WO2013002383A1 - 垂直離着陸機 - Google Patents

垂直離着陸機 Download PDF

Info

Publication number
WO2013002383A1
WO2013002383A1 PCT/JP2012/066745 JP2012066745W WO2013002383A1 WO 2013002383 A1 WO2013002383 A1 WO 2013002383A1 JP 2012066745 W JP2012066745 W JP 2012066745W WO 2013002383 A1 WO2013002383 A1 WO 2013002383A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
seat
frame
thrust
landing aircraft
Prior art date
Application number
PCT/JP2012/066745
Other languages
English (en)
French (fr)
Inventor
正善 恒川
田村 哲也
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to NZ619528A priority Critical patent/NZ619528B2/en
Priority to EP12804338.7A priority patent/EP2727833B1/en
Priority to AU2012276578A priority patent/AU2012276578B2/en
Publication of WO2013002383A1 publication Critical patent/WO2013002383A1/ja
Priority to US14/142,403 priority patent/US9561850B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0033Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/20Rotorcraft characterised by having shrouded rotors, e.g. flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/52Tilting of rotor bodily relative to fuselage

Definitions

  • the present invention relates to a vertical take-off and landing aircraft, and more particularly to a vertical take-off and landing aircraft capable of generating lift without sliding.
  • helicopters are a typical vertical take-off and landing aircraft that can generate lift without sliding.
  • the helicopter has a rotor larger than the airframe, and generates lift and thrust by rotating the rotor.
  • the helicopter is relatively large in size, and has a main rotor larger than the aircraft and a tail rotor at the rear of the aircraft. Therefore, helicopters take off and land in narrow spaces where obstacles such as buildings and trees exist. And attitude control, the main rotor and tail rotor come into contact with obstacles, so a large space is required for takeoff and landing.
  • VTOL Vertical Take-off and Landing
  • the vertical take-off and landing aircraft described in Patent Document 1 and Patent Document 2 includes a ducted fan in which a propeller-shaped fan is disposed in a cylindrical duct or nacelle.
  • a conventional take-off and landing aircraft having a ducted fan has a complicated thrust control method.
  • a control wing is required or only the fan is tilted by an actuator or the like. Tended to be.
  • the present invention was devised in view of the above-described problems, and a vertical take-off and landing aircraft that can perform thrust control with a simple configuration and can safely take off and land even in a narrow space where an obstacle exists.
  • the purpose is to provide.
  • the present invention is a vertical take-off and landing aircraft, a propulsion device having a fan for generating lift and thrust, a prime mover for supplying power to the propulsion device, a frame connecting the propulsion device and the prime mover, and the frame.
  • a seat pivotably connected to the frame and supported by being suspended by the frame, a handle connected to the frame, and a grounding leg connected to the frame or the seat,
  • the propulsion unit is connected to the frame so that a driving shaft of the fan is in a vertical direction when landing, and the propeller is moved relative to the seat by operating the handle. It is set as the structure which changed the direction of.
  • the seat has a front seat and a rear seat.
  • the frame has a pivot shaft extending in the left-right direction, and the seat has an insertion portion through which the pivot shaft can be inserted.
  • the propulsion device includes a left fan disposed on the left side of the seat and a right fan disposed on the right side of the seat. Still preferably, the propulsion device has a rear fan disposed at a rear portion of the seat. Still preferably, the propulsion unit is arranged at an upper part or a lower part of the seat. Still preferably, the propulsion device is arranged in an adjacent portion. Still preferably, the propulsion device is a ducted fan.
  • the frame is relatively moved (relative to the seat) by connecting the seat to the frame on which the propulsion unit is disposed so as to be relatively rotatable in the front-rear direction. It is possible to easily change the direction of the propulsion device by simply rotating it, and to generate lift and thrust with respect to the aircraft. Therefore, thrust control can be performed with a simple configuration, and it is possible to safely take off and land even in a narrow space where an obstacle exists.
  • the front seat can be used as the cockpit
  • the rear seat can be used for luggage storage
  • a rescuer or escort can be seated.
  • FIG. 1 is a side view showing the entire body of a vertical take-off and landing aircraft according to a first embodiment of the present invention.
  • 1 is a side view showing a positional relationship between a seat and a frame of a vertical take-off and landing aircraft according to a first embodiment of the present invention. It is an enlarged view of the hinge part of the vertical take-off and landing aircraft according to the first embodiment of the present invention.
  • FIG. 2 is a side view of the vertical take-off and landing aircraft shown in FIGS. 1A to 1C during hovering.
  • FIG. 2 is a side view of the vertical take-off and landing aircraft shown in FIGS. 1A to 1C when moving forward.
  • FIG. 2 is an overhead view from the upper front side of the vertical take-off and landing aircraft shown in FIGS.
  • FIG. 2 is an overhead view from above the front of the vertical take-off and landing aircraft shown in FIGS. 1A to 1C when turning left. It is state explanatory drawing from the side direction of the fan at the time of the hovering which shows the flight principle of the vertical take-off and landing aircraft which concerns on 1st embodiment. It is state explanatory drawing from the front direction of the fan at the time of the hovering which shows the flight principle of the vertical take-off and landing aircraft which concerns on 1st embodiment. It is state explanatory drawing from the side surface direction of the fan at the time of the hovering disturbance generation
  • FIGS. 1A to 11B are views showing the vertical take-off and landing aircraft according to the first embodiment of the present invention.
  • FIG. 1A is a side view showing the entire fuselage
  • FIG. 1B is a side view showing the positional relationship between the seat and the frame.
  • FIG. 1C is an enlarged view of the hinge portion.
  • 2A and 2B are views showing the flight state of the vertical take-off and landing aircraft shown in FIGS. 1A to 1C.
  • FIG. 2A is a side view during hovering
  • FIG. 2B is a side view during forward travel.
  • 3A and 3B are diagrams showing the flight state of the vertical take-off and landing aircraft shown in FIGS. 1A to 1C.
  • FIG. 3A is an overhead view from the front side when turning right
  • FIG. 3B is a front view when turning left. It is a bird's-eye view from the top. 3A and 3B, the right side in the figure is the left side of the body, and the left side in the figure is the right side of the body.
  • a vertical take-off and landing aircraft 1 includes a propulsion device 2 having a fan 21 that generates lift and thrust, and a prime mover that supplies power to the propulsion device 2. 3, a frame 4 connecting the propulsion device 2 and the prime mover 3, a seat 5 connected to the frame 4 so as to be pivotable in the front-rear direction and supported by being suspended by the frame 4, and connected to the frame 4
  • the propulsion device 2 has a handle 6 and a grounding leg 7 connected to the seat 5, and the propulsion device 2 is connected to the frame 4 so that the drive shaft of the fan 21 is in the vertical direction when landing, and the handle 6 is operated. By doing so, the frame 4 is moved relative to the seat 5 and the direction of the propelling device 2 is changed.
  • the propulsion device 2 has two fans 21 arranged on both sides of the prime mover 3. Specifically, it has a left fan 21 a disposed on the left side of the seat 5 and a right fan 21 b disposed on the right side of the seat 5.
  • the fan 21 (the left fan 21a and the right fan 21b) is composed of, for example, a ducted fan, but is not limited to such a structure, and may be a propeller, an ejector, or the like.
  • the propelling device 2 is arrange
  • the prime mover 3 is a drive source that transmits power to the fan 21 (the left fan 21a and the right fan 21b), and is configured by, for example, an electric motor or a reciprocating engine, and may have a supercharger.
  • the power transmission mechanism that transmits power from the prime mover 3 to each fan 21 is appropriately set depending on the arrangement configuration of each device.
  • the power transmission mechanism includes, for example, a bevel gear connected to the tip of the output shaft of the prime mover 3, a pair of shafts provided with bevel gears at both ends, and a bevel gear connected to the drive shaft of each fan 21.
  • the rotation of the output shaft is transmitted to the drive shaft via the bevel gear.
  • another gear mechanism may be used, or a speed reducer may be interposed. Further, when it is desired to individually control the rotation speed of each fan 21, the prime mover 3 may be connected to each fan 21 individually.
  • the frame 4 is a component that connects the prime mover 3 to the left fan 21a and the right fan 21b. Further, in FIG. 1B, illustrations of the prime mover 3 and the fan 21 are omitted. As shown in FIGS. 1B and 1C, the frame 4 has a pivot shaft 41 extending in the left-right direction, and the pivot shaft 41 is connected to the frame 4 by a support member 42. If the pivot shaft 41 can be directly connected to the frame 4, the support member 42 may be omitted.
  • the pivot shaft 41 is preferably disposed at a position that coincides with the point of action of the lift of the fan 21.
  • the seat 5 supports a seat 51 on which an occupant is seated, a backrest 52 that supports the back of the occupant, a headrest 53 that supports the head of the occupant, and the feet of the occupant. And a seat belt 55 that restrains an occupant to the seat 5.
  • the seat 5 has a front seat 5a and a rear seat 5b.
  • the front seat 5a is a seat 5 on which a driver is seated
  • the rear seat 5b is a seat on which a rescuer and an escort are seated.
  • the rear seat 5b can also be used as a luggage storage place for placing goods and the like.
  • a cowl 5c as a rectifying means is connected in front of the front seat 5a.
  • a part of the cowl 5c is composed of a transparent member in order to ensure visibility.
  • the connecting portion 5d between the front seat 5a and the cowl 5c may be used as a console box, or may be used as a control portion for arranging the operation switch and the operation lever of the prime mover 3.
  • the seat 5 has an insertion portion 56 through which the pivot shaft 41 connected to the frame 4 can be inserted.
  • the front seat 5 a and the rear seat 5 b each have a support frame 57, and the support frame 57 is connected to the insertion portion 56.
  • a hinge is formed by the pivot shaft 41 of the frame 4 and the insertion portion 56 of the seat 5, and the frame 4 and the seat 5 are configured to be rotatable with respect to each other along the pivot shaft 41, that is, to be relatively movable.
  • the seat 5 is configured to be suspended and supported by the pivot shaft 41. However, by adjusting the weight in the front-rear direction, the seat 5 is normally balanced so that it can be maintained in parallel.
  • the balance weight may be appropriately adjusted according to the loaded weight at the time of flight, and the balance may be adjusted each time.
