WO2013008643A1 - 形状検査方法、構造物の製造方法及び形状検査装置 - Google Patents

形状検査方法、構造物の製造方法及び形状検査装置 Download PDF

Info

Publication number
WO2013008643A1
WO2013008643A1 PCT/JP2012/066636 JP2012066636W WO2013008643A1 WO 2013008643 A1 WO2013008643 A1 WO 2013008643A1 JP 2012066636 W JP2012066636 W JP 2012066636W WO 2013008643 A1 WO2013008643 A1 WO 2013008643A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape
reflectance
inspection
moth
standard sample
Prior art date
Application number
PCT/JP2012/066636
Other languages
English (en)
French (fr)
Inventor
林 秀和
登喜生 田口
千明 三成
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2013523887A priority Critical patent/JP5728089B2/ja
Priority to CN201280033095.6A priority patent/CN103635776B/zh
Publication of WO2013008643A1 publication Critical patent/WO2013008643A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present invention relates to a shape inspection method, a structure manufacturing method, and a shape inspection apparatus. More specifically, a film having a fine uneven shape, a mold, particularly a film having a moth-eye structure (hereinafter, also simply referred to as “moth-eye film”), and a mold for forming the film.
  • the present invention relates to a shape inspection method for a structure such as a structure, a method for manufacturing the structure, and a shape inspection apparatus.
  • Examples of the structure having a concavo-convex shape include a film having a fine concavo-convex shape, a mold for forming the same, a transfer plate, and the like, which are utilized in optical members and electronic device members.
  • a moth-eye film has attracted attention as an optical member that exhibits unique optical characteristics as a film having a minute uneven shape. Therefore, the importance of a moth-eye film and a mold for manufacturing the moth-eye film is increasing as a structure having an uneven shape.
  • the moth-eye film has an antireflection effect and can reduce surface reflection of the display device, for example.
  • the moth-eye film is arranged on the surface of the film with a fine pattern of concaves and convexes formed with an anti-glare (AG) film and having an interval of less than or equal to the visible light wavelength.
  • AG anti-glare
  • the change in the refractive index at the boundary between the air) and the article surface is made pseudo continuous.
  • a nondestructive inspection method using ellipsometry is known (for example, see Patent Document 1).
  • this nondestructive inspection first, a plurality of standard samples with known thicknesses are measured in advance by ellipsometry, and analysis parameters are set. Next, an ellipsometry measurement is performed on the inspection target, and analysis parameters are applied to the obtained data to identify the depth of the recesses in the concavo-convex shape of the inspection target. Then, the pass / fail judgment is performed by comparing the depth of the recess to be inspected with the reference value of the recess based on the standard sample.
  • a simple and highly accurate inspection method is required.
  • a moth-eye film and a mold for manufacturing the moth-eye film are taken as examples of inspection objects, and the inspection items and inspection method will be described as follows.
  • the finish of the moth-eye film is determined by the surface shape of the moth-eye (Al 2 O 3 occupation ratio relative to the cross-sectional unit area) and the depth parameter.
  • the inspection method includes visual inspection. For example, in FIG.
  • an inspection object 101 (moth eye film or mold) is placed on an inspection table 102 and a white plate (backlight sheet) 103 is provided. Then, the light irradiated from the light source 104 is irradiated so that the incident angle is substantially perpendicular to the inspection object. Then, the inspector visually observes the reflected light from the substantially horizontal direction with respect to the inspection object, and confirms the color appearance. The inspector determines whether or not the inspection object falls within the range of the color inspection of the plurality of comparison samples while observing the plurality of comparison samples with the above parameters, and makes a pass / fail determination. The inspection object determined to be passed is paid out as it is.
  • the cross-sectional shape may be analyzed by destroying a part of the inspection object and observing the cross section with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the present invention has been made in view of the above-described situation, and provides a shape inspection method, a structure manufacturing method, and a shape inspection apparatus capable of accurately inspecting an inspection object having a concavo-convex shape in a nondestructive manner. It is intended.
  • the inventors of the present invention have conducted various studies on a shape inspection method, a structure manufacturing method, and a shape inspection apparatus capable of inspecting an inspection object having a concavo-convex shape with a high degree of accuracy.
  • the reflectance at the plurality of wavelengths of the standard sample and the reflectance at the plurality of wavelengths of the inspection object By comparing, it was found that an inspection object having a concavo-convex shape can be inspected with high accuracy in a non-destructive manner.
  • the inventors have conceived that the above problem can be solved brilliantly and have reached the present invention.
  • the relationship between the configuration and the effect of the present invention has higher technical significance than the conventional nondestructive inspection method. That is, it is possible to confirm the shape of the concavo-convex shape with high accuracy at low cost, easily and with reduced measurement errors. Therefore, it is possible to uniformly form the uneven shape in the structure having the uneven shape, or to stably manufacture the uneven shape in the manufacture of a plurality of structures.
  • the standard sample having a concavo-convex shape on the surface and the inspection target having the concavo-convex shape on the surface are irradiated with light, the reflectance of the standard sample at a plurality of wavelengths, and the inspection target It is a shape inspection method for inspecting the concavo-convex shape of the inspection object by comparing reflectances at the plurality of wavelengths.
  • the shape inspection method is not particularly limited by other steps and the like as long as the method is carried out with such steps (procedures and operations) as essential.
  • the shape inspection method preferably inspects the height of the convex part and / or the thickness of the convex part.
  • the plurality of wavelengths are all included in a predetermined wavelength range, and the reflectance spectrum of the standard sample in the predetermined wavelength range is compared with the reflectance spectrum of the inspection target in the predetermined wavelength range. Therefore, it is preferable to inspect the uneven shape of the inspection object (hereinafter also referred to as a shape inspection method of the first form). Thereby, the uneven
  • preferred embodiments are as follows (1) to (4). As described above, these preferred embodiments of (1) to (4) may be implemented singly or may be implemented by appropriately combining a plurality of embodiments.
  • the concavo-convex shape of the inspection object is inspected by comparing the reflectance at the peak wavelength of the reflectance spectrum in the standard sample with the reflectance at the peak wavelength of the reflectance spectrum in the inspection object. It is preferable. Thereby, the uneven
  • the light with which the said standard sample and the said test object are irradiated are irradiated from the diagonal direction.
  • the difference in reflectance caused by the difference in shape between the standard sample and the inspection object can be further increased.
  • the incident / reflecting angle is smaller from the viewpoint of cost reduction. If the incident / reflection angle is increased, it is difficult to adjust the light source and the detector, which may lead to an increase in cost.
  • the light irradiated on the standard sample and the inspection object is preferably polarized light, and more preferably p-polarized light and / or s-polarized light. Thereby, the difference in reflectance caused by the difference in shape between the standard sample and the inspection object can be further increased.
  • the reflectance at the plurality of wavelengths is preferably measured by a spectroscope in which the spectrophotometer and the light source are provided in the same unit.
  • a spectroscope in which the spectrophotometer and the light source are provided in the same unit.
  • an ellipsometer can be used to measure the reflectance.
  • the ellipsometer is expensive and the cost of the apparatus becomes high.
  • it is necessary to strictly adjust the optical axis but since the measuring instrument and the light source are built in separate units, each time the measuring instrument is scanned when measuring a large inspection object. The optical axis needs to be adjusted, and the operation becomes very complicated.
  • the spectroscope is less expensive than the ellipsometer, and the spectrophotometer and the light source are built in one unit, so there is no need to adjust the optical axis every time the spectrophotometer is scanned, Operation is simple.
  • the inspection object is preferably a mold.
  • the shape inspection method according to the present invention is suitable for shape inspection of a mold having an uneven shape.
  • the inspection object is preferably a film having a moth-eye structure (moth eye film).
  • the shape inspection method according to the present invention is suitable for shape inspection of a moth-eye film.
  • another aspect of the present invention is that the reflectance at a plurality of wavelengths of a standard sample having an uneven shape on the surface and the reflection at a plurality of wavelengths of a structure having an uneven shape on the surface. It is also a structure manufacturing method including a step of inspecting the uneven shape of the structure by comparing the rate.
  • the method for producing the structure is not particularly limited by other steps as long as such a step is formed as essential.
  • the shape inspection method preferably inspects the height of the convex part and / or the thickness of the convex part. Thereby, like the above-mentioned, the uneven
  • the plurality of wavelengths are all included in a predetermined wavelength range, and the reflectance spectrum of the standard sample in the predetermined wavelength range is compared with the reflectance spectrum of the structure in the predetermined wavelength range. Therefore, it is preferable to inspect the uneven shape of the structure (hereinafter, also referred to as a manufacturing method of the structure of the first form). Thereby, the uneven
  • preferred embodiments are as follows (1) to (4). As described above, these preferred embodiments of (1) to (4) may be implemented singly or may be implemented by appropriately combining a plurality of embodiments.
  • the uneven shape of the structure is inspected by comparing the reflectance at the peak wavelength of the reflectance spectrum in the standard sample with the reflectance at the peak wavelength of the reflectance spectrum in the structure. It is preferable. Thereby, the uneven
  • the light irradiated to the standard sample and the structure is preferably irradiated from an oblique direction.
  • the difference in reflectance caused by the difference in shape between the standard sample and the structure can be further increased.
  • it is desirable that the incident / reflecting angle is smaller from the viewpoint of cost reduction. If the incident / reflection angle is increased, it is difficult to adjust the light source and the detector, which may lead to an increase in cost.
  • the light irradiated to the standard sample and the structure is preferably polarized light, and more preferably p-polarized light and / or s-polarized light. Thereby, the difference in reflectance caused by the difference in shape between the standard sample and the structure can be further increased.
  • the reflectance at the plurality of wavelengths is preferably measured by a spectroscope in which the spectrophotometer and the light source are provided in the same unit.
  • a spectroscope in which the spectrophotometer and the light source are provided in the same unit.
  • an ellipsometer can be used to measure the reflectance.
  • the ellipsometer is expensive and the cost of the apparatus becomes high.
  • it is necessary to strictly adjust the optical axis but since the measuring instrument and the light source are built in separate units, each time the measuring instrument is scanned when measuring a large inspection object. The optical axis needs to be adjusted, and the operation becomes very complicated.
  • the spectroscope is less expensive than the ellipsometer, and the spectrophotometer and the light source are built in one unit, so there is no need to adjust the optical axis every time the spectrophotometer is scanned, Operation is simple.
  • the structure is preferably a mold. According to the structure manufacturing method of the present invention, it is possible to accurately manufacture a mold having an uneven shape.
  • the structure is preferably a film having a moth-eye structure (moth-eye film). According to the structure manufacturing method of the present invention, a moth-eye film can be manufactured with high accuracy.
  • still another aspect of the present invention provides a measuring instrument for measuring reflectance at a plurality of wavelengths of an object irradiated with light, and the plurality of measuring instruments measured by the measuring instrument.
  • Storage device for storing reflectance at wavelength as reflectance data, reflectance data for a standard sample having a concavo-convex shape on the surface stored in the storage device, and reflection at a plurality of wavelengths of an inspection object having a concavo-convex shape on the surface
  • the shape inspection apparatus is not particularly limited by other configurations as long as such a configuration is essential.
  • the shape inspection method preferably inspects the height of the convex part and / or the thickness of the convex part. Thereby, the uneven
  • the plurality of wavelengths are all included in a predetermined wavelength range, and the reflectance spectrum of the standard sample in the predetermined wavelength range is compared with the reflectance spectrum of the inspection target in the predetermined wavelength range. Therefore, it is preferable to inspect the uneven shape of the inspection object (hereinafter also referred to as a shape inspection apparatus of the first form). Thereby, the uneven
  • preferred embodiments are as follows (1) to (4). As described above, these preferred embodiments of (1) to (4) may be implemented singly or may be implemented by appropriately combining a plurality of embodiments.
  • the concavo-convex shape of the inspection object is inspected by comparing the reflectance at the peak wavelength of the reflectance spectrum in the standard sample with the reflectance at the peak wavelength of the reflectance spectrum in the inspection object. It is preferable. Thereby, the uneven
  • the light with which the said standard sample and the said test object are irradiated are irradiated from the diagonal direction.
  • the difference in reflectance caused by the difference in shape between the standard sample and the inspection object can be further increased.
  • the incident / reflecting angle is smaller from the viewpoint of cost reduction. If the incident / reflection angle is increased, it is difficult to adjust the light source and the detector, which may lead to an increase in cost.
  • the light irradiated on the standard sample and the inspection object is preferably polarized light, and more preferably p-polarized light and / or s-polarized light. Thereby, the difference in reflectance caused by the difference in shape between the standard sample and the inspection object can be further increased.
  • the reflectance at the plurality of wavelengths is preferably measured by a spectroscope in which the spectrophotometer and the light source are provided in the same unit.
  • a spectroscope in which the spectrophotometer and the light source are provided in the same unit.
  • an ellipsometer can be used to measure the reflectance.
  • the ellipsometer is expensive and the cost of the apparatus becomes high.
  • it is necessary to strictly adjust the optical axis but since the measuring instrument and the light source are built in separate units, each time the measuring instrument is scanned when measuring a large inspection object. The optical axis needs to be adjusted, and the operation becomes very complicated.
  • the spectroscope is less expensive than the ellipsometer, and the spectrophotometer and the light source are built in one unit, so there is no need to adjust the optical axis every time the spectrophotometer is scanned, Operation is simple.
  • the inspection object is preferably a mold.
  • the shape inspection apparatus according to the present invention is suitable for shape inspection of a mold having an uneven shape.
  • the inspection object is preferably a film having a moth-eye structure (moth eye film).
  • the shape inspection apparatus according to the present invention is suitable for shape inspection of a moth-eye film.
  • the shape inspection method the manufacturing method of a structure, and a shape inspection apparatus which can test
  • FIG. 1 is a schematic diagram of a shape inspection apparatus according to Embodiment 1.
  • FIG. It is a schematic diagram of a shape inspection apparatus and a moth-eye film according to the first embodiment. It is a figure which shows the relationship between AO time and Et time in metal mold
  • FIG. 3 is a schematic cross-sectional view showing uneven shapes of molds A to G. 2 is a photomicrograph of a cross section of moth-eye film A. 2 is a photomicrograph of a cross section of a moth-eye film D. 2 is a photomicrograph of a cross section of a moth-eye film E. 2 is a micrograph of a cross section of a moth-eye film B.
  • FIG. 2 is a micrograph of a cross section of a moth-eye film F.
  • 2 is a micrograph of a cross section of a moth-eye film G.
  • 2 is a micrograph of a cross section of a moth-eye film C.
  • FIG. 3 is a schematic cross-sectional view showing uneven shapes of moth-eye films A to G.
  • 2 is a micrograph of a cross section of a mold D.
  • 2 is a micrograph of a cross section of a mold G.
  • 3 is a reflectance spectrum of moth-eye films A to G in a wavelength range of 380 nm to 780 nm.
  • 3 is a reflectance spectrum of moth-eye films A to C in a wavelength range of 380 nm to 780 nm.
  • FIG. 3 is a reflectance spectrum of moth-eye films B, D, E, F, and G in a wavelength range of 380 nm to 780 nm. It is the microscope picture of the cross section of the moth-eye film formed from the metal mold
  • FIG. 5 is a reflectance spectrum in a wavelength range of 250 nm to 550 nm of a moth-eye film formed from molds with different etching times.
  • FIG. 2 is a reflectance spectrum in a wavelength range of 380 nm to 780 nm of a moth-eye film H to P and a moth-eye film to be inspected.
  • the moth-eye film K it is a reflectance spectrum when non-polarized light with incident angles of 5 °, 30 °, 45 ° and 60 ° is irradiated.
  • the moth-eye film N it is a reflectance spectrum when non-polarized light with incident angles of 5 °, 30 °, 45 ° and 60 ° is irradiated.
  • 3 is a reflectance spectrum in a wavelength range of 250 nm to 850 nm of molds H to M.
  • the mold K it is a reflectance spectrum when non-polarized light, p-polarized light, and s-polarized light are irradiated.
  • the mold L is a reflectance spectrum when non-polarized light, p-polarized light, and s-polarized light are irradiated.
  • the mold M it is a reflectance spectrum when non-polarized light, p-polarized light, and s-polarized light are irradiated.
  • 8 is a reflectance spectrum in a wavelength range of 380 nm to 780 nm of eight types of moth-eye films that are standard samples and a moth-eye film that is an inspection object. It is a schematic diagram which shows the conventional shape inspection by visual observation.
  • Embodiment 1 In Embodiment 1, a moth-eye film or a mold for producing a moth-eye film is used as an inspection object, but the inspection object according to the present invention is not limited to these as long as it is a structure having an uneven shape,
  • the inspection object may be an AG film or the like.
  • the shape inspection apparatus 1 includes a control PC (Personal Computer) 10 and a spectroscope 11 as shown in FIG.
  • the control PC 10 corresponds to the storage device and the comparison device of the present invention.
  • the control PC 10 and the spectroscope 11 are connected so that they can exchange data with each other. At this time, the control PC 10 and the spectroscope 11 may be wired or wirelessly connected.
  • the spectrometer 11 includes a spectrometer 12 and a light source 13 in the same unit.
  • an apparatus for example, an ellipsometer in which a measuring instrument and a light source are arranged in separate units may be used.
  • the ellipsometer is expensive and the cost of the apparatus becomes high.
  • it is necessary to strictly adjust the optical axis, but since the measuring instrument and the light source are built in separate units, each time the measuring instrument is scanned when measuring a large inspection object. The optical axis needs to be adjusted, and the operation becomes very complicated.
  • a moth-eye film that has passed a visual inspection and / or a destructive inspection is used as a standard sample.
  • die for manufacturing a moth eye film the metal mold
  • FIG. 2 is a schematic diagram illustrating the inspection of the concavo-convex shape of the moth-eye film by the shape inspection apparatus according to the first embodiment.
  • a support film 15 is affixed to the moth-eye film 14 on the surface opposite to the surface having the concavo-convex shape.
  • the moth-eye film 14 and the support film 15 are spectrally separated from each other. It arrange
  • the transparent substrate 16 is formed from a transparent resin such as an acrylic resin.
  • the moth-eye film 14 is irradiated with light from the light source 13, and the reflectance at a plurality of wavelengths is measured in the spectrometer 12. Then, the measured reflectances at a plurality of wavelengths are transmitted to the control PC 10 as the reflectance data of the standard sample in association with the shape of the standard sample.
  • the received reflectance data of the standard sample is stored in a storage area in a storage device (not shown) provided in the control PC.
  • the reflectance at a plurality of wavelengths of the inspection object is measured, and the measured reflectance at the plurality of wavelengths is used as control data for the inspection object. It is transmitted to PC10.
  • the received reflectance data of the inspection object is stored in a storage area in a storage device (not shown) provided in the control PC.
  • the irregularity shape of the inspection object is inspected from the reflectance data of the inspection object.
  • a glass substrate is prepared, and aluminum (Al) as a mold material is formed on the glass substrate by sputtering.
  • anodization AO: anodic oxidation
  • etching is performed immediately thereafter, so that the distance between the bottom points of adjacent holes (recesses) is a length equal to or shorter than the visible light wavelength.
  • An anodized layer having minute holes is formed.
  • anodization, etching, anodization, etching, anodization, etching, anodization, etching, anodization, etching, and anodization are sequentially performed toward the inside of the mold (5 times of anodization and 4 times of etching). Many fine holes (concave portions) with a tapered shape (tapered shape) are formed, and a mold having an uneven shape is formed.
  • the uneven shape of the mold is adjusted. Can be changed.
  • the relationship between the AO time and Et time and the uneven shape of the mold will be described using the molds A to G having different AO time and Et time.
  • the AO time was 316 seconds and the Et time was 825 seconds.
  • the AO time of the mold B described later is 1, the AO time of the mold A is 0.94.
  • the AO time was 336 seconds, and the Et time was the same as that of the mold A.
  • the AO time of the mold C is 356 seconds, and the Et time was the same as that of the mold A.
  • the AO time of the mold B is 1
  • the AO time of the mold C is 1.06.
  • the AO time was the same as that of the mold B, and the Et time was 675 seconds.
  • the AO time was the same as that of the mold B, and the Et time was 750 seconds.
  • the AO time was the same as that of the mold B, and the Et time was 900 seconds.
  • the AO time was the same as that of the mold B, and the Et time was 975 seconds. That is, the AO time (one AO amount) of the molds A to G and the Et time (one Et amount) have a relationship as shown in FIG.
  • the substrate used for manufacturing the mold is not limited to glass, but is a metal material such as SUS (stainless steel) or Ni, or polypropylene, polymethylpentene, or cyclic olefin polymer (typically, norbornene resin).
  • Resin materials such as polyolefin resin, polycarbonate resin, polyethylene terephthalate, polyethylene naphthalate, triacetylcellulose, etc. with product name “ZEONOR” (manufactured by ZEON CORPORATION) and product name “ARTON” (manufactured by JSR Corporation). May be.
  • an aluminum bulk substrate may be used instead of the substrate on which aluminum is formed.
  • the shape of the mold may be a flat plate shape or a roll (cylindrical) shape.
  • Method for producing moth-eye film A photocurable resin is applied on a support film using a roller nanoimprint technique. Then, the mold produced by the above-described mold production method is pressed against the photocurable resin applied on the support film, and UV light is irradiated for exposure. Also, for example, a moth-eye film is formed by various methods such as a hot pressing method (embossing method), an injection molding method, a replication method such as a sol-gel method, a laminating method for a fine uneven shape forming sheet, and a transfer method for a fine uneven layer. May be.
