WO2013008617A1 - 太陽電池モジュール、およびその製造方法 - Google Patents

太陽電池モジュール、およびその製造方法 Download PDF

Info

Publication number
WO2013008617A1
WO2013008617A1 PCT/JP2012/066268 JP2012066268W WO2013008617A1 WO 2013008617 A1 WO2013008617 A1 WO 2013008617A1 JP 2012066268 W JP2012066268 W JP 2012066268W WO 2013008617 A1 WO2013008617 A1 WO 2013008617A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
solar cell
electrode
cell module
substrate
Prior art date
Application number
PCT/JP2012/066268
Other languages
English (en)
French (fr)
Inventor
濱田 哲也
敏博 中岡
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013008617A1 publication Critical patent/WO2013008617A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/022458Electrode arrangements specially adapted for back-contact solar cells for emitter wrap-through [EWT] type solar cells, e.g. interdigitated emitter-base back-contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention includes a solar cell module comprising a solar cell having a first electrode having a first polarity and a second electrode having a second polarity on a back surface opposite to the light receiving surface, and a wiring substrate to which the solar cell is bonded, And a manufacturing method thereof.
  • both the first polarity (for example, p-type) electrode and the second polarity (n-type) electrode are formed on the back surface (the surface opposite to the light receiving surface) of the silicon substrate, and the wiring pattern of the wiring substrate is formed.
  • a back electrode type solar cell in which both back electrodes are aligned and connected has been proposed (for example, see Patent Document 1).
  • the back surface of the solar battery cell is bonded to the wiring substrate via an adhesive portion, and the electrode formed on the back surface of the solar battery cell is connected to the wiring of the wiring substrate, the region corresponding to the outer peripheral edge of the solar cell substrate In this case, the resin forming the bonding portion may flow (outflow) to the outside, and it is difficult to form the outer periphery of the bonding portion with high accuracy and bond the solar cell to the wiring substrate with high accuracy.
  • the outer peripheral edge of the solar battery cell is in contact with the wiring of the wiring board, and that bubbles generated inside the adhesion portion may be exposed from the outer peripheral edge of the solar battery cell, resulting in poor appearance. It was.
  • the electrode formed on the back surface may be extended to the outer peripheral edge of the solar battery cell due to a request for the solar battery cell, and the above-described problem may be further manifested.
  • the present invention has been made in view of such a situation, and by forming an insulating cover layer covering the wiring board in the outer peripheral region extending from the inner side to the outer side of the outer peripheral end of the solar cell, The outer peripheral edge is prevented from coming into contact with the wiring of the wiring board, the adhesive portion (adhesive) is prevented from flowing out from the outer peripheral edge of the solar battery cell, and the outer peripheral edge of the solar battery cell is securely attached to the wiring board.
  • An object is to provide a bonded solar cell module.
  • the present invention is a method for manufacturing a solar cell module according to the present invention, and by forming an adhesive layer that forms an adhesive portion on the inner region surrounded by the cover layer of the wiring board and the surface of the cover layer, Another object of the present invention is to provide a method for manufacturing a solar cell module capable of manufacturing a highly reliable solar cell module with high productivity.
  • the solar cell module includes a solar cell having a first electrode having a first polarity and a second electrode having a second polarity on a back surface opposite to the light receiving surface, and a first cell connected to the first electrode.
  • a wiring substrate having a wiring and a second wiring connected to the second electrode on the surface of the insulating substrate; and an insulating cover that covers the wiring substrate in an outer peripheral region extending from the inside to the outside of the outer peripheral end of the solar battery cell And a bonding portion for bonding the solar battery cell and the wiring board to each other.
  • the solar cell module according to the present invention covers the outer peripheral region extending from the inner side to the outer side of the outer peripheral end of the solar cell with the cover layer, so that the outer peripheral end of the solar cell contacts the first wiring and the second wiring. Since this can be reliably prevented, the manufacturing yield and reliability of the solar cell module can be improved. Further, since the cover layer prevents the adhesive portion (adhesive) from flowing out from the outer peripheral edge of the solar battery cell, the outer peripheral edge of the solar battery cell can be reliably bonded to the wiring board.
  • a plurality of the first electrodes and the second electrodes are alternately arranged in parallel and reach the outer peripheral edge of the solar cell.
  • the solar cell module according to the present invention is suitable for specifications by dividing a cell composite substrate in which a plurality of solar cells are preliminarily formed in a direction intersecting with the extending direction of the first electrode and the second electrode. Since it is possible to easily form an optimally sized solar battery cell that can provide output, productivity and workability can be improved.
  • the solar cell is formed by dividing a cell composite substrate in which a plurality of the solar cells are previously formed.
  • the solar cell module according to the present invention uses a solar cell produced by using a cell composite substrate with good productivity, the cost can be reduced and the consistency of the characteristics with respect to the specifications can be improved.
  • the adhesive portion is formed in an inner region surrounded by the cover layer and a surface of the cover layer.
  • the solar cell module according to the present invention forms an adhesive portion on the entire surface of the inner region where the cover layer is not formed and the surface of the cover layer facing the outer peripheral edge of the solar cell, and adheres over the entire surface of the solar cell.
  • the adhesive portion is formed of a thermosetting adhesive.
  • the solar cell module according to the present invention forms the adhesive portion with a thermosetting adhesive, the adhesive constituting the adhesive portion can be supplied without omission to the inner region where the cover layer is disposed. It is possible to suppress the occurrence of a bubble leak path.
  • the cover layer is black.
  • the cover layer is a black synthetic resin, the outside of the outer peripheral end of the solar cell is unified with black, so that the appearance uniformity can be ensured.
  • the first wiring includes a plurality of first branch wirings arranged in parallel to each other, and a first current collecting wiring that collects power by connecting the first branch wirings.
  • the second wiring includes a second branch wiring arranged alternately in parallel with the first branch wiring, and a second current collecting wiring for collecting current by connecting the second branch wiring,
  • the cover layer covers a first connecting portion where the first branch wiring and the first current collecting wiring are connected, and a second connecting portion where the second branch wiring and the second current collecting wire are connected.
  • the solar battery cell is bonded to the wiring board so as to cover the first connecting part and the second connecting part.
  • the first connection part in which the first branch wiring and the first current collection wiring are connected and the second connection in which the second branch wiring and the second current collection wiring are connected. Since each of the connecting portions is covered with solar cells bonded to the wiring substrate, the first connecting portion and the second connecting portion are fixed between the solar cells (solar cell substrate) and the wiring substrate (insulating substrate). Therefore, the occurrence of cracks in the first connecting portion and the second connecting portion due to the temperature cycle in a high temperature environment can be suppressed, and the reliability can be improved.
  • the manufacturing method of the solar cell module according to the present invention includes a solar cell having a first electrode of the first polarity and a second electrode of the second polarity on the back surface opposite to the light receiving surface, and the first electrode.
  • a wiring board having a first wiring connected and a second wiring connected to the second electrode on the surface of the insulating substrate; and the wiring board in an outer peripheral region extending from the inner side to the outer side of the outer peripheral end of the solar battery cell.
  • a method for manufacturing a solar cell module comprising an insulating cover layer for covering, and an adhesive portion for adhering the solar cell and the wiring board to each other, and an inner region surrounded by the cover layer of the wiring substrate and An adhesive layer that forms the adhesive portion is formed on the surface of the cover layer, the wiring board and the solar battery cell are aligned, and the aligned wiring board and the solar battery cell are aligned. Heating, and characterized by applying pressure treatment.
