WO2011148555A1 - 薄膜付きウェーハの膜厚分布測定方法 - Google Patents

薄膜付きウェーハの膜厚分布測定方法 Download PDF

Info

Publication number
WO2011148555A1
WO2011148555A1 PCT/JP2011/001852 JP2011001852W WO2011148555A1 WO 2011148555 A1 WO2011148555 A1 WO 2011148555A1 JP 2011001852 W JP2011001852 W JP 2011001852W WO 2011148555 A1 WO2011148555 A1 WO 2011148555A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
wafer
wavelength
region
film thickness
Prior art date
Application number
PCT/JP2011/001852
Other languages
English (en)
French (fr)
Inventor
登 桑原
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to KR1020127030999A priority Critical patent/KR101656436B1/ko
Priority to EP11786259.9A priority patent/EP2579302B1/en
Priority to US13/696,947 priority patent/US8976369B2/en
Priority to CN201180026457.4A priority patent/CN102918639B/zh
Publication of WO2011148555A1 publication Critical patent/WO2011148555A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • G01B11/0633Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection using one or more discrete wavelengths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Definitions

  • the present invention relates to an evaluation method for a wafer with a thin film for calculating a film thickness distribution of a wafer with a thin film used for manufacturing a semiconductor device, and more particularly to an evaluation method for calculating a film thickness distribution for an SOI layer.
  • the existing film thickness measurement method for calculating the film thickness distribution of a thin film wafer with a thin film on the surface of the substrate is generally a point-by-point film thickness measurement by spectral ellipsometry or reflection spectroscopy, but about 1 ⁇ m.
  • a film thickness distribution measuring apparatus capable of measuring the film thickness distribution in a wide range with a resolution of 1 is not commercially available.
  • Patent Document 1 discloses a technique for irradiating SOI with white light, spectroscopically analyzing reflected light for each wavelength, and calculating the SOI layer thickness from the interference information for each wavelength. It describes that an SOI layer of less than 1 ⁇ m is irradiated with 488 nm laser light, its specular reflection light is detected, and in-plane film thickness variation is inspected by interference fringes with the irradiated light.
  • JP 2002-343842 A Japanese Patent Laid-Open No. 08-264605
  • the present invention has been made in view of the above problems, and can measure a micro thin film (SOI layer) film thickness distribution affecting the device over the entire surface of the wafer with high accuracy, low cost, and simplicity.
  • a method for evaluating a wafer with a thin film is provided.
  • the present invention provides a thin film-attached wafer evaluation method for calculating a film thickness distribution of the thin film of a thin film-attached wafer having a thin film on the surface of a substrate, and a part of the thin film-attached wafer surface.
  • a thin film-attached wafer evaluation method for calculating a film thickness distribution of the thin film of a thin film-attached wafer having a thin film on the surface of a substrate, and a part of the thin film-attached wafer surface.
  • the reflectance (R) of irradiation light calculated from the film thickness setting value of the thin film of the wafer with thin film is 0.2 or more, and the reflectance fluctuation rate with respect to the thin film thickness (
  • the wavelength ⁇ is preferably selected so that the absolute value of ( ⁇ R / R) is 0.02 / nm or more.
  • an accurate evaluation can be performed by selecting a wavelength having a large variation in reflectivity with respect to a film thickness setting value as the wavelength ⁇ of the light to be irradiated. And if the reflectance (R) of the irradiation light calculated from the film thickness setting value of the thin film of a wafer with a thin film is 0.2 or more, the reflected light intensity is sufficient and accurate evaluation can be performed. Moreover, if the reflectance fluctuation rate with respect to the thin film thickness is 0.02 / nm or more in absolute value, the sensitivity to the thin film thickness fluctuation is sufficient, and accurate evaluation can be performed.
  • the wavelength ⁇ so that the absolute value of the reflectance fluctuation rate ( ⁇ R / R) is 0.05 / nm or more.
  • the sensitivity to the variation in film thickness is high, and more accurate evaluation is possible.
  • the wavelength ⁇ is preferably a single wavelength selected from visible light wavelengths.
  • the method for evaluating a wafer with a thin film of the present invention is a low-cost evaluation method because a general optical microscope apparatus can be used and it can be performed at a single wavelength selected from visible light wavelengths.
  • the size of one side of the pixel is not less than 1/2 of the wavelength ⁇ and not more than 100 ⁇ m.
  • the film thickness distribution of the thin film of the wafer with the thin film can be calculated more accurately without the possibility of focusing. .
  • the region can be matched with the lithography exposure site of the device manufacturing process.
  • the region irradiated with light in the method for evaluating a wafer with a thin film of the present invention can be matched with the lithography exposure site in the device manufacturing process by adjusting the magnification and field of view of the microscope used.
  • the film thickness distribution of the entire surface of the wafer with the thin film can be obtained by calculating the film thickness distribution of the thin film in the region at a plurality of locations.
  • the wavelength is limited to one wavelength. be able to.
  • a wafer with a thin film in which a second thin film is formed between the substrate and the thin film or on the thin film can be used.
  • a wafer with a thin film in which a second thin film is formed can be used between the substrate and the thin film or on the thin film.
  • the substrate and the thin film can be a silicon single crystal
  • the second thin film formed between the substrate and the thin film can be a silicon oxide film
  • an SOI wafer in which the substrate and the thin film are silicon single crystals and the second thin film is a silicon oxide film can be used.
  • the thickness distribution and uniformity of the SOI layer thickness are quantitatively evaluated with a resolution of 1 ⁇ m or less. It becomes possible.
  • the thin film thickness distribution that can be measured over the entire wafer surface of the micro thin film thickness distribution affecting the device at low cost and easily with sufficient spatial resolution.
  • Measurement and film thickness uniformity evaluation methods can be provided.
  • more accurate evaluation can be performed by selecting a wavelength whose reflectance varies greatly with respect to the film thickness setting value.
  • the thickness of the SOI layer thickness with a resolution of 1 ⁇ m or less. Distribution and uniformity can be quantitatively evaluated.
  • FIG. 4 It is the figure which showed the histogram of the light intensity of each pixel of the microscope image of FIG. 4 is a microscopic image of an SOI layer in two measurement regions in Example 2.
  • FIG. It is the figure which showed the histogram of the light intensity of each pixel of the microscope image of FIG.
  • a thin film (SOI layer) wafer measurement method and uniformity evaluation of a thin film (SOI layer) wafer can be performed at low cost and easily over the entire wafer surface. Was demanded.
  • a method for evaluating a thin film-attached wafer for calculating a film thickness distribution of the thin film of a thin film-attached wafer having a thin film on the surface of a substrate comprising: By irradiating the region with light of a single wavelength ⁇ , detecting the reflected light from the region and measuring the reflected light intensity for each pixel obtained by dividing the region into a large number, the reflected light intensity distribution in the region is obtained. If the method for evaluating a wafer with a thin film is characterized in that the film thickness distribution of the thin film in the region is calculated from the reflected light intensity distribution, the irradiation light is limited to one wavelength. It was found that the measurement of the film thickness distribution of the affected micro thin film over the entire surface of the wafer can be performed at a low cost and with a sufficient spatial resolution.
  • the present inventor conducted the following experiment, paying attention to the change in reflectance with respect to the film thickness of the thin film (SOI layer).
  • FIG. 1 shows SOI layers having three typical wavelengths (488 nm, 532 nm, and 633 nm) when the BOX (silicon oxide film: buried oxide film) layer thickness of the SOI wafer (SOI layer / BOX layer / Si substrate) is 145 nm.
  • the reflectivity when these three wavelengths are used has a strong dependence on the SOI layer thickness. That is, it was found that if the reflectance (reflected light intensity) was measured using an appropriate wavelength, it could be converted into the SOI layer thickness. In other words, it has been found that if an appropriate wavelength is used, the reflectance can be easily and accurately converted into the SOI layer thickness in the SOI layer thickness region where the variation in reflectance is large.
  • the film thickness of the SOI layer is about 90 nm
  • the irradiation light having a wavelength of 488 nm and 633 nm the reflectance fluctuates greatly. Therefore, when the irradiation light having a wavelength of 532 nm having a substantially constant reflectance is used. In comparison, it was found that the conversion into the SOI layer thickness can be performed easily and accurately.
  • the present inventor can convert the reflectance into the thin film thickness by using such characteristics and selecting a single wavelength having a large variation in the reflectance with respect to the set value of the thin film thickness. I found out that it would be possible accurately. That is, in the present invention, an appropriate wavelength ⁇ is selected according to the thin film thickness of the thin film wafer, the light with the wavelength ⁇ is irradiated on the thin film wafer surface, and the reflectance from the SOI surface is divided into a large number. By measuring each area (pixel) with high spatial resolution, the SOI layer thickness distribution and uniformity can be more accurately evaluated.
  • the SOI layer thickness and the BOX layer thickness of the SOI wafer to be manufactured are set according to the user's specifications, and after the SOI wafer is manufactured with the film thickness setting value as a target value, inspection is performed.
  • the in-plane distribution of the SOI layer film thickness is evaluated by a process or the like.
  • using the set values of the SOI layer thickness and the BOX layer thickness the relationship between the wavelength of the irradiation light and the reflectance of the reflected light is calculated by simulation, and the measurement is performed based on the result.
  • An appropriate wavelength ⁇ is selected as light, and the SOI wafer is irradiated to the SOI wafer, and the reflected light is detected to evaluate the SOI layer thickness distribution.
  • the SOI layer thickness and the BOX layer thickness (that is, a target value for manufacturing the SOI wafer) set in advance in manufacturing the SOI wafer to be evaluated are associated with variations in the SOI layer thickness.
  • the dependency of the reflectance difference and the reflectance fluctuation rate on the irradiation wavelength is calculated, and a single wavelength ⁇ is selected from the wavelengths where the reflectance fluctuation becomes large.
  • a region of the SOI surface is irradiated with the light having the selected wavelength ⁇ , the reflected light from the region is detected, and the reflected light intensity for each pixel obtained by dividing the region into a large number is measured.
  • the thickness distribution of the SOI layer in the region is calculated from the reflected light intensity distribution.
  • An example of the wafer with a thin film to which the evaluation method of the present invention can be applied is an SOI wafer, and it is possible to evaluate any combination of SOI wafer thickness and BOX layer thickness.
  • evaluation can be made for a wafer with a thin film having a single-layer film or a two-layer film other than SOI / BOX.
  • the thin film material for example, SiGe, Ge, III-V, Examples thereof include other semiconductor materials such as II-VI compound semiconductors, high dielectric constant insulating materials such as Al 2 O 3 , quartz, HfO 2 , and Graphene.
  • the thickness of the other layer is uniform or the refractive index of the other layer is smaller than the layer for which the film thickness distribution measurement is to be performed, it is adequately applied. This is a possible evaluation method.
  • the SOI layer thickness variation at the SOI layer thickness and the BOX layer thickness (that is, the target values for manufacturing the SOI wafer) set in the manufacturing stage of the SOI wafer to be evaluated in advance by simulation is simulated.
  • the irradiation wavelength dependence of the accompanying reflectance difference and reflectance fluctuation rate is calculated, and a single wavelength ⁇ is selected from the wavelengths at which the reflectance and reflectance fluctuation increase.
  • the BOX layer film thickness is fixed to a set value, and both the set value L (nm) of the SOI layer film thickness and, for example, L + 1 (nm) increased by 1 nm from the set value L (nm),
  • the wavelength dependence of the reflectance R is calculated.
  • a wavelength ⁇ having a sufficiently large reflectance (R) and reflectance fluctuation rate ( ⁇ R / R L ) of the irradiation light is selected.
  • the reflectance (R) of the irradiation light calculated from the thin film thickness setting value of the wafer with thin film is 0.2 or more
  • the absolute value of the reflectance fluctuation rate ( ⁇ R / R) with respect to the thin film thickness is It is preferable to select the wavelength ⁇ so as to be 0.02 / nm or more. If the reflectance is 0.2 or more, the reflected light intensity is sufficient and accurate evaluation can be performed. If the absolute value of the reflectance fluctuation rate is 0.02 / nm or more, the sensitivity to the film thickness fluctuation is sufficient, and accurate evaluation can be performed.
  • a wavelength at which the reflectance is 0.2 or more and the absolute value of the reflectance fluctuation rate is 0.02 / nm or more. If a wavelength at which the absolute value of the reflectance variation rate is 0.05 / nm or more is selected, the sensitivity to the variation in film thickness is high, and a more accurate evaluation is possible.
  • a part of the surface of the SOI wafer to be evaluated is irradiated with light having a single wavelength ⁇ selected in advance as described above, and reflected light is detected from the irradiated area, and the area is divided into a number of pixels.
  • the reflected light intensity By measuring the reflected light intensity, the reflected light intensity distribution in the region is obtained, and the film thickness distribution of the thin film in the region is calculated from the reflected light intensity distribution.
  • irradiating light of a selected single wavelength ⁇ for example, from a light source 3 of a general optical microscope apparatus 2 equipped with a bandpass filter 1 for wavelength selection.
  • the irradiation can be performed by irradiating a partial region of the wafer 4 with a thin film to be evaluated. That is, using an optical microscope apparatus 2 that emits light of a single wavelength ⁇ , a microscopic reflection image of a partial region of the wafer 4 with a thin film to be evaluated is measured, and the obtained image is analyzed to reflect the reflected light intensity for each pixel. Is measured, the reflected light intensity distribution in the region can be obtained, and the film thickness distribution of the thin film in the region can be calculated from the reflected light intensity distribution.
  • OA filter, liquid crystal wavelength filter, etc. can also be used for wavelength selection. Further, it is preferable to use an irradiation system in which the light irradiation intensity in the observation field is constant and an optical detection system in which the sensitivity in the field is constant. Even in an irradiation system in which the light irradiation intensity is not constant, the light irradiation intensity can be corrected based on a reference sample surface (for example, a mirror-polished surface of a silicon single crystal wafer).
  • a reference sample surface for example, a mirror-polished surface of a silicon single crystal wafer.
  • the method for evaluating a wafer with a thin film according to the present invention is low in cost because it can be performed with visible light using a normal microscope optical system.
  • the spatial resolution can be freely selected from about the wavelength of the irradiation light to about 100 ⁇ m by changing the magnification of the microscope.
  • the size of one side of the pixel is not less than 1 ⁇ 2 of the selected wavelength ⁇ and not more than 100 ⁇ m. With such a pixel size, there is no fear that the focus is difficult to be formed, and the wafer with a thin film is more accurately
  • the film thickness distribution of the thin film can be calculated.
  • the entire wafer surface can be evaluated by measuring a partial region at a plurality of locations. Even when evaluating the entire surface of the wafer, the wavelength is limited to one wavelength, so the amount of calculation is small and the evaluation can be performed quickly at a low cost.
  • the region irradiated with light in the method for evaluating a wafer with a thin film of the present invention can be matched with the lithography exposure site in the device manufacturing process by adjusting the magnification and field of view of the microscope. Since the site used by the stepper at the time of lithography exposure in the device manufacturing process is, for example, about 26 ⁇ 8 mm in size, it can be matched with the lithography exposure site by adjusting the magnification and field of view of the microscope.
  • the thin film is a film formed on the substrate, and the irradiation light transmitted through the film is reflected at the interface with the base (substrate surface or other film), and the reflected light is reflected on the thin film.
  • 3A and 5A for example, the wavelength near 600 to 650 nm is a sufficient value for both the reflectance (R 88 ) and the reflectance fluctuation rate ( ⁇ R / R 88 ). It can be seen that the sensitivity to fluctuations in the SOI layer thickness is high. Therefore, for example, 630 nm is selected as the irradiation wavelength. When the wavelength is 630 nm, the reflectance (R 88 ) is 0.47, and the reflectance fluctuation rate ( ⁇ R / R 88 ) is 0.0783 / nm.
  • FIG. 6 shows microscopic images of the SOI layer in two measurement regions (measurement region 1 and measurement region 2) taken using light having a wavelength of 630 nm. (Pixel size 1 ⁇ m, measurement area 0.5 mm ⁇ 0.5 mm (500 ⁇ 500 pixels)).
  • FIG. 7 shows a histogram of the light intensity (relative intensity) of each pixel in FIG. 6.
  • Table 1 shows the SOI layer film thickness distribution (PV value) in the measurement area obtained from the spread of light intensity (histogram). ).
  • the SOI layer film thickness distributions (PV values) in the measurement region 1 and the measurement region 2 are 2.46 nm and 1.40 nm, respectively.
  • ⁇ R / R 88 reflectance fluctuation rate
  • the wavelength near 600 to 650 nm is a sufficient value for both the reflectance (R 61 ) and the absolute value of the reflectance fluctuation rate ( ⁇ R / R 61 ). Therefore, it can be seen that the sensitivity to the fluctuation of the SOI layer film thickness is high. Therefore, for example, 630 nm is selected as the irradiation wavelength. In the case of a wavelength of 630 nm, the reflectance (R 61 ) is 0.60, and the absolute value of the reflectance fluctuation rate ( ⁇ R / R 61 ) is 0.0475 / nm.
  • FIG. 8 shows microscopic images of the SOI layer in two measurement regions (measurement region 3 and measurement region 4) taken using light having a wavelength of 630 nm. (Pixel size 1 ⁇ m, measurement area 0.5 mm ⁇ 0.5 mm (500 ⁇ 500 pixels)).
  • FIG. 9 shows a histogram of the light intensity (relative intensity) of each pixel in FIG. 8, and Table 2 shows the SOI layer thickness distribution (PV value) in the measurement region obtained from the spread of light intensity (histogram). ). From Table 2, it can be seen that the SOI layer film thickness distributions (PV values) in the measurement region 3 and the measurement region 4 are 6.81 nm and 3.23 nm, respectively.
  • the wavelength near 400 to 410 nm is a sufficient value for both the reflectance (R 12 ) and the reflectance fluctuation rate ( ⁇ R / R 12 ). It can be seen that the sensitivity to fluctuations in the SOI layer thickness is high. Therefore, for example, 400 nm is selected as the irradiation wavelength. When the wavelength is 400 nm, the reflectance (R 12 ) is 0.416, and the reflectance fluctuation rate ( ⁇ R / R 12 ) is 0.0986 / nm.
  • 5D shows the difference between the reflectances divided by the reflectance ( ⁇ R / R 10 ). d). 3D and 5D, for example, the wavelength near 600 to 650 nm is a sufficient value for both the reflectance (R 10 ) and the reflectance fluctuation rate ( ⁇ R / R 10 ). It can be seen that the sensitivity to fluctuations in the SOI layer thickness is high. Therefore, for example, 630 nm is selected as the irradiation wavelength. When the wavelength is 630 nm, the reflectance (R 10 ) is 0.67, and the reflectance fluctuation rate ( ⁇ R / R 10 ) is 0.0310 / nm.
  • 3 (e) and 5 (e) for example, the wavelength near 600 to 650 nm is a sufficient value for both the reflectance (R 10 ) and the reflectance fluctuation rate ( ⁇ R / R 10 ). It can be seen that the sensitivity to fluctuations in the SOI layer thickness is high. Therefore, for example, 630 nm is selected as the irradiation wavelength. When the wavelength is 630 nm, the reflectance (R 10 ) is 0.53, and the reflectance fluctuation rate ( ⁇ R / R 10 ) is 0.0436 / nm.
  • Examples 3 to 6 Using the light of the wavelength selected in the above embodiments 3 to 6, the reflected light intensity for each pixel is measured in each of the two measurement regions, and the reflected light intensity distribution in the region is obtained. The film thickness distribution could be calculated. As described above, if the method for evaluating a wafer with a thin film of the present invention is used, the measurement of the micro thin film (SOI layer) film thickness distribution affecting the device over the entire surface of the wafer can be performed with high accuracy, low cost and simply. It was.
  • SOI layer micro thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 本発明は、基板の表面上に薄膜を有する薄膜付ウェーハの前記薄膜の膜厚分布を算出する薄膜付ウェーハの評価方法であって、前記薄膜付ウェーハ表面の一部領域に単一波長λの光を照射し、前記領域からの反射光を検出して前記領域を多数に分割したピクセル毎の反射光強度を測定することによって、前記領域内の反射光強度分布を求め、該反射光強度分布から前記領域内における薄膜の膜厚分布を算出することを特徴とする薄膜付ウェーハの評価方法である。これにより、デバイスに影響するミクロな薄膜(SOI層)膜厚分布のウェーハ全面に渡る測定を、低コストかつ簡便に、十分な空間分解能で行うことができる薄膜付ウェーハの評価方法が提供される。