  • a tail wing 58 may be arranged on the support frame 57 of the rear seat 5b.
  • the handle 6 is connected to the frame 4 so as to extend obliquely downward from the frame 4.
  • the handle 6 may be connected to the support member 42 as shown in FIGS. 1B and 1C.
  • an occupant (operator) seated in the front seat 5a can move (rotate) the frame 4 relative to the seat 5 by moving the handle 6 closer to or away from the body.
  • the direction of the propelling device 2 (the front-rear direction angle of the drive shaft of the fan 21) can be changed.
  • the grounding leg 7 is a leg part that contacts the ground when landing.
  • the grounding leg 7 is connected to the lower part of the seat 5 as shown in FIG. 1A, for example. Moreover, as shown in FIG. 3A and FIG. 3B, it has a pair of left and right grounding legs 7.
  • the flight state of the vertical take-off and landing aircraft 1 described above (when hovering, moving forward, turning right, turning left) will be described with reference to FIGS. 2A to 3B.
  • the vertical take-off and landing aircraft 1 is assumed to have only the pilot M boarding (single ride) on the front seat 5a.
  • the operator M operates the handle 6 so that the drive shaft of the propulsion device 2 (fan 21) is in a substantially vertical direction.
  • the thrust of the propulsion device 2 can generate only lift in the airframe and can prevent thrust from being generated in the airframe.
  • the output of the prime mover 3 is adjusted so that the lift of the propulsion device 2 and the gravity of the fuselage substantially coincide.
  • the hovering is a state in which the vertical take-off and landing aircraft 1 is stopped in the air. However, the hovering is substantially the same as the hovering at the time of ascent and descent when taking off and landing in the vertical direction.
  • the output of the prime mover 3 is adjusted so that the lift of the propulsion device 2 is greater than the gravity of the aircraft, and during landing, the prime mover 3 so that the lift of the propulsion device 2 is less than the gravity of the aircraft. Adjust the output of.
  • the operator M pulls the handle 6 toward the body and tilts the frame 4, that is, the propulsion device 2 (fan 21) forward with respect to the seat 5.
  • the propulsion device 2 fan 21
  • the output of the prime mover 3 may be adjusted so that the vertical component (lift) of the thrust of the propulsion device 2 and the gravity of the fuselage substantially coincide.
  • FIGS. 4A to 5B are diagrams showing the flight principle of the vertical take-off and landing aircraft according to the first embodiment.
  • FIG. 4A is an explanatory diagram of the state from the side of the fan during hovering
  • FIG. 4B is the state during hovering.
  • FIG. 4C is a state explanatory view from the side of the fan when a hovering disturbance is generated
  • FIG. 4D is a state explanatory view from the front of the fan when a hovering disturbance is generated.
  • 5A and 5B are diagrams illustrating the flight principle of the vertical take-off and landing aircraft according to the first embodiment.
  • FIG. 4A is an explanatory diagram of the state from the side of the fan during hovering
  • FIG. 4B is the state during hovering.
  • FIG. 4C is a state explanatory view from the side of the fan when a hovering disturbance is generated
  • FIG. 4D is a state explanatory view from the front of the fan when a hovering disturbance is generated.
  • FIG. 5A is an explanatory diagram of the state from the side of the fan when moving forward
  • FIG. It is a state explanatory view from the front direction.
  • the center of gravity of the aircraft is G
  • the point of action of lift is F.
  • the action point F is located above the center of gravity G.
  • 4A, 4C and 5A the left side in the figure is the forward side (nose side), and the right side in the figure is the reverse side.
  • 4B, 4D, and 5B the right side in the figure is the left side of the body, and the left side in the figure is the right side of the body.
  • FIG. 4A and 4B show the flight principle during hovering.
  • the drive shaft of the fan 21 is oriented in the vertical direction, and the body axis FG connecting the action point F and the center of gravity G is also oriented in the vertical direction. ing.
  • the fan 21 generates a thrust f upward in the vertical direction, and this thrust f acts on the airframe as lift.
  • gravity g is generated in the aircraft body in the downward direction in the vertical direction. Therefore, at the time of hovering, the thrust f (lift) and the gravity g have the same magnitude and are in a balanced state.
  • FIG. 4C and 4D show the flight principle when a hovering disturbance occurs.
  • the aircraft is tilted forward (left side in the figure) due to a disturbance such as wind during hovering.
  • the drive shaft and the body axis FG of the fan 21 are inclined forward.
  • the vertical component fv of the thrust f of the fan 21 acts on the airframe as lift, and the vertical component fv (lift) is adjusted to balance with the gravity g.
  • the gravity g can be separated into an axial component ga and a tilt direction component gt in the direction of the body axis FG. Since this inclination direction component gt moves the center of gravity G forward with respect to the action point F, it acts on the body as a restoring force.
  • the aircraft leans to the left side (right side in the figure) due to wind and other disturbances during hovering.
  • the vertical direction component fv (lift) of the thrust f is adjusted so as to balance with the gravity g, and the inclination direction component gt of the gravity g moves the center of gravity G to the left with respect to the action point F. Therefore, it acts on the aircraft as a restoring force.
  • FIG. 5A shows the flight principle when moving forward.
  • FIG. 5A shows a side view.
  • the drive shaft of the fan 21 is inclined forward (left side in the drawing) with respect to the body axis FG, and the fan 21 generates a thrust f in the drive shaft direction.
  • the vertical component fv of the thrust f acts on the aircraft as lift, and the vertical component fv (lift) is adjusted to balance with the gravity g.
  • the horizontal component fh of the thrust f acts to move the fuselage axis FG forward, and the horizontal component fh acts as thrust of the fuselage to move (forward) the fuselage forward.
  • FIG. 5B shows the flight principle during a left turn.
  • FIG. 5B shows a front view.
  • the drive shaft of the fan 21 and the body axis FG are inclined to the left side (the right side in the figure).
  • the vertical component fv of the thrust f of the fan 21 acts on the airframe as lift, and the vertical component fv (lift) is adjusted to balance with the gravity g.
  • the horizontal component fh of the thrust f acts as a centripetal force so as to move the action point F to the left, and as a reaction, a centrifugal force fc acts so as to move the center of gravity G to the right.
  • the aircraft turns left while maintaining its posture.
  • the flight principle during a right turn is the same as that when the flight principle during a left turn is reversed left and right, and thus the description thereof is omitted here.
  • FIGS. 6A to 6C are views showing the vertical take-off and landing aircraft according to the second embodiment of the present invention
  • FIG. 6A is a side view showing the entire body
  • FIG. 6B is a side view showing the positional relationship between the seat and the frame.
  • FIG. 6C is an enlarged view of the hinge portion.
  • symbol is attached
  • the vertical take-off and landing aircraft 1 has a grounding leg 7 connected to a frame 4.
  • the ground leg 7 is connected to a support frame 43 connected to the frame 4.
  • the support frame 43 is configured by, for example, a substantially trapezoidal frame, and the grounding legs 7 are arranged so as to form a lower base of the trapezoid.
  • the support frame 43 is formed so that the left and right intervals are widened downward, and the support frame 43 is disposed on both sides of the seat 5. It is configured.
  • the handle 6 may be connected to the support frame 43.
  • FIGS. 7A and 7B are views showing a vertical take-off and landing aircraft according to another embodiment of the present invention.
  • FIG. 7A is a side view showing the entire fuselage of the vertical take-off and landing aircraft according to the third embodiment. These are side views which show the whole body of the vertical take-off and landing aircraft according to the fourth embodiment.
  • symbol is attached
  • the vertical take-off and landing aircraft 1 is configured such that the prime mover 3 is disposed below the seat 5 and the propulsion device 2 (fan 21) is disposed adjacent to the seat 5.
  • the propulsion device 2 fan 21
  • the propulsion device 2 may be disposed adjacent to the prime mover 3 disposed below the seat 5 and disposed below the seat 5.
  • the vertical take-off and landing aircraft 1 according to the fourth embodiment shown in FIG. 7B has a rear fan 22 in which the propulsion device 2 is disposed at the rear portion of the seat 5.
  • the rear fan 22 is constituted by, for example, a ducted fan that is smaller than the fan 21 (the left fan 21a and the right fan 21b).
  • the left fan 21a, the right fan 21b, and the rear fan 22 are arranged at positions that form the vertices of a triangle, and the frame 4 forms each side of the triangle. It is formed.
  • the left fan 21a, the right fan 21b, and the rear fan 22 are arranged at positions that form the vertices of a quadrangle (for example, a square, a rectangle, a trapezoid, etc.) 4 is formed so as to constitute each side of the quadrangle.
  • a quadrangle for example, a square, a rectangle, a trapezoid, etc.
  • the drive shaft of the rear fan 22 may be arranged so as to be parallel to the drive shaft of the fan 21 (the left fan 21a and the right fan 21b). You may arrange
  • the fan 21 is arranged at the lower part of the seat 5 or adjacent to the seat 5, the drive shafts of the fan 21 and the rear fan 22 are inclined inward, that is, the fan 21 and the rear fan 22 are viewed from the front. It may be arranged so as to form a substantially V shape so that static stability can be easily maintained.
  • FIGS. 8A to 9B are views showing the flight principle of the vertical take-off and landing aircraft according to the third embodiment.
  • FIG. 8A is an explanatory diagram of the state from the side of the fan during hovering
  • FIG. 8B is the state during the hovering.
  • FIG. 8C is a state explanatory view from the side of the fan when a hovering disturbance occurs
  • FIG. 8D is a state explanatory view from the front of the fan when a hovering disturbance occurs.
  • 9A and 9B are diagrams showing the flight principle of the vertical take-off and landing aircraft according to the third embodiment.
  • FIG. 8A is an explanatory diagram of the state from the side of the fan during hovering
  • FIG. 8B is the state during the hovering.
  • FIG. 8C is a state explanatory view from the side of the fan when a hovering disturbance occurs
  • FIG. 8D is a state explanatory view from the front of the fan when a hovering disturbance occurs.
  • 9A and 9B are diagrams
  • FIG. 9A is an explanatory diagram of the state from the side of the fan when moving forward
  • FIG. 9B is the state of the fan when turning left It is a state explanatory view from the front direction.
  • the center of gravity of the aircraft is G
  • the point of action of lift is F.
  • the center of gravity G is located slightly below the operating point F.
