WO2013011753A1 - 熱センサ - Google Patents
熱センサ Download PDFInfo
- Publication number
- WO2013011753A1 WO2013011753A1 PCT/JP2012/064308 JP2012064308W WO2013011753A1 WO 2013011753 A1 WO2013011753 A1 WO 2013011753A1 JP 2012064308 W JP2012064308 W JP 2012064308W WO 2013011753 A1 WO2013011753 A1 WO 2013011753A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- unit
- heat
- periodically
- layer
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 93
- 239000000463 material Substances 0.000 claims abstract description 22
- 230000010287 polarization Effects 0.000 claims abstract description 22
- 230000002269 spontaneous effect Effects 0.000 claims abstract description 20
- 230000001902 propagating effect Effects 0.000 claims abstract description 5
- 230000008859 change Effects 0.000 claims description 57
- 238000000605 extraction Methods 0.000 claims description 32
- 125000006850 spacer group Chemical group 0.000 claims description 21
- 230000017525 heat dissipation Effects 0.000 claims description 17
- 239000000284 extract Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 description 17
- 230000005855 radiation Effects 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000001039 wet etching Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 7
- 230000000644 propagated effect Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/34—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N15/00—Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
- H10N15/10—Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point
Definitions
- the present invention relates to a thermal sensor that detects a temperature change caused by infrared rays.
- the thermal sensor extracts the temperature change due to infrared electromagnetic wave energy as an electrical signal. It is a pyroelectric type that detects the polarization change of pyroelectric material due to temperature change as a capacitance change, the thermopile type that detects electromotive force due to heat, There is a bolometer type that detects a resistance change due to. Among these, pyroelectric heat sensors have the highest conversion efficiency from heat to electricity.
- FIG. 11 shows the pyroelectric characteristics of the pyroelectric material.
- a pyroelectric material such as lead zirconate titanate (PZT) has an asymmetric crystal structure at room temperature, and has spontaneous polarization P due to displacement of the element.
- PZT lead zirconate titanate
- the pyroelectric material is heated, the asymmetry of the crystal structure is lost as the temperature T rises, and the crystal structure becomes completely symmetric at the Curie point T ⁇ and the polarization is lost.
- the spontaneous polarization change ⁇ Ps occurs with the temperature change ⁇ T, the pyroelectric material can function as a sensor by detecting the spontaneous polarization change ⁇ Ps with the temperature change ⁇ T as a capacitance change.
- a chopper 102 having a plurality of openings is arranged on the infrared incident side of the sensor 101, the chopper 102 is rotated by the motor 103, and the opening of the chopper 102. Infrared rays are intermittently incident on the sensor 101 via the.
- the temperature of the sensor 101 rises. Further, when the infrared rays are blocked by the rotation of the chopper 102 at a portion other than the opening of the chopper 102, the temperature of the sensor 101 is lowered and initialized during that time. Therefore, when the electrical signal corresponding to the change in capacitance output from the sensor 101 is amplified by the lock-in amplifier 104, a waveform as shown in FIG. That is, by periodically blocking infrared rays with the chopper 102 and initializing the temperature of the sensor 101, a change in capacitance due to a temperature change of the sensor 101 can be detected.
- Patent Document 1 discloses an imaging device that supports a diaphragm portion having a pyroelectric material in a beam shape and initializes the temperature of the diaphragm portion by bringing the diaphragm portion into contact with a substrate. Yes.
- this image sensor will be further described.
- FIG. 13 is a cross-sectional view schematically showing the structure of one pixel of the image sensor of Patent Document 1
- FIG. 14 is a circuit diagram schematically showing an equivalent circuit of one pixel of the image sensor.
- the metal film 202 on the substrate 201 and the diaphragm portion 203 are opposed to each other through the gap 204.
- the diaphragm portion 203 is supported in a beam shape, and the lower electrode 205, the pyroelectric material 206, and the upper electrode 207 are laminated on the diaphragm portion 203 in this order.
- the metal film 202 is connected to the line L2 through the transistor T2.
- the lower electrode 205 is grounded via the wiring 208, and the upper electrode 207 is connected to the line C1 via the transistor T1.
- the upper electrode 207 and the transistor T1 are connected by a wiring 209.
- the gate of the transistor T1 is connected to the line L1, and the gate of the transistor T2 is connected to the line C2.
- the metal film 202 When a predetermined voltage is applied to the gate of the transistor T2 through the line C2 to turn on the transistor T2, the metal film 202 is connected to the line L2, and a voltage is applied to the metal film 202, so that the lower electrode 205 and the metal film 202 are turned on. An electrostatic attraction force is generated between Thereby, the diaphragm part 203 bends and contacts the substrate 201 (metal film 202). As a result, the diaphragm portion 203 and the substrate 201 are thermally short-circuited and have the same temperature.
- the transistor T2 when the transistor T2 is turned OFF, the above-described electrostatic attraction force disappears, so that the diaphragm 203 is separated from the substrate 201. If the pixel is irradiated with infrared rays in this state, a temperature change occurs immediately, and the capacity of the pyroelectric material 206 changes between the lower electrode 205 and the upper electrode 207. At this time, if the transistor T1 is turned on via the line L1, an electric signal corresponding to the capacitance change can be read via the line C1. After the electrical signal is read, the transistor T1 is turned off, the transistor T2 is turned on again, and the diaphragm portion 203 and the substrate 201 are brought into contact with each other, whereby a thermal short circuit can be performed.
- the temperature of the pyroelectric material can be periodically initialized without using a mechanical mechanism such as a chopper. Thereby, effects such as downsizing, weight reduction, cost reduction, and improvement in reliability of the apparatus can be expected.
- the pyroelectric material is irradiated by infrared rays.
- the heat accumulated in 206 always escapes from the upper electrode 207 to the outside (for example, the transistor T1, the substrate 201) through the wiring 209 and escapes from the lower electrode 205 to the outside (for example, the substrate 201) through the wiring 208. That is, the heat of the pyroelectric material 206 is propagated to the outside and dissipated even at times other than normal heat dissipation due to contact between the diaphragm portion 203 and the substrate 201. For this reason, the capacitance change due to the temperature change of the pyroelectric material 206 becomes small, and there arises a problem that the sensitivity as a sensor is lowered.
- the wirings 208 and 209 are made of a metal material and have high thermal conductivity, a decrease in sensitivity due to heat radiation through the wirings 208 and 209 cannot be ignored.
- the present invention has been made to solve the above-described problems, and its purpose is to avoid the heat accumulated in the pyroelectric material from being dissipated at times other than regular heat dissipation. Therefore, it is intended to provide a thermal sensor capable of avoiding a decrease in sensitivity.
- a thermal sensor is a thermal sensor that detects a temperature change caused by infrared irradiation, and is used to change a pyroelectric layer and spontaneous polarization of the pyroelectric layer accompanying a temperature change caused by infrared irradiation.
- a sensor unit having an electrode unit for outputting a corresponding electric signal; a heat dissipating unit for periodically propagating heat accumulated in the sensor unit to dissipate the heat; and the electric signal from the electrode unit of the sensor unit.
- a support substrate that supports the signal extraction unit, and the signal extraction unit is not in contact with the electrode unit of the sensor unit when the heat dissipation unit is not radiating heat.
- the temperature of the sensor unit is periodically initialized by the heat radiating unit, a change in temperature can be detected by utilizing a change in spontaneous polarization accompanying a change in temperature of the pyroelectric layer.
- the signal extraction unit is not in contact with the electrode part of the sensor unit when it is not radiating heat by the heat radiating unit, the heat accumulated in the pyroelectric layer when it is not radiating (in the case of other than normal heat dissipation) Can be prevented from radiating from the electrode part to the outside through the signal extraction part, and the sensitivity can be avoided.
- FIG. 1A is a plan view showing a schematic configuration of a thermal sensor according to an embodiment of the present invention
- (b) is a cross-sectional view taken along line AA ′ in FIG.
- FIG. 2C is a cross-sectional view taken along line BB ′ in FIG.
- FIG. 2 is a cross-sectional view taken along the line C-C ′ of FIG. 1A, showing a configuration of a sensor portion of the thermal sensor.
- (A) is a plan view showing a schematic configuration of the support portion of the thermal sensor
- (b) is a cross-sectional view taken along the line AA ′ in FIG. 3 (a)
- (c) is a cross-sectional view taken along the line BB ′ in FIG.
- FIG. 1 It is a block diagram which shows the schematic structure of the circuit board of the said thermal sensor.
- (A)-(g) is sectional drawing which shows the manufacturing process of the said sensor part.
- (A)-(e) is sectional drawing which shows the manufacturing process of the said support part.
- (A) And (b) is sectional drawing which shows the manufacturing process of the said thermal sensor. It is explanatory drawing which shows the relationship between the reference clock, the movable state of the movable member of the said thermal sensor, the temperature change of the said sensor part, and the output from the said sensor part.
- (A) And (b) is sectional drawing which shows the state which the said movable member deform
- (A) And (b) is sectional drawing which shows the state which the said movable member electrically contacted with the electrode part of the said sensor part. It is explanatory drawing which shows the pyroelectric characteristic of a pyroelectric material. It is explanatory drawing which shows the structure of the outline of the conventional heat sensor. It is sectional drawing which shows typically the structure of 1 pixel of the conventional image pick-up element. It is a circuit diagram which shows typically the equivalent circuit of 1 pixel of the said conventional image pick-up element.
- contact means that two members are in physical contact and are in electrical contact
- non-contact means that the two members are not in physical contact. It is in a state of being separated and not in electrical contact.
- FIG. 1A is a plan view showing a schematic configuration of the thermal sensor 1 of the present embodiment
- FIG. 1B is a cross-sectional view taken along the line AA ′ in FIG.
- FIG. 1C is a sectional view taken along line BB ′ in FIG.
- the thermal sensor 1 is a detector that detects a temperature change caused by infrared irradiation, and includes a sensor unit 10, a support unit 20, and a circuit board 30 that are stacked.
- thermal sensor 1 is configured by a point sensor (single element) having one sensor unit 10, but a plurality of thermal sensors 1 are provided. It is also possible to form a line sensor in which the sensor units 10 are arranged in a row, or an area sensor in which a plurality of sensor units 10 are arranged in two dimensions.
- FIG. 2 is a cross-sectional view taken along the line CC ′ of FIG.