Description

[規則37.2に基づきISAが決定した発明の名称] 薄膜付きウェーハの膜厚分布測定方法
 本発明は、半導体デバイスの作製に使われる薄膜付ウェーハの膜厚分布を算出する薄膜付ウェーハの評価方法に関し、特に、SOI層膜厚分布を算出する評価方法に関する。
 
 近年、デザインルールの微細化に伴って、SOIデバイス作製、特にFD-SOI(Fully Depleted SOI)デバイス作製に用いるSOIウェーハのSOI層膜厚分布が、デバイス製造プロセス、ひいては、トランジスタ特性に影響を与えるようになってきている。集積回路においては、回路を構成するトランジスタの特性を均一にすることが重要である。
 基板の表面に薄膜を有する薄膜付ウェーハの薄膜の膜厚分布を算出する現有の膜厚測定方法は、分光エリプソ法、反射分光法によるポイント毎の膜厚測定が一般的であるが、1μm程度の分解能で、広範囲の面内を膜厚分布測定できる膜厚分布測定装置は市販されていない。
 分光エリプソ法、反射分光法によるポイント測定においては、各測定点毎に、ある波長範囲(一般的には、可視光域)のスペクトルを取り、そのスペクトルに対してモデル膜構造にフィティングすることで各測定点の膜厚を求めている。従って、1μm程度の分解能で測定を行おうとすると、測定点数が極端に増えるため、計算量と時間の制約から現実的に測定不可能である。
 またスペクトル測定を行うためには、広い波長範囲の波長領域が必要なため、空間分解能を高くして多点膜厚測定を行うことが事実上不可能である。よって、これらの方法でウェーハ全面を一括して測定可能な装置としては、現状では数100μm程度の空間分解能の装置しか存在しない。
 このように、薄膜、特にはSOI層の膜厚分布のウェーハ全面に渡る測定を、高精度で低コストかつ簡便に行うことができる薄膜付ウェーハの評価方法が求められている。
 尚、特許文献1には、SOIに白色光を照射し、反射光を各波長別に分光し、波長別の干渉情報からSOI層膜厚を算出する技術が開示されており、特許文献2には、1μm未満のSOI層に488nmのレーザー光を照射し、その正反射光を検出し、照射光との干渉縞によって面内の膜厚バラツキを検査することが記載されている。
特開2002-343842号公報 特開平08-264605号公報
 本発明は、上記問題に鑑みてなされたものであって、デバイスに影響するミクロな薄膜(SOI層)膜厚分布のウェーハ全面に渡る測定を、高精度で低コストかつ簡便に行うことができる薄膜付ウェーハの評価方法を提供する。
 上記課題を解決するため、本発明では、基板の表面上に薄膜を有する薄膜付ウェーハの前記薄膜の膜厚分布を算出する薄膜付ウェーハの評価方法であって、前記薄膜付ウェーハ表面の一部領域に単一波長λの光を照射し、前記領域からの反射光を検出して前記領域を多数に分割したピクセル毎の反射光強度を測定することによって、前記領域内の反射光強度分布を求め、該反射光強度分布から前記領域内における薄膜の膜厚分布を算出することを特徴とする薄膜付ウェーハの評価方法を提供する。
 このように、適当な単一波長λの光を選び、薄膜付ウェーハ表面の一部領域に該単一波長λの光を照射し、該領域からの反射光を検出して該領域を多数に分割したピクセル毎の反射光強度を測定することによって、前記領域内の反射光強度分布を求め、該反射光強度分布から前記領域内における薄膜の膜厚分布を算出する評価方法を用いることで、照射する光の波長を一波長に限定しているため計算量が少なくすみ、薄膜の膜厚分布のウェーハ全面に渡る測定を、十分な空間分解能で低コストかつ簡便に行うことができる。
 またこのとき、前記波長λとして、前記薄膜付ウェーハの薄膜の膜厚設定値から算出される照射光の反射率(R)が0.2以上、かつ、前記薄膜膜厚に対する反射率変動率(ΔR/R)の絶対値が0.02/nm以上となるように前記波長λを選択することが好ましい。
 本発明における薄膜付ウェーハの評価方法では、照射する光の波長λとして、薄膜の膜厚設定値に対して反射率の変動が大きい波長を選択することによって、正確な評価を行うことができる。そして、薄膜付ウェーハの薄膜の膜厚設定値から算出される照射光の反射率(R)が0.2以上であれば、反射光強度が十分であり、正確な評価を行うことができる。また、薄膜膜厚に対する反射率変動率が絶対値で0.02/nm以上であれば、薄膜の膜厚変動に対する感度が十分なものとなり、正確な評価を行うことができる。
 またこのとき、前記反射率変動率(ΔR/R)の絶対値が0.05/nm以上となるように前記波長λを選択することが好ましい。
 このように、反射率変動率が絶対値で0.05/nm以上となる波長を選択すれば、膜厚変動に対する感度が高く、より正確な評価が可能となる。
 またこのとき、前記波長λは、可視光波長から選択された単一の波長であることが好ましい。
 本発明の薄膜付ウェーハの評価方法は、一般的な光学顕微鏡装置を用いることができ、また、可視光波長から選択された単一の波長で行うことができるため低コストな評価方法である。
 またこのとき、前記ピクセルの一辺のサイズを、前記波長λの1/2以上100μm以下とすることが好ましい。
 このように、ピクセルの一辺のサイズが波長λの1/2以上100μm以下であれば、焦点が結びにくくなる恐れがなく、より正確に薄膜付ウェーハの薄膜の膜厚分布を算出することができる。
 またこのとき、前記領域をデバイス製造工程のリソグラフィー露光サイトに一致させることができる。
 本発明の薄膜付ウェーハの評価方法で光を照射する領域を、用いる顕微鏡の倍率や視野範囲を調整することによって、デバイス製造工程のリソグラフィー露光サイトに一致させることができる。
 またこのとき、前記領域内における薄膜の膜厚分布の算出を、複数箇所で行うことにより、前記薄膜付ウェーハ全面の膜厚分布を求めることができる。
 このように、一部領域内における薄膜の膜厚分布の算出を、複数個所で行うことで、ウェーハ全面の評価が可能である。本発明の薄膜付ウェーハの評価方法によれば、このようなウェーハ全面における評価であっても、波長を一波長に限定しているため、計算量が少なく低コストで薄膜付ウェーハの評価を行うことができる。
 またこのとき、前記評価する薄膜付ウェーハとして、前記基板と前記薄膜との間、又は前記薄膜上に、第二薄膜が形成された薄膜付ウェーハを用いることができる。
 このように、本発明では、評価する薄膜付ウェーハとして、基板と薄膜との間、又は薄膜上に、第二薄膜が形成された、即ち2層の薄膜を有する薄膜付ウェーハを用いることができる。
 またこのとき、前記基板及び前記薄膜をシリコン単結晶とし、前記基板と前記薄膜との間に形成された前記第二薄膜をシリコン酸化膜とすることができる。
 このように、評価する薄膜付ウェーハとして、基板及び薄膜がシリコン単結晶であり、第二薄膜がシリコン酸化膜である、SOIウェーハを用いることができる。SOI層膜厚とBOX層(シリコン酸化膜層)厚の組み合わせに応じて適切な波長λを選ぶことによって、1μm以下の分解能でSOI層膜厚の膜厚分布、均一性を定量的に評価することが可能になる。
 以上説明したように、本発明によれば、デバイスに影響するミクロな薄膜膜厚分布のウェーハ全面に渡る測定を、低コストかつ簡便に十分な空間分解能で行うことができる、薄膜の膜厚分布測定、膜厚均一性評価方法を提供することができる。また、薄膜の膜厚設定値に対して反射率の変動が大きい波長を選択することによって、より正確な評価を行うことができる。特に、SOIウェーハの評価を行う場合に、SOI層膜厚とBOX層(シリコン酸化膜層)厚の組み合わせに応じて適切な波長を選ぶことによって、1μm以下の分解能でSOI層膜厚の膜厚分布、均一性を定量的に評価することが可能になる。
 