  • the heating and pressurizing processes are performed in a state where the wiring substrate and the solar battery cell are aligned, so that the first wiring is connected to the first electrode, Since the second wiring is connected to the two electrodes, and the solar battery cell and the wiring board are bonded together through an adhesive portion formed of an adhesive layer, a highly reliable solar battery module is manufactured with high productivity. can do.
  • the adhesive layer is formed by stretching the adhesive supplied to the surface of the insulating substrate with a spatula.
  • the method for manufacturing a solar cell module according to the present invention can easily and accurately form an adhesive layer that forms an adhesive portion.
  • the solar cell module according to the present invention includes an insulating cover layer that covers the wiring board in an outer peripheral region extending from the inner side to the outer side of the outer peripheral end of the solar cell.
  • the solar cell module according to the present invention covers the outer peripheral region extending from the inner side to the outer side of the outer peripheral end of the solar cell with the cover layer, so that the outer peripheral end of the solar cell contacts the first wiring and the second wiring. Since this can be reliably prevented, the manufacturing yield and reliability of the solar cell module can be improved. Further, since the cover layer prevents the adhesive portion (adhesive) from flowing out from the outer peripheral edge of the solar battery cell, the outer peripheral edge of the solar battery cell can be reliably bonded to the wiring board.
  • the method for manufacturing a solar cell module according to the present invention is characterized in that an adhesive layer for forming an adhesive portion is formed on the inner region surrounded by the cover layer of the wiring board and on the surface of the cover layer.
  • the heating and pressurizing processes are performed in a state where the wiring substrate and the solar battery cell are aligned, so that the first wiring is connected to the first electrode, Since the second wiring is connected to the two electrodes, and the solar battery cell and the wiring board are bonded together through an adhesive portion formed of an adhesive layer, a highly reliable solar battery module is manufactured with high productivity. can do.
  • FIG. 1B is a cross-sectional view showing a cross-sectional state of the solar cell module taken along arrows 1B-1B in FIG. 1A.
  • 1B is a cross-sectional view showing a cross-sectional state of the solar cell module taken along arrows 1C-1C in FIG. 1A. It is an expanded sectional view expanding and showing the basic composition of Drawing 1B. It is an expanded sectional view expanding and showing the basic composition of Drawing 1C.
  • FIG. 3B is a cross-sectional view showing a cross-sectional state of the wiring board taken along arrows 3B-3B in FIG. 3A. It is sectional drawing which shows the state which formed the contact bonding layer on the surface of the wiring board shown to FIG. 3B. It is a top view which shows the planar state which laminated
  • FIG. 1A is a plan view showing solar cell module 1 according to Embodiment 1 of the present invention as seen from the side of solar cell 10 (light-receiving surface 11s).
  • the solid line representing the upper solar cell substrate 11 is a thick solid line in order to facilitate understanding of the stacked state (see FIG. 1B and FIG. 1C are also the same), and dotted lines indicating the first electrode 12 and the second electrode 14 formed on the back surface 11r of the solar cell substrate 11 are thick dotted lines.
  • FIG. 1B is a cross-sectional view showing a cross-sectional state of the solar cell module 1 taken along arrows 1B-1B in FIG. 1A.
  • FIG. 1C is a cross-sectional view showing a cross-sectional state of the solar cell module 1 taken along arrows 1C-1C in FIG. 1A.
  • the solar cell module 1 includes a solar cell 10 having a first electrode 12 having a first polarity and a second electrode 14 having a second polarity on a back surface 11r opposite to the light receiving surface 11s, and a first The wiring substrate 30 having the first wiring 32 connected to the electrode 12 and the second wiring 34 connected to the second electrode 14 on the surface of the insulating substrate 31 and from the inner side to the outer side of the outer peripheral edge 15 of the solar battery cell 10.
  • An insulating cover layer 35 that covers the wiring substrate 30 in the crossing outer peripheral region RR1 and an adhesive portion 40 that bonds the solar battery cell 10 and the wiring substrate 30 to each other are provided.
  • the solar cell module 1 since the solar cell module 1 according to the present embodiment covers the outer peripheral region RR1 extending from the inner side to the outer side of the outer peripheral end 15 of the solar cell 10 with the cover layer 35, the outer peripheral end 15 of the solar cell 10 is the first. Since it can prevent reliably contacting the 1 wiring 32 and the 2nd wiring 34, the manufacture yield of the solar cell module 1 and reliability can be improved. In addition, since the cover layer 35 prevents the bonding portion 40 (adhesive) from flowing out of the outer peripheral edge 15 of the solar battery cell 10, the outer peripheral edge 15 of the solar battery cell 10 is securely bonded to the wiring substrate 30. Can do.
  • the outer peripheral region RR1 has one function of preventing contact between the outer peripheral end 15 of the solar cell substrate 11 and the first wiring 32 and the second wiring 34. It is formed in a state where it is exposed to a constant dimension from about ⁇ 2 mm (position where it faces the ends of the first electrode 12 and the second electrode 14).
  • the exposure position on the outer side of the outer peripheral end 15 may be set as appropriate, considering design and the like.
  • the bubbles generated in the outer region RR1 (cover layer) 35) can be stopped at the inner periphery, and the exposure of bubbles to the outside can be prevented, and appearance defects caused by the bubbles can be prevented.
  • the cover layer 35 includes an open end 32t of the first branch wiring 32b (an end located on the opposite side to the first current collecting wiring 32c) and an open end 34t of the second branch wiring 34b. It is preferable to cover the first current collecting wiring 32c and the second current collecting wiring 34c together (covering the end located on the opposite side to the second current collecting wiring 34c). . That is, the range covered with the cover layer 35 is the outer peripheral region RR1. Since the end portion 32t and the end portion 34t are covered with the cover layer 35, electrical contact between the first wiring 32 and the second wiring 34 can be reliably prevented.
  • the solar battery cell 10 includes a solar battery substrate 11, and for example, a silicon single crystal substrate, a silicon polycrystalline substrate, or the like is applied as the solar battery substrate 11, but the present invention is not limited thereto.
  • the structure of the light receiving surface 11s that receives sunlight (irradiated light) and the internal structure that generates photovoltaic power may be any structure.
  • As electrodes for taking out the photovoltaic power to the outside a first electrode 12 having a first polarity (for example, p-type) and a second electrode having a second polarity (for example, n-type) are provided on a back surface 11r located on the opposite side to the light receiving surface 11s. 14 may be formed, and the first electrode 12 and the second electrode 14 are, for example, silver electrodes and are formed of silver paste or the like, but are not limited thereto.
  • the solar cell module 1 uses a cell composite substrate 20 (see FIGS. 4A and 4B) in which a plurality of solar cells 10 are preliminarily formed as extending directions of the first electrode 12 and the second electrode 14. By dividing in the intersecting direction, it is possible to easily form the optimally sized solar battery cell 10 that can obtain an output suitable for the specification, and thus productivity and workability can be improved.
  • the 1st electrode 12 and the 2nd electrode 14 reach
  • the first electrode 12 and the second electrode 14 may have a shape that does not reach the outer peripheral end 15 (see Embodiment 3).
  • the wiring board 30 includes an insulating substrate 31 formed of, for example, polyimide resin, and wiring (first wiring 32 and second wiring 34) patterned on the insulating substrate 31, and includes a first wiring 32 and a second wiring.
  • the wiring 34 is made of, for example, copper foil.
  • the insulating substrate 31 has a thickness of about 10 ⁇ m to 20 ⁇ m, for example, and the first wiring 32 and the second wiring 34 have a thickness of about 30 ⁇ m to 50 ⁇ m, for example.
  • the cover layer 35 is formed by printing or a resin material different from polyimide resin (for example, a black kneaded PET material (PET: poly-ethylene-terephthalate)), and the thickness is, for example, about 10 ⁇ m to 20 ⁇ m. . Usually, it is formed in advance when the wiring board 30 is formed. If the thickness is about 10 ⁇ m to 20 ⁇ m, it can be formed with high accuracy by a single screen printing or the like. The thickness of the cover layer may be about 55 ⁇ m to 65 ⁇ m, for example. By making the thickness of the cover layer thicker than the thickness of the first wiring 32 and the second wiring 34, the outer peripheral edge 15 of the solar battery cell 10 is in direct contact with the first wiring 32 and the second wiring 34. It becomes possible to prevent.
  • polyimide resin for example, a black kneaded PET material (PET: poly-ethylene-terephthalate)
  • PET poly-ethylene-terephthalate
  • the first wiring 32 includes a plurality of first branch wirings 32b arranged in parallel to each other, and a first current collecting wiring 32c that collects current by connecting the first branch wirings 32b. It is preferable to include second branch wirings 34b that are alternately arranged in parallel with the first branch wirings 32b, and second current collecting wirings 34c that collect power by connecting the second branch wirings 34b.
  • the cover layer 35 includes a first connecting portion 32d in which the first branch wiring 32b and the first current collecting wiring 32c are connected, and a second connection in which the second branch wiring 34b and the second current collecting wiring 34c are connected. It is preferable to cover the connecting portion 34d. Furthermore, it is preferable that the solar cell 10 is bonded to the wiring substrate 30 so as to cover the first connecting portion 32d and the second connecting portion 34d.
  • the first connecting portion 32d in which the first branch wiring 32b and the first current collecting wiring 32c are connected, and the second branch wiring 34b and the second current collecting wiring 34c are connected.
  • Each of the second connecting portions 34d thus covered is covered with the solar battery cell 10 bonded to the wiring board 30, so that the first connecting portion 32d and the second connecting portion 34d are connected to the solar battery cell 10 (solar battery substrate 11) and the wiring. Since it is in a fixed state with the substrate 30 (insulating substrate 31), the occurrence of cracks in the first connection portion 32d and the second connection portion 34d due to a temperature cycle in a high temperature environment is suppressed, and reliability is improved. Can be improved.
  • the other end of the first branch wiring 32b is opened as an end 32t with respect to the first current collection wiring 32c that collects power by connecting one of the plurality of first branch wirings 32b.
  • the other end of the second branch wiring 34b is opened as an end 34t with respect to the second current collection wiring 34c that collects power by connecting one of the plurality of second branch wirings 34b.
  • the first wiring 32 and the second wiring 34 have a comb-like wiring structure, and branch wirings (first branch wiring 32b and second branch wiring 34b) are alternately arranged, and wiring patterns for collecting current on the opposite side respectively. It is said that.
  • the 1st current collection wiring 32c and the 2nd current collection wiring 34c are each connected to other wiring which adjoins, and can connect a plurality of photovoltaic cells 10 in series, and parallel connection (refer to Drawing 3A and Drawing 3D).
  • the cover layer 35 is preferably black. With this configuration, the solar battery module 1 makes the cover layer 35 black, so that the outside of the outer peripheral edge 15 of the solar battery cell 10 (the area arranged outside the solar battery cell 10 in the outer peripheral area RR1). Uniform appearance can be ensured because it is unified in black.
  • the adhesive portion 40 is preferably formed on the inner region RR2 (FIGS. 1A and 1B) surrounded by the cover layer 35 and the surface of the cover layer 35 (FIG. 1C). With this configuration, the solar cell module 1 forms the bonding portion 40 on the entire surface of the inner region RR2 where the cover layer 35 is not formed and the surface of the cover layer 35 facing the outer peripheral edge 15 of the solar cell 10. Since the bonding portion 40 is disposed over the entire surface of the substrate, generation of bubbles at the bonding portion 40 between the solar battery cell 10 and the wiring substrate 30 is suppressed, and leakage of the generated bubbles to the outside is suppressed. And the occurrence of poor appearance can be suppressed.
  • FIG. 2A is an enlarged cross-sectional view showing the basic configuration of FIG. 1B in an enlarged manner. Note that both side portions are omitted.
  • FIG. 2B is an enlarged cross-sectional view showing the basic configuration of FIG. 1C in an enlarged manner. Note that the intermediate portion is omitted.
  • the first electrode 12 and the second electrode 14 have a width Wb of about 10 ⁇ m to 50 ⁇ m, for example, and the first wiring 32 and the second wiring 34 have a width Wc of about 100 ⁇ m to 500 ⁇ m, for example.
  • the space between the first wiring 32 and the second wiring 34 can be set to, for example, about 200 ⁇ m to 500 ⁇ m. These dimensions are appropriately set according to the specifications.
  • the adhesive portion 40 forms an adhesive layer 40r on the surface of the insulating substrate 31 (see FIG. 3C), and then the electrodes (first electrode 12 and second electrode 14) and wiring (first wiring 32 and second wiring 34). ) Are opposed to each other, and the solar cells 10 are stacked and bonded to the wiring substrate 30.
  • the bonding portion 40 heats and pressurizes the solar cell substrate 11 (solar cell 10) and the insulating substrate 31 (wiring substrate 30) stacked on each other, thereby applying the adhesive layer 40r (adhesive) to the sun. It is formed by flowing in a gap existing between the battery substrate 11 and the insulating substrate 31. Therefore, by flowing the adhesive layer 40r disposed (formed) between the solar cell substrate 11 and the insulating substrate 31, the first electrode 12 and the first wiring 32 are connected, and the second electrode 14 and the second wiring are connected. 34, and the solar cell substrate 11 and the insulating substrate 31 are bonded together by the bonding portion 40.
  • thermosetting adhesive for example, an epoxy adhesive
  • the thermosetting adhesive improves the fluidity by heating at an appropriate temperature, so that the first electrode 12 and the second electrode 14 are connected to the first wiring 32 and the second wiring 34 by pressurization, respectively. be able to. Moreover, since it hardens
  • the anisotropic conductive adhesive is disposed so as to have an insulation property in a direction parallel to the solar battery cell 10 and the insulating substrate 31. This is because a short circuit is less likely to occur between the outer peripheral edge 15 of the solar battery cell 10, the first wiring 32, and the second wiring 34.
  • the adhesive layer 40r (adhesive portion 40) is preferably disposed (applied) in the outer region RR1 and the inner region RR2 (see FIGS. 1A to 1C) surrounded by the outer region RR1. Specifically, it is preferable to form so as to cover a range surrounded by the cover layer 35. In FIG. 2B, the adhesive portion 40 is also formed thin on the surface of the cover layer 35.
  • the adhesive portion 40 (adhesive layer 40r) is formed on the surface of the insulating substrate 31 corresponding to the range in which the solar cell substrate 11 is disposed, and the outer peripheral edge 15 of the solar cell substrate 11 facing the cover layer 35 is reliably secured. It can be bonded to the wiring board 30.
  • the formation of the adhesive layer 40r (adhesive portion 40) will be further described in the second embodiment.
  • FIG. 3D 1 A of solar cell modules (FIG. 3D) which concern on this Embodiment, and the manufacturing method (manufacturing process) of 1 A of solar cell modules are demonstrated.
  • solar cell module 1A shown in the present embodiment has a two-unit configuration in which two solar cell modules 1 according to the first embodiment are connected in series, and the basic configuration is the same as that of the first embodiment. Since it is the same, a different reference is mainly used and a different matter is mainly demonstrated.
  • 1 A of solar cell modules it is applicable also to the solar cell module 1 as it is.
  • FIG. 3A is a plan view showing a wiring state of wiring board 30A and an arrangement state of cover layer 35 applied to solar cell module 1A according to Embodiment 2 of the present invention.
  • FIG. 3B is a cross-sectional view showing a cross-sectional state of the wiring board 30A taken along arrows 3B-3B in FIG. 3A.
  • the wiring board 30A is a wiring pattern in which two solar cells 10 are arranged in series. That is, the first wiring 32, the second wiring 34, the first wiring 32, the second wiring 34 and the insulating substrate 31 are sequentially arranged from the upper side in the vertical direction of FIG. 3A.
  • the second wiring 34 (second current collecting wiring 34c) and the first wiring 32 (first current collecting wiring 32c) connected at the center are arranged in common with each other.
  • a cover layer 35 is formed in the outer peripheral region RR1. Inside the cover layer 35, an inner region RR2 is disposed.
  • Other basic configurations are the same as those of the first embodiment.
  • a method of laminating an insulating material a plurality of times can also be used.
  • the first-stage cover layer 35 is formed on the wiring substrate 30 using the same material as the first wiring and the second wiring, and the second-stage cover layer is formed thereon using an insulating material. It is also possible to form 35. In this case, since the first cover layer 35 can be formed in the same process as the first wiring and the second wiring, the number of processes can be reduced.
  • FIG. 3C is a cross-sectional view showing a state where an adhesive layer 40r is formed on the surface of the wiring board 30A shown in FIG. 3B.
  • An adhesive for supplying an adhesive for forming the adhesive layer 40r on one side of the surface of the insulating substrate 31 (for example, the surface of the cover layer 35 or a position corresponding to one side of the insulating substrate 31 in the outer region of the cover layer 35) (Not shown).
  • the adhesive supplied using the spatula 45 is stretched as indicated by an arrow DM, for example.
  • the moving direction (arrow DM) of the spatula 45 which forms the contact bonding layer 40r is shown notionally, the actual moving direction is 1st wiring 32 (1st branch wiring 32b), 2nd wiring 34 (1st wiring 34). A direction along the two-branch wiring 34b) is preferred.
  • the formation of the adhesive layer 40r is preferably performed by stretching the adhesive (thermosetting adhesive) supplied to the surface of the insulating substrate 31 with a spatula.
  • the method for manufacturing the solar cell module 1 can easily and highly accurately form the adhesive layer 40r that forms the adhesive portion 40.
  • An adhesive layer 40r is also formed on the cover layer 35 at the peripheral edge of the insulating substrate 31, and an adhesive portion having a sufficient thickness is formed between the cover layer 35 and the wiring on the outermost peripheral side. It becomes possible. That is, a sufficient adhesive layer 40r is formed at the peripheral edge of the solar battery cell as compared with the case where the adhesive is applied to the solar battery cell side instead of the insulating substrate 31 side.
  • the adhesive is sufficiently present at the peripheral edge of the solar cell module 1A and can be adhered in a state of covering the outer peripheral portion of the solar battery cell, the air bubbles contained in the adhesive layer 40r are covered with the cover layer 35. It is possible to prevent exposure to the outside through a gap between the cell 10 and the cell 10, thereby preventing appearance defects due to bubbles.
  • inner region RR2 region inside cover layer 35 formed in a frame shape surrounded by cover layer 35 of wiring substrate 30 and the surface of cover layer 35
  • the adhesive layer 40r that forms the adhesive portion 40 is formed.
  • FIG. 3D is a plan view showing a planar state in which the solar cells 10 are laminated and bonded to the wiring substrate 30A via the adhesive layer 40r shown in FIG. 3C.
  • the solar battery cell 10 is aligned with respect to the wiring substrate 30A on which the adhesive layer 40r is formed.
  • the solar cells 10 aligned with the wiring board 30A are bonded to the wiring board 30 via the adhesive layer 40r.
  • the solar cell module 1A is formed by subjecting the solar cells 10 and the wiring substrate 30A, which are aligned and bonded to each other, to heat and pressure treatment.
  • the heating and pressurizing conditions (temperature conditions, time conditions, pressurizing conditions) are obtained by evaluating the characteristics of the adhesive forming the adhesive layer 40r.
  • the adhesive layer 40r is cured by heating and pressure treatment, and the adhesive portion 40 is formed.
  • the manufacturing method of the solar cell module 1A (solar cell module 1) according to the present embodiment has the first electrode 12 having the first polarity and the second polarity having the second polarity on the back surface 11r opposite to the light receiving surface 11s.
  • a solar cell 10 having two electrodes 14, a wiring substrate 30 ⁇ / b> A (wiring) having a first wiring 32 connected to the first electrode 12 and a second wiring 34 connected to the second electrode 14 on the surface of the insulating substrate 31.
  • the inner layer RR2 surrounded by the cover layer 35 of the wiring substrate 30 and the adhesive layer 40r for forming the adhesive portion 40 on the surface of the cover layer 35 are formed, and then the wiring substrate It is preferable that the wiring board 30 and the solar battery cell 10 are heated and pressurized in a state where the solar battery cell 30 and the solar battery cell 10 are aligned.
  • the manufacturing method of the solar cell module 1A performs the heating and pressurizing process in a state in which the wiring substrate 30 and the solar cell 10 are aligned, so that the first electrode 12 is subjected to the first method. Since the wiring 32 is connected, the second wiring 34 is connected to the second electrode 14, and the solar battery cell 10 and the wiring substrate 30 are bonded together through the bonding portion 40 formed of the bonding layer 40r.
  • the highly reliable solar cell module 1 can be manufactured with high productivity.
  • the adhesive portion 40 is preferably formed of a thermosetting adhesive.
  • the manufacturing method of the solar cell module 1 ⁇ / b> A forms the adhesive portion 40 with a thermosetting adhesive, so that the adhesive constituting the adhesive portion 40 does not leak into the inner region RR ⁇ b> 2 where the cover layer 35 is disposed. It becomes possible to supply, and the occurrence of a bubble leakage path can be suppressed.
  • the thermosetting adhesive is specifically an epoxy resin.
  • the epoxy resin flows from between the electrodes (the first electrode 12 and the second electrode 14) and the wiring (the first wiring 32 and the second wiring 34) to the surroundings by heating and pressurizing, and easily and reliably the first resin.
  • the electrode 12 and the second electrode 14 can be connected to the first wiring 32 and the second wiring 34, respectively, and the solar battery cell 10 and the wiring substrate 30A are securely bonded.
  • Embodiment 3 a manufacturing method for dividing the cell composite substrate 20 into a plurality of parts to form the solar battery cell 10 will be described as Embodiment 3 according to the present invention.
  • FIG. 4A is a plan view showing a state in which the cell composite substrate 20 is divided. Divide by arrows 1D-1D in FIG. 4A.
  • FIG. 4B is a cross-sectional view showing a state in which the cell composite substrate 20 according to Embodiment 3 of the present invention is divided. In addition, it shows as a cross section in the direction along the 1st electrode 22 (2nd electrode 24).
  • FIG. 4C is a cross-sectional view showing a state of the solar battery cell 10 formed by dividing the cell composite substrate 20 in the process shown in FIGS. 4A and 4B.
  • FIG. 5 is a plan view showing a planar state of a solar battery module 1B formed by laminating and bonding the solar battery cells 10 obtained by dividing the cell composite substrate 20 to the wiring board 30B.
  • the cell composite substrate 20 according to the present embodiment is formed in a lump in a state in which a plurality of solar cells 10 are included, and the cell composite substrate 20 itself functions as a solar cell and is divided. Thus, the individual solar battery cells 10 can be obtained.
  • the basic configuration of the cell composite substrate 20 is the same as that of the solar battery cell 10, and the solar battery substrate 21 (corresponding to the solar battery substrate 11), the light receiving surface 21s (corresponding to the light receiving surface 11s), the back surface 21r (on the back surface 11r). Correspondence), the first electrode 22 and the second electrode 24 (corresponding to the first electrode 12 and the second electrode 14).
  • the solar cell substrate 21 becomes the solar cell substrate 11
  • the light receiving surface 21s becomes the light receiving surface 11s
  • the back surface 21r becomes the back surface 11r
  • the first electrode 22 becomes the first electrode 12
  • the second The electrode 24 becomes the second electrode 14.
  • the cell composite substrate 20 is divided in a direction intersecting the length direction of the first electrode 22 and the second electrode 24 (the direction along the first electrode 22 and the second electrode 24).
  • the laser beam LB is preferable.
  • the laser beam LB has an advantage that the processing speed is high.
  • the type, wavelength, output, and the like of the laser beam LB can be appropriately selected according to the type, thickness, and the like of the solar cell substrate 21 constituting the cell composite substrate 20.
  • a method of physically breaking using a dicing saw can also be used.
  • the solar battery cell 10 (solar battery substrate 11) formed in the present embodiment is directly applied to the first embodiment and the second embodiment. That is, the solar battery cell 10 is preferably formed by dividing the cell composite substrate 20 in which a plurality of the solar battery cells 10 are formed in advance.
  • the solar battery cell 10 is formed by dividing the cell composite substrate 20 (divided by arrows 1D-1D in FIG. 4A), it is in the middle of the state where the first electrode 22 and the second electrode 24 are continuous. It will be divided. Therefore, in the solar cell 10 obtained by the division, the first electrode 12 and the second electrode 14 extend to the outer peripheral end 15 shown in FIG. 4C.
  • the solar cell substrate 11 obtained by dividing the cell composite substrate 20 is laminated on the wiring substrate 30 ⁇ / b> B and bonded through the bonding portion 40.
  • the first polarity of the solar cell for example, A short circuit is caused by contact between the p-type and the second polarity (for example, n-type).
  • the solar cell 10 obtained by the division has the problem that the first electrode 12 and the second electrode 14 reach the outer peripheral end 15, so that a short circuit is likely to occur due to misalignment when the solar cell substrate 11 is arranged.
  • the provision of the cover layer 35 made it difficult for a short circuit to occur.
  • the solar cell module 1B applies the solar cell 10 formed by dividing the cell composite substrate 20 with good productivity, variation in conversion efficiency between the solar cells is reduced. As a result, stable production becomes possible, which leads to cost reduction.
  • the first electrode 12 and the second electrode 14 are formed in advance so as to be inside the size of the divided photovoltaic cell 10 (the dimension of the outer peripheral end 15). It is also possible to divide and pattern the first electrode 22 and the second electrode 24. In this case, patterning for the first electrode 22 and the second electrode 24 is necessary.
  • or Embodiment 3 was demonstrated, these can be applied mutually.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽電池モジュール(1)は、受光面(11s)とは反対側の裏面(11r)に第1極性の第1電極(12)および第2極性の第2電極(14)を有する太陽電池セル(10)と、第1電極(12)に接続された第1配線(32)および第2電極(14)に接続された第2配線(34)を絶縁性基板(31)の表面に有する配線基板(30)と、太陽電池セル(10)の外周端(15)の内側から外側に渡る外周領域RR1において配線基板(30)を覆う絶縁性のカバー層(35)と、太陽電池セル(10)および配線基板(30)を相互に接着する接着部(40)とを備える。

Description

太陽電池モジュール、およびその製造方法
 本発明は、受光面とは反対側の裏面に第1極性の第1電極および第2極性の第2電極を有する太陽電池セルと太陽電池セルが接着された配線基板とを備える太陽電池モジュール、およびその製造方法に関する。
 太陽光発電の技術開発に伴い、太陽電池セルの構造についても種々の改善が図られている。近年では、シリコン基板の裏面(受光面とは反対側の面)に第1極性(例えばp型)の電極および第2極性(n型)の電極の両方を形成し、配線基板の配線パターンに裏面電極の両方を位置合わせして接続した裏面電極型の太陽電池セルが提案されている(例えば、特許文献1参照。)。
 しかしながら、太陽電池セルの裏面を配線基板に接着部を介して接着し、太陽電池セルの裏面に形成された電極を配線基板の配線に接続することから、太陽電池基板の外周端に対応する領域では、接着部を形成する樹脂が外部へ流動(流出)することがあり、接着部の外周を高精度に形成し、太陽電池セルを配線基板に高精度に接着することが困難であった。
 また、太陽電池セルの外周端が配線基板の配線と接触すること、接着部の内側で発生した気泡が太陽電池セルの外周端から露出して外観不良を生じる虞があることなどの課題があった。加えて、太陽電池セルに対する要請から裏面に形成された電極が太陽電池セルの外周端にまで延長されることがあり、上述した問題が更に顕在化する虞がある。
日本国公開特許公報「特開2001-91327号公報」
 本発明はこのような状況に鑑みてなされたものであり、太陽電池セルの外周端の内側から外側に渡る外周領域において配線基板を覆う絶縁性のカバー層を形成することによって、太陽電池セルの外周端が配線基板の配線に接触することを防止し、接着部(接着剤)が太陽電池セルの外周端から外側へ流れ出ることを抑制して、太陽電池セルの外周端を確実に配線基板に接着した太陽電池モジュールを提供することを目的とする。
 また、本発明は、本発明に係る太陽電池モジュールの製造方法であって、配線基板のカバー層で囲まれた内側領域およびカバー層の表面に接着部を形成する接着層を形成することによって、信頼性の高い太陽電池モジュールを生産性良く製造することができる太陽電池モジュールの製造方法を提供することを他の目的とする。
 本発明に係る太陽電池モジュールは、受光面とは反対側の裏面に第1極性の第1電極および第2極性の第2電極を有する太陽電池セルと、前記第1電極に接続された第1配線および前記第2電極に接続された第2配線を絶縁性基板の表面に有する配線基板と、前記太陽電池セルの外周端の内側から外側に渡る外周領域において前記配線基板を覆う絶縁性のカバー層と、前記太陽電池セルおよび前記配線基板を相互に接着する接着部とを備えることを特徴とする。
 したがって、本発明に係る太陽電池モジュールは、太陽電池セルの外周端の内側から外側に渡る外周領域をカバー層で覆うことから、太陽電池セルの外周端が第1配線、第2配線に接触することを確実に防止できるので、太陽電池モジュールの製造歩留まり、信頼性を向上させることができる。また、接着部(接着剤)が太陽電池セルの外周端から外側へ流れ出ることをカバー層によって抑制するので、太陽電池セルの外周端を確実に配線基板に接着することができる。
 また、本発明に係る太陽電池モジュールでは、前記第1電極および前記第2電極は、交互に平行に複数配置され、前記太陽電池セルの前記外周端にまで到達していることを特徴とする。
 したがって、本発明に係る太陽電池モジュールは、太陽電池セルが複数個予め作り込まれたセル複合基板を第1電極および第2電極の延長方向と交差する方向で分割することによって、仕様に適した出力が得られる最適サイズの太陽電池セルを容易に形成することができるので、生産性、作業性を向上することができる。
 また、本発明に係る太陽電池モジュールでは、前記太陽電池セルは、前記太陽電池セルが複数個予め作り込まれたセル複合基板を分割して形成されていることを特徴とする。
 したがって、本発明に係る太陽電池モジュールは、生産性の良いセル複合基板を用いて生産した太陽電池セルを適用することから、コスト低減、仕様に対する特性の整合性を向上することができる。
 また、本発明に係る太陽電池モジュールでは、前記接着部は、前記カバー層で囲まれた内側領域および前記カバー層の表面に形成されていることを特徴とする。
 したがって、本発明に係る太陽電池モジュールは、カバー層が形成されない内側領域の全面および太陽電池セルの外周端に対向するカバー層の表面に接着部を形成し、太陽電池セルの全面に渡って接着部を配置することから、太陽電池セルと配線基板との間の接着部での気泡の発生を抑制し、また、発生した気泡の外部への漏出を抑制することができ、外観不良の発生を抑制することができる。
 また、本発明に係る太陽電池モジュールでは、前記接着部は、熱硬化性接着剤で形成されていることを特徴とする。
 したがって、本発明に係る太陽電池モジュールは、接着部を熱硬化性接着剤で形成することから、接着部を構成する接着剤をカバー層が配置された内側領域に漏れなく供給することが可能となり、気泡漏れの経路の発生を抑制することができる。
 また、本発明に係る太陽電池モジュールでは、前記カバー層は、黒色であることを特徴とする。
 したがって、本発明に係る太陽電池モジュールは、カバー層が黒色の合成樹脂であることから、太陽電池セルの外周端の外側を黒色で統一するので外観の統一性を確保することができる。
 また、本発明に係る太陽電池モジュールでは、前記第1配線は、相互に平行に配置された複数の第1枝配線と、前記第1枝配線を連結して集電する第1集電配線とを備え、前記第2配線は、前記第1枝配線と交互に平行に配置された第2枝配線と、前記第2枝配線を連結して集電する第2集電配線とを備え、前記カバー層は、前記第1枝配線と前記第1集電配線とが連結された第1連結部、および前記第2枝配線と前記第2集電配線とが連結された第2連結部を覆っており、前記太陽電池セルは、前記第1連結部および前記第2連結部を覆って前記配線基板に接着されていることを特徴とする。
 したがって、本発明に係る太陽電池モジュールは、第1枝配線と第1集電配線とが連結された第1連結部、および、第2枝配線と第2集電配線とが連結された第2連結部のそれぞれを配線基板に接着された太陽電池セルで覆うことから、第1連結部および第2連結部が太陽電池セル(太陽電池基板)と配線基板(絶縁性基板)との間で固定された状態となるので、高温環境下での温度サイクルによる第1連結部および第2連結部でのクラックの発生を抑制し、信頼性を向上することができる。
 また、本発明に係る太陽電池モジュールの製造方法は、受光面とは反対側の裏面に第1極性の第1電極および第2極性の第2電極を有する太陽電池セルと、前記第1電極に接続された第1配線および前記第2電極に接続された第2配線を絶縁性基板の表面に有する配線基板と、前記太陽電池セルの外周端の内側から外側に渡る外周領域において前記配線基板を覆う絶縁性のカバー層と、前記太陽電池セルおよび前記配線基板を相互に接着する接着部とを備える太陽電池モジュールの製造方法であって、前記配線基板の前記カバー層で囲まれた内側領域および前記カバー層の表面に前記接着部を形成する接着層を形成し、前記配線基板と前記太陽電池セルとを位置合わせし、位置合わせした状態で前記配線基板および前記太陽電池セルに対して加熱、加圧処理を施すことを特徴とする。
 したがって、本発明に係る太陽電池モジュールの製造方法は、配線基板および太陽電池セルを位置合わせした状態で加熱、加圧処理を施すことから、第1電極に対して第1配線を接続し、第2電極に対して第2配線を接続し、併せて太陽電池セルと配線基板とを接着層で形成された接着部を介して接着することから、信頼性の高い太陽電池モジュールを生産性良く製造することができる。
 また、本発明に係る太陽電池モジュールの製造方法では、前記接着層の形成は、絶縁性基板の表面に供給された接着剤をヘラで引き伸ばすことによってなされることを特徴とする。
 したがって、本発明に係る太陽電池モジュールの製造方法は、接着部を形成する接着層を容易にかつ高精度に形成することができる。
 本発明に係る太陽電池モジュールは、太陽電池セルの外周端の内側から外側に渡る外周領域において配線基板を覆う絶縁性のカバー層を備えることを特徴とする。
 したがって、本発明に係る太陽電池モジュールは、太陽電池セルの外周端の内側から外側に渡る外周領域をカバー層で覆うことから、太陽電池セルの外周端が第1配線、第2配線に接触することを確実に防止できるので、太陽電池モジュールの製造歩留まり、信頼性を向上させることができる。また、接着部(接着剤)が太陽電池セルの外周端から外側へ流れ出ることをカバー層によって抑制するので、太陽電池セルの外周端を確実に配線基板に接着することができる。
 また、本発明に係る太陽電池モジュールの製造方法は、配線基板のカバー層で囲まれた内側領域およびカバー層の表面に接着部を形成する接着層を形成することを特徴とする。
 したがって、本発明に係る太陽電池モジュールの製造方法は、配線基板および太陽電池セルを位置合わせした状態で加熱、加圧処理を施すことから、第1電極に対して第1配線を接続し、第2電極に対して第2配線を接続し、併せて太陽電池セルと配線基板とを接着層で形成された接着部を介して接着することから、信頼性の高い太陽電池モジュールを生産性良く製造することができる。
本発明の実施の形態1に係る太陽電池モジュールを太陽電池セル(受光面)の側から見た状態で示す平面図である。 図1Aの矢符1B-1Bでの太陽電池モジュールの断面状態を示す断面図である。 図1Aの矢符1C-1Cでの太陽電池モジュールの断面状態を示す断面図である。 図1Bの基本構成を拡大して示す拡大断面図である。 図1Cの基本構成を拡大して示す拡大断面図である。 本発明の実施の形態2に係る太陽電池モジュールに適用される配線基板の配線状態とカバー層の配置状態を示す平面図である。 図3Aの矢符3B-3Bでの配線基板の断面状態を示す断面図である。 図3Bに示した配線基板の表面に接着層を形成した状態を示す断面図である。 図3Cに示した接着層を介して配線基板に太陽電池セルを積層して接着した平面状態を示す平面図である。 本発明の実施の形態3に係るセル複合基板を示す平面図である。 セル複合基板を分割する状態を示す断面図である。 セル複合基板を分割することによって形成された太陽電池セルの状態を示す断面図である。 本発明の実施の形態3に係るセル複合基板を分割して得られた太陽電池セルを、配線基板に積層して接着した平面状態を示す平面図である。
 以下、本発明の実施の形態について図面を参照して説明する。
 <実施の形態1>
 図1Aないし図2Bを参照して、本実施の形態に係る太陽電池モジュールについて説明する。
 図1Aは、本発明の実施の形態1に係る太陽電池モジュール1を太陽電池セル10(受光面11s)の側から見た状態で示す平面図である。
 なお、配線基板30に太陽電池セル10を重ねた状態を平面図として示していることから、積層状態の理解を容易にするため、上層の太陽電池基板11を表す実線は、太い実線とし(図1B、図1Cも同様)、太陽電池基板11の裏面11rに形成された第1電極12、第2電極14を示す点線は、太い点線としている。
 図1Bは、図1Aの矢符1B-1Bでの太陽電池モジュール1の断面状態を示す断面図である。
 図1Cは、図1Aの矢符1C-1Cでの太陽電池モジュール1の断面状態を示す断面図である。
 本実施の形態に係る太陽電池モジュール1は、受光面11sとは反対側の裏面11rに第1極性の第1電極12および第2極性の第2電極14を有する太陽電池セル10と、第1電極12に接続された第1配線32および第2電極14に接続された第2配線34を絶縁性基板31の表面に有する配線基板30と、太陽電池セル10の外周端15の内側から外側に渡る外周領域RR1において配線基板30を覆う絶縁性のカバー層35と、太陽電池セル10および配線基板30を相互に接着する接着部40とを備える。
 したがって、本実施の形態に係る太陽電池モジュール1は、太陽電池セル10の外周端15の内側から外側に渡る外周領域RR1をカバー層35で覆うことから、太陽電池セル10の外周端15が第1配線32、第2配線34に接触することを確実に防止できるので、太陽電池モジュール1の製造歩留まり、信頼性を向上させることができる。また、接着部40(接着剤)が太陽電池セル10の外周端15から外側へ流れ出ることをカバー層35によって抑制するので、太陽電池セル10の外周端15を確実に配線基板30に接着することができる。
 なお、外周領域RR1は、太陽電池基板11の外周端15と第1配線32、第2配線34との接触を防止することが機能の1つであることから、外周端15の内側の例えば1mm~2mm程度(第1電極12および第2電極14の端部に向き合う程度の位置)から外側に一定の寸法で露出する状態で形成されている。外周端15の外側での露出位置はデザイン性などを併せて考慮すれば良く、適宜設定することができる。また、外周端15の内側では、1mm~2mm程度の領域に配置されていれば、内側領域RR2(外側領域RR1で囲まれた範囲の内側の領域)で発生した気泡を外部領域RR1(カバー層35)の内周で停止させることが可能となり、外部への気泡の露出を防止して、気泡による外観不良などを防止することができる。
 また、カバー層35は、第1枝配線32bの開放された端部32t(第1集電配線32cに対して反対側に位置する端部)、第2枝配線34bの開放された端部34t(第2集電配線34cに対して反対側に位置する端部)を被覆し、また、第1集電配線32c、第2集電配線34cを併せて被覆するように形成されることが好ましい。つまり、カバー層35によって被覆される範囲が外周領域RR1となる。端部32t、端部34tをカバー層35で覆うことから、第1配線32および第2配線34の間での電気的接触を確実に防止することができる。
 太陽電池セル10は、太陽電池基板11を備え、太陽電池基板11は、例えば、シリコン単結晶基板、シリコン多結晶基板などが適用されるがこれに限られない。また、太陽光(照射光)を受光する受光面11sの構造、光発電を生じる内部構造は、どのような構造であっても良い。外部へ光起電力を取り出す電極としては、受光面11sとは反対側に位置する裏面11rに第1極性(例えばp型)の第1電極12、第2極性(例えばn型)の第2電極14が形成されていれば良く、第1電極12、第2電極14は、例えば銀電極とされ、銀ペーストなどで形成されているがこれに限られない。
 太陽電池セル10では、第1電極12および第2電極14は、交互に平行に複数配置され、太陽電池セル10の外周端15にまで到達していることが好ましい。この構成によれば、太陽電池モジュール1は、太陽電池セル10が複数個予め作り込まれたセル複合基板20(図4A、図4B参照)を第1電極12および第2電極14の延長方向と交差する方向で分割することによって、仕様に適した出力が得られる最適サイズの太陽電池セル10を容易に形成することができるので、生産性、作業性を向上することができる。
 つまり、本実施の形態では、第1電極12、第2電極14は、例えば矩形状とされた太陽電池セル10(太陽電池基板11)の一方の外周端15から他方の外周端15まで到達している。なお、第1電極12、第2電極14は、外周端15に達しない形状であっても良い(実施の形態3参照)。
 配線基板30は、例えばポリイミド樹脂などで形成された絶縁性基板31と、絶縁性基板31にパターニングされた配線(第1配線32、第2配線34)とを備え、第1配線32、第2配線34は、例えば銅箔で形成されている。絶縁性基板31の厚さは、例えば10μmないし20μm程度、第1配線32、第2配線34の厚さは、例えば30μmないし50μm程度である。
 また、カバー層35は、印刷、あるいはポリイミド樹脂とは異なる樹脂材(例えば黒練り込みPET材(PET:ポリ・エチレン・テレフタレート))などで形成され、厚さは、例えば10μmないし20μm程度である。通常は、配線基板30を形成するときに予め形成される。10μmないし20μm程度の厚さであれば、一度のスクリーン印刷等で精度よく形成することが可能である。カバー層の厚さを、例えば55μmないし、65μm程度としてもよい。カバー層の厚さを、第1配線32、第2配線34の厚さより厚くすることにより、太陽電池セル10の外周端15が、第1配線32、第2配線34に、直接接触することを防ぐことが可能となる。
 第1配線32は、相互に平行に配置された複数の第1枝配線32bと、第1枝配線32bを連結して集電する第1集電配線32cとを備え、第2配線34は、第1枝配線32bと交互に平行に配置された第2枝配線34bと、第2枝配線34bを連結して集電する第2集電配線34cとを備えることが好ましい。また、カバー層35は、第1枝配線32bと第1集電配線32cとが連結された第1連結部32d、および第2枝配線34bと第2集電配線34cとが連結された第2連結部34dを覆っていることが好ましい。更に、太陽電池セル10は、第1連結部32dおよび第2連結部34dを覆って配線基板30に接着されていることが好ましい。
 この構成によって、太陽電池モジュール1は、第1枝配線32bと第1集電配線32cとが連結された第1連結部32d、および、第2枝配線34bと第2集電配線34cとが連結された第2連結部34dのそれぞれを配線基板30に接着された太陽電池セル10で覆うことから、第1連結部32dおよび第2連結部34dが太陽電池セル10(太陽電池基板11)と配線基板30(絶縁性基板31)との間で固定された状態となるので、高温環境下での温度サイクルによる第1連結部32dおよび第2連結部34dでのクラックの発生を抑制し、信頼性を向上することができる。
 複数の第1枝配線32bの一方を連結して集電する第1集電配線32cに対して、第1枝配線32bの他方は端部32tとして開放されている。また、複数の第2枝配線34bの一方を連結して集電する第2集電配線34cに対して第2枝配線34bの他方は端部34tとして開放されている。つまり、第1配線32および第2配線34はそれぞれ櫛状の配線構造とされ交互に枝配線(第1枝配線32b、第2枝配線34b)が配置され、反対側でそれぞれ集電する配線パターンとされている。第1集電配線32c、第2集電配線34cは、それぞれ隣接する他の配線へ接続され、複数の太陽電池セル10を直列接続、並列接続することができる(図3A、図3D参照)。
 なお、カバー層35は、黒色であることが好ましい。この構成によって、太陽電池モジュール1は、カバー層35を黒色とすることから、太陽電池セル10の外周端15の外側(外周領域RR1の内、太陽電池セル10より外側に配置された領域)を黒色で統一するので外観の統一性を確保することができる。
 接着部40は、カバー層35で囲まれた内側領域RR2(図1A、図1B)およびカバー層35の表面(図1C)に形成されていることが好ましい。この構成によって、太陽電池モジュール1は、カバー層35が形成されない内側領域RR2の全面および太陽電池セル10の外周端15に対向するカバー層35の表面に接着部40を形成し、太陽電池セル10の全面に渡って接着部40を配置することから、太陽電池セル10と配線基板30との間の接着部40での気泡の発生を抑制し、また、発生した気泡の外部への漏出を抑制することができ、外観不良の発生を抑制することができる。
 図2Aは、図1Bの基本構成を拡大して示す拡大断面図である。なお、両側部分を省略して示す。
 図2Bは、図1Cの基本構成を拡大して示す拡大断面図である。なお、中間部分を省略して示す。
 第1電極12、第2電極14は、幅Wbが例えば10μmないし50μm程度であり、第1配線32、第2配線34は、幅Wcが例えば100μmないし500μm程度である。また、第1配線32と第2配線34との間のスペースは、例えば200μmないし500μm程度とすることができる。これらの寸法は、仕様に応じて適宜設定される。
 接着部40は、絶縁性基板31の表面に接着層40rを形成し(図3C参照)、その後、電極(第1電極12、第2電極14)と配線(第1配線32、第2配線34)とを対向させて位置決めし、配線基板30に太陽電池セル10を重ねて接着することによって形成される。
 つまり、接着部40は、相互に重ねた太陽電池基板11(太陽電池セル10)および絶縁性基板31(配線基板30)を外部から加熱、加圧することによって、接着層40r(接着剤)を太陽電池基板11と絶縁性基板31の間に存在する隙間に流動させて形成される。したがって、太陽電池基板11および絶縁性基板31の間に配置(形成)した接着層40rを流動させることによって、第1電極12と第1配線32とが接続され、第2電極14と第2配線34とが接続され、また、太陽電池基板11と絶縁性基板31とが接着部40によって接着される。
 なお、接着剤としては、熱硬化性接着剤(例えばエポキシ系接着剤)が好ましい。熱硬化性接着剤は、適宜の温度で加熱することによって、流動性が向上することから、加圧によって第1電極12、第2電極14を第1配線32、第2配線34にそれぞれ接続させることができる。また、その後の加熱温度および加熱時間の調整によって硬化することから、確実に太陽電池基板11(太陽電池セル10)および絶縁性基板31(配線基板30)を接着することができる。接着剤40として、絶縁性の材料を用いることが望ましい。接着剤として異方導電性接着剤を適用することもできる。異方性導電性接着剤を適用する場合には、太陽電池セル10と絶縁性基板31に平行な方向に対しては絶縁性を有するように配置することが望ましい。太陽電池セル10の外周端15と、第1配線32、第2配線34との間で短絡が発生しにくくなるためである。
 接着層40r(接着部40)は、外部領域RR1および外部領域RR1で囲まれた内側領域RR2(図1Aないし図1C参照)に配置(塗布)することが好ましい。具体的には、カバー層35に囲まれた範囲を被覆するように形成することが好ましい。図2Bでは、接着部40は、カバー層35の表面にも薄く形成されている。
 つまり、接着部40(接着層40r)は、太陽電池基板11が配置される範囲に対応する絶縁性基板31の表面に形成され、カバー層35に対向する太陽電池基板11の外周端15を確実に配線基板30に接着することができる。なお、接着層40r(接着部40)の形成については、実施の形態2で更に説明する。
 <実施の形態2>
 図3Aないし図3Dを参照して、本実施の形態に係る太陽電池モジュール1A(図3D)、および太陽電池モジュール1Aの製造方法(製造工程)について説明する。なお、本実施の形態に示す太陽電池モジュール1Aは、実施の形態1に係る太陽電池モジュール1を2個直列に接続した2連構成としたものであり、基本的な構成は実施の形態1と同様であるので、適宜符合を援用し、主に異なる事項について説明する。なお、太陽電池モジュール1Aとして説明するが、太陽電池モジュール1に対してもそのまま適用できる。
 図3Aは、本発明の実施の形態2に係る太陽電池モジュール1Aに適用される配線基板30Aの配線状態とカバー層35の配置状態を示す平面図である。
 図3Bは、図3Aの矢符3B-3Bでの配線基板30Aの断面状態を示す断面図である。
 本実施の形態に係る配線基板30Aは、太陽電池セル10を2個直列に配置する配線パターンとされている。つまり、図3Aの縦方向で上側から順に第1配線32、第2配線34、第1配線32、第2配線34と順次絶縁性基板31に配置されている。中央で接続される第2配線34(第2集電配線34c)と第1配線32(第1集電配線32c)とは、互いに共通の配置とされている。
 また、外周領域RR1には、カバー層35が形成されている。カバー層35の内側には、内側領域RR2が配置されている。その他、基本的な構成は、実施の形態1と同様である。カバー層35の形成に関しては、絶縁性の材料を複数回積層する方法を用いることもできる。または、第1配線、第2配線と同じ材料を用いて、配線基板30上に1段目のカバー層35を形成し、その上に、絶縁性の材料を用いて、2段目のカバー層35を形成することも可能である。この場合、1段目のカバー層35の形成に際しては、第1配線、第2配線と同じ工程で形成することができるため、工程数を減らすことが可能となる。
 図3Cは、図3Bに示した配線基板30Aの表面に接着層40rを形成した状態を示す断面図である。
 絶縁性基板31の表面の一辺(例えば、カバー層35の表面ないしカバー層35の外側領域で絶縁性基板31の一辺に対応する位置)に接着層40rを形成する接着剤を接着剤供給器(不図示)から供給する。ヘラ45を用いて供給された接着剤を例えば矢符DMで示すように引き伸ばす。なお、接着層40rを形成するヘラ45の移動方向(矢符DM)を概念的に示しているが、実際の移動方向は第1配線32(第1枝配線32b)、第2配線34(第2枝配線34b)に沿う方向が好ましい。
 接着層40rの形成は、絶縁性基板31の表面に供給された接着剤(熱硬化性接着剤)をヘラで引き伸ばすことによってなされることが好ましい。この構成によって、太陽電池モジュール1の製造方法は、接着部40を形成する接着層40rを容易にかつ高精度に形成することができる。絶縁性基板31の周縁部にあるカバー層35の上にも、接着層40rが形成されるとともに、カバー層35ともっとも外周側にある配線との間に十分な厚さの接着部を形成することが可能となる。つまり、絶縁性基板31側ではなく太陽電池セル側に接着剤を塗布する場合と比べて、太陽電池セルの周縁部に十分な接着層40rが形成される。よって、太陽電池モジュール1Aの周縁部に接着剤が十分存在することとなり、太陽電池セルの外周部を覆うような状態で接着することができるため、接着層40r内に内在した気泡がカバー層35とセル10との隙間を通り外部に露出することを防止して、気泡による外観不良等を防止することが可能となる。
 本実施の形態に係る太陽電池モジュール1Aの製造方法では、配線基板30のカバー層35で囲まれた内側領域RR2(額縁状に形成されたカバー層35の内側の領域)およびカバー層35の表面にかけて接着部40を形成する接着層40rを形成する。
 図3Dは、図3Cに示した接着層40rを介して配線基板30Aに太陽電池セル10を積層して接着した平面状態を示す平面図である。
 接着層40rが形成された配線基板30Aに対して太陽電池セル10を位置合わせする。配線基板30Aに位置合わせした太陽電池セル10を配線基板30に接着層40rを介して接着する。
 相互に位置合わせして接着された太陽電池セル10および配線基板30Aに対して加熱加圧処理を施すことによって、太陽電池モジュール1Aを形成する。加熱、加圧の条件(温度条件、時間条件、加圧条件)は、接着層40rを形成する接着剤の特性を評価して求められる。接着層40rは、加熱、加圧処理によって硬化し、接着部40を形成することとなる。
 以上のとおり、本実施の形態に係る太陽電池モジュール1A(太陽電池モジュール1)の製造方法は、受光面11sとは反対側の裏面11rに第1極性の第1電極12および第2極性の第2電極14を有する太陽電池セル10と、第1電極12に接続された第1配線32および第2電極14に接続された第2配線34を絶縁性基板31の表面に有する配線基板30A(配線基板30)と、太陽電池セル10の外周端15の内側から外側に渡る外周領域RR1において配線基板30を覆う絶縁性のカバー層35と、太陽電池セル10および配線基板30を相互に接着する接着部40とを備える太陽電池モジュールの製造方法である。
 また、太陽電池モジュール1Aの製造方法では、配線基板30のカバー層35で囲まれた内側領域RR2およびカバー層35の表面に接着部40を形成する接着層40rを形成し、次に、配線基板30と太陽電池セル10とを位置合わせし、位置合わせした状態で配線基板30および太陽電池セル10に対して加熱、加圧処理を施すことが好ましい。
 したがって、本実施の形態に係る太陽電池モジュール1Aの製造方法は、配線基板30および太陽電池セル10を位置合わせした状態で加熱、加圧処理を施すことから、第1電極12に対して第1配線32を接続し、第2電極14に対して第2配線34を接続し、併せて太陽電池セル10と配線基板30とを接着層40rで形成された接着部40を介して接着することから、信頼性の高い太陽電池モジュール1を生産性良く製造することができる。
 上述したとおり、接着部40は、熱硬化性接着剤で形成されていることが好ましい。この構成によって、太陽電池モジュール1Aの製造方法は、接着部40を熱硬化性接着剤で形成することから、接着部40を構成する接着剤をカバー層35が配置された内側領域RR2に漏れなく供給することが可能となり、気泡漏れの経路の発生を抑制することができる。
 なお、熱硬化性接着剤は、具体的にはエポキシ系樹脂である。エポキシ系樹脂は、加熱加圧によって電極(第1電極12、第2電極14)と配線(第1配線32、第2配線34)との間から周囲へ流動し、容易にかつ確実に第1電極12、第2電極14と第1配線32、第2配線34とをそれぞれ接続することができ、太陽電池セル10と配線基板30Aとを確実に接着する。
 <実施の形態3>
 図4Aないし図5を参照してセル複合基板20を複数に分割して太陽電池セル10を形成する製造方法を本発明に係る実施の形態3として説明する。
 図4Aは、セル複合基板20を分割する状態を示す平面図である。図4A中の矢符1D-1Dで、分割する。
 図4Bは、本発明の実施の形態3に係るセル複合基板20を分割する状態を示す断面図である。なお、第1電極22(第2電極24)に沿う方向での断面として示す。
 図4Cは、図4A、図4Bで示した工程でセル複合基板20を分割することによって形成された太陽電池セル10の状態を示す断面図である。
 図5は、セル複合基板20を分割して得られた太陽電池セル10を配線基板30Bに積層して接着して形成した太陽電池モジュール1Bの平面状態を示す平面図である。
 本実施の形態に係るセル複合基板20は、複数個の太陽電池セル10を内包させた状態で一括して形成され、セル複合基板20そのものとしても太陽電池セルとして機能し、また、分割されることによって、個別の太陽電池セル10を得ることができる構成とされている。
 したがって、セル複合基板20の基本構成は、太陽電池セル10と同様であり、太陽電池基板21(太陽電池基板11に対応)、受光面21s(受光面11sに対応)、裏面21r(裏面11rに対応)、第1電極22、第2電極24(第1電極12、第2電極14に対応)を備えている。セル複合基板20を分割することによって、太陽電池基板21は太陽電池基板11となり、受光面21sは受光面11sとなり、裏面21rは裏面11rとなり、第1電極22は第1電極12となり、第2電極24は第2電極14となる。
 本実施の形態では、セル複合基板20を第1電極22、第2電極24の長さ方向(第1電極22、第2電極24に沿う方向)に対して交差する方向で分割する。分割手段としては、レーザビームLBが好ましい。レーザビームLBは、加工速度が速いという利点を有している。なお、レーザビームLBの種類、波長、出力などは、セル複合基板20を構成する太陽電池基板21の種類、厚さなどに応じて適宜選択することができる。他の分割手段としては、ダイシングソーを用いて物理的に破断する方法を用いることもできる。
 本実施の形態で形成された太陽電池セル10(太陽電池基板11)は、実施の形態1、実施の形態2に対してそのまま適用される。つまり、太陽電池セル10は、太陽電池セル10が複数個予め作り込まれたセル複合基板20を分割して形成されていることが好ましい。
 太陽電池セル10は、セル複合基板20を分割(図4A中の矢符1D-1Dで分割)して形成することから、第1電極22、第2電極24が連続している状態の中間で分割されることとなる。したがって、分割によって得られた太陽電池セル10では、第1電極12、第2電極14が、図4Cに示す外周端15に及んでいる。
 図5に示すように、セル複合基板20を分割して得られた太陽電池基板11を配線基板30Bに積層して、接着部40を介して接着する。このとき、第1電極12が第2配線34の第2集電配線に触れる、あるいは第2電極14が第1配線32の第1集電配線に触れると、太陽電池セルの第1極性(例えばp型)と第2極性(例えばn型)の接触により短絡することになる。分割によって得られた太陽電池セル10は、第1電極12、第2電極14が外周端15に及んでいるため、太陽電池基板11を配置する際の位置ずれで短絡がおこりやすいという問題があったが、カバー層35を設けることで、短絡が発生しにくくなった。
 また、この構成によれば、太陽電池モジュール1Bは、生産性の良いセル複合基板20を分割して形成した太陽電池セル10を適用することから、太陽電池セル間の変換効率のばらつきが小さくなることから安定した生産が可能となり、コスト削減につなげることが可能となる。
 なお、セル複合基板20を形成するときに、分割して形成する太陽電池セル10の大きさ(外周端15の寸法)の内側に第1電極12、第2電極14が形成されるように予め第1電極22、第2電極24を分割してパターニングすることも可能である。この場合は、第1電極22、第2電極24に対するパターニングが必要となる。
 以上、実施の形態1ないし実施の形態3について説明したが、これらは、相互に適用することが可能である。
 1、1A、1B 太陽電池モジュール
 10 太陽電池セル
 11 太陽電池基板
 11s 受光面
 11r 裏面
 12 第1電極
 14 第2電極
 15 外周端
 20 セル複合基板
 21 太陽電池基板
 21s 受光面
 21r 裏面
 22 第1電極
 24 第2電極
 30、30A、30B 配線基板
 31 絶縁性基板
 32 第1配線
 32b 第1枝配線
 32c 第1集電配線
 32d 第1連結部
 32t 端部
 34 第2配線
 34b 第2枝配線
 34c 第2集電配線
 34d 第2連結部
 34t 端部
 35 カバー層
 40 接着部
 40r 接着層(熱硬化性接着剤)
 45 ヘラ
 LB レーザビーム
 RR1 外周領域
 RR2 内側領域
 Wb、Wc 幅

Claims (9)

  1.  受光面とは反対側の裏面に第1極性の第1電極および第2極性の第2電極を有する太陽電池セルと、
     前記第1電極に接続された第1配線および前記第2電極に接続された第2配線を絶縁性基板の表面に有する配線基板と、
     前記太陽電池セルの外周端の内側から外側に渡る外周領域において前記配線基板を覆う絶縁性のカバー層と、
     前記太陽電池セルおよび前記配線基板を相互に接着する接着部とを備えること
     を特徴とする太陽電池モジュール。
  2.  請求項1に記載の太陽電池モジュールであって、
     前記第1電極および前記第2電極は、交互に平行に複数配置され、前記太陽電池セルの前記外周端にまで到達していること
     を特徴とする太陽電池モジュール。
  3.  請求項1または請求項2に記載の太陽電池モジュールであって、
     前記太陽電池セルは、前記太陽電池セルが複数個予め作り込まれたセル複合基板を分割して形成されていること
     を特徴とする太陽電池モジュール。
  4.  請求項1から請求項3までのいずれか一つに記載の太陽電池モジュールであって、
     前記接着部は、前記カバー層で囲まれた内側領域および前記カバー層の表面に形成されていること
     を特徴とする太陽電池モジュール。
  5.  請求項1から請求項4までのいずれか一つに記載の太陽電池モジュールであって、
     前記接着部は、熱硬化性接着剤で形成されていること
     を特徴とする太陽電池モジュール。
  6.  請求項1から請求項5までのいずれか一つに記載の太陽電池モジュールであって、
     前記カバー層は、黒色であること
     を特徴とする太陽電池モジュール。
  7.  請求項1から請求項6までのいずれか一つに記載の太陽電池モジュールであって、
     前記第1配線は、相互に平行に配置された複数の第1枝配線と、前記第1枝配線を連結して集電する第1集電配線とを備え、
     前記第2配線は、前記第1枝配線と交互に平行に配置された第2枝配線と、前記第2枝配線を連結して集電する第2集電配線とを備え、
     前記カバー層は、前記第1枝配線と前記第1集電配線とが連結された第1連結部、および前記第2枝配線と前記第2集電配線とが連結された第2連結部を覆っており、
     前記太陽電池セルは、前記第1連結部および前記第2連結部を覆って前記配線基板に接着されていること
     を特徴とする太陽電池モジュール。
  8.  受光面とは反対側の裏面に第1極性の第1電極および第2極性の第2電極を有する太陽電池セルと、前記第1電極に接続された第1配線および前記第2電極に接続された第2配線を絶縁性基板の表面に有する配線基板と、前記太陽電池セルの外周端の内側から外側に渡る外周領域において前記配線基板を覆う絶縁性のカバー層と、前記太陽電池セルおよび前記配線基板を相互に接着する接着部とを備える太陽電池モジュールの製造方法であって、
     前記配線基板の前記カバー層で囲まれた内側領域および前記カバー層の表面に前記接着部を形成する接着層を形成し、
     前記配線基板と前記太陽電池セルとを位置合わせし、
     位置合わせした状態で前記配線基板および前記太陽電池セルに対して加熱、加圧処理を施すこと
     を特徴とする太陽電池モジュールの製造方法。
  9.  請求項8に記載の太陽電池モジュールの製造方法であって、
     前記接着層の形成は、絶縁性基板の表面に供給された接着剤をヘラで引き伸ばすことによってなされること
     を特徴とする太陽電池モジュールの製造方法。
PCT/JP2012/066268 2011-07-13 2012-06-26 太陽電池モジュール、およびその製造方法 WO2013008617A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-155059 2011-07-13
JP2011155059 2011-07-13
JP2012-131549 2012-06-11
JP2012131549A JP2014187054A (ja) 2011-07-13 2012-06-11 太陽電池モジュール、およびその製造方法

Publications (1)

Publication Number Publication Date
WO2013008617A1 true WO2013008617A1 (ja) 2013-01-17

Family

ID=47505914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066268 WO2013008617A1 (ja) 2011-07-13 2012-06-26 太陽電池モジュール、およびその製造方法

Country Status (2)

Country Link
JP (1) JP2014187054A (ja)
WO (1) WO2013008617A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100494A (ja) * 2014-11-25 2016-05-30 シャープ株式会社 配線シート付き裏面電極型太陽電池セル
JP2020109863A (ja) * 2014-03-28 2020-07-16 サンパワー コーポレイション 太陽電池
WO2024035723A1 (en) * 2022-08-10 2024-02-15 Sierra Space Corporation Solar array system with electrically conductive adhesive and method of manufacturing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116973A1 (ja) * 2009-04-08 2010-10-14 シャープ株式会社 配線シート、配線シート付き太陽電池セル、太陽電池モジュールおよび配線シート付き太陽電池セルの製造方法
JP2011066230A (ja) * 2009-09-17 2011-03-31 Sharp Corp 太陽電池モジュール基板および太陽電池モジュール
JP2011114205A (ja) * 2009-11-27 2011-06-09 Sharp Corp 太陽電池モジュールの製造方法および太陽電池モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116973A1 (ja) * 2009-04-08 2010-10-14 シャープ株式会社 配線シート、配線シート付き太陽電池セル、太陽電池モジュールおよび配線シート付き太陽電池セルの製造方法
JP2011066230A (ja) * 2009-09-17 2011-03-31 Sharp Corp 太陽電池モジュール基板および太陽電池モジュール
JP2011114205A (ja) * 2009-11-27 2011-06-09 Sharp Corp 太陽電池モジュールの製造方法および太陽電池モジュール

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020109863A (ja) * 2014-03-28 2020-07-16 サンパワー コーポレイション 太陽電池
JP7078213B2 (ja) 2014-03-28 2022-05-31 サンパワー コーポレイション 太陽電池および太陽光発電モジュール
US11398576B2 (en) 2014-03-28 2022-07-26 Sunpower Corporation Solar cell having a plurality of sub-cells coupled by a metallization structure
JP2016100494A (ja) * 2014-11-25 2016-05-30 シャープ株式会社 配線シート付き裏面電極型太陽電池セル
WO2024035723A1 (en) * 2022-08-10 2024-02-15 Sierra Space Corporation Solar array system with electrically conductive adhesive and method of manufacturing

Also Published As

Publication number Publication date
JP2014187054A (ja) 2014-10-02

Similar Documents

Publication Publication Date Title
US20110197951A1 (en) Solar battery module and method of manufacturing the same
JP2010225801A (ja) 太陽電池モジュールの製造方法
CN110073502A (zh) 用于搭叠式光伏模块的封装膜
TWI602310B (zh) 太陽能電池用封裝膜及其製造方法、與太陽光電模組封裝結構
JP2013526041A (ja) 太陽光発電モジュールを接続ハウジングに接点接続する方法、および太陽光発電モジュールと接続ハウジングから構成されるシステム
JP2010073893A5 (ja)
JPWO2008093563A1 (ja) 太陽電池モジュール、太陽電池用配線部材、および太陽電池モジュールの製造方法
JP6706849B2 (ja) 太陽電池セル、太陽電池モジュール、太陽電池セルの製造方法
WO2013008617A1 (ja) 太陽電池モジュール、およびその製造方法
JP5289667B2 (ja) ワンチップ高電圧光電池の製造方法
JP5232213B2 (ja) 裏面電極型太陽電池セル、太陽電池モジュール、太陽電池ウェハおよび太陽電池モジュールの製造方法
JP5306668B2 (ja) 光電変換モジュールの製造方法
JP2013143529A (ja) 太陽電池モジュール
JP5131847B2 (ja) 太陽電池モジュールおよびその製造方法
JP6771163B2 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP2012109416A (ja) 太陽電池用バックシートとその製造方法
JPWO2014119252A1 (ja) 太陽電池モジュールの製造方法及び太陽電池モジュールの製造装置
JP6124166B2 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP2012079838A (ja) 太陽電池モジュールとその製造方法
JP5591146B2 (ja) 配線付き絶縁シートとその製造方法、太陽電池セル一体型配線付き絶縁シートとその製造方法、太陽電池モジュールの製造方法
JP2010258158A (ja) 配線シート、配線シート付き太陽電池セルおよび太陽電池モジュール
WO2012165001A1 (ja) 太陽電池モジュール及びその製造方法
TW201444106A (zh) 電氣裝置及電氣裝置之製造方法
US9178093B2 (en) Solar cell module on molded lead-frame and method of manufacture
JP2011216757A (ja) 配線シート付き太陽電池セル、太陽電池モジュール、太陽電池セルの交換方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP