimated traffic jam length and the actual traffic jam length for each link. .
  • the traffic evaluation index is not limited to the traffic jam length, and may be travel time, traffic volume, queue length, or the like.
  • FIG. 5 is a block diagram showing a configuration example of the traffic simulator 10 as an example of the traffic evaluation apparatus according to the first embodiment.
  • the traffic simulator 10 includes a simulator engine unit 11 that performs calculation based on a calculation formula representing a vehicle movement model, a traffic volume calculation unit 12 that calculates generated traffic volume and extinct traffic volume based on a given OD traffic volume, traffic
  • the estimated traffic jam length calculation unit 13 that calculates (estimates) the estimated traffic jam length at each link based on the traffic volume calculated by the traffic volume calculation unit 12, the estimated traffic jam length calculated by the estimated traffic jam length calculation unit 13, and the actual traffic jam length
  • the starting point / end point generating unit 14 generates the starting point traffic volume as the corrected starting traffic volume and the ending traffic volume as the corrected arriving traffic volume in order to adjust the estimated traffic jam length based on the difference (estimating error) with the above estimation error
  • the corrected number calculation unit 15 that calculates the corrected number of vehicles based on the above, the outflow number calculation unit 16 that calculates the number of outflows flowing out during
  • the traffic simulator 10 is given as input data, for example, data such as vehicle travel speed, acceleration / deceleration characteristics, vehicle travel start and end point information, traffic volume, and actual traffic jam length.
  • data such as vehicle travel speed, acceleration / deceleration characteristics, vehicle travel start and end point information, traffic volume, and actual traffic jam length.
  • signal control information of signal lamps at each intersection where links intersect is also provided to the traffic simulator 10 as input data.
  • the traffic simulator 10 outputs the traffic congestion index (estimated traffic jam length) of each link, the travel time of the vehicle, the traffic volume, the number of queues (queue length), etc., using the input data.
  • the traffic evaluation index is displayed on a map representing the road network.
  • the traffic evaluation index may include an emission amount of environmental pollutants (such as carbon dioxide) (for example, environmental index).
  • environmental pollutants such as carbon dioxide
  • the travel time and the amount of environmental pollutants discharged are also proportional to the traffic jam length, so that it can be obtained with good reproducibility.
  • the traffic volume calculation unit 12 uses the OD traffic volume (traffic volume including start / end point information of vehicle travel) to generate the generated traffic volume at an arbitrary link between the start point and the end point and to disappear at an arbitrary link. Calculate traffic volume.
  • OD traffic volume traffic volume including start / end point information of vehicle travel
  • the estimated traffic jam length calculation unit 13 calculates (estimates) the estimated traffic jam length of the vehicle at an arbitrary link based on the traffic volume calculated by the traffic volume calculation unit 12.
  • parameters such as the traveling speed of the vehicle, acceleration / deceleration characteristics, signal display at intersections at both ends of the link, and link length are stored in the storage unit 18 and the parameters are used. Can do.
  • each vehicle travels in a simulated manner according to the movement model. The simulated traveling is obtained by moving the position of the vehicle over time. Then, for example, the estimated traffic jam length can be estimated based on multiplication of the number of vehicles stopped in each link and the vehicle head interval.
  • the estimated traffic jam length can be obtained by estimating, for example, the tail end of the vehicle whose traveling speed is equal to or less than a predetermined threshold as the traffic jam tail.
  • the starting point / end point generation unit 14 adjusts a traffic evaluation index such as an estimated traffic jam length (that is, as a correction term), and generates and disappears traffic (dummy) on an arbitrary link calculated by the traffic calculation unit 12.
  • a traffic evaluation index such as an estimated traffic jam length (that is, as a correction term)
  • a starting traffic volume or an end traffic volume (a mixture of dummy vehicles and non-dummy vehicles) is generated by the link. “Apart from the generated traffic volume and the extinct traffic volume” means that the starting traffic volume or the ending traffic volume does not depend on the starting / ending traffic information, for example.
  • the estimation error that is the difference between the measured traffic jam length of the vehicle at the link and the estimated traffic jam length calculated by the estimated traffic jam length calculation unit 13 is zero or minimized (the estimation error is a link eigenvalue described later).
  • the starting point traffic volume or the end point traffic volume is generated so as to substantially match.
  • the estimated traffic jam length can be corrected to match the actual traffic jam length, that is, the reproducibility of the traffic evaluation index can be improved.
  • the dummy vehicle is a vehicle for convenience of discharge or collection in order to match the actual measurement with the estimation of the traffic simulator 10.
  • FIG. 6 is a schematic diagram showing an example of correcting the estimated traffic jam length.
  • the traffic simulator 10 of the present embodiment is a dummy vehicle as a starting traffic volume (traffic volume starting point) every time a predetermined correction cycle (for example, 5 minutes) elapses in link units.
  • the estimated traffic jam length is estimated to match the actual traffic jam length by releasing a vehicle that is not a dummy vehicle (regular vehicle) or collecting a dummy vehicle or a regular vehicle as the end point traffic volume (traffic volume end point). Correct the traffic jam length.
  • the number of vehicles (corrected vehicle number) corresponding to the difference (estimated error) between the actual traffic jam length and the estimated traffic jam length is released through link 1. .
  • a dummy vehicle is run to lengthen the traffic jam length.
  • the number of vehicles (corrected vehicles) corresponding to the difference (estimated error) between the actual traffic jam length and the estimated traffic jam length is collected at link 2.
  • the length of the traffic jam is shortened by running a part of the regular vehicle on a path outside the simulation target. A method for calculating the corrected number will be described later.
  • the starting traffic volume or the ending traffic volume is generated on the link separately from the traffic volume calculated on the arbitrary link.
  • the starting traffic volume or the ending traffic volume is generated for each link unit.
  • the reproducibility at each link can be improved, the reproducibility of the entire road network can also be improved.
  • the estimated traffic jam length of the vehicle at any link is estimated, and based on the measured traffic jam length and estimated traffic jam length of the vehicle at the link, Generate traffic volume or end traffic volume.
  • starting point traffic volume or end point traffic volume is generated so that the actual value and estimated value of the traffic evaluation index are matched with each link unit, so the reproducibility of traffic evaluation index such as traffic jam length is improved at each link. Can do.
  • the starting traffic volume of the number of vehicles according to the difference (estimation error) between the actual traffic jam length and the estimated traffic jam length is generated. This ensures reproducibility of the estimated traffic jam length even when the traffic jam length determined by the calculated traffic volume is shorter than the actual measurement value, and the same processing is performed at each link of the road network. Thus, the reproducibility of the traffic evaluation index not only for each link of the road network but also for the entire road network can be improved.
  • the end point traffic volume of the number of vehicles corresponding to the difference (estimation error) between the estimated traffic jam length and the actual traffic jam length is generated. This ensures reproducibility of the estimated traffic jam length even when the traffic jam length obtained from the calculated traffic volume is longer than the measured value, and the same processing is performed at each link of the road network. Thus, the reproducibility of the traffic evaluation index not only for each link of the road network but also for the entire road network can be improved.
  • the generating and extinguishing unit 17 deletes (recovers) the same traffic volume on the downstream side of the link.
  • starting traffic is generated at an arbitrary link, that is, when a vehicle is released from the release point, the traffic at the link increases, so the inflow traffic to the downstream increases and the estimated congestion at the downstream link There is a possibility of causing a difference between the length and the actual traffic jam length.
  • starting point traffic volume is generated at an arbitrary link, the effect caused by generating starting point traffic volume at an arbitrary link is eliminated by eliminating (recollecting) the same traffic volume on the downstream side of the link. Can be prevented from being applied to the downstream side.
  • the generation / annihilation unit 17 when the start / end point generation unit 14 generates the end point traffic volume at an arbitrary link, the generation / annihilation unit 17 generates (re-releases) the same traffic volume on the downstream side of the link.
  • the end point traffic volume is generated at any link, that is, when the vehicle is recovered at the recovery point, the traffic volume at the link decreases, so the downstream traffic volume decreases and the estimated congestion at the downstream link There is a possibility of causing a difference between the length and the actual traffic jam length.
  • the end point traffic volume is generated at an arbitrary link, the effect that occurs when the end point traffic volume is generated at an arbitrary link is generated (re-released) on the downstream side of the link. Can be prevented from being applied to the downstream side.
  • the end point traffic volume is generated at any link (when the vehicle is recovered)
  • the equivalent traffic volume is generated (re-released) on the downstream side of the link
  • the end point of the vehicle recovered at the time of recovery originally Can be stored, and the end point stored in each vehicle can be given at the time of re-release.
  • the end point may be given by other methods.
  • FIG. 7 is a schematic diagram showing an example of re-release and re-recovery so as not to affect the traffic situation on the downstream side of the link.
  • the traffic simulator 10 when the estimated traffic jam length or the like is corrected in order to match the traffic evaluation index such as the traffic jam length or travel time with the actual measurement value, the influence on the downstream link is directly affected. And travel time changes. For example, in order to match the estimated congestion length with the actual traffic congestion length at the upstream link, when the vehicle is released as the starting traffic volume, the outflow traffic volume from the link increases, so the downstream inflow traffic volume increases, which It may cause a difference in the estimated congestion length of the link.
  • the vehicle released to the link is downstream of the link so that the correction factor (generation of the start point traffic volume or end point traffic volume) at each link is not transmitted to the downstream link.
  • the vehicle recovered on the link is re-recovered at the intersection exit downstream of the link. As a result, the influence of the correction is not exerted on the downstream link.
  • the evaluation condition setting unit 19 has a function as an evaluation condition setting means for setting an evaluation condition for evaluating the traffic evaluation index.
  • the evaluation conditions include, for example, traffic measures such as traffic regulation due to construction, accidents or disasters, new road construction, changes in traffic environment such as improvement of intersections, provision of traffic information, and adjustment of traffic signal control.
  • the releasable traffic volume calculation unit 20 has a function as a releasable traffic volume calculation means for calculating the releasable traffic volume of the link, and calculates the number of vehicles that can exist on the link and the number of vehicles that exist on the link. Calculate by difference.
  • the number of vehicles that can exist on the link can be obtained, for example, by dividing the length of the link by the average vehicle interval (for example, 8 m).
  • the number of vehicles existing on the link can be, for example, the number of vehicles stopped on the link in the cycle.
  • the generation / annihilation unit 17 is not an essential configuration. That is, the re-collection and re-release of the traffic volume (vehicle) is not essential and can be omitted. When the re-collection and re-release are omitted, the influence on the downstream link due to the corrected number of discharged or recovered can be left to the correction process in the downstream link.
  • the end point information is assigned to the released vehicle according to the ratio of the end point information of one or more vehicles existing on the link. If the ratio of the end point information of the vehicle existing (running) on the link is, for example, the number of the end point information D1 is X1, the end point information D2 is X2, the end point information Dn is the Xn number of vehicles.
  • the end point information D1 is assigned to Y ⁇ X1 / (X1 + X2 +... + Xn) vehicles among the vehicles (Y vehicles) discharged to the link.
  • the end point information D2 is assigned to Y ⁇ X2 / (X1 + X2 +...
  • the corrected number calculation unit 15 adds the vehicle density in the traffic jam to the absolute value of the difference (estimated error) between the measured traffic jam length and the estimated traffic jam length, and adds or subtracts the eigenvalue of the link to the cumulative value to correct the vehicle. Calculate the number. For example, when the estimation error is positive, i.e., when the actual traffic jam length is longer than the estimated traffic jam length, the link eigenvalue is subtracted from the integrated value, and when the estimation error is negative, that is, the actual traffic jam length is the estimated traffic jam length. If shorter, the link eigenvalue is added to the integrated value.
  • the eigenvalue of the link is, for example, the number of vehicles corresponding to the allowable range on the link (road).
  • the allowable range is, for example, a vehicle sensor installation density (for example, if the vehicle sensor installation interval is 250 m, the allowable range is 250 m).
  • the eigenvalue of the link is the vehicle sensor installation density. It can be a value obtained by multiplying the running density of the vehicle.
  • the eigenvalue of the link is the number of vehicles corresponding to the range in which the vehicle can be detected by the link.
  • the eigenvalue may be zero.
  • the corrected number of vehicles is discharged at the starting point as the starting traffic volume, or the corrected number of vehicles is collected at the ending point as the ending traffic volume. Thereby, the number of vehicles corresponding to the estimation error, which is the difference between the estimated traffic jam length and the actual traffic jam length, can be released or collected at each link.
  • the point to be released and recovered is the most upstream point of the link, the end point of the traffic jam, or any point on the link. can do.
  • the number of vehicles to be corrected is set to 10 (1) the number of vehicles to be corrected is 10 at the end of the correction cycle (for example, 5 minutes), and (2) the number of vehicles to be corrected A method of performing 10 units uniformly at equal intervals (for example, 30 seconds) during a correction period (for example, 5 minutes), (3) Synchronizing with the signal display downstream of the link (for example, the red signal time zone) ) There are ways to do it. Further, as far as the vehicle release method is concerned, there is (4) a method that is performed when there is an interval between vehicles traveling so as not to disturb the behavior of the vehicle traveling on the link, for example, 4 seconds or more.
  • the signal is displayed at the downstream intersection of the link including the vehicle discharge point.
  • the vehicles (2) and (4) described above are used and the vehicle is released at an arbitrary link, the vehicle starts flowing out at a green traffic light at the downstream intersection of the link, and the corrected number of vehicles is congested.
  • the estimated traffic jam length cannot be matched with the actual traffic jam length.
  • the outflow number calculation unit 16 calculates the number of outflows flowing out with a green light at the downstream intersection of the link including the vehicle discharge point. More specifically, the outflow number calculation unit 16 calculates the green traffic time (for example, the green traffic time at the downstream intersection of the link during the correction cycle (for example, 5 minutes) that is the generation cycle of the start point traffic volume or the end point traffic volume) The number of outflows is calculated based on the integrated value with the saturated traffic flow rate) and the number of vehicles to be released. For example, when the integrated value is larger than the number of discharged vehicles, the difference between the integrated value and the number of discharged devices is calculated as the number of outflows.
  • the green traffic time for example, the green traffic time at the downstream intersection of the link during the correction cycle (for example, 5 minutes) that is the generation cycle of the start point traffic volume or the end point traffic volume
  • the number of outflows is calculated based on the integrated value with the saturated traffic flow rate) and the number of vehicles to be released. For example, when the integrated value is larger
  • FIG. 8 is a schematic diagram showing a calculation example of the number of outflows flowing out with a green light.
  • the estimation error which is the difference between the actual traffic jam length and the estimated traffic jam length
  • the number of outflows in the green signal is calculated by (the integrated value of the blue time during the correction period and the saturated traffic flow rate minus the number of releases).
  • the number of discharged vehicles is the number of vehicles released from the link between the timing of the previous correction cycle and the timing of the current correction cycle.
  • the number of spills in the green light is set to zero. Further, when the estimation error is negative (that is, when the vehicle is collected as the end point traffic volume), the number of outflows in the green light is set to zero.
  • the released vehicles flowed out at the green light at the downstream intersection of the link, and some or all of the corrected number of vehicles flowed out to the intersection at the green light and entered the link. Even if a situation occurs in which the estimated traffic jam length does not match the actual traffic jam length because it does not stay as a traffic jam, the estimated traffic jam length is reliably determined regardless of the vehicle release method, because the number of outflows is added to the corrected vehicle count. Can be adjusted to the actual measured traffic jam length.
  • the difference between the integrated value and the number of discharges is calculated as the number of outflows, so that the number of outflows from the intersection during the green light period can be added to the correction number in advance.
  • the identifying code adding unit 21 adds an identifying code for identifying the vehicle.
  • the generation / annihilation unit 17 preferentially collects the vehicle assigned the identification code.
  • the generation / disappearing unit 17 does not delete (recover) the same traffic volume on the downstream side of the link.
  • the traffic volume may be extinguished (recollected) as shown in FIG. That is, as described later, when a part of the starting traffic volume is a vehicle that is not a dummy vehicle (a vehicle that is waiting on a dummy link), that is, the starting traffic volume is a dummy vehicle and a vehicle that is not a dummy vehicle.
  • the traffic volume equivalent to the starting traffic volume is not lost on the downstream side of the link, but only the traffic volume corresponding to the dummy vehicle in the starting traffic volume is lost.
  • the identification code when the dummy traffic and the non-dummy vehicle are released in a mixed state as the starting traffic volume, the starting traffic volume is not assigned to all of the starting traffic volumes.
  • An identification code can be given to a “dummy vehicle” obtained by subtracting a non-dummy vehicle from the vehicle.
  • the generation / disappearance unit 17 when the start point / end point generation unit 14 generates the end point traffic volume at an arbitrary link, the generation / disappearance unit 17 generates the next traffic volume on the downstream side of the link instead of generating (re-releasing) the next traffic volume.
  • Traffic volume may be generated (re-released) as follows.
  • the generation / disappearance unit 17 has a function as a prohibiting unit for prohibiting re-release of the dummy vehicle when the vehicle (dummy vehicle) to which the identification code is given is preferentially collected. That is, when a dummy vehicle is collected with priority, the collected dummy vehicle is left extinguished.
  • the dummy vehicle is a vehicle that is collected for the purpose of matching the actual measurement with the estimation by the simulator, there is no problem even if the vehicle is recovered and disappears as it is, and unnecessary processing can be omitted. Note that it is not always necessary to assign the identification code of the dummy vehicle, and even if the identification code is not given, if the dummy vehicle is collected, re-release of the dummy vehicle can be prohibited. Further, when a vehicle that is not a dummy vehicle is collected, an equivalent traffic volume is generated on the downstream side without prohibiting re-release. This is because, if a vehicle that is not a dummy vehicle is recovered and disappears as it is, the amount of traffic that reaches the original destination may decrease and may not match the actual vehicle.
  • FIG. 9 and FIG. 10 are flowcharts showing a processing procedure before setting the evaluation conditions of the traffic simulator 10 of the first embodiment.
  • the processing illustrated in FIGS. 9 and 10 is for improving the reproducibility of the current state before setting the evaluation conditions for evaluating the traffic evaluation index including the congestion length.
  • the traffic simulator 10 determines whether or not a correction cycle (for example, 5 minutes) has elapsed (S11). If the correction cycle has passed (YES in step S11), that is, 5 minutes have passed since the previous correction timing. In this case, an estimated traffic jam length is calculated (S12), and an estimation error (difference between the actual traffic jam length and the estimated traffic jam length) is calculated (estimated) (S13).
  • a correction cycle for example, 5 minutes
  • the traffic simulator 10 determines whether or not the estimation error is greater than zero (S14). If the estimation error is greater than zero (YES in S14), whether or not (estimation error ⁇ link eigenvalue) is greater than zero. Determine (S15).
  • the eigenvalue of the link can be obtained, for example, by multiplying the allowable range depending on the installation density of the vehicle detector installed on the link (road) and the vehicle density.
  • the allowable range can be set to 250 m.
  • the installation density of the vehicle detector for example, 250 m
  • the link eigenvalue is subtracted from the estimation error.
  • the traffic simulator 10 calculates a corrected number of vehicles (S16), and links the calculated corrected number of vehicles (dummy vehicles) as the starting traffic volume to the link. Release (S17).
  • the traffic simulator 10 records the corrected number and the correction cycle (S18). For example, when the correction cycle (time) is 9:10 and the correction number (release number) of a certain link 1 is 10, the discharge number of link 1 at time 9:10 is 10 units. Record.
  • the traffic simulator 10 recovers the vehicle released to the link again at the link downstream intersection (S19).
  • the traffic simulator 10 generates a vehicle from the starting point (departure point), collects the vehicle at the end point (destination point) (S20), advances the signal lamp color of the signal lamp, for example, by 0.1 second, and follows the vehicle movement model.
  • the vehicle is caused to travel (S21), and the simulation cycle (for example, 0.1 second) is terminated.
  • step S15 If the (estimation error-link eigenvalue) is not greater than zero (NO in S15), the traffic simulator 10 performs the processing from step S19 onwards without performing correction. If the correction cycle has not elapsed (NO in step S11), the traffic simulator 10 performs the processing from step S19 onwards without performing correction.
  • the traffic simulator 10 determines whether the estimation error is smaller than zero (S22). If the estimation error is smaller than zero (YES in S22), (estimation) It is determined whether or not (error + link eigenvalue) is smaller than zero (S23).
  • the traffic simulator 10 calculates the corrected number of vehicles (S24), and links the calculated corrected number of vehicles (regular vehicles) as the end point traffic volume. (S25).
  • the traffic simulator 10 records the corrected number and the correction cycle (S26). For example, when the correction cycle (time) is 9:10 and the corrected number (collected number) of a certain link 1 is 10, the collected number of link 1 at time 9:10 is 10 Record.
  • the traffic simulator 10 re-releases the vehicle collected from the link at the link downstream intersection (S27), and continues the processing from step S20.
  • the traffic simulator 10 determines that the estimation error is zero, and performs the processes after step S27 without performing correction. If (estimation error + link eigenvalue) is not smaller than zero (NO in S23), the traffic simulator 10 performs the processing from step S20 onwards without performing correction.
  • the processing illustrated in FIGS. 9 and 10 is repeated every time a simulation cycle (for example, 0.1 second) elapses. Further, it can be omitted without performing the processing of steps S19 and S27.
  • adjustment is performed by correction for discharging or collecting the vehicle at the downstream link of the link. Although the correction at the link affects the downstream link, the correction process is also performed at the downstream link, so that the difference between the estimated traffic jam length and the actual traffic jam length can be reduced.
  • a relative comparison between the current traffic evaluation index and the traffic evaluation index after setting the evaluation conditions is generally performed, but the collection obtained by the processing procedure illustrated in FIGS.
  • the correction value and the discharge correction value can be used as the recovery correction value and the discharge correction value in the evaluation after setting the evaluation conditions.
  • the starting point / end point generation unit 14 determines the actual traffic jam length of the vehicle at the link and the estimated traffic jam length estimated. Based on the above, the starting point traffic volume or the end point traffic volume is generated at the link for every arbitrary period.
  • the traffic volume at the starting point of an arbitrary link corresponds to the number of vehicles discharged from the link (the number of discharged vehicles), and the traffic volume at the end point of an arbitrary link corresponds to the number of vehicles recovered at the link (the number of recovered vehicles).
  • the arbitrary period is a period for obtaining a correction term (correction value) for bringing the current traffic evaluation index close to the actual measurement value. For example, the period is 10 seconds, 50 seconds, 1 minute, 5 minutes, or the like. It can be set accordingly.
  • the starting point / end point generation unit 14 records the generated starting point traffic volume or end point traffic volume in the storage unit 18 for each period. The starting point traffic volume or the end point traffic volume is recorded for each link. Then, after setting the evaluation condition by the evaluation condition setting unit 19, the starting point / end point generating unit 14 releases the recorded starting point traffic volume at the link and collects the recorded end point traffic amount at the link. . For example, if the starting point traffic volume or the end point traffic volume is generated as 9:00, 9:05, 9:10,... In a cycle of every 5 minutes from the time 9:00 before setting the evaluation condition, After setting the conditions, the starting traffic volume at the same time (cycle) generated before setting the evaluation conditions is released at the corresponding period, that is, 9:00, 9:05, 9:10,. The end point traffic volume at the same time (cycle) generated before setting the conditions is collected and a traffic evaluation index is output.
  • the traffic evaluation index is, for example, traffic jam length, travel time, traffic volume, queue length, and the like.
  • the recorded starting point traffic volume is released on the same link at the same cycle, and the recorded end point traffic volume is collected on the same link, so that the correction term stored for each correction cycle at the time of the current reproduction.
  • traffic conditions traffic evaluation index
  • traffic evaluation index traffic volume, congestion length, travel time, carbon dioxide emissions at the time of the current reproduction, and assumed cases (the case where the current conditions and traffic conditions have changed)
  • a traffic evaluation index can be compared before and after setting the evaluation conditions.
  • the starting point / end point generation unit 14 has a function as a comparison unit, and after setting the evaluation condition by the evaluation condition setting unit 19, when the end point traffic is collected at an arbitrary cycle at an arbitrary cycle, the collected end point Compare traffic volume with traffic on the link.
  • the traffic volume on the link is a traffic volume based on the generated traffic volume or the disappeared traffic volume on the link obtained from the OD traffic volume obtained as an actual measurement value separately from the end point traffic volume. If the end traffic volume to be collected is greater than the traffic volume on the link, the traffic volume on the link is recovered as the end traffic volume, and the difference traffic volume between the end traffic volume and the traffic volume on the link is the current cycle. Is added to the end point traffic volume of the next cycle. That is, the differential traffic is carried over to the next cycle. Thereby, it is possible to prevent a situation in which the correction term cannot be collected from the road on the simulation at the time of the assumed case calculation, that is, in the simulation after setting the evaluation conditions.
  • the starting point / ending point generation unit 14 can discharge the starting point traffic volume and the link when releasing the starting point traffic volume at an arbitrary link. Compare traffic volume. When the starting traffic volume to be released is larger than the traffic volume that can be released to the link, the traffic volume that can be released is released as the starting traffic volume, and the difference between the released starting traffic volume and the traffic volume that can be released to the link The traffic volume is added to the starting traffic volume of the next cycle after the current cycle. That is, the differential traffic is carried over to the next cycle. As a result, it is possible to prevent a situation in which the correction term cannot be released to the road on the simulation when calculating the assumed case, that is, in the simulation after setting the evaluation conditions.
  • the dischargeable traffic volume calculation unit 20 calculates the traffic volume that can be released from the link based on the difference between the number of vehicles that can exist on the link and the number of vehicles that exist on the link.
  • the number of vehicles that can exist on the link can be obtained, for example, by dividing the length of the link by the average vehicle interval (for example, 8 m).
  • the number of vehicles existing on the link can be, for example, the number of vehicles stopped on the link in the cycle.
  • FIGS. 11 and 12 are flowcharts showing the processing procedure after setting the evaluation conditions of the traffic simulator 10 according to the first embodiment.
  • the process illustrated in FIGS. 11 and 12 shows a process after setting an evaluation condition for evaluating a traffic evaluation index including a congestion length.
  • the traffic simulator 10 sets evaluation conditions (S41), determines whether or not a correction cycle (for example, 5 minutes) has elapsed (S42), and if the correction cycle has passed (YES in step S42), that is, When 5 minutes have elapsed from the previous correction timing, the number of corrected units before the evaluation condition setting in the same cycle as the current cycle is acquired (S43).
  • a correction cycle for example, 5 minutes
  • the traffic simulator 10 determines whether the corrected number is the released number or the collected number (S44). If the corrected number is the released number (released in S44), whether or not the corrected number is larger than the dischargeable number on the link. Is determined (S45).
  • the traffic simulator 10 releases the releasable number of vehicles to the link (S46), and calculates the difference between the corrected number and the releasable number as follows. The number is added to the number of corrected cycles (S47).
  • the traffic simulator 10 re-collects the vehicle released to the link at the link downstream intersection (S49).
  • the traffic simulator 10 generates a vehicle from the start point (departure point), collects the vehicle at the end point (destination point) (S50), advances the signal light color of the signal light device by, for example, 0.1 seconds, and follows the movement model of the vehicle.
  • the vehicle is caused to travel (S51), and the simulation cycle (for example, 0.1 second) is terminated.
  • the traffic simulator 10 releases the corrected number of vehicles to the link (S48), and performs the processing from step S49. If the correction period has not elapsed (NO in step S42), the traffic simulator 10 performs the processing from step S49 onwards without performing correction.
  • the traffic simulator 10 determines whether the corrected number is larger than the existing number on the link (S52). When the corrected number is larger than the existing number on the link (YES in S52), the traffic simulator 10 collects the number of vehicles existing on the link from the link (S53), and the difference between the corrected number and the existing number on the link. The number is added to the corrected number of the next cycle (S54).
  • the traffic simulator 10 re-releases the vehicle collected from the link at the link downstream intersection (S56), and performs the processing after step S50. If the corrected number is not larger than the existing number on the link (NO in S52), the traffic simulator 10 collects the corrected number of vehicles from the link (S55), and continues the processing from step S56.
  • step 11 and 12 described above are repeatedly performed every time a simulation cycle (for example, 0.1 second) elapses. Further, the steps S49 and S56 can be omitted without performing the processing. In this case, adjustment is performed by correction for discharging or collecting the vehicle at the downstream link of the link. Although the correction at the link affects the downstream link, the correction process is also performed at the downstream link, so that the difference between the estimated traffic jam length and the actual traffic jam length can be reduced.
  • step S19 is omitted in FIG. 9, step S49 in FIG. 11 is omitted, and if step S27 is omitted in FIG. 10, step S56 in FIG. 12 is omitted.
  • the traffic simulator 10 described above can also be realized by using a general-purpose computer 100 including a CPU, a RAM, and the like as illustrated in FIG. That is, as shown in FIGS. 9 to 12, a program code defining each processing procedure is recorded on the recording medium 110, the recording medium 110 is loaded into a RAM provided in the computer 100, and the program code is stored in the CPU.
  • the traffic simulator 10 can be realized on the computer 100. Note that the program code defining each processing procedure as shown in FIGS. 9 to 12 can be downloaded via the network 200 such as the Internet instead of the recording medium 110.
  • an identification code for identifying the vehicle when a vehicle is discharged to the link as the starting traffic volume, an identification code for identifying the vehicle can be given. Then, when the vehicle is collected as the end point traffic volume on the downstream side of the link by the generation / annihilation unit 17, the vehicle to which the identification code is given is preferentially collected.
  • the vehicle to which the released identification code is assigned When a vehicle is released as an origin traffic volume at an arbitrary link, when the vehicle is collected on the downstream side of the link (including the link and a link different from the link), the vehicle to which the released identification code is assigned By preferentially collecting, it is possible to prevent the downstream side of the link from being affected by the generation of the starting traffic volume at an arbitrary link.
  • the traffic simulator 10 of the present embodiment can improve the reproducibility of the traffic evaluation index not only for an arbitrary link (road) of the target road network but also for the entire road network.
  • the reproducibility of the traffic evaluation index is increased, the traffic evaluation index after setting the evaluation conditions can be correctly evaluated.
  • traffic evaluation index traffic volume, congestion length, travel time, carbon dioxide emissions at the time of current status reproduction
  • the vehicle start / end information is used, but the present invention is not limited to this.
  • the generated traffic volume and the extinguished traffic volume at an arbitrary link may be set in advance, and the generated generated traffic volume and the disappeared traffic volume may be used.
  • the traffic evaluation device outputs a traffic evaluation index by simulating traveling of one or more links constituting a road network based on individual start / end point information.
  • a generating means for generating a starting traffic volume (corrected starting traffic volume) that does not depend on the starting / ending point information or an end traffic volume (corrected arrival traffic volume) that does not depend on the starting / ending point information.
  • the traffic evaluation index is adjusted for each link by generating the starting traffic volume or the end traffic volume that does not depend on the starting / ending traffic information at any link.
  • the traffic evaluation index is, for example, traffic jam length, travel time, and the like. Thereby, the reproducibility of traffic evaluation indices, such as a traffic jam length, can be improved.
  • the traffic evaluation apparatus includes a traffic jam length estimation unit that estimates an estimated traffic jam length of a vehicle at an arbitrary link, and the generation unit calculates the actual traffic jam length and the estimated traffic jam length of a vehicle at a link. Based on this, the starting traffic volume or the end traffic volume is generated at the link. For example, in order to correct the estimated traffic jam length so that the difference between the measured traffic jam length and the estimated traffic jam length of the vehicle is minimized, the starting traffic volume or the end traffic volume not depending on the starting / ending traffic information is generated by the link.
  • the estimated traffic jam length of the vehicle at an arbitrary link is estimated, and based on the actual traffic jam length and the estimated traffic jam length of the vehicle at the link, the start traffic volume or the end traffic volume is calculated at the link. Generate. As a result, starting point traffic volume or end point traffic volume is generated so that the actual value and estimated value of the traffic evaluation index are matched with each link unit, so the reproducibility of traffic evaluation index such as traffic jam length is improved at each link. Can do.
  • the generation unit when the actual traffic jam length is longer than the estimated traffic jam length, the generation unit generates the starting traffic volume of the number of vehicles according to the difference between the actual traffic jam length and the estimated traffic jam length. .
  • the starting traffic volume of the number of vehicles corresponding to the difference between the actual traffic jam length and the estimated traffic jam length is generated. This ensures reproducibility of the estimated traffic jam length even when the traffic jam length determined by the calculated traffic volume is shorter than the actual measurement value, and the same processing is performed at each link of the road network. Thus, the reproducibility of the traffic evaluation index not only for each link of the road network but also for the entire road network can be improved.
  • the generation unit when the actual traffic jam length is shorter than the estimated traffic jam length, the generation unit generates the end point traffic volume of the number of vehicles according to the difference between the estimated traffic jam length and the actual traffic jam length. .
  • the end point traffic volume of the number of vehicles corresponding to the difference between the estimated traffic jam length and the actual traffic jam length is generated. This ensures reproducibility of the estimated traffic jam length even when the traffic jam length obtained from the calculated traffic volume is longer than the measured value, and the same processing is performed at each link of the road network. Thus, the reproducibility of the traffic evaluation index not only for each link of the road network but also for the entire road network can be improved.
  • the traffic evaluation apparatus adds the vehicle density in the traffic jam to the absolute value of the difference between the actual traffic jam length and the estimated traffic jam length, and adds or subtracts the eigenvalue of the link to the accumulated value.
  • Compensated number calculating means for calculating the corrected number of vehicles is provided, and the generating means discharges the corrected number of vehicles as the starting traffic volume or collects the corrected number of vehicles as the end traffic volume.
  • the vehicle density in the traffic jam is added to the absolute value of the difference (estimated error) between the measured traffic jam length and the estimated traffic jam length, and the eigenvalue of the link is added to or subtracted from the accumulated value. Calculate the number of corrections.
  • the vehicle density in the traffic jam can be made equal in both cases of the actual traffic jam length and the estimated traffic jam length.
  • the allowable range is, for example, a vehicle sensor installation density (for example, if the vehicle sensor installation interval is 250 m, the allowable range is 250 m).
  • the eigenvalue of the link is the vehicle sensor installation density. It can be a value obtained by integrating the running density of the vehicle.
  • the eigenvalue of the link is the number of vehicles corresponding to the range in which the vehicle can be detected by the link.
  • the eigenvalue may be zero.
  • the corrected number of vehicles is discharged at the starting point as the starting traffic volume, or the corrected number of vehicles is collected at the ending point as the ending traffic volume. Thereby, the number of vehicles corresponding to the estimation error, which is the difference between the estimated traffic jam length and the actual traffic jam length, can be released or collected at each link.
  • the generation unit when the generation unit releases a corrected number of vehicles, the generation unit releases the vehicle in synchronization with the signal display at the downstream intersection of the link including the vehicle release point. For example, a corrected number of vehicles are released in a time zone in which the signal display downstream of the link is red.
  • the vehicles when a corrected number of vehicles are released, the vehicles are released in synchronization with the signal display at the downstream intersection of the link including the vehicle release point. For example, a corrected number of vehicles are released in a time zone in which the signal display downstream of the link is red. This prevents a situation in which the corrected number of vehicles does not remain as a traffic jam on the link, and makes it possible to reliably match the estimated traffic jam length with the actual traffic jam length.
  • the traffic evaluation apparatus includes an outflow number calculating means for calculating the number of outflows flowing out at a green signal at a downstream intersection of a link including the vehicle release point when the generation means discharges a corrected number of vehicles.
  • the corrected number calculating means calculates the corrected number based on the number of outflows.
  • the number of outflows flowing out at the green signal at the downstream intersection of the link including the vehicle discharge point is calculated, and the corrected number of vehicles is calculated based on the calculated outflow number.
  • the released vehicle flows out at the green light at the downstream intersection of the link, and some or all of the corrected number of vehicles flow out to the intersection at the green light and does not remain as traffic jam on the link.
  • the number of outflows is added to the corrected number, so that the estimated traffic jam length can be reliably matched to the actual traffic jam length regardless of the vehicle release method.
  • the number of outflows calculating means is based on the integrated value of the green light time at the intersection and the traffic flow rate during the generation cycle by the generating means and the number of vehicles released by the generating means. Calculate the number of spills. For example, when the integrated value is larger than the number of discharged vehicles, the difference between the integrated value and the number of discharged devices is calculated as the number of outflows.
  • the number of outflows is calculated based on the integrated value of the green traffic time at the downstream intersection of the link during the generation cycle, the traffic flow rate, and the number of vehicles to be released. For example, when the integrated value is larger than the number of discharged vehicles, the difference between the integrated value and the number of discharged devices is calculated as the number of outflows. As a result, the number of vehicles flowing out from the intersection during the green light time zone can be added in advance to the corrected number of vehicles.
  • the traffic evaluation apparatus includes an extinguishing means that causes the equivalent traffic volume to disappear on the downstream side of the link.
  • the equivalent traffic volume is extinguished on the downstream side of the link.
  • starting traffic is generated at an arbitrary link, that is, when a vehicle is released from the release point, the traffic at the link increases, so the inflow traffic to the downstream increases and the estimated congestion at the downstream link There is a possibility of causing a difference between the length and the actual traffic jam length.
  • the influence generated by generating the starting traffic volume at an arbitrary link can be reduced to the downstream side of the link by eliminating the equivalent traffic volume at the downstream side of the link. Giving can be prevented.
  • the traffic evaluation apparatus includes generating means for generating an equivalent traffic volume on the downstream side of the link when the generating means generates the end point traffic volume at an arbitrary link.
  • the end point traffic volume when the end point traffic volume is generated on an arbitrary link, the same traffic volume is generated on the downstream side of the link.
  • the end point traffic volume is generated at any link, that is, when the vehicle is recovered at the recovery point, the traffic volume at the link decreases, so the downstream traffic volume decreases and the estimated congestion at the downstream link There is a possibility of causing a difference between the length and the actual traffic jam length.
  • the end point traffic volume is generated on an arbitrary link, by generating the same traffic volume on the downstream side of the link, the influence caused by generating the end point traffic volume on the arbitrary link is transferred to the downstream side of the link. Giving can be prevented.
  • the traffic evaluation device of the present embodiment by generating the starting traffic volume or the end traffic volume in units of the link, that is, by generating the starting traffic volume or the end traffic volume that does not depend on the starting / ending traffic information, The reproducibility of traffic evaluation indices such as traffic jam length can be improved.
  • the estimated congestion length as the traffic evaluation index is calculated (estimated), but is not limited to this.
  • the traffic simulator (traffic evaluation device) calculates (estimates) an estimated traffic volume as a traffic evaluation index, and calculates the number of vehicles according to the difference between the estimated traffic volume and the actually measured traffic volume in units of links. By releasing or collecting, the reproducibility of the traffic evaluation index is improved.
  • FIG. 13 is a schematic diagram showing another example of generated traffic volume and extinct traffic volume based on a given OD traffic volume.
  • the traffic simulator calculates the generated traffic volume and the disappeared traffic volume at each link in the simulation area S based on a given OD traffic volume.
  • the generated traffic volume exists upstream of the link 1 and the extinct traffic volume exists downstream of the link 1.
  • traffic may be generated or disappeared in the middle of the link 1.
  • inflow traffic and outflow traffic from other links exist.
  • the estimated traffic volume as a traffic evaluation index is calculated (estimated) using the generated traffic volume and the disappeared traffic volume calculated at each link. Then, the reproducibility of the traffic evaluation index is improved by correcting (releasing or collecting) the number of vehicles according to the difference between the estimated traffic volume and the actually measured traffic volume in units of links.
  • FIG. 14 is a block diagram illustrating a configuration example of the traffic simulator 50 according to the second embodiment.
  • the difference from the first embodiment is that an estimated traffic volume calculation unit 22 and a traffic jam determination unit 23 are provided.
  • the traffic simulator 50 acquires the measured traffic volume of an arbitrary link as input data.
  • symbol is attached
  • the estimated traffic volume calculation unit 22 calculates (estimates) the estimated traffic volume at an arbitrary link based on the traffic volume calculated by the traffic volume calculation unit 12.
  • parameters such as the vehicle traveling speed, acceleration / deceleration characteristics, signal display at intersections of both ends of the link, link length, and the like are stored in the storage unit 18 and the parameters are used. Can do.
  • the traffic jam determination unit 23 has a function as a determination unit that determines whether the actual traffic jam length at each link and the estimated traffic jam length estimated by the estimated traffic jam length calculation unit 13 are less than a predetermined traffic jam threshold. That is, the traffic jam determination unit 23 determines whether or not the actually measured traffic jam length and the estimated traffic jam length at each link are less than a predetermined traffic jam threshold.
  • the traffic congestion threshold is a unique value unique to each link, and is, for example, the installation interval (for example, 200 m, 250 m, etc.) of the vehicle detector.
  • the start point / end point generation unit 14 sets each traffic evaluation index close to an actual measurement value.
  • a starting traffic volume or an end traffic volume (a mixture of dummy vehicles and non-dummy vehicles) is generated by the link. “Apart from the generated traffic volume and the extinct traffic volume” means that the starting traffic volume or the ending traffic volume does not depend on the starting / ending traffic information, for example.
  • the starting point traffic generated by the starting point / end point generating unit 14 corresponds to the number of vehicles discharged to the link (corrected number), and the end point traffic corresponds to the number of vehicles collected from the link (corrected number).
  • the correction number is also referred to as a correction term
  • the correction term for matching the estimated traffic length with the actual traffic length is called the traffic jam length correction term (congestion length correction)
  • the correction for matching the estimated traffic volume with the actual traffic volume is referred to as a traffic volume correction term (traffic volume correction).
  • the dummy vehicle is a vehicle for convenience of discharge or collection in order to match the actual measurement with the estimation of the traffic simulator 50.
  • FIG. 15 is an explanatory diagram showing the relationship between traffic conditions and correction terms.
  • the traffic simulator 50 according to the second embodiment performs traffic volume correction at a link when the congestion determination unit 23 determines that there is neither an estimated traffic jam nor an actually measured traffic jam at an arbitrary link. .
  • the traffic simulator 50 corrects the traffic jam length on the link.
  • the traffic jam length correction is performed when the target link is determined to be jammed in actual measurement, simulation, or both.
  • the estimated error which is the difference between the actual measured traffic jam length of the vehicle and the estimated traffic jam length calculated by the estimated traffic jam length calculation unit 13, is zero or minimized (the estimated error substantially matches the eigenvalue of the link described later).
  • the traffic volume correction As described above, in the traffic volume correction, when it is determined that there is no traffic jam on the target link both on the actual measurement and on the simulation, the actual traffic volume of the vehicle on the link and the estimated traffic volume calculation unit 22 calculate The starting point traffic volume or the end point traffic volume is generated so that the difference from the estimated traffic volume is zero or minimum. First, the reason why it is necessary to perform traffic volume correction instead of congestion length correction will be described.
  • FIG. 16 is a schematic diagram showing an example of the actually measured traffic jam length measured at the link.
  • one link is illustrated.
  • FIG. 16A shows a case where no vehicle detector is installed in the road section corresponding to the link.
  • FIG. 16B and FIG. 16C show the case where the vehicle detector is installed in the point S of the road section corresponding to a link.
  • the vehicle detector when the tail of the queue of the vehicle is on the upstream side beyond the point S, the vehicle detector can detect the traffic jam.
  • the length can be measured as a value corresponding to the distance from the intersection downstream of the link to the point S or a corrected congestion length based on the value. That is, as shown in FIG. 16A and FIG. 16B, since it cannot be determined that there is traffic jam in an actual road section, it may be determined that there is no traffic jam.
  • the above-mentioned corrected traffic jam length means that when a plurality of vehicle detectors are installed, the traffic jam is caused to any position between adjacent vehicle detectors based on the vehicle detection result of the adjacent vehicle detector. Is to ask.
  • FIG. 17 is a schematic diagram showing an example of route search by simulation.
  • the main road R1 intersects with the main roads R2 and R3 at the intersections C1 and C5.
  • the main road R4 intersects the main roads R2 and R3 at the intersections C2 and C6.
  • the connecting road R5 connecting the main roads R1 and R4 intersects at the intersections C3 and C4.
  • the narrow street R101 that is not the simulation target intersects the main road R2, the connecting road R5, and the main road R3 at the intersections C7, C8, and C9, respectively.
  • the narrow street R102 that is not subject to simulation intersects the main road R2 and the connecting road R5 at intersections C13 and C10, respectively.
  • the narrow street R103 that is not a simulation target intersects with the connecting road R5 and the main road R3 at intersections C11 and C12, respectively.
  • the narrow street R104 that is not the simulation target intersects the main road R4 at the intersection C4.
  • the number of right / left turns increases on connecting roads that connect highways to each other, or on connecting roads that intersect non-simulated narrow streets (for example, each time the number of right or left turns increases, Therefore, it is difficult to select a route.
  • the route indicated by the solid line that is, the route passing through the connecting road R5 is not selected because the number of left or right turns at the intersection C3 or C4 is added and the cost (travel time) increases. Instead, a route indicated by a broken line in FIG. 17 is selected. For this reason, on the connection road R5, the traffic volume on the simulation tends to be smaller than the actual traffic volume, and no traffic jam occurs on the simulation.
  • the traffic simulator 10 when neither an actual traffic jam nor a traffic jam on the simulation occurs, the traffic volume correction is performed instead of the traffic jam length correction.
  • the evaluation conditions include, for example, traffic measures such as traffic regulation due to construction, accidents or disasters, traffic environment changes such as new construction of roads, improvement of intersections, provision of traffic information, and adjustment of traffic signal control.
  • FIG. 18 is a schematic diagram showing an example of traffic volume correction by the traffic simulator 50 according to the second embodiment.
  • the traffic simulator 50 of the second embodiment is a dummy vehicle as a starting traffic volume (traffic volume starting point) every time a predetermined correction cycle (for example, 5 minutes) elapses in link units.
  • the estimated traffic volume is estimated to match the measured traffic volume by releasing a non-dummy vehicle (regular vehicle) or collecting the dummy vehicle or regular vehicle as the end point traffic volume (traffic volume end point). Correct traffic volume.
  • the number of vehicles corresponding to the difference between the actual traffic volume and the estimated traffic volume (corrected number) is discharged through the link 1. That is, in addition to a regular vehicle, a dummy vehicle or a regular vehicle is run to increase the traffic volume.
  • the number of vehicles corresponding to the difference between the actual traffic volume and the estimated traffic volume is collected at the link 2. That is, the traffic volume is reduced by running a dummy vehicle or a part of a regular vehicle on a loopway that is not a simulation target.
  • FIG. 19 is a schematic diagram showing an example of re-release and re-recovery at the time of traffic correction so as not to affect the traffic situation on the downstream side of the link.
  • the traffic simulator 50 when the estimated traffic volume is corrected in order to match the estimated traffic volume with the actual measurement value, the downstream traffic volume changes because the influence reaches the downstream link as it is. For example, in order to match the estimated traffic volume with the actual traffic volume on the upstream link, if the vehicle is released as the starting traffic volume, the traffic volume flowing out from the link will increase, so the traffic volume flowing downstream will increase. It may cause a difference in the estimated traffic volume of the link.
  • the vehicle released to the link is downstream of the link so that the correction term (generation of the start point traffic volume or the end point traffic volume) at each link is not transmitted to the downstream link.
  • the vehicle recovered on the link is re-recovered at the intersection exit downstream of the link. As a result, the influence of the correction is not exerted on the downstream link.
  • the starting traffic volume or the end traffic volume is generated so that the actual and estimated traffic volume are combined for each link, regardless of the traffic situation such as when the traffic volume is low, It is possible to correctly reproduce the current situation, and it is possible to correctly evaluate or predict the traffic situation reflecting the influence of changes in evaluation conditions such as traffic regulations due to construction or traffic accidents.
  • the actual traffic jam is generated in the simulation target link by generating the starting traffic volume or the end traffic volume on the link. Even when neither traffic jams nor simulation traffic occurs, the traffic situation of all links to be simulated can be approximated to the actual traffic situation by generating the starting traffic volume or the end traffic volume.
  • the number of vehicles corresponding to the difference between the measured traffic volume and the estimated traffic volume is released as the starting traffic volume, so that the actual traffic volume value is calculated at the link. Even when the traffic volume is higher than the estimated traffic volume, the reproducibility of the estimated traffic volume can be ensured. By performing the same processing for each link of the road network, not only the links of the road network but also the entire road network The reproducibility of the traffic evaluation index can be improved.
  • the measured traffic volume is less than the estimated traffic volume
  • the reproducibility of the estimated traffic volume can be ensured, and the same processing is performed on each link of the road network, so that not only the links of the road network but also the entire road network The reproducibility of the traffic evaluation index can be improved.
  • the identifying code adding unit 21 adds an identifying code for identifying the vehicle.
  • the generation / disappearance unit 17 preferentially collects a vehicle to which an identification code is given when collecting a dummy vehicle or a vehicle (regular vehicle) that is not a dummy vehicle as an end point traffic volume on the downstream side of the link.
  • the generation / disappearance unit 17 when the start point / end point generation unit 14 generates the end point traffic volume at an arbitrary link, the generation / disappearance unit 17 generates the next traffic volume on the downstream side of the link instead of generating (re-releasing) the next traffic volume.
  • Traffic volume may be generated (re-released) as follows.
  • the generation / disappearance unit 17 has a function as a prohibiting unit for prohibiting re-release of the dummy vehicle when the vehicle (dummy vehicle) to which the identification code is given is preferentially collected. That is, when a dummy vehicle is collected with priority, the collected dummy vehicle is left extinguished.
  • the dummy vehicle is a vehicle that is collected for the purpose of matching the actual measurement with the estimation by the simulator, there is no problem even if the vehicle is recovered and disappears as it is, and unnecessary processing can be omitted. Note that it is not always necessary to assign the identification code of the dummy vehicle, and even if the identification code is not given, if the dummy vehicle is collected, re-release of the dummy vehicle can be prohibited. Further, when a vehicle that is not a dummy vehicle is collected, an equivalent traffic volume is generated on the downstream side without prohibiting re-release. This is because, if a vehicle that is not a dummy vehicle is recovered and disappears as it is, the amount of traffic that reaches the original destination may decrease and may not match the actual vehicle.
  • the generation / annihilation unit 17 is not an essential configuration. That is, the re-collection and re-release of the traffic volume (vehicle) is not essential and can be omitted. When the re-collection and re-release are omitted, the influence on the downstream link due to the corrected number of discharged or recovered can be left to the correction process in the downstream link.
  • the end point information is assigned to the released vehicle according to the ratio of the end point information of one or more vehicles existing on the link. If the ratio of the end point information of the vehicle existing (running) on the link is, for example, the number of the end point information D1 is X1, the end point information D2 is X2, the end point information Dn is the Xn number of vehicles.
  • the end point information D1 is assigned to Y ⁇ X1 / (X1 + X2 +... + Xn) vehicles among the vehicles (Y vehicles) discharged to the link.
  • the end point information D2 is assigned to Y ⁇ X2 / (X1 + X2 +...
  • the traffic volume threshold value can be appropriately set according to, for example, the configuration of the simulator, and may be 0 or a value other than 0.
  • the predetermined traffic volume threshold is 0, a value obtained by dividing the difference between the actual traffic volume and the estimated traffic volume at the link by the actual traffic volume is equal to or greater than the traffic volume difference threshold (for example, 0.2).
  • the vehicle corresponding to the difference between the measured traffic volume and the estimated traffic volume is released.
  • the traffic volume difference threshold when generating not only the starting traffic volume but also the ending traffic volume, the traffic volume difference threshold can be reduced to 0.2 or the like, and the difference between the measured traffic volume and the estimated traffic volume at the link. According to the number of vehicles released.
  • the simulator configuration generates only the starting traffic volume and not the end traffic volume, the vehicle is collected when the number of vehicles corresponding to the difference between the measured traffic volume and the estimated traffic volume is released. In this case, the traffic volume difference threshold is increased to, for example, about 0.8, and the actual traffic volume on the link is increased. The number of vehicles corresponding to the difference between the estimated traffic volume and the vehicle is released.
  • the starting point / end point generation unit 14 determines a predetermined traffic volume threshold (for example, actual traffic volume) from the difference between the actual traffic volume and the estimated traffic volume on the link. If the value obtained by subtracting the value of 20% is positive, the number of vehicles corresponding to the value is released.
  • a predetermined traffic volume threshold for example, actual traffic volume
  • the traffic volume threshold can be set to a small value of about 20% of the actual traffic volume.
  • the simulator configuration generates only the starting traffic volume and not the end traffic volume, the vehicle is collected when the number of vehicles corresponding to the difference between the measured traffic volume and the estimated traffic volume is released.
  • the traffic volume threshold is increased to about 80% of the actual traffic volume and the link is used.
  • the number of vehicles corresponding to the difference between the actually measured traffic volume and the estimated traffic volume and the difference between the predetermined traffic volume thresholds is released.
  • the actual traffic volume and the simulated traffic volume (estimated traffic volume) are calculated by releasing the number of vehicles according to the difference between the measured traffic volume and the estimated traffic volume at the link and the difference of the predetermined traffic volume threshold. Can be matched.
  • the starting point / end point generation unit 14 releases the starting point traffic volume at an arbitrary link, and the actual traffic volume at the link and the link
  • the number of vehicles corresponding to a value obtained by subtracting a predetermined traffic volume threshold value from the difference between the vehicle density, the vehicle speed, and the multiplied value of the predetermined time is discharged. That is, a product value of vehicle density, vehicle speed, and predetermined time is used instead of the estimated traffic volume.
  • the vehicle density is a vehicle density in a section excluding the traffic congestion section when there is a traffic congestion section on the link.
  • the vehicle density may be a value at an arbitrary time point, or may be an average value for a plurality of cycles when the starting traffic is discharged every arbitrary cycle, or the vehicle density in the previous cycle and the current cycle. It may be a weighted average with vehicle density.
  • the weighted average vehicle density is, for example, [previous vehicle density ⁇ previous non-congested section length ⁇ (1 -K) + the number of vehicles existing in the current non-congested section ⁇ k] / [previous non-congested section length ⁇ (1-k) + current non-congested section length ⁇ k].
  • k is a weighting coefficient, for example, 0.2.
  • the predetermined time is, for example, a processing period (correction period) for generating (releasing) the starting traffic volume. That is, the traffic volume can be estimated by multiplying the vehicle density and the vehicle speed during a predetermined time. As a result, even if there is a link that is difficult to be selected as a route during route search, even if the traffic volume on the link decreases or becomes zero, the actual traffic volume and the simulated traffic volume (estimated traffic volume) Can be matched.
  • FIG. 21, FIG. 22 and FIG. 23 are flowcharts showing the processing procedure before setting the evaluation conditions of the traffic simulator 50 of the second embodiment.
  • the traffic simulator 50 determines whether or not a correction cycle (for example, 5 minutes) has elapsed (S111). If the correction cycle has passed (YES in step S111), that is, 5 minutes have passed since the previous correction timing. In this case, the actual traffic jam length of the target link is acquired (S112), and the estimated traffic jam length is calculated (S113).
  • a correction cycle for example, 5 minutes
  • the traffic simulator 50 determines whether or not the actually measured traffic jam length is less than the traffic jam threshold and the estimated traffic jam length is less than the traffic jam threshold (S114). Note that the traffic simulator 50 determines that the actual traffic jam length is less than the traffic jam threshold when the actual traffic jam length cannot be acquired.
  • the traffic simulator 50 acquires the actual traffic volume of the link to correct the traffic volume (S115). ) And the estimated traffic volume is calculated (S116).
  • the traffic simulator 50 calculates the corrected number of vehicles by subtracting the estimated traffic volume from the measured traffic volume (S117), and whether or not the value obtained by dividing the absolute value of the corrected number by the measured traffic volume is equal to or greater than the traffic volume threshold value. Is determined (S118). When the value obtained by dividing the absolute value of the corrected number by the actually measured traffic volume is equal to or greater than the traffic volume threshold (for example, 0.2) (YES in S118), the traffic simulator 50 determines whether the corrected number exceeds 0 (positive). Whether or not) is determined (S119).
  • the traffic simulator 50 releases the corrected number of vehicles to the link (S120), The number of corrections and the correction cycle are recorded (S122).
  • the corrected number does not exceed 0 (negative) (NO in S119), that is, when the actually measured traffic volume is smaller than the estimated traffic volume, the traffic simulator 50 collects the corrected number of vehicles from the link (S121). Then, the process of step S122 is performed.
  • the traffic simulator 50 re-collects the vehicle released to the link at the link downstream intersection (S123), and re-releases the vehicle collected from the link at the link downstream intersection (S124).
  • the traffic simulator 50 generates a vehicle from the starting point (departure point), collects the vehicle at the end point (destination point) (S125), advances the signal lamp color of the signal lamp, for example, by 0.1 second, and follows the movement model of the vehicle.
  • the vehicle is driven (S126), and the simulation cycle (for example, 0.1 second) is terminated.
  • the traffic simulator 50 performs the processing after step S123 without performing the traffic volume correction. If the correction period has not elapsed (NO in step S111), the traffic simulator 50 performs the processing from step S123 onwards without performing correction.
  • the traffic simulator 50 calculates (estimates) an estimation error (difference between the actually measured traffic jam length and the estimated traffic jam length) (S127).
  • the traffic simulator 50 determines whether or not the estimation error is greater than zero (S128). If the estimation error is greater than zero (YES in S128), whether or not (estimation error ⁇ link eigenvalue) is greater than zero. Determination is made (S129).
  • the traffic simulator 50 calculates the corrected number of vehicles (S130), and starts using the calculated corrected number of vehicles (dummy vehicle or regular vehicle) as the starting traffic. The quantity is discharged to the link (S131).
  • the traffic simulator 50 records the number of corrections and the correction cycle (S132), and performs the processing after step S123.
  • the traffic simulator 50 determines whether the estimation error is smaller than zero (S133). If the estimation error is smaller than zero (YES in S133), (estimation) It is determined whether or not (error + link eigenvalue) is smaller than zero (S134).
  • the traffic simulator 50 calculates the corrected number of vehicles (S135) and sets the calculated corrected number of vehicles (dummy vehicle or regular vehicle) as the end point traffic. The amount is collected from the link (S136), and the processing after step S124 is performed.
  • the traffic simulator 50 determines that the estimation error is zero and performs the processes after step S124 without correcting. If (estimated error + link eigenvalue) is not smaller than zero (NO in S134), the traffic simulator 50 performs the processing from step S124 onwards without performing correction.
  • the traffic simulator 50 of the present embodiment Since one purpose of the traffic simulator 50 of the present embodiment is to correct the tendency that the traffic volume in the simulation is smaller than the actual traffic volume, only the starting traffic volume is generated, for example, the above-described figure.
  • the “collection of vehicle from link” (generation of end point traffic) processing in step S121 may be omitted.
  • the traffic volume threshold value in step S118 is slightly increased. By setting the value to (for example, 0.8), it is possible to prevent the estimated traffic volume from becoming too small.
  • the process of step S124 is also abbreviate
  • the processing illustrated in FIGS. 20 to 23 is repeatedly performed every time a simulation cycle (for example, 0.1 second) elapses. Further, it can be omitted without performing the processing of steps S123 and S124.
  • adjustment is performed by correction for discharging or collecting the vehicle at the downstream link of the link.
  • the correction at the link affects the downstream link
  • the correction process is also performed at the downstream link, so that the difference between the estimated traffic length and the actually measured traffic length or the difference between the estimated traffic volume and the actually measured traffic volume can be reduced. it can.
  • the start point / end point generation unit 14 determines the actual traffic volume of the vehicle at the link. Based on the estimated estimated traffic volume, the starting traffic volume or the ending traffic volume is generated at the link every arbitrary period.
  • the traffic volume at the starting point of an arbitrary link corresponds to the number of vehicles discharged from the link (the number of discharged vehicles), and the traffic volume at the end point of an arbitrary link corresponds to the number of vehicles recovered at the link (the number of recovered vehicles).
  • the arbitrary period is a period for obtaining a correction term (correction value) for bringing the current traffic evaluation index close to the actual measurement value. For example, the period is 10 seconds, 50 seconds, 1 minute, 5 minutes, or the like. It can be set accordingly.
  • the congestion length correction is the same as in the first embodiment.
  • the starting point / end point generation unit 14 records the generated starting point traffic volume or end point traffic volume in the storage unit 18 for each period. The starting point traffic volume or the end point traffic volume is recorded for each link. Then, after setting the evaluation condition by the evaluation condition setting unit 19, the starting point / end point generating unit 14 releases the recorded starting point traffic volume at the link and collects the recorded end point traffic amount at the link. . For example, if the starting point traffic volume or the end point traffic volume is generated as 9:00, 9:05, 9:10,... In a cycle of every 5 minutes from the time 9:00 before setting the evaluation condition, After setting the conditions, the starting traffic volume at the same time (cycle) generated before setting the evaluation conditions is released in the relevant period, that is, 9:00, 9:05, 9:10,. The end point traffic volume at the same time (cycle) generated before setting the conditions is collected and a traffic evaluation index is output.
  • the traffic evaluation index is, for example, traffic jam length, travel time, traffic volume, queue length, and the like.
  • the recorded starting point traffic volume is released on the same link at the same cycle, and the recorded end point traffic volume is collected on the same link, so that the correction term stored for each correction cycle at the time of the current reproduction.
  • traffic conditions traffic evaluation index
  • traffic evaluation index traffic volume, congestion length, travel time, carbon dioxide emissions at the time of the current reproduction, and assumed cases (the case where the current conditions and traffic conditions have changed)
  • a traffic evaluation index can be compared before and after setting the evaluation conditions.
  • the processing procedure after setting the evaluation conditions by the traffic simulator 50 of the second embodiment is the same as the processing procedure after setting the evaluation conditions of the traffic simulator 10 of the first embodiment illustrated in FIGS.
  • FIGS. 24 and 25 are flowcharts showing the processing procedure after setting the evaluation conditions of the traffic simulator 50 of the second embodiment.
  • the process illustrated in FIGS. 24 and 25 shows a process after setting an evaluation condition for evaluating a traffic evaluation index including a traffic volume.
  • the traffic simulator 50 sets evaluation conditions (S141), determines whether a correction cycle (for example, 5 minutes) has passed (S142), and if the correction cycle has passed (YES in step S142), that is, When 5 minutes have elapsed from the previous correction timing, the number of corrected units before the evaluation condition setting in the same cycle as the current cycle is acquired (S143).
  • the traffic simulator 50 determines whether the corrected number is the released number or the collected number (S144). If the corrected number is the released number (released in S144), whether or not the corrected number is larger than the releasable number on the link. Is determined (S145).
  • the traffic simulator 50 releases the releasable number of vehicles to the link (S146), and calculates the difference between the corrected number and the releasable number as follows. The number is added to the number of corrected cycles (S147).
  • the traffic simulator 50 re-collects the vehicle released to the link at the link downstream intersection (S149).
  • the traffic simulator 50 generates a vehicle from the starting point (departure point), collects the vehicle at the end point (destination point) (S150), advances the signal lamp color of the signal lamp by, for example, 0.1 second, and follows the movement model of the vehicle.
  • the vehicle is caused to travel (S151), and the simulation cycle (for example, 0.1 second) is terminated.
  • the traffic simulator 50 releases the corrected number of vehicles to the link (S148), and performs the processing from step S149. If the correction cycle has not elapsed (NO in step S142), the traffic simulator 50 performs the processing from step S149 onwards without performing correction.
  • the traffic simulator 50 determines whether the corrected number is larger than the existing number on the link (S152). If the corrected number is larger than the existing number on the link (YES in S152), the traffic simulator 50 collects the number of vehicles existing on the link from the link (S153), and the difference between the corrected number and the existing number on the link. The number is added to the corrected number of the next cycle (S154).
  • the traffic simulator 50 re-releases the vehicle collected from the link at the link downstream intersection (S156), and performs the processing after step S150. If the corrected number is not larger than the existing number on the link (NO in S152), the traffic simulator 50 collects the corrected number of vehicles from the link (S155) and continues the processing from step S156.
  • step S149, S156 The processing illustrated in FIG. 24 and FIG. 25 described above is repeated every time a simulation cycle (for example, 0.1 second) elapses. Moreover, it can also be abbreviate
  • adjustment is performed by correction for discharging or collecting the vehicle at the downstream link of the link. Although the correction at the link affects the downstream link, the correction process is also performed at the downstream link, so that the difference between the estimated traffic jam length and the actual traffic jam length can be reduced.
  • step S123 is omitted in FIG. 21, step S149 in FIG. 24 is omitted, and if step S124 is omitted in FIG. 21, step S156 in FIG. 25 is omitted.
  • the traffic simulator 50 described above can also be realized by using a general-purpose computer 100 equipped with a CPU, a RAM, and the like as illustrated in FIG. That is, as shown in FIGS. 20 to 25, a program code defining each processing procedure is recorded on the recording medium 110, the recording medium 110 is loaded into a RAM provided in the computer 100, and the program code is stored in the CPU.
  • the traffic simulator 50 can be realized on the computer 100. It should be noted that the program code defining each processing procedure as shown in FIGS. 20 to 25 can be downloaded via the network 200 such as the Internet instead of the recording medium 110.
  • the starting point traffic volume recorded before the evaluation condition setting is released at the same link for each same cycle, and the end point traffic recorded before the evaluation condition setting is set.
  • the correction term stored for each correction cycle at the time of current status reproduction is reflected in the traffic simulator by the same means, so the traffic volume, congestion length, travel time, carbon dioxide emission at the time of current status reproduction Compare traffic conditions (traffic evaluation index) such as volume and traffic conditions in the assumed case (current and traffic conditions changed), and compare the traffic evaluation index before and after setting the evaluation conditions Can do.
  • the traffic evaluation device outputs a traffic evaluation index by simulating traveling of one or more links constituting a road network based on individual start / end point information.
  • the traffic volume estimation means for estimating the estimated traffic volume at an arbitrary link
  • the actual traffic volume acquisition means for acquiring the actual traffic volume at the link, the actual traffic volume and the estimated traffic volume at the link
  • generating means for generating the starting point traffic volume (corrected starting traffic volume) that does not depend on the starting and ending point information on the link or the ending traffic volume (corrected arrival traffic volume) that does not depend on the starting and ending point information.
  • a traffic evaluation index is output based on the start traffic volume or the end traffic volume.
  • the estimated traffic volume of the vehicle at an arbitrary link is estimated, and the starting traffic that does not depend on the starting / ending point information at the link based on the measured traffic volume and the estimated traffic volume of the vehicle at the link
  • the starting traffic volume or the end traffic volume is generated so that the actual traffic volume and the estimated traffic volume are matched with each link unit. Regardless, it is possible to correctly reproduce the current state at each link, and it is possible to correctly evaluate or predict the traffic situation reflecting the effect of changes in evaluation conditions such as traffic regulations due to construction or traffic accidents.
  • the traffic evaluation apparatus includes a traffic jam length estimation unit that estimates an estimated traffic jam length at an arbitrary link, an actual traffic jam length acquisition unit that acquires an actual traffic jam length at the link, and the link.
  • the traffic congestion threshold is a unique value unique to each link, and is, for example, the installation interval (for example, 200 m, 250 m, etc.) of the vehicle detector.
  • the estimated traffic jam length of the vehicle at an arbitrary link is estimated, and it is determined whether or not the actually measured traffic jam length at the link and the estimated traffic jam length are less than a predetermined traffic jam threshold.
  • the traffic congestion threshold is a unique value unique to each link, and is, for example, the installation interval (for example, 200 m, 250 m, etc.) of the vehicle detector.
  • the generation unit When it is determined that the actually measured traffic jam length and the estimated traffic jam length are less than the traffic jam threshold, the generation unit generates a starting traffic volume or an end traffic volume on the link. As a result, even if there is no actual traffic jam and no traffic jam on the simulation target link, the traffic situation of all the simulation target links can be determined by generating the starting traffic volume or the end traffic volume. It can be approximated to actual traffic conditions.
  • the generation means selects the number of vehicles corresponding to the difference between the actual traffic volume and the estimated traffic volume as the starting traffic volume. discharge.
  • the generation unit releases the number of vehicles corresponding to the difference between the actual traffic volume and the estimated traffic volume as the starting traffic volume.
  • the reproducibility of the estimated traffic volume can be ensured, and by performing the same processing at each link of the road network, The reproducibility of the traffic evaluation index not only for each link of the road network but also for the entire road network can be improved.
  • the generation means selects the number of vehicles corresponding to the difference between the estimated traffic volume and the measured traffic volume as the end traffic volume. to recover.
  • the generation unit collects a number of vehicles corresponding to the difference between the estimated traffic volume and the actual traffic volume as the end traffic volume.
  • the reproducibility of the estimated traffic volume can be ensured, and the same processing is performed on each link of the road network.