SOIウェーハのBOX層厚を固定した(145nm)場合に、3つの代表的な波長のSOI層膜厚に対する反射率の変動を示した図である。 本発明の薄膜付ウェーハの評価方法に用いることができる一般的な光学顕微鏡装置の概略図である。 実施態様1~6における、反射率Rの波長依存性の算出結果である。 実施態様1~6における、反射率の差ΔRの波長依存性の算出結果である。 実施態様1~6における、反射率変動率ΔR/Rの波長依存性の算出結果である。 実施例1における2箇所の測定領域におけるSOI層の顕微鏡像である。 図6の顕微鏡像の各ピクセルの光強度のヒストグラムを示した図である。 実施例2における2箇所の測定領域におけるSOI層の顕微鏡像である。 図8の顕微鏡像の各ピクセルの光強度のヒストグラムを示した図である。
 以下、本発明についてより具体的に説明する。
 前述のように、従来、薄膜(SOI層)付ウェーハの薄膜(SOI層)膜厚測定、均一性評価を、ウェーハ全面に渡って、低コストかつ簡便に行うことができる薄膜付ウェーハの評価方法が求められていた。
 そこで、本発明者が種々検討した結果、基板の表面上に薄膜を有する薄膜付ウェーハの前記薄膜の膜厚分布を算出する薄膜付ウェーハの評価方法であって、前記薄膜付ウェーハ表面の一部領域に単一波長λの光を照射し、前記領域からの反射光を検出して前記領域を多数に分割したピクセル毎の反射光強度を測定することによって、前記領域内の反射光強度分布を求め、該反射光強度分布から前記領域内における薄膜の膜厚分布を算出することを特徴とする薄膜付ウェーハの評価方法であれば、照射する光を一波長に限定しているため、デバイスに影響するミクロな薄膜の膜厚分布のウェーハ全面に渡る測定を、低コストかつ簡便に、十分な空間分解能で行うことができることを見出した。
 更に、本発明者は薄膜(SOI層)の膜厚に対する反射率の変動に着目し、以下のような実験を行った。
 図1は、SOIウェーハ(SOI層/BOX層/Si基板)のBOX(シリコン酸化膜:埋め込み酸化膜)層厚が145nmの場合、3つの代表的な波長(488nm、532nm、633nm)のSOI層膜厚に対する反射率の変動を計算により算出した図である。
 この図1の算出結果によれば、これら3つの波長を用いた場合の反射率はSOI層膜厚に強い依存性が見られる。すなわち、適当な波長を用いて反射率(反射光強度)を測定すれば、それをSOI層膜厚に換算することが可能であることが判った。すなわち、適当な波長を用いれば、反射率の変動が大きいSOI層膜厚領域では反射率のSOI層膜厚への換算が容易かつ正確に行うことができることが判った。
 例えば、SOI層の膜厚が90nm程度の場合、波長が488nm、633nmの照射光を用いると反射率の変動が大きい為、反射率がほぼ一定となっている波長532nmの照射光を用いる場合に比べ、SOI層膜厚への換算を容易かつ正確に行うことが可能となることが判った。
 本発明者は、このような特性を利用し、薄膜の膜厚の設定値に対して反射率の変動が大きい単一の波長を選択することによって、反射率の薄膜膜厚への換算がより正確に可能となることを見出した。
 即ち、本発明においては、薄膜付ウェーハの薄膜の厚さに応じて、適当な波長λを選び、波長λの光を薄膜付ウェーハ表面に照射し、SOI表面からの反射率を、多数に分割した領域(ピクセル)毎に、高空間分解で測定することでSOI層膜厚分布、均一性評価をより正確に行うことができる。
 一般に、SOIウェーハの製造工程において、製造するSOIウェーハのSOI層膜厚、BOX層膜厚はユーザーの仕様により設定されており、その膜厚設定値を狙い値としてSOIウェーハを製造した後に、検査工程などでSOI層膜厚の面内分布が評価される。
 本発明は、このSOI層膜厚とBOX層膜厚の設定値を使用して、照射光の波長と反射光の反射率等との関係をシミュレーションにより算出し、その結果から、測定を行う照射光として適切な波長λを選択してSOIウェーハに照射し、その反射光を検出することによってSOI層膜厚分布を評価するものである。
 波長λの選択方法としては、予め、評価対象のSOIウェーハの製造において設定されたSOI層膜厚、BOX層膜厚(すなわち、SOIウェーハ製造上の狙い値)において、SOI層膜厚変動に伴う反射率差及び反射率変動率の照射波長依存性を算出しておき、反射率変動の大きくなる波長から単一波長λを選択する。そして、選択した波長λの光をSOI表面の一部領域に照射し、該領域からの反射光を検出し、該領域を多数に分割したピクセル毎の反射光強度を測定することによって、該領域内の反射光強度分布を求め、該反射光強度分布から前記領域内におけるSOI層の膜厚分布を算出する。
 以下、本発明の実施の形態を更に具体的に説明するが、本発明はこれらに限定されるものではない。
 本発明の評価方法を適用することができる薄膜付ウェーハとしては、SOIウェーハが挙げられ、SOI層膜厚、BOX層膜厚のどんな組み合わせのSOIウェーハに対しても評価が可能である。また、SOIウェーハ以外でも、単層膜やSOI/BOX以外の2層膜を有する薄膜付ウェーハに対しても評価が可能であり、その薄膜材料としては、例えば、SiGe、Ge、III-V、II-VI化合物半導体等他の半導体材料、Al、クォーツ、HfO等の高誘電率絶縁材料、Graphene等が挙げられる。また、2層以上であっても、膜厚分布測定を行いたい層よりも他の層の厚さが均一であるか、あるいは、他の層の屈折率の方が小さい場合は、充分に適用できる評価方法である。
 以下では、SOIウェーハを評価する場合について説明する。
 本発明の評価方法では、予めシミュレーションにより、評価するSOIウェーハの製造段階で設定されたSOI層膜厚、BOX層膜厚(即ち、SOIウェーハ製造上の狙い値)において、SOI層膜厚変動に伴う反射率差及び反射率変動率の照射波長依存性を算出しておき、反射率、反射率変動の大きくなる波長から単一波長λを選択する。
 具体的には、BOX層膜厚を設定値に固定し、SOI層膜厚の設定値L(nm)と、例えばこの設定値L(nm)より1nmだけ増加したL+1(nm)の両者について、反射率Rの波長依存性を算出する。更に、これらの反射率の差(ΔR=RL+1-R)を反射率で割った反射変動率(ΔR/R)も算出する。そして、照射光の反射率(R)、及び、反射率変動率(ΔR/R)が十分大きな波長λを選択する。
 この際、薄膜付ウェーハの薄膜の膜厚設定値から算出される照射光の反射率(R)が0.2以上、かつ、薄膜膜厚に対する反射率変動率(ΔR/R)の絶対値が0.02/nm以上となるように波長λを選択することが好ましい。
 反射率が0.2以上であれば、反射光強度が十分であり、正確な評価を行うことができる。また、反射率変動率の絶対値が0.02/nm以上であれば、膜厚変動に対する感度が十分なものとなり、正確な評価を行うことができる。従って、反射率が0.2以上、反射率変動率の絶対値が0.02/nm以上となる波長を選択することが好ましい。また、反射率変動率の絶対値が0.05/nm以上となる波長を選択すれば、膜厚変動に対する感度が高く、より正確な評価が可能となる。
 次いで、評価するSOIウェーハ表面の一部領域に、上記のように予め選択した単一波長λの光を照射し、照射した領域から反射光を検出して該領域を多数に分割したピクセル毎の反射光強度を測定することによって、領域内の反射光強度分布を求め、反射光強度分布から領域内における薄膜の膜厚分布を算出する。
 選択した単一波長λの光を照射する具体的な方法としては、図2に示すように、例えば波長選択のためのバンドパスフィルター1を取り付けた一般的な光学顕微鏡装置2の光源3からの照射光を、評価する薄膜付ウェーハ4の一部領域に照射することで行うことができる。
 即ち、単一波長λの光を照射する光学顕微鏡装置2を用い、評価する薄膜付ウェーハ4の一部領域の顕微鏡反射像を測定し、得られた画像を解析してピクセル毎の反射光強度を測定することによって、前記領域内の反射光強度分布を求め、この反射光強度分布から前記領域内における薄膜の膜厚分布を算出することができる。
 波長選択にはOAフィルター、液晶波長フィルター等を用いることもできる。また、観察視野内の光照射強度が一定になる照射系、及び視野内の感度が一定になる光学検出系を使うことが好ましい。光照射強度が一定とならない照射系においても、参照サンプル面(例えば、シリコン単結晶ウェーハの鏡面研磨面)を基準として、光照射強度を更正することができる。
 このように、本発明の薄膜付ウェーハの評価方法は、通常の顕微鏡光学系を用いて可視光で行えるため低コストである。また、空間分解能は、顕微鏡の倍率を変えることで、照射光の波長程度から100μm程度まで自由に選ぶことが可能である。
 また、ピクセルの一辺のサイズを、選択した波長λの1/2以上100μm以下とすることが好ましく、このようなピクセルサイズであれば、焦点が結びにくくなる恐れがなく、より正確に薄膜付ウェーハの薄膜の膜厚分布を算出することができる。
 また、一部領域の測定を複数箇所で行うことで、ウェーハ全面の評価も可能である。ウェーハ全面の評価であっても、波長を一波長に限定しているため計算量が少なく低コストですばやく評価が可能である。
 尚、より正確な膜厚分布評価のため、SOIウェーハを製造した後に、設定値に近い膜厚が得られているかについて、一旦、従来の膜厚測定方法(分光エリプソ法、反射分光法など)によって大まかに膜厚を確認した後、本発明による詳細な膜厚分布(ミクロな膜厚分布)の測定を行うこともできる。
 尚、本発明の薄膜付ウェーハの評価方法で光を照射する領域を、顕微鏡の倍率や視野範囲を調整することによって、デバイス製造工程のリソグラフィー露光サイトに一致させることもできる。デバイス製造工程のリソグラフィー露光時にステッパーで使用されるサイトは、例えば、26×8mm程度のサイズであるため、顕微鏡の倍率や視野範囲を調整することによってリソグラフィー露光サイトに一致させることができる。
 尚、本発明において薄膜とは、基板上に形成された膜であって、その膜を透過した照射光が下地(基板表面又は他の膜)との界面で反射し、その反射光を薄膜の表面側から検出することのできる膜厚を有する膜をいう。
 
 以下、実施態様、実施例を示して本発明をより具体的に説明するが、本発明はこれに限定されるものではない。
 (実施態様1)
<膜厚設定値:SOI/BOX/(Si基板)=88nm/145nm/(Si基板)>
 まず、図3(a)に示すように、BOX層膜厚を設定値である145nmに固定し、SOI層膜厚の設定値である88nmと、それより1nmだけ増加した89nmの両者について、反射率Rの波長依存性を算出する。算出に際しては、波長400~800nmの範囲において、SOI層とSi基板の屈折率として3.68~5.59、BOX層の屈折率として1.45~1.47を使用した。(屈折率は文献値で、波長依存性あり。)
 その反射率の差(ΔR=R89-R88)を取ったものが図4(a)であり、更に、反射率の差を反射率で割ったもの(ΔR/R88)を図5(a)に示す。図3(a)、5(a)より、例えば600~650nm付近の波長は、反射率(R88)、及び、反射率変動率(ΔR/R88)のいずれも十分な値であるため、SOI層膜厚の変動に感度が高いことがわかる。そこで、照射波長として例えば630nmを選択する。波長630nmの場合、反射率(R88)は0.47、反射率変動率(ΔR/R88)は0.0783/nmである。
 
(実施例1)
 上記実施態様1におけるシミュレーション結果に基づき、図6に630nmの波長の光を使って取った2箇所の測定領域(測定領域1、測定領域2)におけるSOI層の顕微鏡像を示す。(ピクセルサイズ1μm、測定領域0.5mm×0.5mm(500×500ピクセル))。
 図7は、図6の各ピクセルの光強度(相対強度)のヒストグラムを示しており、表1に、光強度の広がり(ヒストグラム)から求めた測定領域のSOI層膜厚分布(P-V値)を示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、測定領域1、測定領域2のSOI層膜厚分布(P-V値)はそれぞれ2.46nm、1.40nmであることがわかる。
 尚、表1中の反射強度バラツキ(A)は、最大反射強度(Max)、最小反射強度(Min)、平均反射強度(M)により算出された値(A=(Max-Min)/M)であり、ΔR/R88(反射率変動率)は、図5(a)から求められたSOI層膜厚1nm当たりの反射率変動率である。従って、測定領域内におけるSOI層膜厚分布(P-V値)をΔtとすると、A=Δt×(ΔR/R88)の関係からSOI層膜厚分布Δtを算出することができる。
 
(実施態様2)
<膜厚設定値:SOI/BOX/(Si基板)=61nm/145nm/(Si基板)>
 まず、図3(b)に示すように、BOX層膜厚を設定値である145nmに固定し、SOI層膜厚の設定値である61nmと、それより1nmだけ増加した62nmの両者について、反射率Rの波長依存性を算出する。
 その反射率の差(ΔR=R61-R62)を取ったものが図4(b)であり、更に、反射率の差を反射率で割ったもの(ΔR/R61)を図5(b)に示す。図3(b)、5(b)より、例えば600~650nm付近の波長は、反射率(R61)、及び、反射率変動率(ΔR/R61)の絶対値のいずれも十分な値であるため、SOI層膜厚の変動に感度が高いことがわかる。そこで、照射波長として例えば630nmを選択する。波長630nmの場合、反射率(R61)は0.60、反射率変動率(ΔR/R61)の絶対値は0.0475/nmである。
 
(実施例2)
 図8に630nmの波長の光を使って取った2箇所の測定領域(測定領域3、測定領域4)におけるSOI層の顕微鏡像を示す。(ピクセルサイズ1μm、測定領域0.5mm×0.5mm(500×500ピクセル))。
 図9は、図8の各ピクセルの光強度(相対強度)のヒストグラムを示しており、表2に、光強度の広がり(ヒストグラム)から求めた測定領域のSOI層膜厚分布(P-V値)を示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、測定領域3、測定領域4のSOI層膜厚分布(P-V値)はそれぞれ6.81nm、3.23nmであることがわかる。
 
 (実施態様3)<膜厚設定値:SOI/BOX/(Si基板)=12nm/145nm/(Si基板)>
 まず、図3(c)に示すように、BOX層膜厚を設定値である145nmに固定し、SOI層膜厚の設定値である12nmと、それより1nmだけ増加した13nmの両者について、反射率Rの波長依存性を算出する。
 その反射率の差(ΔR=R12-R13)を取ったものが図4(c)であり、更に、反射率の差を反射率で割ったもの(ΔR/R12)を図5(c)に示す。図3(c),5(c)より、例えば400~410nm付近の波長は、反射率(R12)、及び、反射率変動率(ΔR/R12)のいずれも十分な値であるため、SOI層膜厚の変動に感度が高いことがわかる。そこで、照射波長として例えば400nmを選択する。波長400nmの場合、反射率(R12)は0.416、反射率変動率(ΔR/R12)は0.0986/nmである。
 
 (実施態様4)<膜厚設定値:Ge/SiO/(Si基板)=10nm/145nm/(Si基板)>
 まず、図3(d)に示すように、BOX層膜厚を設定値である145nmに固定し、Ge層膜厚の設定値である10nmと、それより1nmだけ増加した11nmの両者について、反射率Rの波長依存性を算出する。算出に際しては、波長400~800nmの範囲において、Ge層の屈折率は4.08~5.77を使用した。(屈折率は文献値で、波長依存性あり。)
 その反射率の差(ΔR=R11-R10)を取ったものが図4(d)であり、更に、反射率の差を反射率で割ったもの(ΔR/R10)を図5(d)に示す。図3(d)、5(d)より、例えば600~650nm付近の波長は、反射率(R10)、及び、反射率変動率(ΔR/R10)のいずれも十分な値であるため、SOI層膜厚の変動に感度が高いことがわかる。そこで、照射波長として例えば630nmを選択する。波長630nmの場合、反射率(R10)は0.67、反射率変動率(ΔR/R10)は0.0310/nmである。
 
 (実施態様5)
<膜厚設定値:InGaAs/SiO/(Si基板)=10nm/145nm/(Si基板)>
 まず、図3(e)に示すように、BOX層膜厚を設定値である145nmに固定し、InGaAs層膜厚の設定値である10nmと、それより1nmだけ増加した11nmの両者について、反射率Rの波長依存性を算出する。算出に際しては、波長400~800nmの範囲において、InGaAs層の屈折率は3.51~4.61を使用した。(屈折率は文献値で、波長依存性あり。)
 その反射率の差(ΔR=R11-R10)を取ったものが図4(e)であり、更に、反射率の差を反射率で割ったもの(ΔR/R10)を図5(e)に示す。図3(e)、5(e)より、例えば600~650nm付近の波長は、反射率(R10)、及び、反射率変動率(ΔR/R10)のいずれも十分な値であるため、SOI層膜厚の変動に感度が高いことがわかる。そこで、照射波長として例えば630nmを選択する。波長630nmの場合、反射率(R10)は0.53、反射率変動率(ΔR/R10)は0.0436/nmである。
 
 (実施態様6)
<膜厚設定値:Si/(石英基板)=60nm/(石英基板)>
 石英基板上のSi薄膜の場合、図3(f)に示すように、Si薄膜の膜厚の設定値である60nmと、それより1nmだけ増加した61nmの両者について、反射率Rの波長依存性を算出する。算出に際しては、波長400~800nmの範囲において、Si薄膜の屈折率は3.68~5.59、石英基板(SiO)の屈折率は1.45~1.47を使用した。(屈折率は文献値で、波長依存性あり。)
 その反射率の差(ΔR=R61-R60)を取ったものが図4(f)であり、更に、反射率の差を反射率で割ったもの(ΔR/R60)を図5(f)に示す。図3(f)、5(f)より、例えば460nm付近の波長は、反射率(R60)、及び、反射率変動率(ΔR/R)のいずれも十分な値であるため、SOI層膜厚の変動に感度が高いことがわかる。そこで、照射波長として例えば460nmを選択する。波長460nmの場合、反射率(R60)は0.46、反射率変動率(ΔR/R60)は0.0813/nmである。
 
(実施例3~6)
 上記の実施態様3~6において選択された波長の光を使って、それぞれ2カ所の測定領域においてピクセル毎の反射光強度を測定し、領域内の反射光強度分布を求めることで、各薄膜の膜厚分布を算出することができた。
 以上により、本発明の薄膜付ウェーハの評価方法を用いれば、デバイスに影響するミクロな薄膜(SOI層)膜厚分布のウェーハ全面に渡る測定を、高精度で低コストかつ簡便に行うことができた。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 

Claims (9)

  1.  基板の表面上に薄膜を有する薄膜付ウェーハの前記薄膜の膜厚分布を算出する薄膜付ウェーハの評価方法であって、
     前記薄膜付ウェーハ表面の一部領域に単一波長λの光を照射し、前記領域からの反射光を検出して前記領域を多数に分割したピクセル毎の反射光強度を測定することによって、前記領域内の反射光強度分布を求め、該反射光強度分布から前記領域内における薄膜の膜厚分布を算出することを特徴とする薄膜付ウェーハの評価方法。
     
  2.  前記波長λとして、前記薄膜付ウェーハの薄膜の膜厚設定値から算出される照射光の反射率(R)が0.2以上、かつ、前記薄膜膜厚に対する反射率変動率(ΔR/R)の絶対値が0.02/nm以上となるように前記波長λを選択することを特徴とする請求項1に記載の薄膜付ウェーハの評価方法。
     
  3.  前記反射率変動率(ΔR/R)の絶対値が0.05/nm以上となるように前記波長λを選択することを特徴とする請求項2に記載の薄膜付ウェーハの評価方法。
     
  4.  前記波長λは、可視光波長から選択された単一の波長であることを特徴とする請求項1乃至請求項3のいずれか一項に記載の薄膜付ウェーハの評価方法。
     
  5.  前記ピクセルの一辺のサイズを、前記波長λの1/2以上100μm以下とすることを特徴とする請求項1乃至請求項4のいずれか一項に記載の薄膜付ウェーハの評価方法。
     
  6.  前記領域をデバイス製造工程のリソグラフィー露光サイトに一致させることを特徴とする請求項1乃至請求項5のいずれか一項に記載の薄膜付ウェーハの評価方法。
     
  7.  前記領域内における薄膜の膜厚分布の算出を、複数箇所で行うことにより、前記薄膜付ウェーハ全面の膜厚分布を求めることを特徴とする請求項1乃至請求項6のいずれか一項に記載の薄膜付ウェーハの評価方法。
     
  8.  前記評価する薄膜付ウェーハとして、前記基板と前記薄膜との間、又は前記薄膜上に、第二薄膜が形成された薄膜付ウェーハを用いることを特徴とする請求項1乃至請求項7のいずれか一項に記載の薄膜付ウェーハの評価方法。
     
  9.  前記基板及び前記薄膜がシリコン単結晶であり、前記基板と前記薄膜との間に形成された前記第二薄膜がシリコン酸化膜であることを特徴とする請求項8に記載の薄膜付ウェーハの評価方法。
     
PCT/JP2011/001852 2010-05-28 2011-03-29 薄膜付きウェーハの膜厚分布測定方法 WO2011148555A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127030999A KR101656436B1 (ko) 2010-05-28 2011-03-29 박막 웨이퍼의 막두께 분포 측정 방법
EP11786259.9A EP2579302B1 (en) 2010-05-28 2011-03-29 Method for measuring value of film thickness distribution of wafer having thin film
US13/696,947 US8976369B2 (en) 2010-05-28 2011-03-29 Method for evaluating thin-film-formed wafer
CN201180026457.4A CN102918639B (zh) 2010-05-28 2011-03-29 附有薄膜的晶片的评价方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010122187A JP5365581B2 (ja) 2010-05-28 2010-05-28 薄膜付ウェーハの評価方法
JP2010-122187 2010-05-28

Publications (1)

Publication Number Publication Date
WO2011148555A1 true WO2011148555A1 (ja) 2011-12-01

Family

ID=45003557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001852 WO2011148555A1 (ja) 2010-05-28 2011-03-29 薄膜付きウェーハの膜厚分布測定方法

Country Status (6)

Country Link
US (1) US8976369B2 (ja)
EP (1) EP2579302B1 (ja)
JP (1) JP5365581B2 (ja)
KR (1) KR101656436B1 (ja)
CN (1) CN102918639B (ja)
WO (1) WO2011148555A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5660026B2 (ja) * 2011-12-28 2015-01-28 信越半導体株式会社 膜厚分布測定方法
FR2998047B1 (fr) * 2012-11-12 2015-10-02 Soitec Silicon On Insulator Procede de mesure des variations d'epaisseur d'une couche d'une structure semi-conductrice multicouche
JP2016114506A (ja) * 2014-12-16 2016-06-23 信越半導体株式会社 薄膜付ウェーハの評価方法
CN104952758B (zh) * 2015-06-30 2018-03-06 华灿光电(苏州)有限公司 一种膜层均匀性的检测方法及装置
US10132612B2 (en) 2015-07-30 2018-11-20 Hseb Dresden Gmbh Method and assembly for determining the thickness of a layer in a sample stack
EP3124912B1 (en) 2015-07-30 2019-01-16 Unity Semiconductor GmbH Method and assembly for determining the thickness of a layer in a stack of layers
EP3150959B1 (en) 2015-10-02 2018-12-26 Soitec Method for measuring thickness variations in a layer of a multilayer semiconductor structure
US20170176173A1 (en) * 2015-12-17 2017-06-22 Intel Corporation Measuring surface layer thickness
JP2017125782A (ja) * 2016-01-14 2017-07-20 信越半導体株式会社 薄膜付ウェーハの膜厚分布の測定方法
EP3346229B1 (en) 2017-01-09 2022-03-30 Unity Semiconductor GmbH Method and assembly for determining the thickness of layers in a sample stack
CN107612504A (zh) * 2017-09-15 2018-01-19 常州亿晶光电科技有限公司 一种perc电池背面氮化硅膜厚的检测方法
CN108995379B (zh) * 2018-07-27 2020-07-24 深圳市华星光电技术有限公司 用于面板制程的喷墨打印系统及方法
JP7160779B2 (ja) 2019-10-03 2022-10-25 信越半導体株式会社 薄膜付ウェーハの膜厚分布の測定方法
KR102249247B1 (ko) * 2019-10-07 2021-05-07 ㈜넥센서 병렬처리를 이용한 기판내 박막의 두께측정 방법 및 이를 이용한 두께 측정 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248825A (ja) * 1991-12-06 1993-09-28 Hughes Aircraft Co 薄膜の厚さを測定する装置および方法
JPH07134007A (ja) * 1993-05-14 1995-05-23 Hughes Aircraft Co 高空間解像度で薄膜の膜厚測定を行なうための装置
JPH07260437A (ja) * 1993-12-22 1995-10-13 Hughes Aircraft Co 多層の薄膜積層における膜厚の測定方法およびその装置
JPH08264605A (ja) 1995-03-22 1996-10-11 Hitachi Ltd 積層基板の検査方法、およびこれを用いたsoiウェハ、このsoiウェハを用いた半導体集積回路装置、ならびに積層基板の検査装置
JPH09218017A (ja) * 1995-11-16 1997-08-19 Nikon Corp フィルム厚さの測定装置及び測定方法
JP2002343842A (ja) 2001-03-12 2002-11-29 Denso Corp 半導体層の膜厚測定方法及び半導体基板の製造方法
JP2008139065A (ja) * 2006-11-30 2008-06-19 Nikon Corp 膜評価装置及び膜評価方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411377B1 (en) * 1991-04-02 2002-06-25 Hitachi, Ltd. Optical apparatus for defect and particle size inspection
US5856871A (en) * 1993-08-18 1999-01-05 Applied Spectral Imaging Ltd. Film thickness mapping using interferometric spectral imaging
US5436725A (en) * 1993-10-12 1995-07-25 Hughes Aircraft Company Cofocal optical system for thickness measurements of patterned wafers
US5982496A (en) * 1996-03-11 1999-11-09 Vlsi Technology, Inc. Thin film thickness and optimal focus measuring using reflectivity
US6900900B2 (en) * 2000-11-16 2005-05-31 Process Diagnostics, Inc. Apparatus and method for enabling high resolution film thickness and thickness-uniformity measurements
KR100438787B1 (ko) * 2002-05-13 2004-07-05 삼성전자주식회사 박막 두께 측정 방법
JP2006300811A (ja) * 2005-04-22 2006-11-02 Hitachi Displays Ltd 薄膜の膜厚測定方法、多結晶半導体薄膜の形成方法、半導体デバイスの製造方法、およびその製造装置、並びに画像表示装置の製造方法
TWI386617B (zh) * 2007-12-31 2013-02-21 Ind Tech Res Inst 反射式膜厚量測方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248825A (ja) * 1991-12-06 1993-09-28 Hughes Aircraft Co 薄膜の厚さを測定する装置および方法
JPH07134007A (ja) * 1993-05-14 1995-05-23 Hughes Aircraft Co 高空間解像度で薄膜の膜厚測定を行なうための装置
JPH07260437A (ja) * 1993-12-22 1995-10-13 Hughes Aircraft Co 多層の薄膜積層における膜厚の測定方法およびその装置
JPH08264605A (ja) 1995-03-22 1996-10-11 Hitachi Ltd 積層基板の検査方法、およびこれを用いたsoiウェハ、このsoiウェハを用いた半導体集積回路装置、ならびに積層基板の検査装置
JPH09218017A (ja) * 1995-11-16 1997-08-19 Nikon Corp フィルム厚さの測定装置及び測定方法
JP2002343842A (ja) 2001-03-12 2002-11-29 Denso Corp 半導体層の膜厚測定方法及び半導体基板の製造方法
JP2008139065A (ja) * 2006-11-30 2008-06-19 Nikon Corp 膜評価装置及び膜評価方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2579302A4

Also Published As

Publication number Publication date
KR20130113923A (ko) 2013-10-16
EP2579302B1 (en) 2020-03-11
CN102918639A (zh) 2013-02-06
EP2579302A1 (en) 2013-04-10
EP2579302A4 (en) 2016-06-01
US20130063733A1 (en) 2013-03-14
CN102918639B (zh) 2015-09-09
JP5365581B2 (ja) 2013-12-11
KR101656436B1 (ko) 2016-09-09
US8976369B2 (en) 2015-03-10
JP2011249621A (ja) 2011-12-08

Similar Documents

Publication Publication Date Title
JP5365581B2 (ja) 薄膜付ウェーハの評価方法
KR101890663B1 (ko) 막두께 분포 측정 방법
US7463369B2 (en) Systems and methods for measuring one or more characteristics of patterned features on a specimen
US11119050B2 (en) Methods and systems for measurement of thick films and high aspect ratio structures
CN108463877B (zh) 用于扩展的红外线光谱椭偏测量的系统及方法
US9759546B2 (en) Method for measuring thickness variations in a layer of a multilayer semiconductor structure
US7327475B1 (en) Measuring a process parameter of a semiconductor fabrication process using optical metrology
TWI451476B (zh) Manufacturing method of semiconductor integrated circuit device
CN113366300B (zh) 用于高深宽比结构的测量的中红外光谱法
JP6952033B2 (ja) Vuv光学素子の非接触サーマル測定
US20200200525A1 (en) Scatterometry Based Methods And Systems For Measurement Of Strain In Semiconductor Structures
Schmidt et al. OCD enhanced: implementation and validation of spectral interferometry for nanosheet inner spacer indentation
KR20200029607A (ko) 분광 계측을 사용한 패터닝된 필름 스택의 밴드 갭 측정
WO2017122248A1 (ja) 薄膜付ウェーハの膜厚分布の測定方法
TWI716422B (zh) 從一樣本堆疊中判斷層的厚度的方法與組件
JP2016114506A (ja) 薄膜付ウェーハの評価方法
WO2017141299A1 (ja) 膜厚分布測定方法
TWI837239B (zh) 光學計量系統與方法及計量目標對

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026457.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786259

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13696947

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011786259

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127030999

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE