WO2013002575A2 - 도금층의 안정성이 우수한 열간 프레스 성형용 도금강판 - Google Patents

도금층의 안정성이 우수한 열간 프레스 성형용 도금강판 Download PDF

Info

Publication number
WO2013002575A2
WO2013002575A2 PCT/KR2012/005130 KR2012005130W WO2013002575A2 WO 2013002575 A2 WO2013002575 A2 WO 2013002575A2 KR 2012005130 W KR2012005130 W KR 2012005130W WO 2013002575 A2 WO2013002575 A2 WO 2013002575A2
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
layer
hot press
plated
press forming
Prior art date
Application number
PCT/KR2012/005130
Other languages
English (en)
French (fr)
Other versions
WO2013002575A3 (ko
Inventor
손일령
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110063304A external-priority patent/KR101289219B1/ko
Priority claimed from KR1020110063303A external-priority patent/KR101289198B1/ko
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2014518800A priority Critical patent/JP5860959B2/ja
Priority to EP12804542.4A priority patent/EP2728032A4/en
Priority to CN201280039619.2A priority patent/CN103764866B/zh
Priority to US14/127,350 priority patent/US9314997B2/en
Publication of WO2013002575A2 publication Critical patent/WO2013002575A2/ko
Publication of WO2013002575A3 publication Critical patent/WO2013002575A3/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/017Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe

Definitions

  • the present invention relates to a plated steel sheet for hot press forming excellent in the stability of the plated layer, and more particularly, liquid metal embrittlement (Liquid Metal Embr i 111 ement, briefly LME) phenomenon due to the zinc concentration region included in the plated layer during hot press forming.
  • the present invention relates to a hot-pressed plated steel sheet having excellent stability of the suppressed plating bug.
  • Hot press steel sheet is usually subjected to press working in a state heated to 850 ⁇ 930 ° C. When heated, the surface of the steel sheet is oxidized to generate scale. Therefore, a separate process such as a short blast to remove the scale after forming the product is required, and the corrosion resistance of the product is also inferior to the plating material. Therefore, in order to solve this problem, US Pat. A1 based plating is applied to the surface of the steel sheet to maintain the plating layer in the heating furnace to suppress oxidation reactions on the surface of the steel sheet and to increase corrosion resistance by using the passivation film formation of A1.
  • the A1 plating material has excellent heat resistance at high temperature, but is poor in corrosion resistance compared to the sacrificial anode type Zn plating, and has a disadvantage in that the manufacturing cost increases.
  • the Zn plated steel sheet manufactured by the conventional method is inferior in heat resistance at a high temperature compared to A1, and the plating layer is unevenly formed by alloying and high temperature oxidation of the Zn layer at a high temperature of 850 to 930 ° C. Since the ratio of Zn is lowered to less than 20%, there is a problem that the function as a plating material is reduced in terms of corrosion resistance.
  • an alloy phase with a high Zn ratio in the plating layer is present in the liquid phase.
  • a liquid metal embrittlement phenomenon occurs in which the liquid phase in the plating layer contacts the steel sheet to weaken the steel surface. This may cause cracks in the steel sheet, such as cracks.
  • a plated steel sheet for hot press forming in which liquid metal embrittlement is prevented and alloying and high silver stability of a zinc plated layer are improved.
  • Plated steel sheet according to one aspect for solving the problem of the present invention is a steel sheet; An A1 thickening layer containing 30 wt% or more of A1 formed on the base steel sheet; And
  • It includes a zinc plated layer formed on the A1 thickening layer
  • the number of particles having a particle size of 500 nm or more among the particles constituting the A1 enriched layer is less than 15 on average per 100 2 , and the area ratio of the A1 enriched layer is 88% or more at the interface between the base steel sheet and the zinc plated layer.
  • the plated steel sheet for hot press forming provided by the present invention uniformly and finely controls the particle size of the compound layer (particularly, the A1 thickening layer) on the surface, thereby uniformly alloying the entire plating layer upon heating for hot press forming. And, accordingly, the zinc concentration of the liquid phase with high concentration of zinc (Zn-rich of Zn 40% by weight or more) can be suppressed from occurring, thereby preventing damage to the steel sheet due to liquid metal embrittlement during hot press molding.
  • the aluminum contained in the compound layer is easily decomposed upon heating to move to the surface layer to form an oxide layer, thereby preventing volatilization and oxide growth of the zinc component included in the plating layer, thereby controlling the zinc content in the alloy layer to an appropriate range. Corrosion resistance of the press-formed part can be secured.
  • FIG. 1 is a state diagram illustrating a phenomenon in which phase separation between a Fe thickened zone and a Zn thickened zone is performed when a conventional galvanized steel sheet is heated to a hot press forming temperature.
  • FIG. 3 is a state diagram showing a heating path of a steel pipe for hot press forming according to an embodiment of the present invention
  • Example 4 is a scanning electron micrograph of observing the A1 enriched layer present between the steel plate and the zinc plated layer of the hot-dip galvanized steel sheet prepared in Example 2 of the present invention
  • FIG. 6 is a photograph of the surface of a steel sheet (part) hot press-formed according to Inventive Example 2 with an electron microscope;
  • the present invention is directed to galvanized steel sheet.
  • a galvanized steel sheet is a steel sheet having a plating layer containing zinc as a main component (for example, Zn> 50% by weight), and the corrosion resistance of the steel sheet can be greatly improved by the regenerative anode effect of zinc.
  • the inventors of the present invention can suppress the volatilization of zinc in the plating layer and prevent oxide growth when the A1 thickening layer containing 30 wt% or more of A1 is formed at the interface between the steel sheet and zinc as a zinc-based plated steel sheet. The discovery that one alloy layer could be obtained led to the present invention.
  • the plated steel sheet of the present invention is a steel sheet; A1 thickening layer containing 30% by weight or more of A1 formed on the base steel sheet; and characterized in that it comprises a galvanized layer formed on the A1 thickening layer.
  • the A1 thickening layer has A1 2 0 3 as the main component (for example, A1 2 0 3 content of 90 weight 3 ⁇ 4 or more) by A1 diffused to the plating layer surface and selectively oxidized to the plating layer surface when heating for hot press in the future. It serves to form a dense and thin oxide layer.
  • the oxide layer formed on the surface of the plating layer during hot press forming prevents the volatilization of zinc, thereby allowing the zinc in the alloy layer to be sufficiently present during the alloying process by heating, thereby reducing the role of the regenerative anode.
  • the A1 thickening layer is uniformly decomposed during the heating process for hot press, the progress of alloying may also occur quickly and uniformly, and as a result, Zn in the plating layer Partial liquefaction due to uneven concentration can effectively suppress the occurrence of liquid metal embrittlement during hot pressing.
  • the M enriched layer is preferably present in combination with a ratio close to the stoichiometric ratio of Fe and the intermetallic compound, for example, in the form of Fe 2 Al 5 .
  • the concentrated layer may contain some ⁇ , but its content is preferably limited to within 10 weight 3 ⁇ 4>.
  • the Zn content is 10% by weight or more, the shape of the A1 thickening layer becomes uneven, and the effect of the homogeneous alloying is halved.
  • the A1 thickening layer is to have the form of fine particles formed continuously, and this is the area ratio occupying the said A1 concentrated layer on the steel sheet and the plated layer surface '883 ⁇ 4> preferably greater than in the invention, more preferably at least 95% Do.
  • the particles constituting the A1 enriched layer preferably have a large number of particles having a particle size (although there are various methods for defining the particle size, which is determined by the diameter when the particles are averaged) in the range of 500 nm or less.
  • the ratio of the fine particles having a particle size of 500 nm or less should be high is that the A1 thickening layer should be easily decomposed upon heating for press molding in order to quickly move to the surface of the plating layer to form an oxide layer, and the rapid and uniformity of Fe into the plating layer. Alloying Because it can be induced. In other words, as a large amount of fine particles are distributed, the interface is increased and the compound particles are thermodynamically unstable, so that they can be easily decomposed. For this purpose, when observed using a particle size analyzer such as an image analyzer, for example, it is preferable that the number of particles having a particle size of 500 nm or more is within 15 pieces per 100 2 on average.
  • the number of particles having a particle size of 500 nm or more is higher than this, indicating that the particle size is not uniform as a whole, and the above-described concentration layer is not easily decomposed, which is less advantageous for preventing volatilization of zinc and liquid embrittlement during hot pressing.
  • the plated steel sheet of the holding steel sheet An A1 thickening layer containing 30 wt% or more of A1 formed on the base steel sheet; And a zinc plated layer formed on the A1 enriched layer, wherein the number of particles having a particle size of 500 nm or more among particles constituting the A1 enriched layer is preferably present within 15 of 100 2 on average, and the enriched layer is formed of a steel sheet and It is preferable to distribute at an area of 88% or more, more preferably 95% or more at the interface of the galvanized layer.
  • the method of analyzing the A1 thickening insect formed on the surface of the steel pipe is as follows.
  • the A1 thickening layer is present at the interface between the base steel sheet and the galvanized layer as described above, it is difficult to confirm the area distribution unless the galvanized layer is removed.
  • the layer distribution on the cross section can be confirmed, but the particle size distribution can be checked. Therefore, in order to confirm the particle size distribution, it is necessary to analyze the A1 enriched layer after chemically dissolving the Zn plating layer thereon without damaging the A1 enriched layer formed on the surface of the base steel sheet.
  • Zn is also dissolved in HN0 3 + Cr 3 + ZnS0 4 solution, and the Zn plating layer is melted, leaving only the A1 enriched layer.
  • Scanning electron microscope (SEM) photographs are taken at 20,000 to 50,000 times magnification of the A1 enriched layer, and the area of the A1 enriched layer and the particle size of the A 1 enriched layer are analyzed.
  • lOOizm method for measuring a particle size more than 500nm per second may have several, for example, 5, 000-10, 000 2 present per grain size after measuring the number of particles than 500nm this 100 second party to the average number of Representation can be secured by using At this time, when it is difficult to observe the particle size in one large area, it is possible to use a method of observing several times and then adding both the area and the number of particles having the observed particle size of 500 or more.
  • the surface occupancy ratio of the Al thickened layer was measured on an area ratio of 20,000 to 50,000 times by scanning electron micrograph according to the Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count method of ASTM E 562 ⁇ 08. do.
  • the particle size measurement of the A1 enriched layer is measured by image processing the boundary of the particles appearing on the plane observed by using the scanning electron micrograph All Image Analyze technique.
  • the method used herein measured particle size using an image analyzer LEICA Q 550 (LEICA). Since there may be a variety of methods for adjusting the particle size distribution of the particles forming the Al enriched layer, the independent claims of the present invention do not particularly limit it.
  • the particle size distribution can be easily performed when forming a diffusion barrier layer as described below or controlling the dew point temperature during annealing so that the elements dissolved in the steel sheet are internally oxidized to prevent diffusion and oxidation to the surface. Can be obtained.
  • the average thickness of the oxide formed on the surface of the steel sheet during annealing is preferably within 150nm.
  • the thickness of the A1 concentrated layer is 0.1 to 1.0. If A1 thick) ⁇ If the thickness of the layer is less than 0.1, the amount is too low to form the oxide film continuously, if the thickness exceeds 1.0, the thickness of the oxide film may be too thick, 0.1 It is preferable to limit it to -1.0.
  • the present invention and the inventors are a zinc-based galvanized steel sheet does not exist in the plated layer of the steel sheet at the temperature for hot press molding, liquid metal embrittlement phenomenon does not occur during press molding, and also due to excessive alloying and zinc volatilization loss It was found that alloying should be performed in an appropriate path according to the heating pass so that corrosion resistance does not occur due to the decrease of the zinc content in the plating layer.
  • the galvanized layer is a uniform alloy in the hot press forming temperature range of 780 ⁇ 950 o C It is necessary to have a composition. In other words, even though the amounts of Fe and Zn present in the entire plating layer are the same, alloying according to the heating path does not proceed uniformly as shown in FIG. 10, and the Zn enriched region area2 in the Fe enriched region real) is dispersed. May exist together.
  • the Zn enriched region (area2) is composed of a solid alloy region having a Zn fraction of about 0.4 (40 wt%) and a liquid region having a Zn fraction of about 0.9 (90 wt%) or more.
  • one preferred embodiment of the present invention is such that there is no liquid region in the plated layer of the plated steel sheet even at the hot press forming temperature.
  • the content of Zn contained in the plating layer at 900 ° C. at one point of the hot press molding temperature range needs to be 35 weight 3 ⁇ 4 or less at substantially all positions.
  • the Zn content at the above temperature is in the above-mentioned range, that is, alloying sufficiently by Fe can prevent embrittlement by the liquid metal, that is, LME phenomenon at 780-950 o C, which is a normal hot press forming temperature. Therefore, the Zn content at this temperature is taken as a reference.
  • the Zn content in the galvanized layer is excessively reduced, since the alloying ratio is high, the risk of embrittlement of the liquid metal may be reduced, but the corrosion resistance of the molded part may be seriously impaired. .
  • the zinc plated material has higher corrosion resistance than the aluminum plated material or the non-plated steel sheet by suppressing oxidation of the steel sheet by the regenerative anode method, and thus may be advantageously used for press molding.
  • Fe alloying excessively in the galvanized layer not only the Zn content in the alloy layer is reduced, but also the Zn activity is greatly reduced by interaction with Fe.
  • the activity of Zn decreases, the oxidation reaction of Zn is not active and eventually does not fully function as a regenerative anode. Therefore, excessive alloying also needs to be avoided.
  • Zn contained in the alloy layer is included at least 25 weight 3 ⁇ 4> at 900 ° C in order to serve as a sacrificial anode. There is a need.
  • the plated steel sheet for hot press forming When heated to 900 o C, the content of Zn in the plating layer
  • substantially all positions refer to a volume ratio of the alloying plating layer (that is, the plating layer obtained by heating to alloying at 900 ° C. and then quenching to obtain a plating layer obtained at room temperature). This is 90% or more, more preferably 95% or more.
  • the surface of the hot-pressed specimen may be mirror polished, slightly etched with a nital solution, and then observed with an optical microscope or a scanning electron microscope.
  • the Zn content of 25 ⁇ 35% and the non-Zn content are physically distinguished, and the image of the plated layer may be analyzed by an image analyzer having an image analysis function.
  • the average heating rate from room temperature to the measurement temperature (900 ⁇ ⁇ is 2 to 20).
  • o C / sec which refers to the alloy layer condition when the holding time at the final heating temperature (measurement temperature) is 0 to 6 minutes and then quenched, but the zinc plated layer is also in the Fe-Zn state diagram of FIG.
  • the normal heating condition is a heating condition for hot press molding. If one example is given, the internal silver of the furnace is in the range of 780 to 950 o C, and the average heating rate during heating is 2 to 20 o C / sec. Means.
  • the composition of each phase divided needs to be the most suitable composition so that the alloy layer finally corresponds to the desired composition at the hot press molding temperature.
  • the alloy is divided into two regions at a relatively low temperature at the initial stage of alloying, it is very difficult to finally converge the composition of the two regions into the same composition range. It is separated into two regions at the forming temperature, and as a result, the liquid metal is present in the plating layer, resulting in liquid metal embrittlement.
  • phase separation is caused by rapid alloying, and if the conditions of the steel sheet are controlled to be as uniform and rapid as possible, the composition of the alloy layer at the hot press forming temperature can be converged into one region.
  • the same measure of uniform and bright alloying can be found from the phase composition at 750 ° C. That is, at this temperature the galvanized layer has a Zn content
  • Fe concentration and Zn content of 40% by weight or less, preferably 30-40% by weight
  • the Zn content of Fe is too low, the thickening zone uniform, as well as disadvantages the hot press forming "temperature the content of the intra-layer Zn alloy is too low to secure corrosion resistance in It is difficult to obtain an alloy layer, and even when the Zn content of the Zn enriched region is too high, the composition of the two regions hardly converges to one range at the hot press forming temperature, so that a large amount of the liquid region exists and liquid metal embrittlement may occur. Can be.
  • the Zn content is composed of about 60 to 90% by weight, which is considered to be due to the decomposition of a part of the phase in the plating layer into a delta ( ⁇ ) or gamma (') phase during engraving.
  • the hot-dip galvanized steel sheet of the present invention has a Fe concentration and Zn content of less than 40 weight 3 ⁇ 4 Zn content at 750 ° C
  • the degree of alloying may vary according to the heating process and the heating time, in the present invention, in consideration of the heating process of a typical hot press forming process, the average heating rate from the phase silver to the degree of silver (750 ⁇ ⁇ is 2 ⁇ It means the alloy layer conditions at the time of making it into 20 o C / sec and making the holding time in the measurement silver degree into 0-6 minutes, and then rapidly abruptly.
  • the alloy layer formation history during the heating of the plated steel sheet for hot press forming of the present invention which satisfies the above advantageous conditions is shown in the state diagram of FIG. 3.
  • the base steel sheet is a metal surface diffusion layer of less than Cr Cr Gis free energy reduction per mole of oxygen oxide within l / zm from the surface (hereinafter, referred to simply as 'surface diffusion layer') It is preferable to include all.
  • the surface diffuser is in the Fe-Zn phase upon heating for hot forming. The solid solution prevents excessive diffusion of the component dissolved in the base steel sheet into the plated layer, and suppresses excessive diffusion of Zn in the zinc plated layer into the base plate.
  • Zn diffused into the base steel sheet has a lower ratio than the steel sheet component, and thus hardly contributes to the improvement of corrosion resistance of the steel sheet, thus reducing the amount of Zn consumed. By doing so, it is possible to secure a large amount of Zri (for example, 25 to 35 weight 3 ⁇ 4), which can contribute to the improvement of corrosion resistance of the steel sheet.
  • the presence of the surface diffusion layer serves to help the alloying of the Fe component uniformly diffused from the steel sheet, due to this role, the plating layer is a liquid metal at the hot press molding temperature (for example 780 ⁇ 950 o C) It is not present that liquid metal embrittlement (LME) can be effectively suppressed.
  • the surface diffusion layer serves to make the A1 thickening layer of the present invention more easily formed, so that the particles forming the A1 thickening layer are simultaneously generated, and as a result, as described above, It is possible to stratify the particle size distribution conditions of the particles forming the preferred AI thickening layer.
  • the content of the metal whose Gibbs free energy reduction is less than Cr per mole of oxygen included in the surface diffusion worm is 0.1 wt% or more.
  • the metal is diffused into the base material during the annealing heat treatment after coating to lower the concentration of the surface.
  • the metal content should be 0.1 wt% or more within the depth from the surface in the plating bath during galvanizing. This is because Al can be reacted with the metal to concentrate a larger amount of A1 on the surface diffusion layer.
  • the content of the metal is preferably limited to within 30%.
  • the amount of reduction in the free energy of Kims per 1 mole of oxygen per 1 mole of oxygen is less than 0.1 wt. 3 ⁇ 4 or more, preferably present in more than 1.0% by weight can be effectively prevented deterioration of the galvanized layer, more preferably more than 3.0% by weight can be contributed to secure the heat resistance of the galvanized layer more excellently.
  • the amount of Gibbs free energy reduction per mol of oxygen in the reaction reaction is included in the surface diffusion layer of the metal less than Cr or the zinc plating layer includes a metal in which Gibbs free energy reduction per mol of the oxidation reaction oxygen is less than Cr is A1
  • the concentrated layer may further include a metal having a reduced Gibbs free energy decrease per Cr per mole of oxygen during the oxidation reaction, and the content may be 5 wt% or less of the entire A1 enriched layer, and more preferably 0.1 to 5 wt%.
  • Can be Metals having a reduced Gibbs free energy reduction per mole of oxygen during the oxidation reaction may be derived from a steel sheet.
  • the surface diffusion layer when the surface diffusion layer is formed as above, A1 concentrates more A1 on the surface diffusion layer through the interfacial reaction.
  • the thickening layer will have a significant effect on the formation.
  • the area where the A1 enriched layer and the portion of the surface diffusion layer overlapped with a portion of the Gibbs free energy reduction amount per mole of oxygen less than Cr is 5% by weight or more in the entire surface diffusion layer and the A1 enriched layer It is preferably less than 10%, the overlapping portion means that the metal and A1 caused an alloy reaction to form an alloy phase.
  • A1 when A1 is present in the alloy state with the metal, it is not easy to diffuse to the surface of the plating layer during press heating.
  • Ni is a representative example of a metal having a reduced Gibbs free energy reduction amount per mole of oxygen during the reaction, and Ni, Fe, Co, Cu, Sn, and Sb may be applied.
  • Ni is an element with less oxygen affinity than Fe, and when Ni surface diffusion layer is coated on the surface of steel sheet, it does not oxidize during the annealing process after coating and suppresses oxidation of Mn, Si, etc.
  • the metal having a reduced Gibbs free energy reduction amount per mole of oxygen in the reaction reaction is most preferably present as a surface diffusion layer, but is not necessarily limited thereto, and the metal is plated together with zinc in the plating bath to be coated in the zinc plating layer. It is possible to exist.
  • the type of the zinc plating layer of the present invention is not particularly limited, and may include all of the zinc plating layer by hot dip galvanizing, electrolytic zinc plating, dry zinc plating by plasma, and liquid silver Zn spray.
  • Fe is preferably added to the galvanizing worms. This is to increase the melting point of Zn by Fe is sufficiently diffused into the galvanized layer to form a Fe-Zn alloy phase, which corresponds to a very important configuration for securing heat resistance.
  • Fe in the plating layer is mainly formed by diffusing into the steel sheet during the plating process, the plating layer becomes brittle as the plating layer becomes delta or gamma phase as the Fe content increases, so the content of Fe in the plating layer has its upper limit. it is preferred that has, in the present 'invention will be limited, the upper limit to 15.0% by weight.
  • the zinc plating layer may have Fe: 15.0 wt% or less, and-Gibbs per mole of oxygen during the oxidation reaction.
  • Metals with less free energy reduction than Cr 2.0% by weight, with the remainder preferably containing Zn and other unavoidable impurities.
  • Metals having a reduced Gibbs free energy reduction amount per mole of oxygen in the molten zinc plating layer are less than Cr, which are diffused into the plating layer during hot press heating to be included in the plating layer, and in particular, when the oxidation reaction is performed on Fe-Zn during hot press heating.
  • a metal having a Gib free energy reduction amount per mole of oxygen less than Cr in a total amount of the plating layer and the A1 concentrated layer combined is less than 0.01 wt%. It is necessary to include, and the upper limit is preferably set to 2.0% by weight from the economic point of view.
  • A1 forming a concentrated layer having the characteristics of the invention described above is A1, but can be supplied in a variety of ways. If it is to provide from the plating layer, the plating layer more preferably contains 0.05-0.5% by weight of A1. If the content of A1 is less than 0.05%, the plating layer is easily formed unevenly, and if the content of A1 is more than 0.5% of the Zn plating layer. A thicker inhibitor layer is formed at the interface, and the diffusion rate of Fe, Mn, etc. into the Zn layer is lowered at the initial stage of reaction in the hot press furnace, so that the alloying in the furnace is delayed. It is more effective to prevent the alloying delay by controlling it to% or less and more preferably 0.25% or less.
  • the thickness of the galvanized layer should be 3 or more to ensure the heat resistance at high temperatures. If the thickness is less than 3, non-uniformity of the thickness of the plated layer may appear or the corrosion resistance may be lowered. More than ⁇ is effective. In addition, the thicker the plating layer, the better the corrosion resistance, 30 In this regard, sufficient corrosion resistance can be obtained, and in terms of economical efficiency, the upper limit of the thickness of the zinc plated layer is preferably set to 30. More preferably, the thickness of the plated layer is controlled to be within lm. By ensuring a high proportion of the alloy phase, it is possible to suppress the cracks caused by the LME that can occur on the surface during the press working as much as possible.
  • the annealing heat treatment may be performed depending on the type of the plated steel sheet.
  • the annealing oxide may be formed on the surface of the steel sheet.
  • the annealing oxide is discontinuously distributed on the surface diffusion layer, and part of the annealing layer may be included in the A1 enrichment layer.
  • the annealing oxide not only acts as a diffusion barrier to prevent alloying of Fe, Mn, etc., which is a member of the hot dip galvanized layer and the steel sheet, but also adversely acts to uniformly form an A1 enriched layer having a particle distribution defined by the present invention. Therefore, it is more preferable not to be formed as thin as possible.
  • the thickness of the annealing oxide is 150 nm or less, thereby facilitating alloying of the hot dip galvanized layer, thereby improving heat resistance and plating adhesion after press molding and suppressing liquid metal embrittlement. That is, when the thickness of the annealing oxide is more than 150iim A1 alloying layer is not formed well due to the effect of the annealing oxide may cause the unplated phenomenon, the particle and non-uniformity may be caused in the formation of the A1 compounded layer have. In this case, alloying of the plating layer is delayed at the initial stage of hot press heating, and thus it is not possible to secure the layered heat resistance during high temperature heating.
  • the thickness of the annealing oxide is Si, Mn of the steel sheet It may vary depending on the content of the, etc., the thickness of the annealing oxide is less than I50nm to ensure the plating property and heat resistance, it is possible to suppress the liquid metal embrittlement phenomenon.
  • the average thickness of the annealing oxide may be controlled to 100 nm or less, and more preferably, the plating thickness and heat resistance may be maximized by controlling the average thickness of the annealing oxide to 50 nm or less.
  • the step of annealing heat treatment to promote uniform alloying and to ensure heat resistance and to obtain a particle distribution of the A1 enriched layer by not forming the annealing oxide is to be carried out in the silver range of 700 ⁇ 900 ° C. desirable.
  • the annealing heat treatment temperature is less than 700 o C, the annealing temperature is too low to secure the material properties of the steel, when the temperature exceeds 900 ° C, the growth rate of the oxide is faster, the steel sheet and hot-dip galvanized layer in the present invention It becomes difficult to form a thin oxide film in between.
  • the annealing heat treatment temperature is preferably 500 to 700 ° C.
  • the dew point temperature of the annealing atmosphere is more preferably -10 ° C or less.
  • the mixed gas is a hydrogen (3 ⁇ 4) gas is a ratio of 3 ⁇ 15 volume 3 ⁇ 4>, the remaining gas is nitrogen (N 2 ) gas is preferably a mixed gas. If the ratio of 3 ⁇ 4 is less than 33 ⁇ 4, the reducing power of the atmosphere gas When the oxide is easily produced and the ratio of 3 ⁇ 4 exceeds 15%, the reducing power is improved, but it is economically disadvantageous because it is too much due to the increase in manufacturing cost compared to the increase in reducing power. .
  • the base steel sheet is used as a steel sheet for hot press forming
  • any type of hot rolled steel sheet or cold rolled steel sheet can be used as well as any kind, and the steel pipe for hot press forming is well known in the art. Therefore, the present invention is not particularly limited.
  • any material may be used as long as the tensile strength is 1400 MPa or more, preferably 1470 MPa or more when it is quenched with water, oil or a cooled press mold after heating to an austenite region.
  • the base steel sheet is made of weight% C: 0.1-0.4%, Si: 2.0% or less (excluding 0%), Mn: 0.1-4.0%, balance Fe and other unavoidable impurities. It may be more consistent with the subject matter of the invention, but is not necessarily limited thereto.
  • the composition of the base steel sheet of the present invention will be described.—The content of each component to be described later is notified in advance that all are based on weight.
  • C is a key element for increasing the strength of the steel sheet, and produces a hard phase of austenite and martensite. Austenite when the C content is less than 0.1% Even if hot pressing is performed in the single-phase zone, it is difficult to secure the target strength. Therefore, it is preferable to add the content of (: 0.1% or more. If the C content exceeds 0.4%, the toughness and weldability may decrease. The upper limit of C is limited to 0.4% or less because there is a disadvantage in the manufacturing process, such as high and excessively high strength, which impairs the flow through the annealing and plating processes.
  • Mn as a solid solution strengthening element, not only contributes greatly to the strength increase, but also plays an important role in delaying the transformation from austenite to ferrite. If the Mn content is less than 0.1%, the ferrite transformation temperature (Ae3) is increased in austenite, so that a high heat treatment temperature is required to press-process the steel sheet on the austenite single phase. On the other hand, when the content of Mn exceeds 4.0%, weldability, hot rolling property and the like may deteriorate, which is not preferable. At this time, the content of Mn is more preferably 0.5% or more in order to sufficiently reduce the ferrite transformation temperature (Ae3) and hardenability due to Mn.
  • Si 2% or less (except 0%).
  • Si is a component added for the purpose of deoxidation. If the content of Si exceeds 2%, it is difficult to pickle the hot rolled sheet, which may cause scale surface defects due to hot pickled steel sheet and unoxidized oxide. Since Si0 2 oxide may form on the steel surface and unplating may occur, the upper limit of Si is preferably limited to 2%. More preferably, more than 0,3% is added to maximize deoxidation. effective.
  • the steel of the present invention may include some unavoidable impurities, which are not specifically mentioned in the present invention because the impurities are obvious to those skilled in the art. One example of the impurity is A1.
  • the steel sheet is N: 0.001-0.02%, B: 0.0001-0.01%, Ti: 0.001-0.1%, Nb: 0.001-0.1%, V: 0.001-0.1%, Cr: 0.001-1.0%, Mo: It is preferable to further include 0.001-1.0%, Sb: 0.001-0.1% and W: 0.001-0.3%.
  • the manufacturing cost for controlling N in the steelmaking process can significantly increase, so the lower limit is set to 0.001%.
  • the N content is more than 0.02%, it is difficult to dissolve and perform the steel sheet during the manufacturing process, and thus the manufacturing cost may increase, and slab cracking due to MN is likely to occur, so the upper limit thereof is made 0.02%.
  • B is an element that delays ferrite transformation in austenite, and its content is 0.0001% If less than this, it is difficult to achieve the effect sufficiently, and when the content of B exceeds 0.01%, it is preferable to limit the upper limit to 0.01% because the effect not only saturates but also degrades hot workability.
  • Nb and V are effective elements for increasing the strength of the steel sheet, miniaturizing the grain size and improving heat treatment properties. If the content is less than 0.001%, the above effect cannot be obtained sufficiently, and if it exceeds 0.1%, the effect of the desired strength and yield strength increase cannot be expected due to the increase in manufacturing cost and excessive carbon and nitride production, and thus the upper limit is limited to 0.1%. It is preferable.
  • the effect is greater when added to a steel sheet requiring high impact energy characteristics, and the above effect is less than 0.001%. It is preferable to limit the upper limit to 1.0% because it cannot be obtained sufficiently, and the effect is saturated not only in 1.0% but also the manufacturing cost increases.
  • Sb is an element which plays a role of making the generation of scale uniform by suppressing selective oxidation of grain boundaries during hot rolling and improving pickling properties of hot rolled materials.
  • W is at the same time the source hydrogen to improve the "heat treatment hardenability of the steel sheet, W as a containing element that precipitates is favorable for securing strength, and if the content is less than 0.001% can not be obtained sufficiently the effect layer, the content is 0.3 When the amount exceeds the saturation, the effect is not only saturated, but the manufacturing cost is high. Therefore, the content is preferably limited to 0.001-0.3%.
  • Fe in the plating bath has a small amount of Fe dissolved in the base steel pipe, but is not particularly controlled unless dross occurs in the plating bath to give a magnetic field.
  • the thickness of the metal coating layer, the amount of metal concentrated from the surface to one depth, and the thickness of the Zn plating layer were measured by G0EDS analysis. Were verified by SEM, TEM observation, wet analysis, and spectroscopic chemical analysis (ESCA).
  • Inventive Examples 1 to 4 show a case in which a metal having a Gib free energy reduction amount per mole of oxygen during the oxidation reaction is coated with a metal less than Cr, which is one preferable method for controlling the particle size distribution of the A1 enriched layer to a range limited herein.
  • Examples 1 to 3 show the case where no special operation for the particle size distribution is performed.
  • the LME crack did not occur during the hot press processing, and the corrosion of the steel sheet hardly occurred after 480 hours of the corrosion experiment (SST) spraying a 5% NaCl aqueous solution. It showed corrosion resistance.
  • SST corrosion experiment
  • Comparative Examples 1 and 2 cracks occurred during hot pressing, and in Comparative Example 3, as shown in FIG. 11.
  • the Zn content in the plating layer was drastically decreased, and a thick oxide was formed on the surface.
  • the corrosion resistance was extremely inferior, and the corrosion depth was more than 300 mi on the steel surface after the SST test.
  • the hot-dipped galvanized steel sheet was subjected to a hot press process under the conditions shown in Table 2, and the hot press heating furnace was controlled in the atmosphere in the air.
  • the plated layer was analyzed for oxides formed on the surface and alloy phases in the plated layer through XRD and G0EDS analysis. For reference, the thickness of the plated layer was measured from the surface of the plated layer to the length of the Zn content in the plated layer in the vertical direction to the point of 25% by weight or more.
  • the particle distribution conditions in the A1 enriched layer correspond to the conditions of the present invention. It was confirmed that this did not meet the conditions of the present invention.
  • 4 and 5 show electron micrographs of the A1 enriched layer obtained by Inventive Example 2 and Comparative Example 1, respectively. As can be seen from the drawings, in the case of Inventive Example 2, the A1 enriched layer is fine and uniform, whereas in the case of Comparative Example 1, the A1 enriched layer is nonuniform and includes a large number of coarse particles having a diameter of 500 nm or more.
  • the particle size distribution of such particles has a great influence on hot press formability. That is, as shown in Table 2, the A1 enriched layer may contain a large amount of coarse particles. In this case, the liquid metal embrittlement phenomenon occurs during hot press molding, causing cracks in the steel sheet. In addition, in order to compare the cause of such a phenomenon more reliably, the result of having observed the cut surface of the steel plate (part) hot-press-molded by Inventive Example 2 and Comparative Example 1 by the transmission scanning electron microscope is shown in FIG. 6 and FIG. 7, respectively. .
  • FIG. 6 shows that cracks do not occur on the surface of FIG. 6, which is the case of Inventive Example 2, as a site where processing is concentrated during hot pressing.
  • FIG. 7, which is Comparative Example 1 cracks due to LME penetrate to the steel sheet. It can be seen. ⁇
  • FIG. 8 is an EDS analysis of the Zn enriched layer formed on the crack by expanding the crack hull penetrated into the steel sheet as a basis for confirming the presence of zinc penetrated into the steel sheet crack portion of FIG. It was confirmed that Zn was penetrated in the middle of the crack.
  • the steel sheet was heated and quenched under the conditions of Table 3 above, and then Zn content and phase analysis were performed in the galvanized layer.
  • the average heating rate of the steel sheet at the time of heating was set to 4 ° C. / sec.
  • the steel sheet provided by the inventive example had a ratio of 25-35% by weight of Zn at 900 ° C.
  • the steel sheet provided by the comparative example is a liquid phase because a large amount of phase Zn content is present It was confirmed that there was a high possibility of causing metal embrittlement.
  • the results are not shown in Table 3, but the steel plate was extracted at 750 ° C. and rapidly steeped to analyze the plating layer.
  • the Fe-enriched region and the Zn-concentrated region existed at the same time.
  • a hot press process was performed on the hot-dip galvanized steel sheet under the conditions shown in Table 3.
  • the hot press furnace The atmosphere was controlled in the atmosphere.
  • the average heating rate was controlled at 4 ° C / sec during press molding, and the total holding time in the furnace was set at 5 minutes.
  • the plated layer was analyzed for oxides formed on the surface and alloy phases in the plated layer through XRD and G0EDS analysis. For reference, the thickness of the plated layer was measured from the surface of the plated layer to the length of the Zn content in the plated layer in the vertical direction to the point of 25 weight 3 ⁇ 4 or more.
  • the Zn concentration in the plating layer contained not less than 35% by weight and not more than 90% by weight within 5%.
  • the proportion of the phase having a Zn content within 35 to 90% by weight was hardly observed, and the proportion of the phase having a Zn content of 25 to 35% by weight was more than 99% in the plating layer.
  • the average Zn content in the plated layer was measured after EDS was measured at five equal intervals from the top to the bottom of the plated layer with respect to the cross section of the plated layer.
  • embrittlement by the liquid metal can be suppressed in performing hot press. It will have a big impact on the molding and the use of parts.
  • the analysis value may be unclear to the actual existence value.
  • the Fe content after hot pressing 25 ⁇ 353 ⁇ 4> A stable plated film in a range is formed, which can be clearly distinguished from the base steel sheet.
  • an oxide within a thickness of 5 is uniformly formed on the steel plating surface.
  • the plating layer is clearly distinguished from the metal base layer, and the EDS analysis value for each site represents 25 to 35% by weight. In this case, cracks did not occur at the hot press portion, and the corrosion resistance of the steel sheet was shown to be superior to corrosion resistance.
  • the presence of the Zn enrichment zone will include liquefaction zones when heated to 780-950 ° C, causing cracks during hot press heating. In addition, the formation of surface oxides is uneven.
  • Comparative Example 3 which is the case of FIG. 11 and Table 6, after hot pressing, a thick oxide of more than 5 / ⁇ was formed on the surface, and the boundary between the plating layer and the metal base is unknown.
  • the content of Zn in the plating layer is not seen as a plating layer that can exhibit substantial corrosion resistance within 20% by weight, and thus, most of the galvanized layer may be lost and diffused into a portion of the steel sheet. In this case, as shown in Table 3, it is not possible to ensure a sufficient corrosion resistance when using the parts.
  • the plating layer was formed of Fe . The alloying process follows the process of FIG.
  • Table 6 (3 rain) 12 is a surface photograph of Inventive Example 1 of Table 3 and a hot press working portion. No crack is observed on the surface.
  • FIG. 13 is a surface photograph of a hot press working portion of Comparative Example 3 of Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Coating With Molten Metal (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

본 발명은 도금층의 안정성이 우수한 열간 프레스 성형용 도금강판에 관한 것으로서, 보다 상세하게는 열간 프레스 성형시 도금층에 포함된 아연 농화 영역에 의한 액상 금속 취화(Liquid Metal Embrittlement, 간략히 LME) 현상이 억제된 도금층의 안정성이 우수한 열간 프레스용 도금강판에 관한 것이다.

Description

【명세서】
【발명의 명칭】
도금층의 안정성이 우수한 열간 프레스 성형용 도금강판
【기술분야】
본 발명은 도금층의 안정성이 우수한 열간 프레스 성형용 도금강판에 관한 것으로서, 보다 상세하게는 열간 프레스 성형시 도금층에 포함된 아연 농화 영역에 의한 액상 금속 취화 (Liquid Metal Embr i 111 ement , 간략히 LME) 현상이 억제된 도금충의 안정성이 우수한 열간 프레스용 도금강판에 관한 것이다.
【배경기술】
최근 환경 규제에 따른 자동차 연비 감소를 목적으로 고강도 .강판에 대한 수요가 급증하고 있다. 자동차 강판이 고강도화 됨에 따라 프레스 성형시 마모, 파단 등이 발생하기 쉬우며 복잡한 제품 성형이 곤란해진다. 따라서 이러한 문제점을 해결하고자 강판을 가열하여 열간 상태에서 성형 가공하는 열간 프레스 공정에 의한 제품 생산이 크게 증가하고 있다. 열간 프레스 강판은 통상 850~930oC로 가열한 상태에서 프레스 가공을 거치게 되는데 가열시 강판 표면이 산화되어 스케일이 생성되게 된다. 따라서 제품 성형후 스케일을 제거하는 쇼트 브라스트와 같은 별도의 공정이 필요하게 되며, 제품의 내식성 또한 도금재에 비하여 열위하게 된다. 따라서, 이러한 문제점을 해결하고자, 미국등록특허 US6296805호에서와
Figure imgf000003_0001
강판 표면에 A1계 도금을 실시하여 가열로에서 도금층이 유지되면서 강판 표면의 산화 반웅을 억제하고 A1의 부동태 피막 형성을 이용하여 내식성을 증대시키는 제품이 개발되어 상용화 되어 있다.
그러나, 상기 A1 도금재의 경우 고온에서의 내열성은 우수하지만 희생 양극 방식의 Zn 도금에 비하여 내식성이 열워하며, 또한 제조 단가가 증가하게 되는 단점이 있다. 그러나, Zn의 경우 A1에 비하여 고온에서의 내열성이 크게 열위하여 통상적인 방법으로 제작된 Zn 도금강판은 850~930oC의 고온에서 Zn층의 합금화 및 고온 산화로 도금층이 불균일하게 형성되고 도금층중 Zn의 비율이 20% 미만으로 하향되어 내부식성 측면에서 도금재로서의 기능이 축소되는 문제가 있다.
뿐만 아나라, 가열후 열간에서 프레스 하는 동안 도금층내 Zn 비율이 높은 합금상이 액상으로 존재하여 열간 프레스를 시행 할 때, 도금층내 액상이 소지 강판과 접촉하여 강표면을 취약하는 소위 액상 금속 취화 현상을 유발하고 그 결과크랙 발생등 강판손상의 원인으로 될 수도 있다.
【발명의 상세한 설명】
【기술적 과제] 본 발명의 일측면에 따르면, 액상 금속 취화 현상이 방지되고 아연 도금층의 합금화 및 고은 안정성이 향상된 열간 프레스 성형용 도금강판이 제공된다. 【기술적 해결방법】
상기 본 발명의 과제를 해결하기 위한 한가지 측면에 따른 도금강판은 소지강판; 상기 소지강판 상부에 형성된 A1이 30중량 % 이상 포함된 A1 농화층; 및
상기 A1 농화층 위에 형성된 아연도금층을 포함하고,
상기 A1 농화층을 이루는 입자 중 입도가 500nm 이상인 입자의 개수가 100 2 당 평균 15개 이내이며, 상기 소지강판과 아연도금층의 계면에서 A1 농화층의 점유 면적율이 88% 이상인 것을 특징으로 한다.
【유리한 효과】
본 발명에 의해 제공되는 열간 프레스 성형용 도금 강판은 표면의 화합물 층 (특히, A1 농화층)의 입도를 균일하고 미세하게 제어함으로써, 열간 프레스 성형을 위한 가열시 도금층 전체를 균일하게 합금화 할 수 있으며, 그에 따라 아연의 농도가 높은 액상의 아연 농화 (Zn 40중량 % 이상인 Zn-rich) 영역이 발생하는 것을 억제하여 열간 프레스 성형시 액상 금속 취화에 따른 강판 손상을 방지할 수 다.
또한, 상기 화합물 층에 포함된 알루미늄이 가열시 쉽게 분해되어 표층으로 이동하여 산화물 층올 형성함으로써 도금층에 포함된 아연성분의 휘발 및 산화물 성장을 방지하여 합금 층 내의 아연 함량을 적정 범위로 제어할 수 있어 프레스 성형된 부품의 내식성을 확보할 수 있다.
【도면의 간단한 설명】
도 1은 종래의 아연도금강판을 열간 프레스 성형 온도로 가열했을 때, Fe 농화 영역과 Zn 농화 영역으로 상분리가 되는 현상을 도시한 상태도,
도 2는 열간 프레스 성형시 Zn의 함량이 과다하게 낮아지는 가열 경로를 나타내는 상태도,
도 3은 본 발명에 일예에 따른 열간 프레스 성형용 강관의 가열 경로를 나타내는 상태도,
도 4는 본 발명예 2에 의해 제조된 용융아연도금강판의 강판과 아연도금층 사이에 존재하는 A1 농화층을 관찰한 주사전자현미경 사진,
도 5는 비교예 1에 의해 제조된 용융아연도금강판의 강판과 아연도금층 사이에 존재하는 A1 농화층을 관찰한 주사전자현미경 사진,
도 6은 발명예 2에 의해 열간 프레스 성형된 강판 (부품)의 표면을 전자현미경에 의해 관찰한사진,
도 7은 비교예 1에 의해 열간 프레스 성형된 강판 (부품)의 표면을 전자현미경에 의해 관찰한사진,
도 8은 비교예 1의 열간 프레스 성형된 부품을 절단하여 절단면을 투과전자현미경으로 관찰한 사진,
도 9는 발명예 1에 따라 제조된 열간프레스 성형부품의 단면 및 각 지점에서의 성분을 EDS로 분석한 결과,
도 10은 비교예 1에 따라 제조된 열간프레스 성형부품의 단면 및 각 지점에서의 성분을 EDS로 분석한 결과' - 도 11은 비교예 3에 따라 제조된 열간프레스 성형부품의 단면 및 각 지점에서의 성분을 EDS로 분석한 결과,
도 12는 발명예 1의 열간프레스 가공부위의 표면 사진, 그리고
도 13은 비교예 3의 열간프레스 가공부위의 표면 사진이다
【발명의 실시를 위한 최선의 형태】 이하, 본 발명의 강판에 대해 상세히 설명한다.
본 발명은 아연도금강판을 대상으로 한다. 통상적으로 아연도금강판이라 함은 아연이 주성분 (예를 들면 Zn > 50중량 %)으로 포함된 도금층을 가지는 강판으로서, 아연이 가지는 회생양극효과에 의해 강판의 내식성이 크게 향상될 수 있는 것이다. 본 발명의 발명자들은 아연계 도금강판으로서 강판과 아연의 계면에 A1이 30중량 이상 포함된 A1 농화층이 특히 균일하게 형성될 경우 도금층 증의 아연의 휘발을 억제하고 산화물 성장을 방지할 수 있으며 균일한 합금층을 얻을 수 있다는 사실을 발견하고 본 발명에 이르게 되었다. 즉, 본 발명의 도금강판은 소지강판; 상기 소지강판 상부에 형성된 A1이 30중량 % 이상 포함된 A1 농화층; 및 상기 A1 농화층 위에 형성된 아연도금층을 포함하는 것을 특징으로 한다. 상기 A1 농화층은 향후 열간 프레스를 위한 가열시 도금층 표면으로 A1이 확산하여 도금층 표면으로 이동하여 선택산화함으로써 A1203가 주성분 (예를 들면, A1203 함량이 90중량 ¾ 이상)인 치밀하고 얇은 산화물 층을 형성되도록 하는 역할을 한다. 열간 프레스 성형시 도금층 표면에 형성된 산화물 층은 아연의 휘발을 방지하는 역할을 함으로써 가열에 의한 합금화 진행시 합금층내 아연이 층분히 존재하여 회생양극의 역할을 층실히 할 수 있도록 한다. 뿐만 아니라, 상기 A1 농화층이 열간 프레스를 위한 가열 과정에서 균일하게 분해 됨으로서 합금화의 진행 역시 신속하고, 균일하게 일어날 수 있는데, 그 결과 도금층내 Zn 농도의 불균일에 의한 부분적인 액상화로 열간 프레스시 액상 금속 취화 현상이 발생하는 것을 효과적으로 억제할 수 있다. 상기 M 농화층은 Fe와 금속간 화 물의 화학양론비에 가까운 비율로 결합하여 존재하는 것이 바람직한데, 예를 들면 Fe2Al5의 형태로 존재하는 것이 좋다. 상기 농화층에는 Ζη이 일부 포함될 수는 있으나 그 함량은 10 중량 ¾> 이내로 제한하는 것이 좋다. Zn 함량이 10중량 % 이상일 경우 A1 농화층의 형상이 불균일하여 짐에 따라 상기 균일 합금화의 효과가 반감된다. 이때, 상기 A1 농화층은 미세한 입자가 연속적으로 형성된 형태를 가지게 되는데, 본 발명에서는 강판과 도금층 계면에서 상기 A1 농화층이 '점유하는 면적률이 88¾> 이상인 것이 바람직하며, 95% 이상인 것이 보다 바람직하다. 상기 A1 농화층의 점유 면적률이 낮을 경우에는 합금화가 불균일하게 일어나 열간 프레스 가공시 액상 취화 현상이 일어날 수 있을 뿐더러 도금층 표면에 산화물 층이 충분히 형성되지 못하여 아연의 휘발 방지가 충분하지 못하게 된다. 또한, 상기 A1 농화층을 구성하는 입자는 그 입도 (입도를 정의하는 방법은 여러가지가 있지만, 본 발명에서는 해당 입자를 평균화 하였을 때의 직경으로 정함)가 500nm 이하인 입자가 다수를 이루는 것이 바람직하다. 입도 500nm 이하인 미세 입자의 비율이 높아야 하는 이유는 상기 A1 농화층이 향후 프레스 성형을 위한 가열시 용이하게 분해되어야 신속히 도금층 표면부로 이동하여 산화물 층을 형성할 수 있으며, 도금층 내로 Fe의 신속하고 균일한 합금화를 유도할 수 있기 때문이다. 즉, 미세한 입자들이 다량 분포할수록 계면이 증가하여 화합물 입자가 열역학적으로 블안정해지기 때문에 용이하게 분해될 수 있는 것이다. 이를 위해서는, 예를 들어 이미지 분석기 (Image Analyzer)와 같은 입도 분석기를 이용하여 관찰하였을 때, 입도가 500nm 이상인 입자의 개수가 100 2 당 평균 15개 이내로 존재하는 것이 바람직하다. 입도가 500nm 이상인 입자의 개수가 이보다 높으며, 전체적으로 입도가 불균일함을 나타내며, 상술한 농화층의 분해가 용이하지 않아 아연의 휘발방지 및 열간 프레스시 액상 취화 방지에 덜 유리하다. 따라서, 본원의 일측면에 따르면 본원의 도금강판은 소지강판; 상기 소지강판 상부에 형성된 A1이 30중량 % 이상 포함된 A1 농화층; 및 상기 A1 농화층 위에 형성된 아연도금층을 포함하고, 이때 상기 A1 농화층을 이루는 입자 중 입도가 500nm 이상인 입자의 개수가 100 2 당 평균 15개 이내로 존재하는 것이 바람직하며, 이러한 농화층은 소지강판과 아연도금층의 계면에서 88% 이상, 보다 바람직하게는 95% 이상의 점유면적율로 분포하는 것이 바람직하다. 소지강관 표면위에 형성된 A1 농화충을 분석하는 방법은 다음과 같다. 즉, A1 농화층은 상술한 바와 같이 소지강판과 아연도금층과의 계면에 존재하는 것이므로 아연도금층을 제거하지 않으면 면적분포를 확인하기 곤란하다. 즉, 단면 절단법으로는 단면상의 층분포는 확인할 수 있으나 입도분포는 확인하기 곤란하다ᅳ 따라서, 입도 분포를 확인하기 위해서는 상기 소지강판 표면에 형성되는 A1 농화층을 손상 시키지 않으면서 그 위의 Zn 도금층을 화학적으로 용해한 후에, A1 농화층을 분석하게 할 필요가 있다. Zn 도 층을 용해하기 위한 일례로서 HN03+Cr¾+ZnS04 용액으로 녹이며 Zn 도금층이 녹고 A1 농화층만 남게 된다. 이렇게 남겨진 A1 농화층에 대하여 20,000 ~ 50,000 배의 배율로 주사전자현미경 (SEM) 사진을 촬영하여 사진 분석올 통하여 A1 농화층의 면적을 및 A 1농화층의 입도를 분석하게 된다. 여기서 lOOizm2 당 입도 500nm 이상의 입자를 측정하는 방법은 여러가지가 있을 수 있으나, 예를 들어 5 ,000-10 ,000 2 의 면적당 존재하는 입도 500nm 이상의 입자의 개수를 측정한 후 이를 100 2 당의 평균 개수로 구하는 방법올 사용하여 대표성을 확보할 수 있다. 이때, 하나의 대면적에서 입도를 관찰하기 곤란할 경우에는 여러 번 관찰한 후 그 면적과 관찰된 500 이상의 입도를 가지는 입자의 개수를 모두 더하는 방법을 사용할 수 있다. 또한, 면적율 촬영된 20,000~50,000배의 주사전자 현미경 사진에 대하여 ASTM E 562一 08의 Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count 방법에 준하여 Al 농화층의 표면 점유율을 측정하게 된다. 또한, A1 농화층의 입도 측정은 상기 촬영된 주사 전자 현미경 사진올 Image Analyze 기법을 이용하여 관찰된 평면상에서 나타나는 입자의 경계를 화상처리하여 측정하게 된다. 일례로 본원에서 사용한 방법은 영상분석기 LEICA Q 550(LEICA사)를 이용하여 입도를 측정하였다. 상술한 Al 농화층을 이루는 입자의 입도 분포를 조절하는 방법은 여러가지가 있을 수 있으므로 본 발명의 독립청구항에서 이를 특별히 제한하지는 않는다. 다만, 몇가지 예를 든다면 후술하는 바와 같이 확산방지층을 형성하거나 또는 소둔시 이슬점 온도를 제어함으로써 강판내에 고용된 원소들이 내부산화하도록 함으로써 표면까지 확산하여 산화하는 것을 방지할 경우에는 용이하게 상기 입도분포를 얻을 수 있다. 이를 위하여는 소둔시 강판 표면에 형성된 산화물의 평균 두께가 150nm 이내인 것이 바람직하다. 이때, 상기 A1 농화층은 그 두께가 0.1~1.0 인 것이 보다 바람직하다. 만약, A1 농높 )층의 두께가 0.1 미만이면 상기 산화피막을 연속적으로 형성하기에 그 양이 너무 부족하고, 상기 두께가 1.0 를 초과하면 상기 산화피막의 두께가 너무 두꺼워질 우려가 있으므로, 0.1~1.0 로 한정하는 것이 바람직하다. 한편, 본 발명와 발명자들은 아연계 도금강판으로서 열간 프레스 성형을 하기 위한 온도에서 강판의 도금층에 액상영역이 존재하지 않아서 프레스 성형시 액상 금속 취화 현상이 발생하지 않으며, 또한 과도한 합금화 및 아연의 휘발 손실로 인하여 도금층내 아연의 함량이 감소함에 따른 내식성 저하가 발생하지 않기 위해서는 가열패스에 따라 적정한 경로로 합금화가 이루어져야 한다는 것을 발견하였다.
즉, 아연도금층은 열간 프레스 성형온도인 780~950oC 온도 범위에서 균일한 합금 조성을 가지는 것이 필요하다. 다시 말하면, 도금층 전체에 존재하는 Fe와 Zn의 양은 동일하더라도 도 10에 도시한 바와 같이 가열 경로에 따른 합금화가 균일하게 진행되지 않아서, Fe 농화 영역 real)내 Zn 농화 영역 (area2)이 분산되는 등과 같이 존재하는 경우가 있다. 이러할 때 , Zn 농화 영역 (area2)은 Zn의 분율이 약 0.4(40중량 %)인 고상 합금 영역과 Zn의 분율이 약 0.9(90중량 %)이상인 액상 영역으로 이루어지게 되어, 결국 전체 아연도금층은 Fe 농화 영역, Zn 농화 영역 중 고상 합금 영역 그리고 Zn 농화 영역 중 액상 영역의 3가지 영역으로 나뉘게 된다. 이 때 존재하는 Zn 농화 영역 중 액상 금속이 열간 프레스 가공시 소지강판과 접촉하여 고온에서 상대적으로 취약한 소지강판의 결정립 계면으로 침투하여 입계 취화를 일으키게 되는데, 이러한 현상이 액상 금속 취화의 원인이 되는 것이다. 一 따라서, 본 발명의 바람직한 일예는 열간 프레스 성형 온도에서도 도금강판의 도금층에 액상 영역이 존재하지 않도록 하는 것이다. 본 발명자들의 연구결과 이러한 효과를 얻기 위해서는 열간 프레스 성형 온도구간 중 일 지점의 온도인 900oC에서 도금층내 함유된 Zn의 함량이 실질적으로 모든 위치에서 35중량 ¾ 이하가 될 필요가 있다. 즉, 앞에서 살펴본 바와 같이 Zn 함량이 과다하게 높을 경우쎄는 액상이 생성될 우려가 있기 때문에 바람직하지 않다. 상기 온도에서 Zn 함량이 상술한 범위가 될 경우, 즉, 충분히 Fe에 의한 합금화가 일어난다는 것은 통상의 열간 프레스 성형온도인 780-950oC에서 액상 금속에 의한 취화, 즉 LME 현상이 방지될 수 있다는 것을 의미한다ᅳ 따라서, 상기 온도에서의 Zn 함량을 그 기준으로 삼는다. 그런데, 도 2에 도시한 바와 같이 아연도금층내 Zn의 함량이 과다하게 감소할 경우에는 합금화 비율이 높은 것이므로 액상 금속 취화의 우려는 감소할 수 있지만, 성형된 부품의 내식성이 심각하게 훼손될 수 있다. 즉, 상술하였듯이 아연도금재는 회생양극방식으로 강판의 산화를 억제함으로써 알루미늄 도금재나 비도금 강판에 비하여 높은 내식성을 가지고 있어 프레스 성형용으로 유리하게 사용될 수 있다. 그런데, 아연도금층 내로 Fe의 합금화가 과도하게 진행될 경우에는 합금층 내 Zn의 함량이 감소할 뿐만 아니라, Fe와의 상호작용에 의해 Zn의 활동도가 크게 감소하게 된다. Zn의 활동도가 감소할 경우에는 Zn의 산화반응이 활발하지 못하여 결국 회생양극으로서의 기능을 온전하게 발휘하지 못하게 된다. 따라서, 과도한 합금화 역시 지양해야 할 필요가 있다.. 본 발명의 발명자들의 연구결과에 따르면 합금층 중 포함된 Zn이 희생양극의 역할을 수행하기 위해서는 900°C에서 상기 Zn은 25중량 ¾> 이상 포함될 필요가 있다.
그러므로, 본 발명의 바람직한 측면에 따르면, 열간 프레스 성형용 도금강판은 900oC로 가열하였을 때, 실질적으로 모든 위치에서 도금층 중 Zn의 함량이
25~35중량 %인 것을 특징으로 한다. 본 발명에서 실질적으로 모든 위치라 함은 합금화된 도금층 (즉, 900oC으로 가열하여 합금화한 후 급냉하여 상온에서 얻어진 도금층을 의미함)의 성분을 분석하였을 때 상술한 합금 조성을 가지는 부분이 부피비율로 90% 이상이며, 보다 바람직하게는 95% 이상인 경우를 의미한다. 이때, 합금 조성의 부피 비율의 분석 방법으로는 열간 프레스 된 시편의 단면을 경면 연마하여 nital 용액으로 약하게 에칭한 후 광학 현미경이나 주사 전자 현미경으로 관찰하는 방법을 쓸 수 있다. 이 경우 Zn 함량이 25~35%인 영역과 그렇지 않은 영역은 물리적으로 뚜렷하게 구분되며, 이 도금층의 영상을 영상 분석 기능을 가진 영상 분석기 (Image Analyzer)로 분석하면 된다. 다만, 가열 프로세스와 가열 시간에 따라 합금화의 진행정도가 달라질 수 있으므로, 본 발명에서는 통상의 열간 프레스 성형 공정의 가열 프로세스를 고려하여 상온에서부터 측정 온도 (900οΟ까지의 평균 가열 속도를 2~20oC/초로 하고, 최종 가열 온도 (측정온도)에서의 유지 시간을 0~6분으로 한후 급냉하였을 때의 합금층 조건을 의미한다. 그런데, 아연도금층은 상술한 도 1의 Fe-Zn 상태도에서도 확인할 수 있듯이, 많은 중간상들이 존재함으로 인하여 온도가 상승하여 합금화가 진행됨에 따라, 통상의 가열 조건에서는 최종 가열은도에 도달하기 전에는 필연적으로 두 영역으로 나뉘게 된다. 여기서 통상의 가열 조건이라 함은 열간 프레스 성형을 위한 가열조건으로서 한가지 예를 든다면, 가열로의 내부 은도가 780~950oC 범위이며, 가열시 평균 가열 속도가 2~20oC/초의 속도를 의미한다.
이때, 나뉘는 각 상의 조성은 최종적으로 열간 프레스 성형 온도에서 합금층이 원하는 조성에 해당되기에 가장 적합한 조성으로 될 필요가 있다. 도 3에 도시한 바와 같이 합금화 초기에 비교적 낮은 온도에서부터 두 영역으로 나뉘기 될 경우에는 두 영역의 조성이 최종적으로 동일한 조성범위로 수렴하기는 매우 어려워지며 결론적으로 도 3에 도시한 바와 같이 열간 프레스 성형 온도에서 두 영역으로 분리되고 그 결과 액상 금속이 도금층 내에 존재함으로써 액상 금속 취화 현상을 초래하는 것이다.
본 발명자들의 연구결과 이러한 상분리는 급격한 합금화에 의해 일어나는 것으로서, 가급적 균일하면서도 신속히 합금화가 일어나도록 강판의 조건을 제어한다면 열간 프레스 성형 온도에서의 합금층의 조성을 하나의 영역으로 수렴시킬 수 있다. 상기와 같은 균일하고 환만한 합금화의 척도는 750oC에서의 상구성으로부터 확인할 수 있는데, 즉, 상기 온도에서 아연 도금층은 Zn 함량이
40중량 % 이하, 바람직하게는 30-40중량 %인 Fe 농화 영역과 Zn 함량이
40중량 %초과, 바람직하게는 60~90중량 %인 Zn 농화영역으로 나뉘게 된다. 이때
Fe 농화영역의 Zn 함량이 너무 낮을 경우에는 열간 프레스 성형' 온도에서도 합금층내 Zn의 함량이 너무 낮아 내식성 확보가 불리할 뿐만 아니라 균일한 합금층이 얻어지기 어려우며, Zn 농화 영역의 Zn 함량이 너무 높을 경우에도 역시 열간 프레스 성형 온도에서 두 영역의 조성이 한가지 범위로 수렴하기 어렵기 때문에 액상 영역이 다량 존재하게 되어 액상 금속 취화 현상이 발생할 수 있다. Zn 농화 영역의 경우 보다 바람직한 경우에 Zn 함량이 60~90중량 %정도로 구성되는데, 이것은 넁각과정에서 도금층내 상의 일부가 델타 (δ) 혹은 감마 (「)상으로 분해되기 때문으로 생각된다.
따라서, 본 발명의 보다 바람직한 측면에 따르면, 본 발명의 열간프레스 성형용 도금 강판은 750°C에서 Zn 함량이 40중량 ¾ 이하인 Fe 농화 영역과 Zn 함량이
40중량 % 초과인 Zn 농화영역을 가지는 것을 또한가지 특징으로 할 수 있다. 다만, 가열 프로세스와 가열 시간에 따라 합금화의 진행정도가 달라질 수 있으므로, 본 발명에서는 통상의 열간 프레스 성형 공정의 가열 프로세스를 고려하여 상은에서부터 측정은도 (750οΟ까지의 평균 가열 속도를 2~20oC/초로 하고, 측정 은도)에서의 유지 시간올 0~6분으로 한 후 급넁하였을 때의 합금층 조건을 의미한다. 상술한 유리한 조건을 층족시키는 본 발명의 열간 프레스 성형용 도금강판의 가열시 합금층 형성이력을 도 3의 상태도에서 나타내었다. 또한, 본 발명의 보다 바람직한 측면에 따르면 상기 소지강판은 표면으로부터 깊이 l/zm 이내에 산화반웅시 산소 1몰당 깁스자유에너지 감소량이 Cr보다 작은 금속의 표면확산층 (이하, 간략히 '표면확산층 '이라고도 칭함)올 포함하는 것이 바람직하다. 상기 표면확산충은 열간 성형을 위한 가열시 Fe-Zn 상내에 고용됨으로써 소지강판에 고용된 성분이 도금층으로 과도하게 확산되는 것을 방지함과 동시에, 아연 도금층의 Zn이 소지강판으로 과도하게 확산되는 것을 억제할 수 있다. 아연 도금층의 Zn이 소지강판으로 과도하게 확산될 경우에는 소지강판으로 확산되어 버린 Zn은 강판 성분에 비하여 그 비율이 낮아 강판의 내식성 향상에 거의 기여하지 못하게 되는데, 이렇게 소모되어 버리는 Zn의 양을 감소시킴으로써 강판의 내식성 향상에 기여할 수 있는 Zri을 다량 확보 (예를 들면 25~35중량 ¾)할 수 있는 것이다.
뿐만 아니라, 상기 표면확산층이 존재할 경우 강판으로부터 Fe성분이 균일하게 확산하여 합금화하는 것을 도와주는 역할을 하는데, 이러한 역할로 인하여 도금층에는 열간 프레스 성형 온도 (예를 들면 780~950oC)에서도 액상 금속이 존재하지 않아 액상 금속 취화 (LME)가 효과적으로 억제될 수 있는 것이다. 또한, 상기 표면확산층은 본 발명의 A1 농화층이 보다 용이하게 형성될 수 있도록 하기 때문에 A1 농화층을 이루는 입자가 동시다발적으로 생성되도록 하는 역할을 하며, 그 결과 상술한 바와 같이 본 발명의 보다 바람직한 AI 농화층을 이루는 입자의 입도분포 조건을 층족시킬 수 있다. 이를 위해서는 상기 표면 확산충에 포함된 산화반웅시 산소 1몰당 깁스자유에너지 감소량이 Cr보다 작은 금속의 함량은 0.1 중량 % 이상인 것이 바람직하다. 즉, 상기 금속은 코팅후 소둔 열처리를 행하는 과정에서 모재로 확산되어 표면의 농도가 낮아지게 되는데, 연구결과 표면으로부터 깊이 이내에 상기 금속의 함유량이 0.1 중량 % 이상되어야 아연도금시 도금욕 중의 Al을 상기 금속과 반웅시켜 더 많은 양의 A1을 상기 표면확산층 위에 농화시킬 수 있기 때문이다. 또한, 상기 금속의 함유량은 30% 이내로 제한하는 것이 바람직하다. 상기 금속함유량이 3 를 초과하게 되면 합금화 초기에서 지나치게 빠른 합금화가 진행되어 도금층내 합금화 균일성을 저해할 수 있기 때문이다. 따라서, 상기와 같이 금속의 코팅으로 아연도금층이 고은에서 분해되는 것을 방지하여 아연도금충의 내열성을 확보하기 위해서는 강판 표면으로부터 1 이내에 산화반웅시 산소 1몰당 김스자유에너지 감소량이 Cr보다 작은 금속이 0.1 중량 ¾ 이상 존재하여야하고, 바람직하게는 1.0중량% 이상으로 포함될 경우 아연도금층의 열화를 효과적으로 방지할 수 있고, 보다 바람직하게는 3.0 증량 % 이상이 되면 더욱 우수하게 아연도금층의 내열성 확보에 기여할 수 있다. 또한, 만일 상기 산화반웅시 산소 1몰당 깁스자유에너지 감소량이 Cr보다 작은 금속의 표면확산층이 포함되거나 아연도금층에 상기 산화반응사 산소 1몰당 깁스자유에너지 감소량이 Cr보다 작은 금속이 포함될 경우에는 상기 A1 농화층에는 상기 산화반웅시 산소 1몰당 깁스자유에너지 감소량이 Cr보다 작은 금속이 더 포함될 수 있으며, 그 함량은 A1 농화층 전체의 5중량 % 이하가 될 수 있으며 보다 바람직하게는 0.1~5중량 %가 될 수 있다. 상기 산화반응시 산소 1몰당 깁스자유에너지 감소량이 Cr보다 작은 금속은 강판으로부터도 유래할 수 있다. 특히, 상기와 같은 표면확산층이 형성되면 A1이 계면반웅을 통해 상기 표면확산층 위에 더 많은 A1이 농화되기 때문에, 상기 표면확산층은 이러한 A1 농화층이 형성에 중요한 영향을 미치게 된다. 이때, EPMA 분석시 상기 A1 농화층과 상기 표면확산층 중 상기 산화반웅시 산소 1몰당 깁스자유에너지 감소량이 Cr보다 작은 금속의 함량이 5중량 % 이상인 부분이 겹치는 면적이 전체 표면확산층 및 A1 농화층에 대해 10% 이하인 것이 바람직한데, 상기 겹쳐지는 부분은 상기 금속과 A1이 합금반웅을 일으켜 합금상을 형성했음을 의미한다. 이와 같이 A1이 상기 금속과 합금상태로 존재하게 되면 프레스 가열시 도금층 표면으로 확산되기가 용이하지 않기 때문에, 합금상태로 존재하는 부분이 많게 되면 상기 A1203연속적인 산화피막을 형성하는 데에 기여할 수 있는 A1의 양이 실질적으로 줄어들게 된다. 따라서, EPMA 분석으로 볼 때, 상기 겹치는 부분이 10% 이하가 되어야 합금상태로 존재하지 않는 A1이 상기 농화층에 충분히 위치하게 되어 A1203 산화피막을 효과적으로 형성하게 되는 것이다. 상기 산화반웅시 산소 1몰당 깁스자유에너지 감소량이 Cr보다 작은 금속의 대표적인 예로서는 Ni을 들 수 있으며, 이외에도 Fe, Co, Cu, Sn, Sb 등이 적용될 수 있다. Ni는 산소 친화력이 Fe에 비하여 적은 원소로 Ni 표면확산층이 강판 표면에 피복하고 있는 경우, 코팅 후 소둔과정에서 산화가 되지 않고 강판 표면의 친산화성 원소인 Mn, Si 등의 산화를 억제하는 역할을 하게 된다. 상기 Fe, Co, Cu, Sn, Sb도 금속 표면에 피복되면 유사한 특성을 보이게 된다. 이때, Fe는 단독으로 사용하는 것보다 Ni 등과 합금상태로 사용하는 것이 보다 바람직하다. 또한, 상기 산화반웅시 산소 1몰당 깁스자유에너지 감소량이 Cr보다 작은 금속은 표면확산층으로 존재하는 것이 가장 바람직하나, 반드시 그에 한정하지는 않으며 도금욕 내에서 아연과 함께 도금되어 아연도금층 내에 존재하는 것도 가능하다. 그리고, 본 발명의 아연도금층의 종류에는 특별한 제한이 없고, 용융아연도금, 전기아연도금, 플라즈마에 의한 건식아연도금, 고은 액상 Zn 스프레이에 의한 아연도금층 등을 모두 포함할 수 있다. 상기 아연도금충에는 Fe가 첨가되는 것이 바람직하다. 이는 Fe가 아연도금층으로 충분히 확산되어 Fe-Zn 합금상을 형성시킴으로써 Zn의 융점을 상승시키기 위한 것으로서, 내열성 확보를 위한 매우 중요한 구성에 해당한다. 다만, 도금층내 Fe는 주로 도금 과정에서 소지 강판으로 확산되어 형성되는 것인데, Fe 함량이 증가함에 따라 도금층은 델타 혹은 감마상이 됨에 따라 도금층이 취성을 가지게 되므로, 따라서 도금층내 Fe의 함량은 그 상한을 가지는 것이 바람직한데, 본' 발명에서는 그 상한을 15.0 중량 %으로 제한한다. 보다 바람직하게는 Fe가 5.0 중량 % 이하로 첨가될 경우 도금층에 발생할 수 있는 미세 크랙을 더욱 저감시킬 수 있다: 또한, 상기 아연 도금층은 Fe: 15.0중량 ¾ 이하, -상기 산화반응시 산소 1몰당 깁스자유에너지 감소량이 Cr보다 작은 금속: 2.0중량 % 이내, 나머지는 Zn 및 기타 불가피한 불순물을 포함하는 것이 바람직하다. 상기 용융아연도금층에 포함된 산화반웅시 산소 1몰당 깁스자유에너지 감소량이 Cr보다 작은 금속은 열간 프레스 가열시 도금층 내로 확산되어 도금층에 포함되게 되며, 특히 열간 프레스 가열시 Fe-Zn에 상기 산화반웅시 산소 1몰당 깁스자유에너지 감소량이 Cr보다 작은 ,금속이 고용되어 3원상을 형성하게 되고, 이에 따라 프레스 가열시에 소지철의 Fe 등이 도금충 내로 확산되는 것을 저감시킴으로써, 이에 따라 아연도금층이 분해되지 않고 단일한 도금층을 형성하는 데에 핵심적인 역할을 하게 된다. 따라서, 프레스 가열시 도금층에 내열성을 부여하기 위해서 상가 3원상이 층분히 형성되도록 하기 위해서는 도금층 및 A1 농화층을 합한 전체 산화반웅시 산소 1몰당 깁스자유에너지 감소량이 Cr보다 작은 금속이 0.01중량 % 이상으로 포함할 필요가 있으며, 경제성 차원에서 상한은 2.0 중량 %로 정하는 것이 바람직하다. 또한, 상술한 본 발명의 특징을 가지는 A1 농화층을 이루는 A1은 다양한 방식으로 공급될 수 있으나,. 도금층으로부터 제공하고자 한다면 도금층은 A1을 0.05-0.5중량 % 포함하는 것이 보다 바람직하다. 상기 A1의 함량이 0.05% 미만에서는 도금층이 불균일하게 형성되기 쉽고, A1의 함량이 0.5%를 초과해서는 Zn 도금층의. 계면에 인히비션 (inhibition)층이 두껍게 형성되어 열간 프레스 가열로에서의 반웅 초기에 Zn층내로의 Fe, Mn 등의 확산 속도가 저하되어 가열로 내에서의 합금화가 지연되기 때문에 A1량을 0.5% 이하로 제한하고, 보다 바람직하게는 0.25% 이하로 제어하는 것이 합금화 지연 방지에 더욱 효과적이다. 또한, 상기 아연도금층의 두께는 3 이상이 되어야 고온에서의 내열 특성을 확보할 수 있고, 만약 상기 두께가 3 에 미달하면 도금층 두께의 불균일이 나타나거나 내식성이 저하될 수 있으며, 보다 바람직하게는 5卿 이상인 것이 효과적이다. 또한, 도금층의 두께가 두꺼울수록 내식성 확보에 유리하지만, 30 정도이면 충분한 내식성을 얻을 수 있고, 경제성 측면에서 아연도금층의 두께 상한은 30 로 정하는 것이 바람직하고, 보다 바람직하게는 상기 도금층 두께를 l m 이내로 제어하여 열간 프레스 공정후 도금층내 Fe가 60중량 ¾> 이상이 되는 합금상의 비율을 높게 확보함으로써 프레스 가공시 표면에 발생할 수 있는 LME에 의한 크랙을 최대한 억제하는 것도 가능하다. 또한, 도금강판의 종류에 따라 소둔 열처리를 수행하는 경우가 있는데, 이 때, 강판의 표면에 소둔산화물이 형성될 수 있다. 상기 소둔 산화물은 상기 표면확산층 위에 불연속적으로 분포하게 되고, 일부는 A1 농화층에 포함될 수도 있다. 그런데, 상기 소둔 산화물은 상기 용융아연 도금층과 강판의 구성원소인 Fe, Mn 등의 합금화를 막는 확산 장벽으로서 역할을 할 뿐만 아니라 본 발명에서 규정하는 입자 분포를 가지는 A1 농화층이 균일 형성되는데 불리하게 작용하기 때문에 가급적 얇게 형성되거나 형성되지 않도록 하는 것이 보다 바람직하다. 본 발명에서는 상기 소둔 산화물의 두께를 150nm이하가 되도톡 함으로써, 용융아연도금층의 합금화를 촉진하여 내열성 및 프레스 성형 후의 도금 밀착성을 향상시키고 액상 금속 취화 현상을 억제할 수 있다. 즉, 상기 소둔 산화물의 두께가 150iim를 초과하는 경우에는 소둔 산화물의 영향으로 A1 합금화 층 형성이 잘 이루어지지 않아 미도금 현상이 발생할 수 있고, A1 합 화층의 형성에 있어서 입자와 불균일이 유발될 수 있다. 이러한 경우 열간 프레스 가열 초기에 도금층의 합금화가 지연되어 고온 가열시 층분한 내열성을 확보할 수 없게 된다. 이때, 소둔 산화물의 두께는 소지강판의 Si, Mn 등의 함량에 따라 달라질 수 있는데, 상기 소둔 산화물의 두께가 I50nm 이하가 되어야 도금성 및 내열성 확보가 가능하며 액상 금속 취화 현상의 억제가 가능하다. 바람직하게는 상기 소둔 산화물의 평균 두께를 lOOnm 이하로 제어할 수 있고, 보다 바람직하게는 상기 소둔 산화물의 평균 두께를 50nm 이하로 제어함으로써 도금성 및 내열성 등을 극대화시킬 수 있다. 이때, 상기 소둔 산화물을 형성시키지 않음으로써 균일한 합금화를 촉진시키고 내열성을 확보함과 동시에 바람직한 A1 농화층의 입자 분포를 얻기 위해 상기 소둔 열처리하는 단계는 700~900oC이하의 은도범위에서 행하는 것이 바람직하다. 상기 소둔 열처리 온도가 700oC에 미달하면 소둔온도가 너무 낮아 강의 재질특성 확보가 어렵고, 상기 온도가 900°C를 초과하게 되면, 산화물의 성장 속도가 빨라지게 되어 본 발명에서 강판과 용융아연도금층 사이에 얇은 산화피막을 형성하기 어렵게 된다. 만일 열연 강판이거나 이미 재결정 열처리를 수행한 강판을 사용하는 경우라면, 소둔 열처리 온도는 500~700°C가 바람직하다.
또한, 상기 소둔분위기의 이슬점 온도는 -10oC 이하가 보다 바람직하다. 상기 흔합가스는 수소 (¾)가스의 비율은 3~15 부피 ¾>이고, 나머지는 질소 (N2)가스인 흔합가스가 바람직하다. ¾의 비율이 3¾ 미만에서는 분위기 가스의 환원력이 저하되어 산화물의 생성이 용이하고 ¾의 비율이 15%를 초과하는 경우, 환원력은 좋아지지만 환원력의 증가대비, 제조 비용의 증가로 너무 과다하여 경제적으로 불리하다. . 또한, 상기 소지강판은 열간 프레스 성형용 강판으로 사용되는 것이라면 열연강판이나 냉연강판 등 종류를 가리지 않고 어떠한 것이라도 사용가능할 뿐만 아니라, 열간 프레스 성형용 강관은 본 발명이 속하는 기술분야에서 다양하게 공지되어 있으므로 본 발명에서 특별히 제한하지 않는다. 다만, 그 특성으로서 오스테나이트 영역으로 가열한 후 물이나 기름 혹은 냉각된 프레스 금형로 퀀칭 (quenching)하였을 때, 인장강도가 1400MPa 이상, 바람직하게는 1470MPa 이상이 얻어지는 것이라면 어떠한 것이라도 사용가능하다. 다만, 한가지 예를 든다면 상기 소지강판은 중량 %로 C: 0.1-0.4%, Si: 2.0% 이하 (0%는 제외), Mn: 0.1~4.0%, 잔부 Fe 및 기타 불가피한 불순물로 이루어지는 것이 본 발명의 본지에 보다 부합할 수 있으나 반드시 이에 제한하지는 않는다. 이하, 본 발명의 소지강판의 조성에 대해 설명한다.— 후술하는 각 성분의 함량은 특별히 언급하지 않는한 모두 중량기준임을 미리 밝혀둔다.
C: 0.1-0.4%
C는 강판의 강도를 증가시키는 핵심원소로서, 오스테나이트 및 마르텐사이트의 경질상올 생성시킨다. C의 함량이 0.1% 미만인 경우에서는 오스테 나이트 단상역에서 열간 프레스를 행하더라도 목표로 하는 강도 확보가 어려우므로, (:의 함량을 0.1% 이상 첨가하는 것이 바람직하다. C의 함량이 0.4%를 초과하게 되면 인성 및 용접성의 저하가 발생할 가능성이 높아지고, 강도가 과도하게 높아져서 소둔 및 도금 공정에서 통판성을 저해하는 등 제조공정에서 불리한 점이 있으므로 C와상한은 0.4% 이하로 제한한다.
Mn: 0.1-4.0%
Mn은 고용강화 원소로서 강도 상승에 크게 기여할 뿐만 아니라 오스테나이트에서 페라이트로 변태를 지연시키는데 중요한 역할을 한다. Mn의 함량이 0.1% 미만인 경우에는 오스테나이트에서 페라이트 변태온도 (Ae3)가 높아져서 강판을 오스테아니트 단상에서 프레스 가공하기 위하여는 그만큼 높은 열처리 온도가 필요하다. 반면, Mn의 함량이 4.0%를 초과하게 되면 용접성, 열간 압연성 등이 열화될 수 있어 바람직하지 않다. 이때 Mn에 의한 페라이트 변태 온도 (Ae3)의 저감 및 소입성을 층분하게 확보하기 위하여는 Mn의 함량을 0.5% 이상 함유하는 것이 보다 바람직하다.
Si: 2% 이하 (0%는 제외).
Si는 탈산을 목적으로 첨가되는 성분으로서, 상기 Si의 함량이 2%를 초과하면 열연판의 산세가 곤란하여 열연강판 미산세 및 미산세된 산화물에 의한 스케일성 표면 결함을 유발할 수 있을 뿐더러 소둔시 강 표면에 Si02 산화물이 생성되어 미도금이 발생할 수 있기 때문에, Si의 상한은 2%로 한정하는 것이 바람직하다. 보다 바람직하게는 0,3% 넘게 첨가할 경우 탈산 작용을 극대화하기에 더욱 효과적이다. 또한, 본 발명의 강에는 불가피한 불순물들이 일부 포함될 수 있며, 상기 불순물은 본 발명이 속하는 기술분야에서 통상의 지식올 가진 자에게는 명확한 것이므로 본 발명에서는 특별히 언급하지 않는다. 불순물의 한가지 예로서 A1을 들 수 있는데 상기 A1이 많아 지면 제강성 크랙이 발생할 수 있으므로 Λ급적 첨가하지 아니하며, 본 발명에서는 0.05% 이하로 관리하는 것이 보다 바람직하다. 기타 불순물에는 P.S 등이 있을 수 있으면 그 외에도 철강분야에서 통상적인 불순물을 배쎄하지 않는다. 또한, 상기 소지강판은 N: 0.001-0.02%, B: 0.0001-0.01%, Ti: 0.001-0.1%, Nb: 0.001-0.1%, V: 0.001-0.1%, Cr: 0.001-1.0%, Mo: 0.001-1.0%, Sb: 0.001-0.1% 및 W: 0.001-0.3%를 더 포함하는 것이 바람직하다.
N: 0.001-0.02%
N는 0.001% 미만시 제강과정에서 N를 제어하기 위한 제조비용이 크게 상승할 수 있기 때문에 그 하한을 0.001%로 한다. N 함유량이 0.02% 초과하게 되면, 제조 공정상 강판을 용해 및 연주를 하기 어려워 제조비용이 상승할 수 있고, MN에 의한 슬라브 균열이 발생하기 쉽기 때문에 그 상한을 0.02%로 한다.
B: 0.0001-0.01%
B는 오스테나이트에서 페라이트 변태를 지연시키는 원소로서, 그 함량이 0.0001% 미만에서는 그 효과를 층분히 달성하기 어렵고, B의 함량이 0.01% 초과시에는 그 효과가 포화될 뿐만 아니라 열간 가공성을 떨어뜨리기 때문에 그 상한을 0.01%로 제한하는 것이 바람직하다.
Ti, Nb 또는 V: 0.001-0.1%
Nb 및 V은 강판의 강도 상승, 입경 미세화 및 열처리성을 향상시키는 데에 유효한 원소이다. 상기 함량이 0.001% 미만에서는 상기 효과를 층분히 얻올 수 없고, 0.1% 초과시에는 제조비용 상승 및 과다한 탄,질화물 생성으로 원하는 강도 및 항복강도 상승의 효과를 기대할 수 없으므로, 상한을 0.1%로 한정하는 것이 바람직하다.
Cr 또는 Mo: 0.001-1.0%
Cr과 Mo은 경화능을 크게 할 뿐만 아니라, 열처리형 강판의 인성을 증가시키기 때문에, 높은 충돌에너지 특징이 요구되는 강판에 첨가하면 그 효과가 더욱 크고, 상기 함량이 0.001% 미만에서는 상기의 효과를 층분히 얻올 수 없고, 1.0% 초과에서는 그 효과가 포화될 뿐만 아니라 제조 비용이 상승하기 때문에 그 상한을 1.0%로 제한하는 .것이 바람직하다 .
Sb: 0.001-0.1%
Sb는 열간압연시 입계의 선택산화를 억제함으로써 스케일의 생성이 균일해지고, 열간압연재 산세성을 향상시키는 역할을 하는 원소이다. Sb 함량이
0.001%미만에서는 그 효과를 달성하기 어렵고, Sb 함량이 0.1%초과시 그 효과가 포화될 뿐만 아니라, 제조 비용이 상승하고 열간 가공시 취성을 일으킬 수 있으므로 그 상한을 0.1%로 제한하는 것이 바람직하다. : 0.001-0.3%
W은 강판의 '열처리 경화능을 향상시키는 원소임과 동시에, W 함유 석출물이 강도 확보에 유리하게 작용하는 원소로서, 그 함량이 0.001% 미만이면 상기 효과를 층분히 얻을 수 없고, 상기 함량이 0.3%를 초과하게 되면 상기 효과가 포화될 뿐만 아니라, 제조 비용이 높아지는 문제점이 있으므로, 상기 함량은 0.001-0.3%로 제한하는 것이 바람직하다.
[발명의 실시를 위한 형태]
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, '하기하는 실사예는 본 발명을 예시하여. 구체화하기 위한 것일 뿐 본 발명의 권리범위를 제한하는 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 정해지는 것이기 때문이다.
(실시예)
먼저, 표 1에 기재된 조성을 가진 강재를 넁간 압연한 강판을 대상으로 실험하였다.
【표 1】
Figure imgf000028_0001
그리고, 소둔전 강판의 표면에 산화반응시 산소 1몰당 깁스자유에너지 감소량이 Cr보다 작은 금속의 한가지 종류로서 표 2에 기재한 종류의 소정의 금속 (표 2에서 별도호 기재하지 않은 경우에는 산화반응시 산소 1몰당 깁스자유에너지 감소량이 Cr보다 작은 금속을 도포하지 않은 것을 의미함)을 200nm 이내로 도포한 후 785°C의 온도에서 소둔처리를 수행하고 0.21중량 % A1이 함유된 Zn 도금욕에서 도금 처리를 하여 도금 강판을 제조하였다. 이때 도금욕중 Fe는 소지 강관에서 용해된 소량의 Fe가 존재하지만 도금욕내 드로스가 발생하여 작업에 자장을 주지 않는 한에서는 특별히 제어하지 않는다. 용융아연도금강판의 일부에 대한 시편을 채취한 후 G0EDS분석을 통해 상기 금속 도포층의 두께, 표면으로부터 1 깊이까지 농화된 금속량 및 Zn 도금층 두께 등을 측정하였으며, 데이터의 정확성을 높이기 위하여 시편 단면의 SEM, TEM 관찰, 습식분석 및 전자분광 화학 분석법 (ESCA)에 의하여 비교하여 검증하였다. 또한, 소지강판과 아연도금층의 표면에 존재하는 A1 '농화층의 입도분포를 관찰하기 위하여 도금강판의 일부를 채취한 후 산용액 (HN03+Cr03+ZnS04)으로 도금층만 선택적으로 제거한 후 이미지 분석기를 이용하여 입도분포를 관찰하고 그 결과를 나타내었다. ' 하기 표 2에서 부식성 평가 결과의 기준으로서 우수는 표면 부식이 거의 발생하지 않았을 경우, 양호는 표면에 부식이 발생하였으나, 간헐적으로 발생되었으며, 부식 깊이도 100 이하인 경우, 불량은 부식이 전면적으로 발생되었거나 부식깊이가 100 를 초과하는 지점이 발견된' 경우를 나타낸다. 또한 도포금속 함량은 GDS 프로파일로부터 환산한 결과를 의미한다. 【표 2】
Figure imgf000030_0001
상기 발명예 1~4는 A1 농화층의 입도 분포를 본원에서 제한하는 범위로 제어하기 위하여 한가지 바람직한 방법인 산화반응시 산소 1몰당 깁스자유에너지 감소량이 Cr보다 작은 금속을 도포한 경우를 나타내고, 비교예 1~3는 입도 분포를 위한 특별한 조작을 실시하지 않은 경우를나타낸다. 발명예 1~4의 경우는 열간 프레스 가공시 LME 크랙이 .발생하지 않았으며, 5%NaCl 수 용액을 분무하는 부식 실험 (SST)을 480시간 계속한 후 소지 강판의 부식이 거의 발생하지 않는 우수한 내식성을 보였다. 그러나 비교예 1 및 2의 경우 열간 프레스시 크랙이 발생하였으며, 비교예 3의 경우 하기 도 11에서도 보이는 바와 같이 도금층내 Zn 함량이 급격히 감소하여 표면에 두꺼운 산화물이 발생하고, 또한 내부식성이 극히 열위하여 SST 시험 후에 강표면에 부식 깊이가 300mi이상 발생하여 내부식성이 극히 열위하였다.
도금을 실시하고 나서, 상기 용융아연도금강판에 대하여 표 2에 기재된 조건으로 열간 프레스 공정을 실시하였으며, 열간 프레스 가열로는 대기중에서 분위기 제어하였다. 열간 프레스 공정이 끝난 후 도금층은 표면을 XRD, G0EDS 분석을 통하여 표면에 형성된 산화물과 도금층내 합금상을 분석하였다. 참고로, 상기 도금층의 두께는 도금층 표면으로부터 수직 방향으로 도금층내 Zn의 함량이 25중량 % 이상인 지점까지의 길이로 측정하였다.
표 2에 도시한 바와. _같이 산화반응시 산소 1몰당 깁스자유에너지 감소량이 Cr보다 작은 금속에 의한 확산금속층을 형성한 경우에는 A1 농화층 중 입자분포 조건이 본 발명의 조건에 부합하는데 반하여 그렇지 않은 비교예에서는 입자 분포조건이 본 발명의 조건에 부합하지 않음을 확인할 수 있었다. 비교를 위하여 도 4와 도 5에 각각 발명예 2와 비교예 1에 의해 얻어진 A1 농화층의 전자현미경 사진을 나타내었다. 도면에서 확인할 수 있듯이, 발명예 2의 경우 A1 농화층은 미세하고 균일한 반면, 비교예 1의 경우 A1 농화층이 불균일하고 직경 500nm 이상의 조대한 입자를 다수 포함하고 있음을 알 수 있다.
상기와 같은 입자들의 입도 분포는 열간 프레스 성형성에 큰 영향을 미치게 된다. 즉, 표 2에 도시한 바와 같아 A1 농화층이 조대한 입자들을 다량 포함하고 있을 경우에는 열간 프레스 성형시 액상 금속 취화 현상이 발생하여 강판에 크랙이 발생하게 된다. 또한, 이러한 현상의 원인을 보다 확실히 비교하기 위하여 발명예 2와 비교예 1에 의해 열간 프레스 성형된 강판 (부품)의 절단면을 투과 주사 전자 현미경으로 관찰한 결과를 각각 도 6 및 도 7에 나타내었다. 상기 도면은 열간 프레스시 가공이 집중된 부위로서 발명예 2의 경우인 도 6의 경우 표면에 크랙이 발생하지 않은 반면, 비교예 1인 도 7의 경우는 LME에 의한 크랙이 소지 강판까지 침투하여 있음을 알 수 있다. ᅳ
도 8은 상기 도 Ύ의 소지 강판 크랙 부분에 침투한 아연의 존재를 확인할 수 있는 근거 자료로서 소지 강판으로 침투한 크랙훌 확대하여 크랙에 형성된 Zn 농화층을 EDS로 분석한 자료이다. 크랙의 중간 증간 Zn가 침투하여 있음을 확인할 수 있었다.
이는 가열이 진행됨에 따라 균일한 합금화가 진행되자 못하여, 부분적으로는 Fe과도하게 합금화된 상과 Zn이 액상영역이 공존하였고, 액상의 Zn이 강판의 결정립계로 침투하여 취화현상을 초래한 것으로 판단되었다. 한편, 열간 성형시에 도금층의 합금상에 따른 LME 및 표면부식의 결과를 측정하여 하기 표 3과 같이 같이 나타내었다.
【표 31
Figure imgf000033_0001
상술한 표 3의 조건으로 강판을 가열하고 급냉한 후 아연도금층내 Zn 함량과 상분석을 행하였다. 가열시 강판의 평균 가열속도는 4°C/초로 설정하였다. 도면에서 확인할 수 있듯이, 본 발명의 발명예에 의해 제공된 강판은 900oC에서 대부분 Zn가 25-35중량 %의 비율을 가지고 있었으나, 비교예에 의해 제공된 강판은 Zn 함량이 높은 상이 다량 존재하여 액상 금속 취화를 일^킬 가능성이 높음을 확인할 수 있었다. 뿐만 아니라, 상기 표 3에는 그 결과를 나타내지 않았으나, 750oC에서 강판을 추출하고 급넁하여 도금층을 분석한 결과, 발명예에서 Fe 농화 영역과 Zn 농화 영역이 동시에 존재함을 확인할 수 있었다. 상기한 표 3의 조건이 실제 열간 프레스 성형시 액상 금속 취화 현상으로 연결되는지를 확인하기 위하여, 상기 용융아연도금강판에 대하여 표 3에 기재된 조건으로 열간 프레스 공정을 실시하였다. 이때, 열간 프레스 가열로는 대기중에서 분위기 제어하였다.. 프레스 성형시 평균 가열속도는 4°C/초로 제어하였으며, 가열로내 총유지시간은 5분으로 정하였다. 열간 프레스 공정이 끝난 후 도금층은 표면을 XRD, G0EDS 분석을 통하여 표면에 형성된 산화물과 도금층내 합금상을 분석하였다. 참고로, 상기 도금층의 두께는 도금층 표면으로부터 수직 방향으로 도금층내 Zn의 함량이 25중량 ¾ 이상인 지점까지의 길이로 측정하였다.
열간 프레스 후에 도금층의 단면에 대한 EDS 분석 결과, 발명예 1~4의 경우는 도금층내 Zn 함량이 35중량 % 이상 90중량 % 이내인 Zn농화역을 5% 이내로 포함하고 있었다.
실측 결과, Zn 함량이 35~90중량 % 이내인 상의 비율은 거의 관찰할 수 없었고 실질적으로 Zn 함량이 25~35중량%인 상의 비율은 도금층내 99% 이상임을 알 수 있었다.'상기 표 2에서 도금층 중 평균 Zn 함량의 측정은 도금층의 단면에 대하여 도금층 상부에서 하부까지는 등간격으로 5곳에 대하여 EDS 측정을 한 후에 그 평균값을 나타내었다. 상기와 같이 도금층내 Zn 함량이 35~90중량 %인 영역을 5 부피 % 이내로 포함하고, 더욱 바람직하게는 부피 ¾ 이내로 포함하는 경우 열간 프레스 실시에 있어서 액상 금속에 의한 취화를 억제할 수 있어서 열간 프레스 성형 및 부품의 사용에 큰 영향을 미치게 된다. 즉, 표 3에 도시한 바와 같이 780~950°C 범위의 가열 온도에서 도금층의 95부피 % 이상이 Zn 25~35 중량 %로 구성되는 경우에 있어서는 열간 프레스 성형시 액상 금속 취화 현상을 억제하여 강판에 크택이 발생하지 않게 된다. 상기 발명예의 경우 이와 같이 도금층내 Zn 비율이 25~35중량 ¾>내의 안정적으로 분포함으로서 5¾NaCl 용액을 분무하는 부식 실험 (SST)을 480시간 계속한 후 소지 강판의 부식이 거의 발생하지 않는 우수한 내식성을 보였다. 비교예 1의 경우 하기 도 10에서도 보이는 바와 같이 도금층내 Zn 함량이 급격히 감소하여 표면에 두꺼운 산화물이 발생하고, 또한 내부식성이 극히 열위하여 SST 시험 후에 강표면에 부식 깊이가 300zra이상 발생하여 내부식성이 극히 열위하였다. 한편, 상기 표 2 및 3의 실시 결과를 토대로, 발명예와 비교예 사이의 비교를 더욱 명확히 하기 위해, 발명예 1에 따라 제조된 열간프레스 성형부품의 단면 및 각 지점에서의 성분을 EDS로 분석한 결과를 도 9 및 표 4에 나타내었고,. 비교예 1 및 비교예 3에 따라 제조된 열간프레스 성형부품의 단면 및 각 지점에서의 성분을 EDS로 분석한 결과를 각각 도 10 및 11, 그리고 표 5 및 6에 나타내었다. 단지 여기서 EDS 분석의 특성상 함량이 0.5중량 ¾> 이내의 성분에 대하여는 실재 존재 값에 대하여 분석값이 불분명 할 수도 있다. 도 9 및 표 4에 의하면 발명예의 경우는 열간 프레스 후에 Fe 함량이 25~35¾> 범위의 안정된 도금 피막이 형성되며, 이 도금 피막은 소지 강판과 명확하게 구분이 가능하다. 그리고 이때 강 도금 표면에는 두께 5 이내의 산화물이 균일하게 형성되어 있다. 또한, 도금층이 금속 소지층과 명확하게 구분되며, 부위별 EDS 분석치는 25~35중량 %를 나타낸다. 이경우 열간 프레스 가공 부위에 크랙이 발생하지 않았으며 소지 강판의 내식성이 거의 발생하지 않는 우시한 내식성을 나타내었다. 도 9의 도금층은 열간 프레스 가열시 도금층내 Fe의 합금화 과정이 도 1의 과정을 따른다. 반면 도 10 및 표 5의 경우로 비교예 1의 경우는 열간 프레스 후에 도금층내에 Zn 함량이 40%를 초과하는 Zn농화영역 (화살표 ②)가 존재하여 이 Zn 농화역이 가공시 LME 크랙율 유발하게 된다. 특히, 도금층내 Zn 함량이 25~35%인 영역인 Fe 농화역과 Zn 함량이 35~90%인 Zn 농화역이 흔합된 상태로 관찰된다. 이러한
Zn 농화역의 존재는 780~950°C로 가열될 때 액상화 영역을 포함하게 되어 열간 프레스 가열시 크랙을 유발하게 된다. 또한 표면 산화물의 형성이 불균일 하다. 도 11 및 표 6의 경우인 비교예 3의 경우는 열간 프레스 후에 표면에 5/ΛΙΙ를 초과하는 두꺼운 산화물이 형성되었으며 도금층과 금속 소지의 경계가 불명명 하다. 또한 도금층내 Zn의 함량은 20중량 % 이내로 실질적으로 내식성을 발휘할 수 있는 도금층으로 볼 수 없어, 결국 아연도금층의 대부분이 소실되어 소지강판의 일부로 확산되어 들어간 것으로 볼 수 있다. 이 경우 표 3에 나타난 바와 같이, 부품의 사용시 층분한 내부식성을 확보할 수 없게 된다. 도 11의 도금층은 열간 프레스 가열시 Fe의 .합금화 과정이 도 2의 과정을 따른다.
【표 4]
Figure imgf000037_0001
【표 5】 (till)
Figure imgf000037_0002
【표 6] (비 3)
Figure imgf000037_0003
도 12는 표 3의 발명예 1와 열간프레스 가공부위의 표면 사진이다. 표면에 크랙이 관찰되지 않는다.
도 13은 표 3의 비교예 3의 열간 프레스 가공부위의 표면 사진이다. 표면에 액상금속취화에.의한 크랙이 관찰된다' .'

Claims

【청구의 범위】
[청구항 1】
소지강판;
상기 소지강판 상부에 형성된 A1이 30중량 ¾> 이상 포함된 A1 농화층; 및 상기 A1 농화층 위에 형성된 아연도금층을 포함하고,
상기 A1 농화층을 이루는 입자 중 입도가 500nm 이상인 입자의 개수가 100庫 2 당 평균 15개 이내이며, 상기 소지강판과 아연도금층의 계면에서 A1 농화층의 점유 면적율이 88% 이상인 열간 프레스 성형용 도금강판.
【청구항 2】
제 1 항에 있어서, 상기 A1 농화층은 그 두께가 0.1 1.0卿인 열간 프레스 성형용 도금강판. _
【청구항 3】
제 1 항에 있어서, 상기 소지강판과 아연도금층의 계면에서 A1 농화층의 점유 면적율이 95% 이상인 열간 프레스 성형용 도금강판.
【청구항 4】
제 1 항에 있어서, 상기 도금강판은 900oC로 가열하였을 때 , 도금층 중 Zn의 함량이 25~35중량 %인 부분이 부피비율로 90% 이상인 열간 프레스 성형용 도금강판.
【청구항 5】
제 4 항에 있어서, 750°C에서 도금층 중 Zn 함량이 40중량 % 이하인 Fe 농화 영역과 Zn 함량이 40중량 % 초과인 Zn 농화영역을 가지는 열간 프레스 성형용 도금강판.
【청구항 6】
제 5 항에 있어서, 750oC에서 도금층 중 Zn 함량이 30~40중량 %인 Fe 농화 영역과
Zn 함량이 60~90중량 %인 Zn 농화영역을 가지는 열간 프레스 성형용 도금강판.
【청구항 7】 ,
제 1 항에 있어서, 상기 소지강판은 표면으로부터 깊이 1 이내에 산화반웅시 산소 1몰당 깁스자유에너지 감소량이 Cr보다 작은 금속의 표면확산층을 더 포함하는 열간프레스 성형용 도금강판.
【청구항 8】
제 7 항에 있어서, 상기 산화반웅시 산소 1몰당 깁스자유에너지 감소량이 Cr보다 작은 금속은 Ni, Fe, Co, Cu, Sn 및 Sb 중에서 선택된 1종 또는 2종 이상인 열간 프레스 성형용 도금강판.
【청구항 9】
제 1 항에 있어서, 상기 아연도금층은 15.0 중량 % 이하의 Fe를 포함하는 열간 프레스 성형용 도금강판.
【청구항 10
제 7 항에 있어서, 상기 아연도금층은 Fe: 15.0중량 % 이하, 상기 산화반웅시 산소 1몰당 깁스자유에너지 감소량이 Cr보다 작은 금속: 0.01~2.0중량 %, 나머지는 Zn 및 기타 불가피한 불순물을 포함하는 열간 프레스 성형용 도금강판.
【청구항 11】 ' ' 제 1 항에 있어서, 상기 소지강판의 표면에 형성된 소둔산화물의 두께가 150nm 이하인 열간프레스 성형용 도금강판.
【청구항 12】
제 1 항에 있어서, 상기 소지 강판은 중량 %로 C: 0.1-0.4%, Si: 2.0% 이하 (0%는 제외), Mn: 0.1-4.0%, 잔부 Fe 및 기타 불가피한 불순물로 이루어지는 조성을 가지는 열간 프레스 성형용 도금강판.
【청구항 13]
제 12 항에 있어서, 상기 소지 강판은 N: 0.001-0.02%, B: 0.0001-0.01%, Ti: 0.001-0.1%, Nb: 0.001-0.1%, V: 0.001-0.1%, Cr: 0.001-1.0%, Mo: 0.001-1.0%, Sb: 0.001-0.1% 및 Ψ. 0.001~0.3%으로 이루어지는 그룹 중 선택된 1종 이상을 더 포함하는 열간 프레스 성형용 도금강판.
PCT/KR2012/005130 2011-06-28 2012-06-28 도금층의 안정성이 우수한 열간 프레스 성형용 도금강판 WO2013002575A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014518800A JP5860959B2 (ja) 2011-06-28 2012-06-28 めっき層の安定性に優れた熱間プレス成形用めっき鋼板
EP12804542.4A EP2728032A4 (en) 2011-06-28 2012-06-28 PLATED STEEL PLATE WITH PLATED LAYER WITH EXCELLENT STABILITY FOR HOT PRESSING
CN201280039619.2A CN103764866B (zh) 2011-06-28 2012-06-28 用于热压成型的具有优异的稳定性的镀层的镀层钢板
US14/127,350 US9314997B2 (en) 2011-06-28 2012-06-28 Plated steel sheet having plated layer with excellent stability for hot press molding

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0063304 2011-06-28
KR1020110063304A KR101289219B1 (ko) 2011-06-28 2011-06-28 도금층의 안정성이 우수한 열간 프레스 성형용 도금강판
KR1020110063303A KR101289198B1 (ko) 2011-06-28 2011-06-28 도금층의 안정성이 우수한 열간 프레스 성형용 도금강판
KR10-2011-0063303 2011-06-28

Publications (2)

Publication Number Publication Date
WO2013002575A2 true WO2013002575A2 (ko) 2013-01-03
WO2013002575A3 WO2013002575A3 (ko) 2013-03-28

Family

ID=47424679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005130 WO2013002575A2 (ko) 2011-06-28 2012-06-28 도금층의 안정성이 우수한 열간 프레스 성형용 도금강판

Country Status (5)

Country Link
US (1) US9314997B2 (ko)
EP (1) EP2728032A4 (ko)
JP (1) JP5860959B2 (ko)
CN (1) CN103764866B (ko)
WO (1) WO2013002575A2 (ko)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6135261B2 (ja) * 2013-04-05 2017-05-31 新日鐵住金株式会社 ホットスタンプ成形品の溶融金属脆化割れの発生を判定する方法及びホットスタンプ成形品
MX2017013132A (es) * 2015-04-15 2018-01-26 Nippon Steel & Sumitomo Metal Corp Hoja de acero laminada en caliente y metodo para producir la misma.
KR101726094B1 (ko) * 2015-12-24 2017-04-12 주식회사 포스코 미세크랙이 억제된 열간 프레스 성형품 및 그 제조방법
KR102075182B1 (ko) 2015-12-24 2020-02-10 주식회사 포스코 도금성이 우수한 고강도 용융 아연계 도금 강재 및 그 제조방법
WO2017187215A1 (en) * 2016-04-29 2017-11-02 Arcelormittal Carbon steel sheet coated with a barrier coating
CN109072396A (zh) * 2016-05-10 2018-12-21 新日铁住金株式会社 热冲压成型体
WO2018096387A1 (en) * 2016-11-24 2018-05-31 Arcelormittal Hot-rolled and coated steel sheet for hot-stamping, hot-stamped coated steel part and methods for manufacturing the same
KR101988724B1 (ko) 2017-06-01 2019-06-12 주식회사 포스코 도금 밀착성이 우수한 열간 프레스 성형 부재용 강판 및 그 제조방법
KR102153164B1 (ko) 2017-12-26 2020-09-07 주식회사 포스코 열간 프레스 성형용 도금강판 및 이를 이용한 성형부재
EP3889314A4 (en) * 2018-11-30 2021-11-10 Posco STEEL SHEET PLATED WITH AN AL-FE ALLOY FOR HOT FORMING WITH EXCELLENT CORROSION RESISTANCE AND HEAT RESISTANCE, SHAPED PART FROM A HOT PRESSING AND PROCESS FOR ITS MANUFACTURING
US11549167B2 (en) 2018-11-30 2023-01-10 Posco Steel sheet plated with Al—Fe alloy for hot press forming having excellent corrosion resistance and heat resistance, hot press formed part, and manufacturing method therefor
KR102569628B1 (ko) * 2019-02-21 2023-08-23 제이에프이 스틸 가부시키가이샤 열간 프레스 부재, 열간 프레스용 냉연 강판 및 그들의 제조 방법
JP7059979B2 (ja) * 2019-04-25 2022-04-26 Jfeスチール株式会社 スポット溶接部材
CN113891952A (zh) * 2019-05-28 2022-01-04 塔塔钢铁艾默伊登有限责任公司 用于生产热冲压零件的钢带材、片材或坯料,零件以及将坯料热冲压成零件的方法
CN110819895B (zh) * 2019-10-23 2021-03-19 首钢集团有限公司 一种复合镀层钢及其制备方法
CN114761596B (zh) * 2019-12-19 2023-05-09 日本制铁株式会社 钢板及其制造方法
CN112011752B (zh) * 2020-08-20 2022-06-21 马鞍山钢铁股份有限公司 一种高耐蚀热成形钢零部件及其制造方法
CN114686651A (zh) * 2020-12-31 2022-07-01 通用汽车环球科技运作有限责任公司 具有降低的液态金属致脆(lme)敏感性的锌涂覆的钢
KR20230100741A (ko) * 2021-01-14 2023-07-05 닛폰세이테츠 가부시키가이샤 도금 강재
CN115029632B (zh) * 2022-05-27 2023-04-11 河钢股份有限公司 高耐蚀镀锌热成形硬化钢及其零部件以及制备方法
WO2024122119A1 (ja) * 2022-12-09 2024-06-13 日本製鉄株式会社 ホットスタンプ成形体
WO2024122120A1 (ja) * 2022-12-09 2024-06-13 日本製鉄株式会社 めっき鋼板

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296805B1 (en) 1998-07-09 2001-10-02 Sollac Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120772A (ja) * 1982-01-13 1983-07-18 Kawasaki Steel Corp 加工性の優れた合金化溶融亜鉛めつき鋼板の製造方法
JP2704045B2 (ja) * 1992-03-30 1998-01-26 川崎製鉄株式会社 めっき欠陥の少ない表面処理鋼板およびその製造方法
EP0591547B1 (en) 1992-03-30 1997-07-09 Kawasaki Steel Corporation Surface-treated steel sheet reduced in plating defects and production thereof
JPH0688187A (ja) 1992-09-03 1994-03-29 Nkk Corp 合金化溶融亜鉛めっき鋼板の製造方法
JPH10226862A (ja) * 1996-12-09 1998-08-25 Kawasaki Steel Corp プレス成形性及びめっき皮膜の平滑性に優れた合金化溶融亜鉛めっき鋼板
JPH11350164A (ja) 1998-06-11 1999-12-21 Sumitomo Metal Ind Ltd 溶融Zn−Al系合金めっき鋼板及びその製造方法
JP2002180224A (ja) * 2000-12-11 2002-06-26 Sumitomo Metal Ind Ltd 合金化溶融亜鉛めっき鋼板およびその製造法
US6613452B2 (en) 2001-01-16 2003-09-02 Northrop Grumman Corporation Corrosion resistant coating system and method
JP4886118B2 (ja) * 2001-04-25 2012-02-29 株式会社神戸製鋼所 溶融亜鉛めっき鋼板
JP2004124207A (ja) * 2002-10-04 2004-04-22 Nippon Steel Corp 熱間プレス用Zn系めっき鋼板及びこれを使用した高強度自動車部品
KR20050121744A (ko) 2003-04-23 2005-12-27 수미도모 메탈 인더스트리즈, 리미티드 열간 프레스 성형품 및 그 제조 방법
JP4085876B2 (ja) * 2003-04-23 2008-05-14 住友金属工業株式会社 熱間プレス成形品およびその製造方法
JP4506128B2 (ja) 2003-08-29 2010-07-21 住友金属工業株式会社 熱間プレス成形品およびその製造方法
JP2005113233A (ja) * 2003-10-09 2005-04-28 Nippon Steel Corp 熱間プレス用Zn系めっき鋼材
DE102005008410B3 (de) 2005-02-24 2006-02-16 Thyssenkrupp Stahl Ag Verfahren zum Beschichten von Stahlbändern und beschichtetes Stahlband
JP4695459B2 (ja) * 2005-08-24 2011-06-08 新日本製鐵株式会社 塗装後耐食性に優れた亜鉛系めっきが施された熱間プレス鋼材
CN100591794C (zh) * 2008-07-31 2010-02-24 攀钢集团研究院有限公司 热镀锌钢板的镀锌方法
ES2876258T3 (es) * 2009-12-29 2021-11-12 Posco Partes prensadas en caliente con chapadas con zinc y procedimiento de producción de las mismas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296805B1 (en) 1998-07-09 2001-10-02 Sollac Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment

Also Published As

Publication number Publication date
US20140120366A1 (en) 2014-05-01
CN103764866A (zh) 2014-04-30
EP2728032A4 (en) 2015-03-11
EP2728032A2 (en) 2014-05-07
WO2013002575A3 (ko) 2013-03-28
JP2014527120A (ja) 2014-10-09
CN103764866B (zh) 2016-02-24
JP5860959B2 (ja) 2016-02-16
US9314997B2 (en) 2016-04-19

Similar Documents

Publication Publication Date Title
WO2013002575A2 (ko) 도금층의 안정성이 우수한 열간 프레스 성형용 도금강판
US11952652B2 (en) Zinc-plated steel sheet for hot pressing having outstanding surface characteristics, hot-pressed moulded parts obtained using the same, and a production method for the same
TWI494442B (zh) Alloyed molten galvanized steel sheet and manufacturing method thereof
EP1978113A1 (en) High-strength galvannealed sheet steels excellent in powdering resistance and process for production of the same
JP2020509205A (ja) 耐食性及び加工性に優れた溶融アルミニウム系めっき鋼材及びその製造方法
KR101304621B1 (ko) 영역별로 상이한 강도를 갖는 프레스 성형품의 제조방법
KR101528010B1 (ko) 도금성이 우수한 고망간강 용융아연도금강판 및 이의 제조방법
KR101359183B1 (ko) 액상 금속 취화가 억제된 열간 프레스 성형용 도금강판
KR101289219B1 (ko) 도금층의 안정성이 우수한 열간 프레스 성형용 도금강판
KR101115754B1 (ko) 강도 및 표면특성이 우수한 열간 프레스용 아연도금강판 및 이를 이용한 열간프레스 성형부품
KR101289198B1 (ko) 도금층의 안정성이 우수한 열간 프레스 성형용 도금강판
KR101359161B1 (ko) 내식성이 우수한 열간 프레스 성형용 도금강판
KR101271802B1 (ko) 균열이 억제된 열간 프레스 성형품의 제조방법
WO2024053663A1 (ja) めっき鋼板
WO2022230399A1 (ja) 鋼板及びめっき鋼板
WO2022230401A1 (ja) 鋼板及びめっき鋼板
WO2023054705A1 (ja) めっき鋼板
EP4116457A1 (en) Hot-pressed member, method for manufacturing same, and plated steel sheet for hot pressing
WO2024122121A1 (ja) めっき鋼板
CN116463572A (zh) 一种具有Al-Zn-Mg-Si镀层的热冲压钢板及其热冲压方法
KR20120074396A (ko) 내열성 및 내식성이 우수한 열간프레스 성형부품
KR20120074397A (ko) 가공성이 우수한 열간프레스 성형부품

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280039619.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 14127350

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014518800

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012804542

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012804542

Country of ref document: EP