  • the fans 21 (the left fan 21a and the right fan 21b) are arranged so as to form a substantially V shape when viewed from the front.
  • 8A, 8C, and 9A the left side in the figure is the forward side (nose side), and the right side in the figure is the reverse side.
  • 8B, 8D, and 9B the right side in the figure is the left side of the body, and the left side in the figure is the right side of the body.
  • FIG. 8A and 8B show the flight principle during hovering.
  • the drive shaft of the fan 21 is oriented in the vertical direction, and the body axis FG connecting the action point F and the center of gravity G is also oriented in the vertical direction. ing.
  • the fan 21 generates a thrust f upward in the vertical direction, and this thrust f acts on the airframe as lift.
  • the thrust f of the fan 21 is obtained by the resultant force of the thrust fa of the left fan 21a and the thrust fb of the right fan 21b.
  • gravity g is generated in the aircraft body in the downward direction in the vertical direction. Therefore, at the time of hovering, the thrust f (lift) and the gravity g have the same magnitude and are in a balanced state.
  • FIG. 8C and 8D show the flight principle when a hovering disturbance occurs.
  • the aircraft leans forward (left side in the figure) due to disturbance such as wind during hovering.
  • the drive shaft and the body axis FG of the fan 21 are inclined forward.
  • the vertical component fv of the thrust f of the fan 21 acts on the airframe as lift, and the vertical component fv (lift) is adjusted to balance with the gravity g.
  • the gravity g can be separated into an axial component ga and a tilt direction component gt in the direction of the body axis FG. Since this inclination direction component gt moves the center of gravity G forward with respect to the action point F, it acts on the body as a restoring force.
  • the aircraft leans to the left (right side in the figure) due to disturbances such as wind during hovering.
  • the vertical direction component fv (lift) of the thrust f is adjusted so as to balance with the gravity g, and the inclination direction component gt of the gravity g moves the center of gravity G to the left with respect to the action point F. Therefore, it acts on the aircraft as a restoring force.
  • the fans 21 (the left fan 21a and the right fan 21b) are arranged in a substantially V shape, the thrust fa of the left fan 21a is generated in a substantially vertical direction, and the thrust fb of the right fan 21b is inward.
  • FIG. 9A shows the flight principle during forward travel.
  • FIG. 9A shows a side view.
  • the drive shaft of the fan 21 is inclined forward (left side in the drawing) with respect to the body axis FG, and the fan 21 generates a thrust f in the drive shaft direction.
  • the vertical component fv of the thrust f acts on the aircraft as lift, and the vertical component fv (lift) is adjusted to balance with the gravity g.
  • the horizontal component fh of the thrust f acts to move the fuselage axis FG forward, and the horizontal component fh acts as thrust of the fuselage to move (forward) the fuselage forward.
  • FIG. 9B shows the flight principle during a left turn.
  • FIG. 9B shows a front view.
  • the body axis FG is inclined to the left side (the right side in the figure).
  • the fans 21 (the left fan 21a and the right fan 21b) are arranged in a substantially V shape, the thrust fa of the left fan 21a is generated in a substantially vertical direction, and the thrust fb of the right fan 21b is inclined inward. Assume that it has occurred.
  • the thrust fa of the left fan 21a acts on the body as lift
  • the vertical component fbv of the thrust fb of the right fan 21b acts on the body as lift.
  • the vertical component fv ie, the resultant force of the thrust fa and the vertical component fbv of the thrust f of the fan 21 (the resultant force of the thrust fa and the thrust fb) acts on the airframe as a lift, and this vertical component fv (lift). Is adjusted to balance the gravity g. Further, the horizontal component fh of the thrust f, that is, the horizontal component fbh of the thrust fb of the right fan 21b acts as a centripetal force so as to move the action point F to the left, and moves the center of gravity G to the right as a reaction. Thus, the centrifugal force fc acts on the airframe. As a result, the aircraft turns left while maintaining its posture. Note that the flight principle during a right turn is the same as that when the flight principle during a left turn is reversed left and right, and thus the description thereof is omitted here.
  • FIGS. 10A to 10D are diagrams showing the flight principle of the vertical take-off and landing aircraft according to the fourth embodiment
  • FIG. 10A is a state explanatory view from the side of the fan during hovering
  • FIG. 10B is a diagram during hovering
  • FIG. 10C is a state explanatory view from the side of the fan when a hovering disturbance is generated
  • FIG. 10D is a state explanatory view from the front of the fan when a hovering disturbance is generated.
  • 11A and 11B are diagrams illustrating the flight principle of the vertical take-off and landing aircraft according to the fourth embodiment.
  • FIG. 10A is a state explanatory view from the side of the fan during hovering
  • FIG. 10B is a diagram during hovering
  • FIG. 10C is a state explanatory view from the side of the fan when a hovering disturbance is generated
  • FIG. 10D is a state explanatory view from the front of the fan when a hovering disturbance is generated.
  • 11A and 11B are diagram
  • FIG. 11A is an explanatory diagram of the state from the side of the fan when moving forward, and FIG. It is a state explanatory view from the front direction.
  • the center of gravity of the airframe is G
  • the point of action of lift is F.
  • the center of gravity G is located slightly above the action point F.
  • the fans 21 (the left fan 21a and the right fan 21b) are arranged so as to form a substantially V shape when viewed from the front. Further, it is assumed that the rear fan 22 is disposed in a state inclined forward with respect to the fan 21.
  • 10A, 10C, and 11A the left side in the figure is the forward side (nose side), and the right side in the figure is the reverse side.
  • 10B, 10D, and 11B the right side in the figure is the left side of the body, and the left side in the figure is the right side of the body.
  • FIG. 10A and 10B show the flight principle during hovering.
  • the resultant force of the thrust f1 of the fan 21 and the thrust f2 of the rear fan 22 generates the thrust f in the vertical direction with respect to the action point F.
  • the attitude of the aircraft is adjusted. Specifically, the drive shaft of the fan 21 is tilted rearward, and the drive shaft of the rear fan 22 is maintained tilted forward.
  • the thrust f1 of the fan 21 is obtained by the resultant force of the thrust fa of the left fan 21a and the thrust fb of the right fan 21b.
  • the machine body axis FG connecting the action point F and the center of gravity G is also directed in the vertical direction, and gravity g is generated in the machine body downward in the vertical direction. Therefore, at the time of hovering, the thrust f (lift) and the gravity g have the same magnitude and are in a balanced state.
  • FIG. 10C and 10D show the flight principle when a hovering disturbance occurs.
  • the thrust f which is the resultant force of the thrust f1 of the fan 21 and the thrust f2 of the rear fan 22, and the body axis FG are inclined forward.
  • the vertical component fv of the thrust f acts on the aircraft as lift, and the vertical component fv (lift) is adjusted to balance with the gravity g.
  • the lift of the fan 21 increases, and the vertical component f2v of the thrust f2 of the rear fan 22 decreases. Therefore, the increase in lift of the fan 21 acts to push up the front of the fuselage, and the decrease in lift of the rear fan 22 acts to push down the rear of the fuselage. That is, the fluctuation of the lift acts as a restoring force on the aircraft.
  • the thrust f1 of the fan 21 is directed in the vertical direction is illustrated.
  • the aircraft leans to the left side (right side in the figure) due to disturbance such as wind during hovering.
  • the vertical component fv (lift) of the thrust f is adjusted so as to balance with the gravity g.
  • the fans 21 (the left fan 21a and the right fan 21b) are arranged in a substantially V shape, as a result of the left fan 21a and the right fan 21b being inclined to the left side, the lift of the left fan 21a (vertical force fa is vertical).
  • Direction component increases, and the vertical component fbv of the thrust fb of the right fan 21b decreases.
  • the increase in lift of the left fan 21a acts to push up the left side of the fuselage
  • the decrease in lift of the right fan 21b acts to push down the right side of the fuselage. That is, the fluctuation of the lift acts as a restoring force on the aircraft.
  • the case where the thrust fa of the left fan 21a is directed in the vertical direction is illustrated.
  • FIG. 11A shows the flight principle during forward movement.
  • FIG. 11A shows a side view.
  • the body axis FG is fixed in a state of being inclined forward (left side in the drawing), and the drive shafts of the fan 21 and the rear fan 22 are also inclined forward.
  • the thrust f1 of the fan 21 can be separated into a vertical component f1v and a horizontal component f1h
  • the thrust f2 of the rear fan 22 can be separated into a vertical component f2v and a horizontal component f2h.
  • the resultant force of the vertical direction component f1v and the vertical direction component f2v constitutes the vertical direction component fv of the thrust force f, and this vertical direction component fv (lift) is adjusted to balance with the gravity g. Further, the resultant force of the horizontal direction component f1h and the horizontal direction component f2h constitutes a horizontal direction component fh of the thrust f, and this horizontal direction component fh acts as a thrust of the aircraft, and moves (forwards) the aircraft forward.
  • FIG. 11B shows the flight principle during a left turn.
  • FIG. 11B shows a front view.
  • the body axis FG is inclined to the left side (the right side in the figure).
  • the fans 21 (the left fan 21a and the right fan 21b) are arranged in a substantially V shape, the thrust fa of the left fan 21a is generated in a substantially vertical direction, and the thrust fb of the right fan 21b is inclined inward. Assume that it has occurred.
  • the thrust fa of the left fan 21a acts on the body as lift
  • the vertical component fbv of the thrust fb of the right fan 21b acts on the body as lift.
  • the vertical component fv (ie, the resultant force of the thrust fa and the vertical component fbv) of the thrust f of the fan 21 acts on the airframe as a lift, and this vertical component fv (lift). Is adjusted to balance the gravity g.
  • the horizontal component fh of the thrust f that is, the horizontal component fbh of the thrust fb of the right fan 21b acts as a centripetal force so as to move the action point F to the left, and moves the center of gravity G to the right as a reaction.
  • the centrifugal force fc acts on the airframe.
  • the aircraft turns left while maintaining its posture.
  • the action of the rear fan 22 is ignored.
  • the flight principle at the time of turning right is the same as that when the flight principle at the time of turning left is reversed, description thereof is omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Toys (AREA)