  • the reproducibility of the traffic evaluation index not only for each link of the road network but also for the entire road network can be improved.
  • the traffic evaluation apparatus includes an adding unit that adds an identification code for identifying a vehicle that is generated by the generation unit as a starting traffic volume at an arbitrary link, and the generation unit is located downstream of the link.
  • an adding unit that adds an identification code for identifying a vehicle that is generated by the generation unit as a starting traffic volume at an arbitrary link, and the generation unit is located downstream of the link.
  • an identification code for identifying a vehicle (dummy vehicle) discharged to the link is given as the starting traffic volume, and an identification code is given when collecting the vehicle as the end traffic volume on the downstream side of the link Priority is given to collecting the used vehicles.
  • Assigning means for assigning end point information to the vehicle to be discharged is provided.
  • the end point information when a vehicle is released to the link as the starting traffic volume, the end point information is assigned to the vehicle to be released according to the ratio of the end point information of one or more vehicles existing on the link. If the ratio of the end point information of the vehicle existing (running) on the link is, for example, the number of the end point information D1 is X1, the end point information D2 is X2, the end point information Dn is the Xn number of vehicles.
  • the end point information D1 is assigned to Y ⁇ X1 / (X1 + X2 +... + Xn) vehicles among the vehicles (Y vehicles) discharged to the link.
  • the end point information D2 is assigned to Y ⁇ X2 / (X1 + X2 +...
  • the traffic evaluation device includes a generating unit that generates an equivalent traffic volume on the downstream side of the link when the generating unit generates the end point traffic volume on an arbitrary link.
  • the end point traffic volume when the end point traffic volume is generated on an arbitrary link, the same traffic volume is generated on the downstream side of the link.
  • the end point traffic is generated at any link, that is, when the vehicle is recovered at the recovery point, the traffic at the link decreases, so the inflow traffic downstream decreases, and the traffic situation at the downstream link May not match the actual measurement.
  • the end point traffic volume is generated on an arbitrary link, by generating the same traffic volume on the downstream side of the link, the influence caused by generating the end point traffic volume on the arbitrary link is transferred to the downstream side of the link. Giving can be prevented.
  • the generation unit releases the starting traffic volume at an arbitrary link
  • the difference between the actual traffic volume estimated at the link and the estimated traffic volume and a predetermined traffic volume threshold Release the number of vehicles according to the difference.
  • the generation means releases the starting traffic volume at an arbitrary link, the number of units according to the difference between the measured traffic volume and the estimated traffic volume at the link and the predetermined traffic volume threshold difference.
  • the vehicle is released.
  • the traffic volume threshold value can be appropriately set according to, for example, the configuration of the simulator, and may be 0 or a value other than 0.
  • the predetermined traffic volume threshold is 0, a value obtained by dividing the difference between the actual traffic volume and the estimated traffic volume at the link by the actual traffic volume is equal to or greater than the traffic volume difference threshold (for example, 0.2).
  • the vehicle corresponding to the difference between the measured traffic volume and the estimated traffic volume is released.
  • the traffic volume difference threshold when generating not only the starting traffic volume but also the ending traffic volume, can be reduced to 0.2 or the like, and the difference between the measured traffic volume and the estimated traffic volume at the link. According to the number of vehicles released.
  • the vehicle is collected when the number of vehicles corresponding to the difference between the measured traffic volume and the estimated traffic volume is released.
  • the traffic volume difference threshold is increased to, for example, about 0.8, and the actual traffic volume on the link is increased. The number of vehicles corresponding to the difference between the estimated traffic volume and the vehicle is released.
  • the generating means determines the predetermined traffic threshold (for example, 20% of the actual traffic volume) from the difference between the actual traffic volume and the estimated traffic volume on the link. If the value obtained by subtracting the value is positive, the number of vehicles corresponding to the value is released.
  • the traffic volume threshold can be set to a small value of about 20% of the actual traffic volume.
  • the simulator configuration generates only the starting traffic volume and not the end traffic volume, the vehicle is collected when the number of vehicles corresponding to the difference between the measured traffic volume and the estimated traffic volume is released. In this case, the traffic volume threshold is increased to about 80% of the actual traffic volume and the link is used.
  • the number of vehicles corresponding to the difference between the actually measured traffic volume and the estimated traffic volume and the difference between the predetermined traffic volume thresholds is released.
  • the actual traffic volume and the simulated traffic volume (estimated traffic volume) are calculated by releasing the number of vehicles according to the difference between the measured traffic volume and the estimated traffic volume at the link and the difference of the predetermined traffic volume threshold. Can be matched.
  • the generation unit releases the starting traffic volume at an arbitrary link, the difference between the actually measured traffic volume at the link and the product value of the vehicle density, the vehicle speed, and the predetermined time at the link.
  • the number of vehicles corresponding to the value obtained by subtracting a predetermined traffic volume threshold value from is released. That is, a product value of vehicle density, vehicle speed, and predetermined time is used instead of the estimated traffic volume.
  • the vehicle density is a vehicle density in a section excluding the traffic congestion section when there is a traffic congestion section on the link.
  • the vehicle density may be a value at an arbitrary time point, or may be an average value for a plurality of cycles when the starting traffic is discharged every arbitrary cycle, or the vehicle density in the previous cycle and the current cycle.
  • the predetermined time is, for example, a process period (correction period) for generating (releasing) the starting traffic volume. That is, the traffic volume can be estimated by multiplying the vehicle density and the vehicle speed during a predetermined time. As a result, even if there is a link that is difficult to be selected as a route during route search, even if the traffic volume on the link decreases or becomes zero, the actual traffic volume and the simulated traffic volume (estimated traffic volume) Can be matched.
  • the traffic evaluation apparatus outputs a traffic evaluation index by simulating traveling of one or more links constituting a road network based on individual start / end point information.
  • An identification that identifies the starting traffic volume that does not depend on the starting / ending point information or the end traffic volume that does not depend on the starting / ending point information at any link, and the vehicle that the generating means releases as the starting traffic volume on the link
  • a generating unit that preferentially collects the vehicle to which the identification code is added when collecting the vehicle as the end point traffic on the downstream side of the link.
  • the starting point traffic volume or the end point traffic volume that does not depend on the starting point / ending point information is generated at an arbitrary link.
  • the starting traffic volume and the ending traffic volume can be determined based on the estimated traffic jam length of the vehicle at an arbitrary link and the estimated traffic jam length of the vehicle at the link. For example, when the actual traffic jam length is longer than the estimated traffic jam length, the starting traffic volume (vehicle release) according to the difference between the actual traffic jam length and the estimated traffic jam length is calculated, and the actual traffic jam length is shorter than the estimated traffic jam length. Can calculate the end point traffic volume (recovery of the vehicle) according to the difference between the estimated traffic jam length and the actual traffic jam length.
  • the traffic evaluation device includes a prohibiting unit that prohibits the re-release of the vehicle when the vehicle with the identification code is preferentially collected.
  • a vehicle (dummy vehicle) to which an identification code is assigned when a vehicle (dummy vehicle) to which an identification code is assigned is preferentially collected, re-release of the dummy vehicle is prohibited. That is, when a dummy vehicle is collected with priority, the collected dummy vehicle is left extinguished. Since the dummy vehicle is a vehicle that is collected for the purpose of matching the actual measurement with the estimation by the simulator, there is no problem even if the vehicle is recovered and disappears as it is, and unnecessary processing can be omitted.
  • the traffic evaluation apparatus outputs a traffic evaluation index by simulating traveling of one or a plurality of links constituting a road network based on individual start / end point information.
  • the generation means for generating the starting traffic volume not depending on the starting / ending point information at any link or the end traffic volume not depending on the starting / ending point information, and when the generating means releases the vehicle as the starting traffic volume at the link, Allocation means for allocating end point information to vehicles to be released according to the ratio of each end point information of one or a plurality of vehicles existing in the link.
  • the starting point traffic volume or the end point traffic volume that does not depend on the starting point / ending point information is generated at an arbitrary link.
  • the starting traffic volume and the ending traffic volume can be determined based on the estimated traffic jam length of the vehicle at an arbitrary link and the estimated traffic jam length of the vehicle at the link. For example, when the actual traffic jam length is longer than the estimated traffic jam length, the starting traffic volume (vehicle release) is calculated according to the difference between the actual traffic jam length and the estimated traffic jam length, and the actual traffic jam length is shorter than the estimated traffic jam length. Can calculate the end point traffic volume (recovery of the vehicle) according to the difference between the estimated traffic jam length and the actual traffic jam length.
  • the end point information is assigned to the released vehicle according to the ratio of the end point information of one or more vehicles existing on the link. If the ratio of the end point information of the vehicle existing (running) on the link is, for example, the number of the end point information D1 is X1, the end point information D2 is X2, the end point information Dn is the Xn number of vehicles.
  • the end point information D1 is assigned to Y ⁇ X1 / (X1 + X2 +... + Xn) vehicles among the vehicles (Y vehicles) discharged to the link.
  • the end point information D2 is assigned to Y ⁇ X2 / (X1 + X2 +...
  • the reproducibility of the traffic evaluation index can be improved regardless of the traffic situation.
  • the length of traffic congestion or the traffic volume is used as the traffic evaluation index.
  • the present invention is not limited to this, and the queue length can also be used as the traffic evaluation index.
  • FIG. 26 is a schematic diagram showing an example of generated traffic volume and extinguished traffic volume based on a given OD traffic volume.
  • two links 1 and 2 are illustrated.
  • the node which shows an intersection has illustrated the right turn direction link whose outflow direction is right turn seeing from the links 1 and 2.
  • the traffic simulator calculates the generated traffic volume and the disappeared traffic volume at each link in the simulation area S based on a given OD traffic volume.
  • the generated traffic volume exists upstream of the link 1 and the extinct traffic volume exists downstream of the link 1. Note that traffic may be generated or disappeared in the middle of the link 1.
  • inflow traffic and outflow traffic from other links exist.
  • the traffic simulator (traffic evaluation device) according to Embodiment 3 presumes a left-handed road like Japan, estimates the right turn queue at any link, and the state of the signal light color at the intersection downstream of the link The reproducibility of the traffic evaluation index is improved by collecting the vehicle waiting for the right turn from the link in accordance with the (signal switching state). For roads with right-hand traffic, such as the United States, a left turn queue at an arbitrary link is estimated, and a left turn is waited from the link according to the signal light color state (signal switching state) at the intersection downstream of the link. What is necessary is just to collect
  • FIG. 27 is a block diagram illustrating a configuration example of the traffic simulator 60 according to the third embodiment.
  • the difference from the first and second embodiments is that a queue length calculation unit 30, a signal information determination unit 31, a vehicle collection unit 32, and a re-release unit 33 are provided.
  • symbol is attached
  • recovery part 32 is corresponded in the function which produces
  • the traffic simulator 60 as input data, for example, vehicle travel speed, acceleration / deceleration characteristics, vehicle travel start / end point information, traffic volume, actual traffic congestion length, actual traffic volume, signal lights at each intersection where the links intersect. Data such as signal information (signal control information) is given.
  • the traffic simulator 60 acquires signal information of an intersection on the downstream side of an arbitrary link for every arbitrary period.
  • the arbitrary period is a period for obtaining a correction term (correction value) for bringing the current traffic evaluation index close to the actual measurement value.
  • the period is 10 seconds, 50 seconds, 1 minute, 5 minutes, or the like. It can be set accordingly.
  • the correction cycle is 10 seconds, but is not limited to this.
  • FIG. 28 is a schematic diagram showing the blockage of the straight lane due to the concentration of right turn vehicles.
  • main roads for example, prefectural roads
  • R1 and R2 which are simulation targets
  • intersection C3 In addition, municipal roads R101 and R102 which are not targeted for simulation intersect the main road R1 at intersections C2 and C1, respectively.
  • the road configuration in FIG. 28 is an example.
  • Vehicles that actually travel on the main road R1 in the direction of the intersection C3 can turn right toward the municipal roads R101 and R102 at the intersection C1 or the intersection C2, respectively. Therefore, vehicles that turn right at the intersections C1 and C2 (traffic volume) ) Exists to some extent.
  • the municipal roads R101 and R102 are regarded as being out of scope and not present. For this reason, a vehicle that makes a right turn at the intersections C1 and C2 cannot actually turn right in the simulation. Therefore, a vehicle that makes a right turn at the intersection C3 (indicated by an arrow A) in the simulation is concentrated, and vehicles that make a right turn at the intersection C3 are concentrated. Thus, the straight lane is blocked by the right turn vehicle.
  • the traffic simulator 60 of the third embodiment prevents the blockage of such a straight lane and correctly reproduces the traffic situation (traffic evaluation index).
  • the queue length calculation unit 30 estimates the queue length in the direction intersecting with the oncoming straight vehicle at the downstream intersection of an arbitrary link for each arbitrary correction period.
  • the direction intersecting with the oncoming straight vehicle is, for example, a right turn direction in left-hand traffic as in Japan, and a left turn direction in right-hand traffic as in the United States. In the present embodiment, it is assumed that the vehicle is on the left side as in Japan, and the direction intersecting with the oncoming vehicle is the right turn direction.
  • parameters such as the vehicle traveling speed, acceleration / deceleration characteristics, signal display at intersections of both ends of the link, link length, and the like are stored in the storage unit 18 and the parameters are used. Can do.
  • the signal information determination unit 31 functions as a determination unit that determines whether or not the signal for the link at an arbitrary link downstream intersection is red in the current cycle and blue in the latest cycle. Have The signal information determination unit 31 determines whether or not the signal at the intersection for the vehicle traveling on the link toward the intersection satisfies the condition that the current cycle is red and the latest cycle is blue. To do.
  • the current cycle is a current correction cycle when obtaining a correction term (corresponding to the number of vehicles collected by the vehicle collection unit 17), and the latest cycle is a correction cycle immediately before the current correction cycle. .
  • the correction cycle is 10 seconds
  • the latest cycle is the time 10 seconds before the current time.
  • the condition that the current cycle is red and the latest cycle is blue is a condition for determining the switching of the signal, and it is determined whether or not the blue signal (blue arrow) is switched to the red signal. Yes.
  • the condition is not satisfied is, for example, when the correction cycle is set to 10 seconds, the time point 10 seconds before the current time point and the current time point are both red signals, and when the red signal is switched to the blue signal, whichever This is also the case for a green light.
  • the case where the condition is satisfied is, for example, a case where the blue (blue arrow) signal is switched to the red signal at a time point 10 seconds before and the current time point when the correction cycle is 10 seconds. .
  • the vehicle collection unit 32 collects a number of vehicles corresponding to a length obtained by subtracting a predetermined length from the estimated queue length from the link.
  • the predetermined length is a length from the position of the intersection (stop viewing position) and corresponds to a position where the vehicle is collected. That is, the remaining vehicle obtained by subtracting the vehicle corresponding to the predetermined length from the vehicle waiting for the right turn is collected from the right turn lane in the simulation so that the straight lane is not blocked.
  • FIG. 29 is a schematic diagram showing an example of the vicinity of an intersection having a right turn lane.
  • a right turn lane having a length L1 is provided between the stop line at the intersection and the point S1.
  • the above-mentioned predetermined length is the distance from the stop line of the position (point) S2 where the vehicle is collected, and the predetermined length is L2.
  • the predetermined length L2 is, for example, a length corresponding to the maximum value of the number of vehicles that reach the right turn lane during the correction period (for example, 10 seconds) from the length L1 of the right turn lane (outward lane).
  • the length can be obtained by subtracting. That is, L1-L2 is a length corresponding to the maximum value of the number of vehicles that reach the right turn lane during the correction period (for example, 60 seconds).
  • the length L1 of the right-turn exclusive lane is 100 m (equivalent to 12 vehicles when divided by an average vehicle head distance of 8 m), and the maximum value of right-turn vehicles that reach the right-turn exclusive lane within 10 seconds of the correction cycle is 3 (
  • the predetermined length L2 is 76 m (100-24), which corresponds to the length of about nine vehicles.
  • the number of vehicles waiting for a right turn calculated by the queue length calculation unit 15 is 15 per cycle (correction period) when the current state is reproduced in the simulation (before the evaluation conditions are set). It is assumed that the determination result in the signal information determination unit 16 does not satisfy the above-described condition. In this case, since the vehicle stopped upstream from the point S2 (predetermined length L2 from the stop line) of the right-turn exclusive lane is collected, among the 15 vehicles waiting for the right turn, the first one to the ninth one Until then, the vehicle stops in the right turn lane and the 10th to 15th vehicles are collected from the link.
  • the section (L1-L2) in FIG. 29 has a length corresponding to the maximum number of vehicles that reach the right-turn exclusive lane during the correction cycle. Therefore, during the correction cycle, the right-turn vehicle from the right-turn exclusive lane Overflow can be prevented, and a straight lane is not blocked by a right turn vehicle.
  • FIG. 30 is a schematic diagram showing an example of a dummy lane when a vehicle is collected from a link.
  • a dummy link temporary link that connects the link and the link in the outflow direction is provided.
  • the dummy link is a virtual lane that can collect the vehicle regardless of the signal light color of the intersection. By collecting the vehicle through the dummy link, the vehicle can be collected at the link to the desired intersection on the simulation.
  • the vehicle collection unit 32 collects a number of vehicles corresponding to the estimated queue length when the determination result in the signal information determination unit 31 satisfies the above-described conditions.
  • the case where the condition is satisfied is, for example, a case where the blue (blue arrow) signal is switched to the red signal at the time point 10 seconds before and the current time point when the correction cycle is 10 seconds.
  • the signal switching point At the time when the signal changes from blue to red, for example, it is not necessary to collect all the vehicles. In this case, the signal information determination unit 31 may not be provided.
  • the re-release unit 33 re-releases an equivalent vehicle on the downstream side of the link.
  • the traffic volume at that link decreases, so the downstream traffic volume decreases, and the difference between the estimated value and actual measurement value of the traffic evaluation index at the downstream link May occur.
  • an equivalent vehicle is re-released at the downstream side of the link to prevent the downstream side of the link from being affected by the recovery of the vehicle at the link. Can do.
  • the end point (original extinction point) of the vehicle collected at the time of collection is stored, and the re-release
  • stored in each vehicle at the time can also be given. Note that the end point may be given by other methods.
  • the vehicle collection unit 32 collects a vehicle (a vehicle waiting for a right turn) from the arbitrary link, it is possible to prevent the re-release unit 33 from releasing the equivalent vehicle downstream from the link.
  • the re-release part 33 is not an essential configuration. That is, the re-release of the vehicle is not essential and can be omitted. When the re-release is omitted, the influence on the downstream link by collecting the vehicle can be left to the correction process at the downstream link.
  • FIG. 31 is a flowchart showing a processing procedure when the traffic simulator 60 of the third embodiment is reproduced.
  • the current state reproduction is a simulation before setting evaluation conditions such as a traffic environment.
  • the traffic simulator 60 determines whether or not a correction period (for example, 10 seconds) has elapsed (S211). If the correction period has elapsed (YES in S211), that is, 10 seconds have elapsed since the previous correction timing. In this case, signal information is acquired (S212), and the right turn queue length is calculated (S213).
  • a correction period for example, 10 seconds
  • the traffic simulator 60 determines whether or not the signal in the current correction cycle is red and the signal in the latest correction cycle is blue (S214), and if the condition is satisfied (YES in S214), All the vehicles on the right turn lane (right turn vehicles) are collected (S215), and the process of step S217 described later is performed.
  • the traffic simulator 60 collects a vehicle (right turn vehicle) that is stopped on the right turn lane at a position (upstream) above the threshold (predetermined length) from the stop line ( S216).
  • the traffic simulator 60 records the number of collected vehicles together with the time in the storage unit 18 (S217), and re-releases the vehicles collected from the right turn lane in the right turn direction at the link downstream intersection (S218).
  • the traffic simulator 60 generates a vehicle from the start point (departure point), collects the vehicle at the end point (destination point) (S219), advances the signal light color of the signal light device by, for example, 0.1 second, and follows the movement model of the vehicle.
  • the vehicle is driven (S220), and the simulation cycle (for example, 0.1 second) is terminated.
  • the traffic simulator 60 performs the processing from step S218 onward.
  • FIG. 32 is a flowchart showing a processing procedure after setting the evaluation conditions of the traffic simulator 60 of the third embodiment.
  • the traffic simulator 60 sets an evaluation condition (S231), determines whether a correction cycle (for example, 10 seconds) has passed (S232), and if the correction cycle has passed (YES in S232), that is, the previous time When 10 seconds have elapsed from the correction timing, the number of corrected units (recovered units) before the evaluation condition setting in the same cycle as the current cycle is acquired (S233).
  • a correction cycle for example, 10 seconds
  • the traffic simulator 60 determines whether or not the corrected number is larger (larger) than the existing number on the link (S234). If the corrected number is larger than the existing number on the link (YES in S234), it exists on the link. The number of vehicles to be collected is collected from the link (S235), and the difference between the corrected number and the number existing on the link is added to the corrected number in the next correction cycle (S236).
  • the traffic simulator 60 collects the corrected number of vehicles from the link (S237).
  • the traffic simulator 60 re-releases the vehicle collected from the right turn lane in the right turn direction at the link downstream intersection (S238).
  • the traffic simulator 60 generates a vehicle from the starting point (departure point), collects the vehicle at the end point (destination point) (S239), advances the signal lamp color of the signal lamp by, for example, 0.1 second, and follows the movement model of the vehicle.
  • the vehicle is driven (S240), and the simulation cycle (for example, 0.1 second) is terminated. If the correction period has not elapsed (NO in S232), the traffic simulator 10 performs the processing after step S238.
  • step S218 is omitted in FIG. 31, step S238 in FIG. 32 is omitted.
  • the traffic simulator 60 described above can also be realized by using a general-purpose computer 100 including a CPU, a RAM, and the like as illustrated in FIG. That is, as shown in FIG. 31 and FIG. 32, a program code defining each processing procedure is recorded on the recording medium 110, the recording medium 110 is loaded into a RAM provided in the computer 100, and the program code is stored in the CPU.
  • the traffic simulator 60 can be realized on the computer 100. It should be noted that the program code defining each processing procedure as shown in FIGS. 31 and 32 can be downloaded via the network 200 such as the Internet instead of the recording medium 110.
  • the traffic simulator 60 of the present embodiment can improve the reproducibility of the traffic evaluation index even when there is a road that is not a simulation target. By improving the reproducibility of the traffic evaluation index, it is possible to correctly evaluate the traffic evaluation index after setting the evaluation conditions.
  • the correction items stored for each correction period during the current reproduction are the same. Because it is reflected in the traffic simulator, the traffic situation (traffic evaluation index) such as the traffic volume, congestion length, travel time, carbon dioxide emissions at the time of the current reproduction and the assumed case (the case where the current situation and traffic conditions have changed) And the traffic evaluation index can be compared before and after setting the evaluation condition.
  • traffic evaluation index traffic evaluation index
  • Embodiment 3 it is assumed that the vehicle is on the left side as in Japan, the direction intersecting with the oncoming straight vehicle is the right turn direction, and the collection of the right turn vehicle has been described.
  • the present invention is not limited to this.
  • the direction intersecting with the oncoming straight vehicle is the left turn direction
  • the third embodiment can be similarly applied to the left turn vehicle.
  • vehicles are collected for vehicles that turn in a direction crossing with oncoming straight vehicles, but for vehicles that turn in other directions, that is, on left-handed roads like Japan, You may collect vehicles for both. This is because, when the number of vehicles waiting for a left turn increases on a left-handed road like Japan, it is possible to prevent a straight vehicle following the vehicle waiting for a left turn from smoothly passing through the intersection.
  • the traffic evaluation device outputs a traffic evaluation index by simulating traveling of one or more links constituting a road network based on individual start / end point information.
  • a signal information acquisition means for acquiring signal information of an intersection on the downstream side of an arbitrary link every arbitrary period, and a queue for estimating a queue length in a direction intersecting with an opposite straight vehicle at the intersection of the period.
  • the length estimation means, the determination means for determining whether or not the signal for the link at the intersection is red in the current period and blue in the latest period, and the condition is satisfied by the determination means
  • the vehicle includes a collection unit that collects a number of vehicles corresponding to a length obtained by subtracting a predetermined length from the queue length estimated by the queue length estimation unit from the link.
  • the signal information of the intersection on the downstream side of an arbitrary link is acquired for each arbitrary period.
  • the arbitrary period is a period for obtaining a correction term (correction value) for bringing the current traffic evaluation index close to the actual measurement value.
  • the period is 10 seconds, 50 seconds, 1 minute, 5 minutes, or the like. It can be set accordingly.
  • the direction intersecting with the oncoming straight vehicle is, for example, a right turn direction in left-hand traffic as in Japan, and a left turn direction in right-hand traffic as in the United States. In the following description, it is assumed that the vehicle is on the left side as in Japan, and the direction intersecting with the oncoming vehicle is the right turn direction.
  • the signal for the link at the intersection ie, the signal at the intersection for vehicles traveling on the link towards the intersection
  • the current cycle is the current correction cycle when the correction term is obtained, and the latest cycle is the correction cycle immediately before the current correction cycle.
  • the correction cycle is 10 seconds
  • the latest cycle is the time 10 seconds before the current time.
  • the condition that the current cycle is red and the latest cycle is blue is a condition for determining the switching of the signal, and it is determined whether or not the blue signal (blue arrow) is switched to the red signal. Yes.
  • the case where the condition is not satisfied is, for example, when the correction cycle is set to 10 seconds, the time point 10 seconds before the current time point and the current time point are both red signals, and when the red signal is switched to the blue signal, whichever This is also the case for a green light.
  • the condition is not satisfied, the number of vehicles corresponding to the length obtained by subtracting the predetermined length from the estimated queue length is collected from the link.
  • the predetermined length is a length from the position of the intersection (stop viewing position) and corresponds to a position where the vehicle is collected. That is, the remaining vehicle obtained by subtracting the vehicle corresponding to the predetermined length from the vehicle waiting for the right turn is collected from the right turn lane in the simulation so that the straight lane is not blocked.
  • the recovery means determines that the condition is satisfied by the determination means, the number of vehicles corresponding to the queue length estimated by the queue length estimation means is recovered.
  • the condition when the condition is satisfied, the number of vehicles corresponding to the queue length estimated in advance is collected.
  • the case where the condition is satisfied is, for example, a case where the blue (blue arrow) signal is switched to the red signal at the time point 10 seconds before and the current time point when the correction cycle is 10 seconds. If this condition is met, all the vehicles waiting for a right turn while traveling from the green light to the red light will travel in the desired direction of exit from the intersection. It is assumed that the green signal time is appropriate (for example, right turn sensitive control is appropriate).
  • the evaluation conditions such as traffic environment, it is possible to reproduce the state where the signal control is appropriate in the simulation, and in the simulation after setting the evaluation conditions due to changes in the traffic environment, etc. Can be reproduced faithfully.
  • the traffic evaluation apparatus includes a provisional link that connects the link and the link in the outflow direction, and the collection unit collects the vehicle through the provisional link.
  • a provisional link is provided to connect the link and the link in the outflow direction.
  • the provisional link is a dummy lane that is a virtual lane that can collect vehicles regardless of the signal light color. By collecting the vehicle through the provisional link, the vehicle can be collected at the link to the desired intersection on the simulation.
  • the predetermined length is obtained by subtracting the length corresponding to the maximum number of vehicles reaching the dedicated lane during the cycle from the length of the dedicated lane for the outflow direction. Length.
  • the predetermined length is a length obtained by subtracting a length corresponding to the maximum number of vehicles that reach the dedicated lane during the cycle from the length of the dedicated lane for the outflow direction.
  • the exclusive lane is a right turn exclusive lane
  • the length of the right turn exclusive lane is L1
  • the predetermined length (the length from the position of the intersection and corresponding to the position where the vehicle is collected) is L2
  • L1- L2 is a length corresponding to the maximum number of vehicles that reach the right turn dedicated lane during the correction period (for example, 10 seconds).
  • the position where the vehicle is collected (predetermined length L2 from the intersection) is the value obtained by subtracting the length corresponding to the maximum number of vehicles reaching the right turn lane during the correction period from the length of the right turn lane from L1. By doing so, it is possible to prevent the vehicle from overflowing from the right turn exclusive lane.
  • the traffic evaluation apparatus outputs a traffic evaluation index by simulating traveling of one or more links constituting a road network based on individual start / end point information.
  • a signal information acquisition means for acquiring signal information of an intersection on the downstream side of an arbitrary link every arbitrary period, and a queue for estimating a queue length in a direction intersecting with an opposite straight vehicle at the intersection of the period.
  • the length estimation means, the determination means for determining whether or not the signal for the link at the intersection is red in the current period and blue in the latest period, and the condition is satisfied by the determination means Then, when it is determined, a recovery unit that recovers the number of vehicles corresponding to the queue length estimated by the queue length estimation unit from the link is provided.
  • the target route is limited in this way, for example, on a left-handed road such as Japan
  • the prefectural road is the target of the simulation, in fact, turn right from the prefectural road.
  • the vehicle (traffic volume) that makes a right turn at an intersection where roads more than prefectural roads to be simulated intersect will be greater than the actual amount.
  • the number of vehicles waiting for a right turn on a left-hand road like Japan increases in front of the intersection, the queue length of the vehicle waiting for a right turn increases, and the vehicle waiting for a right turn extends beyond the straight lane.
  • the straight lane is frequently blocked.
  • the amount of processing at the intersection will decrease, traffic congestion will increase rapidly, and eventually the gridlock phenomenon will occur where most of the road network on the simulation will be congested. appear.
  • On the right-hand road like the United States a similar problem occurs with vehicles waiting to turn left.
  • the reproducibility of the traffic evaluation index can be improved even when a road that is not a simulation target exists.
  • the generated traffic volume and the extinct traffic volume at any link calculated by the traffic volume calculation unit 12 according to the OD traffic volume (OD table) correspond to vehicles that are not dummy vehicles.
  • a vehicle that is released or collected as a correction term is a dummy vehicle or a vehicle that is not a dummy vehicle. Since the frequency or the number of dummy vehicles to be released or collected is preferably as small as possible, when collecting vehicles or releasing vehicles, the following can be performed in the first to third embodiments. .
  • FIG. 33 is an explanatory view showing an example of a vehicle on a link. As shown in FIG. 33, it is assumed that, for example, four non-dummy vehicles (with patterns) and two dummy vehicles (without patterns) are traveling on the link 1.
  • the links 1 and 2 have dummy links in the form of being attached to each other.
  • a dummy link (also referred to as a dummy link) is a virtual link provided for each link.
  • a dummy link is provided to handle inflow and outflow of vehicles to and from a road such as a narrow street not represented in the simulation. ing.
  • the dummy link is not displayed as a virtual link on the screen of the traffic simulator, but is a space for waiting a vehicle (dummy vehicle or a vehicle that is not a dummy vehicle) collected from the link in the simulation.
  • the simulation result and the actual measurement value are obtained by moving the vehicle of the difference between the simulation result and the actual measurement value to the dummy link, that is, the dummy link that is a road not represented in the simulation. Correct to match.
  • the generation and extinguishing unit 17 has a function as a prohibition unit that prohibits re-release of the dummy vehicle when the vehicle (dummy vehicle) to which the identification code is given is preferentially collected.
  • the collected dummy vehicle can be left extinct. Specific examples will be described below.
  • FIG. 34 is an explanatory diagram showing an example of a method for preferentially collecting dummy vehicles.
  • the example of FIG. 34 shows an example of preferentially collecting dummy vehicles when three vehicles are collected from the vehicles on the link 1 illustrated in FIG.
  • the dummy vehicles are prioritized and all the two dummy vehicles are recovered, and one insufficient recovery vehicle is recovered from a vehicle that is not a dummy vehicle.
  • the subsequent vehicle is stuffed forward in order to correctly express the traffic jam length and the like.
  • a vehicle that is not a dummy vehicle is moved to a dummy link adjacent to link 1 to be re-released downstream of link 1 (for example, link 2).
  • a vehicle that is not the dummy vehicle waits for re-release on the downstream side of the link 1.
  • the dummy vehicle is extinguished without moving to the dummy link adjacent to the link 1.
  • the dummy vehicle will not be released again.
  • FIG. 35 is an explanatory diagram showing an example of a method of collecting from a vehicle at the end of a traffic jam.
  • the example of FIG. 35 shows an example of recovering the vehicle from the end of the traffic jam when recovering three vehicles from the vehicle on the link 1 illustrated in FIG.
  • three vehicles are collected from the end of the traffic jam: a vehicle that is not a dummy vehicle, a dummy vehicle, and a vehicle that is not a dummy vehicle. In this case, as a result, two non-dummy vehicles and one dummy vehicle are collected.
  • the vehicle When collecting the vehicle, if the collected vehicle is a vehicle that is not a dummy vehicle, the vehicle moves to a dummy link and waits for re-release on the downstream side of the link 1. In the example of FIG. 35, two non-dummy vehicles are moved to the dummy link. Further, when the collected vehicle is a dummy vehicle, the vehicle is eliminated without moving to the dummy link. In the example of FIG. 35, one dummy vehicle is extinguished without being re-released. When collecting the vehicle from the end of the traffic jam, it is not necessary to pack the vehicle forward.
  • the vehicle collection method includes a method of collecting from the head of the traffic jam in addition to a method of collecting from the traffic jam end. For example, when collecting a vehicle, first, the dummy vehicle is first collected, and even if all the dummy vehicles are collected, it is still necessary to collect the vehicle. to recover. In the case of collecting from the head vehicle, there is a space ahead in front of the succeeding vehicle, and therefore processing to pack the succeeding vehicle forward is necessary. If a vehicle is collected from the end of the traffic jam and the collected vehicle is not a dummy vehicle, it will flow through the dummy link to the downstream of the link before the vehicle on the link. If a situation occurs, but the overtaking condition is acceptable, the process of closing the vehicle forward becomes unnecessary by collecting from the end of the traffic jam.
  • the vehicle When releasing a vehicle, the vehicle is collected from the link by the most recent (previous) correction cycle, and if there is a vehicle that has not been released again at the link downstream intersection in the current correction cycle, the vehicle is given priority. Release on the link. That is, when the vehicle is released to the link in the correction term, if there is a vehicle on the dummy link, the vehicle on the dummy link is returned to the link (main line) and then (number to be released-returned from the dummy link) Number) as a dummy vehicle.
  • the required number of vehicles to be released (starting traffic at the link downstream intersection) is 10, and vehicles that have not been released at the downstream intersection (among those vehicles that are re-released at the downstream intersection with the end traffic) If the number of vehicles that are not clear is seven, seven are returned on the link (release), and three are released as dummy vehicles.
  • the maximum discharge amount is the total number of vehicles flowing out from the regular link and re-release vehicles from the dummy link. Since the downstream load increases when 2500 or more vehicles flow into the downstream link, the maximum discharge amount is set as the upper limit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

 評価条件設定前後において交通評価指標を比較することができる交通評価装置、コンピュータプログラム及び交通評価方法を提供する。 交通シミュレータ10は、車両の移動モデルを表す計算式に基づいて演算を行うシミュレータエンジン部11、所与のOD交通量に基づいて発生交通量及び消滅交通量を算出する交通量算出部12、算出された交通量に基づいて各リンクでの推定渋滞長を算出(推定)する推定渋滞長算出部13、推定渋滞長と実測渋滞長との差分に基づいて推定渋滞長を調整するために起点交通量及び終点交通量を生成する起点終点生成部14、所定の情報を記憶する記憶部18、交通評価指標を評価するための評価条件を設定する評価条件設定部19などを備える。

Description

交通評価装置、コンピュータプログラム及び交通評価方法
 本発明は、複数の模擬車両の模擬走行により交通評価指標を出力する交通評価装置、該交通評価装置を実現するためのコンピュータプログラム及び前記交通評価装置による交通評価方法に関する。
 交通規制等による影響を事前に評価する手段として交通シミュレータへの期待が高まっており、様々な技術開発が行われている。このような交通シミュレータは、入力データとして、車両の走行の起終点情報を含む交通量(例えば、OD交通量)、車両の走行速度、加速減速特性などの交通情報が所与として取り扱われている。OD交通量は、車両の起点(出発地)と終点(目的地)の間の交通量を求めたもので、例えば、国又は自治体が定期的に実施する統計調査の結果得られた調査統計データなどが用いられる。
 交通シミュレータの目的は、例えば、工事、事故又は災害などによる交通規制、道路の新設、交差点の改良などの交通環境変化後の影響を事前に評価又は推定することである。そして、交通シミュレータは、予め車両の移動モデル、すなわち、車両の挙動を模した計算式を内包しており、上述の入力データを当該計算式に当てはめることにより、単独交差点、路線及び市街地などの道路網における渋滞長、旅行時間などの交通評価指標、あるいは排ガスに含まれる二酸化炭素などの環境指標を出力する。この場合、道路網は、複数のリンク(例えば、交差点と交差点とを繋ぐ道路で上り及び下りの2つの方向を有する)とリンク同士が交差する点であるノード(例えば、交差点)などで構成される。
 具体的には、交通シミュレータは、入力されたOD交通量をもとに、道路網の各リンクでの発生交通量(リンクに流入する交通量)及び消滅交通量(リンクから流出する交通量)を求める。そして、交通シミュレータは、各リンクにおいて発生交通量に相当する台数の車両を発生させるとともに、消滅交通量に相当する台数の車両を消滅させて渋滞長などを求める。
 また、特定の区間について、区間の両端に設けた車両感知器から得られる特定車両の旅行時間と時系列に得られる車両感知器データを用いて、時間軸上のデータを空間軸上のデータに投影することにより、渋滞長を求める方法が開示されている(特許文献1参照)。
特開平08-161686号公報
 実際の道路網を想定して交通評価指標を再現する場合、従来の交通シミュレータにあっては、車両の走行速度、加速減速特性及びOD交通量などの入力データは、実際の交通情報と一致するように設定されるべきである。しかし、個々の車両の挙動及びOD交通量などを、例えば、道路網のリンク毎に詳細に計測して実際の交通情報と一致させることは困難であり、両者には差異が存在する。このため、交通シミュレータで交通評価指標を求める場合、シミュレーション時間の経過とともに当該差異が累積する結果、実際の交通評価指標を再現することができないという問題がある。
 このため、例えば、交通シミュレータで交通評価指標として渋滞長を求めた場合に、求めた渋滞長が実測値と合わないときには、車両の走行速度や交差点での流出率などのパラメータを調整することで、再現性が得られるようにしていた。しかし、道路網の一部の路線(リンク)で再現性が得られたとしても、車両の走行速度や交差点の流出率などを調整した場合、下流の路線(リンク)への到着車両台数などの交通状況が変化するため、更に下流の調整が必要となる。また、道路網全体では、交差点において車両の右折又は左折があるため、調整による影響は交差点で交差する他の路線にも影響を与える。このため、対象とする道路網全体では、求めた渋滞長が実測値と合わずに再現性に欠けるという課題があった。特に、交通シミュレータによる評価の目的が、現状の交通評価指標(例えば、交通量、渋滞長、待ち行列長又は旅行時間など)と評価条件設定後の交通評価指標とを比較する場合には、交通シミュレータによる現状の交通評価指標の再現性は、比較対象の元になる重要な要素であるため、交通シミュレータでの再現性を向上させることが要望されていた。
 一方で、現状の交通評価指標を実測値に近づけるための補正項(補正値)を、交通シミュレータ上で求めることができたとしても、従来の交通シミュレータにあっては、工事又は交通事故などに起因した交通規制が発生した場合、すなわち現状と交通条件が異なる評価条件設定後の場合に当該補正項をどのように適用するかについては検討されていない。
 本発明は、斯かる事情に鑑みてなされたものであり、評価条件設定前後において交通評価指標を比較することができる交通評価装置、該交通評価装置を実現するためのコンピュータプログラム及び前記交通評価装置による交通評価方法を提供することを目的とする。
 第1発明に係る交通評価装置は、複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力する交通評価装置において、渋滞長を含む交通評価指標を評価するための評価条件を設定する評価条件設定手段と、任意のリンクでの車両の推定渋滞長を推定する渋滞長推定手段と、前記評価条件設定手段で評価条件を設定する前に、任意の周期毎の前記リンクでの車両の実測渋滞長及び前記渋滞長推定手段で推定した推定渋滞長に基づいて、前記周期毎に前記リンクで前記起終点情報に依拠しない補正出発交通量又は該起終点情報に依拠しない補正到着交通量を生成する生成手段と、該生成手段で生成した補正出発交通量又は補正到着交通量を前記周期毎に記録する記録手段と、前記評価条件設定手段で評価条件を設定した後に、前記周期毎に、前記記録手段で記録した補正出発交通量を前記リンクで放出し、前記記録手段で記録した補正到着交通量を前記リンクで回収する放出回収手段とを備えることを特徴とする。
 第2発明に係る交通評価装置は、複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力する交通評価装置において、交通量を含む交通評価指標を評価するための評価条件を設定する評価条件設定手段と、任意のリンクでの推定交通量を推定する交通量推定手段と、前記評価条件設定手段で評価条件を設定する前に、任意の周期毎の前記リンクでの車両の実測交通量及び前記交通量推定手段で推定した推定交通量に基づいて、前記周期毎に前記リンクで前記起終点情報に依拠しない補正出発交通量又は該起終点情報に依拠しない補正到着交通量を生成する生成手段と、該生成手段で生成した補正出発交通量又は補正到着交通量を前記周期毎に記録する記録手段と、前記評価条件設定手段で評価条件を設定した後に、前記周期毎に、前記記録手段で記録した補正出発交通量を前記リンクで放出し、前記記録手段で記録した補正到着交通量を前記リンクで回収する放出回収手段とを備えることを特徴とする。
 第3発明に係る交通評価装置は、第1発明又は第2発明において、前記評価条件設定手段で評価条件を設定した後に、前記放出回収手段により任意のリンクで補正到着交通量を任意の周期で回収する場合、回収する補正到着交通量と該リンクでの交通量とを比較する第1比較手段を備え、前記放出回収手段は、回収する補正到着交通量が前記リンクでの交通量よりも多い場合、該リンクでの交通量を補正到着交通量として回収し、前記補正到着交通量と前記リンクでの交通量との差分交通量を前記周期の次の周期の補正到着交通量に加算するように構成してあることを特徴とする。
 第4発明に係る交通評価装置は、第1発明乃至第3発明のいずれか1つにおいて、前記評価条件設定手段で評価条件を設定した後に、前記放出回収手段により任意のリンクで補正出発交通量を任意の周期で放出する場合、放出する補正出発交通量と該リンクに放出可能な交通量とを比較する第2比較手段を備え、前記放出回収手段は、放出する補正出発交通量が前記リンクに放出可能な交通量よりも多い場合、該放出可能な交通量を補正出発交通量として放出し、放出した補正出発交通量と前記リンクに放出可能な交通量との差分交通量を前記周期の次の周期の補正出発交通量に加算するように構成してあることを特徴とする。
 第5発明に係る交通評価装置は、第4発明において、前記リンクの放出可能な交通量を、該リンクに存在可能な車両台数と該リンクに存在する車両台数との差分により算出する放出可能交通量算出手段を備えることを特徴とする。
 第6発明に係る交通評価装置は、複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力する交通評価装置において、待ち行列長を含む交通評価指標を評価するための評価条件を設定する評価条件設定手段と、任意のリンクの下流側の交差点の信号情報を任意の周期毎に取得する信号情報取得手段と、前記評価条件設定手段で評価条件を設定する前に、前記周期の前記交差点での対向直進車両と交錯する方向の待ち行列長を推定する待ち行列長推定手段と、前記交差点の前記リンクに対する信号が、現在の周期で赤であり、かつ直近の周期で青である条件を充足するか否かを判定する判定手段と、該判定手段で前記条件を充足しないと判定した場合、前記待ち行列長推定手段で推定した待ち行列長から所定長を減算した長さに相当する台数の車両を前記リンクから回収する回収手段と、該回収手段で回収した車両の台数を前記周期毎に記録する記録手段とを備え、前記回収手段は、前記評価条件設定手段で評価条件を設定した後に、前記周期毎に、前記記録手段で記録した台数の車両を前記リンクで回収するように構成してあることを特徴とする。
 第7発明に係る交通評価装置は、複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力する交通評価装置において、任意のリンクでの交通評価指標を推定する推定手段と、前記リンクでの実測交通評価指標及び前記推定手段で推定した推定交通評価指標に基づいて、任意の周期毎に前記リンクで前記起終点情報に依拠しない補正出発交通量又は該起終点情報に依拠しない補正到着交通量を生成する生成手段とを備え、該生成手段は、直近の周期で補正出発交通量として前記リンクへ放出できなかった車両が存在する場合、現在の周期で前記車両を優先的に前記リンクへ放出するように構成してあることを特徴とする。
 第8発明に係るコンピュータプログラムは、コンピュータに、複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力するステップを実行させるためのコンピュータプログラムにおいて、コンピュータに、任意のリンクでの車両の推定渋滞長を推定するステップと、渋滞長を含む交通評価指標を評価するための評価条件を設定する前に、任意の周期毎の前記リンクでの車両の実測渋滞長及び推定した推定渋滞長に基づいて、前記周期毎に前記リンクで前記起終点情報に依拠しない補正出発交通量又は該起終点情報に依拠しない補正到着交通量を生成するステップと、生成した補正出発交通量又は補正到着交通量を前記周期毎に記録するステップと、評価条件を設定した後に、前記周期毎に、記録した補正出発交通量を前記リンクで放出し、記録した補正到着交通量を前記リンクで回収するステップとを実行させることを特徴とする。
 第9発明に係るコンピュータプログラムは、コンピュータに、複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力するステップを実行させるためのコンピュータプログラムにおいて、コンピュータに、任意のリンクでの推定交通量を推定するステップと、交通量を含む交通評価指標を評価するための評価条件を設定する前に、任意の周期毎の前記リンクでの車両の実測交通量及び推定した推定交通量に基づいて、前記周期毎に前記リンクで前記起終点情報に依拠しない補正出発交通量又は該起終点情報に依拠しない補正到着交通量を生成するステップと、生成した補正出発交通量又は補正到着交通量を前記周期毎に記録するステップと、評価条件を設定した後に、前記周期毎に、記録した補正出発交通量を前記リンクで放出し、記録した補正到着交通量を前記リンクで回収するステップとを実行させることを特徴とする。
 第10発明に係るコンピュータプログラムは、コンピュータに、複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力するステップを実行させるためのコンピュータプログラムにおいて、コンピュータに、待ち行列長を含む交通評価指標を評価するための評価条件を設定する前に、任意の周期の前記リンクの下流側の交差点での対向直進車両と交錯する方向の待ち行列長を推定するステップと、前記交差点の前記リンクに対する信号が、現在の周期で赤であり、かつ直近の周期で青である条件を充足するか否かを判定するステップと、前記条件を充足しないと判定した場合、推定した待ち行列長から所定長を減算した長さに相当する台数の車両を前記リンクから回収するステップと、回収した車両の台数を前記周期毎に記録するステップと、評価条件を設定した後に、前記周期毎に、記録した台数の車両を前記リンクで回収するステップとを実行させることを特徴とする。
 第11発明に係る交通評価方法は、複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力する交通評価装置による交通評価方法おいて、任意のリンクでの車両の推定渋滞長を推定するステップと、渋滞長を含む交通評価指標を評価するための評価条件を設定する前に、任意の周期毎の前記リンクでの車両の実測渋滞長及び推定された推定渋滞長に基づいて、前記周期毎に前記リンクで前記起終点情報に依拠しない補正出発交通量又は該起終点情報に依拠しない補正到着交通量を生成するステップと、生成された補正出発交通量又は補正到着交通量を前記周期毎に記録するステップと、評価条件を設定した後に、前記周期毎に、記録された補正出発交通量を前記リンクで放出し、記録された補正到着交通量を前記リンクで回収するステップとを含むことを特徴とする。
 第12発明に係る交通評価方法は、複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力する交通評価装置による交通評価方法おいて、任意のリンクでの推定交通量を推定するステップと、交通量を含む交通評価指標を評価するための評価条件を設定する前に、任意の周期毎の前記リンクでの車両の実測交通量及び推定された推定交通量に基づいて、前記周期毎に前記リンクで前記起終点情報に依拠しない補正出発交通量又は該起終点情報に依拠しない補正到着交通量を生成するステップと、生成された補正出発交通量又は補正到着交通量を前記周期毎に記録するステップと、評価条件を設定した後に、前記周期毎に、記録された補正出発交通量を前記リンクで放出し、記録された補正到着交通量を前記リンクで回収するステップとを含むことを特徴とする。
 第13発明に係る交通評価方法は、複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力する交通評価装置による交通評価方法おいて、任意のリンクの下流側の交差点の信号情報を任意の周期毎に取得するステップと、待ち行列長を含む交通評価指標を評価するための評価条件を設定する前に、前記周期の前記交差点での対向直進車両と交錯する方向の待ち行列長を推定するステップと、前記交差点の前記リンクに対する信号が、現在の周期で赤であり、かつ直近の周期で青である条件を充足するか否かを判定するステップと、前記条件を充足しないと判定された場合、推定された待ち行列長から所定長を減算した長さに相当する台数の車両を前記リンクから回収するステップと、回収された車両の台数を前記周期毎に記録するステップと、評価条件を設定した後に、前記周期毎に、記録された台数の車両を前記リンクで回収するステップとを含むことを特徴とする。
 第1発明、第8発明及び第11発明にあっては、任意のリンクでの車両の推定渋滞長を推定する。
 渋滞長を含む交通評価指標を評価するための評価条件を設定する前に、任意の周期毎の当該リンクでの車両の実測渋滞長及び推定した推定渋滞長に基づいて、当該周期毎に当該リンクで起終点情報に依拠しない補正出発交通量又は起終点情報に依拠しない補正到着交通量を生成する。任意のリンクの補正出発交通量としての起点交通量(補正出発交通量)は、当該リンクで放出する車両の台数(放出台数)に相当し、任意のリンクの補正到着交通量としての終点交通量(補正到着交通量)は、当該リンクで回収する車両の台数(回収台数)に相当する。また、周期毎に生成する起点交通量又は終点交通量は、0でもよい。すなわち、周期によっては、起点交通量若しくは終点交通量、又は両者を生成しない場合もある。評価条件は、例えば、工事、事故又は災害などによる交通規制、道路の新設、交差点の改良などの交通環境変化、交通情報の提供、交通信号制御の調整などの交通対策を含む。任意の周期は、現状の交通評価指標を実測値に近づけるための補正項(補正値)を求める周期であり、例えば、10秒、50秒、1分、5分など、交通評価指標の内容に応じて適宜設定することができる。
 生成した起点交通量又は終点交通量を周期毎に記録する。なお、起点交通量又は終点交通量の記録は、リンク毎に行う。そして、評価条件を設定した後に、当該周期毎に、記録した起点交通量を当該リンクで放出し、記録した終点交通量を当該リンクで回収する。例えば、評価条件を設定する前に時刻9:00から5分毎の周期で、9:00、9:05、9:10、…のように起点交通量又は終点交通量を生成した場合、評価条件を設定後に当該周期、すなわち9:00、9:05、9:10、…のように5分周期で、評価条件設定前に生成した同じ時刻(周期)の起点交通量を放出し、又は終点交通量を回収して、交通評価指標を出力する。交通評価指標は、例えば、渋滞長、旅行時間、交通量、待ち行列長などである。
 評価条件を設定した後に、記録した起点交通量を同じ周期毎に放出し、記録した終点交通量を同じ周期毎に回収することにより、現状再現時において補正周期毎に記憶した補正項を同様の手段で交通シミュレータに反映させるので、現状再現時における交通量、渋滞長、旅行時間、二酸化炭素排出量など交通状況(交通評価指標)と、想定ケース(現状と交通条件が変化したケース)での交通状況とを相対的に比較することができ、評価条件設定前後において交通評価指標を比較することができる。
 第2発明、第9発明及び第12発明にあっては、任意のリンクでの車両の推定交通量を推定する。
 交通量を含む交通評価指標を評価するための評価条件を設定する前に、任意の周期毎の当該リンクでの車両の実測交通量及び推定した推定交通量に基づいて、当該周期毎に当該リンクで起終点情報に依拠しない補正出発交通量又は起終点情報に依拠しない補正到着交通量を生成する。任意のリンクの補正出発交通量としての起点交通量(補正出発交通量)は、当該リンクで放出する車両の台数(放出台数)に相当し、任意のリンクの補正到着交通量としての終点交通量(補正到着交通量)は、当該リンクで回収する車両の台数(回収台数)に相当する。また、周期毎に生成する起点交通量又は終点交通量は、0でもよい。すなわち、周期によっては、起点交通量若しくは終点交通量、又は両者を生成しない場合もある。評価条件は、例えば、工事、事故又は災害などによる交通規制、道路の新設、交差点の改良などの交通環境変化、交通情報の提供、交通信号制御の調整などの交通対策を含む。任意の周期は、現状の交通評価指標を実測値に近づけるための補正項(補正値)を求める周期であり、例えば、10秒、50秒、1分、5分など、交通評価指標の内容に応じて適宜設定することができる。
 生成した起点交通量又は終点交通量を周期毎に記録する。なお、起点交通量又は終点交通量の記録は、リンク毎に行う。そして、評価条件を設定した後に、当該周期毎に、記録した起点交通量を当該リンクで放出し、記録した終点交通量を当該リンクで回収する。例えば、評価条件を設定する前に時刻9:00から5分毎の周期で、9:00、9:05、9:10、…のように起点交通量又は終点交通量を生成した場合、評価条件を設定後に当該周期、すなわち9:00、9:05、9:10、…のように5分周期で、評価条件設定前に生成した同じ時刻(周期)の起点交通量を放出し、又は終点交通量を回収して、交通評価指標を出力する。交通評価指標は、例えば、渋滞長、旅行時間、交通量、待ち行列長などである。
 評価条件を設定した後に、記録した起点交通量を同じ周期毎に放出し、記録した終点交通量を同じ周期毎に回収することにより、現状再現時において補正周期毎に記憶した補正項を同様の手段で交通シミュレータに反映させるので、現状再現時における交通量、渋滞長、旅行時間、二酸化炭素排出量など交通状況(交通評価指標)と、想定ケース(現状と交通条件が変化したケース)での交通状況とを相対的に比較することができ、評価条件設定前後において交通評価指標を比較することができる。
 第3発明にあっては、評価条件を設定した後に、任意のリンクで終点交通量を任意の周期で回収する場合、回収する終点交通量と当該リンクでの交通量とを比較する。当該リンクでの交通量とは、起終点情報に基づく交通量であり、模擬車両の模擬走行の結果得られた当該リンクでの交通量である。回収する終点交通量が当該リンクでの交通量よりも多い場合、当該リンクでの交通量を終点交通量として回収し、終点交通量と当該リンクでの交通量との差分交通量を現在の周期の次の周期の終点交通量に加算する。すなわち、差分交通量を次の周期に繰り越す。これにより、想定ケース計算時、すなわち評価条件設定後のシミュレーションにおいて、補正項をシミュレーション上の道路から回収することができない事態を防止することができる。
 第4発明にあっては、評価条件を設定した後に、任意のリンクで起点交通量を任意の周期で放出する場合、放出する起点交通量と当該リンクに放出可能な交通量とを比較する。放出する起点交通量が当該リンクに放出可能な交通量よりも多い場合、当該放出可能な交通量を起点交通量として放出し、終点交通量と当該リンクに放出可能な交通量との差分交通量を現在の周期の次の周期の起点交通量に加算する。すなわち、差分交通量を次の周期に繰り越す。これにより、想定ケース計算時、すなわち評価条件設定後のシミュレーションにおいて、補正項をシミュレーション上の道路に放出することができない事態を防止することができる。
 第5発明にあっては、リンクの放出可能な交通量を、当該リンクに存在可能な車両台数と当該リンクに存在する車両台数との差分により算出する。リンクに存在可能な車両台数は、例えば、リンクの長さを平均車両間隔(例えば、8mなど)で除算して求めることができる。また、リンクに存在する車両台数は、例えば、当該周期において、リンク上で停止している車両の台数とすることができる。これにより、交通状況が異なるリンクであっても、当該リンクの交通状況に合わせて補正項をシミュレーション上の道路に放出することができる。
 第6発明、第10発明及び第13発明にあっては、任意のリンクの下流側の交差点の信号情報を任意の周期毎に取得する。任意の周期は、現状の交通評価指標を実測値に近づけるための補正項(補正値)を求める周期(補正周期)であり、例えば、10秒、50秒、1分、5分など、交通評価指標の内容に応じて適宜設定することができる。
 待ち行列長を含む交通評価指標を評価するための評価条件を設定する前に、当該周期の当該交差点での対向直進車両と交錯する方向の待ち行列長を推定する。対向直進車両と交錯する方向とは、例えば、日本のように左側通行では右折方向であり、米国のように右側通行では左折方向である。以下の説明では、日本のように左側通行であるとして、対向直進車両と交錯する方向は右折方向であるとする。当該交差点の当該リンクに対する信号(すなわち、当該リンクを交差点に向かって走行する車両に対する当該交差点での信号)が、現在の周期で赤であり、かつ直近の周期で青である条件を充足するか否かを判定する。現在の周期とは、補正項を求める際の現在の周期(補正周期)であり、直近の周期とは、現在の補正周期の1つ前の補正周期である。例えば、補正周期が10秒である場合、現在の周期を現時点とすると、直近の周期は、現時点から10秒前の時点となる。また、現在の周期で赤であり、かつ直近の周期で青である条件は、信号の切り替わりを判定するための条件であり、青信号(青矢)から赤信号へ切り替わったか否かを判定している。
 当該条件を充足しない場合とは、例えば、補正周期を10秒としたときに、現時点から10秒前の時点と現時点とで、どちらも赤信号の場合、赤信号から青信号に切り替わった場合、どちらも青信号の場合などである。当該条件を充足しない場合には、推定した待ち行列長から所定長を減算した長さに相当する台数の車両を当該リンクから回収する。所定長は、交差点の位置(停止視の位置)からの長さであり、車両を回収する位置に相当する。すなわち、右折待ちの車両から所定長に相当する車両を差し引いた残りの車両をシミュレーション上右折車線から回収することで直進車線の閉塞を生じさせないようにする。車両をリンクから回収することにより、シミュレーション上対象外の道路が存在する場合でも、直進車線の閉塞が生じることを防止して、交通評価指標を正しく再現することができる。また、交通環境などの評価条件を設定する前では、シミュレーション上信号制御が適切である状態を再現することができ、交通環境の変化などで評価条件を設定した後のシミュレーションでは、交通環境の変化を忠実に再現することが可能となる。
 回収した車両の台数を周期毎に記録する。なお、回収した車両の台数の記録は、リンク毎に行う。そして、評価条件を設定した後に、当該周期毎に、記録した台数の車両を当該リンクで回収する。例えば、評価条件を設定する前に時刻9:00から10秒毎の周期で、車両を回収した場合、評価条件を設定後に当該周期、すなわち9:00から10秒毎に、評価条件設定前に回収した台数の車両を当該リンクにおいて同じ時刻(周期)に回収して、交通評価指標を出力する。交通評価指標は、例えば、渋滞長、旅行時間、交通量、待ち行列長などである。なお、評価条件設定前に、周期によっては、回収する車両がない場合もあり得る。この場合には、評価条件設定後に同じ周期での車両の回収は行わない。
 評価条件を設定した後に、記録した台数の車両を同じ周期毎に回収することにより、現状再現時において補正周期毎に記憶した補正項を同様の手段で交通シミュレータに反映させるので、現状再現時における交通量、渋滞長、旅行時間、二酸化炭素排出量など交通状況(交通評価指標)と、想定ケース(現状と交通条件が変化したケース)での交通状況とを相対的に比較することができ、評価条件設定前後において交通評価指標を比較することができる。
 第7発明にあっては、任意のリンクでの交通評価指標を推定する。交通評価指標は、例えば、渋滞長、交通量、待ち行列長などである。
 当該リンクでの実測の交通評価指標及び推定した交通評価指標に基づいて、例えば、任意の周期毎に当該リンクで起終点情報に依拠しない補正出発交通量又は起終点情報に依拠しない補正到着交通量を生成する。任意のリンクの補正出発交通量としての起点交通量(補正出発交通量)は、当該リンクで放出する車両の台数(放出台数)に相当し、任意のリンクの補正到着交通量としての終点交通量(補正到着交通量)は、当該リンクで回収する車両の台数(回収台数)に相当する。また、周期毎に生成する起点交通量又は終点交通量は、0でもよい。すなわち、周期によっては、起点交通量若しくは終点交通量、又は両者を生成しない場合もある。任意の周期は、現状の交通評価指標を実測値に近づけるための補正項(補正値)を求める周期であり、例えば、10秒、50秒、1分、5分など、交通評価指標の内容に応じて適宜設定することができる。
 直近の周期で起点交通量としてリンクへ放出できなかった車両が存在する場合、現在の周期で当該車両を優先的にリンクへ放出する。すなわち、車両を放出する場合、直近(前回)の補正周期までに車両をリンクから回収し、今回の補正周期で当該リンク下流交差点にて再放出しきれていない車両があるときは、当該車両を優先的にリンク上に放出する。これにより、再放出しきれていない車両を速やかになくすことができる。
 本発明によれば、評価条件設定前後において交通評価指標を比較することができる。
本実施の形態に係る交通評価装置の一例である交通シミュレータにおける車両挙動の例を示す模式図である。 車両の起終点情報の一例を示す模式図である。 OD交通量の一例を示す説明図である。 所与のOD交通量に基づいた発生交通量及び消滅交通量の一例を示す模式図  である。 実施の形態1に係る交通評価装置の一例としての交通シミュレータの構成例を示すブロック図である。 推定渋滞長の補正の一例を示す模式図である。 リンクの下流側の交通状況に影響を与えないための再放出及び再回収の一例を示す模式図である。 青信号で流出する流出台数の算出例を示す模式図である。 実施の形態1の交通シミュレータの評価条件設定前の処理手順を示すフローチャートである。 実施の形態1の交通シミュレータの評価条件設定前の処理手順を示すフローチャートである。 実施の形態1の交通シミュレータの評価条件設定後の処理手順を示すフローチャートである。 実施の形態1の交通シミュレータの評価条件設定後の処理手順を示すフローチャートである。 所与のOD交通量に基づいた発生交通量及び消滅交通量の他の例を示す模式図である。 実施の形態2に係る交通シミュレータの構成例を示すブロック図である。 交通状況と補正項との関係を示す説明図である。 リンクで実測される実測渋滞長の一例を示す模式図である。 シミュレーションでの経路探索の一例を示す模式図である。 実施の形態2の交通シミュレータによる交通量補正の一例を示す模式図である。 リンクの下流側の交通状況に影響を与えないための交通量補正時の再放出及び再回収の一例を示す模式図である。 実施の形態2の交通シミュレータの評価条件設定前の処理手順を示すフローチャートである 実施の形態2の交通シミュレータの評価条件設定前の処理手順を示すフローチャートである 実施の形態2の交通シミュレータの評価条件設定前の処理手順を示すフローチャートである 実施の形態2の交通シミュレータの評価条件設定前の処理手順を示すフローチャートである 実施の形態2の交通シミュレータの評価条件設定後の処理手順を示すフローチャートである。 実施の形態2の交通シミュレータの評価条件設定後の処理手順を示すフローチャートである。 所与のOD交通量に基づいた発生交通量及び消滅交通量の一例を示す模式図である。 実施の形態3の交通シミュレータの構成例を示すブロック図である。 右折車両の集中による直進車線の閉塞を示す模式図である。 右折専用車線を備える交差点付近の一例を示す模式図である。 リンクから車両を回収する場合のダミー車線の一例を示す模式図である。 実施の形態3の交通シミュレータの現状再現時の処理手順を示すフローチャートである。 実施の形態3の交通シミュレータの評価条件設定後の処理手順を示すフローチャートである。 リンク上の車両の一例を示す説明図である。 ダミー車両を優先的に回収する方法の一例を示す説明図である。 渋滞末尾の車両から回収する方法の一例を示す説明図である。 実施の形態1~3の交通シミュレータを実現する汎用コンピュータの一例を示す説明図である。
(実施の形態1)
 以下、本発明に係る交通評価装置、該交通評価装置を実現するためのコンピュータプログラム及び前記交通評価装置による交通評価方法の実施の形態を示す図面に基づいて説明する。図1は本実施の形態に係る交通評価装置の一例である交通シミュレータにおける車両挙動の例を示す模式図である。交通シミュレータは、複数の模擬車両(以下、車両とも称する。)の模擬走行により交通評価指標を出力する。交通シミュレータは、入力データとして、例えば、車両の走行の起終点情報を含む交通量(例えば、OD交通量、OはOrigin、DはDestinationの意味である)、車両の走行速度、加速減速特性などの交通情報が所与として取り扱われている。OD交通量は、車両の起点(出発地)と終点(目的地)との間の交通量を求めたもので、例えば、市や町などの行政区域の単位毎に発生交通量と消滅交通量とを含む。すなわち、言い換えれば、車両の起点及び終点は、地点(リンク)単位でもよく、あるいはエリア単位でもよい。OD交通量は、国又は自治体が定期的に実施する統計調査の結果得られた調査統計データなどが用いられる。
 交通シミュレータは、予め車両の移動モデル、すなわち、車両の挙動を模した計算式を内包しており、上述の入力データを当該計算式に当てはめることにより、複数の車両を模擬的に走行させることにより、単独交差点、路線及び市街地などの道路網における渋滞長、旅行時間などの交通評価指標を出力する。この場合、道路網は、複数のリンク(例えば、交差点と交差点とを繋ぐ道路で上り及び下りの2つの方向を有する)とリンク同士が交差する点であるノード(例えば、交差点)などで構成される。図1では、道路網の一部として3つのノードと2つのリンクとを例示している。
 図2は車両の起終点情報の一例を示す模式図である。交通シミュレータで交通評価指標を再現する場合、単独交差点または路線のように比較的単純な道路網では、車両の走行の起終点情報は、道路の両端点に設定される。しかし、市街地などの複数の路線が交差する比較的複雑な道路網では、シミュレーション区域Sの内外を出発地(起点)とする交通、目的地(終点)とする交通を再現するために、個々の車両に走行の起点(出発地)と終点(目的地)の情報を与える。
 図2に示すように、道路網は、交差点に相当する複数のノードと、交差点同士を繋ぐ道路をリンクとして構成される。図2の例では、道路網の一部又は全部にシミュレーション区域Sを設定する。シミュレーション区域Sの外側には、起点終点A1、A2、…A12がある。また、シミュレーション区域Sの内側には、起点終点B1、B2、B3がある。なお、起点終点は一例であって、図2の例に限定されるものではない。図2に示すように、一例として、起点をA5とし終点をA6とする外々交通、起点をA5とし終点をB1とする外内交通、起点をB2とし終点をB3とする内々交通、起点をB2とし終点をA8とする内外交通などがある。OD交通量などに基づいて、個々の車両は、それぞれの起点と終点が与えられ、車両の移動モデルに従って、起点から終点までの走行経路等の車両の挙動を求めることができる。
 図3はOD交通量の一例を示す説明図である。図3の例は、図2の起点終点A1、A5、A6、A10、A12とした場合の交通量が所与としている。なお、起点終点の例は一例であり、これに限定されるものではない。図3の例では、例えば、起点をA1とし終点をA5とする交通量が所定時間内に40台あることを示す。また、起点をA10とし終点をA5とする交通量が150台あることを示す。他も同様である。なお、図3に示す車両の台数は、単に模式的に示したものであり、値は例示であって限定されるものではない。
 図4は所与のOD交通量に基づいた発生交通量及び消滅交通量の一例を示す模式図である。図4の例では、2つのリンク1、リンク2を例示している。交通シミュレータは、所与のOD交通量に基づいて、シミュレーション区域S内の各リンクでの発生交通量と消滅交通量とを算出する。図4に示すように、リンク1の上流で発生交通量が存在し、リンク1の下流で消滅交通量が存在する。なお、リンク1の途中で交通量の発生または消滅があってもよい。同様に、リンク2の上流で発生交通量が存在し、リンク1の下流で消滅交通量が存在する。なお、リンク1とリンク2とが交わる点(交差点)では、他のリンク(不図示)からの流入交通や流出交通が存在する。
 そして、各リンクで算出された発生交通量及び消滅交通量を用いて交通評価指標としての推定渋滞長を算出(推定)する。本実施の形態に係る交通シミュレータ(交通評価装置)は、推定渋滞長と実測渋滞長との差分(推定誤差)をリンク単位で補正することにより、交通評価指標の再現性を向上させるものである。以下、本実施の形態の交通シミュレータについて説明する。なお、交通評価指標は、渋滞長に限定されるものではなく、旅行時間、交通量又は待ち行列長などでもよい。
 図5は実施の形態1に係る交通評価装置の一例としての交通シミュレータ10の構成例を示すブロック図である。交通シミュレータ10は、車両の移動モデルを表す計算式に基づいて演算を行うシミュレータエンジン部11、所与のOD交通量に基づいて発生交通量及び消滅交通量を算出する交通量算出部12、交通量算出部12で算出された交通量に基づいて各リンクでの推定渋滞長を算出(推定)する推定渋滞長算出部13、推定渋滞長算出部13で算出された推定渋滞長と実測渋滞長との差分(推定誤差)に基づいて推定渋滞長を調整するために補正出発交通量としての起点交通量及び補正到着交通量としての終点交通量を生成する起点終点生成部14、上述の推定誤差に基づいて車両の補正台数を算出する補正台数算出部15、リンク下流の交差点で青信号の間に流出する流出台数を算出する流出台数算出部16、起点終点生成部14で生成した終点交通量又は起点交通量に対応させて当該リンクの下流側で交通量を発生又は消滅させる発生消滅部17、所定の情報を記憶する記憶部18、所要の交通状況をシミュレーションして交通評価指標を評価するための評価条件を設定する評価条件設定部19、リンクに放出可能な車両台数である放出可能交通量を算出する放出可能交通量算出部20、起点交通量としてリンクに放出する車両に識別符号を付与する識別符号付与部21などを備える。なお、以下の実施の形態1~3では、補正出発交通量及び補正到着交通量として、それぞれ起点交通量及び終点交通量を用いて説明する。
 交通シミュレータ10には、入力データとして、例えば、車両の走行速度、加速減速特性、車両の走行の起点終点情報、交通量、実測渋滞長などのデータが与えられる。なお、図5には例示していないが、リンクが交差する各交差点の信号灯器の信号制御情報も入力データとして交通シミュレータ10に提供される。
 交通シミュレータ10は、入力データを用いて、交通評価指標である各リンクの渋滞長(推定渋滞長)、車両の旅行時間、交通量、待ち行列台数(待ち行列長)などを出力する。なお、交通評価指標は、道路網を表す地図上で表示される。なお、交通評価指標に環境汚染物質(二酸化炭素など)の排出量(例えば、環境指標)を含めることもできる。渋滞長を再現性よく求めることができる場合、旅行時間や環境汚染物質の排出量も渋滞長に比例するので再現性よく求めることが可能となる。
 交通量算出部12は、OD交通量(車両の走行の起終点情報を含む交通量)を用いて起点と終点との間の任意のリンクで発生する発生交通量及び任意のリンクで消滅する消滅交通量を算出する。
 推定渋滞長算出部13は、交通量算出部12で算出した交通量に基づいて、任意のリンクでの車両の推定渋滞長を算出(推定)する。なお、推定渋滞長を求める場合、車両の走行速度、加速減速特性、当該リンク両端の交差点での信号現示、リンク長などのパラメータを記憶部18に記憶しておき、当該パラメータを使用することができる。前述のように、起終点情報に基づいて、個々の車両が移動モデルに従ってリンクを模擬走行する。模擬走行は、時間の経過とともに車両の位置を移動させることにより得られる。そして、例えば、推定渋滞長は、各リンクにおいて停止している車両の台数と車頭間隔との乗算に基づいて推定することもできる。また、車両の走行速度が、例えば、所定の閾値以下である車両の最後尾を渋滞末尾として推定することにより推定渋滞長を求めることができる。
 起点終点生成部14は、推定渋滞長などの交通評価指標を調整するために(すなわち、補正項として)、交通量算出部12で算出した任意のリンクでの発生交通量及び消滅交通量(ダミー車両でない車両に相当する)とは別に当該リンクで起点交通量又は終点交通量(ダミー車両とダミー車両でない車両とが混在する)を生成する。「発生交通量及び消滅交通量とは別に」とは、起点交通量又は終点交通量が、例えば、起終点情報に依拠しないということである。より具体的には、当該リンクでの車両の実測渋滞長と推定渋滞長算出部13で算出した推定渋滞長との差分である推定誤差がゼロ又は最小になる(推定誤差が後述のリンクの固有値に略一致する)ように起点交通量又は終点交通量を生成する。起点交通量又は終点交通量を生成することにより、推定渋滞長を補正して実測渋滞長に合わせる、すなわち、交通評価指標の再現性を向上させることができる。なお、本実施の形態で、ダミー車両とは、実測と交通シミュレータ10の推定とを合致させるために放出又は回収する便宜上の車両である。
 図6は推定渋滞長の補正の一例を示す模式図である。図6に示すように、本実施の形態の交通シミュレータ10は、リンク単位であって所定の補正周期(例えば、5分など)の経過の都度、起点交通量(交通量の起点)としてダミー車両又はダミー車両でない車両(正規の車両)を放出し、又は終点交通量(交通量の終点)としてダミー車両又は正規の車両を回収することにより、推定渋滞長が実測渋滞長と一致するように推定渋滞長を補正する。
 図6の例では、リンク1では実測渋滞長が推定渋滞長より長いので、実測渋滞長と推定渋滞長との差分(推定誤差)に相当する台数(補正台数)の車両をリンク1で放出する。すなわち、正規の車両に加えてダミー車両を走行させて渋滞長を長くする。
 また、リンク2では実測渋滞長が推定渋滞長より短いので、実測渋滞長と推定渋滞長との差分(推定誤差)に相当する台数(補正台数)の車両をリンク2で回収する。すなわち、正規の車両の一部をシミュレーション対象外の抜け道を走行させることにより渋滞長を短くする。なお、補正台数の算出方法は後述する。
 上述のように、交通評価指標(例えば、渋滞長、旅行時間)を調整するために、任意のリンクで算出した交通量とは別に当該リンクで起点交通量又は終点交通量を生成する。すなわち、実測値として得られたOD交通量から求めた任意のリンクでの発生交通量又は消滅交通量とは別に、当該リンク単位で起点交通量又は終点交通量を生成することにより、各リンク単位で渋滞長などの交通評価指標の再現性を向上させることができる。また、それぞれのリンクでの再現性を高めることができるので、道路網全体での再現性も向上させることができる。
 また、算出した発生交通量及び消滅交通量に基づいて、任意のリンクでの車両の推定渋滞長を推定し、当該リンクでの車両の実測渋滞長及び推定渋滞長に基づいて、当該リンクで起点交通量又は終点交通量を生成する。これにより、各リンク単位で交通評価指標の実測値と推定値を合わせるように、起点交通量又は終点交通量を生成するので、各リンクで渋滞長などの交通評価指標の再現性を向上させることができる。
 具体的には、実測渋滞長が推定渋滞長より長い場合、実測渋滞長と推定渋滞長との差分(推定誤差)に応じた車両台数の起点交通量を生成する。これにより、当該リンクで、算出された交通量により求めた渋滞長が実測値より短い場合でも、推定渋滞長の再現性を確保することができ、道路網の各リンクで同様の処理を行うことで、道路網の各リンクのみならず道路網全体としての交通評価指標の再現性を向上させることができる。
 また、実測渋滞長が推定渋滞長より短い場合、推定渋滞長と実測渋滞長との差分(推定誤差)に応じた車両台数の終点交通量を生成する。これにより、当該リンクで、算出された交通量により求めた渋滞長が実測値より長い場合でも、推定渋滞長の再現性を確保することができ、道路網の各リンクで同様の処理を行うことで、道路網の各リンクのみならず道路網全体としての交通評価指標の再現性を向上させることができる。
 発生消滅部17は、起点終点生成部14で任意のリンクで起点交通量を生成した場合、当該リンクの下流側で同等の交通量を消滅(再回収)させる。任意のリンクで起点交通量を生成した場合、すなわち、当該放出点から車両を放出した場合、当該リンクでの交通量が増加するので下流への流入交通量が増加し、下流リンクでの推定渋滞長と実測渋滞長との差異を生じる可能性がある。任意のリンクで起点交通量を生成した場合に、当該リンクの下流側で同等の交通量を消滅(再回収)させることにより、任意のリンクで起点交通量を生成したことにより生じる影響を当該リンクの下流側に与えることを防止することができる。
 また、発生消滅部17は、起点終点生成部14で任意のリンクで終点交通量を生成した場合、当該リンクの下流側で同等の交通量を発生(再放出)させる。任意のリンクで終点交通量を生成した場合、すなわち、当該回収点で車両を回収した場合、当該リンクでの交通量が減少するので下流への流入交通量が減少し、下流リンクでの推定渋滞長と実測渋滞長との差異を生じる可能性がある。任意のリンクで終点交通量を生成した場合に、当該リンクの下流側で同等の交通量を発生(再放出)させることにより、任意のリンクで終点交通量を生成したことにより生じる影響を当該リンクの下流側に与えることを防止することができる。また、任意のリンクで終点交通量を生成した場合(車両を回収した場合)に、当該リンクの下流側で同等の交通量を発生(再放出)するときには、回収時に回収した車両の終点(本来の消滅地点)を記憶しておき、再放出の際に各車両に記憶しておいた終点を与えることもできる。なお、他の方法で終点を与えてもよい。
 図7はリンクの下流側の交通状況に影響を与えないための再放出及び再回収の一例を示す模式図である。交通シミュレータ10では、渋滞長又は旅行時間などの交通評価指標を実測値と合わせるために、推定渋滞長などを補正した場合、そのままでは、その影響が下流のリンクに及ぶために、下流の渋滞長及び旅行時間などが変化する。例えば、上流リンクで推定渋滞長を実測渋滞長に合わせるため、起点交通量として車両が放出された場合、当該リンクからの流出交通量が増加するので下流への流入交通量が増加し、これが下流リンクの推定渋滞長に差異を生じさせる可能性がある。
 そこで、本実施の形態では、図7に示すように、各リンクでの補正要因(起点交通量又は終点交通量の生成)を下流リンクに伝えないように、リンクに放出された車両はリンク下流の交差点出口で再回収し、また、リンク上で回収された車両はリンク下流の交差点出口で再放出する。これにより、補正による影響を下流リンクに与えることはない。
 評価条件設定部19は、交通評価指標を評価するための評価条件を設定する評価条件設定手段としての機能を有する。評価条件は、例えば、工事、事故又は災害などによる交通規制、道路の新設、交差点の改良などの交通環境変化、交通情報の提供、交通信号制御の調整などの交通対策を含む。
 放出可能交通量算出部20は、リンクの放出可能な交通量を算出する放出可能交通量算出手段としての機能を有し、当該リンクに存在可能な車両台数と当該リンクに存在する車両台数との差分により算出する。リンクに存在可能な車両台数は、例えば、リンクの長さを平均車両間隔(例えば、8mなど)で除算して求めることができる。また、リンクに存在する車両台数は、例えば、当該周期において、リンク上で停止している車両の台数とすることができる。
 上述の図5の例において、発生消滅部17は、必須の構成ではない。すなわち、交通量(車両)の再回収及び再放出は、必須ではなく省略することができる。再回収及び再放出を省略した場合には、放出または回収する補正台数による下流リンクへの影響は、下流リンクでの補正処理に委ねることができる。
 任意のリンクで起点交通量を生成した場合(車両をリンクに放出した場合)に、当該リンクの下流交差点出口で交通量(車両)を再回収しない場合には、以下のような方法を用いることができる。
 すなわち、起点交通量として車両をリンクに放出する場合、当該リンクに存在する1又は複数の車両の終点情報毎の割合に応じて、放出する車両に終点情報を割り当てる。当該リンクに存在(走行)する車両の終点情報の割合が、例えば、終点情報D1の車両がX1台、終点情報D2の車両がX2台、…、終点情報Dnの車両がXn台であるとすると、当該リンクに放出する車両(Y台)のうち、Y×X1/(X1+X2+…+Xn)台の車両に終点情報D1を割り当てる。また、同様に、放出する車両(Y台)のうち、Y×X2/(X1+X2+…+Xn)台の車両に終点情報D2を割り当てる。以下同様である。任意のリンクで起点交通量を生成した場合でも、いずれかのリンクの車両が突出して増加する事態、あるいは減少する事態を防止することができ、任意のリンクで起点交通量を生成したことにより生じる影響を当該リンクの下流側に与えることを防止することができる。
 なお、当該リンクに存在(走行)する車両の終点情報の割合を求める場合、車両をリンクに放出する時点で当該リンクに存在する車両の終点情報を用いてもよく、あるいは車両をリンクに放出する時点から直近の所定時間(例えば、5分など)の間に当該リンクに存在する車両の終点情報を用いてもよい。
 次に、補正台数の算出方法について説明する。補正台数算出部15は、実測渋滞長と推定渋滞長との差分(推定誤差)の絶対値に渋滞内の車両密度を積算し、積算値に当該リンクの固有値を加算又は減算して車両の補正台数を算出する。例えば、推定誤差が正である場合、すなわち、実測渋滞長が推定渋滞長より長い場合、リンクの固有値を積算値から減算し、推定誤差が負である場合、すなわち、実測渋滞長が推定渋滞長より短い場合、リンクの固有値を積算値に加算する。
 推定渋滞長と実測渋滞長との差分の絶対値に渋滞内の車両密度を乗算することにより、推定渋滞長と実測渋滞長との差分である推定誤差に相当する車両の台数を求めることができる。リンクの固有値は、例えば、リンク(道路)上の許容範囲に相当する車両台数である。許容範囲は、例えば、車両感知器の設置密度(例えば、車両感知器の設置間隔が250mであれば、許容範囲は250m)であり、この場合、リンクの固有値は、車両感知器の設置密度に車両の走行密度を乗算した値とすることができる。すなわち、リンクの固有値は、当該リンクで車両を感知することができる範囲に相当する車両台数である。なお、固有値はゼロであってもよい。起点交通量として補正台数の車両を起点で放出し、又は終点交通量として補正台数の車両を終点で回収する。これにより、推定渋滞長と実測渋滞長との差分である推定誤差に相当する車両の台数を、各リンクで放出又は回収させることができる。
 起点交通量として起点から車両を放出する場合、あるいは、終点交通量として終点で車両を回収する場合、放出及び回収する地点は、当該リンクの最上流、渋滞末尾地点、あるいはリンクの任意の点とすることができる。
 また、車両の放出及び回収は、例えば、補正台数を10台とした場合、(1)補正台数10台を、補正周期(例えば、5分)の最後に一度で行う方法、(2)補正台数10台を補正周期(例えば、5分)の間を等間隔(例えば、30秒間隔)で一様に行う方法、(3)リンク下流の信号表示に同期させて(例えば、赤信号の時間帯)行う方法などがある。また、車両の放出の方法に限れば、(4)リンク上を走行する車両の挙動を妨げないように走行する車両の間隔が、例えば4秒以上ある場合に行う方法などがある。
 交通シミュレータ10の構成によっては、上述の(1)の方式を採用することにより、確実に推定渋滞長を実測渋滞長に合わせることが可能となる。
 また、交通シミュレータ10の構成によっては、上述の(3)の方法を採用すれば、すなわち、補正台数の車両を放出する場合、車両の放出点を含むリンクの下流交差点での信号現示に同期して車両を放出するようにすれば、補正台数の車両がリンクに渋滞として留まらないという事態を防止し、確実に推定渋滞長を実測渋滞長に合わせることが可能となる。
 また、交通シミュレータ10の構成によっては、上述の(2)及び(4)の方法を採用して車両を任意のリンクで放出した場合、当該リンクの下流交差点において青信号で流れ出し、補正台数が渋滞として溜まらず推定渋滞長を実測渋滞長に合わせることができない場合がある。以下、青信号で流出する台数を算出し、流出台数を予め放出する台数に加算する方法について説明する。
 流出台数算出部16は、補正台数の車両を放出する場合、車両の放出点を含むリンクの下流交差点の青信号で流出する流出台数を算出する。より具体的には、流出台数算出部16は、起点交通量又は終点交通量の生成周期である補正周期(例えば、5分)の間のリンクの下流交差点の青信号時間と、交通流率(例えば、飽和交通流率)との積算値及び放出する車両台数に基づいて流出台数を算出する。例えば、積算値が放出台数より大きい場合、積算値と放出台数との差を流出台数として算出する。
 図8は青信号で流出する流出台数の算出例を示す模式図である。実測渋滞長と推定渋滞長との差分である推定誤差が正である場合(すなわち、起点交通量として車両を放出する場合)に、補正周期の間の青時間と飽和交通流率との積算値が放出台数より大きいときは、青信号での流出台数を、(補正周期の間の青時間と飽和交通流率との積算値-放出台数)により算出する。ここで、放出台数は、前回の補正周期のタイミングから今回の補正周期のタイミングまでの間に当該リンクから放出した車両の台数である。
 補正周期の間の青時間と飽和交通流率との積算値が放出台数より小さいときは、青信号での流出台数をゼロとする。また、推定誤差が負である場合(すなわち、終点交通量として車両を回収する場合)には、青信号での流出台数をゼロとする。
 青信号で流出する流出台数を放出台数に加算しておくことで、放出した車両がリンクの下流交差点の青信号で流出して補正台数の車両の一部又は全部が青信号で交差点に流出し、リンクに渋滞として留まらないために、推定渋滞長が実測渋滞長に合わなくなるという事態が生じたとしても、流出分の台数を補正台数に加味するので、車両の放出方法に拘わらず、確実に推定渋滞長を実測渋滞長に合わせることが可能となる。また、積算値が放出台数より大きい場合、積算値と放出台数との差を流出台数として算出することにより、青信号の時間帯に交差点から流出する台数を予め補正台数に加算しておくことができる。
 識別符号付与部21は、起点終点生成部14で起点交通量としてリンクに車両(ダミー車両)を放出する場合、当該車両を識別する識別符号を付与する。発生消滅部17は、当該リンクの下流側で終点交通量として車両(ダミー車両)を回収する場合、識別符号が付与された車両を優先して回収する。任意のリンクで起点交通量として車両を放出した場合に、当該リンクの下流側(当該リンク及び当該リンクと異なるリンクを含む)で車両を回収するときに、放出した識別符号が付与された車両を優先的に回収することにより、任意のリンクで起点交通量を生成したことにより生じる影響を当該リンクの下流側に与えることを防止することができる。
 発生消滅部17は、上述のように、起点終点生成部14で任意のリンクで起点交通量を生成した場合、当該リンクの下流側で同等の交通量を消滅(再回収)させる代わりに、次のように交通量を消滅(再回収)させても良い。すなわち、後述するように、起点交通量のうちの一部がダミー車両でない車両(ダミーリンクで待機している車両)となっている場合、すなわち、起点交通量にダミー車両とダミー車両でない車両とが混在する場合、上記リンクの下流側では起点交通量と同等の交通量を消滅させるのではなく、起点交通量のうちのダミー車両に相当する交通量のみを消滅させる。なお、識別符号の付与については、起点交通量としてダミー車両とダミー車両でない車両とが混在した状態で放出する場合には、起点交通量のすべてに識別符号を付与するのではなく、起点交通量からダミー車両でない車両を差し引いた「ダミー車両」に識別符号を付与することができる。
 発生消滅部17は、上述のように、起点終点生成部14で任意のリンクで終点交通量を生成した場合、当該リンクの下流側で同等の交通量を発生(再放出)させる代わりに、次のように交通量を発生(再放出)させてもよい。発生消滅部17は、識別符号が付与された車両(ダミー車両)を優先して回収する場合、当該ダミー車両の再放出を禁止する禁止手段としての機能を有する。すなわち、ダミー車両を優先して回収した場合、回収したダミー車両は消滅させたままとする。ダミー車両は、実測とシミュレータでの推定とを合致させるために回収した便宜上の車両であるので、回収してそのまま消滅させたとしても問題がなく、不要な処理を省略することができる。なお、必ずしもダミー車両の識別符号を付与する必要はなく、仮に識別符号を付与しない場合でもダミー車両を回収した場合、当該ダミー車両の再放出を禁止することができる。また、ダミー車両でない車両を回収した場合には、再放出を禁止することなく、下流側で同等の交通量を発生させる。ダミー車両でない車両については、回収してそのまま消滅させた場合、本来の目的地へ到達する交通量が減少し、実際と合わなくなる可能性があるからである。
 次に、本実施の形態の交通シミュレータ10の動作について説明する。図9及び図10は実施の形態1の交通シミュレータ10の評価条件設定前の処理手順を示すフローチャートである。図9及び図10に例示する処理は、渋滞長などを含む交通評価指標を評価するための評価条件を設定する前の現状状態の再現性を向上させるためのものである。
 交通シミュレータ10は、補正周期(例えば、5分)が経過したか否かを判定し(S11)、補正周期を経過した場合(ステップS11でYES)、すなわち、前回の補正のタイミングから5分経過した場合、推定渋滞長を算出し(S12)、推定誤差(実測渋滞長と推定渋滞長との差分)を算出(推定)する(S13)。
 交通シミュレータ10は、推定誤差がゼロより大きいか否かを判定し(S14)、推定誤差がゼロより大きい場合(S14でYES)、(推定誤差-リンクの固有値)がゼロより大きいか否かを判定する(S15)。
 リンクの固有値は、例えば、当該リンク(道路)に設置された車両感知器の設置密度に依存する許容範囲と、車両密度との乗算により求めることができる。車両感知器の設置密度が250mである場合、許容範囲は250mに設定することができる。車両感知器の設置密度(例えば、250m)内では車両が渋滞して停止していても実際上は計測することができない場合があり、車両感知器の設置密度を超えて車両が停止したときに渋滞していることを計測することが可能となるので、推定誤差からリンクの固有値を減算している。
 (推定誤差-リンクの固有値)がゼロより大きい場合(S15でYES)、交通シミュレータ10は、補正台数を算出し(S16)、算出した補正台数の車両(ダミー車両)を起点交通量としてリンクに放出する(S17)。
 交通シミュレータ10は、補正台数及び補正周期を記録する(S18)。例えば、補正周期(時刻)が9:10である場合に、あるリンク1の補正台数(放出台数)が10台である場合、リンク1の時刻9:10での放出台数は10台であることを記録する。
 交通シミュレータ10は、リンクに放出した車両を当該リンク下流交差点で再回収する(S19)。交通シミュレータ10は、起点(出発地)から車両を発生し、終点(目的地)で車両を回収し(S20)、信号灯器の信号灯色を、例えば、0.1秒進め、車両の移動モデルに従って車両を走行させ(S21)、シミュレーション周期(例えば、0.1秒)を終了する。
 (推定誤差-リンクの固有値)がゼロより大きくない場合(S15でNO)、交通シミュレータ10は、補正を行わずにステップS19以降の処理を行う。また、補正周期を経過していない場合(ステップS11でNO)、交通シミュレータ10は、補正を行わずにステップS19以降の処理を行う。
 推定誤差がゼロより大きくない場合(S14でNO)、交通シミュレータ10は、推定誤差がゼロより小さいか否かを判定し(S22)、推定誤差がゼロより小さい場合(S22でYES)、(推定誤差+リンクの固有値)がゼロより小さいか否かを判定する(S23)。
 (推定誤差+リンクの固有値)がゼロより小さい場合(S23でYES)、交通シミュレータ10は、補正台数を算出し(S24)、算出した補正台数の車両(正規の車両)を終点交通量としてリンクから回収する(S25)。
 交通シミュレータ10は、補正台数及び補正周期を記録する(S26)。例えば、補正周期(時刻)が9:10である場合に、あるリンク1の補正台数(回収台数)が10台である場合、リンク1の時刻9:10での回収台数は10台であることを記録する。
 交通シミュレータ10は、リンクから回収した車両を当該リンク下流交差点で再放出し(S27)、ステップS20以降の処理を続ける。推定誤差がゼロより小さくない場合(S22でNO)、交通シミュレータ10は、推定誤差がゼロであるとして、補正を行わずにステップS27以降の処理を行う。また、(推定誤差+リンクの固有値)がゼロより小さくない場合(S23でNO)、交通シミュレータ10は、補正を行わずにステップS20以降の処理を行う。
 上述の図9及び図10で例示した処理は、シミュレーション周期(例えば、0.1秒)経過の都度繰り返し行われる。また、ステップS19、S27の処理を行わずに省略することもできる。この場合は、当該リンクの下流リンクで車両の放出又は回収を行う補正で調整する。当該リンクでの補正は、下流リンクに影響を与えるが、下流リンクでも補正処理が行なわれるので、推定渋滞長と実測渋滞長の差異を小さくすることができる。
 交通シミュレータ10を用いる評価では、一般的に現状の交通評価指標と評価条件設定後の交通評価指標との相対比較が行なわれるが、図9及び図10に例示した処理手順で得られた回収の補正値及び放出の補正値は、評価条件設定後の評価においても全く同様に回収の補正値及び放出の補正値として使うことができる。
 すなわち、評価条件設定部19で渋滞長を含む交通評価指標を評価するための評価条件を設定する前に、起点終点生成部14は、当該リンクでの車両の実測渋滞長及び推定した推定渋滞長に基づいて、任意の周期毎に当該リンクで起点交通量又は終点交通量を生成する。任意のリンクの起点交通量は、当該リンクで放出する車両の台数(放出台数)に相当し、任意のリンクの終点交通量は、当該リンクで回収する車両の台数(回収台数)に相当する。任意の周期は、現状の交通評価指標を実測値に近づけるための補正項(補正値)を求める周期であり、例えば、10秒、50秒、1分、5分など、交通評価指標の内容に応じて適宜設定することができる。
 起点終点生成部14は、生成した起点交通量又は終点交通量を周期毎に記憶部18に記録する。なお、起点交通量又は終点交通量の記録は、リンク毎に行う。そして、評価条件設定部19で評価条件を設定した後に、起点終点生成部14は、当該周期毎に、記録した起点交通量を当該リンクで放出し、記録した終点交通量を当該リンクで回収する。例えば、評価条件を設定する前に時刻9:00から5分毎の周期で、9:00、9:05、9:10、…のように起点交通量又は終点交通量を生成した場合、評価条件を設定後に当該周期、すなわち9:00、9:05、9:10、…のように5分周期で、評価条件設定前に生成した同じ時刻(周期)の起点交通量を放出し、評価条件設定前に生成した同じ時刻(周期)の終点交通量を回収して、交通評価指標を出力する。交通評価指標は、例えば、渋滞長、旅行時間、交通量、待ち行列長などである。
 評価条件を設定した後に、同じ周期毎に、記録した起点交通量を同じリンクで放出し、記録した終点交通量を同じリンクで回収することにより、現状再現時において補正周期毎に記憶した補正項を同様の手段で交通シミュレータに反映させるので、現状再現時における交通量、渋滞長、旅行時間、二酸化炭素排出量など交通状況(交通評価指標)と、想定ケース(現状と交通条件が変化したケース)での交通状況とを相対的に比較することができ、評価条件設定前後において交通評価指標を比較することができる。
 また、起点終点生成部14は、比較手段としての機能を有し、評価条件設定部19で評価条件を設定した後に、任意のリンクで終点交通量を任意の周期で回収する場合、回収する終点交通量と当該リンクでの交通量とを比較する。当該リンクでの交通量とは、終点交通量とは別に、実測値として得られたOD交通量から求めた当該リンクでの発生交通量又は消滅交通量に基づく交通量である。回収する終点交通量が当該リンクでの交通量よりも多い場合、当該リンクでの交通量を終点交通量として回収し、終点交通量と当該リンクでの交通量との差分交通量を現在の周期の次の周期の終点交通量に加算する。すなわち、差分交通量を次の周期に繰り越す。これにより、想定ケース計算時、すなわち評価条件設定後のシミュレーションにおいて、補正項をシミュレーション上の道路から回収することができない事態を防止することができる。
 また、起点終点生成部14は、評価条件設定部19で評価条件を設定した後に、任意のリンクで起点交通量を任意の周期で放出する場合、放出する起点交通量と当該リンクに放出可能な交通量とを比較する。放出する起点交通量が当該リンクに放出可能な交通量よりも多い場合、当該放出可能な交通量を起点交通量として放出し、放出した起点交通量と当該リンクに放出可能な交通量との差分交通量を現在の周期の次の周期の起点交通量に加算する。すなわち、差分交通量を次の周期に繰り越す。これにより、想定ケース計算時、すなわち評価条件設定後のシミュレーションにおいて、補正項をシミュレーション上の道路に放出することができない事態を防止することができる。
 放出可能交通量算出部20は、リンクの放出可能な交通量を、当該リンクに存在可能な車両台数と当該リンクに存在する車両台数との差分により算出する。リンクに存在可能な車両台数は、例えば、リンクの長さを平均車両間隔(例えば、8mなど)で除算して求めることができる。また、リンクに存在する車両台数は、例えば、当該周期において、リンク上で停止している車両の台数とすることができる。これにより、交通状況が異なるリンクであっても、当該リンクの交通状況に合わせて補正項をシミュレーション上の道路に放出することができる。
 図11及び図12は実施の形態1の交通シミュレータ10の評価条件設定後の処理手順を示すフローチャートである。図11及び図12に例示する処理は、渋滞長などを含む交通評価指標を評価するための評価条件を設定した後の処理を示す。
 交通シミュレータ10は、評価条件を設定し(S41)、補正周期(例えば、5分)が経過したか否かを判定し(S42)、補正周期を経過した場合(ステップS42でYES)、すなわち、前回の補正のタイミングから5分経過した場合、現在の周期と同じ周期の評価条件設定前の補正台数を取得する(S43)。
 交通シミュレータ10は、補正台数が放出台数であるか回収台数であるかを判定し(S44)、放出台数である場合(S44で放出)、補正台数がリンク上の放出可能台数より大きいか否かを判定する(S45)。
 補正台数がリンク上の放出可能台数より大きい場合(S45でYES)、交通シミュレータ10は、放出可能台数の車両をリンクに放出し(S46)、補正台数と放出可能台数との差分台数を次の周期の補正台数に加算する(S47)。
 交通シミュレータ10は、リンクに放出した車両を当該リンク下流交差点で再回収する(S49)。交通シミュレータ10は、起点(出発地)から車両を発生し、終点(目的地)で車両を回収し(S50)、信号灯器の信号灯色を、例えば、0.1秒進め、車両の移動モデルに従って車両を走行させ(S51)、シミュレーション周期(例えば、0.1秒)を終了する。
 補正台数がリンク上の放出可能台数より大きくない場合(S45でNO)、交通シミュレータ10は、補正台数の車両をリンクに放出し(S48)、ステップS49以降の処理を行う。また、補正周期を経過していない場合(ステップS42でNO)、交通シミュレータ10は、補正を行わずにステップS49以降の処理を行う。
 補正台数が回収台数である場合(S44で回収)、交通シミュレータ10は、補正台数がリンク上の存在台数より大きいか否かを判定する(S52)。補正台数がリンク上の存在台数より大きい場合(S52でYES)、交通シミュレータ10は、リンク上に存在する台数の車両をリンクから回収し(S53)、補正台数とリンク上の存在台数との差分台数を次の周期の補正台数に加算する(S54)。
 交通シミュレータ10は、リンクから回収した車両を当該リンク下流交差点で再放出し(S56)、ステップS50以降の処理を行う。補正台数がリンク上の存在台数より大きくない場合(S52でNO)、交通シミュレータ10は、補正台数の車両をリンクから回収し(S55)、ステップS56以降の処理を続ける。
 上述の図11及び図12で例示した処理は、シミュレーション周期(例えば、0.1秒)経過の都度繰り返し行われる。また、ステップS49、S56の処理を行わずに省略することもできる。この場合は、当該リンクの下流リンクで車両の放出又は回収を行う補正で調整する。当該リンクでの補正は、下流リンクに影響を与えるが、下流リンクでも補正処理が行なわれるので、推定渋滞長と実測渋滞長の差異を小さくすることができる。
 また、図9でステップS19を省略した場合には、図11のステップS49を省略し、図10でステップS27を省略した場合には、図12のステップS56を省略する。
 上述の交通シミュレータ10は、図36に例示するような、CPU、RAMなどを備えた汎用コンピュータ100を用いて実現することもできる。すなわち、図9~図12に示すような、各処理手順を定めたプログラムコードを記録媒体110に記録しておき、当該記録媒体110をコンピュータ100に備えられたRAMにロードし、プログラムコードをCPUで実行することにより、コンピュータ100上で交通シミュレータ10を実現することができる。なお、図9~図12に示すような、各処理手順を定めたプログラムコードは、記録媒体110に代えて、インタネットなどのネットワーク200を介してダウンロードすることもできる。
 上述の実施の形態において、起点交通量としてリンクに車両を放出する場合、当該車両を識別する識別符号を付与することもできる。そして、発生消滅部17により当該リンクの下流側で終点交通量として車両を回収する場合、識別符号が付与された車両を優先して回収する。任意のリンクで起点交通量として車両を放出した場合に、当該リンクの下流側(当該リンク及び当該リンクと異なるリンクを含む)で車両を回収するときに、放出した識別符号が付与された車両を優先的に回収することにより、任意のリンクで起点交通量を生成したことにより生じる影響を当該リンクの下流側に与えることを防止することができる。
 上述のとおり、本実施の形態の交通シミュレータ10は、対象とする道路網の任意のリンク(道路)のみならず、道路網全体としても、交通評価指標の再現性を向上させることができる。また、交通評価指標の再現性が高まることにより、評価条件設定後の交通評価指標を正しく評価することが可能となる。
 また、評価条件を設定した後に、同じ周期毎に、評価条件設定前に記録した起点交通量を同じリンクで放出し、評価条件設定前に記録した終点交通量を同じリンクで回収することにより、現状再現時において補正周期毎に記憶した補正項を同様の手段で交通シミュレータに反映させるので、現状再現時における交通量、渋滞長、旅行時間、二酸化炭素排出量など交通状況(交通評価指標)と、想定ケース(現状と交通条件が変化したケース)での交通状況とを相対的に比較することができ、評価条件設定前後において交通評価指標を比較することができる。
 上述の実施の形態では、車両の走行の起終点情報を用いる構成であったが、これに限定されるもではない。例えば、任意のリンクでの発生交通量と消滅交通量を予め設定しておいて、設定した発生交通量と消滅交通量を用いることもできる。
 (1)本実施の形態の交通評価装置は、複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力するものであって、交通評価指標を調整するために、起終点情報に依拠しない起点交通量(補正出発交通量)又は起終点情報に依拠しない終点交通量(補正到着交通量)を生成する生成手段を備える。
 上述の構成にあっては、交通評価指標を調整するために、任意のリンクで起終点情報に依拠しない起点交通量又は終点交通量を生成することにより、各リンク単位で交通評価指標を調整する。交通評価指標は、例えば、渋滞長、旅行時間などである。これにより、渋滞長などの交通評価指標の再現性を向上させることができる。
 (2)本実施の形態の交通評価装置は、任意のリンクでの車両の推定渋滞長を推定する渋滞長推定手段を備え、生成手段は、リンクでの車両の実測渋滞長及び推定渋滞長に基づいて、当該リンクで起点交通量又は終点交通量を生成する。例えば、車両の実測渋滞長と推定渋滞長との差分が最小となるように当該推定渋滞長を補正すべく、起終点情報に依拠しない起点交通量又は終点交通量を当該リンクで生成する。
 上述の構成にあっては、任意のリンクでの車両の推定渋滞長を推定し、当該リンクでの車両の実測渋滞長及び推定渋滞長に基づいて、当該リンクで起点交通量又は終点交通量を生成する。これにより、各リンク単位で交通評価指標の実測値と推定値を合わせるように、起点交通量又は終点交通量を生成するので、各リンクで渋滞長などの交通評価指標の再現性を向上させることができる。
 (3)本実施の形態の交通評価装置は、生成手段は、実測渋滞長が推定渋滞長より長い場合、実測渋滞長と推定渋滞長との差分に応じた車両台数の起点交通量を生成する。
 上述の構成にあっては、実測渋滞長が推定渋滞長より長い場合、実測渋滞長と推定渋滞長との差分に応じた車両台数の起点交通量を生成する。これにより、当該リンクで、算出された交通量により求めた渋滞長が実測値より短い場合でも、推定渋滞長の再現性を確保することができ、道路網の各リンクで同様の処理を行うことで、道路網の各リンクのみならず道路網全体としての交通評価指標の再現性を向上させることができる。
 (4)本実施の形態の交通評価装置は、生成手段は、実測渋滞長が推定渋滞長より短い場合、推定渋滞長と実測渋滞長との差分に応じた車両台数の終点交通量を生成する。
 上述の構成にあっては、実測渋滞長が推定渋滞長より短い場合、推定渋滞長と実測渋滞長との差分に応じた車両台数の終点交通量を生成する。これにより、当該リンクで、算出された交通量により求めた渋滞長が実測値より長い場合でも、推定渋滞長の再現性を確保することができ、道路網の各リンクで同様の処理を行うことで、道路網の各リンクのみならず道路網全体としての交通評価指標の再現性を向上させることができる。
 (5)本実施の形態の交通評価装置は、実測渋滞長と推定渋滞長との差分の絶対値に渋滞内の車両密度を積算し、積算した値に当該リンクの固有値を加算又は減算して車両の補正台数を算出する補正台数算出手段を備え、生成手段は、起点交通量として当該補正台数の車両を放出し、又は終点交通量として当該補正台数の車両を回収する。
 上述の構成にあっては、実測渋滞長と推定渋滞長との差分(推定誤差)の絶対値に渋滞内の車両密度を積算し、積算した値に当該リンクの固有値を加算又は減算して車両の補正台数を算出する。なお、渋滞内の車両密度は、実測渋滞長及び推定渋滞長のいずれの場合でも同等とすることができる。推定渋滞長と実測渋滞長との差分の絶対値に渋滞内の車両密度を積算することにより、推定渋滞長と実測渋滞長との差分である推定誤差に相当する車両の台数を求めることができる。リンクの固有値は、例えば、リンク(道路)上の許容範囲に相当する車両台数である。許容範囲は、例えば、車両感知器の設置密度(例えば、車両感知器の設置間隔が250mであれば、許容範囲は250m)であり、この場合、リンクの固有値は、車両感知器の設置密度に車両の走行密度を積算した値とすることができる。すなわち、リンクの固有値は、当該リンクで車両を感知することができる範囲に相当する車両台数である。なお、固有値はゼロであってもよい。起点交通量として補正台数の車両を起点で放出し、又は終点交通量として補正台数の車両を終点で回収する。これにより、推定渋滞長と実測渋滞長との差分である推定誤差に相当する車両の台数を、各リンクで放出又は回収させることができる。
 (6)本実施の形態の交通評価装置は、生成手段は、補正台数の車両を放出する場合、車両の放出点を含むリンクの下流交差点での信号現示に同期して車両を放出する。例えば、リンク下流の信号現示が赤信号の時間帯に補正台数の車両を放出する。
 上述の構成にあっては、補正台数の車両を放出する場合、車両の放出点を含むリンクの下流交差点での信号現示に同期して車両を放出する。例えば、リンク下流の信号現示が赤信号の時間帯に補正台数の車両を放出する。これにより、補正台数の車両がリンクに渋滞として留まらないという事態を防止し、確実に推定渋滞長を実測渋滞長に合わせることが可能となる。
 (7)本実施の形態の交通評価装置は、生成手段で補正台数の車両を放出する場合、車両の放出点を含むリンクの下流交差点の青信号で流出する流出台数を算出する流出台数算出手段を備え、補正台数算出手段は、流出台数に基づいて補正台数を算出する。
 上述の構成にあっては、補正台数の車両を放出する場合、車両の放出点を含むリンクの下流交差点の青信号で流出する流出台数を算出し、算出した流出台数に基づいて補正台数を算出する。これにより、放出した車両がリンクの下流交差点の青信号で流出して補正台数の車両の一部又は全部が青信号で交差点に流出し、リンクに渋滞として留まらないために、推定渋滞長が実測渋滞長に合わなくなるという事態が生じたとしても、流出分の台数を補正台数に加味するので、車両の放出方法に拘わらず、確実に推定渋滞長を実測渋滞長に合わせることが可能となる。
 (8)本実施の形態の交通評価装置は、流出台数算出手段は、生成手段による生成周期の間の交差点の青信号時間と交通流率との積算値及び生成手段で放出する車両台数に基づいて流出台数を算出する。例えば、積算値が放出台数より大きい場合、積算値と放出台数との差を流出台数として算出する。
 上述の構成にあっては、生成周期の間のリンクの下流交差点の青信号時間と、交通流率との積算値及び放出する車両台数に基づいて流出台数を算出する。例えば、積算値が放出台数より大きい場合、積算値と放出台数との差を流出台数として算出する。これにより、青信号の時間帯に交差点から流出する台数を予め補正台数に加算しておくことができる。
 (9)本実施の形態の交通評価装置は、生成手段で任意のリンクで起点交通量を生成した場合、当該リンクの下流側で同等の交通量を消滅させる消滅手段を備える。
 上述の構成にあっては、任意のリンクで起点交通量を生成した場合、当該リンクの下流側で同等の交通量を消滅させる。任意のリンクで起点交通量を生成した場合、すなわち、当該放出点から車両を放出した場合、当該リンクでの交通量が増加するので下流への流入交通量が増加し、下流リンクでの推定渋滞長と実測渋滞長との差異を生じる可能性がある。任意のリンクで起点交通量を生成した場合に、当該リンクの下流側で同等の交通量を消滅させることにより、任意のリンクで起点交通量を生成したことにより生じる影響を当該リンクの下流側に与えることを防止することができる。
 (10)本実施の形態の交通評価装置は、生成手段で任意のリンクで終点交通量を生成した場合、当該リンクの下流側で同等の交通量を発生させる発生手段を備える。
 上述の構成にあっては、任意のリンクで終点交通量を生成した場合、当該リンクの下流側で同等の交通量を発生させる。任意のリンクで終点交通量を生成した場合、すなわち、当該回収点で車両を回収した場合、当該リンクでの交通量が減少するので下流への流入交通量が減少し、下流リンクでの推定渋滞長と実測渋滞長との差異を生じる可能性がある。任意のリンクで終点交通量を生成した場合に、当該リンクの下流側で同等の交通量を発生させることにより、任意のリンクで終点交通量を生成したことにより生じる影響を当該リンクの下流側に与えることを防止することができる。
 本実施の形態の交通評価装置によれば、当該リンク単位で起点交通量又は終点交通量を生成することにより、すなわち、起終点情報に依拠しない起点交通量又は終点交通量を生成することにより、渋滞長などの交通評価指標の再現性を向上させることができる。
(実施の形態2)
 上述の実施の形態1では、交通評価指標としての推定渋滞長を算出(推定)するものであったが、これに限定されるものではない。実施の形態2の交通シミュレータ(交通評価装置)は、交通評価指標としての推定交通量を算出(推定)し、当該推定交通量と実測交通量との差分に応じた車両の台数をリンク単位で放出し、又は回収することにより、交通評価指標の再現性を向上させるものである。
 図13は所与のOD交通量に基づいた発生交通量及び消滅交通量の他の例を示す模式図である。図13の例では、2つのリンク1、リンク2を例示している。交通シミュレータは、所与のOD交通量に基づいて、シミュレーション区域S内の各リンクでの発生交通量と消滅交通量とを算出する。図13に示すように、リンク1の上流で発生交通量が存在し、リンク1の下流で消滅交通量が存在する。なお、リンク1の途中で交通量の発生または消滅があってもよい。同様に、リンク2の上流で発生交通量が存在し、リンク1の下流で消滅交通量が存在する。なお、リンク1とリンク2とが交わる点(交差点)では、他のリンク(不図示)からの流入交通や流出交通が存在する。
 そして、各リンクで算出された発生交通量及び消滅交通量を用いて交通評価指標としての推定交通量を算出(推定)する。そして、推定交通量と実測交通量との差分に応じた車両の台数をリンク単位で補正(放出又は回収)することにより、交通評価指標の再現性を向上させるものである。
 図14は実施の形態2に係る交通シミュレータ50の構成例を示すブロック図である。実施の形態1との相違点は、推定交通量算出部22、渋滞判定部23を備える点である。また、交通シミュレータ50は、任意のリンクの実測交通量を入力データとして取得する。なお、実施の形態1と同様の箇所は同一符号を付して説明を省略する。
 推定交通量算出部22は、交通量算出部12で算出した交通量に基づいて、任意のリンクでの推定交通量を算出(推定)する。なお、推定交通量を求める場合、車両の走行速度、加速減速特性、当該リンク両端の交差点での信号現示、リンク長などのパラメータを記憶部18に記憶しておき、当該パラメータを使用することができる。
 渋滞判定部23は、各リンクでの実測渋滞長及び推定渋滞長算出部13で推定した推定渋滞長が所定の渋滞閾値未満であるか否かを判定する判定手段としての機能を有する。すなわち、渋滞判定部23は、各リンクでの実測渋滞長及び推定した推定渋滞長が所定の渋滞閾値未満であるか否かを判定する。渋滞閾値は、各リンクに固有の固有値であり、例えば、車両感知器の設置間隔(例えば、200m、250mなど)である。
 起点終点生成部14は、交通量算出部12で算出した各リンクでの発生交通量及び消滅交通量(ダミー車両でない車両に相当する)とは別に、交通評価指標を実測値に近づけるために各リンクで起点交通量又は終点交通量(ダミー車両とダミー車両でない車両とが混在する)を生成する。「発生交通量及び消滅交通量とは別に」とは、起点交通量又は終点交通量が、例えば、起終点情報に依拠しないということである。起点終点生成部14で生成する起点交通量はリンクに放出する車両の台数(補正台数)に相当し、終点交通量はリンクから回収する車両の台数(補正台数)に相当する。以下、補正台数を補正項とも称し、推定渋滞長を実測渋滞長に一致させるための補正項を渋滞長補正項(渋滞長補正)と称し、推定交通量を実測交通量に一致させるための補正項を交通量補正項(交通量補正)と称する。なお、本実施の形態で、ダミー車両とは、実測と交通シミュレータ50の推定とを合致させるために放出又は回収する便宜上の車両である。
 図15は交通状況と補正項との関係を示す説明図である。図15に示すように、実施の形態2の交通シミュレータ50は、渋滞判定部23により、任意のリンクで推定渋滞及び実測渋滞の両者がないと判定された場合、当該リンクにおいて交通量補正を行う。また、交通シミュレータ50は、渋滞判定部23により、任意のリンクで推定渋滞及び実測渋滞のいずれか一方又は両者があると判定された場合、当該リンクにおいて渋滞長補正を行う。
 渋滞長補正は、対象とするリンクで実測上、あるいはシミュレーション上のいずれか又は両方で渋滞ありと判定された場合に、実施の形態1(例えば、図6等)で説明したように、当該リンクでの車両の実測渋滞長と推定渋滞長算出部13で算出した推定渋滞長との差分である推定誤差がゼロ又は最小になる(推定誤差が後述のリンクの固有値に略一致する)ように起点交通量又は終点交通量を生成する。
 次に、交通量補正について説明する。上述のとおり、交通量補正では、対象とするリンクで実測上、あるいはシミュレーション上の両方で渋滞なしと判定された場合に、当該リンクでの車両の実測交通量と推定交通量算出部22で算出した推定交通量との差がゼロ又は最小になるように起点交通量又は終点交通量を生成する。まず、渋滞長補正に代えて交通量補正を行う必要がある理由について説明する。
 図16はリンクで実測される実測渋滞長の一例を示す模式図である。図16の例では、1つのリンクを例示している。図16Aは、リンクに対応する道路区間に車両感知器が設置されていない場合を示す。また、図16B及び図16Cは、リンクに対応する道路区間の地点Sに車両感知器が設置されている場合を示す。
 図16Aのように、リンクに車両感知器が設置されていない場合には、当該リンクでの渋滞長の実測値を計測することができないため、渋滞の有無を判定することができない。従って、図16Aに示す場合では、結局は当該リンクに渋滞が発生していないと判定せざるを得ない。
 図16Bのように、リンクの地点Sに車両感知器が設置されている場合であっても、車両の待ち行列の最後尾が地点Sよりも下流側にあるときには、車両感知器で渋滞を検出することができないので、渋滞の有無を判定することができない。従って、図16Bに示す場合では、結局は当該リンクに渋滞が発生していないと判定せざるを得ない。
 一方、図16Cのように、車両の待ち行列の最後尾が地点Sを超えて上流側にあるときには、車両感知器で渋滞を検出することができるので、渋滞ありと判定することができ、渋滞長は、リンク下流の交差点から地点Sまでの距離に相当する値又は当該値を基にした補正渋滞長として実測することができる。すなわち、図16A、図16Bに示すように、実際の道路区間の中には、渋滞ありとは判断することができないので、渋滞なしと判断される場合があった。なお、上述の補正渋滞長とは、複数の車両感知器を設置している場合、隣接する車両感知器での車両検出結果に基づいて、隣接する車両感知器の間のどの位置まで渋滞しているかを求めることである。
 図17はシミュレーションでの経路探索の一例を示す模式図である。図17に示すように、幹線道路R1は、幹線道路R2、R3と交差点C1、C5で交差している。また、幹線道路R4は、幹線道路R2、R3と交差点C2、C6で交差している。また、幹線道路R1とR4とを接続する接続道路R5が、交差点C3、C4で交差している。シミュレーション対象外の細街路R101は、幹線道路R2、接続道路R5、幹線道路R3とそれぞれ交差点C7、C8、C9で交差している。シミュレーション対象外の細街路R102は、幹線道路R2、接続道路R5とそれぞれ交差点C13、C10で交差している。また、シミュレーション対象外の細街路R103は、接続道路R5、幹線道路R3とそれぞれ交差点C11、C12で交差している。シミュレーション対象外の細街路R104は、幹線道路R4と交差点C4で交差している。
 シミュレーションで経路選択処理を行う場合、幹線道路同士を接続する接続道路、あるいはシミュレーション対象外の細街路と交差する接続道路では、右左折回数が多くなる(例えば、右折又は左折の回数が増える都度、所定のコストが加算される)ので、経路として選択されにくくなる。
 このため、図17において、実線で示す経路、すなわち、接続道路R5を経由する経路では、交差点C3又はC4での左折又は右折回数が加算され、コスト(旅行時間)が増加するため選択されず、代わりに図17の破線で示す経路が選択される。このため、接続道路R5では、シミュレーション上の交通量が実際の交通量よりも少なくなる傾向があり、シミュレーション上で渋滞が発生しないことになる。
 上述の図16及び図17で説明したような場合、すなわちシミュレーション対象の道路区間で実際の渋滞とシミュレーション上での渋滞の両者が発生していない場合、現状の渋滞長と評価条件設定後の渋滞長とを比較することができず、交通シミュレータによる現状の交通評価指標を再現することができない。そこで、本実施の形態の交通シミュレータ10では、実際の渋滞とシミュレーション上での渋滞の両者が発生していない場合には、渋滞長補正に代えて交通量補正を行う。なお、評価条件は、例えば、工事、事故又は災害などによる交通規制、道路の新設、交差点の改良などの交通環境変化、交通情報の提供、交通信号制御の調整などの交通対策を含む。
 図18は実施の形態2の交通シミュレータ50による交通量補正の一例を示す模式図である。図18に示すように、実施の形態2の交通シミュレータ50は、リンク単位であって所定の補正周期(例えば、5分など)の経過の都度、起点交通量(交通量の起点)としてダミー車両又はダミー車両でない車両(正規の車両)を放出し、又は終点交通量(交通量の終点)としてダミー車両又は正規の車両を回収することにより、推定交通量が実測交通量と一致するように推定交通量を補正する。
 図18の例では、リンク1では実測交通量が推定交通量より多いので、実測交通量と推定交通量との差に相当する台数(補正台数)の車両をリンク1で放出する。すなわち、正規の車両に加えてダミー車両又は正規の車両を走行させて交通量を多くする。
 また、リンク2では実測交通量が推定交通量より少ないので、実測交通量と推定交通量との差に相当する台数(補正台数)の車両をリンク2で回収する。すなわち、ダミー車両又は正規の車両の一部をシミュレーション対象外の抜け道を走行させることにより交通量を少なくする。
 図19はリンクの下流側の交通状況に影響を与えないための交通量補正時の再放出及び再回収の一例を示す模式図である。交通シミュレータ50では、推定交通量を実測値と合わせるために、推定交通量を補正した場合、そのままでは、その影響が下流のリンクに及ぶために、下流の交通量が変化する。例えば、上流リンクで推定交通量を実測交通量に合わせるため、起点交通量として車両が放出された場合、当該リンクからの流出交通量が増加するので下流への流入交通量が増加し、これが下流リンクの推定交通量に差異を生じさせる可能性がある。
 そこで、実施の形態2では、図19に示すように、各リンクでの補正項(起点交通量又は終点交通量の生成)を下流リンクに伝えないように、リンクに放出された車両はリンク下流の交差点出口で再回収し、また、リンク上で回収された車両はリンク下流の交差点出口で再放出する。これにより、補正による影響を下流リンクに与えることはない。
 上述のように、各リンク単位で交通量の実測値と推定値を合わせるように、起点交通量又は終点交通量を生成するので、交通量が少ない場合などの交通状況にかかわらず、各リンクで現状を正しく再現することができ、工事又は交通事故等による交通規制などの評価条件の変化による影響を反映した交通状況も正しく評価又は予測することが可能となる。
 また、シミュレーション対象のリンクで実測渋滞長及び推定渋滞長が渋滞閾値未満であると判定された場合、当該リンクで起点交通量又は終点交通量を生成することにより、シミュレーション対象のリンクで実際の渋滞とシミュレーション上での渋滞の両者が発生していない場合でも、起点交通量又は終点交通量を生成することにより、シミュレーション対象の全リンクでの交通状況を実際の交通状況に近似させることができる。
 また、実測交通量が推定交通量より多い場合、起点交通量として、実測交通量と推定交通量との差分に応じた台数の車両を放出することにより、当該リンクで、交通量の実測値が推定された交通量より多い場合でも、推定交通量の再現性を確保することができ、道路網の各リンクで同様の処理を行うことで、道路網の各リンクのみならず道路網全体としての交通評価指標の再現性を向上させることができる。
 また、実測交通量が推定交通量より少ない場合、終点交通量として、推定交通量と実測交通量との差分に応じた台数の車両を回収することにより、当該リンクで、交通量の実測値が推定された交通量より少ない場合でも、推定交通量の再現性を確保することができ、道路網の各リンクで同様の処理を行うことで、道路網の各リンクのみならず道路網全体としての交通評価指標の再現性を向上させることができる。
 識別符号付与部21は、起点終点生成部14で起点交通量としてリンクに車両(ダミー車両)を放出する場合、当該車両を識別する識別符号を付与する。発生消滅部17は、当該リンクの下流側で終点交通量としてダミー車両又はダミー車両でない車両(正規の車両)を回収する場合、識別符号が付与された車両を優先して回収する。任意のリンクで起点交通量として車両を放出した場合に、当該リンクの下流側(当該リンク及び当該リンクと異なるリンクを含む)で車両を回収するときに、放出した識別符号が付与された車両を優先的に回収することにより、任意のリンクで起点交通量を生成したことにより生じる影響を当該リンクの下流側に与えることを防止することができる。
 発生消滅部17は、上述のように、起点終点生成部14で任意のリンクで終点交通量を生成した場合、当該リンクの下流側で同等の交通量を発生(再放出)させる代わりに、次のように交通量を発生(再放出)させてもよい。発生消滅部17は、識別符号が付与された車両(ダミー車両)を優先して回収する場合、当該ダミー車両の再放出を禁止する禁止手段としての機能を有する。すなわち、ダミー車両を優先して回収した場合、回収したダミー車両は消滅させたままとする。ダミー車両は、実測とシミュレータでの推定とを合致させるために回収した便宜上の車両であるので、回収してそのまま消滅させたとしても問題がなく、不要な処理を省略することができる。なお、必ずしもダミー車両の識別符号を付与する必要はなく、仮に識別符号を付与しない場合でもダミー車両を回収した場合、当該ダミー車両の再放出を禁止することができる。また、ダミー車両でない車両を回収した場合には、再放出を禁止することなく、下流側で同等の交通量を発生させる。ダミー車両でない車両については、回収してそのまま消滅させた場合、本来の目的地へ到達する交通量が減少し、実際と合わなくなる可能性があるからである。
 上述の図14の例において、発生消滅部17は、必須の構成ではない。すなわち、交通量(車両)の再回収及び再放出は、必須ではなく省略することができる。再回収及び再放出を省略した場合には、放出または回収する補正台数による下流リンクへの影響は、下流リンクでの補正処理に委ねることができる。
 任意のリンクで起点交通量を生成した場合(車両をリンクに放出した場合)に、当該リンクの下流交差点出口で交通量(車両)を再回収しない場合には、以下のような方法を用いることができる。
 すなわち、起点交通量として車両をリンクに放出する場合、当該リンクに存在する1又は複数の車両の終点情報毎の割合に応じて、放出する車両に終点情報を割り当てる。当該リンクに存在(走行)する車両の終点情報の割合が、例えば、終点情報D1の車両がX1台、終点情報D2の車両がX2台、…、終点情報Dnの車両がXn台であるとすると、当該リンクに放出する車両(Y台)のうち、Y×X1/(X1+X2+…+Xn)台の車両に終点情報D1を割り当てる。また、同様に、放出する車両(Y台)のうち、Y×X2/(X1+X2+…+Xn)台の車両に終点情報D2を割り当てる。以下同様である。任意のリンクで起点交通量を生成した場合でも、いずれかのリンクの車両が突出して増加する事態、あるいは減少する事態を防止することができ、任意のリンクで起点交通量を生成したことにより生じる影響を当該リンクの下流側に与えることを防止することができる。
 なお、当該リンクに存在(走行)する車両の終点情報の割合を求める場合、車両をリンクに放出する時点で当該リンクに存在する車両の終点情報を用いてもよく、あるいは車両をリンクに放出する時点から直近の所定時間(例えば、5分など)の間に当該リンクに存在する車両の終点情報を用いてもよい。
 補正周期毎の推定交通量が推定することができる場合には、起点終点生成部14は、任意のリンクで起点交通量を放出する場合、当該リンクでの実測交通量と推定交通量との差分及び所定の交通量閾値の差に応じた台数の車両を放出する。交通量閾値は、例えば、シミュレータの構成に応じて適宜設定することができ、0でもよく、0以外の値でもよい。例えば、所定の交通量閾値を0とする場合に、当該リンクでの実測交通量と推定交通量との差分を実測交通量で除算した値が交通量差閾値(例えば、0.2)以上であるときは、実測交通量が推定交通量より大きければ実測交通量と推定交通量との差分に応じた車両を放出する。シミュレータの構成上、起点交通量だけでなく終点交通量も生成させる場合には、交通量差閾値は0.2など小さくすることができ、当該リンクでの実測交通量と推定交通量との差分に応じた台数の車両を放出する。また、シミュレータの構成上、起点交通量だけを生成し、終点交通量を生成しない場合には、実測交通量と推定交通量との差分に応じた台数の車両を放出したときに、車両を回収する処理が行われないので、放出する車両台数が過多となる事態も起こり得るので、この場合には、交通量差閾値を、例えば、0.8程度に大きくして当該リンクでの実測交通量と推定交通量との差分に応じた台数の車両を放出する。
 また、所定の交通量閾値を0以外とする場合には、起点終点生成部14は、当該リンクでの実測交通量と推定交通量との差分から所定の交通量閾値(例えば、実際の交通量の20%程度の値)を減算した値が正であれば、当該値の台数の車両を放出する。シミュレータの構成上、起点交通量だけでなく終点交通量も生成させる場合には、交通量閾値は実際の交通量の20%程度の小さい値とすることができる。また、シミュレータの構成上、起点交通量だけを生成し、終点交通量を生成しない場合には、実測交通量と推定交通量との差分に応じた台数の車両を放出したときに、車両を回収する処理が行われないので、放出する車両台数が過多となる事態も起こり得るので、この場合には、交通量閾値を、実際の交通量の80%程度のように大きくして、当該リンクでの実測交通量と推定交通量との差分及び所定の交通量閾値の差に応じた台数の車両を放出する。リンクでの実測交通量と推定交通量との差分及び所定の交通量閾値の差に応じた台数の車両を放出することにより、実際の交通量とシミュレーション上の交通量(推定交通量)とを一致させることができる。
 一方、補正周期毎の推定交通量が推定することができない場合には、起点終点生成部14は、任意のリンクで起点交通量を放出する場合、当該リンクでの実測交通量と当該リンクでの車両密度、車両速度及び所定時間の乗算値との差分から所定の交通量閾値を減算した値に応じた台数の車両を放出する。すなわち、推定交通量の代わりに車両密度、車両速度及び所定時間の乗算値を用いる。
 車両密度は、当該リンクで渋滞区間が存在する場合、渋滞区間を除いた区間での車両密度である。また、車両密度は、任意の時点での値でもよく、任意の周期毎に起点交通量を放出する場合には、複数周期分の平均値でもよく、あるいは前回周期での車両密度と今回周期の車両密度との重み付け平均でもよい。
 重み付け平均した車両密度は、例えば、[前回の車両密度×前回の非渋滞区間長×(1
-k)+今回の非渋滞区間に存在する車両台数×k]/[前回の非渋滞区間長×(1-k)+今回の非渋滞区間長×k]により求めることができる。ここで、kは重み係数であり、例えば、0.2などである。
 所定時間は、例えば、起点交通量を生成(放出)する処理の周期(補正周期)である。すなわち、所定時間の間の車両密度と車両速度との乗算により交通量を推定することができる。これにより、経路探索時に経路として選択されにくくなるリンクが存在する結果、当該リンクでの交通量が減少又は0になった場合でも、実際の交通量とシミュレーション上の交通量(推定交通量)とを一致させることができる。
 次に、実施の形態2の交通シミュレータ50の動作について説明する。図20、図21、図22及び図23は実施の形態2の交通シミュレータ50の評価条件設定前の処理手順を示すフローチャートである。交通シミュレータ50は、補正周期(例えば、5分)が経過したか否かを判定し(S111)、補正周期を経過した場合(ステップS111でYES)、すなわち、前回の補正のタイミングから5分経過した場合、対象リンクの実測渋滞長を取得し(S112)、推定渋滞長を算出する(S113)。
 交通シミュレータ50は、実測渋滞長が渋滞閾値未満であり、かつ推定渋滞長が渋滞閾値未満であるか否かを判定する(S114)。なお、交通シミュレータ50は、実測渋滞長を取得することができない場合には、実測渋滞長が渋滞閾値未満であると判定する。
 実測渋滞長が渋滞閾値未満であり、かつ推定渋滞長が渋滞閾値未満である場合(S114でYES)、交通シミュレータ50は、交通量補正を行うべく、当該リンクの実測交通量を取得し(S115)、推定交通量を算出する(S116)。
 交通シミュレータ50は、実測交通量から推定交通量を減算することにより、補正台数を算出し(S117)、補正台数の絶対値を実測交通量で除算した値が交通量閾値以上であるか否かを判定する(S118)。補正台数の絶対値を実測交通量で除算した値が交通量閾値(例えば、0.2)以上である場合(S118でYES)、交通シミュレータ50は、補正台数が0を超えるか(正であるか)否かを判定する(S119)。
 補正台数が0を超える(正である)場合(S119でYES)、すなわち実測交通量が推定交通量よりも多い場合、交通シミュレータ50は、補正台数の車両を当該リンクに放出し(S120)、補正台数及び補正周期を記録する(S122)。補正台数が0を超えない(負である)場合(S119でNO)、すなわち実測交通量が推定交通量よりも少ない場合、交通シミュレータ50は、補正台数の車両を当該リンクから回収し(S121)、ステップS122の処理を行う。
 交通シミュレータ50は、リンクに放出した車両を当該リンク下流交差点で再回収し(S123)、リンクから回収した車両を当該リンク下流交差点で再放出する(S124)。交通シミュレータ50は、起点(出発地)から車両を発生し、終点(目的地)で車両を回収し(S125)、信号灯器の信号灯色を、例えば、0.1秒進め、車両の移動モデルに従って車両を走行させ(S126)、シミュレーション周期(例えば、0.1秒)を終了する。
 交通シミュレータ50は、補正台数の絶対値を実測交通量で除算した値が交通量閾値以上でない場合(S118でNO)、交通量補正を行わずにステップS123以降の処理を行う。また、補正周期を経過していない場合(ステップS111でNO)、交通シミュレータ50は、補正を行わずにステップS123以降の処理を行う。
 実測渋滞長が渋滞閾値未満であり、かつ推定渋滞長が渋滞閾値未満でない場合(S114でNO)、すなわち、実測渋滞長が渋滞閾値以上であるか、あるいは推定渋滞長が渋滞閾値以上であるかのいずれかの条件を満たす場合、あるいは両者の条件を満たす場合、交通シミュレータ50は、推定誤差(実測渋滞長と推定渋滞長との差分)を算出(推定)する(S127)。
 交通シミュレータ50は、推定誤差がゼロより大きいか否かを判定し(S128)、推定誤差がゼロより大きい場合(S128でYES)、(推定誤差-リンクの固有値)がゼロより大きいか否かを判定する(S129)。
 (推定誤差-リンクの固有値)がゼロより大きい場合(S129でYES)、交通シミュレータ50は、補正台数を算出し(S130)、算出した補正台数の車両(ダミー車両又は正規の車両)を起点交通量としてリンクに放出する(S131)。
 交通シミュレータ50は、補正台数及び補正周期を記録し(S132)、ステップS123以降の処理を行う。
 (推定誤差-リンクの固有値)がゼロより大きくない場合(S129でNO)、交通シミュレータ50は、補正を行わずにステップS123以降の処理を行う。推定誤差がゼロより大きくない場合(S128でNO)、交通シミュレータ50は、推定誤差がゼロより小さいか否かを判定し(S133)、推定誤差がゼロより小さい場合(S133でYES)、(推定誤差+リンクの固有値)がゼロより小さいか否かを判定する(S134)。
 (推定誤差+リンクの固有値)がゼロより小さい場合(S134でYES)、交通シミュレータ50は、補正台数を算出し(S135)、算出した補正台数の車両(ダミー車両又は正規の車両)を終点交通量としてリンクから回収し(S136)、ステップS124以降の処理を行う。
 推定誤差がゼロより小さくない場合(S133でNO)、交通シミュレータ50は、推定誤差がゼロであるとして、補正を行わずにステップS124以降の処理を行う。また、(推定誤差+リンクの固有値)がゼロより小さくない場合(S134でNO)、交通シミュレータ50は、補正を行わずにステップS124以降の処理を行う。
 本実施の形態の交通シミュレータ50の1つの目的が、シミュレーション上の交通量が実際の交通量よりも少なくなる傾向を是正することにあるので、起点交通量だけを生成し、例えば、上述の図20乃至図23で例示した処理において、ステップS121の「リンクからの車両の回収」(終点交通量の生成)処理を省略することもできる。シミュレーションの補正周期によっては、リンクに存在する交通量が変動することで予想以上に増える場合もあり得るため、ステップS121の処理を省略する場合には、ステップS118における交通量閾値の値を若干大きめの値(例えば、0.8など)に設定することにより、推定交通量が少なくなり過ぎることを抑制することができる。なお、ステップS121の処理を省略する場合には、ステップS124の処理も省略する。
 上述の図20乃至図23で例示した処理は、シミュレーション周期(例えば、0.1秒)経過の都度繰り返し行われる。また、ステップS123、S124の処理を行わずに省略することもできる。この場合は、当該リンクの下流リンクで車両の放出又は回収を行う補正で調整する。当該リンクでの補正は、下流リンクに影響を与えるが、下流リンクでも補正処理が行なわれるので、推定渋滞長と実測渋滞長の差異、あるいは推定交通量と実測交通量の差異を小さくすることができる。
 交通シミュレータ50を用いる評価では、一般的に現状の交通評価指標と評価条件設定後の交通評価指標との相対比較が行なわれるが、図20乃至図23に例示した処理手順で得られた回収の補正値及び放出の補正値は、評価条件設定後の評価においても全く同様に回収の補正値及び放出の補正値として使うことができる。
 すなわち、交通量補正の場合、評価条件設定部19で渋滞長を含む交通評価指標を評価するための評価条件を設定する前に、起点終点生成部14は、当該リンクでの車両の実測交通量及び推定した推定交通量に基づいて、任意の周期毎に当該リンクで起点交通量又は終点交通量を生成する。任意のリンクの起点交通量は、当該リンクで放出する車両の台数(放出台数)に相当し、任意のリンクの終点交通量は、当該リンクで回収する車両の台数(回収台数)に相当する。任意の周期は、現状の交通評価指標を実測値に近づけるための補正項(補正値)を求める周期であり、例えば、10秒、50秒、1分、5分など、交通評価指標の内容に応じて適宜設定することができる。なお、渋滞長補正の場合については実施の形態1と同様である。
 起点終点生成部14は、生成した起点交通量又は終点交通量を周期毎に記憶部18に記録する。なお、起点交通量又は終点交通量の記録は、リンク毎に行う。そして、評価条件設定部19で評価条件を設定した後に、起点終点生成部14は、当該周期毎に、記録した起点交通量を当該リンクで放出し、記録した終点交通量を当該リンクで回収する。例えば、評価条件を設定する前に時刻9:00から5分毎の周期で、9:00、9:05、9:10、…のように起点交通量又は終点交通量を生成した場合、評価条件を設定後に当該周期、すなわち9:00、9:05、9:10、…のように5分周期で、評価条件設定前に生成した同じ時刻(周期)の起点交通量を放出し、評価条件設定前に生成した同じ時刻(周期)の終点交通量を回収して、交通評価指標を出力する。交通評価指標は、例えば、渋滞長、旅行時間、交通量、待ち行列長などである。
 評価条件を設定した後に、同じ周期毎に、記録した起点交通量を同じリンクで放出し、記録した終点交通量を同じリンクで回収することにより、現状再現時において補正周期毎に記憶した補正項を同様の手段で交通シミュレータに反映させるので、現状再現時における交通量、渋滞長、旅行時間、二酸化炭素排出量など交通状況(交通評価指標)と、想定ケース(現状と交通条件が変化したケース)での交通状況とを相対的に比較することができ、評価条件設定前後において交通評価指標を比較することができる。
 実施の形態2の交通シミュレータ50による評価条件設定後の処理手順は、図11及び図12で例示した実施の形態1の交通シミュレータ10の評価条件設定後の処理手順と同様である。
 図24及び図25は実施の形態2の交通シミュレータ50の評価条件設定後の処理手順を示すフローチャートである。図24及び図25に例示する処理は、交通量などを含む交通評価指標を評価するための評価条件を設定した後の処理を示す。
 交通シミュレータ50は、評価条件を設定し(S141)、補正周期(例えば、5分)が経過したか否かを判定し(S142)、補正周期を経過した場合(ステップS142でYES)、すなわち、前回の補正のタイミングから5分経過した場合、現在の周期と同じ周期の評価条件設定前の補正台数を取得する(S143)。
 交通シミュレータ50は、補正台数が放出台数であるか回収台数であるかを判定し(S144)、放出台数である場合(S144で放出)、補正台数がリンク上の放出可能台数より大きいか否かを判定する(S145)。
 補正台数がリンク上の放出可能台数より大きい場合(S145でYES)、交通シミュレータ50は、放出可能台数の車両をリンクに放出し(S146)、補正台数と放出可能台数との差分台数を次の周期の補正台数に加算する(S147)。
 交通シミュレータ50は、リンクに放出した車両を当該リンク下流交差点で再回収する(S149)。交通シミュレータ50は、起点(出発地)から車両を発生し、終点(目的地)で車両を回収し(S150)、信号灯器の信号灯色を、例えば、0.1秒進め、車両の移動モデルに従って車両を走行させ(S151)、シミュレーション周期(例えば、0.1秒)を終了する。
 補正台数がリンク上の放出可能台数より大きくない場合(S145でNO)、交通シミュレータ50は、補正台数の車両をリンクに放出し(S148)、ステップS149以降の処理を行う。また、補正周期を経過していない場合(ステップS142でNO)、交通シミュレータ50は、補正を行わずにステップS149以降の処理を行う。
 補正台数が回収台数である場合(S144で回収)、交通シミュレータ50は、補正台数がリンク上の存在台数より大きいか否かを判定する(S152)。補正台数がリンク上の存在台数より大きい場合(S152でYES)、交通シミュレータ50は、リンク上に存在する台数の車両をリンクから回収し(S153)、補正台数とリンク上の存在台数との差分台数を次の周期の補正台数に加算する(S154)。
 交通シミュレータ50は、リンクから回収した車両を当該リンク下流交差点で再放出し(S156)、ステップS150以降の処理を行う。補正台数がリンク上の存在台数より大きくない場合(S152でNO)、交通シミュレータ50は、補正台数の車両をリンクから回収し(S155)、ステップS156以降の処理を続ける。
 上述の図24及び図25で例示した処理は、シミュレーション周期(例えば、0.1秒)経過の都度繰り返し行われる。また、ステップS149、S156の処理を行わずに省略することもできる。この場合は、当該リンクの下流リンクで車両の放出又は回収を行う補正で調整する。当該リンクでの補正は、下流リンクに影響を与えるが、下流リンクでも補正処理が行なわれるので、推定渋滞長と実測渋滞長の差異を小さくすることができる。
 また、図21でステップS123を省略した場合には、図24のステップS149を省略し、図21でステップS124を省略した場合には、図25のステップS156を省略する。
 上述の交通シミュレータ50は、図36に例示するような、CPU、RAMなどを備えた汎用コンピュータ100を用いて実現することもできる。すなわち、図20乃至図25に示すような、各処理手順を定めたプログラムコードを記録媒体110に記録しておき、当該記録媒体110をコンピュータ100に備えられたRAMにロードし、プログラムコードをCPUで実行することにより、コンピュータ100上で交通シミュレータ50を実現することができる。なお、図20~図25に示すような、各処理手順を定めたプログラムコードは、記録媒体110に代えて、インタネットなどのネットワーク200を介してダウンロードすることもできる。
 上述のように、実施の形態2においても、評価条件を設定した後に、同じ周期毎に、評価条件設定前に記録した起点交通量を同じリンクで放出し、評価条件設定前に記録した終点交通量を同じリンクで回収することにより、現状再現時において補正周期毎に記憶した補正項を同様の手段で交通シミュレータに反映させるので、現状再現時における交通量、渋滞長、旅行時間、二酸化炭素排出量など交通状況(交通評価指標)と、想定ケース(現状と交通条件が変化したケース)での交通状況とを相対的に比較することができ、評価条件設定前後において交通評価指標を比較することができる。
 (1)本実施の形態の交通評価装置は、複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力するものであって、任意のリンクでの推定交通量を推定する交通量推定手段と、当該リンクでの実測交通量を取得する実測交通量取得手段と、当該リンクでの実測交通量及び推定交通量に基づいて、当該リンクで起終点情報に依拠しない起点交通量(補正出発交通量)又は起終点情報に依拠しない終点交通量(補正到着交通量)を生成する生成手段とを備え、生成手段で生成した起点交通量又は終点交通量に基づいて交通評価指標を出力する。
 上述の構成にあっては、任意のリンクでの車両の推定交通量を推定し、当該リンクでの車両の実測交通量及び推定交通量に基づいて、当該リンクで起終点情報に依拠しない起点交通量又は終点交通量を生成することにより、各リンク単位で交通量の実測値と推定値を合わせるように、起点交通量又は終点交通量を生成するので、交通量が少ない場合などの交通状況にかかわらず、各リンクで現状を正しく再現することができ、工事又は交通事故等による交通規制などの評価条件の変化による影響を反映した交通状況も正しく評価又は予測することが可能となる。
 (2)本実施の形態の交通評価装置は、任意のリンクでの推定渋滞長を推定する渋滞長推定手段と、当該リンクでの実測渋滞長を取得する実測渋滞長取得手段と、当該リンクでの実測渋滞長及び渋滞長推定手段で推定した推定渋滞長が所定の渋滞閾値未満であるか否かを判定する判定手段とを備え、生成手段は、判定手段で実測渋滞長及び推定渋滞長が渋滞閾値未満であると判定した場合、当該リンクで起点交通量又は終点交通量を生成する。渋滞閾値は、各リンクに固有の固有値であり、例えば、車両感知器の設置間隔(例えば、200m、250mなど)である。
 上述の構成にあっては、任意のリンクでの車両の推定渋滞長を推定し、当該リンクでの実測渋滞長及び推定した推定渋滞長が所定の渋滞閾値未満であるか否かを判定する。渋滞閾値は、各リンクに固有の固有値であり、例えば、車両感知器の設置間隔(例えば、200m、250mなど)である。実測渋滞長及び推定渋滞長が渋滞閾値未満であると判定された場合、生成手段は、当該リンクで起点交通量又は終点交通量を生成する。これにより、シミュレーション対象のリンクで実際の渋滞とシミュレーション上での渋滞の両者が発生していない場合でも、起点交通量又は終点交通量を生成することにより、シミュレーション対象の全リンクでの交通状況を実際の交通状況に近似させることができる。
 (3)本実施の形態の交通評価装置は、生成手段は、実測交通量が推定交通量より多い場合、起点交通量として、実測交通量と推定交通量との差分に応じた台数の車両を放出する。
 上述の構成にあっては、生成手段は、実測交通量が推定交通量より多い場合、起点交通量として、実測交通量と推定交通量との差分に応じた台数の車両を放出する。これにより、当該リンクで、交通量の実測値が推定された交通量より多い場合でも、推定交通量の再現性を確保することができ、道路網の各リンクで同様の処理を行うことで、道路網の各リンクのみならず道路網全体としての交通評価指標の再現性を向上させることができる。
 (4)本実施の形態の交通評価装置は、生成手段は、実測交通量が推定交通量より少ない場合、終点交通量として、推定交通量と実測交通量との差分に応じた台数の車両を回収する。
 上述の構成にあっては、生成手段は、実測交通量が推定交通量より少ない場合、終点交通量として、推定交通量と実測交通量との差分に応じた台数の車両を回収する。これにより、当該リンクで、交通量の実測値が推定された交通量より少ない場合でも、推定交通量の再現性を確保することができ、道路網の各リンクで同様の処理を行うことで、道路網の各リンクのみならず道路網全体としての交通評価指標の再現性を向上させることができる。
 (5)本実施の形態の交通評価装置は、任意のリンクで生成手段が起点交通量として放出する車両を識別する識別符号を付与する付与手段を備え、生成手段は、当該リンクの下流側で終点交通量として車両を回収する場合、識別符号が付与された車両を優先して回収する。
 上述の構成にあっては、起点交通量としてリンクに放出する車両(ダミー車両)を識別する識別符号を付与し、当該リンクの下流側で終点交通量として車両を回収する場合、識別符号が付与された車両を優先して回収する。任意のリンクで起点交通量として車両を放出した場合に、当該リンクの下流側(当該リンク及び当該リンクと異なるリンクを含む)で車両を回収するときに、放出した識別符号が付与された車両を優先的に回収することにより、任意のリンクで起点交通量を生成したことにより生じる影響を当該リンクの下流側に与えることを防止することができる。
 (6)本実施の形態の交通評価装置は、任意のリンクで生成手段が起点交通量として車両を放出する場合、当該リンクに存在する1又は複数の車両の終点情報毎の割合に応じて、放出する車両に終点情報を割り当てる割当手段を備える。
 上述の構成にあっては、起点交通量として車両をリンクに放出する場合、当該リンクに存在する1又は複数の車両の終点情報毎の割合に応じて、放出する車両に終点情報を割り当てる。当該リンクに存在(走行)する車両の終点情報の割合が、例えば、終点情報D1の車両がX1台、終点情報D2の車両がX2台、…、終点情報Dnの車両がXn台であるとすると、当該リンクに放出する車両(Y台)のうち、Y×X1/(X1+X2+…+Xn)台の車両に終点情報D1を割り当てる。また、同様に、放出する車両(Y台)のうち、Y×X2/(X1+X2+…+Xn)台の車両に終点情報D2を割り当てる。以下同様である。任意のリンクで起点交通量を生成した場合でも、いずれかのリンクの車両が突出して増加する事態、あるいは減少する事態を防止することができ、任意のリンクで起点交通量を生成したことにより生じる影響を当該リンクの下流側に与えることを防止することができる。
 (7)本実施の形態の交通評価装置は、生成手段で任意のリンクで終点交通量を生成した場合、当該リンクの下流側で同等の交通量を発生させる発生手段を備える。
 上述の構成にあっては、任意のリンクで終点交通量を生成した場合、当該リンクの下流側で同等の交通量を発生させる。任意のリンクで終点交通量を生成した場合、すなわち、当該回収点で車両を回収した場合、当該リンクでの交通量が減少するので下流への流入交通量が減少し、下流リンクでの交通状況が実測に合わない可能性がある。任意のリンクで終点交通量を生成した場合に、当該リンクの下流側で同等の交通量を発生させることにより、任意のリンクで終点交通量を生成したことにより生じる影響を当該リンクの下流側に与えることを防止することができる。
 (8)本実施の形態の交通評価装置は、生成手段は、任意のリンクで起点交通量を放出する場合、当該リンクでの実測交通量と推定交通量との差分及び所定の交通量閾値の差に応じた台数の車両を放出する。
 上述の構成にあっては、生成手段は、任意のリンクで起点交通量を放出する場合、当該リンクでの実測交通量と推定交通量との差分及び所定の交通量閾値の差に応じた台数の車両を放出する。交通量閾値は、例えば、シミュレータの構成に応じて適宜設定することができ、0でもよく、0以外の値でもよい。例えば、所定の交通量閾値を0とする場合に、当該リンクでの実測交通量と推定交通量との差分を実測交通量で除算した値が交通量差閾値(例えば、0.2)以上であるときは、実測交通量が推定交通量より大きければ実測交通量と推定交通量との差分に応じた車両を放出する。シミュレータの構成上、起点交通量だけでなく終点交通量も生成させる場合には、交通量差閾値は0.2など小さくすることができ、当該リンクでの実測交通量と推定交通量との差分に応じた台数の車両を放出する。また、シミュレータの構成上、起点交通量だけを生成し、終点交通量を生成しない場合には、実測交通量と推定交通量との差分に応じた台数の車両を放出したときに、車両を回収する処理が行われないので、放出する車両台数が過多となる事態も起こり得るので、この場合には、交通量差閾値を、例えば、0.8程度に大きくして当該リンクでの実測交通量と推定交通量との差分に応じた台数の車両を放出する。
 また、所定の交通量閾値を0以外とする場合には、生成手段は、当該リンクでの実測交通量と推定交通量との差分から所定の交通量閾値(例えば、実際の交通量の20%程度の値)を減算した値が正であれば、当該値の台数の車両を放出する。シミュレータの構成上、起点交通量だけでなく終点交通量も生成させる場合には、交通量閾値は実際の交通量の20%程度の小さい値とすることができる。また、シミュレータの構成上、起点交通量だけを生成し、終点交通量を生成しない場合には、実測交通量と推定交通量との差分に応じた台数の車両を放出したときに、車両を回収する処理が行われないので、放出する車両台数が過多となる事態も起こり得るので、この場合には、交通量閾値を、実際の交通量の80%程度のように大きくして、当該リンクでの実測交通量と推定交通量との差分及び所定の交通量閾値の差に応じた台数の車両を放出する。リンクでの実測交通量と推定交通量との差分及び所定の交通量閾値の差に応じた台数の車両を放出することにより、実際の交通量とシミュレーション上の交通量(推定交通量)とを一致させることができる。
 (9)本実施の形態の交通評価装置は、生成手段は、任意のリンクで起点交通量を放出する場合、当該リンクでの実測交通量と当該リンクでの車両密度、車両速度及び所定時間の乗算値との差分から所定の交通量閾値を減算した値に応じた台数の車両を放出する。
 上述の構成にあっては、生成手段は、任意のリンクで起点交通量を放出する場合、当該リンクでの実測交通量と当該リンクでの車両密度、車両速度及び所定時間の乗算値との差分から所定の交通量閾値を減算した値に応じた台数の車両を放出する。すなわち、推定交通量の代わりに車両密度、車両速度及び所定時間の乗算値を用いる。車両密度は、当該リンクで渋滞区間が存在する場合、渋滞区間を除いた区間での車両密度である。また、車両密度は、任意の時点での値でもよく、任意の周期毎に起点交通量を放出する場合には、複数周期分の平均値でもよく、あるいは前回周期での車両密度と今回周期の車両密度との重み付け平均でもよい。所定時間は、例えば、起点交通量を生成(放出)する処理の周期(補正周期)である。すなわち、所定時間の間の車両密度と車両速度との乗算により交通量を推定することができる。これにより、経路探索時に経路として選択されにくくなるリンクが存在する結果、当該リンクでの交通量が減少又は0になった場合でも、実際の交通量とシミュレーション上の交通量(推定交通量)とを一致させることができる。
 (10)本実施の形態の交通評価装置は、複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力するものであって、任意のリンクで起終点情報に依拠しない起点交通量又は起終点情報に依拠しない終点交通量を生成する生成手段と、当該リンクで生成手段が起点交通量として放出する車両を識別する識別符号を付与する付与手段とを備え、生成手段は、当該リンクの下流側で終点交通量として車両を回収する場合、識別符号が付与された車両を優先して回収する。
 上述の構成にあっては、任意のリンクで起終点情報に依拠しない起点交通量又は終点交通量を生成する。起点交通量及び終点交通量は、任意のリンクでの車両の推定渋滞長を推定し、当該リンクでの車両の実測渋滞長及び推定渋滞長に基づいて求めることができる。例えば、実測渋滞長が推定渋滞長より長い場合には、実測渋滞長と推定渋滞長との差分に応じた起点交通量(車両の放出)を算出し、実測渋滞長が推定渋滞長より短い場合には、推定渋滞長と実測渋滞長との差分に応じた終点交通量(車両の回収)を算出することができる。
 そして、起点交通量としてリンクに放出する車両(ダミー車両)を識別する識別符号を付与し、当該リンクの下流側で終点交通量として車両を回収する場合、識別符号が付与された車両を優先して回収する。任意のリンクで起点交通量として車両を放出した場合に、当該リンクの下流側(当該リンク及び当該リンクと異なるリンクを含む)で車両を回収するときに、放出した識別符号が付与された車両を優先的に回収することにより、任意のリンクで起点交通量を生成したことにより生じる影響を当該リンクの下流側に与えることを防止することができる。
 (11)本実施の形態の交通評価装置は、識別符号が付与された車両を優先して回収する場合、当該車両の再放出を禁止する禁止手段を備える。
 上述の構成にあっては、識別符号が付与された車両(ダミー車両)を優先して回収する場合、当該ダミー車両の再放出を禁止する。すなわち、ダミー車両を優先して回収した場合、回収したダミー車両は消滅させたままとする。ダミー車両は、実測とシミュレータでの推定とを合致させるために回収した便宜上の車両であるので、回収してそのまま消滅させたとしても問題がなく、不要な処理を省略することができる。
 (12)本実施の形態の交通評価装置は、複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力するものであって、任意のリンクで起終点情報に依拠しない起点交通量又は起終点情報に依拠しない終点交通量を生成する生成手段と、当該リンクで生成手段が起点交通量として車両を放出する場合、当該リンクに存在する1又は複数の車両の終点情報毎の割合に応じて、放出する車両に終点情報を割り当てる割当手段とを備える。
 上述の構成にあっては、任意のリンクで起終点情報に依拠しない起点交通量又は終点交通量を生成する。起点交通量及び終点交通量は、任意のリンクでの車両の推定渋滞長を推定し、当該リンクでの車両の実測渋滞長及び推定渋滞長に基づいて求めることができる。例えば、実測渋滞長が推定渋滞長より長い場合には、実測渋滞長と推定渋滞長との差分に応じた起点交通量(車両の放出)を算出し、実測渋滞長が推定渋滞長より短い場合には、推定渋滞長と実測渋滞長との差分に応じた終点交通量(車両の回収)を算出することができる。
 そして、起点交通量として車両をリンクに放出する場合、当該リンクに存在する1又は複数の車両の終点情報毎の割合に応じて、放出する車両に終点情報を割り当てる。当該リンクに存在(走行)する車両の終点情報の割合が、例えば、終点情報D1の車両がX1台、終点情報D2の車両がX2台、…、終点情報Dnの車両がXn台であるとすると、当該リンクに放出する車両(Y台)のうち、Y×X1/(X1+X2+…+Xn)台の車両に終点情報D1を割り当てる。また、同様に、放出する車両(Y台)のうち、Y×X2/(X1+X2+…+Xn)台の車両に終点情報D2を割り当てる。以下同様である。任意のリンクで起点交通量を生成した場合でも、いずれかのリンクの車両が突出して増加する事態、あるいは減少する事態を防止することができ、任意のリンクで起点交通量を生成したことにより生じる影響を当該リンクの下流側に与えることを防止することができる。
 ここで、従来の交通シミュレータについて述べる。実際の道路での渋滞長を実測する場合、道路に設置された車両感知器で計測する方法が用いられているが、現実には、車両感知器が設置されていない道路区間も存在し、このような道路区間では渋滞長を実測することができず、渋滞の発生を判断することができない。また車両感知器が設置されている道路区間であっても、車両感知器の設置場所まで車両の渋滞待ち行列が到達しなければ渋滞しているか否かが分からず、結局は渋滞なしと判断せざるを得ない。このため、実際の道路区間の中には、渋滞が発生していないと判断される場合があった。
 また、交通シミュレータで交通状況を再現する場合、細街路も含めた全ての道路網をシミュレータ上に設定するのが理想である。しかしながら、細街路まで設定した場合、設定量が多くなるばかりでなく、シミュレーションの計算時間も増加する。このため、シミュレーション対象とする地域の大きさに合わせて、例えば市町村道以上、都道府県道以上など幹線道路を対象路線として限定するのが一般的である。シミュレーションで経路選択処理を行う場合、幹線道路同士を接続する接続道路、あるいはシミュレーション対象外の細街路と接続している接続道路では、右左折回数が多くなる(例えば、右折又は左折の回数が増える都度、所定のコストが加算される)ので、経路として選択されにくくなる。このため、前述の接続道路では、シミュレーション上の交通量が実際の交通量よりも少なくなる傾向があり、シミュレーション上で渋滞が発生しないという事態になる場合がある。
 したがって、シミュレーション対象の道路区間で実際の渋滞とシミュレーション上での渋滞の両者が発生していない場合、現状の渋滞長と評価条件設定後の渋滞長とを比較することができず、交通シミュレータによる現状の交通評価指標を再現することができないという問題がある。
 上述の実施の形態の交通評価装置によれば、交通状況にかかわらず交通評価指標の再現性を向上させることができる。
(実施の形態3)
 上述の実施の形態では、交通評価指標として渋滞長又は交通量を用いる構成であったが、これに限定されるものではなく、待ち行列長を交通評価指標として用いることもできる。
 図26は所与のOD交通量に基づいた発生交通量及び消滅交通量の一例を示す模式図である。図26の例では、2つのリンク1、リンク2を例示している。また、交差点を示すノードには、リンク1、2から見て流出方向が右折である右折方向リンクを例示している。交通シミュレータは、所与のOD交通量に基づいて、シミュレーション区域S内の各リンクでの発生交通量と消滅交通量とを算出する。図26に示すように、リンク1の上流で発生交通量が存在し、リンク1の下流で消滅交通量が存在する。なお、リンク1の途中で交通量の発生または消滅があってもよい。同様に、リンク2の上流で発生交通量が存在し、リンク1の下流で消滅交通量が存在する。なお、リンク1とリンク2とが交わる点(交差点)では、他のリンクからの流入交通や流出交通が存在する。
 そして、各リンクで算出された発生交通量及び消滅交通量を用いて交通評価指標として渋滞長、旅行時間、交通量、待ち行列長などを出力する。実施の形態3に係る交通シミュレータ(交通評価装置)は、日本のように左側通行の道路を前提とし、任意のリンクでの右折待ち行列を推定し、当該リンク下流の交差点での信号灯色の状態(信号の切り替わり状態)に応じて、当該リンクから右折待ちの車両を回収することにより、交通評価指標の再現性を向上させるものである。なお、米国のように右側通行の道路では、任意のリンクでの左折待ち行列を推定し、当該リンク下流の交差点での信号灯色の状態(信号の切り替わり状態)に応じて、当該リンクから左折待ちの車両を回収すればよい。
 図27は実施の形態3の交通シミュレータ60の構成例を示すブロック図である。実施の形態1、2との相違点は、待ち行列長算出部30、信号情報判定部31、車両回収部32、再放出部33を備える点である。なお、実施に携帯1、2と同様の箇所は同一符号を付して説明を省略する。なお、車両回収部32は、起点終点生成部14が生成する起点交通量及び終点交通量のうち、終点交通量を生成する機能に相当するものである。
 交通シミュレータ60には、入力データとして、例えば、車両の走行速度、加速減速特性、車両の走行の起点終点情報、交通量、実測渋滞長、実測交通量、リンクが交差する各交差点の信号灯器の信号情報(信号制御情報)などのデータが与えられる。
 交通シミュレータ60は、任意のリンクの下流側の交差点の信号情報を任意の周期毎に取得する。任意の周期は、現状の交通評価指標を実測値に近づけるための補正項(補正値)を求める周期であり、例えば、10秒、50秒、1分、5分など、交通評価指標の内容に応じて適宜設定することができる。なお、以下の説明では、補正周期を10秒とするが、これに限定されるものではない。
 まず、交通シミュレータ60で解決する課題である右折車両又は左折車両の集中による直進車線の閉塞について説明する。図28は右折車両の集中による直進車線の閉塞を示す模式図である。図28に示すように、シミュレーション対象である幹線道路(例えば、都道府県道路)R1とR2とが交差点C3で交差している。また、シミュレーション対象外である市町村道路R101、R102が、それぞれ交差点C2、C1で幹線道路R1と交差している。なお、図28の道路構成は一例である。
 実際に幹線道路R1を交差点C3の方向へ走行する車両は、交差点C1、あるいは交差点C2でそれぞれ市町村道路R101、R102の方へ右折することができるので、交差点C1、C2で右折する車両(交通量)がある程度は存在する。しかし、シミュレーション上では、市町村道路R101、R102は対象外であって存在しないものとみなされる。このため、実際には交差点C1、C2で右折する車両が、シミュレーション上では右折できないため、シミュレーション上では交差点C3で右折する(矢印Aで示す)ことになり、交差点C3で右折する車両が集中して、右折車両による直進車線の閉塞が生じることになる。
 実施の形態3の交通シミュレータ60は、このような直進車線の閉塞を防止して、交通状況(交通評価指標)を正しく再現するものである。
 待ち行列長算出部30は、交通量算出部12で算出した交通量に基づいて、任意の補正周期毎に、任意のリンクの下流交差点での対向直進車両と交錯する方向の待ち行列長を推定する待ち行列長推定手段としての機能を有する。対向直進車両と交錯する方向とは、例えば、日本のように左側通行では右折方向であり、米国のように右側通行では左折方向である。本実施の形態では、日本のように左側通行であるとして、対向直進車両と交錯する方向は右折方向であるとする。また、待ち行列長を求める場合、車両の走行速度、加速減速特性、当該リンク両端の交差点での信号現示、リンク長などのパラメータを記憶部18に記憶しておき、当該パラメータを使用することができる。
 信号情報判定部31は、任意のリンク下流交差点の当該リンクに対する信号が、現在の周期で赤であり、かつ直近の周期で青である条件を充足するか否かを判定する判定手段としての機能を有する。信号情報判定部31は、当該リンクを交差点に向かって走行する車両に対する当該交差点での信号が、現在の周期で赤であり、かつ直近の周期で青である条件を充足するか否かを判定する。
 現在の周期とは、補正項(車両回収部17での回収台数に相当)を求める際の現在の補正周期であり、直近の周期とは、現在の補正周期の1つ前の補正周期である。例えば、補正周期が10秒である場合、現在の周期を現時点とすると、直近の周期は、現時点から10秒前の時点となる。また、現在の周期で赤であり、かつ直近の周期で青である条件は、信号の切り替わりを判定するための条件であり、青信号(青矢)から赤信号へ切り替わったか否かを判定している。
 当該条件を充足しない場合とは、例えば、補正周期を10秒としたときに、現時点から10秒前の時点と現時点とで、どちらも赤信号の場合、赤信号から青信号に切り替わった場合、どちらも青信号の場合などである。
 また、当該条件を充足する場合とは、例えば、補正周期を10秒としたときに、現時点から10秒前の時点と現時点とで、青(青矢)信号から赤信号へ切り替わった場合である。
 車両回収部32は、当該条件を充足しない場合には、推定した待ち行列長から所定長を減算した長さに相当する台数の車両を当該リンクから回収する。所定長は、交差点の位置(停止視の位置)からの長さであり、車両を回収する位置に相当する。すなわち、右折待ちの車両から所定長に相当する車両を差し引いた残りの車両をシミュレーション上右折車線から回収することで直進車線の閉塞を生じさせないようにする。
 車両をリンクから回収することにより、シミュレーション上対象外の道路が存在する場合でも、直進車線の閉塞が生じることを防止して、交通評価指標を正しく再現することができる。また、交通環境などの評価条件を設定する前では、シミュレーション上信号制御が適切である状態を再現することができ、交通環境の変化などで評価条件を設定した後のシミュレーションでは、交通環境の変化を忠実に再現することが可能となる。
 図29は右折専用車線を備える交差点付近の一例を示す模式図である。図29に示すように、交差点の停止線から地点S1までの間に長さL1の右折専用車線を設けてある。上述の所定長は、車両を回収する位置(地点)S2の停止線からの距離であり、所定長をL2とする。所定長L2は、例えば、右折専用車線(流出方向用の専用車線)の長さL1から補正周期(例えば、10秒)の間に右折専用車線に到達する車両台数の最大値に相当する長さを減算した長さにすることができる。すなわち、L1-L2が、補正周期(例えば、60秒)の間に右折専用車線に到達する車両台数の最大値に相当する長さである。
 例えば、右折専用車線の長さL1を100m(平均車頭間隔8mで除算すると車両12台に相当する)、補正周期の10秒の間に右折専用車線に到達する右折車両の最大値を3台(長さ24mに相当する)とすると、所定長L2は、76m(100-24)で凡そ9台分の長さに相当する。
 シミュレーションで現状の再現時(評価条件設定前)に、待ち行列長算出部15で算出した右折待ち車両が1サイクル(補正周期)当たり15台であったとする。なお、信号情報判定部16での判定結果は、前述の条件を充足しないとする。この場合には、右折専用車線の地点S2(停止線より所定長L2)より上流に停止している車両は回収されるので、右折待ち車両15台のうち、先頭の1台目から9台目までは、右折専用車線に停止し、10台目から15台目までの車両がリンクから回収される。
 図29の(L1-L2)の区間は、補正周期の間に右折専用車線に到達する車両台数の最大値に相当する長さがあるので、補正周期の間において、右折専用車線から右折車両があふれ出す事態を防止することができ、右折車両による直線車線の閉塞を生じさせない。
 図30はリンクから車両を回収する場合のダミー車線の一例を示す模式図である。図30に示すように、リンクと流出方向のリンクとを接続するダミーのリンク(暫定リンク)を備える。ダミーのリンクとは、交差点の信号灯色に関係なく車両を回収することができる仮想の車線である。ダミーのリンクを通じて車両を回収することにより、シミュレーション上の所望の交差点へ向かうリンクで車両を回収することができる。
 車両回収部32は、信号情報判定部31での判定結果が前述の条件を充足する場合には、推定した待ち行列長に相当する台数の車両を回収する。当該条件を充足する場合とは、例えば、補正周期を10秒としたときに、現時点から10秒前の時点と現時点とで、青(青矢)信号から赤信号へ切り替わった場合である。
 当該条件を充足する場合には、青信号から赤信号に切り替わる間に右折待ちの車両がすべて交差点から所望の流出方向へ走行したとして、シミュレーション上右折待ちのすべての車両を回収することで、右折のための青信号時間は適切(例えば、右折感応制御が適切)であるとする。すなわち、右折感応制御によって青時間を延長する代わりに、赤信号に切り替わった時点で右折待ち車両をすべて回収することにより、右折待ち車両を適切に捌くことを可能としている。
 これにより、シミュレーション上対象外の道路が存在する場合でも、直進車線の閉塞が生じることを防止して、交通評価指標を正しく再現することができる。また、交通環境などの評価条件を設定する前では、シミュレーション上信号制御が適切である状態を再現することができ、交通環境の変化などで評価条件を設定した後のシミュレーションでは、交通環境の変化を忠実に再現することが可能となる。
 なお、右折感応制御によって青時間を延長する代わりに、交通シミュレータ60に右折感応機能など右折車の交通量に応じて青時間を逐次調整する機能が組み込まれている場合には、信号の切り替わり時点(例えば、信号が青から赤に変化した時点)で、車両を全て回収する処理は必要ない。この場合には、信号情報判定部31は具備しなくてもよい。
 また、仮に交通シミュレータ60に右折感応機能がある場合でも、シミュレータ上は右折可能な交差点に右折車が集中するので、信号が青から赤に変化した時点で、右折車を回収する方がよい。すなわち、原則としては、交通シミュレータ60に右折感応制御機能などが組み込まれていれば、右折車の回収は必要ない。ただし、シミュレータ上は右折可能な交差点に右折車が集中してしまうので、右折車の回収も併用するのが望ましい。
 再放出部33は、任意のリンクから車両(右折待ち車両)を回収した場合、当該リンクの下流側で同等の車両を再放出する。任意のリンクで車両(右折車両)を回収した場合、当該リンクでの交通量が減少するので下流への流入交通量が減少し、下流リンクでの交通評価指標の推定値と実測値との差異を生じる可能性がある。任意のリンクで車両を回収した場合に、当該リンクの下流側で同等の車両を再放出することにより、リンクで車両を回収したことにより生じる影響を当該リンクの下流側に与えることを防止することができる。また、任意のリンクで車両を回収した場合に、当該リンクの下流側で同等の車両を再放出するときには、回収時に回収した車両の終点(本来の消滅地点)を記憶しておき、再放出の際に各車両に記憶しておいた終点を与えることもできる。なお、他の方法で終点を与えてもよい。
 なお、車両回収部32で任意のリンクから車両(右折待ち車両)を回収した場合、再放出部33による、当該リンクの下流側で同等の車両の再放出をさせないようにすることもできる。
 なお、再放出部33は、必須の構成ではない。すなわち、車両の再放出は、必須ではなく省略することができる。再放出を省略した場合には、車両を回収することによる下流リンクへの影響は、下流リンクでの補正処理に委ねることができる。
 次に、本実施の形態の交通シミュレータ60の動作について説明する。図31は実施の形態3の交通シミュレータ60の現状再現時の処理手順を示すフローチャートである。現状再現時とは、交通環境などの評価条件を設定する前のシミュレーションである。交通シミュレータ60は、補正周期(例えば、10秒など)が経過したか否かを判定し(S211)、補正周期を経過した場合(S211でYES)、すなわち、前回の補正のタイミングから10秒経過した場合、信号情報を取得し(S212)、右折待ち行列長を算出する(S213)。
 交通シミュレータ60は、現在の補正周期での信号が赤であり、かつ直近の補正周期での信号が青であるか否を判定し(S214)、当該条件を充足する場合(S214でYES)、右折車線上の全車両(右折車両)を回収し(S215)、後述のステップS217の処理を行う。
 交通シミュレータ60は、前述の条件を充足しない場合(S214でNO)、右折車線上で停止線から閾値(所定長)以上(上流)の位置で停止している車両(右折車両)を回収する(S216)。
 交通シミュレータ60は、回収台数を時刻とともに記憶部18に記録し(S217)、右折車線上から回収した車両をリンク下流交差点で右折方向に再放出する(S218)。交通シミュレータ60は、起点(出発地)から車両を発生し、終点(目的地)で車両を回収し(S219)、信号灯器の信号灯色を、例えば、0.1秒進め、車両の移動モデルに従って車両を走行させ(S220)、シミュレーション周期(例えば、0.1秒)を終了する。
 補正周期を経過していない場合(S211でNO)、交通シミュレータ60は、ステップS218以降の処理を行う。
 図32は実施の形態3の交通シミュレータ60の評価条件設定後の処理手順を示すフローチャートである。交通シミュレータ60は、評価条件を設定し(S231)、補正周期(例えば、10秒)が経過したか否かを判定し(S232)、補正周期を経過した場合(S232でYES)、すなわち、前回の補正のタイミングから10秒経過した場合、現在の周期と同じ周期の評価条件設定前の補正台数(回収台数)を取得する(S233)。
 交通シミュレータ60は、補正台数がリンク上の存在台数より多いか(大きいか)否かを判定し(S234)、補正台数がリンク上の存在台数より多い場合(S234でYES)、リンク上に存在する台数の車両をリンクから回収し(S235)、補正台数とリンク上の存在台数との差分台数を次の補正周期の補正台数に加算する(S236)。
 補正台数がリンク上の存在台数より多くない場合(S234でNO)、交通シミュレータ60は、補正台数の車両をリンクから回収する(S237)。交通シミュレータ60は、右折車線上から回収した車両をリンク下流交差点で右折方向に再放出する(S238)。
 交通シミュレータ60は、起点(出発地)から車両を発生し、終点(目的地)で車両を回収し(S239)、信号灯器の信号灯色を、例えば、0.1秒進め、車両の移動モデルに従って車両を走行させ(S240)、シミュレーション周期(例えば、0.1秒)を終了する。補正周期を経過していない場合(S232でNO)、交通シミュレータ10は、ステップS238以降の処理を行う。
 上述の図31及び図32で例示した処理は、シミュレーション周期(例えば、0.1秒)経過の都度繰り返し行われる。また、ステップS218の処理を行わずに省略することもできる。また、図31でステップS218を省略した場合には、図32のステップS238を省略する。
 なお、評価条件設定前に、周期によっては、回収する車両がない場合もあり得る。この場合には、評価条件設定後に同じ周期での車両の回収は行わない。
 上述の交通シミュレータ60は、図36に例示するような、CPU、RAMなどを備えた汎用コンピュータ100を用いて実現することもできる。すなわち、図31、図32に示すような、各処理手順を定めたプログラムコードを記録媒体110に記録しておき、当該記録媒体110をコンピュータ100に備えられたRAMにロードし、プログラムコードをCPUで実行することにより、コンピュータ100上で交通シミュレータ60を実現することができる。なお、図31、図32に示すような、各処理手順を定めたプログラムコードは、記録媒体110に代えて、インタネットなどのネットワーク200を介してダウンロードすることもできる。
 上述のとおり、本実施の形態の交通シミュレータ60は、シミュレーション対象外の道路が存在する場合であっても、交通評価指標の再現性を向上させることができる。交通評価指標の再現性が高まることにより、評価条件設定後の交通評価指標も正しく評価することが可能となる。
 また、評価条件を設定した後に、同じ周期毎に、評価条件設定前に記録した補正台数(回収台数)を同じリンクで回収することにより、現状再現時において補正周期毎に記憶した補正項を同様の手段で交通シミュレータに反映させるので、現状再現時における交通量、渋滞長、旅行時間、二酸化炭素排出量など交通状況(交通評価指標)と、想定ケース(現状と交通条件が変化したケース)での交通状況とを相対的に比較することができ、評価条件設定前後において交通評価指標を比較することができる。
 上述の実施の形態3では、日本のように左側通行であるとして、対向直進車両と交錯する方向は右折方向であるとし、右折車両の回収について説明したが、これに限定されるものではなく、米国のように右側通行の道路の場合には、対向直進車両と交錯する方向は左折方向であり、実施の形態3は左折車両に対しても同様に適用することができる。また、原則として、対向直進車両と交錯する方向に曲がる車両について車両を回収するが、それ以外の方向に曲がる車両についても、つまり、日本のように左側通行の道路において、右折車両と左折車両の両方について車両を回収してもよい。日本のように左側通行の道路において、左折待ち車両が増加した場合に当該左折待ち車両の後続の直進車両がスムーズに交差点を通過することができないことを抑制することができるからである。
 (1)本実施の形態の交通評価装置は、複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力するものであって、任意のリンクの下流側の交差点の信号情報を任意の周期毎に取得する信号情報取得手段と、当該周期の交差点での対向直進車両と交錯する方向の待ち行列長を推定する待ち行列長推定手段と、交差点の当該リンクに対する信号が、現在の周期で赤であり、かつ直近の周期で青である条件を充足するか否かを判定する判定手段と、判定手段で当該条件を充足しないと判定した場合、待ち行列長推定手段で推定した待ち行列長から所定長を減算した長さに相当する台数の車両を当該リンクから回収する回収手段とを備える。
 上述の構成にあっては、任意のリンクの下流側の交差点の信号情報を任意の周期毎に取得する。任意の周期は、現状の交通評価指標を実測値に近づけるための補正項(補正値)を求める周期であり、例えば、10秒、50秒、1分、5分など、交通評価指標の内容に応じて適宜設定することができる。
 当該周期の当該交差点での対向直進車両と交錯する方向の待ち行列長を推定する。対向直進車両と交錯する方向とは、例えば、日本のように左側通行では右折方向であり、米国のように右側通行では左折方向である。以下の説明では、日本のように左側通行であるとして、対向直進車両と交錯する方向は右折方向であるとする。当該交差点の当該リンクに対する信号(すなわち、当該リンクを交差点に向かって走行する車両に対する当該交差点での信号)が、現在の周期で赤であり、かつ直近の周期で青である条件を充足するか否かを判定する。現在の周期とは、補正項を求める際の現在の補正周期であり、直近の周期とは、現在の補正周期の1つ前の補正周期である。例えば、補正周期が10秒である場合、現在の周期を現時点とすると、直近の周期は、現時点から10秒前の時点となる。また、現在の周期で赤であり、かつ直近の周期で青である条件は、信号の切り替わりを判定するための条件であり、青信号(青矢)から赤信号へ切り替わったか否かを判定している。
 当該条件を充足しない場合とは、例えば、補正周期を10秒としたときに、現時点から10秒前の時点と現時点とで、どちらも赤信号の場合、赤信号から青信号に切り替わった場合、どちらも青信号の場合などである。当該条件を充足しない場合には、推定した待ち行列長から所定長を減算した長さに相当する台数の車両を当該リンクから回収する。所定長は、交差点の位置(停止視の位置)からの長さであり、車両を回収する位置に相当する。すなわち、右折待ちの車両から所定長に相当する車両を差し引いた残りの車両をシミュレーション上右折車線から回収することで直進車線の閉塞を生じさせないようにする。車両をリンクから回収することにより、シミュレーション上対象外の道路が存在する場合でも、直進車線の閉塞が生じることを防止して、交通評価指標を正しく再現することができる。また、交通環境などの評価条件を設定する前では、シミュレーション上信号制御が適切である状態を再現することができ、交通環境の変化などで評価条件を設定した後のシミュレーションでは、交通環境の変化を忠実に再現することが可能となる。
 (2)本実施の形態の交通評価装置は、回収手段は、判定手段で当該条件を充足すると判定した場合、待ち行列長推定手段で推定した待ち行列長に相当する台数の車両を回収する。
 上述の構成にあっては、当該条件を充足する場合、前推定した待ち行列長に相当する台数の車両を回収する。当該条件を充足する場合とは、例えば、補正周期を10秒としたときに、現時点から10秒前の時点と現時点とで、青(青矢)信号から赤信号へ切り替わった場合である。当該条件を充足する場合には、青信号から赤信号に切り替わる間に右折待ちの車両がすべて交差点から所望の流出方向へ走行したとして、シミュレーション上右折待ちのすべての車両を回収することで、右折のための青信号時間は適切(例えば、右折感応制御が適切)であるとする。これにより、シミュレーション上対象外の道路が存在する場合でも、直進車線の閉塞が生じることを防止して、交通評価指標を正しく再現することができる。また、交通環境などの評価条件を設定する前では、シミュレーション上信号制御が適切である状態を再現することができ、交通環境の変化などで評価条件を設定した後のシミュレーションでは、交通環境の変化を忠実に再現することが可能となる。
 (3)本実施の形態の交通評価装置は、当該リンクと当該流出方向のリンクとを接続する暫定リンクを備え、回収手段は、当該暫定リンクを通じて車両を回収する。
 上述の構成にあっては、リンクと流出方向のリンクとを接続する暫定リンクを備える。暫定リンクとは、ダミーの車線であり、信号灯色に関係なく車両を回収することができる仮想の車線である。暫定リンクを通じて車両を回収することにより、シミュレーション上の所望の交差点へ向かうリンクで車両を回収することができる。
 (4)本実施の形態の交通評価装置は、所定長は、流出方向用の専用車線の長さから当該周期の間に専用車線に到達する車両台数の最大値に相当する長さを減算した長さである。
 上述の構成にあっては、所定長は、流出方向用の専用車線の長さから当該周期の間に当該専用車線に到達する車両台数の最大値に相当する長さを減算した長さである。例えば、専用車線が右折専用車線であり、右折専用車線の長さをL1とし、所定長(交差点の位置からの長さであり、車両を回収する位置に相当する)をL2とすると、L1-L2が、補正周期(例えば、10秒)の間に右折専用車線に到達する車両台数の最大値に相当する長さである。すなわち、車両を回収する位置(交差点から所定長L2)を、右折専用車線の長さをL1から補正周期の間に右折専用車線に到達する車両台数の最大値に相当する長さを差し引いた値にすることにより、右折専用車線から車両があふれ出す事態を防止することができる。
 (5)本実施の形態の交通評価装置は、複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力するものであって、任意のリンクの下流側の交差点の信号情報を任意の周期毎に取得する信号情報取得手段と、当該周期の交差点での対向直進車両と交錯する方向の待ち行列長を推定する待ち行列長推定手段と、交差点の当該リンクに対する信号が、現在の周期で赤であり、かつ直近の周期で青である条件を充足するか否かを判定する判定手段と、判定手段で当該条件を充足すると判定した場合、待ち行列長推定手段で推定した待ち行列長に相当する台数の車両を当該リンクから回収する回収手段とを備える。
 ここで、従来の交通シミュレータについて述べる。実際の道路網を想定して、交通シミュレータで交通状況を再現する場合、細街路も含めた全ての道路網をシミュレータ上に設定するのが理想である。しかしながら、細街路まで設定した場合、設定量が多くなるばかりでなく、シミュレーションの計算時間も増加する。このため、シミュレーション対象とする地域の大きさに合わせて、例えば市町村道以上、都道府県道以上など幹線道路を対象路線として限定するのが一般的である。
 このように対象路線を限定した場合、例えば、日本のように左側通行の道路において、市町村道をシミュレーション対象外とし、都道府県道をシミュレーション対象とした場合に、実際には、都道府県道から右折して市町村道を走行する車両が存在するにも関わらず、シミュレーション上では市町村道が存在しないので、都道府県道から右折して市町村道を走行する車両は、シミュレーション上では都道府県道路以上の道路が交差する交差点で右折することになる。
 つまり、シミュレーション対象である都道府県道以上の道路が交差する交差点で右折する車両(交通量)が実際よりも多くなる。この結果、シミュレーション上で、例えば、日本のように左側通行の道路において右折待ちの車両が交差点の手前で増加して右折待ち車両の待ち行列長が長くなり、右折待ち車両が直進車線にまではみ出てしまい直進車線の閉塞が頻発するようになる。そして、右折車両が交差点の手前で直進車線を閉塞すると、交差点の処理量が低下し、渋滞が急激に延伸して、やがてはシミュレーション上の道路網のほとんどが渋滞するグリッドロック(Gridlock)現象が発生する。なお、米国のように右側通行の道路では、左折待ちの車両で同様の問題が発生する。
 このように、シミュレーション対象外の道路が交差する交差点では、日本のように左側通行の道路において実際には右折することができるにも関わらず、シミュレーション上では右折できないため、シミュレーション上の交差点に右折車両が集中する結果、直進車線の閉塞を生じ、交通状況(交通評価指標)を正しく再現することができないという問題がある。
 本実施の形態の交通評価装置によれば、シミュレーション対象外の道路が存在する場合でも、交通評価指標の再現性を向上させることができる。
 上述の実施の形態1~3では、OD交通量(OD表)に従って、交通量算出部12で算出した任意のリンクでの発生交通量及び消滅交通量は、ダミー車両でない車両に相当するものであり、補正項(起点交通量又は終点交通量)として放出又は回収される車両にはダミー車両又はダミー車両でない車両である。ダミー車両の放出又は回収の頻度、あるいは台数は、できるだけ少ない方が良いので、車両を回収する場合、あるいは車両を放出する場合に、実施の形態1~3において、以下のようにすることができる。
 図33はリンク上の車両の一例を示す説明図である。図33に示すように、リンク1上には、例えば、ダミー車両でない車両(模様あり)が4台、ダミー車両(模様なし)が2台走行しているとする。リンク1、2には、それぞれ併設した形でダミーのリンクが存在する。
 ダミーのリンク(ダミーリンクとも称する)は、各リンクに対して設けられた仮想のリンクであり、例えば、シミュレーション上で表現されていない細街路などの道路への車両の流入出を扱うために設けている。なお、ダミーリンクは、交通シミュレータの画面上で仮想のリンクとして表示されるものではなく、シミュレーション上、リンクから回収した車両(ダミー車両又はダミー車両でない車両)を待機させるスペースである。
 シミュレーション上では、シミュレーション結果と実計測値との差分の車両をダミーリンクへ移動させること、すなわち、シミュレーション上で表現されていない道路であるダミーリンクへ移動させることで、シミュレーション結果と実計測値が一致するように補正する。
 上述の実施の形態では、発生消滅部17は、識別符号が付与された車両(ダミー車両)を優先して回収する場合、当該ダミー車両の再放出を禁止する禁止手段としての機能を有し、ダミー車両を優先して回収した場合、回収したダミー車両は消滅させたままとすることもできる。以下、その具体例を説明する。
 まず、車両を回収する一例を説明する。図34はダミー車両を優先的に回収する方法の一例を示す説明図である。図34の例は、図33に例示したリンク1上の車両から3台の車両を回収する場合に、ダミー車両を優先的に回収する例を示す。図33の例では、リンク1上に2台のダミー車両と4台のダミー車両でない車両が存在している。リンク1から3台の車両を回収する場合、ダミー車両を優先して、2台のダミー車両をすべて回収し、不足分である1台の回収車両をダミー車両でない車両から回収する。この場合、ダミー車両の抜き取った部分の車間が空くため、渋滞長などを正しく表現するために後続の車両を前に詰める。
 図34に示すように、回収した車両のうち、ダミー車両でない車両は、リンク1の下流側(例えば、リンク2)へ再放出すべくリンク1に併設のダミーリンクへ移動させる。当該ダミー車両でない車両は、リンク1の下流側での再放出待ちとする。
 また、図34に示すように、回収した車両のうち、ダミー車両は、リンク1に併設のダミーリンクへ移動せずに消滅させる。当該ダミー車両は再放出しない。
 次に、車両を回収する他の例を説明する。図35は渋滞末尾の車両から回収する方法の一例を示す説明図である。図35の例は、図33に例示したリンク1上の車両から3台の車両を回収する場合に、渋滞末尾から車両を回収する例を示す。図33の例では、リンク1上に2台のダミー車両と4台のダミー車両でない車両が存在している。リンク1から3台の車両を回収する場合、渋滞末尾から、ダミー車両でない車両、ダミー車両、ダミー車両でない車両の3台を回収する。この場合には、結果として、ダミー車両でない車両を2台、ダミー車両を1台回収することになる。
 車両を回収する場合に、回収した車両がダミー車両でない車両であるときは、ダミーリンクへ移動してリンク1の下流側での再放出待ちとする。図35の例では、2台のダミー車両でない車両をダミーリンクへ移動している。また、回収した車両がダミー車両であるときは、ダミーリンクへ移動せずに消滅させる。図35の例では、1台のダミー車両を再放出せずに消滅させる。渋滞末尾から車両を回収する場合には、車両を前に詰める処理が不要となる。
 車両の回収方法は、渋滞末尾から回収する方法の他に、渋滞の先頭から回収する方法もある。例えば、車両を回収する際に、まずダミー車両を優先的に回収し、すべてのダミー車両を回収してもなお車両を回収する必要がある場合には、先頭の車両(ダミー車両でない車両)から回収する。先頭の車両から回収する場合には、後続の車両の前方に車間が空くため、後続の車両を前に詰める処理が必要となる。なお、渋滞末尾から車両を回収した場合、回収した車両がダミー車両でない車両のときは、ダミーリンクを通ってリンク上の車両よりも先にリンク下流に流出することになり、回収した車両による追い越し状態が発生するが、追い越し状態が許容できる場合には、渋滞末尾から回収することにより、車両を前に詰める処理が不要となる。
 起点終点生成部14で生成した起点交通量(放出した車両)にダミー車両とダミー車両でない車両とが混在する場合の具体例について説明する。
 車両を放出する場合、直近(前回)の補正周期までに車両をリンクから回収し、今回の補正周期で当該リンク下流交差点にて再放出しきれていない車両があるときは、当該車両を優先的にリンク上に放出する。すなわち、補正項で車両をリンクへ放出する場合、ダミーリンク上に車両が存在するときには、ダミーリンク上の車両をリンク(本線)に戻した上で、(放出すべき台数-ダミーリンクから戻した台数)をダミー車両として放出する。例えば、放出必要台数(リンク下流交差点での起点交通量)を10台とし、下流交差点で放出しきれていない車両(終点交通量に伴って下流交差点で再放出される車両のうちで、放出しきれていない車両)を7台とすると、7台をリンク上に戻し(放出)、3台をダミー車両として放出する。
 補正周期(例えば、50秒など)の間に、再放出しきれない車両が残る場合がある理由は、下流交差点での再放出の際には、放出最大量(例えば、2500台/車線/時)を下回るように再放出させるためである。放出最大量は、正規リンクから流出する車両及びダミーリンクからの再放出車両の合計台数である。下流リンクに2500台以上の車両が流れ込むと下流の負荷が高くなるために、放出最大量を上限として設けている。
 開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 10 交通シミュレータ
 11 シミュレータエンジン部
 12 交通量算出部
 13 推定渋滞長算出部
 14 起点終点生成部
 15 補正台数算出部
 16 流出台数算出部
 17 発生消滅部
 18 記憶部
 19 評価条件設定部
 20 放出可能交通量算出部
 21 識別符号付与部
 22 推定交通量算出部
 23 渋滞判定部
 30 待ち行列長算出部
 31 信号情報判定部
 32 車両回収部
 33 再放出部

Claims (13)

  1.  複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力する交通評価装置において、
     渋滞長を含む交通評価指標を評価するための評価条件を設定する評価条件設定手段と、
     任意のリンクでの車両の推定渋滞長を推定する渋滞長推定手段と、
     前記評価条件設定手段で評価条件を設定する前に、任意の周期毎の前記リンクでの車両の実測渋滞長及び前記渋滞長推定手段で推定した推定渋滞長に基づいて、前記周期毎に前記リンクで前記起終点情報に依拠しない補正出発交通量又は該起終点情報に依拠しない補正到着交通量を生成する生成手段と、
     該生成手段で生成した補正出発交通量又は補正到着交通量を前記周期毎に記録する記録手段と、
     前記評価条件設定手段で評価条件を設定した後に、前記周期毎に、前記記録手段で記録した補正出発交通量を前記リンクで放出し、前記記録手段で記録した補正到着交通量を前記リンクで回収する放出回収手段と
     を備えることを特徴とする交通評価装置。
  2.  複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力する交通評価装置において、
     交通量を含む交通評価指標を評価するための評価条件を設定する評価条件設定手段と、
     任意のリンクでの推定交通量を推定する交通量推定手段と、
     前記評価条件設定手段で評価条件を設定する前に、任意の周期毎の前記リンクでの車両の実測交通量及び前記交通量推定手段で推定した推定交通量に基づいて、前記周期毎に前記リンクで前記起終点情報に依拠しない補正出発交通量又は該起終点情報に依拠しない補正到着交通量を生成する生成手段と、
     該生成手段で生成した補正出発交通量又は補正到着交通量を前記周期毎に記録する記録手段と、
     前記評価条件設定手段で評価条件を設定した後に、前記周期毎に、前記記録手段で記録した補正出発交通量を前記リンクで放出し、前記記録手段で記録した補正到着交通量を前記リンクで回収する放出回収手段と
     を備えることを特徴とする交通評価装置。
  3.  前記評価条件設定手段で評価条件を設定した後に、前記放出回収手段により任意のリンクで補正到着交通量を任意の周期で回収する場合、回収する補正到着交通量と該リンクでの交通量とを比較する第1比較手段を備え、
     前記放出回収手段は、
     回収する補正到着交通量が前記リンクでの交通量よりも多い場合、該リンクでの交通量を補正到着交通量として回収し、前記補正到着交通量と前記リンクでの交通量との差分交通量を前記周期の次の周期の補正到着交通量に加算するように構成してあることを特徴とする請求項1又は請求項2に記載の交通評価装置。
  4.  前記評価条件設定手段で評価条件を設定した後に、前記放出回収手段により任意のリンクで補正出発交通量を任意の周期で放出する場合、放出する補正出発交通量と該リンクに放出可能な交通量とを比較する第2比較手段を備え、
     前記放出回収手段は、
     放出する補正出発交通量が前記リンクに放出可能な交通量よりも多い場合、該放出可能な交通量を補正出発交通量として放出し、放出した補正出発交通量と前記リンクに放出可能な交通量との差分交通量を前記周期の次の周期の補正出発交通量に加算するように構成してあることを特徴とする請求項1乃至請求項3のいずれか1項に記載の交通評価装置。
  5.  前記リンクの放出可能な交通量を、該リンクに存在可能な車両台数と該リンクに存在する車両台数との差分により算出する放出可能交通量算出手段を備えることを特徴とする請求項4に記載の交通評価装置。
  6.  複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力する交通評価装置において、
     待ち行列長を含む交通評価指標を評価するための評価条件を設定する評価条件設定手段と、
     任意のリンクの下流側の交差点の信号情報を任意の周期毎に取得する信号情報取得手段と、
     前記評価条件設定手段で評価条件を設定する前に、前記周期の前記交差点での対向直進車両と交錯する方向の待ち行列長を推定する待ち行列長推定手段と、
     前記交差点の前記リンクに対する信号が、現在の周期で赤であり、かつ直近の周期で青である条件を充足するか否かを判定する判定手段と、
     該判定手段で前記条件を充足しないと判定した場合、前記待ち行列長推定手段で推定した待ち行列長から所定長を減算した長さに相当する台数の車両を前記リンクから回収する回収手段と、
     該回収手段で回収した車両の台数を前記周期毎に記録する記録手段と
     を備え、
     前記回収手段は、
     前記評価条件設定手段で評価条件を設定した後に、前記周期毎に、前記記録手段で記録した台数の車両を前記リンクで回収するように構成してあることを特徴とする交通評価装置。
  7.  複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力する交通評価装置において、
     任意のリンクでの交通評価指標を推定する推定手段と、
     前記リンクでの実測交通評価指標及び前記推定手段で推定した推定交通評価指標に基づいて、任意の周期毎に前記リンクで前記起終点情報に依拠しない補正出発交通量又は該起終点情報に依拠しない補正到着交通量を生成する生成手段と
     を備え、
     該生成手段は、
     直近の周期で補正出発交通量として前記リンクへ放出できなかった車両が存在する場合、現在の周期で前記車両を優先的に前記リンクへ放出するように構成してあることを特徴とする交通評価装置。
  8.  コンピュータに、複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力するステップを実行させるためのコンピュータプログラムにおいて、
     コンピュータに、
     任意のリンクでの車両の推定渋滞長を推定するステップと、
     渋滞長を含む交通評価指標を評価するための評価条件を設定する前に、任意の周期毎の前記リンクでの車両の実測渋滞長及び推定した推定渋滞長に基づいて、前記周期毎に前記リンクで前記起終点情報に依拠しない補正出発交通量又は該起終点情報に依拠しない補正到着交通量を生成するステップと、
     生成した補正出発交通量又は補正到着交通量を前記周期毎に記録するステップと、
     評価条件を設定した後に、前記周期毎に、記録した補正出発交通量を前記リンクで放出し、記録した補正到着交通量を前記リンクで回収するステップと
     を実行させることを特徴とするコンピュータプログラム。
  9.  コンピュータに、複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力するステップを実行させるためのコンピュータプログラムにおいて、
     コンピュータに、
     任意のリンクでの推定交通量を推定するステップと、
     交通量を含む交通評価指標を評価するための評価条件を設定する前に、任意の周期毎の前記リンクでの車両の実測交通量及び推定した推定交通量に基づいて、前記周期毎に前記リンクで前記起終点情報に依拠しない補正出発交通量又は該起終点情報に依拠しない補正到着交通量を生成するステップと、
     生成した補正出発交通量又は補正到着交通量を前記周期毎に記録するステップと、
     評価条件を設定した後に、前記周期毎に、記録した補正出発交通量を前記リンクで放出し、記録した補正到着交通量を前記リンクで回収するステップと
     を実行させることを特徴とするコンピュータプログラム。
  10.  コンピュータに、複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力するステップを実行させるためのコンピュータプログラムにおいて、
     コンピュータに、
     待ち行列長を含む交通評価指標を評価するための評価条件を設定する前に、任意の周期の前記リンクの下流側の交差点での対向直進車両と交錯する方向の待ち行列長を推定するステップと、
     前記交差点の前記リンクに対する信号が、現在の周期で赤であり、かつ直近の周期で青である条件を充足するか否かを判定するステップと、
     前記条件を充足しないと判定した場合、推定した待ち行列長から所定長を減算した長さに相当する台数の車両を前記リンクから回収するステップと、
     回収した車両の台数を前記周期毎に記録するステップと、
     評価条件を設定した後に、前記周期毎に、記録した台数の車両を前記リンクで回収するステップと
     を実行させることを特徴とするコンピュータプログラム。
  11. 複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力する交通評価装置による交通評価方法おいて、
     任意のリンクでの車両の推定渋滞長を推定するステップと、
     渋滞長を含む交通評価指標を評価するための評価条件を設定する前に、任意の周期毎の前記リンクでの車両の実測渋滞長及び推定された推定渋滞長に基づいて、前記周期毎に前記リンクで前記起終点情報に依拠しない補正出発交通量又は該起終点情報に依拠しない補正到着交通量を生成するステップと、
     生成された補正出発交通量又は補正到着交通量を前記周期毎に記録するステップと、
     評価条件を設定した後に、前記周期毎に、記録された補正出発交通量を前記リンクで放出し、記録された補正到着交通量を前記リンクで回収するステップと
     を含むことを特徴とする交通評価方法。
  12.  複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力する交通評価装置による交通評価方法おいて、
     任意のリンクでの推定交通量を推定するステップと、
     交通量を含む交通評価指標を評価するための評価条件を設定する前に、任意の周期毎の前記リンクでの車両の実測交通量及び推定された推定交通量に基づいて、前記周期毎に前記リンクで前記起終点情報に依拠しない補正出発交通量又は該起終点情報に依拠しない補正到着交通量を生成するステップと、
     生成された補正出発交通量又は補正到着交通量を前記周期毎に記録するステップと、
     評価条件を設定した後に、前記周期毎に、記録された補正出発交通量を前記リンクで放出し、記録された補正到着交通量を前記リンクで回収するステップと
     を含むことを特徴とする交通評価方法。
  13.  複数の車両それぞれが個々の起終点情報に基づいて道路網を構成する1又は複数のリンクを模擬走行することにより交通評価指標を出力する交通評価装置による交通評価方法おいて、
     任意のリンクの下流側の交差点の信号情報を任意の周期毎に取得するステップと、
     待ち行列長を含む交通評価指標を評価するための評価条件を設定する前に、前記周期の前記交差点での対向直進車両と交錯する方向の待ち行列長を推定するステップと、
     前記交差点の前記リンクに対する信号が、現在の周期で赤であり、かつ直近の周期で青である条件を充足するか否かを判定するステップと、
     前記条件を充足しないと判定された場合、推定された待ち行列長から所定長を減算した長さに相当する台数の車両を前記リンクから回収するステップと、
     回収された車両の台数を前記周期毎に記録するステップと、
     評価条件を設定した後に、前記周期毎に、記録された台数の車両を前記リンクで回収するステップと
     を含むことを特徴とする交通評価方法。
PCT/JP2012/065810 2011-07-20 2012-06-21 交通評価装置、コンピュータプログラム及び交通評価方法 WO2013011796A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/233,409 US9014955B2 (en) 2011-07-20 2012-06-21 Traffic evaluation device non-transitory recording medium and traffic evaluation method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011159365A JP5310802B2 (ja) 2011-07-20 2011-07-20 交通評価装置、コンピュータプログラム及び交通評価方法
JP2011-159365 2011-07-20
JP2011-159367 2011-07-20
JP2011159366A JP5267621B2 (ja) 2011-07-20 2011-07-20 交通評価装置、コンピュータプログラム及び交通評価方法
JP2011159367 2011-07-20
JP2011-159366 2011-07-20
JP2011175247A JP5310807B2 (ja) 2011-07-20 2011-08-10 交通評価装置、コンピュータプログラム及び交通評価方法
JP2011-175247 2011-08-10

Publications (1)

Publication Number Publication Date
WO2013011796A1 true WO2013011796A1 (ja) 2013-01-24

Family

ID=47557978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065810 WO2013011796A1 (ja) 2011-07-20 2012-06-21 交通評価装置、コンピュータプログラム及び交通評価方法

Country Status (1)

Country Link
WO (1) WO2013011796A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103514743A (zh) * 2013-09-28 2014-01-15 上海电科智能系统股份有限公司 一种实时指数匹配记忆区间的异常交通状态特征识别方法
CN103996283A (zh) * 2014-05-08 2014-08-20 东北大学 基于Zigbee网络的多车辆双向车道智能交通仿真系统及方法
JP2017142588A (ja) * 2016-02-09 2017-08-17 本田技研工業株式会社 渋滞箇所情報提供のための装置、方法、及びプログラム
CN107886723A (zh) * 2017-11-13 2018-04-06 深圳大学 一种交通出行调查数据处理方法
CN109741599A (zh) * 2018-12-28 2019-05-10 天津易华录信息技术有限公司 交通运行评价方法
CN112650191A (zh) * 2019-10-09 2021-04-13 丰田自动车株式会社 控制co2回收装置的控制装置
CN116580583A (zh) * 2023-07-12 2023-08-11 禾多科技(北京)有限公司 车辆调度信息生成方法、装置、设备和计算机可读介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10124791A (ja) * 1996-10-23 1998-05-15 Sumitomo Electric Ind Ltd 旅行時間予測方法および装置
JP2000231690A (ja) * 1999-02-12 2000-08-22 Toyota Central Res & Dev Lab Inc 旅行時間予測装置
JP2000304557A (ja) * 1999-04-20 2000-11-02 Sumitomo Electric Ind Ltd 車両用ナビゲーション装置
JP2001134893A (ja) * 1999-11-05 2001-05-18 Sumitomo Electric Ind Ltd 交通信号制御装置
JP2007057468A (ja) * 2005-08-26 2007-03-08 Nissan Motor Co Ltd ナビゲーション装置、および旅行時間補正方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10124791A (ja) * 1996-10-23 1998-05-15 Sumitomo Electric Ind Ltd 旅行時間予測方法および装置
JP2000231690A (ja) * 1999-02-12 2000-08-22 Toyota Central Res & Dev Lab Inc 旅行時間予測装置
JP2000304557A (ja) * 1999-04-20 2000-11-02 Sumitomo Electric Ind Ltd 車両用ナビゲーション装置
JP2001134893A (ja) * 1999-11-05 2001-05-18 Sumitomo Electric Ind Ltd 交通信号制御装置
JP2007057468A (ja) * 2005-08-26 2007-03-08 Nissan Motor Co Ltd ナビゲーション装置、および旅行時間補正方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103514743A (zh) * 2013-09-28 2014-01-15 上海电科智能系统股份有限公司 一种实时指数匹配记忆区间的异常交通状态特征识别方法
CN103996283A (zh) * 2014-05-08 2014-08-20 东北大学 基于Zigbee网络的多车辆双向车道智能交通仿真系统及方法
CN103996283B (zh) * 2014-05-08 2015-12-02 东北大学 基于Zigbee网络的多车辆双向车道智能交通仿真系统及方法
JP2017142588A (ja) * 2016-02-09 2017-08-17 本田技研工業株式会社 渋滞箇所情報提供のための装置、方法、及びプログラム
CN107886723A (zh) * 2017-11-13 2018-04-06 深圳大学 一种交通出行调查数据处理方法
CN107886723B (zh) * 2017-11-13 2021-07-20 深圳大学 一种交通出行调查数据处理方法
CN109741599A (zh) * 2018-12-28 2019-05-10 天津易华录信息技术有限公司 交通运行评价方法
CN112650191A (zh) * 2019-10-09 2021-04-13 丰田自动车株式会社 控制co2回收装置的控制装置
CN116580583A (zh) * 2023-07-12 2023-08-11 禾多科技(北京)有限公司 车辆调度信息生成方法、装置、设备和计算机可读介质
CN116580583B (zh) * 2023-07-12 2023-09-19 禾多科技(北京)有限公司 车辆调度信息生成方法、装置、设备和计算机可读介质

Similar Documents

Publication Publication Date Title
WO2013011796A1 (ja) 交通評価装置、コンピュータプログラム及び交通評価方法
US9014955B2 (en) Traffic evaluation device non-transitory recording medium and traffic evaluation method
JP5310802B2 (ja) 交通評価装置、コンピュータプログラム及び交通評価方法
JP5024392B2 (ja) 交通評価装置、コンピュータプログラム及び交通評価方法
JP5310807B2 (ja) 交通評価装置、コンピュータプログラム及び交通評価方法
JP5494605B2 (ja) 交通評価装置、コンピュータプログラム及び交通評価方法
JP2011186746A (ja) 交通評価装置、コンピュータプログラム及び交通評価方法
JP5562691B2 (ja) 渋滞時間算出装置、出発時刻算出装置、渋滞なし時間算出装置、及びプログラム
CN102288193A (zh) 一种基于历史数据的机动车出行路径的确定方法
CN109461322B (zh) 一种智能导航方法、装置、设备以及可读存储介质
Smith et al. A SUMO based evaluation of road incidents' impact on traffic congestion level in smart cities
Ranjitkar et al. Evaluating operational performance of intersections using SIDRA
JP5267621B2 (ja) 交通評価装置、コンピュータプログラム及び交通評価方法
JP5898553B2 (ja) 交通流予測装置、交通流予測方法及び交通流予測プログラム
JP2014137741A (ja) 交通評価装置、コンピュータプログラム及び交通評価方法
JP6899528B2 (ja) 交通管理装置、交通管理システムおよび交通管理方法
Rompis et al. A methodology for calibrating microscopic simulation for modeling traffic flow under incidents
JP4276931B2 (ja) Odデータ推定方法
JP5712430B2 (ja) 交通流シミュレーション装置および交通流シミュレーション方法
CN108281015B (zh) 一种交通仿真控制方法和装置
CN112797994A (zh) 用于确定路线的预计到达时间的方法及相关装置和服务器
WO2015125467A1 (ja) 旅行時間演算装置、交通情報データおよび交通情報データ生成装置
JP5382076B2 (ja) 交通評価装置、コンピュータプログラム及び交通評価方法
JPH1079096A (ja) 経路選択支援情報提供装置
JP5494600B2 (ja) 交通評価装置、コンピュータプログラム及び交通評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814541

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14233409

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12814541

Country of ref document: EP

Kind code of ref document: A1