- the sensor unit 10 is configured by laminating a lower electrode layer 12, a pyroelectric layer 13, an upper electrode layer 14, and a heat absorption layer 15 in this order on an insulating substrate 11.
- the insulating substrate 11 is made of, for example, a quartz (SiO 2 ) substrate and is thermally and electrically insulated from the support portion 20.
- the insulating substrate 11 has a first through hole 11a and a second through hole 11b.
- the pyroelectric layer 13 is made of a pyroelectric material such as lead zirconate titanate (PZT), for example, and a capacitance (spontaneous polarization) is generated between the lower electrode layer 12 and the upper electrode layer 14 in accordance with a temperature change. Changes.
- the lower electrode layer 12 and the upper electrode layer 14 sandwich at least a part of the pyroelectric layer 13, and output the above capacitance change accompanying the temperature change of the pyroelectric layer 13 as an electrical signal.
- the lower electrode layer 12 and the upper electrode layer 14 constitute a part of the electrode unit 18 that outputs an electrical signal corresponding to a change in spontaneous polarization of the pyroelectric layer 13 due to a temperature change caused by infrared irradiation.
- the heat absorption layer 15 is made of, for example, an aluminum layer, and absorbs infrared rays (heat) from the outside so that the pyroelectric layer 13 can easily change its capacity due to temperature change.
- the electrode part 18 further includes a first contact part 16 and a second contact part 17.
- the first contact portion 16 is on the back side of the insulating substrate 11, that is, on the side opposite to the side on which the pyroelectric layer 13 is formed, and one movable member 23a (described later with reference to FIG. 3A) of the support portion 20.
- the contact portion periodically contacts the upper electrode layer 14 through the first through hole 11a of the insulating substrate 11.
- the second contact portion 17 is a contact portion that periodically contacts the other movable member 23b (see FIG. 3A and the like) of the support portion 20 on the back surface side of the insulating substrate 11 to be described later.
- the second electrode layer 12 is electrically connected through the second through hole 11b.
- FIG. 3A is a plan view showing a schematic configuration of the support portion 20, and FIG. 3B is a cross-sectional view taken along the line AA ′ in FIG. ) Is a cross-sectional view taken along the line BB ′ in FIG.
- the support unit 20 supports the sensor unit 10 described above, and includes a support substrate 21, a spacer 22, and a movable member 23.
- the support substrate 21 is composed of, for example, an SOI (Silicon on Insulator) substrate. That is, the support substrate 21 is configured by laminating a substrate 24 (support layer) made of Si, a sacrificial layer 25 (BOX layer) made of SiO 2 , and a driven layer 26 (active layer) made of Si in this order. Has been.
- the support substrate 21 supports two movable members 23a and 23b, which will be described later, and supports the insulating substrate 11 of the sensor unit 10 through the spacer 22 (see FIGS. 1B and 1C).
- the spacer 22 is provided so as to surround the movable space S of the two movable members 23 a and 23 b along the insulating substrate 11.
- the above-described movable space S is because the two movable members 23a and 23b periodically come into contact with the electrode portion 18 (particularly, the first contact portion 16 and the second contact portion 17) of the sensor portion 10. Refers to the space required for.
- the spacer 22 By providing the spacer 22 around the movable space S, the movement of the two movable members 23a and 23b is not hindered by the spacer 22, and the movable members 23a and 23b are reliably brought into contact with the electrode portion 18. be able to.
- the movable member 23 has a function as a heat radiating part for periodically propagating the heat accumulated in the sensor part 10 to the outside by periodically contacting the electrode part 18 of the sensor part 10, and the sensor. By periodically contacting the electrode part 18 of the part 10, it has a function as a signal extraction part for periodically taking out an electrical signal from the sensor part 10. That is, in this embodiment, the heat radiating portion and the signal extraction portion are configured by the same movable member 23 that periodically contacts the electrode portion 18.
- the movable member 23 includes two movable members 23 a provided corresponding to the upper electrode layer 14 of the sensor unit 10 and movable members 23 b provided corresponding to the lower electrode layer 12.
- Each of the movable members 23a and 23b is composed of a cantilever whose one end periodically contacts the electrode portion 18 (particularly, the first contact portion 16 and the second contact portion 17) of the sensor unit 10 by expansion and contraction of the piezoelectric body. Has been.
- each of the movable members 23a and 23b includes a beam-like portion 26a in which a part of the driven layer 26 of the support substrate 21 is processed into a cantilever shape, and a drive layer 27 formed on the beam-like portion 26a. And a protrusion 28.
- the sacrificial layer 25 located under the beam-like portion 26a is removed in a shape that is slightly larger than the beam-like portion 26a.
- the drive layer 27 includes a piezoelectric body made of, for example, PZT, and an upper electrode and a lower electrode that sandwich the piezoelectric body.
- the projecting portion 28 is formed on the end portion on the free end side of the beam-like portion 26a (the side opposite to the end portion on the fixed end side), and when the movable members 23a and 23b are movable, The first contact portion 16 and the second contact portion 17 are brought into contact with each other to be conducted.
- the protruding portion 28 is electrically connected to the circuit board 30 through the support substrate 21 by wiring not shown.
- the movable members 23a and 23b are arranged in parallel so that the fixed end and the free end of each beam-like portion 26a are point-symmetric with each other in plan view.
- FIG. 4 is a block diagram showing a schematic configuration of the circuit board 30.
- the circuit board 30 is a board for outputting an electrical signal taken out by the movable member 23 of the support unit 20, and an amplifier 31 (amplifying circuit) that amplifies the electrical signal and an output signal from the amplifier 31.
- an A / D converter 32 for outputting after A / D conversion (analog-digital conversion).
- the circuit board 30 applies a voltage to the upper electrode and the lower electrode of the drive layer 27 so as to drive the movable member 23 by expanding and contracting the piezoelectric body of the drive layer 27 of the movable member 23.
- a drive control unit 33 is further provided.
- the drive control unit 33 drives the movable member 23 by controlling voltage application to the upper electrode and the lower electrode of the drive layer 27 in synchronization with the reference clock CLK (see FIG. 8).
- the A / D conversion unit 32 and the drive control unit 33 may be mounted on a board different from the circuit board 30.
- the electric signal taken out from the sensor unit 10 through the movable member 23 is immediately amplified by the amplifier 31, so that the noise with respect to the electric signal is compared with the configuration in which the electric signal is amplified at the subsequent stage of the circuit board 30. Can be reduced.
- FIGS. 5A to 5G are cross-sectional views showing the manufacturing process of the sensor unit 10.
- a quartz (SiO 2 ) substrate having a thickness of, for example, 200 ⁇ m is prepared as the insulating substrate 11.
- the insulating substrate 11 is heated to 300 ° C., and Ti and Pt are sputtered in this order on the insulating substrate 11 to form the lower electrode layer 12 having a thickness of about 100 nm, for example. To do.
- the outer shape of the lower electrode layer 12 is processed into a predetermined shape by a wet etching method.
- the insulating substrate 11 is heated to 600 ° C., and lead zirconate titanate having a thickness of, for example, is formed on the insulating substrate 11 by sputtering so as to partially overlap the lower electrode layer 12.
- the pyroelectric layer 13 is formed by forming a film at 100 nm. Then, the outer shape of the pyroelectric layer 13 is processed into a predetermined shape by a wet etching method.
- the insulating substrate 11 is heated to 300 ° C., and Ti and Au are sputtered in this order so as to cover the pyroelectric layer 13 on the insulating substrate 11.
- the upper electrode layer 14 of 100 nm is formed.
- the outer shape of the upper electrode layer 14 is processed into a predetermined shape by a wet etching method.
- the insulating substrate 11 is heated to 300 ° C., and aluminum is sputtered on the upper electrode layer 14 to form a heat absorption layer 15 having a thickness of, for example, 100 nm. Then, the outer shape of the heat absorption layer 15 is processed into a predetermined shape by a wet etching method.
- the first and second through holes 11a and 11b are formed at predetermined positions of the insulating substrate 11 by turning the insulating substrate 11 upside down by wet etching. To do.
- the diameters of the first through hole 11a and the second through hole 11b are, for example, 100 ⁇ m.
- the insulating substrate 11 is heated to 300 ° C., and aluminum is sputtered from the back surface side of the insulating substrate 11 to conduct through the upper electrode layer 14 and the first through hole 11a.
- the first contact portion 16 is formed, and the second contact portion 17 that is electrically connected to the lower electrode layer 12 through the second through hole 11b is formed.
- the thickness (the height from the back surface of the insulating substrate 11) of the first contact part 16 and the second contact part 17 is, for example, 100 nm.
- the sensor part 10 is completed by processing the outer shapes of the first contact part 16 and the second contact part 17 by the lift-off method.
- FIG. 6A is cross-sectional views showing the manufacturing process of the support portion 20.
- an SOI substrate in which two Si substrates are bonded via an oxide film (SiO 2 ) is prepared as a support substrate 21. That is, the support substrate 21 is obtained by laminating a substrate 24 made of Si, a sacrificial layer 25 made of SiO 2 , and a driven layer 26 made of Si in this order.
- the drive layer 27 and the protrusions 28 are formed on the support substrate 21. More specifically, the support substrate 21 is heated to 300 ° C., and Ti and Pt are sputtered in this order on the support substrate 21 to form the lower electrode of the drive layer 27 having a thickness of, for example, 100 nm, and away from the lower electrode. The Pt layer is formed at a higher position than the lower electrode, and the protrusion 28 is formed. Thereafter, the outer shape of the lower electrode and the protrusion 28 is processed into a predetermined shape by a wet etching method.
- the support substrate 21 is heated to 600 ° C., and a piezoelectric layer made of lead zirconate titanate having a thickness of, for example, 1 ⁇ m is formed on the lower electrode by sputtering. Then, the outer shape of the piezoelectric layer is processed into a predetermined shape by a wet etching method.
- the support substrate 21 is heated to 300 ° C., and Ti and Au are sputtered in this order on the piezoelectric layer to form an upper electrode having a thickness of, for example, 100 nm. Then, the outer shape of the upper electrode is processed into a predetermined shape by a wet etching method, and the drive layer 27 is completed.
- a mask pattern is formed on the support substrate 21, and the support substrate 21 is patterned by a wet etching method to form a movable member 23 having a predetermined shape. That is, the driven layer 26 and the sacrificial layer 25 of the support substrate 21 are patterned in a predetermined shape to form the movable member 23 having the beam-like portion 26a. The sacrificial layer 25 below the beam-like portion 26a is removed by side etching.
- a spacer 22 made of a glass substrate having a thickness of 200 ⁇ m from which a region corresponding to the movable space S of the movable member 23 has been removed in advance is anodic bonded to the driven layer 26 of the support substrate 21. And join.
- the spacer 22 may be composed of a Si substrate.
- a bonding method suitable for bonding between silicons for example, optical contact or diffusion bonding may be used.
- FIG. 7A shows a state in which the sensor unit 10 and the support unit 20 manufactured by the above manufacturing method are joined by anodic bonding so that the insulating substrate 11 and the spacer 22 face each other.
- the thermal sensor 1 can be completed by bonding the circuit board 30 to the opposite side of the support portion 20 to the bonding side with the sensor unit 10.
- FIG. 8 shows the relationship between the reference clock CLK indicating the timing at which the movable member 23 is moved, the movable state of the movable member 23, the temperature change of the sensor unit 10, and the output from the sensor unit 10.
- the reference clock CLK is a signal that becomes a high level or a low level in a cycle of, for example, 30 to 60 times per second.
- the high level of the reference clock CLK corresponds to the time when heat is dissipated by the movable member 23 of the sensor unit 10
- the low level is when no heat is dissipated by the movable member 23 of the sensor unit 10.
- the output from the sensor unit 10 shown in FIG. 8 corresponds to the potential difference between the upper electrode layer 14 and the lower electrode layer 12 obtained based on the electrical signals output from the upper electrode layer 14 and the lower electrode layer 12. The current value to be considered is considered.
- the thermal sensor 1 shown in FIGS. 1A to 1C when infrared rays are irradiated on the sensor unit 10 from above, the infrared rays are absorbed by the heat absorption layer 15 of the sensor unit 10. As a result, the temperature of the pyroelectric layer 13 rises, and accordingly, the capacity (spontaneous polarization amount) of the pyroelectric layer 13 changes between the upper electrode layer 14 and the lower electrode layer 12.
- the drive control unit 33 of the circuit board 30 applies a voltage to the movable member 23 of the support unit 20 (particularly, the upper electrode and the lower electrode of the drive layer 27) in synchronization with the reference clock CLK becoming high level.
- the movable member 23 is turned on, and the piezoelectric layer sandwiched between the upper electrode and the lower electrode of the drive layer 27 contracts in the horizontal direction.
- the cantilevered movable members 23a and 23b are deformed (curved) so that the protrusions 28 on the free end side are displaced upward. To do.
- FIGS. 9A and 9B the cantilevered movable members 23a and 23b are deformed (curved) so that the protrusions 28 on the free end side are displaced upward.
- the protrusion 28 of the movable member 23a contacts the first contact portion 16 of the sensor unit 10, and the protrusion 28 of the movable member 23b is The second contact portion 17 is contacted. That is, the movable member 23 is in electrical contact with the electrode unit 18 of the sensor unit 10.
- the electrical signal output from the upper electrode layer 14 of the sensor unit 10 according to the change in the spontaneous polarization of the pyroelectric layer 13 is transmitted via the first contact part 16 and the movable member 23a (projection part 28). Input to the circuit board 30.
- an electrical signal output from the lower electrode layer 12 of the sensor unit 10 according to a change in the spontaneous polarization of the pyroelectric layer 13 is transmitted via the second contact portion 17 and the movable member 23b (protrusion portion 28). Input to the circuit board 30.
- these electric signals are amplified by the amplifier 31, converted into a digital signal by the A / D converter 32, and output to the outside (for example, a personal computer). Therefore, based on the signal output from the circuit board 30, it is possible to detect the presence or absence of a temperature change due to infrared irradiation, and thereby it is possible to determine the presence or absence of a person, for example.
- the protrusion 28 of the movable member 23a is in contact with the first contact portion 16 and the protrusion 28 of the movable member 23b is in contact with the second contact portion 17, so that the sensor is used as described above.
- the heat accumulated in the sensor unit 10 by the infrared irradiation is propagated to the support unit 20 through the movable members 23a and 23b and is radiated. Thereby, the temperature of the sensor unit 10 gradually decreases until the time t2 when the movable member 23 is turned off, and is initialized to the same temperature as the support unit 20.
- the drive control unit 33 stops applying the voltage to the movable member 23 in synchronization with the reference clock CLK becoming low level, the movable member 23 is turned off and the piezoelectric layer of the drive layer 27 expands.
- the movable members 23a and 23b return to the shape before bending (see FIGS. 3A to 3C). Accordingly, the movable member 23a is brought into a non-contact state by releasing the contact between the protruding portion 28 and the first contact portion 16, and the movable member 23b is released from the contact between the protruding portion 28 and the second contact portion 17. In a non-contact state. If infrared rays are irradiated to the sensor unit 10 in this state, the temperature of the pyroelectric layer 13 rises again in the sensor unit 10.
- the ON / OFF of the movable member 23 is periodically repeated in synchronization with the reference clock CLK, so that the contact between the movable member 23 and the electrode portion 18 is periodically repeated, and an electric signal from the sensor unit 10 is obtained. And the heat radiation and initialization of the sensor unit 10 are performed simultaneously and periodically.
- the heat accumulated in the sensor unit 10 by infrared irradiation is periodically propagated to the outside by the movable member 23 as the heat radiating unit, and the temperature (heat) of the sensor unit 10 is initialized.
- the change in temperature can be detected using the change in spontaneous polarization accompanying the change in temperature of the pyroelectric layer 13 of the sensor unit 10.
- the movable member 23 has the electrode portion 18 (the first contact portion 16 and the second contact portion 17) when the sensor unit 10 is not radiating heat (when the reference clock CLK is at a low level). Therefore, the electrical connection between the electrode portion 18 and the movable member 23 is completely cut off. Thereby, it is possible to avoid the heat accumulated in the pyroelectric layer 13 from being propagated from the electrode portion 18 to the support substrate 21 via the movable member 23 and being dissipated at times other than regular heat dissipation. Further, it is possible to avoid a decrease in sensitivity due to a decrease in the amount of change in the spontaneous polarization of the pyroelectric layer 13.
- the heat radiating section and the signal extraction section are configured by the same movable member 23, and the movable member 23 is periodically brought into contact with the electrode section 18 of the sensor section 10. Heat dissipation (temperature initialization) and electrical signal extraction can be performed simultaneously.
- the movable member 23 includes two movable members 23a and 23b corresponding to the upper electrode layer 14 and the lower electrode layer 12 of the sensor unit 10, the upper electrode layer 14, the lower electrode layer 12, and each movable member. 23a and 23b are electrically connected through the first contact portion 16 and the second contact portion 17, respectively, so that electrical signals are taken out from the upper electrode layer 14 and the lower electrode layer 12, respectively, and at the same time, heat is dissipated. It can be performed.
- the electrode portion 18 of the sensor portion 10 includes a first contact portion 16 that is electrically connected to the upper electrode layer 14 via the first through hole 11 a of the insulating substrate 11, and a second through hole 11 b of the insulating substrate 11. Since the second contact portion 17 that is electrically connected to the lower electrode layer 12 is interposed between the first contact portion 16 and the one movable member 23a, the second contact portion 17 By periodically contacting the other movable member 23b, the sensor unit 10 is provided on the back side of the insulating substrate 11 of the sensor unit 10, that is, on the opposite side of the insulating substrate 11 from the pyroelectric layer 13 formation side. 10 heat dissipation and extraction of electrical signals from the upper electrode layer 14 and the lower electrode layer 12 of the sensor unit 10 can be performed periodically and simultaneously.
- the insulating substrate 11 of the sensor unit 10 is supported by the support substrate 21 via the spacer 22 provided so as to surround the movable space S of the two movable members 23a and 23b, the configuration of FIG.
- the sensor unit 10 that is resistant to external vibration and impact can be realized. Failure can be reduced.
- the sensor unit 10 is less likely to vibrate compared to the configuration supported by the beam-like structure, the sensor unit 10 comes into contact with other members due to unexpected vibration, and the temperature is initialized at an unexpected timing. Generation of noise in the output electric signal can be reduced.
- the sensor unit 10 since the sensor unit 10 has a multilayer structure, the sensor unit 10 may be warped due to a difference in thermal expansion coefficient of each layer. However, even if the sensor unit 10 is warped, the sensor unit 10 can be allowed to warp by the thickness of the spacer 22. As a result, even when the sensor unit 10 is warped, the temperature of the sensor unit 10 brought into contact with the support substrate 21 is initialized, and noise generated in the electrical signal can be reduced.
- the spacer 22 is provided so as to surround the movable space S of the movable member 23, the movement of the movable member 23 is not hindered, and the movable member 23 is driven on the back side of the insulating substrate 11 by driving the movable member 23. Heat dissipation and extraction of electrical signals can be performed reliably.
- the movable member 23 is composed of a cantilever whose one end periodically contacts the electrode portion 18 of the sensor unit 10 by expansion and contraction of the piezoelectric body, the movable member 23 and the electrode unit 18 are periodically connected. By making contact with each other, it is possible to reliably realize a configuration in which heat dissipation and extraction of an electric signal are performed simultaneously.
- the signal extraction part which takes out the electric signal from the sensor part 10 periodically is comprised with the movable member 23, and the movable member 23 is periodically contacted with the electrode part 18, thereby, from the sensor part 10. Taking out electrical signals.
- the signal extraction unit may be configured to periodically extract an electrical signal from the sensor unit 10 by radio, for example. In this case, the signal extraction unit can extract an electrical signal without contact with the sensor unit 10.
- the heat radiating portion is constituted by the movable member 23, and the heat accumulated in the sensor portion 10 is radiated by periodically bringing the movable member 23 into contact with the electrode portion 18.
- the heat radiating unit may be configured to radiate heat by blowing air to the sensor unit 10 at a constant cycle, for example.
- the movable member 23 contacts the sensor unit 10 and performs heat radiation as in the present embodiment. Configuration is preferred.
- the thermal sensor described above is a thermal sensor that detects a temperature change caused by infrared irradiation, and responds to a change in spontaneous polarization of the pyroelectric layer and the pyroelectric layer accompanying a temperature change caused by infrared irradiation.
- a sensor unit having an electrode unit for outputting an electric signal; a heat dissipating unit that periodically propagates heat accumulated in the sensor unit to dissipate the heat; and the electric signal is periodically transmitted from the electrode unit of the sensor unit.
- a support substrate that supports the signal extraction part, and the signal extraction part is not in contact with the electrode part of the sensor part when the heat dissipation part is not radiating heat.
- the spontaneous polarization of the pyroelectric layer changes accordingly, and the electric current corresponding to the change in the spontaneous polarization is changed.
- a signal is output from the electrode section.
- the heat accumulated in the sensor unit by the infrared irradiation is periodically propagated to the outside and radiated by the heat radiating unit.
- the temperature (heat) of the sensor unit is initialized, a change in temperature can be detected using a change in spontaneous polarization accompanying a change in temperature of the pyroelectric layer.
- heat conductivity is high in the part where electricity is conducted and heat is easily propagated, but the signal extraction part is not in contact with the electrode part of the sensor part at the time of non-heat radiation by the heat radiation part. There is no electrically conducting portion between the extraction portion and the electrode portion. This prevents the heat accumulated in the pyroelectric layer from propagating from the electrode part to the support substrate through the signal extraction part and being dissipated at times other than regular heat dissipation by the heat dissipation part. It is possible to avoid a decrease in sensitivity due to a decrease in the amount of change in spontaneous polarization of the pyroelectric layer.
- the heat dissipating unit periodically dissipates the heat accumulated in the sensor unit by periodically contacting the electrode unit of the sensor unit to dissipate the heat
- the signal extraction unit The electrical signal may be periodically extracted from the sensor unit by periodically contacting the electrode unit of the sensor unit.
- the heat dissipating part periodically contacts the electrode part of the sensor part to periodically propagate the heat of the sensor part to the outside and dissipate it.
- heat radiation can be reliably performed in a short cycle.
- the signal extraction unit since the signal extraction unit periodically takes out an electric signal from the sensor unit by periodically contacting the electrode unit of the sensor unit, compared with a configuration in which the electric signal is extracted without contact with the electrode unit by wireless or the like. Further, it is not necessary to separately provide a circuit unit such as a transmission unit or a reception unit, and an electric signal can be extracted with a simple configuration.
- the heat radiating section and the signal extracting section may be configured by the same movable member that periodically contacts the electrode section of the sensor section.
- the movable member periodically contacts the electrode portion of the sensor portion, so that heat dissipation (temperature initialization) and electrical signal extraction can be performed simultaneously.
- the electrode unit includes an upper electrode layer and a lower electrode layer that sandwich the pyroelectric layer, and the movable member corresponds to the upper electrode layer and the lower electrode layer of the sensor unit. Two may be provided.
- the upper electrode layer and the lower electrode layer of the sensor unit and each movable member are electrically connected to each other in a one-to-one manner, so that electric signals are taken out from the upper electrode layer and the lower electrode layer, respectively, and at the same time, heat radiation is performed. It can be carried out.
- the sensor unit includes an insulating substrate on which the lower electrode layer, the pyroelectric layer, and the upper electrode layer are stacked in this order, and the electrode unit includes the pyroelectric layer on the insulating substrate.
- a first contact portion and a second contact portion that periodically come into contact with one movable member and the other movable member on the side opposite to the side on which the electric layer is formed; The portion is electrically connected to the upper electrode layer via a first through hole provided in the insulating substrate, and the second contact portion is provided via a second through hole provided in the insulating substrate. And may be electrically connected to the lower electrode layer.
- the heat sensor having the above-described configuration further includes a support portion that supports the sensor portion, and the support portion includes the support substrate on which the two movable members are provided, and a spacer.
- the insulating substrate of the sensor unit is supported via the spacer, and the spacer is movable when the two movable members periodically come into contact with the first contact portion and the second contact portion.
- the space may be provided so as to surround the insulating substrate.
- the insulating substrate of the sensor unit is supported by the support substrate via a spacer provided so as to surround the movable space of the movable member, for example, compared to a configuration in which the sensor unit is supported by an elongated beam-like structure, for example Therefore, it is possible to realize a sensor unit that is resistant to vibrations and shocks from the sensor, and to reduce failure of the sensor unit due to vibration and the like.
- the sensor unit since the sensor unit is less likely to vibrate compared to a configuration in which the sensor unit is supported by a beam-like structure, the sensor unit contacts other members due to unexpected vibration, and the temperature is initialized and output at an unexpected timing. Generation of noise in the electric signal can be reduced.
- the sensor portion can be allowed to warp by the thickness of the spacer. Therefore, even if the sensor part warps, the sensor part comes into contact with the support substrate, the temperature is initialized, and the generation of noise in the electric signal can be reduced.
- the movable member may be configured by a cantilever whose one end periodically contacts the electrode portion of the sensor portion by expansion and contraction of the piezoelectric body.
- the thermal sensor having the above-described configuration may further include a circuit board for outputting the electrical signal extracted by the signal extraction unit, and the circuit board may include an amplifier circuit for amplifying the electrical signal.
- the influence of noise on the electrical signal can be reduced compared to a configuration in which the electrical signal is amplified at the subsequent stage of the circuit board.
- the present invention can be used for a thermal sensor such as a point sensor, a line sensor, or an area sensor (two-dimensional image sensor) that detects a temperature change caused by infrared irradiation.
- a thermal sensor such as a point sensor, a line sensor, or an area sensor (two-dimensional image sensor) that detects a temperature change caused by infrared irradiation.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
熱センサ(1)は、センサ部(10)と、放熱部(例えば可動部材)と、信号取出部(例えば可動部材)と、信号取出部を支持する支持基板(21)とを備えている。センサ部(10)は、焦電体層(13)と、赤外線の照射による温度変化に伴う焦電体層(13)の自発分極の変化に応じた電気信号を出力する電極部(18)とを有している。放熱部は、センサ部(10)に蓄積された熱を周期的に外部に伝搬して放熱する。信号取出部は、センサ部(10)の電極部18から電気信号を周期的に取り出す。信号取出部は、放熱部による非放熱時において、センサ部(10)の電極部(18)と非接触である。
Description
本発明は、赤外線による温度変化を検出する熱センサに関するものである。
近年では、省エネルギーの観点より、人の出入りを検出して、冷暖房装置(エアコン)や照明などの家電製品をON/OFFする技術が必要とされている。また、自動車の安全性向上の観点より、夜間などに歩行者を検出して、ドライバーに警告する技術が必要とされている。このような技術を実現する方法として、人が発する赤外線を画像として検出する熱(画像)センサが知られている。
熱センサは、赤外線の電磁波エネルギーによる温度変化を電気信号として取り出すものであり、温度変化による焦電材料の分極変化を容量変化として検出する焦電型、熱による起電力を検出するサーモパイル型、熱による抵抗変化を検出するボロメータ型などがある。この中で、熱から電気への変換効率は、焦電型の熱センサが最も高い。
ここで、焦電型の熱センサについてさらに説明する。図11は、焦電材料の焦電特性を示している。チタン酸ジルコン酸鉛(PZT)などの焦電材料は、常温で結晶構造が非対称であり、元素が変位することによって自発分極Pを有している。焦電材料を加熱すると、温度Tの上昇とともに結晶構造の非対称性が失われ、キュリー点Tαで完全に対称な結晶構造となり、分極が失われる。このように、温度変化ΔTに伴って自発分極の変化ΔPsが生じるため、温度変化ΔTに伴う自発分極の変化ΔPsを容量変化として検出することにより、焦電材料をセンサとして機能させることができる。
しかし、焦電材料の容量変化(自発分極の変化)は、焦電材料の温度が変化しないと生じないため、焦電材料をセンサとして機能させるためには、定期的に赤外線を遮断して、焦電材料の温度を初期化する必要がある。
そこで、従来の熱センサでは、例えば図12に示すように、センサ101の赤外線入射側に、複数の開口部を有するチョッパー102を配置し、モータ103によってチョッパー102を回転させ、チョッパー102の開口部を介して赤外線をセンサ101に間欠的に入射させるようにしている。
赤外線がチョッパー102の開口部を通過してセンサ101に入射したときには、センサ101の温度が上昇する。また、チョッパー102の回転により、赤外線がチョッパー102の開口部以外の部位で遮断されると、その間に、センサ101の温度が低下し、初期化される。したがって、センサ101から出力される、容量変化に応じた電気信号をロックインアンプ104で増幅すると、同図に示すような波形が得られる。つまり、定期的に赤外線をチョッパー102で遮断して、センサ101の温度を初期化することにより、センサ101の温度変化による容量変化を検出することができる。
また、例えば特許文献1には、焦電材料を有するダイヤフラム部を梁状に支持し、ダイヤフラム部を基板に接触させることにより、ダイヤフラム部の温度を初期化するようにした撮像素子が開示されている。以下、この撮像素子についてさらに説明する。
図13は、特許文献1の撮像素子の1画素の構造を模式的に示す断面図であり、図14は、上記撮像素子の1画素の等価回路を模式的に示す回路図である。この撮像素子では、基板201上の金属膜202と、ダイヤフラム部203とが空隙204を介して対向している。ダイヤフラム部203は、梁状に支持されており、下部電極205、焦電材料206および上部電極207がこの順でダイヤフラム部203上に積層されている。金属膜202はトランジスタT2を介してラインL2に接続されている。下部電極205は配線208を介して接地されており、上部電極207はトランジスタT1を介してラインC1に接続されている。上部電極207とトランジスタT1とは配線209で接続されている。トランジスタT1のゲートはラインL1に接続されており、トランジスタT2のゲートはラインC2に接続されている。
ラインC2を介してトランジスタT2のゲートに所定の電圧を与えてトランジスタT2をオンにすると、金属膜202がラインL2に接続され、金属膜202に電圧が印加されて、下部電極205と金属膜202との間に静電的な吸引力が生じる。これにより、ダイヤフラム部203が撓んで基板201(金属膜202)と接触する。この結果、ダイヤフラム部203と基板201とは熱的に短絡され、同じ温度になる。
一方、トランジスタT2をOFFにすると、上記の静電的な吸引力がなくなるので、ダイヤフラム部203は基板201から離れる。この状態で画素に赤外線が照射されていれば、直ちに温度変化が生じ、焦電材料206の容量が下部電極205と上部電極207との間で変化する。このとき、ラインL1を介してトランジスタT1をオンすれば、上記容量変化に対応した電気信号をラインC1を介して読み出すことができる。電気信号の読み出し後は、トランジスタT1のゲートをオフにし、再びトランジスタT2をオンにして、ダイヤフラム部203と基板201とを接触させることで、熱的短絡を行うことができる。
特許文献1の構成によれば、チョッパーのような機械的な機構を用いることなく、焦電材料の温度を定期的に初期化することができる。これにより、装置の小型化、軽量化、コストダウン、信頼性の向上などの効果が期待できる。
ところが、特許文献1の構成では、上部電極207は常時配線209を介してトランジスタT1と接続されており、下部電極205は常時配線208を介して接地されているため、赤外線の照射によって焦電材料206に蓄積された熱が、常時、上部電極207から配線209を介して外部(例えばトランジスタT1、基板201)に逃げるとともに、下部電極205から配線208を介して外部(例えば基板201)に逃げる。つまり、ダイヤフラム部203と基板201との接触による正規の放熱以外のときでも、焦電材料206の熱が外部に伝搬されて放熱されることになる。このため、焦電材料206の温度変化による容量変化が小さくなり、センサとしての感度が低下するという問題が生ずる。
特に、配線208・209は金属材料で構成されており、熱の伝導度が高いため、配線208・209を介した放熱による感度の低下を無視することはできない。
本発明は、上記の問題点を解決するためになされたもので、その目的は、焦電材料に蓄積された熱が正規の放熱以外のときに放熱されるのを回避することができ、これによって、感度の低下を回避することができる熱センサを提供することにある。
本発明の一側面による熱センサは、赤外線の照射による温度変化を検出する熱センサであって、焦電体層と、赤外線の照射による温度変化に伴う前記焦電体層の自発分極の変化に応じた電気信号を出力する電極部とを有するセンサ部と、前記センサ部に蓄積された熱を周期的に外部に伝搬して放熱する放熱部と、前記センサ部の前記電極部から前記電気信号を周期的に取り出す信号取出部と、前記信号取出部を支持する支持基板とを備え、前記信号取出部は、前記放熱部による非放熱時において、前記センサ部の前記電極部と非接触である。
上記構成によれば、放熱部により、センサ部の温度が周期的に初期化されるので、焦電体層の温度変化に伴う自発分極の変化を利用して、温度変化を検出することできる。また、信号取出部は、放熱部による非放熱時において、センサ部の電極部と非接触であるので、その非放熱時に(正規の放熱以外のときに)、焦電体層に蓄積された熱が電極部から信号取出部を介して外部に伝搬して放熱されるのを回避することができ、感度の低下を回避することができる。
本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。なお、以下での説明において、「接触」とは、2つの部材が物理的に接触し、電気的にも接触した状態となり、「非接触」とは、2つの部材が物理的に接触せず、離れている状態であり、電気的にも接触していない状態を指すものとする。
(熱センサの概略の構成)
図1(a)は、本実施形態の熱センサ1の概略の構成を示す平面図であり、図1(b)は、同図(a)のA-A’線矢視断面図であり、図1(c)は、同図(a)のB-B’線矢視断面図である。熱センサ1は、赤外線の照射による温度変化を検出する検出器であり、センサ部10と、支持部20と、回路基板30とが積層されて構成されている。
図1(a)は、本実施形態の熱センサ1の概略の構成を示す平面図であり、図1(b)は、同図(a)のA-A’線矢視断面図であり、図1(c)は、同図(a)のB-B’線矢視断面図である。熱センサ1は、赤外線の照射による温度変化を検出する検出器であり、センサ部10と、支持部20と、回路基板30とが積層されて構成されている。
なお、図1(a)~図1(c)では、熱センサ1を、1個のセンサ部10を有するポイントセンサ(単素子)で構成した例を示しているが、熱センサ1を、複数のセンサ部10を一列に並べたラインセンサや、複数のセンサ部10を縦横二次元に配列したエリアセンサで構成することも可能である。
〈センサ部の構成〉
図2は、図1(a)のC-C’線矢視断面図である。センサ部10は、絶縁基板11上に、下電極層12、焦電体層13、上電極層14および熱吸収層15をこの順で積層して構成されている。絶縁基板11は、例えば石英(SiO2)基板からなり、支持部20と熱的および電気的に絶縁されている。この絶縁基板11には、第1の貫通孔11aおよび第2の貫通孔11bが形成されている。
図2は、図1(a)のC-C’線矢視断面図である。センサ部10は、絶縁基板11上に、下電極層12、焦電体層13、上電極層14および熱吸収層15をこの順で積層して構成されている。絶縁基板11は、例えば石英(SiO2)基板からなり、支持部20と熱的および電気的に絶縁されている。この絶縁基板11には、第1の貫通孔11aおよび第2の貫通孔11bが形成されている。
焦電体層13は、例えばチタン酸ジルコン酸鉛(PZT)のような焦電材料で構成されており、温度変化に伴って下電極層12と上電極層14と間で容量(自発分極)が変化する。下電極層12および上電極層14は、焦電体層13の少なくとも一部を挟持しており、焦電体層13の温度変化に伴う上記の容量変化を電気信号として出力する。したがって、下電極層12および上電極層14は、赤外線の照射による温度変化に伴う焦電体層13の自発分極の変化に応じた電気信号を出力する電極部18の一部を構成している。熱吸収層15は、例えばアルミニウムの層からなり、焦電体層13にて温度変化による容量変化を生じやすくするために、外部から赤外線(熱)を吸収する。
また、上記の電極部18は、第1の接点部16と、第2の接点部17とをさらに有している。第1の接点部16は、絶縁基板11の裏面側、つまり焦電体層13の形成側とは反対側で、支持部20の後述する一方の可動部材23a(図3(a)等参照)と周期的に接触する接点部であり、絶縁基板11の第1の貫通孔11aを介して上電極層14と導通している。第2の接点部17は、絶縁基板11の裏面側で、支持部20の後述する他方の可動部材23b(図3(a)等参照)と周期的に接触する接点部であり、絶縁基板11の第2の貫通孔11bを介して下電極層12と導通している。
〈支持部の構成〉
次に、支持部20の構成について説明する。図3(a)は、支持部20の概略の構成を示す平面図であり、図3(b)は、同図(a)のA-A’線矢視断面図であり、図3(c)は、同図(a)のB-B’線矢視断面図である。支持部20は、上記したセンサ部10を支持するものであり、支持基板21と、スペーサ22と、可動部材23とを有している。
次に、支持部20の構成について説明する。図3(a)は、支持部20の概略の構成を示す平面図であり、図3(b)は、同図(a)のA-A’線矢視断面図であり、図3(c)は、同図(a)のB-B’線矢視断面図である。支持部20は、上記したセンサ部10を支持するものであり、支持基板21と、スペーサ22と、可動部材23とを有している。
支持基板21は、例えばSOI(Silicon on Insulator)基板で構成されている。つまり、支持基板21は、Siからなる基板24(支持層)と、SiO2からなる犠牲層25(BOX層)と、Siからなる従動層26(活性層)とをこの順で積層して構成されている。この支持基板21は、後述する2つの可動部材23a・23bを支持するとともに、スペーサ22を介してセンサ部10の絶縁基板11を支持している(図1(b)(c)参照)。
スペーサ22は、2つの可動部材23a・23bの可動空間Sを絶縁基板11に沿って囲むように設けられている。ここで、上記の可動空間Sとは、2つの可動部材23a・23bが、センサ部10の電極部18(特に第1の接点部16、第2の接点部17)と周期的に接触するために必要な空間を指す。この可動空間Sの周囲にスペーサ22が設けられることにより、2つの可動部材23a・23bの可動がスペーサ22で阻害されることはなく、各可動部材23a・23bを電極部18に確実に接触させることができる。
可動部材23は、センサ部10の電極部18と周期的に接触することにより、センサ部10に蓄積された熱を周期的に外部に伝搬して放熱する放熱部としての機能を有するとともに、センサ部10の電極部18と周期的に接触することにより、センサ部10から電気信号を周期的に取り出す信号取出部としての機能を有している。つまり、本実施形態では、放熱部と信号取出部とを、電極部18と周期的に接触する同一の可動部材23で構成している。
可動部材23は、センサ部10の上電極層14に対応して設けられる可動部材23aと、下電極層12に対応して設けられる可動部材23bとの2つで構成されている。各可動部材23a・23bは、圧電体の伸縮によって一方の端部がセンサ部10の電極部18(特に第1の接点部16、第2の接点部17)と周期的に接触するカンチレバーで構成されている。
より詳しくは、各可動部材23a・23bは、支持基板21の従動層26の一部が片持ち梁形状に加工された梁状部26aと、梁状部26aの上に形成される駆動層27および突起部28とで構成されている。なお、梁状部26aを片持ち梁形状とするために、梁状部26aの下部に位置する犠牲層25は、梁状部26aよりも一回り大きい形状で除去されている。駆動層27は、例えばPZTからなる圧電体と、上記圧電体を挟持する上部電極および下部電極とを有して構成されている。突起部28は、梁状部26aの自由端側の端部(固定端側の端部とは反対側)の上に形成されており、可動部材23a・23bの可動時に、センサ部10の第1の接点部16および第2の接点部17とそれぞれ接触して導通する。突起部28は、図示しない配線により、支持基板21を介して回路基板30と電気的に接続されている。
また、各可動部材23a・23bは、平面視で、各梁状部26aの固定端と自由端とが互いに点対称の位置関係となるように、平行に配置されている。
〈回路基板の構成〉
次に、回路基板30の構成について説明する。図4は、回路基板30の概略の構成を示すブロック図である。回路基板30は、支持部20の可動部材23にて取り出した電気信号を出力処理するための基板であり、上記の電気信号を増幅するアンプ31(増幅回路)と、アンプ31からの出力信号をA/D変換(アナログ-デジタル変換)して出力するA/D変換部32とを有している。
次に、回路基板30の構成について説明する。図4は、回路基板30の概略の構成を示すブロック図である。回路基板30は、支持部20の可動部材23にて取り出した電気信号を出力処理するための基板であり、上記の電気信号を増幅するアンプ31(増幅回路)と、アンプ31からの出力信号をA/D変換(アナログ-デジタル変換)して出力するA/D変換部32とを有している。
また、本実施形態では、回路基板30は、可動部材23の駆動層27の圧電体を伸縮させて可動部材23を駆動すべく、駆動層27の上部電極および下部電極に電圧を印加するための駆動制御部33をさらに備えている。駆動制御部33は、基準クロックCLK(図8参照)に同期して、駆動層27の上部電極および下部電極への電圧印加を制御して可動部材23を駆動する。なお、A/D変換部32および駆動制御部33は、回路基板30とは別の基板に搭載されていてもよい。
回路基板30では、アンプ31により、センサ部10から可動部材23を介して取り出した電気信号が直ちに増幅されるので、回路基板30の後段で電気信号を増幅する構成に比べて、電気信号に対するノイズの影響を低減することができる。
(熱センサの製造方法)
次に、上記構成の熱センサ1の製造方法について説明する。まず、熱センサ1の上述したセンサ部10の製造方法について説明する。図5(a)~図5(g)は、センサ部10の製造工程を示す断面図である。まず、図5(a)に示すように、絶縁基板11として、厚さが例えば200μmの石英(SiO2)基板を用意する。そして、図5(b)に示すように、絶縁基板11を300℃に加熱し、絶縁基板11上にTiおよびPtをこの順でスパッタし、厚さが例えば100nm程度の下電極層12を形成する。その後、下電極層12の外形をウェットエッチング法によって所定の形状に加工する。
次に、上記構成の熱センサ1の製造方法について説明する。まず、熱センサ1の上述したセンサ部10の製造方法について説明する。図5(a)~図5(g)は、センサ部10の製造工程を示す断面図である。まず、図5(a)に示すように、絶縁基板11として、厚さが例えば200μmの石英(SiO2)基板を用意する。そして、図5(b)に示すように、絶縁基板11を300℃に加熱し、絶縁基板11上にTiおよびPtをこの順でスパッタし、厚さが例えば100nm程度の下電極層12を形成する。その後、下電極層12の外形をウェットエッチング法によって所定の形状に加工する。
続いて、図5(c)に示すように、絶縁基板11を600℃に加熱し、下電極層12と一部重なるように絶縁基板11上にスパッタ法でチタン酸ジルコン酸鉛を例えば厚さ100nmで成膜し、焦電体層13を形成する。そして、焦電体層13の外形をウェットエッチング法によって所定の形状に加工する。
次に、図5(d)に示すように、絶縁基板11を300℃に加熱し、絶縁基板11上に焦電体層13を覆うように、TiおよびAuをこの順でスパッタし、厚さが例えば100nmの上電極層14を形成する。そして、上電極層14の外形をウェットエッチング法によって所定の形状に加工する。
続いて、図5(e)に示すように、絶縁基板11を300℃に加熱し、上電極層14上にアルミニウムをスパッタし、厚さが例えば100nmの熱吸収層15を形成する。そして、熱吸収層15の外形をウェットエッチング法によって所定の形状に加工する。
次に、図5(f)に示すように、絶縁基板11の上下を反転し、ウェットエッチング法によって、絶縁基板11の所定の位置に第1の貫通孔11aおよび第2の貫通孔11bを形成する。第1の貫通孔11aおよび第2の貫通孔11bの直径は、例えば100μmである。
最後に、図5(g)に示すように、絶縁基板11を300℃に加熱し、絶縁基板11の裏面側からアルミニウムをスパッタし、上電極層14と第1の貫通孔11aを介して導通する第1の接点部16を形成するとともに、下電極層12と第2の貫通孔11bを介して導通する第2の接点部17を形成する。このとき、第1の接点部16および第2の接点部17の厚さ(絶縁基板11の裏面からの高さ)は、それぞれ例えば100nmである。第1の接点部16および第2の接点部17の外形をリフトオフ法によって加工することで、センサ部10が完成する。
次に、熱センサ1の上述した支持部20の製造方法について説明する。図6(a)~図6(d)は、支持部20の製造工程を示す断面図である。まず、図6(a)に示すように、支持基板21として、酸化膜(SiO2)を介して2枚のSi基板が接合されたSOI基板を用意する。つまり、この支持基板21は、Siからなる基板24と、SiO2からなる犠牲層25と、Siからなる従動層26とをこの順で積層したものである。
続いて、図6(b)に示すように、支持基板21上に駆動層27および突起部28を形成する。より詳しくは、支持基板21を300℃に加熱し、支持基板21上にTiおよびPtをこの順でスパッタし、厚さが例えば100nmの駆動層27の下部電極を形成するとともに、下部電極と離れた位置にPt層を上記下部電極よりも高く形成し、突起部28を形成する。その後、下部電極および突起部28の外形をウェットエッチング法によって所定の形状に加工する。
そして、支持基板21を600℃に加熱し、下部電極上にスパッタ法で厚さが例えば1μmのチタン酸ジルコン酸鉛からなる圧電体層を成膜する。そして、圧電体層の外形をウェットエッチング法によって所定の形状に加工する。
その後、支持基板21を300℃に加熱し、圧電体層上にTiおよびAuをこの順でスパッタし、厚さが例えば100nmの上部電極を形成する。そして、上部電極の外形をウェットエッチング法によって所定の形状に加工し、駆動層27を完成させる。
次に、図6(c)に示すように、支持基板21上にマスクパターンを形成し、ウェットエッチング法によって、支持基板21をパターニングし、所定形状の可動部材23を形成する。つまり、支持基板21の従動層26および犠牲層25を所定の形状でパターニングして、梁状部26aを有する可動部材23を形成する。なお、梁状部26aの下部の犠牲層25は、サイドエッチングによって除去される。
その後、図6(d)に示すように、可動部材23の可動空間Sに対応する領域を予め除去加工した厚さ200μmのガラス基板からなるスペーサ22を、陽極接合によって支持基板21の従動層26と接合する。なお、スペーサ22は、Si基板で構成されていてもよい。この場合、スペーサ22と従動層26との接合は、シリコン同士の接合となるので、シリコン同士の接合に適した接合方法(例えばオプティカルコンタクトや拡散接合)を用いればよい。
図7(a)は、上記の製法によって製造されたセンサ部10と支持部20とを、絶縁基板11とスペーサ22とが対向するように陽極接合によって接合した状態を示している。図7(b)に示すように、支持部20におけるセンサ部10との接合側とは反対側に回路基板30を接合することにより、熱センサ1を完成させることができる。
(熱センサの動作)
次に、上記した熱センサ1の動作について説明する。図8は、可動部材23を可動するタイミングを示す基準クロックCLKと、可動部材23の可動状態と、センサ部10の温度変化と、センサ部10からの出力との関係を示している。以下、この図面を参照しながら説明する。
次に、上記した熱センサ1の動作について説明する。図8は、可動部材23を可動するタイミングを示す基準クロックCLKと、可動部材23の可動状態と、センサ部10の温度変化と、センサ部10からの出力との関係を示している。以下、この図面を参照しながら説明する。
なお、基準クロックCLKは、1秒間に例えば30~60回の周期でハイレベルまたはローレベルとなる信号とする。ここで、基準クロックCLKのハイレベルは、センサ部10の可動部材23による放熱時に対応しており、ローレベルは、センサ部10の可動部材23による非放熱時、つまり、可動部材23によって周期的に行われる放熱と放熱との間の時期に対応している。また、図8で示すセンサ部10からの出力としては、上電極層14および下電極層12から出力される電気信号に基づいて得られる、上電極層14と下電極層12との電位差に相当する電流値を考えている。
図1(a)~図1(c)の熱センサ1において、センサ部10に対して上部から赤外線が照射されると、センサ部10の熱吸収層15で赤外線が吸収される。これにより、焦電体層13の温度が上昇し、これに伴って焦電体層13の容量(自発分極量)が上電極層14と下電極層12との間で変化する。
時刻t1において、基準クロックCLKがハイレベルになるのと同期して、回路基板30の駆動制御部33が、支持部20の可動部材23(特に駆動層27の上部電極、下部電極)に電圧を印加すると、可動部材23がONとなり、駆動層27の上部電極と下部電極とで挟まれた圧電体層が水平方向に収縮する。これにより、図9(a)および図9(b)に示すように、片持ち梁構造の可動部材23a・23bは、それぞれ自由端側の突起部28が上方に変位するように変形(湾曲)する。この結果、図10(a)および図10(b)に示すように、可動部材23aの突起部28は、センサ部10の第1の接点部16に接触し、可動部材23bの突起部28は、第2の接点部17に接触する。つまり、可動部材23は、センサ部10の電極部18と電気的に接触する。
したがって、センサ部10の上電極層14から出力される、焦電体層13の自発分極の変化に応じた電気信号は、第1の接点部16、可動部材23a(突起部28)を介して回路基板30に入力される。また、センサ部10の下電極層12から出力される、焦電体層13の自発分極の変化に応じた電気信号は、第2の接点部17、可動部材23b(突起部28)を介して回路基板30に入力される。回路基板30では、これらの電気信号がアンプ31で増幅された後、A/D変換部32にてデジタル信号に変換されて外部(例えばパーソナルコンピュータ)に出力される。したがって、回路基板30から出力される信号に基づいて、赤外線の照射による温度変化の有無を検出することができ、これによって、例えば人の存在の有無を判別することが可能となる。
また、時刻t1では、可動部材23aの突起部28が第1の接点部16に接触し、可動部材23bの突起部28が第2の接点部17に接触しているため、上記のようにセンサ部10から電気信号が取り出されるのと同時に、赤外線の照射によってセンサ部10に蓄積された熱が、可動部材23a・23bを介して支持部20に伝搬され、放熱される。これにより、センサ部10の温度は、可動部材23がOFFとなる時刻t2まで次第に低下し、支持部20と同じ温度に初期化される。
時刻t2において、基準クロックCLKがローレベルになるのと同期して、駆動制御部33が可動部材23への電圧印加を停止すると、可動部材23がOFFとなり、駆動層27の圧電体層が伸長して元の形状に戻るため、可動部材23a・23bは湾曲前の形状に戻る(図3(a)~図3(c)参照)。したがって、可動部材23aは、突起部28と第1の接点部16との接触が解除されて非接触状態となり、可動部材23bは、突起部28と第2の接点部17との接触が解除されて非接触状態となる。この状態で赤外線がセンサ部10に照射されていれば、センサ部10では、焦電体層13の温度が再び上昇する。
時刻t3において、基準クロックCLKがハイレベルになるのと同期して、駆動制御部33が可動部材23に電圧を印加すると、可動部材23が再びONとなって湾曲し、可動部材23aの突起部28が第1の接点部16に接触し、可動部材23bの突起部28が第2の接点部17に接触する。したがって、センサ部10から出力される電気信号が、可動部材23を介して回路基板30に入力されるとともに、センサ部10に蓄積された熱が、可動部材23を介して支持部20に伝搬され、放熱、初期化される。
時刻t4において、基準クロックCLKがローレベルになるのと同期して、駆動制御部33が可動部材23への電圧印加を停止すると、可動部材23は再びOFFとなって湾曲前の元の形状に戻り、第1の接点部16および第2の接点部17と非接触状態となる。
以降、基準クロックCLKに同期して可動部材23のON/OFFが周期的に繰り返されることにより、可動部材23と電極部18との接触が周期的に繰り返されて、センサ部10からの電気信号の取り出しと、センサ部10の放熱、初期化とが同時にかつ周期的に行われる。
以上のように、赤外線の照射によってセンサ部10に蓄積された熱は、放熱部としての可動部材23により、周期的に外部に伝搬され、センサ部10の温度(熱)が初期化されるので、センサ部10の焦電体層13の温度変化に伴う自発分極の変化を利用して、温度変化を検出することできる。
また、可動部材23は、基準クロックCLKがローレベルとなるセンサ部10の非放熱時に(正規の放熱以外のときに)、電極部18(第1の接点部16、第2の接点部17)と非接触となるため、電極部18と可動部材23との電気的な導通は完全に断たれる。これにより、正規の放熱以外のときに、焦電体層13に蓄積された熱が、電極部18から可動部材23を介して支持基板21に伝搬して放熱されるのを回避することができ、焦電体層13の自発分極の変化量が低下して、感度が低下するのを回避することができる。
また、本実施形態では、放熱部および信号取出部を同一の可動部材23で構成し、可動部材23をセンサ部10の電極部18と周期的に接触させるようにしているので、センサ部10の放熱(温度の初期化)と電気信号の取り出しとを同時に行うことができる。
また、可動部材23は、センサ部10の上電極層14および下電極層12に対応する2つの可動部材23a・23bで構成されているので、上電極層14および下電極層12と各可動部材23a・23bとを、第1の接点部16および第2の接点部17をそれぞれ介して電気的に導通させることで、上電極層14および下電極層12から電気信号をそれぞれ取り出すと同時に、放熱を行うことができる。
また、センサ部10の電極部18は、絶縁基板11の第1の貫通孔11aを介して上電極層14と導通する第1の接点部16と、絶縁基板11の第2の貫通孔11bを介して下電極層12と導通する第2の接点部17とを有しているので、第1の接点部16と一方の可動部材23aとを周期的に接触させ、第2の接点部17と他方の可動部材23bとを周期的に接触させることにより、センサ部10の絶縁基板11の裏面側、つまり、絶縁基板11に対して焦電体層13の形成側とは反対側で、センサ部10の放熱と、センサ部10の上電極層14および下電極層12からの電気信号の取り出しとを周期的にかつ同時に行うことができる。
また、センサ部10の絶縁基板11は、2つの可動部材23a・23bの可動空間Sを囲むように設けられたスペーサ22を介して、支持基板21で支持されているので、図13の構成にように、細長い梁状構造で焦電体を有するセンサ部が支持される構成に比べて、外部からの振動や衝撃に対して強いセンサ部10を実現することができ、振動等によるセンサ部10の故障を低減することができる。また、センサ部10は、梁状構造で支持される構成に比べて振動しにくくなるので、センサ部10が予期しない振動によって他の部材と接触し、予期しないタイミングで温度が初期化されて、出力される電気信号にノイズが発生するのを低減することができる。
さらに、センサ部10は多層構造であるため、各層の熱膨張係数の違いによってセンサ部10に反りが生じることがある。しかし、センサ部10に反りが生じたとしても、スペーサ22の厚み分だけ、センサ部10の反りを許容することができる。これにより、センサ部10に反りが生じても、センサ部10が支持基板21と接触して温度が初期化され、電気信号にノイズが発生するのを低減することができる。
また、スペーサ22は、可動部材23の可動空間Sを囲むように設けられているので、可動部材23の動きを阻害することはなく、絶縁基板11の裏面側で、可動部材23の駆動によって、放熱と電気信号の取り出しとを確実に行うことができる。
また、可動部材23は、圧電体の伸縮によって一方の端部がセンサ部10の電極部18と周期的に接触するカンチレバーで構成されているので、可動部材23と電極部18とを周期的に接触させて、放熱と電気信号の取り出しとを同時に行う構成を確実に実現することができる。
ところで、本実施形態では、センサ部10からの電気信号を周期的に取り出す信号取出部を可動部材23で構成し、可動部材23を電極部18に周期的に接触させることによって、センサ部10から電気信号を取り出している。しかし、信号取出部は、例えばセンサ部10から無線によって電気信号を周期的に取り出す構成であってもよい。この場合、信号取出部は、センサ部10と非接触で電気信号を取り出すことができる。
ただし、無線等による非接触方式でセンサ部10から電気信号を取り出す構成では、電気信号を送受信するための送信部や受信部などの回路部を別途設ける必要がある。この点、可動部材23を電極部18に周期的に接触させることによって、センサ部10から電気信号を取り出す本実施形態の構成によれば、上記のような回路部を別途設ける必要がなく、簡素な構成で電気信号の取り出しを行うことができる。
また、本実施形態では、放熱部を可動部材23で構成し、可動部材23を電極部18に周期的に接触させることによって、センサ部10に蓄積された熱を放熱するようにしている。しかし、放熱部は、例えば一定周期でセンサ部10に送風することによって放熱を行う構成であってもよい。ただし、送風による放熱を短い周期で行うことは困難であるため、短い周期で温度の初期化を繰り返す場合には、本実施形態のように可動部材23がセンサ部10と接触して放熱を行う構成のほうが望ましい。
以上で説明した熱センサは、赤外線の照射による温度変化を検出する熱センサであって、焦電体層と、赤外線の照射による温度変化に伴う前記焦電体層の自発分極の変化に応じた電気信号を出力する電極部とを有するセンサ部と、前記センサ部に蓄積された熱を周期的に外部に伝搬して放熱する放熱部と、前記センサ部の前記電極部から前記電気信号を周期的に取り出す信号取出部と、前記信号取出部を支持する支持基板とを備え、前記信号取出部は、前記放熱部による非放熱時において、前記センサ部の前記電極部と非接触である。
上記の構成によれば、センサ部に赤外線が照射されて焦電体層に温度変化が生じると、これに伴って焦電体層の自発分極が変化し、上記自発分極の変化に応じた電気信号が電極部から出力される。信号取出部にて上記電気信号を周期的に取り出すことにより、赤外線の照射による温度変化を検出することができる。
ここで、赤外線の照射によってセンサ部に蓄積された熱は、放熱部により、周期的に外部に伝搬され、放熱される。これにより、センサ部の温度(熱)が初期化されるので、焦電体層の温度変化に伴う自発分極の変化を利用して、温度変化を検出することできる。
また、一般に、電気が導通する部分では熱の伝導度が高く、熱が伝搬されやすいが、信号取出部は、放熱部による非放熱時において、センサ部の電極部と非接触であるため、信号取出部と電極部との間に電気的な導通部分は存在しない。これにより、放熱部による正規の放熱以外のときに、焦電体層に蓄積された熱が、電極部から信号取出部を介して支持基板に伝搬して放熱されるのを回避することができ、焦電体層の自発分極の変化量が低下して、感度が低下するのを回避することができる。
上記構成において、前記放熱部は、前記センサ部の前記電極部と周期的に接触することにより、前記センサ部に蓄積された熱を周期的に外部に伝搬して放熱し、前記信号取出部は、前記センサ部の前記電極部と周期的に接触することにより、前記センサ部から前記電気信号を周期的に取り出してもよい。
放熱部は、センサ部の電極部と周期的に接触することにより、センサ部の熱を周期的に外部に伝搬し、放熱するので、送風等により電極部と非接触で放熱を行う構成に比べて、放熱を短い周期で確実に行うことができる。また、信号取出部は、センサ部の電極部と周期的に接触することにより、センサ部から電気信号を周期的に取り出すので、無線等により電極部と非接触で電気信号を取り出す構成に比べて、送信部や受信部などの回路部を別途設ける必要がなく、簡素な構成で電気信号の取り出しを行うことができる。
上記構成において、前記放熱部および前記信号取出部は、前記センサ部の前記電極部と周期的に接触する同一の可動部材で構成されていてもよい。
可動部材がセンサ部の電極部と周期的に接触することにより、放熱(温度の初期化)と電気信号の取り出しとを同時に行うことができる。
上記構成において、前記電極部は、前記焦電体層を挟む上電極層および下電極層を有しており、前記可動部材は、前記センサ部の前記上電極層および前記下電極層に対応して2つ設けられていてもよい。
この構成では、センサ部の上電極層および下電極層と各可動部材とを1対1で電気的に導通させることで、上電極層および下電極層から電気信号をそれぞれ取り出すと同時に、放熱を行うことができる。
上記構成において、前記センサ部は、前記下電極層、前記焦電体層および前記上電極層がこの順で積層される絶縁基板を有しており、前記電極部は、前記絶縁基板における前記焦電体層の形成側とは反対側で、一方の可動部材および他方の可動部材と周期的に接触する第1の接点部および第2の接点部をさらに有しており、前記第1の接点部は、前記絶縁基板に設けられた第1の貫通孔を介して前記上電極層と導通しており、前記第2の接点部は、前記絶縁基板に設けられた第2の貫通孔を介して前記下電極層と導通していてもよい。
第1の接点部と一方の可動部材とを周期的に接触させ、第2の接点部と他方の可動部材とを周期的に接触させることにより、センサ部の絶縁基板の裏面側(絶縁基板に対して焦電体層の形成側とは反対側)で、センサ部の放熱と、センサ部の上電極層および下電極層からの電気信号の取り出しとを周期的にかつ同時に行うことができる。
上記構成の熱センサは、前記センサ部を支持する支持部をさらに備え、前記支持部は、前記2つの可動部材が設けられる前記支持基板と、スペーサとを有しており、前記支持基板は、前記スペーサを介して前記センサ部の前記絶縁基板を支持しており、前記スペーサは、前記2つの可動部材が前記第1の接点部および前記第2の接点部と周期的に接触するときの可動空間を前記絶縁基板に沿って囲むように設けられていてもよい。
センサ部の絶縁基板が、可動部材の可動空間を囲むように設けられたスペーサを介して支持基板で支持されているので、例えば細長い梁状構造でセンサ部が支持される構成に比べて、外部からの振動や衝撃に対して強いセンサ部を実現することができ、振動等によるセンサ部の故障を低減することができる。また、センサ部が梁状構造で支持される構成に比べて振動しにくくなるので、センサ部が予期しない振動によって他の部材と接触し、予期しないタイミングで温度が初期化されて、出力される電気信号にノイズが発生するのを低減することができる。さらに、各層の熱膨張係数の違いによってセンサ部に反りが生じても、スペーサの厚み分だけ、センサ部の反りを許容することができる。これにより、センサ部に反りが生じても、センサ部が支持基板と接触して温度が初期化され、電気信号にノイズが発生するのを低減することができる。
上記構成において、前記可動部材は、圧電体の伸縮によって一方の端部が前記センサ部の前記電極部と周期的に接触するカンチレバーで構成されていてもよい。
この場合、可動部材がセンサ部の電極部と周期的に接触する構成を確実に実現することができる。
上記構成の熱センサは、前記信号取出部にて取り出した電気信号を出力処理するための回路基板をさらに備え、前記回路基板は、前記電気信号を増幅する増幅回路を含んでいてもよい。
信号処理部にて取り出した電気信号が、直ちに回路基板の増幅回路で増幅されるので、回路基板の後段で電気信号を増幅する構成に比べて、電気信号に対するノイズの影響を低減することができる。
本発明は、赤外線の照射による温度変化を検出する、ポイントセンサ、ラインセンサ、エリアセンサ(2次元画像センサ)などの熱センサに利用可能である。
1 熱センサ
10 センサ部
11 絶縁基板
11a 第1の貫通孔
11b 第2の貫通孔
12 下電極層(電極部)
13 焦電体層
14 上電極層(電極部)
16 第1の接点部
17 第2の接点部
18 電極部
20 支持部
21 支持基板
22 スペーサ
23 可動部材(放熱部、信号取出部、カンチレバー)
23a 可動部材(放熱部、信号取出部、カンチレバー)
23b 可動部材(放熱部、信号取出部、カンチレバー)
30 回路基板
31 アンプ(増幅回路)
S 可動空間
10 センサ部
11 絶縁基板
11a 第1の貫通孔
11b 第2の貫通孔
12 下電極層(電極部)
13 焦電体層
14 上電極層(電極部)
16 第1の接点部
17 第2の接点部
18 電極部
20 支持部
21 支持基板
22 スペーサ
23 可動部材(放熱部、信号取出部、カンチレバー)
23a 可動部材(放熱部、信号取出部、カンチレバー)
23b 可動部材(放熱部、信号取出部、カンチレバー)
30 回路基板
31 アンプ(増幅回路)
S 可動空間
Claims (8)
- 赤外線の照射による温度変化を検出する熱センサであって、
焦電体層と、赤外線の照射による温度変化に伴う前記焦電体層の自発分極の変化に応じた電気信号を出力する電極部とを有するセンサ部と、
前記センサ部に蓄積された熱を周期的に外部に伝搬して放熱する放熱部と、
前記センサ部の前記電極部から前記電気信号を周期的に取り出す信号取出部と、
前記信号取出部を支持する支持基板とを備え、
前記信号取出部は、前記放熱部による非放熱時において、前記センサ部の前記電極部と非接触であることを特徴とする熱センサ。 - 前記放熱部は、前記センサ部の前記電極部と周期的に接触することにより、前記センサ部に蓄積された熱を周期的に外部に伝搬して放熱し、
前記信号取出部は、前記センサ部の前記電極部と周期的に接触することにより、前記センサ部から前記電気信号を周期的に取り出すことを特徴とする請求項1に記載の熱センサ。 - 前記放熱部および前記信号取出部は、前記センサ部の前記電極部と周期的に接触する同一の可動部材で構成されていることを特徴とする請求項2に記載の熱センサ。
- 前記電極部は、前記焦電体層を挟む上電極層および下電極層を有しており、
前記可動部材は、前記センサ部の前記上電極層および前記下電極層に対応して2つ設けられていることを特徴とする請求項3に記載の熱センサ。 - 前記センサ部は、前記下電極層、前記焦電体層および前記上電極層がこの順で積層される絶縁基板を有しており、
前記電極部は、前記絶縁基板における前記焦電体層の形成側とは反対側で、一方の可動部材および他方の可動部材と周期的に接触する第1の接点部および第2の接点部をさらに有しており、
前記第1の接点部は、前記絶縁基板に設けられた第1の貫通孔を介して前記上電極層と導通しており、
前記第2の接点部は、前記絶縁基板に設けられた第2の貫通孔を介して前記下電極層と導通していることを特徴とする請求項4に記載の熱センサ。 - 前記センサ部を支持する支持部をさらに備え、
前記支持部は、前記2つの可動部材が設けられる前記支持基板と、スペーサとを有しており、
前記支持基板は、前記スペーサを介して前記センサ部の前記絶縁基板を支持しており、
前記スペーサは、前記2つの可動部材が前記第1の接点部および前記第2の接点部と周期的に接触するときの可動空間を前記絶縁基板に沿って囲むように設けられていることを特徴とする請求項5に記載の熱センサ。 - 前記可動部材は、圧電体の伸縮によって一方の端部が前記センサ部の前記電極部と周期的に接触するカンチレバーで構成されていることを特徴とする請求項3から6のいずれかに記載の熱センサ。
- 前記信号取出部にて取り出した電気信号を出力処理するための回路基板をさらに備え、
前記回路基板は、前記電気信号を増幅する増幅回路を含んでいることを特徴とする請求項1から7のいずれかに記載の熱センサ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011159459 | 2011-07-21 | ||
JP2011-159459 | 2011-07-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013011753A1 true WO2013011753A1 (ja) | 2013-01-24 |
Family
ID=47557942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/064308 WO2013011753A1 (ja) | 2011-07-21 | 2012-06-01 | 熱センサ |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013011753A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021241088A1 (ja) * | 2020-05-25 | 2021-12-02 | パナソニックIpマネジメント株式会社 | 赤外線センサ及び赤外線センサの制御方法 |
WO2023090010A1 (ja) * | 2021-11-17 | 2023-05-25 | パナソニックIpマネジメント株式会社 | 赤外線センサ、センシングシステム、及び赤外線のセンシング方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000230858A (ja) * | 1999-02-10 | 2000-08-22 | Nissan Motor Co Ltd | 撮像素子 |
WO2002008706A1 (en) * | 2000-07-22 | 2002-01-31 | Bae Systems Electronics Limited | Thermal sensing apparatus |
JP2005181308A (ja) * | 2003-12-17 | 2005-07-07 | Korea Advanced Inst Of Sci Technol | 赤外線ボロメーター |
WO2006132155A1 (ja) * | 2005-06-06 | 2006-12-14 | Matsushita Electric Industrial Co., Ltd. | 電子デバイス及びその製造方法 |
US20070116086A1 (en) * | 2003-12-08 | 2007-05-24 | Commissariat A L'energie Atomique | Radiant-energy-measuring device with two positions |
-
2012
- 2012-06-01 WO PCT/JP2012/064308 patent/WO2013011753A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000230858A (ja) * | 1999-02-10 | 2000-08-22 | Nissan Motor Co Ltd | 撮像素子 |
WO2002008706A1 (en) * | 2000-07-22 | 2002-01-31 | Bae Systems Electronics Limited | Thermal sensing apparatus |
US20070116086A1 (en) * | 2003-12-08 | 2007-05-24 | Commissariat A L'energie Atomique | Radiant-energy-measuring device with two positions |
JP2005181308A (ja) * | 2003-12-17 | 2005-07-07 | Korea Advanced Inst Of Sci Technol | 赤外線ボロメーター |
WO2006132155A1 (ja) * | 2005-06-06 | 2006-12-14 | Matsushita Electric Industrial Co., Ltd. | 電子デバイス及びその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021241088A1 (ja) * | 2020-05-25 | 2021-12-02 | パナソニックIpマネジメント株式会社 | 赤外線センサ及び赤外線センサの制御方法 |
WO2023090010A1 (ja) * | 2021-11-17 | 2023-05-25 | パナソニックIpマネジメント株式会社 | 赤外線センサ、センシングシステム、及び赤外線のセンシング方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8193685B2 (en) | Thin film detector for presence detection | |
JP5399970B2 (ja) | 強誘電体デバイスの製造方法 | |
TW200540401A (en) | Infrared ray sensor and manufacturing method for the same therefore | |
JP2004235638A (ja) | 微細加工素子およびその製造方法 | |
JP2009291514A (ja) | 静電容量型トランスデューサの製造方法、及び静電容量型トランスデューサ | |
JP2008241439A (ja) | ボロメータ型THz波検出器 | |
US9834437B2 (en) | Method for manufacturing MEMS torsional electrostatic actuator | |
JP2007024688A (ja) | 人体異常検知センサおよびそれを用いた通報システム | |
JP2009174917A (ja) | 赤外線検出素子、及び赤外線検出素子の製造方法 | |
WO2013011753A1 (ja) | 熱センサ | |
JP3887391B2 (ja) | 赤外線ボロメーター | |
WO2015045343A1 (ja) | 赤外線放射素子及びその製造方法 | |
JP5627279B2 (ja) | 振動発電デバイスおよびその製造方法 | |
JP5016383B2 (ja) | センサ装置 | |
JP5139032B2 (ja) | 微細構造体及びその製造方法 | |
JP2010204112A (ja) | センサ及びその製造方法 | |
JP2006319789A (ja) | 車両用障害物検知センサ | |
JP2010012534A (ja) | デバイス及びその製造方法 | |
JP4678252B2 (ja) | セキュリティシステム | |
JP2003166998A (ja) | 半導体加速度センサ | |
JP2010101675A (ja) | 赤外線撮像素子およびその製造方法 | |
JP2011091318A (ja) | 発電デバイス | |
JP2000230858A (ja) | 撮像素子 | |
JP2014153188A (ja) | 焦電センサ | |
JP2006162470A (ja) | 赤外線センサ素子及びそれを用いた赤外線センサ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12815368 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12815368 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |