WO2013005705A1 - リチウムイオン二次電池用の正極材料、正極部材、リチウムイオン二次電池及び前記正極材料の製造方法 - Google Patents

リチウムイオン二次電池用の正極材料、正極部材、リチウムイオン二次電池及び前記正極材料の製造方法 Download PDF

Info

Publication number
WO2013005705A1
WO2013005705A1 PCT/JP2012/066844 JP2012066844W WO2013005705A1 WO 2013005705 A1 WO2013005705 A1 WO 2013005705A1 JP 2012066844 W JP2012066844 W JP 2012066844W WO 2013005705 A1 WO2013005705 A1 WO 2013005705A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
lithium ion
ion secondary
lithium
Prior art date
Application number
PCT/JP2012/066844
Other languages
English (en)
French (fr)
Inventor
淳史 根本
有希 松田
洋和 佐々木
Original Assignee
昭栄化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭栄化学工業株式会社 filed Critical 昭栄化学工業株式会社
Priority to US14/130,201 priority Critical patent/US9236611B2/en
Priority to JP2013523005A priority patent/JP5867505B2/ja
Priority to CN201280042967.5A priority patent/CN103782424B/zh
Publication of WO2013005705A1 publication Critical patent/WO2013005705A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a positive electrode material for a lithium ion secondary battery, a positive electrode member using the same, a lithium ion secondary battery, and a method for producing the positive electrode material.
  • Lithium ion secondary batteries are widely used as power sources for electronic devices such as mobile phones and notebook personal computers because they are lighter and have a larger capacity than conventional lead secondary batteries and nickel-cadmium secondary batteries. Recently, it has begun to be used as a battery for electric vehicles, plug-in hybrid vehicles, electric motorcycles and the like.
  • a lithium ion secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, and a separator.
  • the negative electrode metallic lithium, carbon capable of inserting and removing lithium ions, lithium titanate, and the like are used.
  • the electrolyte a lithium salt and an organic solvent or an ionic liquid (ionic liquid) that can dissolve the lithium salt are used.
  • the separator a porous organic resin, glass fiber, or the like is used, which is placed between the positive electrode and the negative electrode to maintain insulation between the positive electrode and the electrolyte, and has pores through which the electrolyte can pass.
  • the positive electrode (hereinafter also referred to as “positive electrode layer”) is an active material in which lithium ions can be desorbed and inserted, a conductive auxiliary agent for securing an electric conduction path (electron conduction path) to the current collector, and It is comprised with the binder which connects this active material and this conductive support agent.
  • carbon materials such as acetylene black, carbon black, and graphite are used.
  • metal oxides of lithium and transition metals such as LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4 are generally used, but in addition, LiMPO 4 , Li 2 MSiO 4 , LiMBO 3 , and derivatives (hereinafter simply referred to as “derivatives”) in which element substitution or composition change is used as a basic structure are known.
  • M mainly contains transition metal elements such as Fe, Mn, Ni, and Co that change in valence.
  • metal oxides have low electronic conductivity. Therefore, in the positive electrode using metal oxide as an active material, the metal oxide surface is mixed with the above-mentioned conductive aid, or carbon coating, carbon particles, carbon fibers, etc. are coated on the metal oxide surface. Attempts have been made to improve the electronic conductivity by attaching them (Patent Documents 1 to 6, Non-Patent Document 1). In particular, carbon coating on the surface of a metal oxide is effective for obtaining excellent battery characteristics. It is considered.
  • Li 2 MSiO 4 typified by lithium iron silicate and lithium manganese silicate and derivatives thereof (hereinafter sometimes referred to as “lithium silicate” together) are 1 Since two lithium ions are contained in one composition formula, theoretically high capacity is expected (Patent Documents 7 to 9, Non-Patent Document 2).
  • Lithium silicates and their derivatives represented by lithium iron silicate and manganese manganese silicate are theoretically expected to have a high capacity of 330mAh / g, but actually have an actual capacity of more than 1Li (165mAh / g ) Has not been reported in many cases, and in particular, there has been no report yet showing an actual capacity (247 mAh / g) of 1.5 Li or more.
  • the actual capacity described in Patent Document 7 is 60 to 130 mAh / g, and the numerical values described in Non-Patent Documents 6 and 7 are only 190 mAh / g and 225 mAh / g, respectively.
  • lithium silicate should theoretically provide a high capacity, but the actual value is that the expected value is not obtained even when the capacity is actually manufactured and measured. .
  • the present invention is an invention made in such a situation, and a lithium silicate crystal and a carbon material represented by Li 2 MSiO 4 (M is one or more transition metal elements containing Fe and / or Mn).
  • a positive electrode material for a lithium ion secondary battery comprising a composite particle of the above, a positive electrode material that can obtain a high discharge capacity, a positive electrode member for a lithium ion secondary battery using the same, a lithium ion secondary battery, and the positive electrode material It aims at providing the manufacturing method of.
  • lithium iron silicate Li 2 MSiO 4 and its derivatives typified by lithium manganese silicate and its derivatives cannot be obtained by simply adjusting the composition appropriately, but when a composite particle of a carbon material and a specific form is used, it has a high capacity.
  • the present invention has been completed.
  • a lithium silicate crystal represented by Li 2 MSiO 4 (M is one or more transition metal elements containing Fe and / or Mn) has a sea-island structure dotted in an island shape in a carbon material. It has been found that an actual capacity of 1.5 Li or more can be obtained when it is a composite particle and the crystal grain has a size that is not more than the distance at which lithium ions can diffuse in the solid following the charge / discharge time. It was.
  • a positive electrode for a lithium ion secondary battery comprising composite particles of a lithium silicate crystal represented by Li 2 MSiO 4 (M is one or more transition metal elements containing Fe and / or Mn) and a carbon material
  • the composite particle has a sea-island structure in which the lithium silicate crystals are scattered in an island shape in the carbon material, and the average value of the circle-converted diameter of the island is less than 15 nm.
  • a positive electrode material for a lithium ion secondary battery comprising composite particles of a lithium silicate crystal represented by Li 2 MSiO 4 (M is one or more transition metal elements containing Fe and / or Mn) and a carbon material
  • the composite particle has a sea-island structure in which the lithium silicate crystals are scattered in an island shape in the carbon material, and the average value of the circle-converted diameter of the island is less than 15 nm.
  • the C 1s peak by X-ray photoelectron spectroscopy of the carbon material has a shoulder peak on the high binding energy side in addition to the SP 2 peak and the SP 3 peak (1) or (2)
  • the intermediate particles obtained by thermally decomposing and reacting the solution containing the liquid in a droplet state are at 400 ° C. or higher in an inert atmosphere or a reducing atmosphere at a temperature lower than the melting point of the lithium silicate.
  • a positive electrode member for a lithium ion secondary battery comprising the positive electrode material for a lithium ion secondary battery according to any one of (1) to (7).
  • a lithium ion secondary battery comprising the positive electrode material for a lithium ion secondary battery according to any one of (1) to (7).
  • a solution containing at least a compound containing an element constituting lithium silicate represented by Li 2 MSiO 4 (M is one or more transition metal elements) and an organic compound serving as a carbon material is dropped into a droplet.
  • an extremely excellent positive electrode material for a lithium ion secondary battery having a high actual capacity can be obtained. Further, by using the positive electrode material, it is possible to obtain a positive electrode member for a lithium ion secondary battery or a lithium ion secondary battery having a high actual capacity.
  • the positive electrode material for a lithium ion secondary battery of the present invention is a composite of a lithium silicate crystal represented by Li 2 MSiO 4 (M is one or more transition metal elements containing Fe and / or Mn) and a carbon material.
  • M is one or more transition metal elements containing Fe and / or Mn
  • a region composed of the lithium silicate crystals (hereinafter referred to as “islands”) is dispersed as a discontinuous and present in a plurality of discontinuities.
  • a so-called sea-island structure in which a carbon material exists as a continuum (matrix) between islands is exhibited.
  • lithium silicate is a metal oxide represented by Li 2 MSiO 4 , typically lithium iron silicate (Li 2 FeSiO 4 ) or lithium manganese silicate (Li 2 MnSiO 4 ).
  • Li 2 MSiO 4 typically lithium iron silicate (Li 2 FeSiO 4 ) or lithium manganese silicate (Li 2 MnSiO 4 ).
  • M is selected from transition metal elements containing at least one of Fe and Mn, and transition metal elements other than Fe and Mn include Co, Ni, Cu and 12th group elements such as Zn.
  • FIGS. 1, 2A and 2B show an example in which a cross section of the composite particle according to the present invention is observed using a transmission electron microscope (H-9000UHR III manufactured by Hitachi).
  • FIG. 1 is a composite particle of lithium iron silicate.
  • a dark black region corresponds to a lithium iron silicate crystal
  • a relatively white region around a black region corresponds to a carbon material.
  • FIG. 2A is an enlargement of this.
  • FIG. 2B is an example in which composite particles of lithium manganese silicate are observed.
  • black regions lithium silicate crystals
  • white regions carbon material
  • the present inventors have stated that the composite particles contained in the positive electrode material of the present invention have such a sea-island structure, so that the movement of electrons caused by the insertion / desorption of lithium ions in each island is a matrix. It is performed via a certain carbon material, and many lithium silicate crystals contained in the composite particles can be sufficiently utilized as an active material, so it is assumed that a high actual capacity can be realized. Yes.
  • the lithium silicate crystal in the composite particle has an actual capacity of 1.5 Li or more when the average diameter of a circle having the same area as the island area (hereinafter referred to as a circle-converted diameter) is less than 15 nm.
  • the present inventors have found that can be obtained. If this value is 15 nm or more, the diffusion distance of lithium ions in the solid is increased, and lithium ions cannot be diffused within a realistic charge / discharge time, so that a high actual capacity may not be obtained.
  • the lower limit of the circle-equivalent diameter is the minimum size that can maintain the regularity (periodicity) at which lithium silicate becomes crystals, and is usually 1 nm. Therefore, in the present invention, the preferable circular equivalent diameter of the lithium silicate crystal is 1 nm or more and less than 15 nm.
  • the circle-converted diameter of the lithium silicate crystal in the composite particle can be obtained by processing an image observed with a transmission electron microscope. Specifically, the diameter in terms of a circle can be calculated by binarizing the transmission electron microscope image and obtaining the diameter when the image is replaced with a circle area. Note that binarization is performed by determining a contrast threshold value that can distinguish between a range in which lattice fringes can be seen (region of lithium silicate crystal) and its surroundings. Alternatively, the range in which the lattice stripes can be seen may be binarized as a region that is a lithium silicate crystal. When calculating the average value of the circle-converted diameter, it is desirable to take a number average value of 20 or more, and in the embodiment described below, the number average value of 50 is the circle-converted diameter.
  • the composite particles preferably have a BET (Brunauer, Emmett, Teller) specific surface area of 25 to 110 m 2 / g. Within this range, the penetration of the electrolyte solution becomes easier after the battery is assembled, so that the time until the charge / discharge can be started after the battery is manufactured can be shortened. If the BET specific surface area exceeds 25 m 2 / g and less than 110m 2 / g, penetration of the electrolyte solution is difficult.
  • BET Brunauer, Emmett, Teller
  • the present invention provides an SP derived from the graphite skeleton at the C 1s peak obtained by measuring the carbon material in the composite particles by X-ray photoelectron spectroscopy (hereinafter referred to as “XPS”). It is preferable to have a shoulder peak on the high energy side in addition to the two peaks and the SP 3 peak derived from the diamond skeleton.
  • the functional group acts as a hydrophilic group (also referred to as a polar group).
  • the electrolyte solvent polar solvent
  • the binding energy (eV) is measured by measuring gold (Au) simultaneously with the measurement sample, and correcting the peak as 84.0 eV with reference to the peak of Au 4f7 / 2.
  • a spectrum from which background is removed is used.
  • the SP 2 peak (284.3 eV) and SP 3 peak (285.3 eV) are fixed at the above peak position (binding energy), and two dummy peaks are used as described above, and these four peaks are Gauss-Lorentz distributions.
  • Peak fitting is performed as a shape having For SP 2 peak and SP 3 peak, peak position is fixed, peak width and peak height are variable, and peak fitting is performed. For two dummy peaks, peak position, peak width and peak height are variable, and peak fitting is performed. Do.
  • a R / A is preferably 0.25 to 0.40. If A R / A is less than 0.25, it may take time for the electrolyte solution to penetrate. On the other hand, if A R / A exceeds 0.40, a high capacity may not be obtained. This is presumably because the electrical conductivity was lowered because of the large proportion of the hydrophilic functional group in the carbon skeleton. That is, the carbon material containing a hydrophilic functional group has poor electrical conductivity, and the electrical connection between the active material and the current collector or the conductive auxiliary agent is deteriorated, which may make it difficult to obtain a high capacity.
  • the carbon material according to the present invention contains elemental carbon, and the content of graphite skeleton carbon contained in the carbon material in the composite particles is preferably 20 to 70%.
  • the content of the graphite skeleton carbon is less than 20%, the electric conductivity of the carbon material is lowered, and it is difficult to obtain a high capacity.
  • the content of the graphite skeleton carbon exceeds 70%, the hydrophobicity becomes strong and the electrolyte solution hardly penetrates, so that it is difficult to obtain a high capacity.
  • the content of graphite skeleton carbon can be determined from the value of A SP2 / A at the above-described XPS peak. That is, a preferable value of A SP2 / A is 0.2 to 0.7.
  • the content of the carbon material contained in the composite particles is preferably 2 to 25% by mass.
  • the content of the carbon material is less than 2% by mass, a sufficient electron conduction path to the current collector cannot be secured, and excellent battery characteristics may not be obtained.
  • the content of the carbon material exceeds 25% by mass, the ratio of the active material when the electrode is produced decreases, and depending on the battery design, a high capacity may not be obtained. Therefore, when the content of the carbon material in the composite particles is 2 to 25% by mass, excellent battery performance can be easily secured, and the range of battery design choices can be widened.
  • the carbon material is porous, because the electrolyte solution enters the pores of the carbon material and lithium ions can easily enter and exit from the surface of the active material oxide.
  • the average value of the circle-converted diameter of the composite particles that can be observed using a scanning electron microscope or a transmission electron microscope is preferably 50 to 500 nm. When the rate is higher than 50 nm and larger than 500 nm, excellent battery characteristics may not be obtained.
  • the circle equivalent diameter of the composite particles can be obtained by processing an image observed with an electron microscope, as described above.
  • a positive electrode layer having a gap into which the electrolyte solution can enter can be obtained.
  • a positive electrode member is obtained by forming this positive electrode layer on the surface of the conductive metal foil.
  • a binder (also referred to as a binder or a binder) plays a role of binding an active material or a conductive aid.
  • the binder according to the invention is not particularly limited, and those used for the positive electrode of a general lithium ion secondary battery can be used.
  • the binder is preferably one that is chemically and electrochemically stable with respect to the electrolyte of the lithium ion secondary battery and its solvent, and may be either a thermoplastic resin or a thermosetting resin.
  • binders include polyolefins such as polyethylene and polypropylene; polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer ECTFE),
  • the positive electrode layer may further contain a conductive additive.
  • the conductive auxiliary agent is not particularly limited as long as it is a chemically stable electron conductive material.
  • Examples of conductive aids include graphites such as natural graphite (flaky graphite, etc.) and artificial graphite; acetylene black; ketjen black; carbon blacks such as channel black, furnace black, lamp black and thermal black; carbon fiber
  • carbon materials such as: conductive fibers such as metal fibers; carbon fluoride; metal powders such as aluminum; zinc oxide; conductive whiskers such as potassium titanate; conductive metal oxides such as titanium oxide And the like, and these may be used alone or in combination of two or more.
  • carbon materials such as acetylene black, ketjen black, and carbon black are particularly preferable.
  • the conductive aid is usually used at a ratio of about 1 to 25% by mass in the total amount of the positive electrode.
  • the metal foil for example, aluminum or aluminum alloy foil can be used, and the thickness thereof is, for example, 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • a lithium ion secondary battery can be obtained by combining at least a negative electrode, a separator, and a non-aqueous electrolyte with the positive electrode member described above.
  • the negative electrode includes a negative electrode active material and a binder as necessary.
  • the negative electrode active material is not particularly limited as long as it can be doped / undoped with metallic lithium or lithium ions.
  • negative electrode actives include gold such as Si, Sn, and In, or oxides such as Si, Sn, and Ti that can be charged and discharged at a low potential close to Li, and Li and Co nitrides such as Li 2.6 Co 0.4 N. It can be used as a substance.
  • a part of graphite can be replaced with a metal or oxide that can be alloyed with Li.
  • the voltage at the time of full charge can be regarded as about 0.1 V on the basis of Li, so the potential of the positive electrode can be calculated for convenience by adding 0.1 V to the battery voltage. This is preferable because the charge potential of the positive electrode is easy to control.
  • the negative electrode may have a structure having a negative electrode layer containing a negative electrode active material and a binder on the surface of a metal foil serving as a current collector.
  • metal foil copper, nickel, titanium single-piece
  • a preferable metal foil material used in the present invention is copper or an alloy thereof. Preferred metals that can be alloyed with copper include zinc, nickel, tin, and aluminum. In addition, iron, phosphorus, lead, manganese, titanium, chromium, silicon, arsenic, and the like may be added in small amounts.
  • the separator has only to have a high ion permeability, a predetermined mechanical strength, and an insulating thin film.
  • the material is olefin polymer, fluorine polymer, cellulose polymer, polyimide, nylon, glass fiber, alumina fiber. And non-woven fabric, woven fabric, and microporous film are used as forms.
  • polypropylene, polyethylene, a mixture of polypropylene and polyethylene, a mixture of polypropylene and polytetrafluoroethylene (PTFE), and a mixture of polyethylene and polytetrafluoroethylene (PTFE) are preferable as the material, and the form is a microporous film.
  • PTFE polytetrafluoroethylene
  • microporous film having a pore diameter of 0.01 to 1 ⁇ m and a thickness of 5 to 50 ⁇ m is preferable.
  • These microporous films may be a single film or a composite film composed of two or more layers having different properties such as the shape, density, and material of the micropores.
  • the composite film which bonded the polyethylene film and the polypropylene film can be mentioned.
  • the nonaqueous electrolytic solution is generally composed of an electrolyte (supporting salt) and a nonaqueous solvent.
  • Lithium salt is mainly used as the supporting salt in the lithium secondary battery.
  • the lithium salt can be used in the present invention, for example, fluoro represented by LiClO 4, LiBF 4, LiPF 6 , LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiOSO 2 C n F 2n + 1 Sulfonic acid (n is a positive integer of 6 or less), an imide salt represented by LiN (SO 2 C n F 2n + 1 ) (SO 2 C m F 2m + 1 ) (m and n are each 6 or less positive ), LiC (SO 2 C p F 2p + 1 ) (SO 2 C q F 2q + 1 ) (SO 2 C r F 2r + 1 ) methide salts (p, q, r are each 6 The following positive integers), Li aliphatic salts such as lithium
  • the concentration of the supporting salt is not particularly limited, but is preferably 0.2 to 3 mol per liter of the electrolytic solution.
  • Non-aqueous solvents include propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, trifluoromethyl ethylene carbonate, difluoromethyl ethylene carbonate, monofluoromethyl ethylene carbonate, hexafluoromethyl acetate, methyl trifluoride acetate, dimethyl carbonate , Diethyl carbonate, methyl ethyl carbonate, ⁇ -butyrolactone, methyl formate, methyl acetate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, 2,2-bis (trifluoromethyl) ) -1,3-dioxolane, formamide, dimethylformamide, dioxolane, dioxane, acetonitrile, nitromethane, ethyl monoglyme, Acid triester, boric acid triester, trime
  • carbonate-based solvents are preferable, and it is particularly preferable to use a mixture of a cyclic carbonate and an acyclic carbonate.
  • a cyclic carbonate ethylene carbonate and propylene carbonate are preferable.
  • an acyclic carbonate diethyl carbonate, dimethyl carbonate, and methyl ethyl carbonate are preferable.
  • an ionic liquid is preferable from the viewpoint of a high potential window and heat resistance.
  • the electrolyte solution includes LiCF 3 SO 3 , LiClO 4 , LiBF 4 and / or LiPF 6 in an electrolytic solution in which ethylene carbonate, propylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate or diethyl carbonate is appropriately mixed.
  • An electrolyte solution is preferred.
  • an electrolytic solution containing at least one salt selected from LiCF 3 SO 3 , LiClO 4 , LiBF 4 and LiPF 6 in a mixed solvent of at least one of propylene carbonate or ethylene carbonate and at least one of dimethyl carbonate or diethyl carbonate Is preferred.
  • the amount of the electrolyte added to the battery is not particularly limited, and can be used depending on the amount of the positive electrode material or the negative electrode material or the size of the battery.
  • Solid electrolytes are classified into inorganic solid electrolytes and organic solid electrolytes, and examples of inorganic solid electrolytes include Li nitrides, halides, and oxyacid salts. Among them, Li 3 N, LiI, Li 5 NI 2, Li 3 N-LiI-LiOH, Li 4 SiO 4, Li 4 SiO 4 -LiI-LiOH, xLi 3 PO 4 - (1-x) Li 4 SiO 4, Li 2 SiS 3 and phosphorus sulfide compounds are effective.
  • organic solid electrolyte examples include a polyethylene oxide derivative or a polymer containing the derivative, a polypropylene oxide derivative or a polymer containing the derivative, a polymer containing an ion dissociation group, a mixture of a polymer containing an ion dissociation group and the above aprotic electrolyte, phosphorus
  • a polymer matrix material containing an acid ester polymer and an aprotic polar solvent is effective.
  • there is a method of adding polyacrylonitrile to the electrolytic solution A method of using an inorganic and organic solid electrolyte in combination is also known.
  • the positive electrode member described above is not necessarily required for manufacturing a lithium ion secondary battery.
  • a positive electrode in which a positive electrode layer containing a positive electrode material, a conductive additive, and a binder is formed on a metal mesh, a negative electrode, a separator , And a non-aqueous electrolyte can be combined to form a lithium ion secondary battery.
  • the present invention has a sea-island structure in which lithium silicate crystals are scattered in an island shape in a carbon material, and as long as composite particles having an average value of a circle-converted diameter of the island of less than 15 nm are obtained, a method for producing the same As such, it may be produced by any known method such as a dry method or a wet method. For example, spray pyrolysis method, flame method, spray roasting method, solid phase method (solid phase reaction method), hydrothermal method (hydrothermal synthesis method), coprecipitation method, sol-gel method, or gas phase synthesis method ( For example, Physical Vapor Deposition: PVD method, Chemical Vapor Deposition: CVD method) and the like.
  • various conditions must be set particularly strictly, and it is difficult to actually produce them.
  • the present invention is preferably manufactured by the following method.
  • a solution containing a compound containing an element constituting lithium silicate and an organic compound to be a carbon material is heated in a droplet state at a temperature equal to or higher than the thermal decomposition temperature of the compound.
  • particles as an intermediate for the target composite particles (hereinafter referred to as intermediate particles) are obtained by the reaction.
  • the composite particles can be obtained by heat treatment at a temperature of 400 ° C. or higher and lower than the melting point of the lithium silicate in an inert atmosphere or a reducing atmosphere.
  • the structure of the composite particles can be controlled by adjusting the temperature at which the droplets are heated and the subsequent heat treatment temperature and heat treatment time.
  • the heating temperature of the droplet increases, the circular equivalent diameter of the lithium silicate crystal in the composite particles tends to increase. If the heating temperature is too low, the crystal cannot be obtained. If the heating temperature is too high, the crystal becomes large, and the circular equivalent diameter exceeds 15 nm, and high charge / discharge characteristics may not be obtained.
  • the heating temperature is preferably 500 to 900 ° C.
  • the circle-converted diameter of the crystal can be controlled by a combination of the heat treatment temperature and the heat treatment time. For example, when the heat treatment time is the same, the higher the heat treatment temperature, the larger the circle-converted diameter tends to be. Further, when the heat treatment temperature is the same, the longer the heat treatment time, the larger the circle equivalent diameter tends to be. However, if the heat treatment temperature is lower than 400 ° C., the crystals may not be obtained. Therefore, the heat treatment temperature is preferably 400 ° C. or higher and lower than the melting point of lithium silicate.
  • the heat treatment temperature is lower than the temperature for grain growth (below the temperature at which surface diffusion occurs), for example, not more than 0.757 times the melting point (Kelvin temperature, K) of lithium silicate.
  • the heat treatment time is preferably 2 to 48 hours. The example of the manufacturing method using a spray pyrolysis method is shown.
  • a solution containing a compound containing an element constituting lithium silicate and an organic compound serving as a carbon material is made into droplets by ultrasonic waves or nozzles (two-fluid nozzle, four-fluid nozzle, etc.), and then the droplets are Introduced into a heating furnace, heated at a temperature equal to or higher than the thermal decomposition temperature, reacted to produce intermediate particles, and then the intermediate particles were 400 ° C. or higher in an inert atmosphere or a reducing atmosphere, and lithium silicate Heat treatment at a temperature lower than the melting point.
  • the equivalent diameter of the intermediate particles is larger than 500 nm, it is preferable to perform pulverization before the heat treatment.
  • the present invention does not exclude that the composite particles obtained after the heat treatment are pulverized to adjust the circle-converted diameter.
  • the pulverization may be either dry or wet.
  • a known method such as a jet mill, a ball mill, a vibration mill, an attritor, or a bead mill can be used.
  • the circle-converted diameter of the composite particles can be adjusted according to the pulverization time, the size of the pulverization media (pulverization balls), and the like.
  • lithium iron silicate for example, after adding glucose to a solution containing lithium nitrate, iron (III) nitrate nonahydrate, tetraethoxysilane (hereinafter TEOS), an ultrasonic sprayer, etc. And is introduced into a heating furnace together with nitrogen gas as a carrier gas, and heated to about 500 to 900 ° C. to produce intermediate particles. Thereafter, if necessary, the intermediate particles are pulverized and heat-treated in an inert atmosphere at a temperature of 400 ° C. or higher and lower than the melting point of lithium iron silicate.
  • TEOS tetraethoxysilane
  • lithium manganese silicate for example, after adding glucose to a solution containing lithium nitrate, manganese (II) nitrate hexahydrate, colloidal silica, it is made into droplets using an ultrasonic sprayer or the like, By introducing it together with nitrogen as a carrier gas into a heating furnace, it is heated to about 500 to 900 ° C. to produce intermediate particles. Thereafter, if necessary, the intermediate particles are pulverized and heat-treated in an inert atmosphere at a temperature of 400 ° C. or higher and lower than the melting point of lithium manganese silicate.
  • a solution containing a compound containing an element constituting lithium silicate and an organic compound that becomes a carbon material is used as a droplet, and then the droplet is introduced into a roasting furnace such as a Lusner type, a Lurgi type, or a chemilite type, Intermediate particles are produced by heating and reaction at a temperature equal to or higher than the thermal decomposition temperature. Thereafter, the intermediate particles are heat-treated at a temperature of 400 ° C. or higher and lower than the melting point of lithium silicate in an inert atmosphere or a reducing atmosphere.
  • the target lithium silicate is a metal oxide containing an iron element, it is preferable to use a steel pickling waste solution or an iron acid solution as a raw material to be used.
  • it may be pulverized before or after heat treatment.
  • lithium manganese silicate for example, glucose is further added to a solution containing lithium acetate, manganese (II) nitrate hexahydrate, and colloidal silica, and then the liquid is added to, for example, a chemilite roasting furnace. Introduced in the form of droplets and heated at about 500 to 900 ° C., intermediate particles are produced. Thereafter, if necessary, the intermediate particles are pulverized and heat-treated in an inert atmosphere at a temperature of 400 ° C. or higher and lower than the melting point of lithium manganese silicate.
  • lithium iron silicate for example, glucose is further added to a steel pickling waste liquid (for example, 0.6-3.5 mol (Fe) / L hydrochloric acid waste liquid) containing lithium carbonate and colloidal silica.
  • Intermediate particles are produced by introducing them into a Rusner-type roasting furnace in the form of droplets and heating them at about 500-900 ° C. Thereafter, if necessary, the intermediate particles are pulverized and heat-treated in an inert atmosphere at a temperature of 400 ° C. or higher and lower than the melting point of lithium iron silicate.
  • examples of the organic compound (raw material) used as the carbon material include ascorbic acid, monosaccharides (glucose, fructose, galactose, etc.), disaccharides (sucrose, maltose, lactose, etc.), polysaccharides (amylose, cellulose).
  • polyvinyl alcohol polyethylene glycol, polypropylene glycol, polyvinyl butyral, polyvinyl pyrrolidone, phenol, hydroquinone, catechol, maleic acid, citric acid, malonic acid, ethylene glycol, triethylene glycol, diethylene glycol butyl methyl ether, triethylene Examples include glycol butyl methyl ether, tetraethylene glycol dimethyl ether, tripropylene glycol dimethyl ether, and glycerol.
  • examples of the compound containing an element constituting the metal oxide include a single metal, a hydroxide, a nitrate, a chloride, an organic acid salt, an oxide, a carbonate, and a metal alkoxide.
  • Example 1 Preparation of sample> As raw materials for lithium iron silicate, lithium nitrate (LiNO 3 ), iron (III) nitrate nonahydrate (Fe (NO 3 ) 3 ⁇ 9H 2 O) and TEOS were used. Glucose was added in the range of 0 to 160 g / L as an organic compound serving as a carbon material to an aqueous solution having a composition ratio of Li 2 FeSiO 4 and containing the above raw materials and having a concentration of 0.3 mol / L. Aqueous solutions corresponding to 1-19 were prepared respectively. At this time, TEOS was used by previously dissolving in the same amount of 2-methoxyethanol.
  • aqueous solutions were each subjected to spray pyrolysis in a heating furnace heated to 800 ° C. using a carrier gas composed of nitrogen gas to obtain intermediate particles.
  • the obtained intermediate particles were wet pulverized with ethanol, and then subjected to the heat treatment described in Table 1 except for Sample 1-17 to produce composite particles of Sample 1-1 to Sample 1-19. .
  • Sample 1-17 was only pulverized and was not heat-treated.
  • Sample 1-9 was heat-treated under the conditions reduced pressure using a vacuum pump, otherwise the sample N 2 atmosphere containing H 2 1% by volume (hereinafter, 1% and H 2 / N 2 atmosphere Heat treatment was performed.
  • Sample 1-15 is an example in which the glucose added to the aqueous solution was 0 g / L.
  • Sample 1-16 Sample 1-15 was impregnated with a glucose solution, and then heat-treated at 600 ° C. for 2 hours in a 1% H 2 / N 2 atmosphere. It is what I did. ⁇ Analysis of each sample> The following analysis was performed for each of Sample 1-1 to Sample 1-19 obtained as described above.
  • Sample 1-1 to sample 1-19 were X-ray diffracted using a powder X-ray diffractometer (Rigaku's Ultima II).
  • Sample 1-1 to sample 1-16 showed a crystalline phase of Li 2 FeSiO 4. Although it was confirmed, the crystal phase of Li 2 FeSiO 4 was not confirmed in Samples 1-17 to 1-19.
  • Sample 1-1 to Sample 1-19 were composite particles with the same sea-island structure as in Fig. 1, but Sample 1-15 was not combined with carbon, and Sample 1-16 was a carbon-coated composite. Although it was a body particle, it was not a sea-island structure. In addition, islands could not be confirmed from the composite particles of Sample 1-17 to Sample 1-19.
  • the circle-converted diameter of the island (lithium iron silicate crystal) was calculated for Sample 1-1 to Sample 1-14 by the above-described method, and the circle-converted diameter of each sample obtained was also shown in Table 1.
  • the composite particles were observed using a scanning electron microscope (JSM-7000F, manufactured by JEOL Ltd.), and the circle-converted diameter of the composite particles was calculated from the image. Samples 1-15 to 1-16 were omitted.
  • the BET specific surface area of each sample was calculated using an automatic specific surface area / pore distribution measuring device Tristar 3000 manufactured by Shimadzu Corporation and is also shown in Table 1.
  • the content of the carbon material contained in each sample was measured using a carbon / sulfur analyzer EMI-320V manufactured by Horiba, Ltd., and is also shown in Table 1.
  • the presence or absence of a C 1s shoulder peak in each sample was determined using an X-ray photoelectron spectrometer ESCA-3400 manufactured by Shimadzu Corporation. Note that the determination criterion is that A R / A is calculated by the above-described method, and the shoulder peak is “present” when it is 0.15 or more.
  • each sample was mixed with acetylene black powder and polytetrafluoroethylene powder in a mortar at a weight ratio of 70: 25: 5, and then pressed onto a titanium mesh to produce a positive electrode.
  • a metal lithium foil was used for the negative electrode, and a nickel foil with a thickness of 20 ⁇ m was used for the negative electrode current collector.
  • the electrolyte used was a non-aqueous electrolyte in which 1.0 mol / L LiPF 6 was dissolved in a 1: 2 mixed solvent of ethyl carbonate and dimethyl carbonate, and the separator was a porous material having a thickness of 25 ⁇ m.
  • a CR2032 coin cell was assembled in an argon glove box using polypropylene.
  • the electrolyte impregnation time was measured as follows. For each sample, the coin battery was held in a constant temperature bath at 25 ° C. for 24 hours to impregnate the electrolyte, and then the charge / discharge test was performed to measure the initial charge / discharge capacity, and the numerical value obtained was used as the reference value. Thereafter, for each sample, the initial charge / discharge capacity was measured in the same manner except that the holding time in the thermostat was changed, and among them, the shortest holding time at which the same initial charge / discharge capacity as the reference value was obtained was obtained. . This is described in the column of “electrolyte impregnation time”.
  • Sample 1-1 and Sample 1-2 were composite particles with a sea-island structure, but the circle-equivalent diameter of the island was 15 nm or more, and a high initial charge / discharge capacity was not obtained. Further, high initial charge / discharge characteristics were not obtained from Samples 1-15 to 1-19 which were not composite particles having a sea-island structure.
  • Samples 1-3 to 1-14 have high initial charge / discharge capacities.
  • those having a BET specific surface area of 25 to 110 cm 2 / g or having a shoulder peak at the C 1s peak have a short electrolyte impregnation time.
  • the composite particle has a circle equivalent diameter in the range of 50 to 500 nm, the rapid charge / discharge capacity is high.
  • the carbon content in the composite particles is in the range of 2 to 25% by mass, a higher initial charge / discharge capacity is obtained.
  • Example 2 Lithium nitrate (LiNO 3 ), manganese (II) nitrate tetrahydrate (Mn (NO 3 ) 2 .4H 2 O), and colloidal silica (SiO 2 ) were used as raw materials for lithium manganese silicate.
  • Glucose was added in the range of 0 to 200 g / L as an organic compound to be a carbon material to an aqueous solution having a composition ratio of Li 2 FeSiO 4 and containing the above raw materials and having a concentration of 0.4 mol / L.
  • Aqueous solutions corresponding to 2-19 were prepared respectively.
  • aqueous solutions were each subjected to spray pyrolysis in a heating furnace heated to 800 ° C. using a carrier gas composed of nitrogen gas to obtain intermediate particles.
  • the obtained intermediate particles were wet pulverized with ethanol, and then subjected to the heat treatment described in Table 2 except for Sample 2-17 to produce composite particles of Sample 2-1 to Sample 2-19 did.
  • Sample 2-17 was only crushed and not heat-treated.
  • Sample 2-9 was heat-treated under reduced pressure using a vacuum pump, and the other samples were heat-treated in a 1% H 2 / N 2 atmosphere.
  • Sample 2-15 is an example in which the glucose added to the aqueous solution was 0 g / L.
  • Sample 2-16 Sample 2-15 was impregnated with a glucose solution and then heat-treated at 600 ° C. for 2 hours in a 1% H 2 / N 2 atmosphere. It is what I did.
  • Table 2 shows the results of the same analysis and evaluation as in Example 1.
  • Sample 2-1 to Sample 2-14 and Sample 2-19 were composite particles with the same sea-island structure as in FIG. 1, but Sample 2-15 was not complexed with carbon, and Sample 2 -16 was a carbon-coated composite particle but not a sea-island structure. In addition, islands could not be confirmed from the composite particles of Samples 2-17 to 2-18.
  • Sample 2-1 and Sample 2-2 were sea-island structure composite particles, but the island had a circle-equivalent diameter of 15 nm or more, and a high initial charge / discharge capacity was not obtained. In addition, high initial charge / discharge capacities were not obtained from Samples 2-15 to 2-18 which were not composite particles of the sea-island structure.
  • Sample 2-3 to Sample 2-14 and Sample 2-19 have high initial charge / discharge capacities.
  • those having a BET specific surface area of 25 to 110 cm 2 / g or having a shoulder peak at the C 1s peak have a short electrolyte impregnation time.
  • the composite particle has a circle equivalent diameter in the range of 50 to 500 nm, the rapid charge / discharge capacity is high.
  • the carbon content in the composite particles is in the range of 2 to 25% by mass, a higher initial charge / discharge capacity is obtained.
  • Starting materials for lithium iron silicate partially substituted with manganese include lithium carbonate (Li 2 CO 3 ), iron chloride (II) (FeCl 2 ), manganese carbonate (II) (MnCO 3 ), colloidal silica (SiO 2 ) was used.
  • Glucose was added in the range of 0 to 150 g / L as an organic compound as a carbon material to an aqueous solution having a composition ratio of Li 2 (Fe 0.85 Mn 0.15 ) SiO 4 and a concentration of 0.4 mol / L containing the raw materials.
  • Aqueous solutions corresponding to Sample 3-1 to Sample 3-19 were prepared.
  • aqueous solutions were each subjected to spray pyrolysis in a heating furnace heated to 800 ° C. using a carrier gas composed of nitrogen gas to obtain intermediate particles.
  • the obtained intermediate particles were each wet pulverized with ethanol, and then subjected to the heat treatment described in Table 3 except for sample 3-17, and composite particles of sample 3-1 to sample 3-19 Was made.
  • Sample 3-17 was only pulverized and was not heat-treated.
  • Sample 3-9 was heat-treated under a reduced pressure condition using a vacuum pump, and the other samples were heat-treated in a 1% H 2 / N 2 atmosphere.
  • Sample 3-15 is an example in which the glucose added to the aqueous solution was 0 g / L.
  • Sample 3-16 Sample 3-15 was impregnated with a glucose solution and then heat-treated in a 1% H 2 / N 2 atmosphere at 600 ° C. for 2 hours to provide Sample 3-15 with a carbon coating. It is what I did.
  • Table 3 shows the results of the same analysis and evaluation as in Example 1.
  • Samples 3-1 to 3-14 were composite particles with the same sea-island structure as in FIG. 1, but sample 3-15 was not complexed with carbon, and sample 3-16 was coated with carbon. The composite particles were not sea-island structures. In addition, islands could not be confirmed from the composite particles of Sample 3-17 to Sample 3-19.
  • Sample 3-1 and Sample 3-2 were sea-island structure composite particles, but the island had a circle-equivalent diameter of 15 nm or more, and a high initial charge / discharge capacity was not obtained. In addition, high initial charge / discharge characteristics were not obtained from Samples 3-15 to 3-19 which were not composite particles of the sea-island structure.
  • Samples 3-3 to 3-14 have high initial charge / discharge capacities.
  • those having a BET specific surface area of 25 to 110 cm 2 / g or having a shoulder peak at the C 1s peak have a short electrolyte impregnation time.
  • the composite particle has a circle equivalent diameter in the range of 50 to 500 nm, the rapid charge / discharge capacity is high.
  • the carbon content in the composite particles is in the range of 2 to 25% by mass, a higher initial charge / discharge capacity is obtained.
  • Example 4 An aqueous solution similar to that of Sample 1-1 was prepared, and Samples 4-1 to 4-5 were obtained under the heating temperature and heat treatment conditions described in Table 4.
  • Table 4 shows the results of analyzing and evaluating samples 4-1 to 4-15 in the same manner as in Example 1.
  • the present invention has been described in the examples obtained by the manufacturing method using the spray pyrolysis method, but the present invention is not limited to this, and the above-described droplets are introduced into the Lusner type roasting furnace. Even when heated, similar intermediate particles can be produced.
  • a Lusner type roasting furnace liquefied natural gas is used as fuel, and the oxygen / partial pressure is made substantially zero by controlling the air / fuel ratio.
  • the subsequent treatment of the obtained intermediate powder is the same as described above, and the same applies to the evaluation of the sample.
  • Lithium iron silicate was prepared by solid phase reaction method.
  • lithium iron silicate Li 2 SiO 3
  • iron (II) oxalate dihydrate FeC 2 O 4 ⁇ 2H 2 O
  • the composition ratio of the Li 2 FeSiO 4 wet mixing was performed for 72 hours with a ball mill using methanol. The resulting mixture was calcined at 800 ° C. for 48 hours in a 1% H 2 / N 2 atmosphere. After that, wet pulverization was performed with a planetary ball mill, and carbon was further included by impregnation and heat treatment with glucose.
  • the sample obtained here contained 10% by mass of a carbon material, but no composite particles having a sea-island structure as in the present invention were observed.
  • the BET specific surface area was 3 m 2 / g.
  • the circle-converted diameter of the lithium iron silicate crystal was 50 nm, and no shoulder peak was observed in the CPS peak of XPS.
  • the initial charge / discharge capacity was 110 mAh / g.
  • the present invention can be used in the field of lithium ion secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 ケイ酸鉄リチウム結晶又はケイ酸マンガンリチウム結晶と炭素材との複合体粒子を含むリチウムイオン二次電池用正極材料であって、前記複合体粒子は、前記炭素材中に前記ケイ酸鉄リチウム結晶又はケイ酸マンガンリチウム結晶が島状に点在する海島構造を呈し、当該島の円換算径の平均値が15nm未満である。

Description

リチウムイオン二次電池用の正極材料、正極部材、リチウムイオン二次電池及び前記正極材料の製造方法
 本発明は、リチウムイオン二次電池用の正極材料、及びこれを用いた正極部材、リチウムイオン二次電池、及び前記正極材料の製造方法に関する。
 リチウムイオン二次電池は、従来の鉛二次電池やニッケル-カドミウム二次電池などに比べ軽量で容量も大きいため携帯電話やノート型パーソナルコンピューターなどの電子機器の電源として広く用いられている。最近では、電気自動車、プラグインハイブリッド自動車、電動二輪車等の電池としても利用され始めている。
 通常、リチウムイオン二次電池は、正極、負極、電解質、及びセパレータから構成されている。ここで負極としては、金属リチウム、リチウムイオンを挿入脱離できる炭素やチタン酸リチウム等が使用されている。また電解質としては、リチウム塩とそれを溶解できる有機溶媒やイオン性液体(イオン液体)が使用される。更に、セパレータとしては、正極と負極の間に置かれその間の絶縁を保つとともに、電解質が通過できる細孔を有するもので多孔質の有機樹脂やガラス繊維等が使用されている。
 また、通常、正極(以下「正極層」ともいう)は、リチウムイオンが脱離挿入できる活物質、集電体への電気伝導経路(電子伝導経路)を確保するための導電助剤、及び、該活物質と該導電助剤をつなぎ合わせる結着剤で構成される。
 導電助剤としては、アセチレンブラック、カーボンブラック、グラファイト等の炭素材料が用いられている。
 特に活物質としては、LiCoO2、LiNiO2、LiNi0.8Co0.2O2、LiMn2O4などのリチウムと遷移金属の金属酸化物が一般的に用いられているが、その他にも、LiMPO4、Li2MSiO4、LiMBO3、並びに、これらを基本構造として元素置換や組成変化させた誘導体(以下、単に「誘導体」という)が知られている。なお、ここでMにはFe、Mn、Ni、Co等の価数変化する遷移金属元素が主として含まれる。
 一般的に金属酸化物は電子伝導度が低いので、金属酸化物を活物質とする正極では、前述の導電助剤と混合したり、金属酸化物表面に炭素被覆や炭素粒子や炭素繊維等を付着させて、電子伝導性の改善が試みられており(特許文献1~6、非特許文献1)、特には金属酸化物の表面への炭素被覆が、優れた電池特性を得るために有効と考えられている。
 また、上述した酸化物の中でも、ケイ酸鉄リチウムやケイ酸マンガンリチウムに代表されるLi2MSiO4やその誘導体(以下、両者を合わせて「リチウムケイ酸塩」ということもある)は、1つの組成式中に2つのリチウムイオンを含んでいることから理論上は高い容量が期待されている(特許文献7~9、非特許文献2)。
特開2003-34534号公報 特開2006-302671号公報 特開2002-75364号公報 特開2003-272632号公報 特開2004-234977号公報 特開2003-59491号公報 特開2007-335325号公報 特表2005-519451号公報 特開2001-266882号公報
J. Moskon, R. Dominko, R. Cerc-Korosec, M. Gaberscek, J. Jamnik, J. Power Sources 174, (2007)638-688. R. Dominko, M. Bele, M. Gaberscek, A. Meden, M. Remskar, J. Jamnik, Electrochem. Commun. 8, (2006)217-222. 邵斌、谷口泉、第50回電池討論会講演要旨集、(2009)111. 邵斌、谷口泉、第51回電池討論会講演要旨集、(2010)211. Yi-Xiao Li, Zheng-Liang Gong, Yong Yang, J. Power Sources 174, (2007)528-532. 小島晶、小島敏勝、幸琢寛、奥村妥絵、境哲男、第51回電池討論会要旨集、(2010)194. 上村雄一、小林栄次 、土井貴之、岡田重人、山木準一、第50回電池討論会講演要旨集、(2009)30.
 ケイ酸鉄リチウムやケイ酸マンガンリチウムに代表されるリチウムケイ酸塩やその誘導体は、理論上は330mAh/gといった高い容量を期待できる組成であるが、実際に1Li以上の実容量(165mAh/g)が得られたという報告例は多く無く、特に1.5Li以上の実容量(247mAh/g)が得られた報告例は未だ無い。例えば特許文献7に記載されている実容量は60~130mAh/gであり、また非特許文献6、7に記載されている数値はそれぞれ190mAh/g、225mAh/gにとどまる。
 このように、リチウムケイ酸塩は、理論的には高い容量が得られる筈であるが、実際に製造して容量を測定しても、期待される値が得られていないのが実状である。
 本発明は、このような状況において成された発明であり、Li2MSiO4((MはFe及び/又はMnを含む1種以上の遷移金属元素)で示されるリチウムケイ酸塩結晶と炭素材との複合体粒子を含むリチウムイオン二次電池用正極材料であって、高い放電容量が得られる正極材料、それを用いたリチウムイオン二次電池用正極部材、リチウムイオン二次電池及び前記正極材料の製造方法を提供することを目的とする。
 本発明者らは、高実容量を得るためには、酸化物の組成だけではなく、その形態等の外因が大きく影響するのではないかと推測し、鋭意研究を行った結果、ケイ酸鉄リチウムやケイ酸マンガンリチウムに代表されるLi2MSiO4やその誘導体においては、単に組成を適切に調整するだけでは高容量は得られず、炭素材と特定の形態の複合体粒子にした時に高容量が得られることを見出し、本発明を完成するに到った。
 即ち、本発明においてLi2MSiO4(MはFe及び/又はMnを含む1種以上の遷移金属元素)で示されるリチウムケイ酸塩結晶は、炭素材中に島状に点在する海島構造の複合体粒子になっており、しかも当該結晶粒が、充放電時間に追随してリチウムイオンの固体内拡散ができる距離以下のサイズである場合に、1.5Li以上の実容量が得られることを見出した。
 上記目的を達成する本発明は、以下を要旨とするものである。
 (1) Li2MSiO4(MはFe及び/又はMnを含む1種以上の遷移金属元素)で示されるリチウムケイ酸塩結晶と炭素材との複合体粒子を含むリチウムイオン二次電池用正極材料であって、前記複合体粒子は、前記炭素材中に前記リチウムケイ酸塩結晶が島状に点在する海島構造を呈し、当該島の円換算径の平均値が15nm未満であることを特徴とするリチウムイオン二次電池用正極材料である。
 (2) 前記複合体粒子のBET比表面積が25~110m/gであることを特徴とする(1)に記載のリチウムイオン二次電池用正極材料である。
 (3) 前記炭素材のX線光電子分光法によるC1sのピークが、SPピーク、SPピークの他、高結合エネルギー側にショルダーピークを有することを特徴とする(1)又は(2)に記載のリチウムイオン二次電池用正極材料である。
 (4) 前記複合体粒子の円換算径の平均値が50~500nmであることを特徴とする(1)乃至(3)の何れかに記載のリチウムイオン二次電池用正極材料である。
 (5) 前記複合体粒子中の炭素材の含有量が、2~25質量%であることを特徴とする(1)乃至(4)の何れかに記載のリチウムイオン二次電池用正極材料である。
 (6) 少なくとも、Li2MSiO4(MはFe及び/又はMnを含む1種以上の遷移金属元素)で示されるリチウムケイ酸塩を構成する元素を含む化合物と、炭素材となる有機化合物とを含む溶液を、液滴の状態で熱分解し、反応させて得られた中間体粒子を、不活性雰囲気中又は還元雰囲気中で400℃以上、且つ前記リチウムケイ酸塩の融点未満の温度で熱処理することによって得られる複合体粒子を含むことを特徴とするリチウムイオン二次電池用正極材料である。
 (7) 前記複合体粒子が、前記熱処理の前に粉砕処理されたものであることを特徴とする(6)に記載のリチウムイオン二次電池用正極材料である。
 (8) (1)乃至(7)の何れかに記載のリチウムイオン二次電池用正極材料を含むことを特徴とするリチウムイオン二次電池用正極部材である。
 (9) (1)乃至(7)の何れかに記載のリチウムイオン二次電池用正極材料を含むことを特徴とするリチウムイオン二次電池である。
 (10) 少なくとも、Li2MSiO4(Mは1種以上の遷移金属元素)で示されるリチウムケイ酸塩を構成する元素を含む化合物と、炭素材となる有機化合物とを含む溶液を、液滴の状態で熱分解し、反応させて得られた中間体粒子を、不活性雰囲気中又は還元雰囲気中で400℃以上、且つ前記リチウムケイ酸塩の融点未満の温度で熱処理することによって得られる複合体粒子を用いることを特徴とするリチウムイオン二次電池用正極材料の製造方法である。
 本発明により、実容量の高い極めて優れたリチウムイオン二次電池用正極材料が得られる。また当該正極材料を用いることにより、実容量の高いリチウムイオン二次電池用正極部材やリチウムイオン二次電池を得ることができる。
本発明に係る海島構造のTEM像 本発明に係る海島構造のTEM像 本発明に係る海島構造のTEM像 XPSによるC1sのピークとそのピーク分離の例
 本発明のリチウムイオン二次電池用正極材料は、Li2MSiO4(MはFe及び/又はMnを含む1種以上の遷移金属元素)で示されるリチウムケイ酸塩結晶と炭素材とが複合化した複合体粒子を含み、前記複合体粒子を透過型電子顕微鏡で観察した時に、当該リチウムケイ酸塩結晶からなる領域(以下、「島」という)が不連続体として複数に分散して存在し、島と島との間に炭素材が連続体(マトリクス)として存在している所謂海島構造(sea-island structure)を呈している。
 本明細書においてリチウムケイ酸塩はLi2MSiO4で示される金属酸化物であり、典型的にはケイ酸鉄リチウム(Li2FeSiO4)やケイ酸マンガンリチウム(Li2MnSiO4)である。但し、本発明はこれに限定されず、これらを基本構造として元素置換や組成変化させた誘導体も含まれる。またMは少なくともFe、Mnの何れかを含む遷移金属元素から選ばれ、Fe、Mn以外の遷移金属元素としてはCo、Ni、Cuの他、Znなどの第12属元素も含まれる。
 図1、2A、2Bに、本発明に係る複合体粒子の断面を透過型電子顕微鏡(日立製H-9000UHR III)を用いて観察した一例を示す。図1はケイ酸鉄リチウムの複合体粒子で、図中、濃く黒く見える領域がケイ酸鉄リチウム結晶に相当し、黒い領域の周りに比較的白く見える領域が炭素材に相当している。図2Aはこれを拡大したものである。また図2Bは同様にケイ酸マンガンリチウムの複合体粒子を観察した例である。これらに図示されるように、黒い領域(リチウムケイ酸塩結晶)が不連続体として複数に分散して存在し、黒い領域と黒い領域との間に白い領域(炭素材)が連続体として存在していることが確認できる。
 本発明者等は、本発明の正極材料に含まれる複合体粒子は、このような海島構造であることによって、各島のリチウムイオンの挿入・脱離に伴って生じる電子の移動が、マトリクスである炭素材を経由して行われ、複合体粒子に含まれる多くのリチウムケイ酸塩結晶を活物質として十分利用することができ、そのため高い実容量を実現できているのではないかと推測している。
 更に、個々の島は小さい方が、実容量が高くなる傾向が見られる。これは、リチウムイオンが当該島内で固体内拡散する距離が短くなるためと考えられる。
 具体的には、複合体粒子中のリチウムケイ酸塩結晶は、その島の面積と同じ面積の円の直径(以下、円換算径という)の平均が15nm未満の時に、1.5Li以上の実容量が得られることを本発明者等は見出した。この値が15nm以上になると、リチウムイオンの固体内拡散距離が大きくなり、現実的な充放電時間内にリチウムイオンが拡散できず、高い実容量が得られないのではないかと考えられる。
 円換算径の下限値は、リチウムケイ酸塩が結晶となる規則性(周期性)を維持できる最小サイズであり、通常は1nmである。よって本発明においてリチウムケイ酸結晶の好ましい円換算径は1nm以上15nm未満である。
 複合体粒子中のリチウムケイ酸結晶の円換算径は、透過型電子顕微鏡で観察される画像を処理することによって求めることができる。具体的には、透過型電子顕微鏡像を2値化し、円の面積として置き換えた場合の直径を求めることで円換算径を算出できる。なお、2値化に際しては、格子縞の見える範囲(リチウムケイ酸結晶である領域)とその周囲とを区別できるコントラストの閾値を決めて行う。または、格子縞の見える範囲を、リチウムケイ酸結晶である領域として2値化してもよい。円換算径の平均値を求める場合には、20個以上の数平均値を取ることが望ましく、以下に説明する実施例では50個の数平均値を円換算径としている。
 複合体粒子は、BET(Brunauer,Emmett,Teller)比表面積が25~110m/gであることが好ましい。この範囲内であれば、電池を組み立てた後に電解質溶液の浸透が容易になるため、電池の製造後、充放電を開始できるようになるまでの時間を短縮できる。BET比表面積が25m/g未満及び110m/gを超える場合は、電解質溶液の浸透が難しくなる。
 更に本発明は、複合体粒子中の炭素材をX線光電子分光法(X-ray photoelectron spectroscopy、以下、「XPS」という)で測定して得られるC1sのピークにおいて、グラファイト骨格に由来するSPピークやダイヤモンド骨格に由来するSPピークに加えて、高エネルギー側にショルダーピークを有することが好ましい。SPピークやSPピークは炭素本来のものであり、ショルダーピークは炭素骨格に結合している官能基で、水酸基(-OH)、カルボキシル基(-COOH)、カルボニル基(=C=O)等によるものである。当該官能基は親水性基(極性基ともいう)として作用する。
 一例として、図3のダミーピーク1はC-OHのCに帰属され、ダミーピーク2はC=OやCOOHのCに帰属される。従って複合体粒子中の炭素材が上記のショルダーピークを有する場合は、電解質の溶媒(極性溶媒)との濡れ性が高く、正極構造細部まで電解質溶液を容易に浸透させることができる。
 XPSの測定に際して、結合エネルギー(eV)は、測定試料と同時に金(Au)を測定してAu 4f7/2のピークを基準とし、当該ピークを84.0eVとして補正する。また、上記のピーク分離に関し、まず、バックグラウンドを除去したスペクトルを用いる。SPピーク(284.3eV)とSPピーク(285.3eV)は上記のピーク位置(結合エネルギー)を固定して、上述のように2つのダミーピークを用いて、これら4つのピークをGauss-Lorentz分布を有する形状としてピークフィッティングを行う。SPピークとSPピークはピーク位置を固定し、ピーク幅とピーク高さを可変にしてピークフィッティングを行い、2つのダミーピークはピーク位置、ピーク幅、ピーク高さを可変にしてピークフィッティングを行う。
 このようにして測定できるC1sのピーク面積をA、SPピーク面積Asp2、SPピークASP3とした時、本発明においては、C1sピーク面積AからSPピーク面積Asp2とSPピーク面積ASP3を引いた値A(=A-Asp2-ASP3)のC1sピーク面積Aに対する割合A/Aが0.15以上である場合にショルダーピークを有するとする。
 本発明においては、A/Aは0.25~0.40であることが好ましい。A/Aが0.25未満では、電解質溶液の浸透に時間がかかる場合がある。またA/Aが0.40を超えると、高い容量が得られない場合がある。これは、炭素骨格中の親水性官能基の割合が多いために、電気導電性が低くなったためであると推測される。即ち、親水性官能基を含む炭素材は電気導電性に乏しく、活物質と集電体や導電助剤との電気的接続が悪くなって、高容量が得られ難くなる場合がある。
 本発明に係る炭素材は、元素状炭素を含むものであり、複合体粒子中の炭素材に含まれるグラファイト骨格炭素の含有率は20~70%であることが好ましい。グラファイト骨格炭素の含有率が20%未満であると、炭素材の電気伝導性が低くなり、高い容量が得られ難くなる。一方、グラファイト骨格炭素の含有率が70%を超えると疎水性が強まり、電解質溶液が浸透し難くなるため、高容量が得られ難くなる。グラファイト骨格炭素の含有率は、上述したXPSのピークにおいて、ASP2/Aの値から求めることができる。すなわち好ましいASP2/Aの値は0.2~0.7である。
 複合体粒子に含まれる炭素材の含有量は、2~25質量%であることが好ましい。炭素材の含有量が2質量%未満であると、集電体までの電子伝導経路が十分確保できず、優れた電池特性が得られない場合がある。炭素材の含有量が25質量%を超えると、電極を作製した際の活物質の割合が少なくなり、電池設計によっては高い容量が得られなくなる場合がある。従って、複合体粒子中の炭素材の含有量が2~25質量%であることにより、優れた電池性能を容易に確保でき、電池設計の選択幅を広くできることになる。
 また、炭素材が多孔質であると、電解質溶液が炭素材の細孔に入り込み、活物質酸化物の表面からのリチウムイオンの出入りが容易になるため、更に好ましい。
 走査型電子顕微鏡や透過型電子顕微鏡を用いて観察できる複合体粒子の円換算径の平均値は、50~500nmが好ましい。50nm未満及び500nmより大きい場合、レートが高くなると優れた電池特性が得られないことがある。複合体粒子の円換算径は、上述と同様、電子顕微鏡で観察される画像を処理することによって求めることができる。
 本発明は、上述の複合体粒子を含む正極材料に、更に少なくとも結合剤を加えることによって、電解質溶液が侵入可能な隙間を有する正極層とすることができる。この正極層を、導電性の金属箔表面に形成することによって、正極部材が得られる。
 結合剤(結着剤或いはバインダーともいう)は、活物質や導電助剤を結着する役割を担うものである。発明に係る結合剤は特に限定なく、一般的なリチウムイオン二次電池の正極に用いられているものを使用することができる。結合剤としては、リチウムイオン二次電池の電解質及びその溶媒に対して、化学的および電気化学的に安定なものが好ましく、また、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。結合剤の例としては、ポリエチレン、ポリプロピレンなどのポリオレフィン;ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン-ペンタフルオロプロピレン共重合体、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体などのフッ素樹脂;スチレンブタジエンゴム(SBR);エチレン-アクリル酸共重合体または該共重合体のNaイオン架橋体;エチレン-メタクリル酸共重合体または該共重合体のNaイオン架橋体;エチレン-アクリル酸メチル共重合体または該共重合体のNaイオン架橋体;エチレン-メタクリル酸メチル共重合体または該共重合体のNaイオン架橋体;カルボキシメチルセルロースなどが挙げられ、また、これらを併用することもできる。これらの材料の中でも、PVDF、PTFEが特に好ましい。結合剤は、通常、正極全量中の1~20質量%程度の割合で用いられる。
 また、正極層には更に導電助剤が含まれていてもよい。導電助剤としては、化学的に安定な電子伝導性材料であれば特に限定されない。導電助剤の例としては、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類;アセチレンブラック;ケッチェンブラック;チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類;炭素繊維;などの炭素材料の他、金属繊維などの導電性繊維類;フッ化カーボン;アルミニウムなどの金属粉末類;酸化亜鉛;チタン酸カリウムなどの導電性ウィスカー類;酸化チタンなどの導電性金属酸化物類;ポリフェニレン誘導体などの有機導電性材料;などが挙げられ、これらを1種単独で用いてもよく、2種以上を同時に使用しても構わない。これらの中でも、アセチレンブラック、ケッチェンブラック、カーボンブラックといった炭素材料が特に好ましい。導電助剤は、通常、正極全量中の1~25質量%程度の割合で用いられる。
 金属箔としては、例えば、アルミニウムまたはアルミニウム合金製の箔を用いることができ、その厚みは、例えば、1~100μmであり、5~50μmが好ましい。
 上述の正極部材に対し、少なくとも、負極、セパレータ及び非水電解液を組み合わせることによって、リチウムイオン二次電池を得ることができる。
 負極は、負極活物質と必要に応じて結合剤を含む。負極活物質としては、金属リチウム、又はリチウムイオンをドープ・脱ドープできるものであればよく、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などの炭素材料が挙げられる。また、Si、Sn、Inなどの金、またはLiに近い低電位で充放電できるSi、Sn、Tiなどの酸化物、Li2.6Co0.4NなどのLiとCoの窒化物などの化合物も負極活物質として用いることができる。さらに、黒鉛の一部をLiと合金化し得る金属や酸化物などと置き換えることもできる。負極活物質として黒鉛を用いた場合には、満充電時の電圧をLi基準で約0.1Vとみなすことができるため、電池電圧に0.1Vを加えた電圧で正極の電位を便宜上計算することができることから、正極の充電電位が制御しやすく好ましい。
 負極は、集電体となる金属箔の表面上に負極活物質と結合剤を含む負極層を有する構造としてもよい。金属箔としては、例えば、銅、ニッケル、チタン単体またはこれらの合金、またはステンレスの箔が挙げられる。本発明で用いられる好ましい金属箔の材質としては銅またはその合金が挙げられる。銅と合金化する好ましい金属としては亜鉛、ニッケル、錫、アルミニウムなどがあるが、他に鉄、リン、鉛、マンガン、チタン、クロム、ケイ素、ヒ素などを少量加えても良い。
 セパレータは、イオン透過度が大きく、所定の機械的強度を持ち、絶縁性の薄膜であれば良く、材質として、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン、ガラス繊維、アルミナ繊維が用いられ、形態として、不織布、織布、微多孔性フィルムが用いられる。特に、材質として、ポリプロピレン、ポリエチレン、ポリプロピレンとポリエチレンの混合体、ポリプロピレンとポリテトラフルオロエチレン(PTFE)の混合体、ポリエチレンとポリテトラフルオロエチレン(PTFE)の混合体が好ましく、形態として微孔性フィルムであるものが好ましい。特に、孔径が0.01~1μm、厚みが5~50μmの微孔性フィルムが好ましい。これらの微孔性フィルムは単独の膜であっても、微孔の形状や密度等や材質等の性質の異なる2層以上からなる複合フィルムであっても良い。例えば、ポリエチレンフィルムとポリプロピレンフィルムを張り合わせた複合フィルムを挙げることができる。
 非水電解液としては、一般に電解質(支持塩)と非水溶媒から構成される。リチウム二次電池における支持塩はリチウム塩が主として用いられる。本発明で使用出来るリチウム塩としては、例えば、LiClO4、LiBF4、LiPF6、LiCF3CO2、LiAsF6、LiSbF6 、LiB10Cl10、LiOSO2CnF2n+1で表されるフルオロスルホン酸(nは6以下の正の整数)、LiN(SO2CnF2n+1)(SO2CmF2m+1)で表されるイミド塩(m、nはそれぞれ6以下の正の整数)、LiC(SO2CpF2p+1)(SO2CqF2q+1)(SO2CrF2r+1)で表されるメチド塩(p、q、rはそれぞれ6以下の正の整数)、低級脂肪族カルボン酸リチウム、LiAlCl4、LiCl、LiBr、LiI、クロロボランリチウム、四フェニルホウ酸リチウムなどのLi塩を上げることが出来、これらの一種または二種以上を混合して使用することができる。中でもLiBF4及び/あるいはLiPF6を溶解したものが好ましい。支持塩の濃度は、特に限定されないが、電解液1リットル当たり0.2~3モルが好ましい。
 非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、炭酸トリフルオロメチルエチレン、炭酸ジフルオロメチルエチレン、炭酸モノフルオロメチルエチレン、六フッ化メチルアセテート、三フッ化メチルアセテート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ-ブチロラクトン、ギ酸メチル、酢酸メチル、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメチルスルホキシド、1,3-ジオキソラン、2,2-ビス(トリフルオロメチル)-1,3-ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、ジオキサン、アセトニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、ホウ酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3-メチル-2-オキサゾリジノン、3-アルキルシドノン(アルキル基はプロピル、イソプロピル、ブチル基等)、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンサルトンなどの非プロトン性有機溶媒、イオン性液体を挙げることができ、これらの一種または二種以上を混合して使用する。これらの中では、カーボネート系の溶媒が好ましく、環状カーボネートと非環状カーボネートを混合して用いるのが特に好ましい。環状カーボネートとしてはエチレンカーボネート、プロピレンカーボネートが好ましい。また、非環状カーボネートとしては、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネートが好ましい。また、高電位窓や耐熱性の観点からは、イオン性液体が好ましい。
 電解質溶液としては、エチレンカーボネート、プロピレンカーボネ-ト、1,2-ジメトキシエタン、ジメチルカーボネートあるいはジエチルカーボネートを適宜混合した電解液にLiCF3SO3、LiClO4、LiBF4および/またはLiPF6を含む電解質溶液が好ましい。特にプロピレンカーボネートもしくはエチレンカーボネートの少なくとも一方とジメチルカーボネートもしくはジエチルカーボネートの少なくとも一方の混合溶媒に、LiCF3SO3、LiClO4、LiBF4の中から選ばれた少なくとも一種の塩とLiPF6を含む電解液が好ましい。これら電解液を電池内に添加する量は特に限定されず、正極材料や負極材料の量や電池のサイズに応じて用いることができる。
 また、電解質溶液の他に、固体電解質も併用することができる。固体電解質は無機固体電解質と有機固体電解質に分けられ、無機固体電解質としては、Liの窒化物、ハロゲン化物、酸素酸塩などが挙げられる。中でも、Li3N、LiI、Li5NI2、Li3N-LiI-LiOH、Li4SiO4、Li4SiO4-LiI-LiOH、xLi3PO4-(1-x)Li4SiO4 、Li2SiS3 、硫化リン化合物などが有効である。
 有機固体電解質としては、ポリエチレンオキサイド誘導体か該誘導体を含むポリマー、ポリプロピレンオキサイド誘導体あるいは該誘導体を含むポリマー、イオン解離基を含むポリマー、イオン解離基を含むポリマーと上記非プロトン性電解液の混合物、リン酸エステルポリマー、非プロトン性極性溶媒を含有させた高分子マトリックス材料が有効である。さらに、ポリアクリロニトリルを電解液に添加する方法もある。また、無機と有機固体電解質を併用する方法も知られている。
 なお、リチウムイオン二次電池を製造する上では、上述した正極部材は必ずしも必須ではなく、例えば、正極材料、導電助剤、結合剤を含む正極層を金属メッシュに形成した正極に、負極、セパレータ、及び非水電解液を組み合わせてリチウムイオン二次電池とすることもできる。
 以下に、本発明の正極材料の製造方法を示す。
 本発明は、炭素材中にリチウムケイ酸塩結晶が島状に点在する海島構造を呈し、当該島の円換算径の平均値が15nm未満である複合体粒子が得られる限り、その製造方法としては、公知の乾式法や湿式法等のどのような方法で製造しても良い。例えば、噴霧熱分解法、火炎法、噴霧焙焼法、固相法(固相反応法)、水熱法(水熱合成法)、共沈法、ゾル・ゲル法、又は気相合成法(例えばPhysical Vapor Deposition:PVD法、Chemical Vapor Deposition:CVD法)等が挙げられる。しかしながら、従来公知の製造方法で本発明に係る複合体粒子を得るためには、様々な条件が特に厳密に設定されなければならず、実際に製造することは難しい。
 そこで本発明は、以下の方法で製造されることが望ましい。先ず、リチウムケイ酸塩を構成する元素を含む化合物と、炭素材となる有機化合物とを含む溶液を、液滴の状態で前記化合物の熱分解温度以上で加熱する。その結果、反応により目的とする複合体粒子に対する中間体としての粒子(以下、中間体粒子という)が得られる。この中間体粒子を捕集した後、不活性雰囲気中又は還元雰囲気中で400℃以上、且つ、前記リチウムケイ酸塩の融点未満の温度で熱処理すると、前記複合体粒子を得ることができる。
 この製法においては、前記液滴を加熱する温度と、その後の熱処理温度及び熱処理時間を調整することで、複合体粒子の構造を制御することができる。
 液滴の加熱温度が高くなると、複合体粒子中のリチウムケイ酸塩結晶の円換算径が大きくなる傾向がある。この加熱温度が低すぎると前記結晶が得られず、また高すぎると当該結晶が大きくなり、円換算径が15nmを越えて、高い充放電特性が得られなくなる場合がある。当該加熱温度は好ましくは500~900℃である。
 また熱処理温度と熱処理時間の組合せにより、当該結晶の円換算径を制御することができる。例えば、熱処理時間が同じ場合は、熱処理温度が高ければ当該円換算径が大きくなる傾向がある。また、熱処理温度が同じ場合は、熱処理時間が長ければ当該円換算径が大きくなる傾向がある。但し、熱処理温度が400℃を下回ると、当該結晶が得られない場合があるため、当該熱処理温度は好ましくは400℃以上であり、且つリチウムケイ酸塩の融点未満である。更に好ましくは、熱処理温度は粒成長する温度未満(表面拡散が起こる温度以下)であり、例えばリチウムケイ酸塩の融点(ケルビン温度,K)の0.757倍の温度以下である。また熱処理時間が短いと十分な特性が得られない場合があり、長すぎても経済的・生産効率的な観点で現実的でない。それ故、当該熱処理時間は好ましくは2~48時間である。
 噴霧熱分解法を利用した製造方法の例を示す。
 リチウムケイ酸塩を構成する元素を含む化合物と、炭素材となる有機化合物とを含む溶液を、超音波やノズル(二流体ノズル、四流体ノズル等)等によって液滴とし、次いで当該液滴を加熱炉中に導入し、熱分解温度以上で加熱し、反応させて中間体粒子を作製し、その後、当該中間体粒子を不活性雰囲気又は還元雰囲気下で400℃以上、且つ、リチウムケイ酸塩の融点未満の温度で熱処理する。
 なお、中間体粒子の円換算径が500nmよりも大きい場合は、熱処理前に粉砕を行うことが好ましい。但し、本発明は、熱処理後に得られた複合体粒子を粉砕してその円換算径を調整することを除外するものではない。なお、粉砕は乾式でも湿式でもどちらでもよく、例えば、ジェットミル、ボールミル、振動ミル、アトライタ、ビーズミル等といった公知の手法を用いることができる。粉砕時間や粉砕メディア(粉砕ボール)のサイズ等により、複合体粒子の円換算径を調整することができる。
 具体例としてケイ酸鉄リチウムの場合には、例えば、硝酸リチウム、硝酸鉄(III)九水和物、テトラエトキシシラン(以下、TEOS)を含む溶液に更にグルコースを添加した後、超音波噴霧器等を用いて液滴とし、加熱炉中にキャリヤーガスとしての窒素ガスと共に導入することで500~900℃程度に加熱し、中間体粒子を作製する。その後、必要に応じて中間体粒子を粉砕し、不活性雰囲気中で400℃以上、且つ、ケイ酸鉄リチウムの融点未満の温度で熱処理する。
 また、ケイ酸マンガンリチウムの場合には、例えば、硝酸リチウム、硝酸マンガン(II)六水和物、コロイダルシリカを含む溶液に更にグルコースを添加した後、超音波噴霧器等を用いて液滴とし、加熱炉中にキャリヤーガスとしての窒素と共に導入することで500~900℃程度に加熱し、中間体粒子を作製する。その後、必要に応じて中間体粒子を粉砕し、不活性雰囲気中で400℃以上、且つ、ケイ酸マンガンリチウムの融点未満の温度で熱処理する。
 焙焼法を利用した製造方法の例を示す。
 リチウムケイ酸塩を構成する元素を含む化合物と、炭素材となる有機化合物とを含む溶液を液滴とし、次いで当該液滴をルスナー型、ルルギー型やケミライト型等の焙焼炉に導入し、熱分解温度以上で加熱し、反応させて中間体粒子を作製する。その後、当該中間体粒子を不活性雰囲気又は還元雰囲気下で400℃以上、且つ、リチウムケイ酸塩の融点未満の温度で熱処理する。なお、目的とするリチウムケイ酸塩が鉄の元素を含む金属酸化物の場合は、使用する原料としては、鉄鋼酸洗廃液又は鉄の酸溶解液を使用するのが好ましい。
 また必要に応じて熱処理前又は熱処理後に粉砕してもよい。
 具体例としてケイ酸マンガンリチウムの場合には、例えば、酢酸リチウム、硝酸マンガン(II)六水和物、及びコロイダルシリカを含む溶液に更にグルコースを添加し、その後、例えばケミライト型焙焼炉に液滴の状態で導入し500~900℃程度で加熱することで中間体粒子を作製する。その後、必要に応じて中間体粒子を粉砕し、不活性雰囲気中で400℃以上、且つ、ケイ酸マンガンリチウムの融点未満の温度で熱処理する。
 また、ケイ酸鉄リチウムの場合には、例えば、炭酸リチウム、コロイダルシリカを含む鉄鋼酸洗廃液(例えば、0.6-3.5mol(Fe)/L濃度の塩酸廃液)に更にグルコースを添加し、例えば、ルスナー型焙焼炉に液滴の状態で導入し500~900℃程度で加熱することで中間体粒子を作製する。その後、必要に応じて中間体粒子を粉砕し、不活性雰囲気中で400℃以上、且つ、ケイ酸鉄リチウムの融点未満の温度で熱処理する。なお、炭酸リチウムを鉄鋼酸洗廃液に溶解する際には、予め、18質量%塩酸を鉄鋼酸洗廃液中に加えておくと溶解させやすい。
 上述した製造方法において、炭素材となる有機化合物(原料)としては、例えば、アスコルビン酸、単糖類(グルコース、フルクトース、ガラクトース等)、二糖類(スクロース、マルトース、ラクトース等)、多糖(アミロース、セルロース、デキストリン等)、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルブチラール、ポリビニルピロリドン、フェノール、ヒドロキノン、カテコール、マレイン酸、クエン酸、マロン酸、エチレングルコール、トリエチレングリコール、ジエチレングリコールブチルメチルエーテル、トリエチレングリコールブチルメチルエーテル、テトラエチレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル、グルセリン等が挙げられる。
 また上述の金属酸化物を構成する元素を含む化合物としては、例えば、単体金属、水酸化物、硝酸塩、塩化物、有機酸塩、酸化物、炭酸塩、金属アルコキシド等である。
(実施例1)
<試料の作製>
 ケイ酸鉄リチウムの原料として、硝酸リチウム(LiNO3)、硝酸鉄(III)九水和物(Fe(NO3)3・9H2O)及びTEOSを用いた。Li2FeSiO4の組成比で前記原料を含む濃度0.3mol/Lの水溶液に、炭素材となる有機化合物としてグルコースを0~160g/Lの範囲で添加し、表1の試料1-1~試料1-19に対応する水溶液をそれぞれ調製した。なお、この際、TEOSは、これと同量の2-メトキシエタノールに予め溶解して用いた。
 これらの水溶液を、それぞれ、窒素ガスからなるキャリヤーガスを用いて800℃に加熱した加熱炉中で噴霧熱分解することにより、中間体粒子を得た。得られた中間体粒子はエタノールを用いて湿式粉砕し、その後、試料1-17を除いて表1に記載された熱処理を行い、試料1-1~試料1-19の複合体粒子を作製した。なお、試料1-17は粉砕のみを行い、熱処理を行わなかった。また、試料1-9は真空ポンプを用いて減圧した条件下で熱処理を行い、それ以外の試料は1%体積のHを含むN2雰囲気(以下、1%のH2/N2雰囲気と記す)で熱処理を行った。
 試料1-15は、水溶液に添加したグルコースが0g/Lの例である。また試料1-16は、試料1-15にグルコース溶液を含浸させた後、1%のH2/N2雰囲気で600℃、2時間の熱処理を行うことにより、試料1-15に炭素被覆を行ったものである。
<各試料の分析>
 上述のようにして得られた試料1-1~試料1-19のそれぞれについて、以下の分析を行った。
 粉末X線回折装置(リガク製Ultima II)を用いて、試料1-1~試料1-19をX線回折したところ、試料1-1~試料1-16にはLi2FeSiO4の結晶相が確認できたが、試料1-17~試料1-19にはLi2FeSiO4の結晶相は確認できなかった。
 透過型電子顕微鏡(日立製H-9000UHR III)を用いて、試料1-1~試料1-19の断面を観察した。試料1-1~試料1-14は図1と同様の海島構造の複合体粒子であったが、試料1-15は炭素と複合化されておらず、試料1-16は炭素被覆された複合体粒子であったが海島構造ではなかった。また試料1-17~試料1-19の複合体粒子からは島を確認できなかった。
 既出の方法により、試料1-1~試料1-14について島(ケイ酸鉄リチウム結晶)の円換算径を算出し、得られた各試料の円換算径を表1に併記した。
 走査型電子顕微鏡(日本電子株式会社製のJSM-7000F)を用いて、複合体粒子を観察し、その画像から複合体粒子の円換算径を算出した。なお、試料1-15~試料1-16は割愛した。
 各試料のBET比表面積を、島津製作所製の自動比表面積/細孔分布測定装置トライスター3000を用いて算出し、表1に併記した。
 各試料中に含まれる炭素材の含有量を、堀場製作所製の炭素・硫黄分析装置EMIA-320Vを用いて測定し、表1に併記した。
 各試料におけるC1sのショルダーピークの有無を、島津製作所製のX線光電子分光分析装置ESCA-3400を用いて判定した。なお、判定基準は、既出の方法によってA/Aを算出し、0.15以上である場合をショルダーピークが“有”としている。
 表1から明らかなように、熱処理温度及び熱処理時間の組合せと、複合体粒子の構造(島の円換算径)との間には相関が見られた。
<電池特性の評価>
 電池特性評価は、以下のようにして行った。
 先ず、それぞれの試料を、アセチレンブラック粉末及びポリテトラフルオロエチレン粉末と70:25:5の重量比で乳鉢で混合した後、チタンメッシュに圧着して正極を作製した。
 負極には金属リチウム箔を用い、負極集電体に厚さ20μmのニッケル箔を使用した。
 また、電解液としては、エチルカーボネートとジメチルカーボネートの体積比で1:2の混合溶媒に1.0mol/LのLiPF6を溶解させた非水電解液を用い、セパレータには厚さ25μmの多孔質ポリプロピレンを用いてCR2032型コイン電池をアルゴングローブボックス内で組み立てた。
 各試料毎にコイン電池をそれぞれ5個作製し、25℃の恒温槽でそれぞれ充放電試験を行い、初期充放電容量を測定した。初期充放電試験は、先ず、電圧範囲1.5~5.0V、1.0CのCC条件で2回予備充放電を繰り返した後に0.1CでCC-CV条件で2Li充電し、その放電容量を測定した結果を初期充放電容量とした。表1の「初期充放電容量」の欄には、各試料毎に5個のコイン電池の初期充放電容量を測定し、その最大値と最小値を除いた3個のコイン電池の初期充放電容量の平均値を記載している。
 また、別のコイン電池に対して同様に予備充放電を行った後に3.0Cで充電して放電容量を測定した結果を「急速充放電容量」の欄に記載した。
 更に以下のようにして、電解質の含浸時間を測定した。各試料毎にコイン電池を25℃の恒温槽に24時間保持して電解質を含浸させた後、充放電試験を行って初期充放電容量を測定して得られた数値を基準値とした。その後、各試料毎に、恒温槽での保持時間を変える以外は同様にして初期充放電容量を測定し、その中で、前記基準値と同じ初期充放電容量が得られる最短保持時間を求めた。これを「電解質含浸時間」の欄に記載した。
 以上のように、試料1-1及び試料1-2は海島構造の複合体粒子ではあったが、島の円換算径が15nm以上であり、高い初期充放電容量が得られていない。また、海島構造の複合体粒子ではない試料1-15~試料1-19からも、高い初期充放電特性は得られなかった。
 これに対し、試料1-3~試料1-14は、高い初期充放電容量が得られている。特に、BET比表面積が25~110cm2/gの範囲内であるか、又は、C1sピークにショルダーピークを有するものは、電解質含浸時間が短い。また複合体粒子の円換算径が50~500nmの範囲内にあるものは、急速充放電容量も高い。更に複合体粒子中の炭素含有量が2~25質量%の範囲内のものは、より高い初期充放電容量が得られている。
Figure JPOXMLDOC01-appb-T000001
 
(実施例2)
 ケイ酸マンガンリチウムの原料として、硝酸リチウム(LiNO3)、硝酸マンガン(II)四水和物(Mn(NO3)2・4H2O)、コロイダルシリカ(SiO2)を用いた。Li2FeSiO4の組成比で前記原料を含む濃度0.4mol/Lの水溶液に、炭素材となる有機化合物としてグルコースを0~200g/Lの範囲で添加し、表2の試料2-1~試料2-19に対応する水溶液をそれぞれ調製した。
 これらの水溶液を、それぞれ、窒素ガスからなるキャリヤーガスを用いて800℃に加熱した加熱炉中で噴霧熱分解することにより、中間体粒子を得た。得られた中間体粒子は、エタノールを用いて湿式粉砕し、その後、試料2-17を除いて表2に記載された熱処理を行い、試料2-1~試料2-19の複合体粒子を作製した。なお、試料2-17は粉砕のみを行い、熱処理を行わなかった。また、試料2-9は真空ポンプを用いて減圧した条件下で熱処理を行い、それ以外の試料は1%のH/N雰囲気で熱処理を行った。
 試料2-15は、水溶液に添加したグルコースが0g/Lの例である。また試料2-16は、試料2-15にグルコース溶液を含浸させた後、1%のH2/N2雰囲気で600℃、2時間の熱処理を行うことにより、試料2-15に炭素被覆を行ったものである。
 実施例1と同様の分析、評価を行った結果を表2に示す。なお、試料2-1~試料2-14、及び試料2-19は図1と同様の海島構造の複合体粒子であったが、試料2-15は炭素と複合化されておらず、試料2-16は炭素被覆された複合体粒子であったが海島構造ではなかった。また試料2-17~試料2-18の複合体粒子からは島を確認できなかった。
 以上のように、試料2-1及び試料2-2は海島構造の複合体粒子ではあったが、島の円換算径が15nm以上であり、高い初期充放電容量が得られていない。また海島構造の複合体粒子ではない試料2-15~試料2-18からも、高い初期充放電容量が得られなかった。
 これに対し、試料2-3~試料2-14、試料2-19は高い初期充放電容量が得られている。特に、BET比表面積が25~110cm2/gの範囲内であるか、又は、C1sピークにショルダーピークを有するものは、電解質含浸時間が短い。また複合体粒子の円換算径が50~500nmの範囲内にあるものは、急速充放電容量も高い。更に複合体粒子中の炭素含有量が2~25質量%の範囲内のものは、より高い初期充放電容量が得られている。
Figure JPOXMLDOC01-appb-T000002
 
(実施例3)
 マンガンで一部置換したケイ酸鉄リチウムの出発原料として、炭酸リチウム(Li2CO3)、塩化鉄(II)(FeCl2)、炭酸マンガン(II)(MnCO3)、コロイダルシリカ(SiO2)を用いた。Li2(Fe0.85Mn0.15)SiO4の組成比で前記原料を含む濃度0.4mol/Lの水溶液に、炭素材となる有機化合物としてグルコースを0~150g/Lの範囲で添加し、表3の試料3-1~試料3-19に対応する水溶液をそれぞれ調製した。
 これらの水溶液を、それぞれ、窒素ガスからなるキャリヤーガスを用いて800℃に加熱した加熱炉中で噴霧熱分解することにより、中間体粒子を得た。得られた中間体粒子は、それぞれ、エタノールを用いて湿式粉砕し、その後、試料3-17を除いて表3に記載された熱処理を行い、試料3-1~試料3-19の複合体粒子を作製した。なお、試料3-17は粉砕のみを行い、熱処理を行わなかった。また、試料3-9は真空ポンプを用いて減圧した条件下で熱処理を行い、それ以外の試料は1%のH/N雰囲気で熱処理を行った。
 試料3-15は、水溶液に添加したグルコースが0g/Lの例である。また試料3-16は、試料3-15にグルコース溶液を含浸させた後、1%のH2/N2雰囲気で600℃、2時間の熱処理を行うことにより、試料3-15に炭素被覆を行ったものである。
 実施例1と同様の分析、評価を行った結果を表3に示す。なお、試料3-1~試料3-14は図1と同様の海島構造の複合体粒子であったが、試料3-15は炭素と複合化されておらず、試料3-16は炭素被覆された複合体粒子であったが海島構造ではなかった。また試料3-17~試料3-19の複合体粒子からは島を確認できなかった。
 以上のように、試料3-1及び試料3-2は海島構造の複合体粒子ではあったが、島の円換算径が15nm以上であり、高い初期充放電容量が得られていない。また、海島構造の複合体粒子ではない試料3-15~試料3-19からも、高い初期充放電特性は得られなかった。
 これに対し、試料3-3~試料3-14は、高い初期充放電容量が得られている。特に、BET比表面積が25~110cm2/gの範囲内であるか、又は、C1sピークにショルダーピークを有するものは、電解質含浸時間が短い。また複合体粒子の円換算径が50~500nmの範囲内にあるものは、急速充放電容量も高い。更に複合体粒子中の炭素含有量が2~25質量%の範囲内のものは、より高い初期充放電容量が得られている。
Figure JPOXMLDOC01-appb-T000003
 
(実施例4)
 試料1-1と同様の水溶液を準備し、表4に記載された加熱温度、熱処理条件で試料4-1~試料4-5を得た。
 また試料2-1と同様の水溶液を準備し、表4に記載された加熱温度、熱処理条件で試料4-6~試料4-10を得た。
 更に試料3-1と同様の水溶液を準備し、表4に記載された加熱温度、熱処理条件で試料4-11~試料4-15を得た。
 試料4-1~試料4-15に対し、実施例1と同様の分析、評価を行った結果を表4に併記した。
 表4に示されるように、複合体粒子中のリチウムケイ酸塩結晶の円換算径は、熱分解温度とも相関があることが分かる。
Figure JPOXMLDOC01-appb-T000004
 
 以上、本発明を、噴霧熱分解法を利用した製造方法により得られた実施例で説明したが、本発明はこれに限定されるものではなく、ルスナー型焙焼炉に前述の液滴を導入して加熱しても同様の中間体粒子を作製できる。例えばルスナー型焙焼炉では液化天然ガスを燃料とし、空気/燃料の比率を制御して酸素分圧をほぼゼロにする。得られた中間体粉末の後の処理は上記と同様であり、試料の評価についても同様である。
(比較例)
 固相反応法でケイ酸鉄リチウムを作製した。ケイ酸鉄リチウムの原料として、ケイ酸リチウム(Li2SiO3)、シュウ酸鉄(II) 二水和物(FeC2O4・2H2O)を用い、これらをLi2FeSiO4の組成比になるように秤量した後、ボールミルにより、メタノールを用いて湿式混合を72時間行った。得られた混合物を1%のH2/N2雰囲気中、800℃で48時間、焼成した。その後、遊星ボールミルで湿式粉砕し、さらにグルコースを含浸・熱処理することにより炭素を含有させた。
 実施例1と同様の分析・評価を行ったところ、ここで得られた試料には、炭素材が10質量%含有されているが、本発明のような海島構造の複合体粒子は観察されず、BET比表面積は3m/gであった。またケイ酸鉄リチウム結晶の円換算径は50nmであり、XPSのC1sピークにショルダーピークは見られなかった。コイン電池にして電池特性を測定したところ、初期充放電容量は110mAh/gであった。
 本発明は、リチウムイオン二次電池の分野で利用することができる。

Claims (10)

  1.  Li2MSiO4(MはFe及び/又はMnを含む1種以上の遷移金属元素)で示されるリチウムケイ酸塩結晶と炭素材との複合体粒子を含むリチウムイオン二次電池用正極材料であって、
     前記複合体粒子は、前記炭素材中に前記リチウムケイ酸塩結晶が島状に点在する海島構造を呈し、当該島の円換算径の平均値が15nm未満であることを特徴とするリチウムイオン二次電池用正極材料。
  2.  前記複合体粒子のBET比表面積が25~110m/gであることを特徴とする請求項1に記載のリチウムイオン二次電池用正極材料。
  3.  前記炭素材のX線光電子分光法によるC1sのピークが、SPピーク、SPピークの他、高結合エネルギー側にショルダーピークを有することを特徴とする請求項1又は2に記載のリチウムイオン二次電池用正極材料。
  4.  前記複合体粒子の円換算径の平均値が50~500nmであることを特徴とする請求項1乃至3の何れかに記載のリチウムイオン二次電池用正極材料。
  5.  前記複合体粒子中の炭素材の含有量が、2~25質量%であることを特徴とする請求項1乃至4の何れかに記載のリチウムイオン二次電池用正極材料。
  6.  少なくとも、Li2MSiO4(MはFe及び/又はMnを含む1種以上の遷移金属元素)で示されるリチウムケイ酸塩を構成する元素を含む化合物と、炭素材となる有機化合物とを含む溶液を、液滴の状態で熱分解し、反応させて得られた中間体粒子を、不活性雰囲気中又は還元雰囲気中で400℃以上、且つ前記リチウムケイ酸塩の融点未満の温度で熱処理することによって得られる複合体粒子を含むことを特徴とするリチウムイオン二次電池用正極材料。
  7.  前記複合体粒子が、前記熱処理の前に粉砕処理されたものであることを特徴とする請求項6に記載のリチウムイオン二次電池用正極材料。
  8.  請求項1乃至7の何れかに記載のリチウムイオン二次電池用正極材料を含むことを特徴とするリチウムイオン二次電池用正極部材。
  9.  請求項1乃至7の何れかに記載のリチウムイオン二次電池用正極材料を含むことを特徴とするリチウムイオン二次電池。
  10.  少なくとも、Li2MSiO4(Mは1種以上の遷移金属元素)で示されるリチウムケイ酸塩を構成する元素を含む化合物と、炭素材となる有機化合物とを含む溶液を、液滴の状態で熱分解し、反応させて得られた中間体粒子を、不活性雰囲気中又は還元雰囲気中で400℃以上、且つ前記リチウムケイ酸塩の融点未満の温度で熱処理することによって得られる複合体粒子を用いることを特徴とするリチウムイオン二次電池用正極材料の製造方法。
PCT/JP2012/066844 2011-07-04 2012-07-02 リチウムイオン二次電池用の正極材料、正極部材、リチウムイオン二次電池及び前記正極材料の製造方法 WO2013005705A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/130,201 US9236611B2 (en) 2011-07-04 2012-07-02 Cathode material for lithium ion secondary battery, cathode member, lithium ion secondary battery, and production method for said cathode material
JP2013523005A JP5867505B2 (ja) 2011-07-04 2012-07-02 リチウムイオン二次電池用の正極材料、正極部材、リチウムイオン二次電池及び前記正極材料の製造方法
CN201280042967.5A CN103782424B (zh) 2011-07-04 2012-07-02 锂离子二次电池用正极材料、正极部件、锂离子二次电池以及上述正极材料的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011147896 2011-07-04
JP2011-147896 2011-07-04

Publications (1)

Publication Number Publication Date
WO2013005705A1 true WO2013005705A1 (ja) 2013-01-10

Family

ID=47437054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066844 WO2013005705A1 (ja) 2011-07-04 2012-07-02 リチウムイオン二次電池用の正極材料、正極部材、リチウムイオン二次電池及び前記正極材料の製造方法

Country Status (5)

Country Link
US (1) US9236611B2 (ja)
JP (1) JP5867505B2 (ja)
CN (1) CN103782424B (ja)
TW (1) TWI597882B (ja)
WO (1) WO2013005705A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014499A (ja) * 2011-06-09 2013-01-24 Kurimoto Ltd ポリアニオン系化合物の合成方法
WO2013080763A1 (ja) * 2011-12-02 2013-06-06 昭栄化学工業株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、及びリチウムイオン二次電池
WO2013142500A1 (en) * 2012-03-19 2013-09-26 Cerlon Enterprises Llc Improved method for production of li2msio4 electrode materials
CN104009226A (zh) * 2014-05-13 2014-08-27 昆明理工大学 一种合成硅酸铁锂/石墨烯复合正极材料的方法
WO2014141960A1 (ja) * 2013-03-12 2014-09-18 ソニー株式会社 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2015008102A (ja) * 2013-06-26 2015-01-15 日亜化学工業株式会社 オリビン型ケイ酸遷移金属リチウム化合物およびその製造方法
CN108910901A (zh) * 2018-09-06 2018-11-30 宁夏大学 一种高纯硅酸铁锂的制备方法
CN116143135A (zh) * 2023-02-28 2023-05-23 昆明理工大学 一种基于表面重构硅切割废料制备高比容量、高抗氧化性纳米硅负极的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6042513B2 (ja) * 2015-03-24 2016-12-14 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
CN105428624A (zh) * 2015-12-08 2016-03-23 山东精工电子科技有限公司 一种醇助水热法制备硅酸亚铁锂/碳复合正极材料的方法
CN110970600B (zh) * 2018-09-28 2023-06-30 贝特瑞新材料集团股份有限公司 一种锂离子二次电池负极材料及其制备方法和应用
US10938063B2 (en) 2019-01-31 2021-03-02 University Of Maryland, College Park Lithium silicate compounds as Li super-ionic conductor, solid electrolyte and coating layer for lithium metal battery and lithium-ion battery
CN110474111A (zh) * 2019-06-20 2019-11-19 宋君 3.5v水系锂离子电池
WO2021095719A1 (ja) * 2019-11-11 2021-05-20 昭和電工株式会社 複合材料、その製造方法及びリチウムイオン二次電池用負極材など
CN113830774A (zh) * 2021-10-18 2021-12-24 浙江长兴中俄新能源材料技术研究院有限公司 一种基于溶胶-凝胶法的利用钛铁矿制备碳复合硅酸亚铁锂的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509447A (ja) * 2000-09-26 2004-03-25 ハイドロ−ケベック 制御されたサイズを持つ炭素によって被覆された、酸化還元物質の合成方法
JP2009087682A (ja) * 2007-09-28 2009-04-23 Tdk Corp 電極用複合粒子及び電気化学デバイス
JP2009302044A (ja) * 2008-05-14 2009-12-24 Tokyo Institute Of Technology 無機物粒子の製造方法、及びそれを用いた二次電池正極並びに二次電池
JP2011034776A (ja) * 2009-07-31 2011-02-17 Toda Kogyo Corp 非水電解質二次電池用正極活物質並びに非水電解質二次電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2271354C (en) 1999-05-10 2013-07-16 Hydro-Quebec Lithium insertion electrode materials based on orthosilicate derivatives
JP4151210B2 (ja) 2000-08-30 2008-09-17 ソニー株式会社 正極活物質及びその製造方法、並びに非水電解質電池及びその製造方法
JP4186507B2 (ja) 2001-05-15 2008-11-26 株式会社豊田中央研究所 リチウム二次電池正極活物質用炭素含有リチウム鉄複合酸化物およびその製造方法
JP2003059491A (ja) 2001-08-10 2003-02-28 Mikuni Color Ltd 炭素被覆リチウム遷移金属酸化物、2次電池正極材料及び2次電池
US6815122B2 (en) 2002-03-06 2004-11-09 Valence Technology, Inc. Alkali transition metal phosphates and related electrode active materials
JP2003272632A (ja) 2002-03-15 2003-09-26 Mikuni Color Ltd 炭素被覆リチウム遷移金属酸化物、2次電池正極材料及び2次電池
JP2004059447A (ja) * 2002-07-25 2004-02-26 Toray Ind Inc 二置換ベンゼン誘導体の塩素化方法
JP2004234977A (ja) 2003-01-29 2004-08-19 Matsushita Electric Ind Co Ltd リチウム二次電池用正極材料およびその製造方法ならびにそれを用いたリチウム二次電池
JP4684727B2 (ja) 2005-04-20 2011-05-18 日本コークス工業株式会社 リチウムイオン二次電池用正極材料及びその製造方法、並びにリチウムイオン二次電池
JP5235282B2 (ja) 2006-06-16 2013-07-10 国立大学法人九州大学 非水電解質二次電池用正極活物質及び電池
CN101540392B (zh) 2009-04-09 2011-04-06 西安建筑科技大学 一种锂离子电池正极材料硅酸锰锂的制备方法
US20120003139A1 (en) * 2010-06-30 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing power storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509447A (ja) * 2000-09-26 2004-03-25 ハイドロ−ケベック 制御されたサイズを持つ炭素によって被覆された、酸化還元物質の合成方法
JP2009087682A (ja) * 2007-09-28 2009-04-23 Tdk Corp 電極用複合粒子及び電気化学デバイス
JP2009302044A (ja) * 2008-05-14 2009-12-24 Tokyo Institute Of Technology 無機物粒子の製造方法、及びそれを用いた二次電池正極並びに二次電池
JP2011034776A (ja) * 2009-07-31 2011-02-17 Toda Kogyo Corp 非水電解質二次電池用正極活物質並びに非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T.MURALIGANTH ET AL.: "Microwave-Solvothermal Synthesis of Nanostructured Li2MSi04/C(M=Mn and Fe) Cathodes for Lithium-Ion Batteries", CHEM.MATER., vol. 22, 2010, pages 5754 - 5761 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014499A (ja) * 2011-06-09 2013-01-24 Kurimoto Ltd ポリアニオン系化合物の合成方法
WO2013080763A1 (ja) * 2011-12-02 2013-06-06 昭栄化学工業株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、及びリチウムイオン二次電池
WO2013142500A1 (en) * 2012-03-19 2013-09-26 Cerlon Enterprises Llc Improved method for production of li2msio4 electrode materials
US9166229B2 (en) 2012-03-19 2015-10-20 Cerion, Llc. Method for production of Li2MSiO4 electrode materials
WO2014141960A1 (ja) * 2013-03-12 2014-09-18 ソニー株式会社 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2014175238A (ja) * 2013-03-12 2014-09-22 Sony Corp 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
US9825296B2 (en) 2013-03-12 2017-11-21 Sony Corporation Secondary battery-use active material, secondary battery-use electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2015008102A (ja) * 2013-06-26 2015-01-15 日亜化学工業株式会社 オリビン型ケイ酸遷移金属リチウム化合物およびその製造方法
CN104009226A (zh) * 2014-05-13 2014-08-27 昆明理工大学 一种合成硅酸铁锂/石墨烯复合正极材料的方法
CN108910901A (zh) * 2018-09-06 2018-11-30 宁夏大学 一种高纯硅酸铁锂的制备方法
CN108910901B (zh) * 2018-09-06 2019-11-19 宁夏大学 一种高纯硅酸铁锂的制备方法
CN116143135A (zh) * 2023-02-28 2023-05-23 昆明理工大学 一种基于表面重构硅切割废料制备高比容量、高抗氧化性纳米硅负极的方法

Also Published As

Publication number Publication date
CN103782424B (zh) 2016-06-08
JPWO2013005705A1 (ja) 2015-02-23
JP5867505B2 (ja) 2016-02-24
CN103782424A (zh) 2014-05-07
US9236611B2 (en) 2016-01-12
US20140141332A1 (en) 2014-05-22
TWI597882B (zh) 2017-09-01
TW201310759A (zh) 2013-03-01

Similar Documents

Publication Publication Date Title
JP5867505B2 (ja) リチウムイオン二次電池用の正極材料、正極部材、リチウムイオン二次電池及び前記正極材料の製造方法
JP5942855B2 (ja) リチウムイオン二次電池用の正極材料及びその製造方法
WO2011125722A1 (ja) リチウム二次電池用正極材料及びその製造方法、並びにリチウム二次電池用正極及びリチウム二次電池
JP5637102B2 (ja) リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、及びリチウムイオン二次電池
JP5939253B2 (ja) リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極及びリチウムイオン二次電池
US9966600B2 (en) Precursor for preparing lithium composite transition metal oxide, method for preparing the precursor, and lithium composite transition metal oxide
CN103311530A (zh) 正极活性材料、其制备方法和使用其的锂二次电池
JP5850058B2 (ja) リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、及びリチウムイオン二次電池
JP5760871B2 (ja) リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、リチウムイオン二次電池、及びリチウムイオン二次電池用正極材料の製造方法
JP2014199750A (ja) リチウム二次電池用負極炭素材料、リチウム電池用負極およびリチウム二次電池
CN110088970B (zh) 非水电解质二次电池
JP6508049B2 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池及びその製造方法
JP2018006331A (ja) 非水電解質二次電池用負極材料及びその製造方法
JP5967101B2 (ja) リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、及びリチウムイオン二次電池
EP4135067A1 (en) Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523005

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14130201

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807058

Country of ref document: EP

Kind code of ref document: A1