  • the uneven shape of the mold is transferred to the moth-eye film. That is, the convex part of the moth-eye film is formed according to the shape of the concave part of the mold, and the concave part of the moth-eye film is formed according to the shape of the convex part of the mold.
  • the molds A to G moth-eye films A to G were actually produced.
  • Each of the moth-eye films A to G was observed with an SEM to measure the height of the convex portions and to evaluate the thickness of the convex portions.
  • 5 to 11 are cross-sectional views when the moth-eye films A to G are observed with an SEM.
  • the height of the convex part of the moth-eye film A is 180 nm
  • the height of the convex part of the moth-eye film B is 216 nm
  • the height of the convex part of the moth-eye film C is 260 nm
  • the height of the convex part of the moth-eye film D is
  • the height of the convex part of the moth-eye film E was 216 nm
  • the height of the convex part of the moth-eye film F was 200 nm
  • the height of the convex part of the moth-eye film G was 186 nm.
  • the thicknesses of the moth-eye films A to C were almost the same. Based on the thickness of the convex portions of the moth-eye films A to C, the thickness of the convex portion of the moth-eye film D is thin, the thickness of the convex portion of the moth-eye film E is slightly thin, and the thickness of the convex portion of the moth-eye film F. It was found that the thickness was slightly thick, and the convex part of the moth-eye film G was thick.
  • FIG. 12 shows the relationship between the concavo-convex shapes of the moth-eye films A to G.
  • the height (h) of the convex part of the moth-eye film means a linear distance from the top of the convex part to the bottom surface, and the thickness (w) of the convex part is the bottom surface Say width.
  • FIG. 13 and 14 are cross-sectional views when observed with the molds D and G.
  • the depth of the concave portion of the mold D was 360 nm, and the depth of the concave portion of the mold G was 340 nm.
  • the height of the convex portion of the moth-eye film D was 216 nm, and the ratio of the height of the convex portion of the film to the depth of the concave portion of the mold (transfer rate) was 0.60.
  • the height of the convex part of the moth-eye film G was 186 nm, and the transfer rate was 0.55.
  • FIG. 16 is a diagram showing the reflectance spectra of the moth-eye films A to C produced using the molds A to C which are different from each other only in the AO time. Referring to FIG. 16, the longer the AO time of the mold, that is, the deeper the concave portion of the mold and the longer the convex portion of the moth-eye film, the lower the reflectance with respect to long wavelength light.
  • the reflectance in light having a wavelength of 730 nm or more was low.
  • the peak and bottom of the reflectance spectrum shifted to the lower wavelength side as the concave portion of the mold was shallower and the length of the convex portion of the moth-eye film was shorter. From the above, it has been found that the length of the convex portion of the moth-eye film can be estimated from the fixed wavelength of the long wavelength and the positions of the peak and bottom of the spectrum.
  • FIG. 17 is a diagram showing the reflectance spectra of the moth-eye films B and D to G manufactured using the molds B and D to G that are different from each other only in the Et time.
  • a flange portion relatively small protruding portion
  • the moth-eye film D has a peak reflectance of about 0.4% and a bottom reflectance of about 0.05%, while the moth-eye film G has a high visibility region (green). ) And the bottom reflectance decreased to about 0.01% or less. From the above, it was found that the shape (thickness) of the convex part of the moth-eye film can be estimated from the reflectance at the peak and bottom of the reflectance spectrum.
  • the length of the convex portion of the moth-eye film is similar to FIG. The longer the length, the lower the reflectivity in long-wavelength light, and the shorter the length of the projection of the moth-eye film, the more the peak and bottom of the reflectance spectrum shifted to the lower wavelength side.
  • dies having a total etching time of 0 minutes, 3 minutes, 5 minutes, 10 minutes, and 15 minutes were produced.
  • the bottom surface of the recess was flattened as the total etching time increased.
  • the moth-eye films produced using these molds were each irradiated with non-polarized light with an incident angle of 5 °, and the reflectance spectrum in the wavelength range of 250 nm to 550 nm was measured. At this time, as shown in FIG.
  • the reflectance in the vicinity of 400 nm of the moth-eye film produced with a mold having an etching time of 10 minutes or more was increased. Moreover, as the etching time of the mold became longer, the peak of the reflectance spectrum of the moth-eye film slightly shifted to the higher wavelength side.
  • moth-eye films H to P were produced using dies H to P and dies H to P having different Et times, and the reflectance spectra of the moth eye films H to P were measured.
  • the AO time was 336 seconds, and in the mold H, the Et time was 438 seconds.
  • the Et time was 518 seconds.
  • the Et time was 598 seconds.
  • the Et time was 677 seconds.
  • the Et time was 757 seconds.
  • the mold M the Et time was 837 seconds.
  • the Et time was 877 seconds.
  • the Et time was set to 916 seconds.
  • the Et time was 996 seconds.
  • the molds A to P and moth-eye films A to G are summarized in Table 1 below.
  • FIG. 20 is a diagram showing the reflectance spectra of the moth-eye films H to P and the moth-eye film to be inspected.
  • the reflectance near 780 nm was lower than any of the moth-eye films HP. From this, it was estimated that the length of the convex part of the moth-eye film to be inspected was longer than any of the moth-eye films HP. Moreover, the reflectance of the peak (near 450 nm) was larger than the reflectance at the peak wavelength of the reflectance spectrum of the moth-eye film M, and lower than the reflectance at the peak wavelength of the reflectance spectrum of the moth-eye film L. From this, it was estimated that the thickness of the convex part of the moth-eye film to be inspected was thicker than the convex part of the moth-eye film L and thinner than the convex part of the moth-eye film M.
  • the length of the convex portion of the moth-eye film to be inspected was longer than any of the moth-eye films HP, as estimated by the above shape inspection.
  • the thickness of the moth-eye film L was thicker than that of the moth-eye film L and thinner than that of the moth-eye film M.
  • the height of the convex part of the moth-eye film and the thickness of the convex part are each reflected in the reflectance spectrum. Therefore, for example, as a standard sample, moth-eye films set to the upper and lower limits of the height of the protrusions required to exhibit the desired performance are prepared, and the reflectance spectrum of these standard samples is measured. In the reflectance spectrum of the moth-eye film to be inspected by recording the standard reflectance data, whether the long wavelength reflectance is within the range of the long wavelength reflectance in the reflectance spectra of the two standard samples. It is possible to inspect whether the moth-eye film to be inspected is acceptable or not.
  • the reflectance at the peak and bottom of the reflectance spectrum of the moth-eye film to be inspected is The pass / fail of the moth-eye film to be inspected can be inspected depending on whether it is within the range of the reflectance at the peak and bottom of the reflectance spectrum.
  • the two parameters that determine the characteristics of the moth-eye film, the height of the convex part and the shape (thickness) of the convex part are different in wavelength range indicating the correlation, and can be handled separately. It is.
  • the AO time of the mold is increased to increase the convex part of the moth-eye film.
  • the length can be adjusted to be longer.
  • the quality of the manufactured moth-eye film can be made to be a certain level or higher.
  • the moth-eye film K was irradiated with non-polarized light at incident angles of 5 °, 30 °, 45 °, and 60 °, respectively, and the reflectance in the wavelength range of 380 nm to 780 nm.
  • the spectrum was measured. As shown in FIG. 21, it was found that the reflectance spectrum of the moth-eye film has an incident angle dependency. Note that the moth-eye film K in FIG. 20 and the moth-eye film K in FIG. 21 have different mold production dates. In all the wavelength regions, the smaller the incident angle, the lower the reflectance.
  • the moth-eye film N was irradiated with non-polarized light at incident angles of 5 °, 30 °, 45 ° and 60 °, respectively, and the reflectance spectrum in the wavelength range of 380 nm to 780 nm was measured.
  • the incident angle of light emitted from the light source is preferably in the range of 0 ° to 70 °, and from the viewpoint of performing inspection with higher accuracy, it is preferably in the range of 0 ° to 45 °. More preferred.
  • each of the molds H to M was irradiated with non-polarized light with an incident angle of 5 °, and a reflectance spectrum in a wavelength range of 250 nm to 850 nm was measured.
  • the reflectance spectrum differs depending on the uneven shape even in the mold.
  • the Et time that is, the width of the concave portion of the mold became wider and the depth became shallower, the peak and bottom of the spectrum shifted to the lower wavelength side.
  • the reflectance at the peak wavelength decreases, while the reflectance at the bottom wavelength tends to increase. That is, as the Et time in the mold was increased, the reflectance vibration tended to relax. This is thought to be because the pores of the mold expand, convex shapes are formed on the mold surface, and the flat portion disappears.
  • the mold K was irradiated with non-polarized light, p-polarized light, and s-polarized light at an incident angle of 60 °, and the reflectance spectrum in the wavelength range of 250 nm to 850 nm was measured.
  • the reflectance is higher at wavelengths near 300 nm and 400 nm than when unpolarized light is irradiated, and conversely, the reflectance is higher at wavelengths near 320 nm and 420 nm. It became low.
  • the reflectance is low at wavelengths near 300 nm and 400 nm, and the reflectance is high at wavelengths near 320 nm and 420 nm, compared to when non-polarized light is irradiated.
  • the vibration of the spectrum is emphasized, and it is possible to increase the inspection accuracy when inspecting at a specific wavelength. Turned out to be. Even when the inspection object is a moth-eye film, it is considered that the inspection accuracy can be increased by using polarized light (more preferably, s-polarized light and / or p-polarized light).
  • the inspection object mold by comparing the reflectance of a specific wavelength or the intensity (amplitude) of the peak of the reflectance spectrum between the standard sample and the inspection object, the inspection object mold It has been found that it is possible to evaluate the success or failure of. Furthermore, by introducing a process for inspecting such a shape into the above-described mold manufacturing process, the quality of the manufactured mold can be made a certain level or higher.
  • Example 1 moth-eye films having a convex portion height of 210 nm, 300 nm, 360 nm, 430 nm, 450 nm, 490 nm, 500 nm, and 600 nm were prepared, and each of the standard samples was non-polarized with an incident angle of 5 °. The reflectance spectrum in the wavelength range of 380 nm to 780 nm was measured.
  • a moth-eye film with an unknown concavo-convex shape was used as an inspection target, and the moth-eye film to be inspected was irradiated with non-polarized light at an incident angle of 5 °, and a reflectance spectrum in a wavelength range of 380 nm to 780 nm was measured.
  • FIG. 27 shows the measurement results of the standard sample and the reflectance spectrum of the inspection object.
  • the reflectance of the standard sample was between the reflectance of the moth-eye film having a convex portion height of 210 nm and the reflectance of the moth-eye film having a thickness of 300 nm. From this, it was estimated that the height of the convex part of the moth-eye film to be inspected is higher than 210 nm, lower than 300 nm, and about 280 nm.
  • Shape inspection apparatus 10 PC for control 11: Spectrometer 12: Spectrometer 13: Light source 14: Mosaic film 15: Support film 16: Transparent substrate 101: Inspection object 102: Inspection table 103: White plate (backlight sheet)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本発明は、凹凸形状を有する検査対象を非破壊で精度良く検査することが可能な形状検査方法、構造物の製造方法及び形状検査装置を提供する。本発明の形状検査方法は、表面に凹凸形状を有する標準サンプル、及び、表面に凹凸形状を有する検査対象に光を照射し、前記標準サンプルの複数の波長における反射率と、前記検査対象の前記複数の波長における反射率とを比較することによって、前記検査対象の前記凹凸形状を検査する形状検査方法である。

Description

形状検査方法、構造物の製造方法及び形状検査装置
本発明は、形状検査方法、構造物の製造方法及び形状検査装置に関する。より詳しくは、微小な凹凸形状を有するフィルム、金型、特にモスアイ(Moth-eye:蛾の目)構造を有するフィルム(以下では、単に「モスアイフィルム」とも言う。)、それを形成する金型等の構造物に対する形状検査方法、該構造物の製造方法及び形状検査装置に関するものである。
凹凸形状を有する構造物としては、例えば、微小な凹凸形状を有するフィルムやそれを形成するための金型、転写版等が挙げられ、光学部材や電子機器部材等において活用されている。特に最近においては、微小な凹凸形状を有するフィルムとしてモスアイフィルムが特異な光学特性を発現する光学部材として注目されている。そのため、凹凸形状を有する構造物としては、モスアイフィルム及びそれを製造するための金型等の重要性が増している。モスアイフィルムは、反射防止効果を有し、例えば、表示装置の表面反射を低減することができる。モスアイフィルムは、フィルムの表面に、防眩性(AG:Anti Glare)フィルムで形成される凹凸パターンよりも更に微細な、可視光波長以下の間隔の凹凸パターンを隙間なく配列することで、外界(空気)と物品表面との境界における屈折率の変化を擬似的に連続なものとするものである。このようなモスアイフィルムを用いることによって、屈折率界面に関係なく光のほぼ全てを透過させ、該物品の表面における光反射をほぼなくすことができる。
このような微小な凹凸形状を有する構造物に関して、その検査手法が検討されており、例えばエリプソメトリによる非破壊検査方法が知られている(例えば、特許文献1参照。)。この非破壊検査においては、まず、それぞれの厚みが既知の複数の標準サンプルを予めエリプソメトリにより測定を行い、解析パラメータを設定する。次に、検査対象におけるエリプソメトリによる測定を行い、得られたデータに解析パラメータを適用し、検査対象の凹凸形状における凹部の深さを同定する。そして、検査対象の凹部の深さと、標準サンプルに基づく凹部の基準値との比較により合否判定を行うという手順で行われる。
特許第4282500号明細書
凹凸形状を有する構造物においては、1つの構造物において凹凸形状を均一に形成したり、複数の構造物の製造において凹凸形状を安定的に製造したりすることが求められる。そのため、特に、微小な凹凸形状を有する構造物の製造においては、簡便かつ精度の高い検査手法が求められることとなる。例えば、モスアイフィルム、該モスアイフィルムを製造するための金型を検査対象の例として、その検査対象事項及び検査手法について説明すると次のようになる。モスアイフィルムの仕上がりは、モスアイの表面形状(断面単位面積に対する、Al占有率)と、深さパラメータによって決まる。検査手法としては、目視による検査が挙げられ、例えば、図28においては、検査対象101(モスアイフィルム、又は、金型)を検査台102の上に設置し、白色板(バックライト用シート)103を介して、検査対象に対して入射角がほぼ垂直となるように光源104から照射される光を照射する。そして、反射する光を検査者が検査対象に対してほぼ水平方向から目視し、色見を確認する。検査者は、前記パラメータを振った複数の比較サンプルを見ながら、検査対象が複数の比較サンプルの色見の範囲内に該当するかを見極め、合否判定を行う。合格と判定された検査対象についてはそのまま払い出しされる。一方で、不適と判定された検査対象ついては、検査対象の一部を破壊し、断面を走査型電子顕微鏡 (SEM:scanning electron microscope)で観察することにより、断面形状の解析が行われる場合がある。合否の判定が困難となる場合には、熟練の検査者により最終判定が行われる。
しかしながら、目視による色味の判定では、合否の判定が困難な場合が多く、かつ、判定が行われた場合でも、深さ、形状の特定は不可能であり、判定を見誤る可能性があるという点で改善の余地があった。
一方、上記の従来技術における非破壊検査方法においては、検査者による目視判定を行わないため、外部環境による影響は排除できる。ところが、該非破壊検査では、検査対象の凹部の深さ(被膜厚さ)の同定は出来るものの、凹部の底面形状や側面形状(空乏部体積)については同定することが非常に困難であるという点で依然として改善の余地があった。
本発明は、上記現状に鑑みてなされたものであり、凹凸形状を有する検査対象を非破壊で精度良く検査することが可能な形状検査方法、構造物の製造方法及び形状検査装置を提供することを目的とするものである。
本発明者らは、凹凸形状を有する検査対象を非破壊で精度良く検査することが可能な形状検査方法、構造物の製造方法及び形状検査装置について種々検討したところ、凹凸形状を有する検査対象の特定の波長の光における反射率に着目した。そして、特定の波長の光における反射率と、検査対象の凹凸形状とにおいて相関関係があることを見いだすとともに、標準サンプルの複数の波長における反射率と、検査対象の複数の波長における反射率とを比較することにより、凹凸形状を有する検査対象を非破壊で精度良く検査することができることを見いだした。これによって、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。本発明の構成と効果との関係には従来の非破壊検査方法よりも高い技術的意義がある。すなわち、凹凸形状がどのようになっているかを低コストで簡便にかつ測定誤差を減らして高精度で確認することができる。そのため、凹凸形状を有する構造物において凹凸形状を均一に形成したり、複数の構造物の製造において凹凸形状を安定的に製造したりすることが可能となる。
すなわち、本発明の一側面は、表面に凹凸形状を有する標準サンプル、及び、表面に凹凸形状を有する検査対象に光を照射し、上記標準サンプルの複数の波長における反射率と、上記検査対象の上記複数の波長における反射率とを比較することによって、上記検査対象の上記凹凸形状を検査する形状検査方法である。
上記形状検査方法としては、このような工程(手順、操作)を必須として実施される手法である限り、その他の工程等によって特に限定されるものではない。
以下、上記形状検査方法の好ましい形態について説明する。なお、以下に示す各種形態は、適宜組み合わせることができる。
上記形状検査方法は、凸部の高さ、及び/又は、凸部の太さを検査することが好ましい。これにより、構造物の凹凸形状を2つのパラメータとして扱い、構造物の凹凸形状を簡便かつ的確に把握することができ、その結果、構造物の光学特性等の特性、品質を的確に管理等することができる。
上記複数の波長は、いずれも、所定の波長範囲に含まれ、上記標準サンプルの上記所定の波長範囲における反射率スペクトルと、上記検査対象の上記所定の波長範囲における反射率スペクトルとを比較することによって、上記検査対象の上記凹凸形状を検査することが好ましい(以下では、第1形態の形状検査方法とも言う。)。これにより、検査対象の凹凸形状を精度よく検査することができる。
第1形態の形状検査方法において、好ましい実施形態を挙げると、次の(1)~(4)のようになる。上述したように、これら(1)~(4)の好ましい実施形態は、それぞれ単独で実施してもよく、複数の実施形態を適宜組み合わせて実施してもよい。
(1)上記標準サンプルにおける上記反射率スペクトルのピーク波長と、上記検査対象における上記反射率スペクトルのピーク波長とを比較することによって、上記検査対象の上記凹凸形状を検査することが好ましい。これにより、標準サンプルにおけるピーク波長と、検査対象におけるピーク波長との相違から、検査対象の凹凸形状をより精度よく検査することができる。
(2)上記標準サンプルにおける上記反射率スペクトルのピーク波長の反射率と、上記検査対象における上記反射率スペクトルのピーク波長の反射率とを比較することによって、上記検査対象の上記凹凸形状を検査することが好ましい。これにより、標準サンプルにおけるピーク波長の反射率と、検査対象におけるピーク波長の反射率との相違から、検査対象の凹凸形状をより精度よく検査することができる。
(3)上記標準サンプルにおける上記反射率スペクトルのボトム波長と、上記検査対象における反射率スペクトルのボトム波長とを比較することによって、上記検査対象の上記凹凸形状を検査することが好ましい。これにより、標準サンプルにおけるボトム波長と、検査対象におけるボトム波長との相違から、検査対象の凹凸形状をより精度よく検査することができる。
(4)上記標準サンプルにおける反射率スペクトルのボトム波長の反射率と、上記検査対象における上記反射率スペクトルのボトム波長の反射率とを比較することによって、上記検査対象の上記凹凸形状を検査することが好ましい。これにより、標準サンプルにおけるボトム波長の反射率と、検査対象におけるボトム波長の反射率との相違から、検査対象の凹凸形状をより精度よく検査することができる。
上記標準サンプル、及び、上記検査対象に照射される光は、斜め方向から照射されることが好ましい。これにより、標準サンプルと検査対象との形状の相違によって生じる反射率の差をより大きくすることができる。なお、目視検査においては、入反射角を大きくするほうが観察しやすいが、本発明においては、コストを抑制するという観点からは、入反射角が小さいほうが望ましい。入反射角を大きくしてしまうと、光源と検出器の調整が難しく、コストアップに繋がるおそれがある。
上記標準サンプル、及び、上記検査対象に照射される光は、偏光であることが好ましく、p偏光、及び/又は、s偏光であることがより好ましい。これにより、標準サンプルと検査対象との形状の相違によって生じる反射率の差をより大きくすることができる。
上記複数の波長における反射率は、分光測定器と光源とが同一のユニットに備えられた分光器により測定されることが好ましい。反射率の測定には、例えば、エリプソメータを使用することもできる。しかしながら、エリプソメータは、高価であり、装置コストが高くなってしまう。また、エリプソメータにおいては、光軸調整を厳密に行う必要があるが、測定器と光源とが別々のユニットに内蔵されているため、大型の検査対象を測定する場合、測定器をスキャンさせる度に光軸調整が必要となり、非常に操作が煩雑となってしまう。一方、分光器は、エリプソメータに比べて安価であり、また、分光測定器と光源とが一つのユニットに内蔵されているため、分光測定器をスキャンさせる度に光軸調整を行う必要は無く、操作が簡便である。
上記検査対象は、金型であることが好ましい。本発明に係る形状検査方法は、凹凸形状を有する金型の形状検査に好適である。
上記検査対象は、モスアイ構造を有するフィルム(モスアイフィルム)であることが好ましい。本発明に係る形状検査方法は、モスアイフィルムの形状検査に好適である。
上記形状検査方法と同様の観点から、本発明の別の側面は、表面に凹凸形状を有する標準サンプルの複数の波長における反射率と、表面に凹凸形状を有する構造物の上記複数の波長における反射率とを比較することによって、上記構造物の上記凹凸形状を検査する工程を含む構造物の製造方法でもある。
上記構造物の製造方法としては、このような工程を必須として形成されるものである限り、その他の工程によって特に限定されるものではない。
以下、上記構造物の製造方法の好ましい形態について説明する。なお、以下に示す各種形態は、適宜組み合わせることができる。
上記形状検査方法は、凸部の高さ、及び/又は、凸部の太さを検査することが好ましい。これにより、上述したのと同様に、構造物の凹凸形状を2つのパラメータとして扱うことができる。
上記複数の波長は、いずれも、所定の波長範囲に含まれ、上記標準サンプルの上記所定の波長範囲における反射率スペクトルと、上記構造物の上記所定の波長範囲における反射率スペクトルとを比較することによって、上記構造物の上記凹凸形状を検査することが好ましい(以下では、第1形態の構造物の製造方法とも言う。)。これにより、構造物の凹凸形状を精度よく検査することができる。
第1形態の構造物の製造方法において、好ましい実施形態を挙げると、次の(1)~(4)のようになる。上述したように、これら(1)~(4)の好ましい実施形態は、それぞれ単独で実施してもよく、複数の実施形態を適宜組み合わせて実施してもよい。
(1)上記標準サンプルにおける上記反射率スペクトルのピーク波長と、上記構造物における上記反射率スペクトルのピーク波長とを比較することによって、上記構造物の上記凹凸形状を検査することが好ましい。これにより、標準サンプルにおけるピーク波長と、構造物におけるピーク波長との相違から、構造物の凹凸形状をより精度よく検査することができる。
(2)上記標準サンプルにおける上記反射率スペクトルのピーク波長の反射率と、上記構造物における上記反射率スペクトルのピーク波長の反射率とを比較することによって、上記構造物の上記凹凸形状を検査することが好ましい。これにより、標準サンプルにおけるピーク波長の反射率と、構造物におけるピーク波長の反射率との相違から、構造物の凹凸形状をより精度よく検査することができる。
(3)上記標準サンプルにおける上記反射率スペクトルのボトム波長と、上記構造物における反射率スペクトルのボトム波長とを比較することによって、上記構造物の上記凹凸形状を検査することが好ましい。これにより、標準サンプルにおけるボトム波長と、構造物におけるボトム波長との相違から、構造物の凹凸形状をより精度よく検査することができる。
(4)上記標準サンプルにおける反射率スペクトルのボトム波長の反射率と、上記構造物における上記反射率スペクトルのボトム波長の反射率とを比較することによって、上記構造物の上記凹凸形状を検査することが好ましい。これにより、標準サンプルにおけるボトム波長の反射率と、構造物におけるボトム波長の反射率との相違から、構造物の凹凸形状をより精度よく検査することができる。
上記標準サンプル、及び、上記構造物に照射される光は、斜め方向から照射されることが好ましい。これにより、標準サンプルと構造物との形状の相違によって生じる反射率の差をより大きくすることができる。なお、目視検査においては、入反射角を大きくするほうが観察しやすいが、本発明においては、コストを抑制するという観点からは、入反射角が小さいほうが望ましい。入反射角を大きくしてしまうと、光源と検出器の調整が難しく、コストアップに繋がるおそれがある。
上記標準サンプル、及び、上記構造物に照射される光は、偏光であることが好ましく、p偏光、及び/又は、s偏光であることがより好ましい。これにより、標準サンプルと構造物との形状の相違によって生じる反射率の差をより大きくすることができる。
上記複数の波長における反射率は、分光測定器と光源とが同一のユニットに備えられた分光器により測定されることが好ましい。反射率の測定には、例えば、エリプソメータを使用することもできる。しかし、エリプソメータは、高価であり、装置コストが高くなってしまう。また、エリプソメータにおいては、光軸調整を厳密に行う必要があるが、測定器と光源とが別々のユニットに内蔵されているため、大型の検査対象を測定する場合、測定器をスキャンさせる度に光軸調整が必要となり、非常に操作が煩雑となってしまう。一方、分光器は、エリプソメータに比べて安価であり、また、分光測定器と光源とが一つのユニットに内蔵されているため、分光測定器をスキャンさせる度に光軸調整を行う必要は無く、操作が簡便である。
上記構造物は、金型であることが好ましい。本発明に係る構造物の製造方法によれば、凹凸形状を有する金型を精度よく製造することができる。
上記構造物は、モスアイ構造を有するフィルム(モスアイフィルム)であることが好ましい。本発明に係る構造物の製造方法によれば、モスアイフィルムを精度よく製造することができる。
上記形状検査方法と同様の観点から、本発明の更に別の側面は、光が照射された対象物の複数の波長における反射率を測定する測定器と、上記測定器により測定された上記複数の波長における反射率を反射率データとして記憶する記憶装置と、上記記憶装置に記憶された表面に凹凸形状を有する標準サンプルにおける反射率データと、表面に凹凸形状を有する検査対象の複数の波長における反射率データとを比較することによって、上記検査対象の上記凹凸形状を検査する比較装置とを有する形状検査装置でもある。
上記形状検査装置としては、このような構成を必須として形成されるものである限り、その他の構成によって特に限定されるものではない。
以下、上記形状検査装置の好ましい形態について説明する。なお、以下に示す各種形態は、適宜組み合わせることができる。
上記形状検査方法は、凸部の高さ、及び/又は、凸部の太さを検査することが好ましい。これにより、検査対象の凹凸形状を2つのパラメータとして扱うことができる。
上記複数の波長は、いずれも、所定の波長範囲に含まれ、上記標準サンプルの上記所定の波長範囲における反射率スペクトルと、上記検査対象の上記所定の波長範囲における反射率スペクトルとを比較することによって、上記検査対象の上記凹凸形状を検査することが好ましい(以下では、第1形態の形状検査装置とも言う。)。これにより、検査対象の凹凸形状を精度よく検査することができる。
第1形態の形状検査装置において、好ましい実施形態を挙げると、次の(1)~(4)のようになる。上述したように、これら(1)~(4)の好ましい実施形態は、それぞれ単独で実施してもよく、複数の実施形態を適宜組み合わせて実施してもよい。
(1)上記標準サンプルにおける上記反射率スペクトルのピーク波長と、上記検査対象における上記反射率スペクトルのピーク波長とを比較することによって、上記検査対象の上記凹凸形状を検査することが好ましい。これにより、標準サンプルにおけるピーク波長と、検査対象におけるピーク波長との相違から、検査対象の凹凸形状をより精度よく検査することができる。
(2)上記標準サンプルにおける上記反射率スペクトルのピーク波長の反射率と、上記検査対象における上記反射率スペクトルのピーク波長の反射率とを比較することによって、上記検査対象の上記凹凸形状を検査することが好ましい。これにより、標準サンプルにおけるピーク波長の反射率と、検査対象におけるピーク波長の反射率との相違から、検査対象の凹凸形状をより精度よく検査することができる。
(3)上記標準サンプルにおける上記反射率スペクトルのボトム波長と、上記検査対象における反射率スペクトルのボトム波長とを比較することによって、上記検査対象の上記凹凸形状を検査することが好ましい。これにより、標準サンプルにおけるボトム波長と、検査対象におけるボトム波長との相違から、検査対象の凹凸形状をより精度よく検査することができる。
(4)上記標準サンプルにおける反射率スペクトルのボトム波長の反射率と、上記検査対象における上記反射率スペクトルのボトム波長の反射率とを比較することによって、上記検査対象の上記凹凸形状を検査することが好ましい。これにより、標準サンプルにおけるボトム波長の反射率と、検査対象におけるボトム波長の反射率との相違から、検査対象の凹凸形状をより精度よく検査することができる。
上記標準サンプル、及び、上記検査対象に照射される光は、斜め方向から照射されることが好ましい。これにより、標準サンプルと検査対象との形状の相違によって生じる反射率の差をより大きくすることができる。なお、目視検査においては、入反射角を大きくするほうが観察しやすいが、本発明においては、コストを抑制するという観点からは、入反射角が小さいほうが望ましい。入反射角を大きくしてしまうと、光源と検出器の調整が難しく、コストアップに繋がるおそれがある。
上記標準サンプル、及び、上記検査対象に照射される光は、偏光であることが好ましく、p偏光、及び/又は、s偏光であることがより好ましい。これにより、標準サンプルと検査対象との形状の相違によって生じる反射率の差をより大きくすることができる。
上記複数の波長における反射率は、分光測定器と光源とが同一のユニットに備えられた分光器により測定されることが好ましい。反射率の測定には、例えば、エリプソメータを使用することもできる。しかし、エリプソメータは、高価であり、装置コストが高くなってしまう。また、エリプソメータにおいては、光軸調整を厳密に行う必要があるが、測定器と光源とが別々のユニットに内蔵されているため、大型の検査対象を測定する場合、測定器をスキャンさせる度に光軸調整が必要となり、非常に操作が煩雑となってしまう。一方、分光器は、エリプソメータに比べて安価であり、また、分光測定器と光源とが一つのユニットに内蔵されているため、分光測定器をスキャンさせる度に光軸調整を行う必要は無く、操作が簡便である。
上記検査対象は、金型であることが好ましい。本発明に係る形状検査装置は、凹凸形状を有する金型の形状検査に好適である。
上記検査対象は、モスアイ構造を有するフィルム(モスアイフィルム)であることが好ましい。本発明に係る形状検査装置は、モスアイフィルムの形状検査に好適である。
本発明によれば、凹凸形状を有する検査対象を非破壊で精度良く検査することが可能な形状検査方法、構造物の製造方法及び形状検査装置を提供することができる。
実施形態1に係る形状検査装置の模式図である。 実施形態1に係る形状検査装置及びモスアイフィルムの模式図である。 金型A~GにおけるAO時間及びEt時間の関係を示す図である。 金型A~Gの凹凸形状を示す断面模式図である。 モスアイフィルムAの断面の顕微鏡写真である。 モスアイフィルムDの断面の顕微鏡写真である。 モスアイフィルムEの断面の顕微鏡写真である。 モスアイフィルムBの断面の顕微鏡写真である。 モスアイフィルムFの断面の顕微鏡写真である。 モスアイフィルムGの断面の顕微鏡写真である。 モスアイフィルムCの断面の顕微鏡写真である。 モスアイフィルムA~Gの凹凸形状を示す断面模式図である。 金型Dの断面の顕微鏡写真である。 金型Gの断面の顕微鏡写真である。 モスアイフィルムA~Gの380nm~780nmの波長範囲における反射率スペクトルである。 モスアイフィルムA~Cの380nm~780nmの波長範囲における反射率スペクトルである。 モスアイフィルムB、D、E、F及びGの380nm~780nmの波長範囲における反射率スペクトルである。 エッチングされた時間が異なる金型から形成されたモスアイフィルムの断面の顕微鏡写真である。 エッチングされた時間が異なる金型から形成されたモスアイフィルムの250nm~550nmの波長範囲における反射率スペクトルである。 モスアイフィルムH~P、及び、検査対象のモスアイフィルムの380nm~780nmの波長範囲における反射率スペクトルである。 モスアイフィルムKにおいて、入射角5°、30°、45°及び60°の無偏光が照射されたときの反射率スペクトルである。 モスアイフィルムNにおいて、入射角5°、30°、45°及び60°の無偏光が照射されたときの反射率スペクトルである。 金型H~Mの250nm~850nmの波長範囲における反射率スペクトルである。 金型Kにおいて、無偏光、p偏光及びs偏光が照射されたときの反射率スペクトルである。 金型Lにおいて、無偏光、p偏光及びs偏光が照射されたときの反射率スペクトルである。 金型Mにおいて、無偏光、p偏光及びs偏光が照射されたときの反射率スペクトルである。 標準サンプルである8種類のモスアイフィルム、及び、検査対象であるモスアイフィルムの380nm~780nmの波長範囲における反射率スペクトルである。 従来の目視による形状検査を示す模式図である。
以下に実施形態を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明は実施形態のみに限定されるものではない。
実施形態1
実施形態1では、検査対象として、モスアイフィルム、又は、モスアイフィルムを製造するための金型を用いるが、本発明に係る検査対象は、凹凸形状を有する構造物であればこれらに限定されず、例えば、検査対象は、AGフィルム等であってもよい。
形状検査装置の構成
図1を用いて、実施形態1に係る形状検査装置1について説明する。形状検査装置1は、図1に示すように、制御用PC(Personal Computer)10、及び、分光器11からなる。制御用PC10は、本発明の記憶装置及び比較装置に該当する。制御用PC10と分光器11とは、互いにデータのやりとりができるように接続されている。このとき、制御用PC10と分光器11とは、有線接続されていてもよいし、無線接続されていてもよい。分光器11は、分光測定器12と光源13とを同一ユニット内に含む。
なお、分光器11に替えて、測定器と光源とが別々のユニットに配された装置(例えば、エリプソメータ)を用いてもよい。ただ、エリプソメータは、高価であり、装置コストが高くなってしまう。また、エリプソメータにおいては、光軸調整を厳密に行う必要があるが、測定器と光源とが別々のユニットに内蔵されているため、大型の検査対象を測定する場合、測定器をスキャンさせる度に光軸調整が必要となり、非常に操作が煩雑となってしまう。
次に、上記形状検査装置を用いた検査対象の凹凸形状を検査する形状検査方法について説明する。
形状検査方法
(1)標準サンプルの測定
まず、破壊検査及びSEMによる観察等により、予め凹凸の形状が分かっている複数のサンプルを標準サンプルとして準備する。複数のサンプルにおける凹凸形状は、それぞれ異なっている。モスアイフィルムの形状を検査するときは、目視の検査、及び/又は、破壊検査に合格したモスアイフィルムを標準サンプルとして用いる。また、モスアイフィルムを製造するための金型の形状を検査するときは、目視の検査及び/又はSEMを用いた断面観察による検査に合格した金型を標準サンプルとして用いる。図2は、実施形態1に係る形状検査装置によるモスアイフィルムの凹凸形状の検査を示す模式図である。モスアイフィルム14には、凹凸形状を有する面の反対側の面に支持フィルム15が貼り付けられ、検査時には、モスアイフィルム14、及び、支持フィルム15は、モスアイフィルム14の凹凸形状を有する面が分光器11と対向するように透明基板16上に配置される。透明基板16は、アクリル樹脂等の透明樹脂から形成される。金型を測定するときは、金型の凹凸形状を有する面が分光器11と対向するように配置される。その後、光源13から、モスアイフィルム14に光が照射され、分光測定器12において、複数の波長における反射率が測定される。そして、測定された複数の波長における反射率は、標準サンプルの形状と対応付けて、標準サンプルの反射率データとしてそれぞれ制御用PC10に送信される。制御用PC10においては、受信した標準サンプルの反射率データを制御用PCが備える記憶装置(図示せず)内の格納領域に格納する。
(2)検査対象の測定
上記標準サンプルの測定と同様にして、検査対象の複数の波長における反射率が測定され、測定された複数の波長における反射率は、検査対象の反射率データとして制御用PC10に送信される。制御用PC10においては、受信した検査対象の反射率データを制御用PCが備える記憶装置(図示せず)内の格納領域に格納する。
(3)形状検査
制御用PC10において、標準サンプルの凹凸形状と標準サンプルの反射率データとの間に見られる相関関係に基づき、検査対象の反射率データから検査対象の凹凸形状を検査する。
凹凸形状と反射率データの相関関係については、モスアイフィルム、及び、モスアイフィルムを製造するための金型を例にして、後に詳述する。そのために、まず、金型の製造方法について以下に説明する。
金型の製造方法
まず、ガラス基板を用意し、金型の材料となるアルミニウム(Al)をスパッタリング法によりガラス基板上に成膜する。次に、アルミニウムを陽極酸化(AO:anodic oxidation)させ、直後にエッチングを行う工程を繰り返すことによって、隣り合う穴(凹部)の底点間の距離が可視光波長以下の長さである多数の微小な穴をもつ陽極酸化層を形成する。具体的には、陽極酸化、エッチング、陽極酸化、エッチング、陽極酸化、エッチング、陽極酸化、エッチング及び陽極酸化を順に行うフロー(陽極酸化5回、エッチング4回)によって、金型の内部に向かって先細りの形状(テーパ形状)の微小な穴(凹部)が多数形成され、凹凸形状を有する金型が形成される。
このとき、1回の陽極酸化を行う時間(以下、AO時間とも言う。)、及び、1回のエッチングを行う時間(以下、Et時間とも言う。)を調整することで、金型の凹凸形状を変化させることができる。AO時間、及び、Et時間をそれぞれ異ならせた金型A~Gを用いて、AO時間及びEt時間と、金型の凹凸形状との関係を説明する。
金型Aにおいては、AO時間を316秒とし、Et時間を825秒とした。後述する金型BのAO時間を1としたとき、金型AのAO時間は、0.94となる。金型Bにおいては、AO時間を336秒とし、Et時間は、金型Aと同じとした。金型Cにおいては、AO時間を356秒とし、Et時間は、金型Aと同じとした。金型BのAO時間を1としたとき、金型CのAO時間は、1.06となる。金型Dにおいては、AO時間を金型Bと同じとし、Et時間を675秒とした。金型Eにおいては、AO時間を金型Bと同じとし、Et時間を750秒とした。金型Fにおいては、AO時間を金型Bと同じとし、Et時間を900秒とした。そして、金型Gにおいては、AO時間を金型Bと同じとし、Et時間を975秒とした。すなわち、金型A~GのAO時間(1回のAO量)と、Et時間(1回のEt量)とは、図3に示すような関係となる。
得られた金型A~Gについて、SEMで観察したところ、図4に示すように、AO時間が長くなる程、凹部の深さが深くなることが判明した。一方、図4に示すように、Et時間が長くなると、凹部の幅が大きくなることが判明した。また、Et時間が一定の長さ以上になると、凹部と凹部の間に、相対的に小さな凹部が更に形成されるとともに、凹部が浅くなることが判明した。
なお、金型の製造に用いられる基板はガラスに限られず、SUS(ステンレス)、Ni等の金属材料や、ポリプロピレン、ポリメチルペンテン、環状オレフィン系高分子(代表的にはノルボルネン系樹脂等である製品名「ゼオノア」(日本ゼオン株式会社製)、製品名「アートン」(JSR株式会社製)等)のポリオレフィン系樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース等の樹脂材料であってもよい。また、アルミニウムを成膜した基板の代わりに、アルミニウムのバルク基板を用いてもよい。なお、金型の形状は、平板状であってもロール(円筒)状であってもよい。
以上、金型の製造方法、及び、AO時間及びEt時間と金型の凹凸形状との関係について説明した。次に、金型を用いたモスアイフィルムの製造方法について説明する。
モスアイフィルムの製造方法
ローラーナノインプリント技術を用い、支持フィルム上に光硬化性樹脂を塗布する。その後、支持フィルム上に塗布された光硬化性樹脂に、上記金型の製造方法により作製された金型を押し当て、UVを照射し露光する。また、例えば、熱プレス法(エンボス法)、射出成形法、ゾルゲル法等の複製法、又は、微細凹凸賦形シートのラミネート法、微細凹凸層の転写法等の各種方法により、モスアイフィルムを形成してもよい。
このように、モスアイフィルムには、金型の凹凸形状が転写される。すなわち、金型の凹部の形状に応じて、モスアイフィルムの凸部が形成され、金型の凸部の形状に応じて、モスアイフィルムの凹部が形成される。金型A~Gを用いて、モスアイフィルムA~Gを実際に作製した。
モスアイフィルムA~Gを、それぞれ、SEMで観察し、凸部の高さを測定するとともに、凸部の太さを評価した。図5~11は、モスアイフィルムA~GをSEMで観察したときの断面図である。モスアイフィルムAの凸部の高さは、180nm、モスアイフィルムBの凸部の高さは、216nm、モスアイフィルムCの凸部の高さは、260nm、モスアイフィルムDの凸部の高さは、216nm、モスアイフィルムEの凸部の高さは、216nm、モスアイフィルムFの凸部の高さは、200nm、モスアイフィルムGの凸部の高さは、186nmであった。
また、モスアイフィルムA~Cの太さは、ほぼ同じであった。モスアイフィルムA~Cの凸部の太さを基準としたとき、モスアイフィルムDの凸部の太さは細く、モスアイフィルムEの凸部の太さはやや細く、モスアイフィルムFの凸部の太さはやや太く、モスアイフィルムGの凸部の太さは太いことが判明した。モスアイフィルムA~Gにおける凹凸形状の関係を図12に示す。
なお、モスアイフィルムの凸部の高さ(h)とは、図12に示すように、凸部の頂点から、底面までの直線距離を言い、凸部の太さ(w)とは、底面の幅を言う。
また、金型D及びGを、それぞれ、SEMで観察し、凸部の高さを測定した。図13及び図14は、金型D及びGで観察したときの断面図である。上記の金型Dの凹部の深さは、360nmであり、金型Gの凹部の深さは、340nmであった。一方、モスアイフィルムDの凸部の高さは、216nmであり、金型の凹部の深さに対するフィルムの凸部の高さの比率(転写率)は、0.60であった。また、モスアイフィルムGの凸部の高さは、186nmであり、転写率は、0.55であった。
次に、モスアイフィルムを例に、凹凸形状と反射率データの相関関係について説明する。
上記標準サンプルの測定と同様にして、モスアイフィルムA~Gに、それぞれ、入射角5°の無偏光を照射し、380nm~780nmの波長範囲における反射率スペクトルを測定した。図15に示すように、凹凸形状の違いによって、反射率スペクトルが異なることが判明した。図16は、AO時間のみ互いに異なる金型A~Cを用いて作製されたモスアイフィルムA~Cの反射率スペクトルを示す図である。図16を見ると、金型のAO時間が長い程、すなわち、金型の凹部が深く、モスアイフィルムの凸部の長さが長い程、長波長の光における反射率が低くなった。具体的には、730nm以上の波長の光における反射率が低くなった。また、金型の凹部が浅く、モスアイフィルムの凸部の長さが短い程、反射率スペクトルのピーク、及び、ボトムは、低波長側にシフトした。以上から、長波長の固定波長や、スペクトルのピーク及びボトムの位置から、モスアイフィルムの凸部の長さを推測できることが判明した。
また、図17は、Et時間のみ互いに異なる金型B、及び、D~Gを用いて作製されたモスアイフィルムB、及び、D~Gの反射率スペクトルを示す図である。Et時間が長い程、すなわち、金型の凹部の形状が太く、フィルムの凸部の形状が太くなるとともに凸部と凸部の間に相対的に小さな突出部(以下では、鞍部とも言う。)が形成されるにつれ、スペクトルのピーク及びボトムの反射率が低下した。具体的には、モスアイフィルムDでは、ピークの反射率が約0.4%、ボトムの反射率が約0.05%であるのに対して、モスアイフィルムGにおいては、高視感度領域(緑)でのピークの反射率が0.2%以下、ボトムの反射率が約0.01%まで低下した。以上から、反射率スペクトルのピーク及びボトムにおける反射率から、モスアイフィルムの凸部の形状(太さ)を推測できることが判明した。
また、Et時間が長くなる程、金型の凹部の深さは浅く、フィルムの凸部の長さは短くなるが、図17においては、図16と同様に、モスアイフィルムの凸部の長さが長い程、長波長の光における反射率が低くなり、又、モスアイフィルムの凸部の長さが短い程、反射率スペクトルのピーク、及び、ボトムは、低波長側にシフトした。
更に、エッチングの合計時間を0分、3分、5分、10分及び15分とした金型をそれぞ作製した。図18中の点線に示すように、エッチングの合計時間が増加するにつれ、凹部の底面が平坦化されていった。また、凹部の底面の形状と、凸部の立ち上がり角とは相関関係が見られ、凹部の平面が平坦になる程、凸部の立ち上がり角は大きくなった。これらの金型を用いて作製されたモスアイフィルムに、それぞれ、入射角5°の無偏光を照射し、250nm~550nmの波長範囲における反射率スペクトルを測定した。このとき、図19に示すように、エッチング時間が10分以上の金型で作製されたモスアイフィルムの400nm付近の反射率が高くなった。また、金型のエッチング時間が長くなるにつれ、モスアイフィルムの反射率スペクトルのピークが僅かながら高波長側にシフトした。
更に、Et時間が異なる金型H~P、及び、金型H~Pを用いてモスアイフィルムH~Pを作製し、モスアイフィルムH~Pの反射率スペクトルをそれぞれ測定した。金型H~Pにおいては、いずれもAO時間を336秒とし、金型Hにおいては、Et時間を438秒とした。金型Iにおいては、Et時間を518秒とした。金型Jにおいては、Et時間を598秒とした。金型Kにおいては、Et時間を677秒とした。金型Lにおいては、Et時間を757秒とした。金型Mにおいては、Et時間を837秒とした。金型Nにおいては、Et時間を877秒とした。金型Oにおいては、Et時間を916秒とした。金型Pにおいては、Et時間を996秒とした。
金型A~P、及び、モスアイフィルムA~Gについて、下記表1にまとめる。
Figure JPOXMLDOC01-appb-T000001
モスアイフィルムA~Gと同様に、モスアイフィルムH~P、及び、凹凸形状が不明な検査対象のモスアイフィルムに、それぞれ、入射角5°の無偏光を照射し、380nm~780nmの波長範囲における反射率スペクトルを測定した。図20は、モスアイフィルムH~P、及び、検査対象のモスアイフィルムの反射率スペクトルを示す図である。モスアイフィルムH~Pを用いた測定でも、モスアイフィルムA~Gと同様に、金型のEt時間が長くなるにつれ、すなわち、金型の凹部の形状が太く、フィルムの凸部の形状が太くなるとともに鞍部が形成されるにつれ、スペクトルのピーク及びボトムの反射率が低下した。また、モスアイフィルムの凸部の長さが長い程、長波長の光における反射率が低くなり、又、モスアイフィルムの凸部の長さが短い程、反射率スペクトルのピーク、及び、ボトムは、低波長側にシフトした。また、検査対象のモスアイフィルムの反射率スペクトルをみると、780nm付近での反射率は、モスアイフィルムH~Pのいずれよりも低かった。このことから、検査対象のモスアイフィルムの凸部の長さは、モスアイフィルムH~Pのいずれよりも長いことが推測された。また、ピーク(450nm近辺)の反射率は、モスアイフィルムMの反射率スペクトルのピーク波長における反射率よりも大きく、モスアイフィルムLの反射率スペクトルのピーク波長における反射率よりも低くなった。このことから、検査対象のモスアイフィルムの凸部の太さは、モスアイフィルムLの凸部よりも太く、モスアイフィルムMの凸部よりも細いことが推測された。
そして、検査対象のモスアイフィルムをSEMで観察したところ、上記の形状検査によって推測された通り、検査対象のモスアイフィルムの凸部の長さは、モスアイフィルムH~Pのいずれよりも長く、凸部の太さは、モスアイフィルムLの凸部よりも太く、モスアイフィルムMの凸部よりも細いことが判明した。
このように、モスアイフィルムの凸部の高さ、及び、凸部の太さは、それぞれ、反射率スペクトルに反映される。したがって、例えば、標準サンプルとして、所望の性能を発揮するために要求される凸部の高さの上限及び下限に設定されたモスアイフィルムをそれぞれ作製し、これらの標準サンプルの反射率スペクトルを測定し、標準反射率データを記録することで、検査対象となるモスアイフィルムの反射率スペクトルにおいて、長波長の反射率が、2つの標準サンプルの反射率スペクトルにおける長波長の反射率の範囲内であるか否かにより、検査対象のモスアイフィルムの合否を検査することができる。
同様に、凸部の太さの上限及び下限に設定されたモスアイフィルムをそれぞれ標準サンプルとすることで、検査対象のモスアイフィルムの反射率スペクトルのピーク及びボトムにおける反射率が、2つの標準サンプルの反射率スペクトルのピーク及びボトムにおける反射率の範囲内であるか否かにより、検査対象のモスアイフィルムの合否を検査することができる。
以上のように、モスアイフィルムの特性を決定する2つのパラメータである凸部の高さと凸部の形状(太さ)とは、相関関係を示す波長域が異なるため、分離して取り扱うことが可能である。
更に、モスアイフィルムにおける上記パラメータの変化に対する特定の波長における反射率や、反射率スペクトルの変化傾向を掴むことにより、金型へのフィードバックが可能となる。具体的には、例えば、検査したモスアイフィルムの凸部の長さが標準サンプルよりも短いことが反射率スペクトルの比較により判明したとき、金型のAO時間を増やして、モスアイフィルムの凸部の長さが長くなるように調整することができる。
このような形状を検査する工程を上記のモスアイフィルムの製造工程に導入することで、製造されるモスアイフィルムの品質を一定以上とすることができる。
次に、反射率スペクトルの角度依存性を調べるために、モスアイフィルムKに、入射角5°、30°、45°及び60°の無偏光をそれぞれ照射し、380nm~780nmの波長範囲における反射率スペクトルを測定した。図21に示すように、モスアイフィルムの反射率スペクトルには入射角依存性があることが判明した。なお、図20におけるモスアイフィルムKと、図21におけるモスアイフィルムKとは、金型の作製日が異なるものである。全波長域において、入射角が小さい程、反射率が低くなる傾向が見られた。同様に、モスアイフィルムNに、入射角5°、30°、45°及び60°で無偏光をそれぞれ照射し、380nm~780nmの波長範囲における反射率スペクトルを測定した。図22に示すように、モスアイフィルムNにおいても、モスアイフィルムKと同様に、反射率スペクトルに入射角依存性があることが確認された。したがって、光源から照射される光の入射角は、0°~70°の範囲内であることが好ましく、より高精度に検査を行う観点からは、0°~45°の範囲内であることがより好ましい。
以上、モスアイフィルムを例に、凹凸形状と反射率データの相関関係について説明した。次に、金型を例に、凹凸形状と反射率データの相関関係について説明する。
上記標準サンプルの測定と同様にして、金型H~Mに、それぞれ、入射角5°の無偏光を照射し、250nm~850nmの波長範囲における反射率スペクトルを測定した。図23に示すように、金型においても、凹凸形状の違いによって、反射率スペクトルが異なることが判明した。Et時間が長くなるにつれ、すなわち、金型の凹部の幅は広くなり、深さは浅くなるにつれ、スペクトルのピーク及びボトムは、低波長側にシフトした。また、Et時間が長くなるにつれ、ピーク波長の反射率が低下する一方で、逆に、ボトム波長の反射率は、上昇する傾向が見られた。すなわち、金型におけるEt時間を増加させるにしたがって、反射率の振動が緩和する傾向が見られた。これは、金型の細孔が拡大し、金型表面に凸形状が形成され、平坦部分が消失していくためであると考えられる。
次に、金型Kに入射角60°で無偏光、p偏光及びs偏光をそれぞれ照射し、250nm~850nmの波長範囲における反射率スペクトルを測定した。図24に示すように、p偏光では、無偏光を照射したときに比べ、300nm、及び、400nm付近の波長において反射率が高くなり、320nm及び420nm付近の波長においては、逆に、反射率が低くなった。一方、s偏光では、無偏光を照射したときに比べ、300nm、及び、400nm付近の波長において反射率が低くなり、320nm及び420nm付近の波長においては、逆に、反射率が高くなった。金型L及びMにおいても、図25及び図26に示すように同様の結果が得られた。以上から、入射角を大きくし、s偏光やp偏光等の偏光の反射率を測定することで、スペクトルの振動が強調され、特定波長での検査をする場合の検査精度を上げることが可能となることが判明した。なお、検査対象がモスアイフィルムであるときも、偏光(より好ましくは、s偏光及び/又はp偏光)を用いることで、検査精度を上げることが可能であると考えられる。
以上から、金型においても、モスアイフィルムと同様に、特定波長の反射率、又は、反射率スペクトルのピークの強度(振幅)を標準サンプルと検査対象とで比較することによって、検査対象の金型の合否を評価することが可能であることが判明した。更に、このような形状を検査する工程を上記の金型の製造工程に導入することで、製造される金型の品質を一定以上とすることができる。
実施例
標準サンプルとして、凸部の高さが、210nm、300nm、360nm、430nm、450nm、490nm、500nm、及び、600nmのモスアイフィルムを作製し、標準サンプルに、それぞれ、入射角5°の無偏光を照射し、380nm~780nmの波長範囲における反射率スペクトルを測定した。
次に、凹凸形状が未知であるモスアイフィルムを検査対象とし、検査対象のモスアイフィルムに、入射角5°の無偏光を照射し、380nm~780nmの波長範囲における反射率スペクトルを測定した。
図27に、標準サンプル、及び、検査対象の反射率スペクトルの測定結果を示す。図27に示すように、780nmの波長において、標準サンプルの反射率は、凸部の高さが210nmのモスアイフィルムの反射率と、300nmのモスアイフィルムの反射率との間となった。このことから、検査対象のモスアイフィルムの凸部の高さは、210nmよりも高く、300nmよりも低く、およそ、280nm程度であると推定された。
検査対象のモスアイフィルムの凸部の高さをSEM観察により実際に測定した結果、285nmであったことから、反射率スペクトルから推定された結果が凹凸形状の検査に有効であることが判明した。
なお、本願は、2011年7月8日に出願された日本国特許出願2011-152106号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
1:形状検査装置
10:制御用PC
11:分光器
12:分光測定器
13:光源
14:モスアイフィルム
15:支持フィルム
16:透明基板
101:検査対象
102:検査台
103:白色板(バックライト用シート)
 

Claims (15)

  1. 表面に凹凸形状を有する標準サンプル、及び、表面に凹凸形状を有する検査対象に光を照射し、前記標準サンプルの複数の波長における反射率と、前記検査対象の前記複数の波長における反射率とを比較することによって、前記検査対象の前記凹凸形状を検査する形状検査方法。
  2. 前記形状検査方法は、凸部の高さ、及び/又は、凸部の太さを検査する請求項1記載の形状検査方法。
  3. 前記複数の波長は、いずれも、所定の波長範囲に含まれ、
    前記標準サンプルの前記所定の波長範囲における反射率スペクトルと、前記検査対象の前記所定の波長範囲における反射率スペクトルとを比較することによって、前記検査対象の前記凹凸形状を検査する請求項1又は2記載の形状検査方法。
  4. 前記標準サンプルにおける前記反射率スペクトルのピーク波長と、前記検査対象における前記反射率スペクトルのピーク波長とを比較することによって、前記検査対象の前記凹凸形状を検査する請求項3記載の形状検査方法。
  5. 前記標準サンプルにおける前記反射率スペクトルのピーク波長の反射率と、前記検査対象における前記反射率スペクトルのピーク波長の反射率とを比較することによって、前記検査対象の前記凹凸形状を検査する請求項3又は4記載の形状検査方法。
  6. 前記標準サンプルにおける前記反射率スペクトルのボトム波長と、前記検査対象における反射率スペクトルのボトム波長とを比較することによって、前記検査対象の前記凹凸形状を検査する請求項3~5のいずれかに記載の形状検査方法。
  7. 前記標準サンプルにおける反射率スペクトルのボトム波長の反射率と、前記検査対象における前記反射率スペクトルのボトム波長の反射率とを比較することによって、前記検査対象の前記凹凸形状を検査する請求項3~6のいずれかに記載の形状検査方法。
  8. 前記標準サンプル、及び、前記検査対象に照射される光は、斜め方向から照射される請求項1~7のいずれかに記載の形状検査方法。
  9. 前記標準サンプル、及び、前記検査対象に照射される光は、偏光である請求項1~8のいずれかに記載の形状検査方法。
  10. 前記標準サンプル、及び、前記検査対象に照射される光は、p偏光、及び/又は、s偏光である請求項9記載の形状検査方法。
  11. 前記複数の波長における反射率は、分光測定器と光源とが同一のユニットに備えられた分光器により測定される請求項1~10のいずれかに記載の形状検査方法。
  12. 前記検査対象は、金型である請求項1~11のいずれかに記載の形状検査方法。
  13. 前記検査対象は、モスアイ構造を有するフィルムである請求項1~11のいずれかに記載の形状検査方法。
  14. 表面に凹凸形状を有する標準サンプルの複数の波長における反射率と、表面に凹凸形状を有する構造物の前記複数の波長における反射率とを比較することによって、前記構造物の前記凹凸形状を検査する工程を含む構造物の製造方法。
  15. 光が照射された対象物の複数の波長における反射率を測定する測定器と、
    前記測定器により測定された前記複数の波長における反射率を反射率データとして記憶する記憶装置と、
    前記記憶装置に記憶された表面に凹凸形状を有する標準サンプルにおける反射率データと、表面に凹凸形状を有する検査対象の複数の波長における反射率データとを比較することによって、前記検査対象の前記凹凸形状を検査する比較装置とを有する形状検査装置。
     
PCT/JP2012/066636 2011-07-08 2012-06-29 形状検査方法、構造物の製造方法及び形状検査装置 WO2013008643A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013523887A JP5728089B2 (ja) 2011-07-08 2012-06-29 形状検査方法、構造物の製造方法及び形状検査装置
CN201280033095.6A CN103635776B (zh) 2011-07-08 2012-06-29 形状检查方法、结构物的制造方法以及形状检查装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-152106 2011-07-08
JP2011152106 2011-07-08

Publications (1)

Publication Number Publication Date
WO2013008643A1 true WO2013008643A1 (ja) 2013-01-17

Family

ID=47505939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066636 WO2013008643A1 (ja) 2011-07-08 2012-06-29 形状検査方法、構造物の製造方法及び形状検査装置

Country Status (3)

Country Link
JP (1) JP5728089B2 (ja)
CN (1) CN103635776B (ja)
WO (1) WO2013008643A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144232A (zh) * 2017-06-07 2017-09-08 合肥汇之新机械科技有限公司 一种深度检测设备
JP2022123932A (ja) * 2021-02-15 2022-08-25 プライムプラネットエナジー&ソリューションズ株式会社 ナノ突起構造体検査装置およびナノ突起構造体検査方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221617A (ja) * 1999-11-30 2001-08-17 Nikon Corp 段差測定方法、スタンパ製造方法、スタンパ、光ディスク製造方法、光ディスク、半導体デバイス製造方法、半導体デバイス、および段差測定装置
JP2009150832A (ja) * 2007-12-21 2009-07-09 Hitachi Ltd ハードディスクメディア上のパターンの検査方法及び検査装置
JP2009168593A (ja) * 2008-01-16 2009-07-30 Hiroo Kinoshita 形状測定装置
JP2010048777A (ja) * 2008-08-25 2010-03-04 Toshiba Corp パターン計測装置、パターン計測方法およびプログラム
JP2010122599A (ja) * 2008-11-21 2010-06-03 Dainippon Printing Co Ltd モスアイ型反射防止フィルム製造用金型の評価方法、モスアイ型反射防止フィルム製造用金型の製造方法、モスアイ型反射防止フィルム製造用金型の再生方法、およびモスアイ型反射防止フィルムの製造方法
JP2011053495A (ja) * 2009-09-02 2011-03-17 Sony Corp 光学素子、およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5591466B2 (ja) * 2008-11-06 2014-09-17 株式会社名南製作所 原木の3次元形状測定装置および方法
JP5049405B2 (ja) * 2010-03-25 2012-10-17 三菱レイヨン株式会社 陽極酸化アルミナの製造方法、検査装置および検査方法
RU2515123C1 (ru) * 2010-05-19 2014-05-10 Шарп Кабусики Кайся Способ контроля формы
JP2012255652A (ja) * 2011-06-07 2012-12-27 Mitsubishi Rayon Co Ltd 陽極酸化アルミナの検査装置および検査方法、ならびに陽極酸化アルミナを表面に有する部材の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221617A (ja) * 1999-11-30 2001-08-17 Nikon Corp 段差測定方法、スタンパ製造方法、スタンパ、光ディスク製造方法、光ディスク、半導体デバイス製造方法、半導体デバイス、および段差測定装置
JP2009150832A (ja) * 2007-12-21 2009-07-09 Hitachi Ltd ハードディスクメディア上のパターンの検査方法及び検査装置
JP2009168593A (ja) * 2008-01-16 2009-07-30 Hiroo Kinoshita 形状測定装置
JP2010048777A (ja) * 2008-08-25 2010-03-04 Toshiba Corp パターン計測装置、パターン計測方法およびプログラム
JP2010122599A (ja) * 2008-11-21 2010-06-03 Dainippon Printing Co Ltd モスアイ型反射防止フィルム製造用金型の評価方法、モスアイ型反射防止フィルム製造用金型の製造方法、モスアイ型反射防止フィルム製造用金型の再生方法、およびモスアイ型反射防止フィルムの製造方法
JP2011053495A (ja) * 2009-09-02 2011-03-17 Sony Corp 光学素子、およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144232A (zh) * 2017-06-07 2017-09-08 合肥汇之新机械科技有限公司 一种深度检测设备
JP2022123932A (ja) * 2021-02-15 2022-08-25 プライムプラネットエナジー&ソリューションズ株式会社 ナノ突起構造体検査装置およびナノ突起構造体検査方法
JP7191137B2 (ja) 2021-02-15 2022-12-16 プライムプラネットエナジー&ソリューションズ株式会社 ナノ突起構造体検査装置およびナノ突起構造体検査方法

Also Published As

Publication number Publication date
CN103635776B (zh) 2017-03-08
JP5728089B2 (ja) 2015-06-03
CN103635776A (zh) 2014-03-12
JPWO2013008643A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
KR101890663B1 (ko) 막두께 분포 측정 방법
KR100988454B1 (ko) 두께 측정방법
WO2011148555A1 (ja) 薄膜付きウェーハの膜厚分布測定方法
US9395173B2 (en) Multi-functioned optical measurement device and method for optically measuring a plurality of parameters
CN104677315B (zh) 硅片表面不平整度测量方法
JP5059985B2 (ja) 型の検査方法
JP5728089B2 (ja) 形状検査方法、構造物の製造方法及び形状検査装置
TWI716422B (zh) 從一樣本堆疊中判斷層的厚度的方法與組件
Bawuah et al. Gloss measurement in detection of surface quality of pharmaceutical tablets: a case study of screening of genuine and counterfeit antimalaria tablets
US20160153915A1 (en) Surface Inspecting Method
US10627227B2 (en) Optical device for characterization of a sample
JP2008064685A (ja) 汚染性評価方法、汚染性評価装置、及び光学部材の製造方法
WO2017122248A1 (ja) 薄膜付ウェーハの膜厚分布の測定方法
Zerrad et al. Multimodal scattering facilities and modelization tools for a comprehensive investigation of optical coatings
CN109596532A (zh) 一种光学基底材料光学常数的测试方法
JP2011180113A (ja) ダイアモンド状カーボン薄膜の膜厚と屈折率の計測
JP2016114506A (ja) 薄膜付ウェーハの評価方法
US20220390356A1 (en) Device and method for measuring a substrate
US7355713B2 (en) Method for inspecting a grating biochip
WO2011096328A1 (ja) パターン検査方法及びその装置
CN109856114A (zh) 化学气相沉积法制备的多层石墨烯层数的确定方法
TWI482958B (zh) 偵測裝置及偵測方法
Chícharo et al. Superior ultra-transparent broadband terahertz polarizers by nanoimprint lithography
Prince et al. Gloss measurement in detection of surface quality of pharmaceutical tablets: a case study of screening of genuine and counterfeit antimalaria tablets
Bulun et al. Construction of a time-domain full-field OCT for non-contact volumetric layer thickness measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523887

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811168

Country of ref document: EP

Kind code of ref document: A1