Abstract

 揚力及び推力を発生させるファン21を有する推進器2と、推進器2に動力を供給する原動機3と、推進器2及び原動機3を連結するフレーム4と、フレーム4に対して前後方向に回動可能に接続されるとともにフレーム4に吊下げ支持された座席5と、フレーム4に接続されたハンドル6と、座席5に接続された接地脚7と、を有し、推進器2は、着陸時にファン21の駆動軸が鉛直方向となるようにフレーム4に接続されており、ハンドル6を操作することによって、座席5に対してフレーム4を相対移動させ、推進器2の向きを変更するようにした垂直離着陸機である。簡便な構成で推力制御を行うことができ、障害物が存在している狭い空間においても安全に離着陸することができる。

Description

垂直離着陸機
 本発明は、垂直離着陸機に関し、特に、滑走せずに揚力を発生させることができる垂直離着陸機に関する。
 現在、滑走せずに揚力を発生させることができる垂直離着陸機として代表的なものは、ヘリコプターである。ヘリコプターは、機体に比して大きなローターを有し、かかるローターを回転させることによって揚力と推力を発生している。また、数少ない実例としては、ジェットエンジンの推力を偏向して垂直離着陸を行う固定翼機も存在している。
 ヘリコプターは、機体そのものが比較的大きいうえに、機体よりも大きなメインローターや機体後部にテールローターを有していることから、建築物や樹木等の障害物が存在している狭い空間において、離着陸や姿勢制御を行うと、メインローターやテールローターが障害物と接触してしまうため、離着陸のために広い空間が必要となる。
 一方、ジェットエンジンを使用した垂直離着陸可能な固定翼機の場合は、ジェット排気が高温であるとともに排気量が多いことから、離着陸時に石等の小さな物体がジェット排気により吹き飛ばされ、周囲の建築物等を傷つけてしまう。したがって、かかる固定翼機の場合も離着陸のために広い空間が必要となる。
 そこで、狭い空間であっても安全に離着陸することができる垂直離着陸機(VTOL:Vertical Take-off and Landing)が既に提案されている(例えば、特許文献1、特許文献2等参照)。特許文献1及び特許文献2に記載された垂直離着陸機は、円筒形のダクトやナセルの中にプロペラ状のファンが配置されたダクテッドファンを備えている。
特開2005-206015号公報 特開2006-056364号公報
 しかしながら、従来のダクテッドファンを有する垂直離着陸機は、推力制御の方法が複雑であり、例えば、制御翼を必要としたり、ファンのみをアクチュエータ等により傾動させたりしなければならず、機体の価格が高くなる傾向にあった。
 本発明は上述した問題点に鑑み創案されたものであり、簡便な構成で推力制御を行うことができ、障害物が存在している狭い空間においても安全に離着陸することができる垂直離着陸機を提供することを目的とする。
 本発明は、垂直離着陸機であって、揚力及び推力を発生させるファンを有する推進器と、該推進器に動力を供給する原動機と、前記推進器及び前記原動機を連結するフレームと、該フレームに対して前後方向に回動可能に接続されるとともに前記フレームに吊下げ支持された座席と、前記フレームに接続されたハンドルと、前記フレーム又は前記座席に接続された接地脚と、を有し、前記推進器は、着陸時に前記ファンの駆動軸が鉛直方向となるように前記フレームに接続されており、前記ハンドルを操作することによって、前記座席に対して前記フレームを相対移動させ、前記推進器の向きを変更するようにした構成とする。
 好ましくは、前記座席は、前部座席及び後部座席を有する構成とする。
 また、好ましくは、前記フレームは、左右方向に延設された枢動軸を有し、前記座席は、前記枢動軸を挿通可能な挿通部を有する構成とする。
 さらに、好ましくは、前記推進器は、前記座席の左側に配置される左側ファンと、前記座席の右側に配置される右側ファンと、を有する構成とする。
 さらにまた、好ましくは、前記推進器は、前記座席の後部に配置される後部ファンを有する構成とする。
 さらにまた、好ましくは、前記推進器は、前記座席の上部又は下部に配置されている構成とする。
 さらにまた、好ましくは、前記推進器は、隣接部に配置されている構成とする。
 さらにまた、好ましくは、前記推進器は、ダクテッドファンである構成とする。
 上述した本発明の垂直離着陸機によれば、推進器が配置されたフレームに対して、前後方向に相対的に回動可能に座席を接続したことにより、座席に対してフレームを相対移動(相対回動)させるだけで推進器の向きを容易に変更することができ、機体に対して揚力及び推力を発生させることができる。したがって、簡便な構成で推力制御を行うことができ、障害物が存在している狭い空間においても安全に離着陸することができる。
 また、座席を前後に二人乗り可能な構成とすることにより、前部座席を操縦席とし、後部座席を荷物置場に使用したり、救助者や護衛を着座させたりすることができる。
本発明の第一実施形態に係る垂直離着陸機の機体全体を示す側面図である。 本発明の第一実施形態に係る垂直離着陸機の座席とフレームの位置関係を示す側面図である。 本発明の第一実施形態に係る垂直離着陸機のヒンジ部の拡大図である。 図1A~図1Cに示した垂直離着陸機のホバリング時における側面図である。 図1A~図1Cに示した垂直離着陸機の前進時における側面図である。 図1A~図1Cに示した垂直離着陸機の右旋回時における正面上方からの俯瞰図である。 図1A~図1Cに示した垂直離着陸機の左旋回時における正面上方からの俯瞰図である。 第一実施形態に係る垂直離着陸機の飛行原理を示すホバリング時におけるファンの側面方向からの状態説明図である。 第一実施形態に係る垂直離着陸機の飛行原理を示すホバリング時におけるファンの正面方向からの状態説明図である。 第一実施形態に係る垂直離着陸機の飛行原理を示すホバリング外乱発生時におけるファンの側面方向からの状態説明図である。 第一実施形態に係る垂直離着陸機の飛行原理を示すホバリング外乱発生時におけるファンの正面方向からの状態説明図である。 第一実施形態に係る垂直離着陸機の飛行原理を示す前進時におけるファンの側面方向からの状態説明図である。 第一実施形態に係る垂直離着陸機の飛行原理を示す左旋回時におけるファンの正面方向からの状態説明図である。 本発明の第二実施形態に係る垂直離着陸機の機体全体を示す側面図である。 本発明の第二実施形態に係る垂直離着陸機の座席とフレームの位置関係を示す側面図である。 本発明の第二実施形態に係る垂直離着陸機のヒンジ部の拡大図である。 本発明の第三実施形態に係る垂直離着陸機の機体全体を示す側面図である。 本発明の第四実施形態に係る垂直離着陸機の機体全体を示す側面図である。 第三実施形態に係る垂直離着陸機の飛行原理を示すホバリング時におけるファンの側面方向からの状態説明図である。 第三実施形態に係る垂直離着陸機の飛行原理を示すホバリング時におけるファンの正面方向からの状態説明図である。 第三実施形態に係る垂直離着陸機の飛行原理を示すホバリング外乱発生時におけるファンの側面方向からの状態説明図である。 第三実施形態に係る垂直離着陸機の飛行原理を示すホバリング外乱発生時におけるファンの正面方向からの状態説明図である。 第三実施形態に係る垂直離着陸機の飛行原理を示す前進時におけるファンの側面方向からの状態説明図である。 第三実施形態に係る垂直離着陸機の飛行原理を示す左旋回時におけるファンの正面方向からの状態説明図である。 第四実施形態に係る垂直離着陸機の飛行原理を示すホバリング時におけるファンの側面方向からの状態説明図である。 第四実施形態に係る垂直離着陸機の飛行原理を示すホバリング時におけるファンの正面方向からの状態説明図である。 第四実施形態に係る垂直離着陸機の飛行原理を示すホバリング外乱発生時におけるファンの側面方向からの状態説明図である。 第四実施形態に係る垂直離着陸機の飛行原理を示すホバリング外乱発生時におけるファンの正面方向からの状態説明図である。 第四実施形態に係る垂直離着陸機の飛行原理を示す前進時におけるファンの側面方向からの状態説明図である。 第四実施形態に係る垂直離着陸機の飛行原理を示す左旋回時におけるファンの正面方向からの状態説明図である。
 以下、本発明の実施形態について図1A~図11Bを用いて説明する。ここで、図1A~図1Cは、本発明の第一実施形態に係る垂直離着陸機を示す図であり、図1Aは機体全体を示す側面図、図1Bは座席とフレームの位置関係を示す側面図、図1Cはヒンジ部の拡大図、である。図2A,図2Bは、図1A~図1Cに示した垂直離着陸機の飛行状態を示す図であり、図2Aはホバリング時における側面図、図2Bは前進時における側面図、である。図3A,図3Bは、図1A~図1Cに示した垂直離着陸機の飛行状態を示す図であり、図3Aは右旋回時における正面上方からの俯瞰図、図3Bは左旋回時における正面上方からの俯瞰図、である。これらの図3A,図3Bにおいて、図示右側が機体左側であり、図示左側が機体右側である。
 本発明の第一実施形態に係る垂直離着陸機1は、図1A~図3Bに示したように、揚力及び推力を発生させるファン21を有する推進器2と、推進器2に動力を供給する原動機3と、推進器2及び原動機3を連結するフレーム4と、フレーム4に対して前後方向に回動可能に接続されるとともにフレーム4に吊下げ支持された座席5と、フレーム4に接続されたハンドル6と、座席5に接続された接地脚7と、を有し、推進器2は、着陸時にファン21の駆動軸が鉛直方向となるようにフレーム4に接続されており、ハンドル6を操作することによって、座席5に対してフレーム4を相対移動させ、推進器2の向きを変更するようにしたものである。
 前記推進器2は、原動機3の両側に配置される2つのファン21を有する。具体的には、座席5よりも左側に配置される左側ファン21aと、座席5よりも右側に配置される右側ファン21bと、を有する。ファン21(左側ファン21a及び右側ファン21b)は、例えば、ダクテッドファンにより構成されるが、かかる構成に限定されるものではなく、プロペラやエジェクター等であってもよい。また、図1Aに示したように、推進器2は、例えば、座席5の上部に配置される。
 前記原動機3は、ファン21(左側ファン21a及び右側ファン21b)に動力を伝達する駆動源であり、例えば、電動モータやレシプロエンジン等により構成され、過給機を有していてもよい。原動機3から各ファン21に動力を伝達する動力伝達機構は、各機器の配置構成等により、適宜設定される。動力伝達機構は、例えば、原動機3の出力軸の先端に接続された傘歯車と、両端に傘歯車を備えた一対のシャフトと、各ファン21の駆動軸に接続された傘歯車と、を有し、傘歯車を介して出力軸の回転を駆動軸に伝達するように構成される。動力伝達機構には、その他の歯車機構を使用してもよいし、減速機を介在させるようにしてもよい。また、各ファン21の回転数を個別に制御したい場合には、各ファン21に個別に原動機3を接続するようにしてもよい。
 前記フレーム4は、図3A,図3Bに示したように、原動機3と左側ファン21a及び右側ファン21bとを接続する構成部品である。また、図1Bでは、原動機3及びファン21の図を省略してある。図1B及び図1Cに示したように、フレーム4は、左右方向に延設された枢動軸41を有し、枢動軸41は、支持部材42によりフレーム4に連結されている。枢動軸41をフレーム4に直接連結できる場合には、支持部材42を省略するようにしてもよい。枢動軸41は、例えば、ファン21の揚力の作用点と一致する位置に配置することが好ましい。
 前記座席5は、例えば、図1Aに示したように、乗員が着座する腰掛部51と、乗員の背面を支持する背もたれ部52と、乗員の頭部を支持するヘッドレスト53、乗員の足を支持するフットレスト54と、乗員を座席5に拘束するシートベルト55と、を有する。また、座席5は、前部座席5a及び後部座席5bを有する。前部座席5aは、操縦者が着座する座席5であり、後部座席5bは、救助者や護衛が着座する座席である。後部座席5bは、物資等を載置する荷物置場に使用することもできる。また、前部座席5aの前方には整流手段であるカウル5cが接続されている。カウル5cの一部は、視界を確保するために透明の部材により構成される。また、前部座席5aとカウル5cとの接続部5dは、コンソールボックスとして使用するようにしてもよいし、原動機3の操作スイッチや操作レバーを配置する制御部として使用するようにしてもよい。
 また、座席5は、フレーム4に接続された枢動軸41を挿通可能な挿通部56を有する。前部座席5a及び後部座席5bは、それぞれ支持フレーム57を有し、支持フレーム57は、挿通部56に接続されている。フレーム4の枢動軸41と座席5の挿通部56によりヒンジを構成し、フレーム4及び座席5は、枢動軸41に沿って互いに回動可能、すなわち、相対移動可能に構成されている。座席5は、枢動軸41に吊下げ支持された構成となっているが、前後方向の重量を調節することによって、通常時は平行を維持することができるようにバランス調整されている。また、一人乗りの場合や二人乗りの場合等のように、飛行時の積載重量に応じてバランスウェイトを適宜加減して、その都度バランス調整するようにしてもよい。なお、後部座席5bの支持フレーム57には、尾翼58を配置するようにしてもよい。
 前記ハンドル6は、フレーム4から斜め下方に向かって延出されるようにフレーム4に接続される。ハンドル6は、図1B及び図1Cに示したように、支持部材42に接続するようにしてもよい。かかる構成により、前部座席5aに着座した乗員(操縦者)が、ハンドル6を身体に近付けたり遠ざけたりすることによって、座席5に対してフレーム4を相対移動(回動)させることができ、推進器2の向き(ファン21の駆動軸の前後方向角度)を変更することができる。
 前記接地脚7は、着陸時に地面等に接地する脚部である。接地脚7は、例えば、図1Aに示したように、座席5の下部に接続されている。また、図3A及び図3Bに示したように、左右一対の接地脚7を有している。
 ここで、上述した垂直離着陸機1の飛行状態(ホバリング時、前進時、右旋回時、左旋回時)について、図2A~図3Bを参照しつつ説明する。各図において、垂直離着陸機1には、前部座席5aに操縦者Mのみが搭乗(一人乗り)しているものとする。
 ホバリング時は、図2Aに示したように、操縦者Mは、推進器2(ファン21)の駆動軸が略鉛直方向となるようにハンドル6を操作する。かかる操作によって、推進器2の推力は機体に揚力のみを発生させ、機体に推力を発生しないようにすることができる。また、ホバリング時は、推進器2の揚力と機体の重力とが略一致するように原動機3の出力を調整する。ホバリングは、空中で垂直離着陸機1を停止させた状態であるが、鉛直方向に離着陸するときの上昇時や下降時もホバリングと実質的に同じ姿勢となる。すなわち、離陸時は、推進器2の揚力が機体の重力よりも大きくなるように原動機3の出力を調整し、着陸時は、推進器2の揚力が機体の重力よりも小さくなるように原動機3の出力を調整すればよい。
 前進時は、図2Bに示したように、操縦者Mは、ハンドル6を身体に引き寄せて座席5に対してフレーム4、すなわち、推進器2(ファン21)を前方に傾動させる。かかる操作により、推進器2(ファン21)は、斜め後方に向かって空気を噴出することができ、推進器2の推力の前後方向成分により、機体を前進させることができる。また、前方に直進したい場合には、推進器2の推力の鉛直方向成分(揚力)と機体の重力とが略一致するように原動機3の出力を調整すればよい。
 右旋回時は、図3Aに示したように、操縦者Mから見て右側(図3A左側)に操縦者Mが体重移動することによって、機体を右側に傾ける。かかる操作によって、機体の左側に向かって推力を発生させることができ、右に旋回することができる。
 左旋回時は、図3Bに示したように、操縦者Mから見て左側(図3B右側)に操縦者Mが体重移動することによって、機体を左側に傾ける。かかる操作によって、機体の右側に向かって推力を発生させることができ、左に旋回することができる。
 続いて、上述した垂直離着陸機1の飛行原理について、図4A~図5Bを参照しつつ説明する。ここで、図4A~図4Dは、第一実施形態に係る垂直離着陸機の飛行原理を示す図であり、図4Aはホバリング時におけるファンの側面方向からの状態説明図、図4Bは ホバリング時におけるファンの正面方向からの状態説明図、図4Cはホバリング外乱発生時におけるファンの側面方向からの状態説明図、図4Dはホバリング外乱発生時におけるファンの正面方向からの状態説明図である。図5A,図5Bは、第一実施形態に係る垂直離着陸機の飛行原理を示す図であり、図5Aは前進時におけるファンの側面方向からの状態説明図、図5Bは左旋回時におけるファンの正面方向からの状態説明図である。
 各図において、ファン21以外の機体の図を省略し、機体の重心をGとし、揚力の作用点をFとしている。第一実施形態に係る垂直離着陸機1では、重心Gよりも作用点Fは上方に位置している。図4A,図4C及び図5Aにおいて、図示左側が前進側(機首側)であり、図示右側が後進側である。また、図4B,図4D及び図5Bにおいて、図示右側が機体左側であり、図示左側が機体右側である。
 図4A,図4Bはホバリング時の飛行原理を示している。図4Aの側面図及び図4Bの正面図に示したように、ホバリング時には、ファン21の駆動軸は鉛直方向に向いており、作用点Fと重心Gとを結ぶ機体軸FGも鉛直方向に向いている。このとき、ファン21は、鉛直方向上方に推力fを発生し、この推力fが揚力として機体に作用する。また、機体には、鉛直方向下方に重力gが生じている。したがって、ホバリング時には、推力f(揚力)と重力gとが同じ大きさを有し、釣り合った状態となっている。
 図4C,図4Dはホバリング外乱発生時の飛行原理を示している。まず、図4Cの側面図に示したように、ホバリング時に風等の外乱を受けて機体が前方(図示左側)に傾いた場合を想定する。この場合、ファン21の駆動軸及び機体軸FGは、前方に傾斜した状態となる。このとき、ファン21の推力fの鉛直方向成分fvは揚力として機体に作用し、この鉛直方向成分fv(揚力)は重力gと釣り合うように調整される。また、機体軸FGが前方に傾斜していることから、重力gは機体軸FG方向の軸方向成分gaと傾斜方向成分gtとに分離することができる。この傾斜方向成分gtは、重心Gを作用点Fに対して前方向に移動させることとなるため、復元力として機体に作用する。
 次に、図4Dの正面図に示したように、ホバリング時に風等の外乱を受けて機体が左側(図示右側)に傾いた場合を想定する。この場合も同様に、推力fの鉛直方向成分fv(揚力)は重力gと釣り合うように調整され、重力gの傾斜方向成分gtは、重心Gを作用点Fに対して左方向に移動させることとなるため、復元力として機体に作用する。
 図5Aは前進時の飛行原理を示している。図5Aは側面図を示している。図5Aに示したように、前進時には、機体軸FGに対してファン21の駆動軸は前方(図示左側)に傾斜しており、ファン21は駆動軸方向に推力fを発生している。このとき、推力fの鉛直方向成分fvは揚力として機体に作用し、この鉛直方向成分fv(揚力)は重力gと釣り合うように調整される。また、推力fの水平方向成分fhは、機体軸FGを前方に移動させるように作用し、この水平方向成分fhは機体の推力として作用し、機体を前方に移動(前進)させる。
 図5Bは左旋回時の飛行原理を示している。図5Bは正面図を示している。図5Bに示したように、左旋回時には、ファン21の駆動軸及び機体軸FGは、左側(図示右側)に傾斜している。このとき、ファン21の推力fの鉛直方向成分fvは揚力として機体に作用し、この鉛直方向成分fv(揚力)は重力gと釣り合うように調整される。また、推力fの水平方向成分fhは、作用点Fを左側に移動させるように向心力として作用し、その反作用として重心Gを右側に移動させるように遠心力fcが作用する。その結果、機体は姿勢を維持したまま左旋回することとなる。なお、右旋回時の飛行原理は、左旋回時の飛行原理を左右反転させた場合と同じであるため、ここでは説明を省略する。
 続いて、上述した飛行原理と同じ飛行原理を有する第二実施形態に係る垂直離着陸機1について、図6A~図6Cを参照しつつ説明する。ここで、図6A~図6Cは、本発明の第二実施形態に係る垂直離着陸機を示す図であり、図6Aは機体全体を示す側面図、図6Bは座席とフレームの位置関係を示す側面図、図6Cはヒンジ部の拡大図、である。なお、上述した第一実施形態に係る垂直離着陸機1と同じ構成部品については、同じ符号を付して重複した説明を省略する。
 図6A~図6Cに示した第二実施形態に係る垂直離着陸機1は、接地脚7をフレーム4に接続したものである。接地脚7を座席5ではなく、フレーム4に接続することにより、座席5の重量を軽くすることができ、ヒンジ(枢動軸41及び挿通部56)に係る負荷を軽減することができる。具体的には、接地脚7は、フレーム4に接続された支持フレーム43に接続されている。支持フレーム43は、例えば、略台形状のフレームにより構成されており、接地脚7が台形の下底を構成するように配置されている。また、支持フレーム43は、図6Cにその一部を記載したように、下方に向かって左右の間隔が広くなるように形成されており、座席5の両側に支持フレーム43が配置されるように構成されている。なお、ハンドル6は、支持フレーム43に接続するようにしてもよい。
 次に、本発明の他の実施形態に係る垂直離着陸機1について、図7A,図7Bを参照しつつ説明する。ここで、図7A,図7Bは、本発明の他の実施形態に係る垂直離着陸機を示す図であり、図7Aは第三実施形態に係る垂直離着陸機の機体全体を示す側面図、図7Bは第四実施形態に係る垂直離着陸機の機体全体を示す側面図、である。なお、上述した第一実施形態又は第二実施形態に係る垂直離着陸機1と同じ構成部品については、同じ符号を付して重複した説明を省略する。
 図7Aに示した第三実施形態に係る垂直離着陸機1は、原動機3を座席5の下部に配置し、推進器2(ファン21)を座席5の隣接部に配置したものである。他の構成については、第二実施形態に係る垂直離着陸機1と同じ構成であるため、詳細な説明を省略する。また、図示しないが、推進器2(ファン21)は、座席5の下部に配置された原動機3の隣接部に配置して座席5よりも下部に配置するようにしてもよい。
 図7Bに示した第四実施形態に係る垂直離着陸機1は、推進器2が座席5の後部に配置される後部ファン22を有するものである。他の構成については、第三実施形態に係る垂直離着陸機1と同じ構成であるため、詳細な説明を省略する。後部ファン22は、例えば、ファン21(左側ファン21a及び右側ファン21b)よりも小型のダクテッドファンにより構成される。例えば、後部ファン22が一基の場合には、左側ファン21a、右側ファン21b及び後部ファン22は、三角形の頂点を形成する位置に配置され、フレーム4は、三角形の各辺を構成するように形成される。また、例えば、後部ファン22が二基の場合には、左側ファン21a、右側ファン21b及び後部ファン22は、四角形(例えば、正方形、長方形、台形等)の頂点を形成する位置に配置され、フレーム4は、四角形の各辺を構成するように形成される。
 また、後部ファン22の駆動軸は、ファン21(左側ファン21a及び右側ファン21b)の駆動軸と平行となるように配置してもよいし、図示したように、後部ファン22の駆動軸を前方に傾斜するように配置してもよい。なお、ファン21を座席5の下部又は隣接部に配置した場合には、ファン21及び後部ファン22の駆動軸を内側に傾斜させるように、すなわち、正面視したときにファン21及び後部ファン22が略V字形状を構成するように配置して、静安定を保持し易くするようにしてもよい。
 続いて、第三実施形態に係る垂直離着陸機1の飛行原理について、図8A~図9Bを参照しつつ説明する。ここで、図8A~図8Dは、第三実施形態に係る垂直離着陸機の飛行原理を示す図であり、図8Aはホバリング時におけるファンの側面方向からの状態説明図、図8Bは ホバリング時におけるファンの正面方向からの状態説明図、図8Cはホバリング外乱発生時におけるファンの側面方向からの状態説明図、図8Dはホバリング外乱発生時におけるファンの正面方向からの状態説明図である。図9A,図9Bは、第三実施形態に係る垂直離着陸機の飛行原理を示す図であり、図9Aは前進時におけるファンの側面方向からの状態説明図、図9Bは左旋回時におけるファンの正面方向からの状態説明図である。
 各図において、ファン21以外の機体の図を省略し、機体の重心をGとし、揚力の作用点をFとしている。第三実施形態に係る垂直離着陸機1では、重心Gは作用点Fよりもわずかに下方に位置しているものとする。また、ファン21(左側ファン21a及び右側ファン21b)は、正面視したときに略V字形状を構成するように配置されているものとする。図8A,図8C及び図9Aにおいて、図示左側が前進側(機首側)であり、図示右側が後進側である。また、図8B,図8D及び図9Bにおいて、図示右側が機体左側であり、図示左側が機体右側である。
 図8A,図8Bはホバリング時の飛行原理を示している。図8Aの側面図及び図8Bの正面図に示したように、ホバリング時には、ファン21の駆動軸は鉛直方向に向いており、作用点Fと重心Gとを結ぶ機体軸FGも鉛直方向に向いている。このとき、ファン21は、鉛直方向上方に推力fを発生し、この推力fが揚力として機体に作用する。なお、図8Bの正面図に示したように、ファン21の推力fは、左側ファン21aの推力faと右側ファン21bの推力fbの合力によって求められる。また、機体には、鉛直方向下方に重力gが生じている。したがって、ホバリング時には、推力f(揚力)と重力gとが同じ大きさを有し、釣り合った状態となっている。
 図8C,図8Dはホバリング外乱発生時の飛行原理を示している。まず、図8Cの側面図に示したように、ホバリング時に風等の外乱を受けて機体が前方(図示左側)に傾いた場合を想定する。この場合、ファン21の駆動軸及び機体軸FGは、前方に傾斜した状態となる。このとき、ファン21の推力fの鉛直方向成分fvは揚力として機体に作用し、この鉛直方向成分fv(揚力)は重力gと釣り合うように調整される。また、機体軸FGが前方に傾斜していることから、重力gは機体軸FG方向の軸方向成分gaと傾斜方向成分gtとに分離することができる。この傾斜方向成分gtは、重心Gを作用点Fに対して前方向に移動させることとなるため、復元力として機体に作用する。
 次に、図8Dの正面図に示したように、ホバリング時に風等の外乱を受けて機体が左側(図示右側)に傾いた場合を想定する。この場合も同様に、推力fの鉛直方向成分fv(揚力)は重力gと釣り合うように調整され、重力gの傾斜方向成分gtは、重心Gを作用点Fに対して左方向に移動させることとなるため、復元力として機体に作用する。また、ファン21(左側ファン21a及び右側ファン21b)が略V字形状に配置されていることから、左側ファン21aの推力faは略鉛直方向に生じており、右側ファン21bの推力fbは内側に傾斜した方向に生じている。したがって、左側ファン21aの推力faは揚力として機体に作用し、右側ファン21bの推力fbの鉛直方向成分fbvは揚力として機体に作用する。いま、左側ファン21a及び右側ファン21bの推力fは同じ大きさに調整されているとすれば、推力fa>鉛直方向成分fbvの関係が成り立つ。この揚力の差分(fa-fbv)は、左側ファン21aを上方に押し上げるように作用し、復元力として機体に作用する。
 図9Aは前進時の飛行原理を示している。図9Aは側面図を示している。図9Aに示したように、前進時には、機体軸FGに対してファン21の駆動軸は前方(図示左側)に傾斜しており、ファン21は駆動軸方向に推力fを発生している。このとき、推力fの鉛直方向成分fvは揚力として機体に作用し、この鉛直方向成分fv(揚力)は重力gと釣り合うように調整される。また、推力fの水平方向成分fhは、機体軸FGを前方に移動させるように作用し、この水平方向成分fhは機体の推力として作用し、機体を前方に移動(前進)させる。
 図9Bは左旋回時の飛行原理を示している。図9Bは正面図を示している。図9Bに示したように、左旋回時には、機体軸FGは左側(図示右側)に傾斜している。また、ファン21(左側ファン21a及び右側ファン21b)が略V字形状に配置されており、左側ファン21aの推力faは略鉛直方向に生じ、右側ファン21bの推力fbは内側に傾斜した方向に生じているものとする。このとき、左側ファン21aの推力faは揚力として機体に作用し、右側ファン21bの推力fbの鉛直方向成分fbvは揚力として機体に作用する。そして、ファン21の推力f(推力faと推力fbの合力)の鉛直方向成分fv(すなわち、推力faと鉛直方向成分fbvの合力)は揚力として機体に作用し、この鉛直方向成分fv(揚力)は重力gと釣り合うように調整される。また、推力fの水平方向成分fh、すなわち、右側ファン21bの推力fbの水平方向成分fbhは、作用点Fを左側に移動させるように向心力として作用し、その反作用として重心Gを右側に移動させるように遠心力fcが機体に作用する。その結果、機体は姿勢を維持したまま左旋回することとなる。なお、右旋回時の飛行原理は、左旋回時の飛行原理を左右反転させた場合と同じであるため、ここでは説明を省略する。
 続いて、第四実施形態に係る垂直離着陸機1の飛行原理について、図10A~図11Bを参照しつつ説明する。ここで、図10A~図10Dは、第四実施形態に係る垂直離着陸機の飛行原理を示す図であり、図10Aはホバリング時におけるファンの側面方向からの状態説明図、図10Bはホバリング時におけるファンの正面方向からの状態説明図、図10Cはホバリング外乱発生時におけるファンの側面方向からの状態説明図、図10Dはホバリング外乱発生時におけるファンの正面方向からの状態説明図である。図11A,図11Bは、第四実施形態に係る垂直離着陸機の飛行原理を示す図であり、図11Aは前進時におけるファンの側面方向からの状態説明図、図11Bは左旋回時におけるファンの正面方向からの状態説明図である。
 各図において、ファン21及び後部ファン22以外の機体の図を省略し、機体の重心をGとし、揚力の作用点をFとしている。第四実施形態に係る垂直離着陸機1では、重心Gは作用点Fよりもわずかに上方に位置しているものとする。また、ファン21(左側ファン21a及び右側ファン21b)は、正面視したときに略V字形状を構成するように配置されているものとする。また、後部ファン22はファン21に対して前方に傾斜した状態に配置されているものとする。図10A,図10C及び図11Aにおいて、図示左側が前進側(機首側)であり、図示右側が後進側である。また、図10B,図10D及び図11Bにおいて、図示右側が機体左側であり、図示左側が機体右側である。
 図10A,図10Bはホバリング時の飛行原理を示している。図10Aの側面図及び図10Bの正面図に示したように、ホバリング時には、ファン21の推力f1と後部ファン22の推力f2の合力が作用点Fに対して鉛直方向の推力fを発生させるように機体の姿勢が調整される。具体的には、ファン21の駆動軸は後方側に傾斜し、後部ファン22の駆動軸は前方側に傾斜した状態に維持される。なお、図10Bの正面図に示したように、ファン21の推力f1は、左側ファン21aの推力faと右側ファン21bの推力fbの合力によって求められる。また、作用点Fと重心Gとを結ぶ機体軸FGも鉛直方向に向いており、機体には鉛直方向下方に重力gが生じている。したがって、ホバリング時には、推力f(揚力)と重力gとが同じ大きさを有し、釣り合った状態となっている。
 図10C,図10Dはホバリング外乱発生時の飛行原理を示している。まず、図10Cの側面図に示したように、ホバリング時に風等の外乱を受けて機体が前方(図示左側)に傾いた場合を想定する。この場合、ファン21の推力f1と後部ファン22の推力f2の合力である推力f及び機体軸FGは、前方に傾斜した状態となる。このとき、推力fの鉛直方向成分fvは揚力として機体に作用し、この鉛直方向成分fv(揚力)は重力gと釣り合うように調整される。また、ファン21及び後部ファン22が前方に傾斜した結果、ファン21の揚力(推力f1の鉛直方向成分)は大きくなり、後部ファン22の推力f2の鉛直方向成分f2vは小さくなる。したがって、ファン21の揚力の増加分は機体の前部を上方に押し上げるように作用し、後部ファン22の揚力の減少分は機体の後部を下方に押し下げるように作用する。すなわち、この揚力の変動分は、機体に対して復元力として作用することとなる。なお、図では、ファン21の推力f1が鉛直方向に向いている場合を図示している。
 次に、図10Dの正面図に示したように、ホバリング時に風等の外乱を受けて機体が左側(図示右側)に傾いた場合を想定する。この場合も同様に、推力fの鉛直方向成分fv(揚力)は重力gと釣り合うように調整される。また、ファン21(左側ファン21a及び右側ファン21b)が略V字形状に配置されていることから、左側ファン21a及び右側ファン21bが左側に傾斜した結果、左側ファン21aの揚力(推力faの鉛直方向成分)は大きくなり、右側ファン21bの推力fbの鉛直方向成分fbvは小さくなる。したがって、左側ファン21aの揚力の増加分は機体の左側を上方に押し上げるように作用し、右側ファン21bの揚力の減少分は機体の右側を下方に押し下げるように作用する。すなわち、この揚力の変動分は、機体に対して復元力として作用することとなる。なお、図では、左側ファン21aの推力faが鉛直方向に向いている場合を図示している。
 図11Aは前進時の飛行原理を示している。図11Aは側面図を示している。図11Aに示したように、前進時には、機体軸FGが前方(図示左側)に傾斜した状態に固定されており、ファン21及び後部ファン22の駆動軸も前方に傾斜した状態になっている。このとき、ファン21の推力f1は鉛直方向成分f1v及び水平方向成分f1hに分離することができ、後部ファン22の推力f2は鉛直方向成分f2v及び水平方向成分f2hに分離することができる。鉛直方向成分f1vと鉛直方向成分f2vの合力は、推力fの鉛直方向成分fvを構成し、この鉛直方向成分fv(揚力)は重力gと釣り合うように調整される。また、水平方向成分f1hと水平方向成分f2hの合力は、推力fの水平方向成分fhを構成し、この水平方向成分fhは機体の推力として作用し、機体を前方に移動(前進)させる。
 図11Bは左旋回時の飛行原理を示している。図11Bは正面図を示している。図11Bに示したように、左旋回時には、機体軸FGは左側(図示右側)に傾斜している。また、ファン21(左側ファン21a及び右側ファン21b)が略V字形状に配置されており、左側ファン21aの推力faは略鉛直方向に生じ、右側ファン21bの推力fbは内側に傾斜した方向に生じているものとする。このとき、左側ファン21aの推力faは揚力として機体に作用し、右側ファン21bの推力fbの鉛直方向成分fbvは揚力として機体に作用する。そして、ファン21の推力f(推力faと推力fbの合力)の鉛直方向成分fv(すなわち、推力faと鉛直方向成分fbvの合力)は揚力として機体に作用し、この鉛直方向成分fv(揚力)は重力gと釣り合うように調整される。また、推力fの水平方向成分fh、すなわち、右側ファン21bの推力fbの水平方向成分fbhは、作用点Fを左側に移動させるように向心力として作用し、その反作用として重心Gを右側に移動させるように遠心力fcが機体に作用する。その結果、機体は姿勢を維持したまま左旋回することとなる。なお、ここでは、説明の便宜上、後部ファン22の作用を無視している。また、右旋回時の飛行原理は、左旋回時の飛行原理を左右反転させた場合と同じであるため説明を省略する。
 本発明は上述した実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々変更が可能であることは勿論である。
1 垂直離着陸機
2 推進器
3 原動機
4 フレーム
5 座席
5a 前部座席
5b 後部座席
6 ハンドル
7 接地脚
21 ファン
22 後部ファン
41 枢動軸
56 挿通部

Claims (8)

  1.  揚力及び推力を発生させるファンを有する推進器と、
     該推進器に動力を供給する原動機と、
     前記推進器及び前記原動機を連結するフレームと、
     該フレームに対して前後方向に回動可能に接続されるとともに前記フレームに吊下げ支持された座席と、
     前記フレームに接続されたハンドルと、
     前記フレーム又は前記座席に接続された接地脚と、を有し、
     前記推進器は、着陸時に前記ファンの駆動軸が鉛直方向となるように前記フレームに接続されており、
     前記ハンドルを操作することによって、前記座席に対して前記フレームを相対移動させ、前記推進器の向きを変更するようにした、ことを特徴とする垂直離着陸機。
  2.  前記座席は、前部座席及び後部座席を有する、ことを特徴とする請求項1に記載の垂直離着陸機。
  3.  前記フレームは、左右方向に延設された枢動軸を有し、前記座席は、前記枢動軸を挿通可能な挿通部を有する、ことを特徴とする請求項1に記載の垂直離着陸機。
  4.  前記推進器は、前記座席の左側に配置される左側ファンと、前記座席の右側に配置される右側ファンと、を有することを特徴とする請求項1に記載の垂直離着陸機。
  5.  前記推進器は、前記座席の後部に配置される後部ファンを有する、ことを特徴とする請求項4に記載の垂直離着陸機。
  6.  前記推進器は、前記座席の上部又は下部に配置されている、ことを特徴とする請求項1に記載の垂直離着陸機。
  7.  前記推進器は、隣接部に配置されている、ことを特徴とする請求項1に記載の垂直離着陸機。
  8.  前記推進器は、ダクテッドファンである、ことを特徴とする請求項1に記載の垂直離着陸機。
PCT/JP2012/066745 2011-06-30 2012-06-29 垂直離着陸機 WO2013002383A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
NZ619528A NZ619528B2 (en) 2011-06-30 2012-06-29 Vertical take-off and landing aircraft
EP12804338.7A EP2727833B1 (en) 2011-06-30 2012-06-29 Vertical takeoff and landing aircraft
AU2012276578A AU2012276578B2 (en) 2011-06-30 2012-06-29 Vertical Take-off and Landing Aircraft
US14/142,403 US9561850B2 (en) 2011-06-30 2013-12-27 Vertical take-off and landing aircraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-145525 2011-06-30
JP2011145525A JP5920557B2 (ja) 2011-06-30 2011-06-30 垂直離着陸機

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/142,403 Continuation US9561850B2 (en) 2011-06-30 2013-12-27 Vertical take-off and landing aircraft

Publications (1)

Publication Number Publication Date
WO2013002383A1 true WO2013002383A1 (ja) 2013-01-03

Family

ID=47424268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066745 WO2013002383A1 (ja) 2011-06-30 2012-06-29 垂直離着陸機

Country Status (5)

Country Link
US (1) US9561850B2 (ja)
EP (1) EP2727833B1 (ja)
JP (1) JP5920557B2 (ja)
AU (1) AU2012276578B2 (ja)
WO (1) WO2013002383A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013375961B2 (en) * 2013-01-29 2016-05-19 Ihi Corporation Vertical takeoff and landing aircraft

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10029786B1 (en) * 2011-03-01 2018-07-24 Richard D. Adams Light aircraft using parachute/paraglider wing
JP6213713B2 (ja) * 2013-05-16 2017-10-18 株式会社Ihi 垂直離着陸機
WO2015064767A1 (ja) * 2013-10-30 2015-05-07 優章 荒井 垂直離着陸飛行体
JP6567300B2 (ja) * 2015-03-11 2019-08-28 株式会社フジタ 無線操縦式の回転翼機
US10155507B2 (en) 2016-01-28 2018-12-18 Vescovi Innovations, LLC Compressed gas levitation device
JP6574075B1 (ja) * 2019-01-08 2019-09-11 テトラ・アビエーション株式会社 飛行体
KR101985688B1 (ko) * 2019-02-28 2019-06-04 주식회사 블루젠드론 개인비행장치
KR101985687B1 (ko) * 2019-02-28 2019-06-04 주식회사 블루젠드론 개인비행장치
JP6669916B2 (ja) * 2019-04-01 2020-03-18 株式会社フジタ 無線操縦式の回転翼機
US11433093B2 (en) * 2019-08-01 2022-09-06 John Stevens George Compact gyroplane employing torque compensated main rotor and hybrid power train
WO2021140555A1 (ja) * 2020-01-07 2021-07-15 株式会社A.L.I. Technologies 飛行体の制御装置および飛行体の制御方法
FR3111329A1 (fr) * 2020-06-16 2021-12-17 François Viguier engin volant birotor à décollage et atterrissage vertical
CN112373686B (zh) * 2020-11-26 2022-07-08 尚良仲毅(沈阳)高新科技有限公司 一种无人机及其矢量角度控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59501202A (ja) * 1982-09-29 1984-07-12 ヤング,ベルンド ヘリコプタ
JPH0391895U (ja) * 1990-01-09 1991-09-19
JPH0692294A (ja) * 1992-09-16 1994-04-05 Mitsubishi Heavy Ind Ltd ヘリコプタ
JP2006015971A (ja) * 2004-06-30 2006-01-19 Hiroyoshi Mori スポーツヘリコプター
JP2009137319A (ja) * 2007-12-03 2009-06-25 Engineering System Kk 固定ピッチ式同軸2重反転型ヘリコプタ

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1867759A (en) * 1930-06-05 1932-07-19 Rehbock Jean Aircraft
US2180922A (en) * 1936-07-24 1939-11-21 Helicopter Corp Of America Helicopter device
US2417896A (en) * 1943-08-10 1947-03-25 Charles H Zimmerman Helicopter flying apparatus
US2486059A (en) * 1945-10-09 1949-10-25 Horace T Pentecost Control mechanism for helicopters with coaxial rotors
US3029047A (en) * 1958-01-17 1962-04-10 Hiller Aircraft Corp Collapsible and portable rotary wing aircraft
US3321022A (en) * 1963-10-25 1967-05-23 Oguri Yoshiyuki Rotary wing assembly
US3272457A (en) * 1964-07-01 1966-09-13 Donald B Macmillan Water ski autogyro
US3426982A (en) * 1967-02-03 1969-02-11 Ronald L Markwood Vertiplane vtol aircraft
US3578875A (en) * 1968-07-09 1971-05-18 Yoshiyuki Oguri Rotary wing assembly
US3921939A (en) * 1973-06-18 1975-11-25 Helicorporation Directional control system for helicopters
WO1984000339A1 (fr) * 1982-07-07 1984-02-02 Bernd Jung Helicoptere
US4537372A (en) * 1983-05-06 1985-08-27 Lorant Forizs VTOL Aircraft
JPH0391895A (ja) 1989-09-05 1991-04-17 Fujitsu General Ltd 集合住宅管理システム
US5779188A (en) * 1993-09-21 1998-07-14 Frick; Alexander Flight device
US5601257A (en) * 1994-08-11 1997-02-11 Benchmark Corporation Air vehicle yaw control system
DE19540272A1 (de) * 1995-10-28 1997-04-30 Johannes Schier Ringflügel-Flugkörper
US6488232B2 (en) * 1998-12-16 2002-12-03 Trek Aerospace, Inc. Single passenger aircraft
AU2002232588A1 (en) * 2000-12-13 2002-06-24 Trek Aerospace, Inc Aircraft and control system
US20050098682A1 (en) * 2001-02-07 2005-05-12 Pai Bhaskar R. Light weight helicopter
US7198223B2 (en) * 2001-02-14 2007-04-03 Airscooter Corporation Ultralight coaxial rotor aircraft
JP2003137192A (ja) * 2001-10-31 2003-05-14 Mitsubishi Heavy Ind Ltd 垂直離着陸機
JP4223921B2 (ja) * 2003-10-24 2009-02-12 トヨタ自動車株式会社 垂直離着陸飛翔装置
JP2005206015A (ja) 2004-01-22 2005-08-04 Toyota Motor Corp 垂直離着陸機の姿勢制御装置
US20060226281A1 (en) * 2004-11-17 2006-10-12 Walton Joh-Paul C Ducted fan vertical take-off and landing vehicle
DE102004063205B3 (de) * 2004-12-23 2006-05-04 Julian Kuntz Fluggerät mit verbesserter Beweglichkeit am Boden
NZ538630A (en) * 2005-03-04 2007-02-23 Gnm Ltd Propulsion device for a personal flight device with fans rotating in the same direction
JP4434100B2 (ja) * 2005-08-03 2010-03-17 トヨタ自動車株式会社 ダクテッドファン
US7644887B2 (en) * 2007-02-22 2010-01-12 Johnson Edward D Yaw control system and method
US20090224095A1 (en) * 2008-03-04 2009-09-10 Honeywell International, Inc. Ducted vertical take-off and landing (vtol) personnel carrier
NZ569454A (en) * 2008-06-27 2009-10-30 Martin Aircraft Company Ltd Propulsion device including control system
NZ569455A (en) * 2008-06-27 2009-10-30 Martin Aircraft Company Ltd Propulsion device incorporating radiator cooling passage
IL199009A (en) * 2009-05-27 2013-11-28 Israel Aerospace Ind Ltd aircraft
US8167234B1 (en) * 2010-03-21 2012-05-01 Michael Moore Insect-like micro air vehicle having perching, energy scavenging, crawling, and offensive payload capabilities
US9440736B2 (en) * 2011-05-26 2016-09-13 Pete Bitar Special personal electric helicopter device with integral wind turbine recharging capability
JP6037100B2 (ja) * 2012-03-14 2016-11-30 株式会社Ihi 垂直離着陸機
JP6108077B2 (ja) * 2013-01-29 2017-04-05 株式会社Ihi 垂直離着陸機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59501202A (ja) * 1982-09-29 1984-07-12 ヤング,ベルンド ヘリコプタ
JPH0391895U (ja) * 1990-01-09 1991-09-19
JPH0692294A (ja) * 1992-09-16 1994-04-05 Mitsubishi Heavy Ind Ltd ヘリコプタ
JP2006015971A (ja) * 2004-06-30 2006-01-19 Hiroyoshi Mori スポーツヘリコプター
JP2009137319A (ja) * 2007-12-03 2009-06-25 Engineering System Kk 固定ピッチ式同軸2重反転型ヘリコプタ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013375961B2 (en) * 2013-01-29 2016-05-19 Ihi Corporation Vertical takeoff and landing aircraft
US9950789B2 (en) 2013-01-29 2018-04-24 Ihi Corporation Vertical take-off and landing aircraft

Also Published As

Publication number Publication date
JP2013010466A (ja) 2013-01-17
US9561850B2 (en) 2017-02-07
EP2727833A4 (en) 2015-03-11
EP2727833A1 (en) 2014-05-07
AU2012276578B2 (en) 2015-05-28
EP2727833B1 (en) 2017-08-16
NZ619528A (en) 2015-05-29
US20140110533A1 (en) 2014-04-24
JP5920557B2 (ja) 2016-05-18
AU2012276578A1 (en) 2014-01-23

Similar Documents

Publication Publication Date Title
JP5920557B2 (ja) 垂直離着陸機
US9950789B2 (en) Vertical take-off and landing aircraft
US9254916B2 (en) Vertical take-off and landing aircraft with tiltrotor power for use on land and in air
EP3098161B1 (en) Vertical take-off aircraft
JP6037100B2 (ja) 垂直離着陸機
US8128033B2 (en) System and process of vector propulsion with independent control of three translation and three rotation axis
US20100127114A1 (en) Helicopter
WO2020196524A1 (ja) 飛行体
JP6213713B2 (ja) 垂直離着陸機
EP3209559B1 (en) Aircraft
EP3959126B1 (en) Vertical take-off and landing aircraft and related control method
KR101985688B1 (ko) 개인비행장치
JP2011131861A (ja) 垂直離発着機
KR101985687B1 (ko) 개인비행장치
EP3736211A1 (en) A system and method for enhanced altitude control of an autogyro
JP6609760B1 (ja) 飛行体
JP2010042792A (ja) 多機能飛行機
NZ619528B2 (en) Vertical take-off and landing aircraft
JP4930923B2 (ja) 多機能飛行体
JP2022059231A (ja) 航空機の回転翼制御機構
JP2020168911A (ja) 飛行体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804338

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012804338

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012804338

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012276578

Country of ref document: AU

Date of ref document: 20120629

Kind code of ref document: A