WO2013002286A1 - イントロデューサー用シース - Google Patents

イントロデューサー用シース Download PDF

Info

Publication number
WO2013002286A1
WO2013002286A1 PCT/JP2012/066433 JP2012066433W WO2013002286A1 WO 2013002286 A1 WO2013002286 A1 WO 2013002286A1 JP 2012066433 W JP2012066433 W JP 2012066433W WO 2013002286 A1 WO2013002286 A1 WO 2013002286A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheath
introducer
main body
distal end
tip
Prior art date
Application number
PCT/JP2012/066433
Other languages
English (en)
French (fr)
Inventor
遼 岡村
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to CN201280032057.9A priority Critical patent/CN103648572B/zh
Priority to EP12805274.3A priority patent/EP2727622B1/en
Priority to JP2013522913A priority patent/JP6007175B2/ja
Priority to AU2012276660A priority patent/AU2012276660B2/en
Publication of WO2013002286A1 publication Critical patent/WO2013002286A1/ja
Priority to US14/139,075 priority patent/US10086172B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/0662Guide tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/0662Guide tubes
    • A61M2025/0687Guide tubes having means for atraumatic insertion in the body or protection of the tip of the sheath during insertion, e.g. special designs of dilators, needles or sheaths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M29/00Dilators with or without means for introducing media, e.g. remedies

Definitions

  • the present invention relates to an introducer sheath.
  • Such treatment methods include the method of administering a drug directly to the affected area using the longness of the catheter, and the use of a catheter with a balloon that is expanded by pressurization attached to the tip to push the stenosis in the living body lumen.
  • a method of expanding and opening a method of scraping and opening the affected part using a catheter with a cutter attached to the tip, and a method of closing the aneurysm, bleeding site or feeding blood vessel using a catheter.
  • a treatment method in which a stent having a tube shape having a meshed side surface is embedded in a living body lumen using a catheter, and the like. is there. Furthermore, there is an aspiration of a liquid that is excessive for the body.
  • the introducer sheath When performing treatment / inspection using a catheter, the introducer sheath is generally introduced into the puncture site formed on the arm or leg using a catheter introducer, and the inside of the introducer sheath A catheter or the like is percutaneously inserted into a lesion such as a blood vessel through the cavity.
  • TRI Trans Radial intervention
  • TFI Trans Femoral intervention
  • the introducer sheath is formed from a sheath tube that is a tubular member having a hollow portion through which a long body such as a catheter can be inserted (see Patent Document 1).
  • the introducer sheath includes a distal end portion that becomes the distal end side when introduced into the puncture site, and a main body portion that is located on the proximal end side of the distal end portion.
  • a uniform phase of the present invention for achieving the above object is an introducer sheath which is formed from a tubular member having a hollow portion through which a long body can be inserted, and which includes a tip portion and a main body portion.
  • the introducer sheath is a sheath whose tip is harder than the main body.
  • an introducer sheath which is formed of a tubular member having a hollow portion through which a long body can be inserted, and which includes a tip portion and a main body portion.
  • the main body portion is formed of a polymer composition containing a crystalline polymer and suppressing a degree of crystallization of the crystalline polymer.
  • the tip portion by making the tip portion harder than the main body portion, even when the thickness is reduced, the tip portion can be prevented from being turned over when the introducer sheath is introduced into the puncture site.
  • the crushing strength in the axial direction of the tip portion is larger than the crushing strength in the axial direction of the main body portion. In this case, even when the distal end portion is harder than the main body portion and the wall thickness is reduced, turning up of the distal end portion can be suppressed when the introducer sheath is introduced into the puncture site.
  • the crystallinity of the tip is greater than the crystallinity of the main body. In this case, even when the distal end portion is harder than the main body portion and the wall thickness is reduced, turning up of the distal end portion can be suppressed when the introducer sheath is introduced into the puncture site.
  • the outer diameter of the tip portion is formed to be gradually smaller toward the tip side and the angle with the axial direction is less than 15 degrees. In this case, by making the tip angle of the tip portion sharp, it is possible to make it difficult to turn over when the skin is expanded by the dilator and then inserted into the skin hole.
  • the thickness on the base end side in the main body portion is larger than the thickness on the front end side in the main body portion. In this case, by providing a configuration with a firmness, the main body portion is less likely to be broken and kink can be prevented.
  • the tubular member can be formed of a single layer made of one material, and the tip can be harder than the main body.
  • the tubular member includes a first layer formed from a first material and a second layer formed from a second material softer than the first material, and the first member at the tip portion
  • the thickness of the layer is larger than the thickness of the first layer in the main body
  • the thickness of the second layer at the tip is smaller than the thickness of the second layer in the main body.
  • a thin introducer sheath By securing rigidity at the distal end portion, even a thin introducer sheath can suppress the turning of the distal end portion and improve the insertability into the skin and blood vessels. Moreover, device flexibility, such as a catheter, can be improved by ensuring flexibility in the main body. The main body portion is difficult to break, easily spreads even if it is broken, and easily returns to its original shape even if the sheath kinks after puncturing.
  • the tubular member is formed of a mixture of a first material and a second material that is softer than the first material, and is formed in the mixture from the distal end side of the distal end portion toward the proximal end side of the main body portion. It is preferable that the content rate of the first material is reduced and the content rate of the second material is increased. In this case, by changing the content ratios of the first and second materials for each portion along the longitudinal direction of the introducer sheath, a continuous change from rigidity to flexibility from the distal end portion toward the main body portion or It is possible to have an inclination. It is also possible to give a step change or inclination from rigidity to flexibility.
  • the distal end of the distal end may be formed only from the first material, and the proximal end of the main body may be formed from only the second material.
  • the rigidity of the main body can be ensured by the rigidity of the crystalline polymer itself, and the flexibility of the main body can be ensured by suppressing the degree of crystallization of the crystalline polymer. Therefore, even if the wall thickness is reduced, an introducer sheath that ensures the flexibility of the main body can be obtained.
  • the crystalline polymer is polyetheretherketone.
  • the polyether ether ketone since the polyether ether ketone has an extremely high rigidity, an introducer sheath that ensures the flexibility of the main body can be obtained even if the wall thickness is reduced.
  • the wall thickness of the tubular member is preferably 0.01 to 0.20 mm. In this case, even if the wall thickness is reduced, an introducer sheath that ensures the flexibility of the main body can be obtained.
  • FIG. 1 is a plan view showing an introducer assembly to which an introducer sheath according to an embodiment of the present invention is applied.
  • FIG. 2 is an exploded plan view showing the introducer sheath and dilator of the introducer assembly.
  • FIG. 3 is a view showing a state in which the catheter is inserted through the introducer sheath introduced into the puncture site.
  • FIG. 4 is a view showing a state where the introducer sheath is introduced into the puncture site.
  • 5A and 5D are cross-sectional views showing a relatively thick introducer sheath
  • FIGS. 5B and 5C are cross-sectional views showing a relatively thin introducer sheath. is there.
  • FIG. 6A is a cross-sectional view showing the introducer sheath according to the embodiment
  • FIG. 6B is a schematic view showing the magnitude relationship between the hardness of the distal end portion and the hardness of the main body portion in the introducer sheath
  • 6C is a schematic diagram showing the magnitude relationship between the crushing strength in the axial direction of the tip portion and the crushing strength in the axial direction of the main body portion
  • FIG. 6D shows the crystallinity of the tip portion and the main body. It is a schematic diagram which shows the magnitude relationship with the crystallinity degree of a part.
  • FIG. 7 is a schematic view showing a method for measuring the crushing strength in the axial direction of the distal end portion of the introducer sheath.
  • FIG. 7 is a schematic view showing a method for measuring the crushing strength in the axial direction of the distal end portion of the introducer sheath.
  • FIG. 8 is a cross-sectional view showing the sheath tip.
  • FIG. 9 is a cross-sectional view showing an introducer sheath with improved kink resistance of the main body.
  • FIG. 10 is a cross-sectional view showing a material that forms a sheath tube and is formed of a plurality of layers formed from different materials.
  • FIGS. 11A and 11B are schematic diagrams showing the contents of the first and second materials in the mixture, which are the materials forming the sheath tube.
  • the introducer assembly 10 is a device for securing an access route into a living body lumen.
  • proximal end side the proximal operation unit side of the device
  • distal end side the side inserted into the living body lumen
  • FIG. 1 is a plan view showing an introducer assembly 10 to which an introducer sheath 20 according to an embodiment of the present invention is applied.
  • FIG. 2 shows an introducer sheath 20 and a dilator 30 of the introducer assembly 10.
  • 3 is an exploded plan view
  • FIG. 3 is a diagram showing a state where the catheter 70 is inserted through the introducer sheath 20 introduced into the puncture site
  • FIG. 4 is a diagram showing the introducer sheath 20 at the puncture site. It is a figure which shows the state introduced.
  • the introducer assembly 10 generally includes an introducer sheath 20 and a dilator 30.
  • the introducer sheath 20 includes a sheath tube 21, a sheath hub 22 attached to the proximal end side of the sheath tube 21, and a hemostasis valve 23 attached to the proximal end side of the sheath hub 22.
  • the dilator 30 includes a dilator tube 31 and a dilator hub 32 attached to the proximal end side of the dilator tube 31.
  • introducer assembly 10 after introducing introducer sheath 20 to the puncture site, dilator 30 is removed, and a long body such as catheter 70 is passed through the lumen of introducer sheath 20. The skin is inserted into a lesion such as a blood vessel.
  • introducer assembly 10 will be described in detail.
  • the introducer sheath 20 is placed in a living body lumen, and is inserted into a living body lumen by inserting a long body such as a catheter 70, a guide wire, or an embolus into the inside thereof. is there.
  • the sheath tube 21 is percutaneously introduced into the body lumen.
  • the constituent material of the sheath tube 21 will be described later.
  • a side port 24 that communicates with the inside of the sheath tube 21 is formed in the sheath hub 22.
  • One end of a flexible tube 25 made of polyvinyl chloride, for example, is liquid-tightly connected to the side port 24.
  • a three-way cock 26 is attached to the other end of the tube 25.
  • a liquid such as physiological saline is injected from the port of the three-way cock 26 into the introducer sheath 20 through the tube 25.
  • the constituent material of the sheath hub 22 is not particularly limited, but a hard material such as a hard resin is suitable.
  • a hard material such as a hard resin
  • Specific examples of the hard resin include polyolefin such as polyethylene and polypropylene, polyamide, polycarbonate, polystyrene, and the like.
  • the hemostasis valve 23 is formed of an elastic member having a substantially elliptical film shape (disc shape), and is fixed to the sheath hub 22 in a liquid-tight manner.
  • the constituent material of the hemostasis valve 23 is not particularly limited, and examples thereof include silicone rubber, latex rubber, butyl rubber, and isoprene rubber which are elastic members.
  • the dilator 30 is used to prevent the sheath tube 21 from being broken or to enlarge the skin perforation when the introducer sheath 20 is inserted into the blood vessel.
  • the dilator tube 31 is inserted into the sheath tube 21. As shown in FIG. 1, the tip 33 of the dilator tube 31 protrudes from the tip of the sheath tube 21.
  • Examples of the constituent material of the dilator tube 31 include polyolefin (eg, polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or a mixture of two or more of these), polyolefin Elastomer, cross-linked polyolefin, polyvinyl chloride, polyamide, polyamide elastomer, polyester, polyester elastomer, polyurethane, polyurethane elastomer, fluororesin, polycarbonate, polystyrene, polyacetal, polyimide, polyetherimide, and other polymer materials or mixtures thereof Can be used.
  • polyolefin eg, polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or a mixture of two or more of these
  • the dilator hub 32 is detachably held with respect to the sheath hub 22.
  • the constituent material of the dilator hub 32 is not particularly limited, but a hard material such as a hard resin is suitable.
  • a hard material such as a hard resin
  • Specific examples of the hard resin include polyolefin such as polyethylene and polypropylene, polyamide, polycarbonate, polystyrene, and the like.
  • the distal side 20a is required to be stiff in order to improve the insertability into the skin, while the proximal side 20b is In order to improve insertability, flexibility is required. Further, the base end side 20b is required to be flexible from the viewpoint of being difficult to break and easily spreading even if it is broken and easily returning to its original shape even if the sheath is kinked after puncturing.
  • the outer diameter dimension ⁇ 3 is set to be the same while the inner diameter dimension ⁇ 1 is kept the same.
  • the size can be reduced by 1 Fr ( ⁇ 2> ⁇ 3).
  • the inner diameter dimension is kept the same as the outer diameter dimension ⁇ 2.
  • ⁇ 4 becomes large ( ⁇ 4> ⁇ 1), and a long body having a larger outer diameter can be inserted.
  • the size can be reduced by 1 Fr ( ⁇ 2> ⁇ 3).
  • the inner diameter dimension is kept the same as the outer diameter dimension ⁇ 2.
  • ⁇ 4 becomes large ( ⁇ 4> ⁇ 1), and a long body having a larger outer diameter can be inserted.
  • the application range is expanded as follows. Since the outer diameter of the sheath (7Fr size) inserted through the 7Fr size device was larger than the radial diameter of the radial artery (about 2.9 ⁇ 0.6 mm), the TRI procedure was performed using a device such as the 7Fr size catheter 70. could not do.
  • the outer diameter can be reduced by 1 Fr while maintaining the same inner diameter (6 Fr size). This makes it possible to perform a TRI procedure using a 7Fr size device.
  • a device having an outer diameter of 7Fr can be inserted into a sheath having an outer diameter of 6Fr. In this specification, such a combination of device size and sheath size is expressed as “7 in 6”.
  • the combination of device size and sheath size is not limited to “7 in 6”, and can be applied to all Fr.
  • “11in10”, “10in9”, “9in8”, “8in7”, “7in6”, “6in5”, “5in4”, “4in3”, “3in2” are reduced by 1Fr. can do.
  • the outer diameter of the sheath is, for example, about ⁇ 1.39 mm.
  • the insertion mark of the human body is reduced and the hemostasis time is shortened. This shortens the time spent in the hospital, which reduces the physical burden on the hospital as well as the physical burden on the patient.
  • the outer diameter can be reduced by 1 Fr while keeping the inner diameter the same.
  • the tip cannot be used as a sheath due to turning or buckling.
  • the waist strength and rigidity are lost, and it quickly kinks.
  • the sheath tip is turned over, when the introducer sheath is introduced into the puncture site, the sheath tip is thin, so the sheath tip material may stretch and roll outside the sheath tip. Can be mentioned.
  • buckling of the sheath tip refers to a phenomenon in which when the introducer sheath is introduced into the puncture site, longitudinal pressure is applied to the sheath tip, causing the sheath to deform laterally. The case where the sheath bends in the shape of a bellows.
  • the introducer sheath 20 according to the present embodiment that solves the above-described problems when the wall thickness is reduced will be described in detail.
  • FIG. 6A is a cross-sectional view showing the introducer sheath 20
  • FIG. 6B is a schematic view showing the magnitude relationship between the hardness of the distal end portion 50 and the hardness of the main body portion 60 in the introducer sheath 20
  • FIG. 6C is a schematic diagram showing the magnitude relationship between the crushing strength in the axial direction of the tip 50 and the crushing strength in the axial direction of the main body 60
  • FIG. 6D shows the crystallization of the tip 50.
  • FIG. 6 is a schematic diagram showing the magnitude relationship between the degree and the crystallinity of the main body 60.
  • the introducer sheath 20 is generally formed from a sheath tube 21 (corresponding to a tubular member) having a hollow portion 21a through which a long body such as a catheter 70 can be inserted. And a sheath tip 50 (corresponding to the tip) and a sheath body 60 (corresponding to the body).
  • the sheath tip 50 and the sheath body 60 are integrally formed by integral molding or the like, and are preferably not joined by adhesion, fusion, or the like.
  • the sheath distal end portion 50 has a tapered portion 51 that is tapered and a straight portion 52 that extends substantially parallel to the axis.
  • the sheath tip 50 is formed to be harder than the sheath body 60 (see FIG. 6B).
  • the sheath distal end portion 50 By making the sheath distal end portion 50 harder than the sheath main body portion 60, the sheath distal end portion 50 can be prevented from being turned up when the introducer sheath 20 is introduced into the puncture site even if the thickness is reduced. .
  • the sheath tip 50 being harder than the sheath body 60 specifically means that the crushing strength in the axial direction of the sheath tip 50 is greater than the crushing strength in the axial direction of the sheath body 60. (See FIG. 6C).
  • the mechanical characteristics of the sheath tip 50 and the sheath body 60 are different, but it is preferable that the characteristics gradually shift at the boundary. It is preferable that the hardness gradually changes at the boundary between the sheath tip 50 and the sheath body 60. It is preferable that the crushing strength in the axial direction gradually changes at the boundary between the sheath tip 50 and the sheath body 60. It is preferable that the crystallinity gradually changes at the boundary between the sheath tip 50 and the sheath body 60. As a result, it is possible to eliminate a sudden change in mechanical properties at the boundary, and to suppress kinks when the introducer sheath 20 is introduced into the puncture site.
  • the constituent material of the sheath tube 21 is not limited to the polymer composition containing the crystalline polymer, and a normal material can be applied.
  • the constituent material of the sheath tube 21 include polyolefin (for example, polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or a mixture of two or more thereof), polyolefin elastomer, and the like.
  • Polyolefin cross-linked products polyvinyl chloride, polyamide, polyamide elastomer, polyester, polyester elastomer, polyurethane, polyurethane elastomer, fluororesin, polycarbonate, polystyrene, polyacetal, polyimide, polyetherimide and other polymer materials or mixtures thereof Can be used.
  • An ethylene tetrafluoroethylene copolymer (ETFE) can be suitably used.
  • FIG. 7 is a schematic diagram showing a method for measuring the axial crushing strength of the sheath tip 50.
  • the processed product 71 at the distal end of the sheath is cut to 7 cm, and vertically fixed to the autograph manufactured by Shimadzu Corporation with a chuck.
  • a metal core equivalent to the inner diameter of the sheath or a dilator cut is inserted into the sheath tube. Leave a gap of about 15 mm from the sheath tip.
  • the urethane sheet 72 is placed under the fixed sheath tip processed product 71 and pressed vertically at a speed of 5 mm / min to measure the strength when the tip is crushed.
  • the atmosphere in the laboratory was room temperature (RT (Room Temperature) of about 23 ° C.) and relative humidity (RH (Relativistic Humidity) of about 50%).
  • RT Room Temperature
  • RH Relativistic Humidity
  • the sheath tip 50 being harder than the sheath body 60 means that the crystallinity of the sheath tip 50 is greater than the crystallinity of the sheath body 60 (FIG. 6 ( See D)).
  • the amorphous tube is formed as follows.
  • the first molding method when a polymer composition containing a crystalline polymer is extruded, it is rapidly cooled in a die to form an amorphous tube.
  • the cylinder molding temperature is from the melting point of the polymer to the melting point of the polymer plus about 150 ° C., and the die temperature is from 50 to 300 ° C.
  • a polymer composition containing a crystalline polymer is extruded and then rapidly cooled in a water tank to form an amorphous tube.
  • the cylinder molding temperature is from the melting point of the polymer to the melting point of the polymer plus about 150 ° C., the die temperature is 100 to 300 ° C., and the water bath temperature is 0 to 80 ° C.
  • PEEK polyether ether ketone
  • Tg glass transition point
  • Tm melting point
  • the annealing is usually performed at a temperature several tens of degrees lower than the melting point Tm.
  • first molding method molding is performed at a temperature several tens of degrees higher than the glass transition point Tg. This reduces the crystallinity.
  • second molding method even if the molding is performed at a temperature several tens of degrees lower than the melting point Tm, the crystallinity is lowered by quenching the molded tube by placing it in a water tank.
  • a mold having a recess having an inner surface shape that matches the taper shape of the sheath tip 50 is used.
  • the mold is heated by a high frequency power source.
  • the tip of the sheath tube 21 is pushed into the recess of the mold.
  • the inner shape of the recess is transferred to the distal end of the sheath tube 21, and a tapered portion 51 whose outer surface is tapered is formed at the sheath distal end portion 50.
  • the crystallinity at the sheath distal end 50 to which heat and pressure are applied is higher than the crystallinity at the sheath main body 60.
  • the sheath material is PEEK (polyetheretherketone)
  • the mold temperature is preferably a glass transition point Tg or higher and a melting point Tm plus 150 ° C. or lower.
  • the crystallinity of the crystalline polymer can be measured by, for example, X-ray diffraction, thermal analysis, density method, infrared method, nuclear magnetic resonance absorption method and the like.
  • the molecular structure includes at least a crystalline region, and a crystalline region and an amorphous region may be mixed.
  • the resin generally used for the introducer sheath is mainly a fluorine-based resin such as ethylenetetrafluoroethylene copolymer (ETFE) or FEP, or a general-purpose resin such as PE.
  • ETFE ethylenetetrafluoroethylene copolymer
  • PE general-purpose resin
  • engineer plastic or super engineering plastic that is not generally used for the sheath material is used.
  • PEEK Polyetheretherketone
  • PEK Polyetherketone
  • PEKK Polyetherketoneketone
  • PEEKK Polyether
  • PPS polyphenylene sulfide
  • PES polyethersulfone
  • PSF polysulfone
  • PI polyimide
  • PEI polyetherimide
  • PAR amorphous polyarylate
  • fibrous reinforcing materials for example, glass fibers, carbon fibers, whiskers, mica, aramid fibers, acrylic fibers, polyester fibers, etc.
  • fibrous reinforcing materials for example, glass fibers, carbon fibers, whiskers, mica, aramid fibers, acrylic fibers, polyester fibers, etc.
  • FRP fluorescence-activated polymer
  • FRTP GFRP
  • GFRTP GFRTP
  • CFRP CFRTP
  • CFRTP CFRTP
  • BFRP BFRTP
  • KFRP KFRTP
  • KFRTP a compound in which PTFE, ETFE or the like is compatible with these super engineering plastics is also useful.
  • engineer plastics such as nylon (polyamide), polycarbonate, polyacetal, polyphenylene ether, polybutylene terephthalate, and the like can be given.
  • FIG. 8 is a cross-sectional view showing the sheath tip 50.
  • the introducer sheath 20 is formed such that the outer diameter ⁇ a of the sheath tip 50 gradually decreases toward the tip.
  • the angle ⁇ formed by the sheath tip 50 with respect to the axial direction is preferably less than 15 degrees. More preferably, it is 5 degrees.
  • distal end angle of the sheath distal end portion 50 By making the distal end angle of the sheath distal end portion 50 sharp, it is possible to make it difficult to turn over when inserted into the skin hole after the skin is expanded by the dilator 30.
  • the angle of the sheath tip 50 is more preferably 10 degrees or less.
  • the wall thickness is about 70 ⁇ m, insertion into the skin is difficult when the sheath tip angle is 15 degrees, but when it is 5 degrees, insertion into the skin becomes easy.
  • FIG. 9 is a cross-sectional view showing the introducer sheath 20 in which the kink resistance of the sheath body 60 is improved.
  • the thickness t2 on the proximal end side of the sheath main body 60 is larger than the thickness t1 on the distal end side of the sheath main body 60.
  • the thickness t2 on the proximal end side in the sheath main body 60 is made larger than the thickness t1 on the distal end side in the sheath main body 60 to give the stiffness. With such a configuration, the sheath body 60 is less likely to be broken and kink can be prevented.
  • drawing of molten resin or correction by a mold can be cited.
  • the present invention may be applied to a tube made of a multilayer material.
  • the sheath tube 21 is formed of a single layer made of one material, and the sheath tip 50 can be made harder than the sheath body 60 by any of the measures described above.
  • FIG. 10 is a cross-sectional view showing a material that forms the sheath tube 21 and is formed of a plurality of layers formed of different materials.
  • a material 80 forming the sheath tube 21 includes a first layer 81 formed of a first material and a second layer formed of a second material softer than the first material. Layer 82.
  • the thickness of the first layer 81 at the sheath tip 50 is larger than the thickness of the first layer 81 at the sheath body 60, and the thickness of the second layer 82 at the sheath tip 50 is the first thickness at the sheath body 60.
  • the thickness of the second layer 82 is smaller.
  • the material forming the sheath tube 21 has a three-layer structure of outer layer / intermediate layer / inner layer, and each of the first material is a rigid material / second material is a flexible material / first material. It is formed from a rigid material / that is a material.
  • each layer along the longitudinal direction of the introducer sheath By changing the thickness of each layer along the longitudinal direction of the introducer sheath 20, it is possible to make the rigid material rich on the distal end side and the flexible material rich on the proximal end side. In other words, the ratio of the rigid material on the distal end side in the thickness direction is larger than that on the proximal end side. Accordingly, it is possible to give a stepwise change or inclination from rigidity to flexibility from the sheath distal end portion 50 toward the proximal end side of the sheath main body portion 60. It is also possible to have a continuous change or inclination from rigidity to flexibility.
  • the sheath distal end portion 50 by securing rigidity at the sheath distal end portion 50, even if the sheath 20 for the introducer is thin, the sheath distal end portion 50 is prevented from being turned over, and the skin or blood vessel can be prevented. It is possible to improve the insertion property. Further, by ensuring the flexibility toward the proximal end portion in the sheath main body portion 60, it is possible to improve the device passability of the catheter 70 and the like. The sheath main body 60 is not easily broken, and is easily spread even if it is broken. Therefore, even if the sheath kinks after puncturing, there is an advantage that it easily returns to the original shape (kink restoring property).
  • FIG. 11 (A) and 11 (B) are schematic diagrams showing the contents of the first and second materials in the mixture, which are the materials forming the sheath tube 21.
  • FIG. 11 (A) and 11 (B) are schematic diagrams showing the contents of the first and second materials in the mixture, which are the materials forming the sheath tube 21.
  • the material 85 forming the sheath tube 21 is a mixture of a first material and a second material that is softer than the first material.
  • the sheath tube 21 is a single-layer tube formed from this mixture.
  • the content rate 86 of the 1st material in a mixture falls from the front end side in the sheath front-end
  • the end on the distal end side of the sheath distal end portion 50 is formed only from a rigid material that is the first material, and the end on the proximal end side of the sheath main body portion 60 is composed only of the flexible material that is the second material. Is formed.
  • the distal end side is made rich in the rigid material and the proximal end side is made rich in the flexible material. can do. Accordingly, it is possible to have a continuous change or inclination from rigidity to flexibility from the sheath distal end portion 50 toward the proximal end side of the sheath main body portion 60. It is also possible to give a step change or inclination from rigidity to flexibility.
  • the rigid material rich indicates a state where the content of the rigid material is high
  • the flexible material rich indicates a state where the content of the flexible material is high.
  • FIG. 11A The way of changing from a rigid material rich to a flexible material rich changes through a form in which the ratio of both gradually changes (see FIG. 11A) and a state 88 in which both resins are compatible.
  • FIG. 11B There are several forms (see FIG. 11B).
  • the content ratio 86 of the first material in the mixture decreases from the distal end side of the sheath distal end portion 50 toward the proximal end side of the sheath main body portion 60, and the second The material content 87 is increased.
  • the first material in the material 85 extends from the distal end of the sheath distal end portion 50 toward the proximal end of the sheath main body portion 60 as shown in FIG.
  • the thickness of the member 86 made of this material decreases, and the thickness of the member 87 made of the second material in the material 85 increases.
  • the material 85 is configured from the distal end of the sheath distal end portion 50 toward the proximal end of the sheath main body portion 60 as shown in FIG.
  • the content ratio 86 of the first material of the mixture decreases, and the content ratio 87 of the second material of the mixture constituting the material 85 increases.
  • the content ratio 86 of the first material in the mixture decreases from the distal end side of the sheath distal end portion 50 toward the proximal end side of the sheath main body portion 60, and both resins are compatible.
  • the content ratio 87 of the second material increases. That is, as shown in FIG. 11B, the thickness of the member 86 made of the first material in the material 85 decreases from the distal end of the sheath distal end portion 50 to the proximal end of the sheath main body portion 60, and the material 85 The thickness of the member 87 made of the second material is increased, and at the boundary surface between the member 86 made of the first material and the member 87 made of the second material, both members are in a fixed state. A layer having a thickness is formed.
  • the content ratios 86 and 87 can be adjusted by an extrusion technique.
  • a sheath tube forming material by securing rigidity at the sheath distal end portion 50, even if the sheath 20 for the introducer is thin, curling of the sheath distal end portion 50 is suppressed, and the skin or blood vessel can be prevented. It is possible to improve the insertability. In addition, by ensuring flexibility toward the proximal end portion in the sheath main body portion 60, it is possible to improve the device passability of the catheter 70 and the like. The sheath main body 60 is not easily broken and easily spread even if it is broken. Therefore, even if the sheath kinks after puncturing, there is an advantage that it easily returns to the original shape (kink restoring property).
  • the following configuration can also be employed.
  • the introducer sheath 20 is formed from a sheath tube 21 (corresponding to a tubular member) having a hollow portion 21a through which a long body such as a catheter 70 can be inserted, and includes a sheath distal end portion 50 and a sheath main body portion 60.
  • the sheath body 60 is formed of a polymer composition that includes a crystalline polymer and suppresses the degree of crystallization of the crystalline polymer.
  • the rigidity of the sheath body 60 can be ensured by securing the rigidity of the sheath body 60 by the rigidity of the crystalline polymer itself and suppressing the degree of crystallization of the crystalline polymer. Therefore, it is possible to obtain the introducer sheath 20 that ensures the flexibility of the sheath body 60 while reducing the thickness of the sheath body 60.
  • the first molding method or the second molding method described above including the rapid cooling process may be applied. Moreover, it may replace with a rapid cooling process or you may make it add the chemical
  • the degree of crystallization that is suppressed by the crystalline polymer varies depending on the tube diameter, wall thickness, length, etc., so it is not uniquely determined, and the optimum degree of crystallization is selected by trial and error. . Therefore, it is not necessary to specify the degree of suppressed crystallization using the crystallinity.
  • Polyether ether ketone PEEK
  • PEEK Polyether ether ketone
  • the wall thickness of the sheath tube 21 is 0.01 to 0.20 mm, preferably 0.03 to 0.15 mm.
  • the inner diameter of the sheath tube 21 is 0.10 to 5.00 mm.
  • the introducer sheath 20 of the present invention has been described based on the illustrated embodiment, but the present invention is not limited to this.
  • FIG. 10 shows a form having a three-layer structure as the material 80 for forming the sheath tube 21, but it may have a two-layer structure or a four-layer or five-layer structure.
  • distal end side end portion of the sheath distal end portion 50 is formed only from the rigid material that is the first material
  • proximal end side end portion of the sheath main body portion 60 is formed only from the flexible material that is the second material.
  • An example is shown (FIG. 11), but the first and second materials may be included at each end.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Materials For Medical Uses (AREA)

Abstract

肉厚を薄くしても先端部のめくれを抑え得るイントロデューサー用シースを提供するため、イントロデューサー用シース(20)は、長尺体を挿通自在な中空部(21a)を備えるシースチューブ(21)から形成されるとともに、シース先端部(50)とシース本体部(60)とを備え、このイントロデューサー用シース(20)にあっては、シース先端部(50)をシース本体部(60)よりも硬く形成してある。

Description

イントロデューサー用シース
 本発明は、イントロデューサー用シースに関する。
 近年医療において、カテーテルと呼ばれる細長い中空管状の医療器具を用いて様々な形態の治療や検査が行われている。このような治療方法としては、カテーテルの長尺性を利用して直接患部に薬剤を投与する方法、加圧によって拡張するバルーンを先端に取り付けたカテーテルを用いて生体管腔内の狭窄部を押し広げて開く方法、先端部にカッターが取り付けられたカテーテルを用いて患部を削り取って開く方法、逆にカテーテルを用いて動脈瘤や出血箇所あるいは栄養血管に詰め物をして閉じる方法などがある。また、生体管腔内の狭窄部を開口した状態に維持するために、側面が網目状になっている管形状をしたステントをカテーテルを用いて生体管腔内に埋め込んで留置する治療方法などがある。さらに、体内の体にとって過剰となった液体を吸引することなどがある。
 カテーテルを用いて治療・検査などを行う場合には、一般的に、カテーテルイントロデューサーを使用して、腕または脚に形成された穿刺部位にイントロデューサー用シースを導入し、イントロデューサー用シースの内腔を介してカテーテル等を経皮的に血管等の病変部に挿入している。腕からイントロデューサー用シースを導入するTRI(Trans Radial intervention)は、足から導入するTFI(Trans Femoral intervention)に比べて、止血が容易である、安静時間が短い、出血合併症が少ない等の患者および病院側双方への利点がある。
 イントロデューサー用シースは、カテーテルなどの長尺体を挿通自在な中空部を備える管状部材であるシースチューブから形成されている(特許文献1を参照)。イントロデューサー用シースは、穿刺部位への導入時に先端側となる先端部と、先端部の基端側に位置する本体部とを備えている。
特開平8-131552号公報
 シース外径を小さくしたり、大きい外径を有する長尺体を挿通可能としたりするためには、イントロデューサー用シースの肉厚を薄くすることが好ましい。
 その一方、イントロデューサー用シースの肉厚を薄くすると、穿刺部位にイントロデューサー用シースを導入するときに、先端部がめくれやすくなるという問題が生じる。
 さらに、イントロデューサー用シースの肉厚を薄くする場合においても、カテーテル等の長尺体の通過性を高めるために、本体部の柔軟性を確保することが必要である。本体部の柔軟性を確保することによって、キンクの防止や、キンクしても元の形状に戻りやすい復元性を得ることができる。
 従来のイントロデューサー用シースには、肉厚を薄くしても先端部のめくれの改善や本体部の柔軟性の確保を図ったものは見あたらない。
 そこで、本発明の目的は、肉厚を薄くしても先端部のめくれを抑え得るイントロデューサー用シースを提供することにある。また、肉厚を薄くしても本体部の柔軟性の確保を図り得るイントロデューサー用シースを提供することにある。
 上記目的は、以下の手段により達成される。
 (1)上記目的を達成するための本発明の一様相は、長尺体を挿通自在な中空部を備える管状部材から形成され、先端部と本体部とを備えるイントロデューサー用シースであって、前記先端部が前記本体部よりも硬いイントロデューサー用シースである。
 (2)上記目的を達成するための本発明の他の様相は、長尺体を挿通自在な中空部を備える管状部材から形成され、先端部と本体部とを備えるイントロデューサー用シースであって、前記本体部が、結晶性ポリマーを含み結晶性ポリマーの結晶化の程度を抑制したポリマー組成物から形成されてなるイントロデューサー用シースである。
 本発明によれば、先端部を本体部よりも硬くすることによって、肉厚を薄くしても、穿刺部位にイントロデューサー用シースを導入するときに、先端部のめくれを抑制することができる。
 前記先端部の軸方向の押し潰し強度が、前記本体部の軸方向の押し潰し強度よりも大きいことが好ましい。この場合、先端部が本体部よりも硬くなり、肉厚を薄くしても、穿刺部位にイントロデューサー用シースを導入するときに、先端部のめくれを抑制することができる。
 前記先端部の結晶化度が、前記本体部の結晶化度よりも大きいことが好ましい。この場合、先端部が本体部よりも硬くなり、肉厚を薄くしても、穿刺部位にイントロデューサー用シースを導入するときに、先端部のめくれを抑制することができる。
 前記先端部の外径が先端側に向かって漸次小さく形成され、軸方向との角度が15度未満であることが好ましい。この場合、先端部の先端角度を鋭角化にすることによって、ダイレーターによって皮膚を拡張させた後の皮膚孔への挿入時にめくれを発生し難くさせることができる。
 前記本体部における基端側の肉厚が、前記本体部における先端側の肉厚よりも大きいことが好ましい。この場合、コシを持たせた構成となることによって、本体部が折れにくくなり、キンクを防止することができる。
 前記管状部材は、一の材料から形成された単層によって形成して、先端部を本体部よりも硬くすることができる。
 前記管状部材は、第1の材料から形成された第1の層と、第1の材料よりも柔らかい第2の材料から形成された第2の層とを含み、前記先端部における前記第1の層の厚みが前記本体部における前記第1の層の厚みよりも大きく、前記先端部における前記第2の層の厚みが前記本体部における前記第2の層の厚みよりも小さいことが好ましい。この場合、イントロデューサー用シースの長手方向に沿う部位ごとに層の厚みを変化させることによって、先端部から本体部に向けて、剛性から柔軟性まで段階的な変化あるいは傾斜を持たせることが可能となる。剛性から柔軟性まで連続的に変化あるいは傾斜を持たせることも可能である。先端部において剛性を確保することによって、薄肉なイントロデューサー用シースであっても、先端部のめくれを抑制しつつ、皮膚や血管への挿入性を高めることが可能である。また、本体部において柔軟性を確保することによって、カテーテル等のデバイス通過性を高めることができる。本体部は、折れにくく、また折れても広がり易く、穿刺後にシースがキンクしても、元の形状に戻り易くなる。
 前記管状部材は、第1の材料と、第1の材料よりも柔らかい第2の材料との混合物によって形成され、前記先端部における先端側から前記本体部における基端側に向かって前記混合物中の前記第1の材料の含有率が低下し、かつ、前記第2の材料の含有率が増加することが好ましい。この場合、イントロデューサー用シースの長手方向に沿う部位ごとに第1と第2の材料の含有率を変化させることによって、先端部から本体部に向けて、剛性から柔軟性まで連続的な変化あるいは傾斜を持たせることが可能となる。剛性から柔軟性まで段階的に変化あるいは傾斜を持たせることも可能である。先端部において剛性を確保することによって、薄肉なイントロデューサー用シースであっても、先端部のめくれを抑制しつつ、皮膚や血管への挿入性を高めることが可能である。また、本体部において基端部に向けて柔軟性を確保することによって、カテーテル等のデバイス通過性を高めることができる。本体部は、折れにくく、また折れても広がり易く、穿刺後にシースがキンクしても、元の形状に戻り易くなる。
 前記先端部における先端側の端部は第1の材料のみから形成され、前記本体部における基端側の端部は第2の材料のみから形成されていてもよい。
 また、本発明によれば、結晶性ポリマー自体の剛性によって本体部の剛性を確保し、かつ、結晶性ポリマーの結晶化の程度を抑制することによって本体部における柔軟性を確保することができる。したがって、肉厚を薄くしても、本体部の柔軟性を確保したイントロデューサー用シースを得ることができる。
 前記結晶性ポリマーが、ポリエーテルエーテルケトンであることが好ましい。この場合、ポリエーテルエーテルケトンは剛性強度が極めて高いので、肉厚を薄くしても、本体部の柔軟性を確保したイントロデューサー用シースを得ることができる。
 前記管状部材の肉厚が、0.01~0.20mmであることが好ましい。この場合、肉厚を薄くしても、本体部の柔軟性を確保したイントロデューサー用シースを得ることができる。
図1は、本発明の実施形態に係るイントロデューサー用シースを適用したイントロデューサー組立体を示す平面図である。 図2は、イントロデューサー組立体のイントロデューサー用シース、およびダイレーターを分解して示す平面図である。 図3は、穿刺部位に導入されたイントロデューサー用シースを介してカテーテルを挿入している状態を示す図である。 図4は、穿刺部位にイントロデューサー用シースを導入した状態を示す図である。 図5(A)(D)は、肉厚が比較的厚いイントロデューサー用シースを示す断面図、図5(B)(C)は、肉厚が比較的薄いイントロデューサー用シースを示す断面図である。 図6(A)は、実施形態に係るイントロデューサー用シースを示す断面図、図6(B)は、イントロデューサー用シースにおける先端部の硬さと本体部の硬さとの大小関係を示す模式図、図6(C)は、先端部の軸方向の押し潰し強度と本体部の軸方向の押し潰し強度との大小関係を示す模式図、図6(D)は、先端部の結晶化度と本体部の結晶化度との大小関係を示す模式図である。 図7は、イントロデューサー用シースの先端部の軸方向の押し潰し強度を測定するための方法を示す模式図である。 図8は、シース先端部を示す断面図である。 図9は、本体部の耐キンク性を高めたイントロデューサー用シースを示す断面図である。 図10は、シースチューブを形成する素材であって、異なる材料から形成された複数層によって形成された素材を示す断面図である。 図11(A)(B)は、シースチューブを形成する素材であって、混合物中の第1と第2の材料の含有率を示す模式図である。
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 (第1の実施形態)
 イントロデューサー組立体10は、生体管腔内へのアクセスルートを確保するためのデバイスである。なお、以下の説明において、デバイスの手元操作部側を「基端側」、生体管腔内へ挿通される側を「先端側」と称す。
 図1は、本発明の実施形態に係るイントロデューサー用シース20を適用したイントロデューサー組立体10を示す平面図、図2は、イントロデューサー組立体10のイントロデューサー用シース20、およびダイレーター30を分解して示す平面図、図3は、穿刺部位に導入されたイントロデューサー用シース20を介してカテーテル70を挿入している状態を示す図、図4は、穿刺部位にイントロデューサー用シース20を導入した状態を示す図である。
 図1および図2を参照して、イントロデューサー組立体10は、概説すると、イントロデューサー用シース20と、ダイレーター30とを有している。イントロデューサー用シース20は、シースチューブ21と、シースチューブ21の基端側に取り付けられるシースハブ22と、シースハブ22の基端側に取り付けられた止血弁23とを備えている。ダイレーター30は、ダイレーターチューブ31と、ダイレーターチューブ31の基端側に取り付けられるダイレーターハブ32を備えている。図3および図4を参照して、穿刺部位にイントロデューサー用シース20を導入した後、ダイレーター30を抜き去り、イントロデューサー用シース20の内腔を介してカテーテル70等の長尺体を経皮的に血管等の病変部に挿入する。以下、イントロデューサー組立体10について詳述する。
 イントロデューサー用シース20は、生体管腔内へ留置されて、その内部に、例えばカテーテル70、ガイドワイヤ、塞栓物等の長尺体を挿通して、生体管腔内へ導入するためのものである。
 シースチューブ21は、経皮的に生体管腔内へ導入される。シースチューブ21の構成材料については後述する。
 シースハブ22には、シースチューブ21の内部と連通するサイドポート24が形成されている。サイドポート24には、例えばポリ塩化ビニル製の可撓性を有するチューブ25の一端が液密に接続されている。チューブ25の他端は、例えば三方活栓26が装着されている。この三方活栓26のポートからチューブ25を介してイントロデューサー用シース20内に、例えば生理食塩水のような液体を注入する。
 シースハブ22の構成材料としては、特に限定されないが、硬質樹脂のような硬質材料が好適である。硬質樹脂の具体例としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリアミド、ポリカーボネート、ポリスチレン等が挙げられる。
 止血弁23は、略楕円形の膜状(円盤状)をなす弾性部材から構成され、シースハブ22に対して液密に固定されている。
 止血弁23の構成材料としては、特に限定されないが、例えば、弾性部材であるシリコーンゴム、ラテックスゴム、ブチルゴム、イソプレンゴム等が挙げられる。
 ダイレーター30は、イントロデューサー用シース20を血管内に挿入するときに、シースチューブ21の折れを防いだり、皮膚の穿孔を拡径したりするために用いられる。
 ダイレーターチューブ31は、シースチューブ21内に挿通される。図1に示すように、ダイレーターチューブ31の先端33が、シースチューブ21の先端から突出した状態となる。
 ダイレーターチューブ31の構成材料としては、例えば、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、アイオノマー、またはこれら二種以上の混合物など)、ポリオレフィンエラストマー、ポリオレフィンの架橋体、ポリ塩化ビニル、ポリアミド、ポリアミドエラストマー、ポリエステル、ポリエステルエラストマー、ポリウレタン、ポリウレタンエラストマー、フッ素樹脂、ポリカーボネート、ポリスチレン、ポリアセタール、ポリイミド、ポリエーテルイミドなどの高分子材料またはこれらの混合物などを用いることができる。
 ダイレーターハブ32は、シースハブ22に対して着脱自在に保持されている。
 ダイレーターハブ32の構成材料としては、特に限定されないが、硬質樹脂のような硬質材料が好適である。硬質樹脂の具体例としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリアミド、ポリカーボネート、ポリスチレン等が挙げられる。
 図4を参照して、穿刺部位にイントロデューサー用シース20を導入するときには、先端側20aは、皮膚への挿入性を向上させるために硬いことが要求され、一方、基端側20bは、デバイス挿入性を向上させるために柔軟であることが要求されている。基端側20bではさらに、折れにくく、また折れても広がり易く、穿刺後にシースがキンクしても元の形状に戻り易くする観点からも、柔軟であることが要求されている。
 図5(A)(D)は、肉厚(t=T1)が比較的厚いイントロデューサー用シース100、103を示す断面図、図5(B)(C)は、肉厚(t=T2、T3)が比較的薄いイントロデューサー用シース101、102を示す断面図である。
 図5(A)(B)に示すように、イントロデューサー用シース101の肉厚(t=T2、T1>T2)を薄くすることによって、内径寸法φ1を同じにしたまま、外径寸法φ3を例えば1Frサイズダウンすることができる(φ2>φ3)。また、図5(A)(C)に示すように、イントロデューサー用シース102の肉厚(t=T3、T1>T3)を薄くすることによって、外径寸法φ2を同じにしたまま、内径寸法φ4が大きくなり(φ4>φ1)、より大きい外径を有する長尺体を挿通することが可能となる。一方、図5(A)(D)に示すように、イントロデューサー用シース103の肉厚(t=T1)を維持したまま外径寸法φ3を1Frサイズダウンしても(φ2>φ3)、内径寸法φ5もサイズダウン(φ1>φ5)するので、結局のところ小さい外径寸法を有する長尺体しか挿入できなくなる。
 イントロデューサー用シース20の肉厚を薄くすることによって、応用範囲がつぎのように広がる。7Frサイズのデバイスを挿通するシース外径(7Frサイズ)が、とう骨動脈の血管径(2.9±0.6mm程度)よりも大きかったため、7Frサイズのカテーテル70などのデバイスを用いてTRI手技を行うことができなかった。ここで、イントロデューサー用シース20の肉厚を薄くすることによって、内径寸法を同じにしたまま、外径寸法を1Frサイズダウンさせることができる(6Frサイズ)。これによって、7Frサイズのデバイスを用いてTRI手技を行うことが可能となる。外径が6Frサイズのシースの中に、外径が7Frサイズのデバイスを挿通可能になる。本明細書においては、このようなデバイスサイズ-シースサイズの組み合わせを「7in6」と表記する。
 デバイスサイズ-シースサイズの組み合わせは「7in6」に限られるものではなく、すべてのFrに適用することが可能である。例えば、「11in10」、「10in9」、「9in8」、「8in7」、「7in6」、「6in5」、「5in4」、「4in3」、「3in2」のように、すべての外径サイズを1Frサイズダウンすることができる。「3in2」の場合、シースの外径寸法は、例えば約φ1.39mm程度である。
 さらには、シース外径寸法を1Frサイズダウンさせることにより、人体の挿入痕が小さくなり、止血時間が短くなる。これによって病院滞在時間が短くなるので、患者の肉体的負担とともに病院の経済的負担も軽くなる。
 上記のように、イントロデューサー用シース20の肉厚を薄くすることによって、内径寸法を同じにしたまま、外径寸法を1Frサイズダウンさせることができる。しかしながら、単にシースを薄肉化した場合、先端部がめくれたり、座屈したりして、シースとして使用することができない。また、腰強度や剛性がなくなり、すぐにキンクしてしまう。例えば、シースの先端部がめくれるとは、穿刺部位にイントロデューサー用シースを導入する際、シースの肉厚の薄いがため、シース先端部の素材が伸び、シース先端部の外側に巻きあがる場合が挙げられる。また、シースの先端部が座屈するとは、穿刺部位にイントロデューサー用シースを導入する際、シース先端部に対して縦方向の圧力が加わってシースが横方向に変形をおこす現象をいい、例えば、シースが蛇腹状に折れ曲がる場合などが挙げられる。
 肉厚を薄くしたときの上記の課題を解決した本実施形態のイントロデューサー用シース20について詳述する。
 図6(A)は、イントロデューサー用シース20を示す断面図、図6(B)は、イントロデューサー用シース20における先端部50の硬さと本体部60の硬さとの大小関係を示す模式図、図6(C)は、先端部50の軸方向の押し潰し強度と本体部60の軸方向の押し潰し強度との大小関係を示す模式図、図6(D)は、先端部50の結晶化度と本体部60の結晶化度との大小関係を示す模式図である。
 図6(A)を参照して、イントロデューサー用シース20は、概説すれば、カテーテル70などの長尺体を挿通自在な中空部21aを備えるシースチューブ21(管状部材に相当する)から形成され、シース先端部50(先端部に相当する)とシース本体部60(本体部に相当する)とを備えている。シース先端部50とシース本体部60とは一体成形等により一体的に構成されており、接着や融着等によって接合されたものではないことが望ましい。シース先端部50は、先細りとなるテーパー部51と、軸線とほぼ平行に伸びるストレート部52とを有している。このイントロデューサー用シース20は、シース先端部50がシース本体部60よりも硬く形成されている(図6(B)を参照)。
 シース先端部50をシース本体部60よりも硬くすることによって、肉厚を薄くしても、穿刺部位にイントロデューサー用シース20を導入するときに、シース先端部50のめくれを抑制することができる。
 シース先端部50がシース本体部60よりも硬いとは、具体的には、シース先端部50の軸方向の押し潰し強度が、シース本体部60の軸方向の押し潰し強度よりも大きいことをいう(図6(C)を参照)。
 図6(B)乃至(C)によって図示したように、シース先端部50とシース本体部60との機械的特性は異なっているが、その境界部では徐々に特性が移行するのが好ましい。シース先端部50とシース本体部60との境界部では徐々に硬さが変わっていることが好ましい。シース先端部50とシース本体部60との境界部では徐々に軸方向の押し潰し強度が変わっていることが好ましい。シース先端部50とシース本体部60との境界部では徐々に結晶化度が変わっていることが好ましい。これにより、境界部における機械的特性の急激な変化をなくすることが可能となり、穿刺部位にイントロデューサー用シース20を導入するときにキンクを抑制できる。
 この場合におけるシースチューブ21の構成材料は、結晶性ポリマーを含むポリマー組成物に限られるものではなく、通常の素材を適用することができる。シースチューブ21の構成材料としては、例えば、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、アイオノマー、またはこれら二種以上の混合物など)、ポリオレフィンエラストマー、ポリオレフィンの架橋体、ポリ塩化ビニル、ポリアミド、ポリアミドエラストマー、ポリエステル、ポリエステルエラストマー、ポリウレタン、ポリウレタンエラストマー、フッ素樹脂、ポリカーボネート、ポリスチレン、ポリアセタール、ポリイミド、ポリエーテルイミドなどの高分子材料またはこれらの混合物などを用いることができる。エチレンテトラフルオロエチレン共重合体(ETFE)を好適に用いることができる。
 押し潰し強度の評価は次のようにして行う。図7は、シース先端部50の軸方向の押し潰し強度を測定するための方法を示す模式図である。
 シース先端部の加工品71を7cmにカッティングし、株式会社島津製作所製のオートグラフにチャックにて垂直に固定する。シースチューブ内にはシース内径相当の芯金、あるいはダイレーターをカッティングしたものを挿入する。シース先端部から15mm程度は隙間を空けておく。固定したシース先端加工品71の下にウレタンシート72を設置し、5mm/minのスピードで垂直に押し付けてゆき、先端が潰れる際の強度を測定する。実験室内雰囲気は室温(RT(Room Temperature)約23℃)、相対的湿度(RH(Relative Humidity)約50%)とした。同様にシース本体部の軸方向の押し潰し強度についても、シース本体部の加工品に対して行う。
 シース先端部50のめくれは次のようにして確認する。
 まず、ウレタンシートを斜め45度にセットして、針とワイヤーとによってパンクチャーする。そこへ、ダイレーターを組み合わせた状態で、オートグラフによって押し込み、シース先端部のめくれ有無を確認する。
 押し潰し強度に代えて、シース先端部50がシース本体部60よりも硬いとは、シース先端部50の結晶化度が、シース本体部60の結晶化度よりも大きいことをいう(図6(D)を参照)。
 非晶化チューブの成形は次のようにして行う。
 第1の成形方法は、結晶性ポリマーを含むポリマー組成物を押し出し成形するときに、ダイスにおいて急冷し、非晶化チューブを成形する。シリンダー成形温度はポリマーの融点~ポリマーの融点プラス150℃程度、ダイス温度は50~300℃である。
 第2の成形方法は、結晶性ポリマーを含むポリマー組成物を押し出し成形された後に水槽において急冷し、非晶化チューブを成形する。シリンダー成形温度はポリマーの融点~ポリマーの融点プラス150℃程度、ダイス温度は100~300℃、水槽温度は0~80℃である。
 結晶性ポリマーであるポリエーテルエーテルケトン(PEEK)における温度と結晶化度の関係は次のとおりである。PEEKのガラス転移点Tgは約145度、融点Tmは、約345度である。PEEKを融点Tm近辺から融点Tmより数十度低い温度で成形すると結晶化度が高くなる。なお、アニーリングも通常、融点Tmより数十度低い温度で行っている。第1の成形方法にあっては、ガラス転移点Tgよりも数十度高い温度で成形する。これによって、結晶化度が下がる。第2の成形方法にあっては、融点Tmよりも数十度低い温度で成形しても、成形されたチューブを水槽に入れるなど急冷することによって、結晶化度が下がる。
 シース先端部50の形状付け加工を行うときには、シース先端部50のテーパー形状に合致した内面形状を有する凹所が形成された金型を使用する。金型は、高周波電源によって加熱されている。シースチューブ21の先端を金型の凹所に押し込む。すると、凹所の内面形状がシースチューブ21の先端に転写され、シース先端部50に、外表面が先細りとなるテーパー部51が形成される。このような形状付け加工によって、熱および圧力が加えられたシース先端部50における結晶化度が、シース本体部60における結晶化度よりも高められる。シース素材がPEEK(ポリエーテルエーテルケトン)の場合、金型の温度は、ガラス転移点Tg以上、融点Tmプラス150℃以下が好ましい。
 結晶性ポリマーの結晶化度は、例えば、X線回折、熱分析法、密度法、赤外線法、核磁気共鳴吸収法等により測定できる。
 なお、結晶性を有するポリマーといえども100%結晶になることはなく、お互いの分子構造の中に分子の主鎖や側鎖が規則的に並んだ結晶性領域と、規則的に並んでいない非結晶(アモルファス)領域とを含んでいる。したがって、結晶性ポリマーとしては、分子構造の中に少なくとも結晶性領域を含んでいればよく、結晶性領域と非結晶領域とが混在していてもよい。
 イントロデューサー用シースに一般的に使用されている樹脂は、エチレンテトラフルオロエチレン共重合体(ETFE)やFEPといったフッ素系樹脂や、PEといった汎用樹脂が主である。しかし、これらの樹脂は、薄肉化させると腰強度・剛性ともに機械強度が十分なものではなく、シースとしての機能を果たすことが非常に難しい。
 そこで、この場合におけるシースチューブ21の構成材料として、シース素材に一般的には使用されないエンジニアプラスチック、スーパーエンジニアリングプラスチックを使用している。例えば、融点が約340℃と非常に高いが、剛性強度が極めて高く、安定性も高いPEEK(ポリエーテルエーテルケトン)や、PEK(ポリエーテルケトン)、PEKK(ポリエーテルケトンケトン)、PEEKK(ポリエーテルエーテルケトンケトン)、PPS(ポリフェニレンスルファイド)、PES(ポリエーテルスルフォン)、PSF(ポリスルフォン)、PI(ポリイミド)、PEI(ポリエーテルイミド)、PAR(非晶ポリアリレート)やこれらの派生スーパーエンプラ等が挙げられる。また、機械強度を増大させるために、繊維状の補強材を添加させたもの等があり、例えば、ガラス繊維やカーボン繊維、ウィスカ、マイカ、アラミド繊維、アクリル繊維、ポリエステル繊維等を添加させたものがある。具体的には、FRP、FRTP、GFRP、GFRTP、CFRP、CFRTP、BFRP、BFRTP、KFRP、KFRTP等がある。さらには、これらスーパーエンプラにPTFEやETFE等を相溶させたコンパウンドも有用である。また、ナイロン(ポリアミド)やポリカーボネート、ポリアセタール、ポリフェニレンエーテル、ポリブチレンテレフタラート等のエンジニアプラスチックも挙げることができる。
 図8は、シース先端部50を示す断面図である。
 図8を参照して、イントロデューサー用シース20は、シース先端部50の外径φaが先端側に向かって漸次小さく形成されている。シース先端部50が軸方向となす角度θは、15度未満であることが望ましい。より好ましくは5度である。
 シース先端部50の先端角度を鋭角化にすることによって、ダイレーター30によって皮膚を拡張させた後の皮膚孔への挿入時にめくれを発生し難くさせることができる。
 素材が肉薄であるため、シース先端部50の角度は10度以下であることがより望ましい。例えば、肉厚が約70μmの場合、シース先端角度が15度の場合、皮膚への挿入が困難であるが、5度にした場合には、皮膚への挿入が容易になる。
 図9は、シース本体部60の耐キンク性を高めたイントロデューサー用シース20を示す断面図である。
 図9を参照して、シース本体部60における基端側の肉厚t2を、シース本体部60における先端側の肉厚t1よりも大きくするのが好ましい。
 剛性素材を用いて肉薄なシースを実現しようとした場合、シース基端部でシースが折れると復元性に乏しくなる。このため、シース本体部60における基端側の肉厚t2を、シース本体部60における先端側の肉厚t1よりも大きくし、コシを持たせてある。かかる構成によって、シース本体部60が折れにくくなり、キンクを防止することができる。作製方法として、例えば、溶融樹脂の引落しや、金型による矯正を挙げることができる。なお、剛性素材のみの単層チューブの場合の他、多層素材のチューブに適用してもよい。
 シースチューブ21は、一の材料から形成された単層によって形成され、上述した措置のいずれかによってシース先端部50をシース本体部60よりも硬くすることができる。
 図10は、シースチューブ21を形成する素材であって、異なる材料から形成された複数層によって形成された素材を示す断面図である。
 図10を参照して、シースチューブ21を形成する素材80は、第1の材料から形成された第1の層81と、第1の材料よりも柔らかい第2の材料から形成された第2の層82とを含んでいる。そして、シース先端部50における第1の層81の厚みがシース本体部60における第1の層81の厚みよりも大きく、シース先端部50における第2の層82の厚みがシース本体部60における第2の層82の厚みよりも小さい。図示例では、シースチューブ21を形成する素材は、外層/中間層/内層の3層構造を有し、それぞれ、第1の材料である剛性素材/第2の材料である柔軟素材/第1の材料である剛性素材/から形成されている。
 イントロデューサー用シース20の長手方向に沿う部位ごとに層の厚みを変化させることによって、先端側においては剛性素材リッチとし、基端側においては柔軟素材リッチとすることができる。言い換えれば、先端側は厚み方向において剛性素材の割合が基端側よりも大きい。これによって、シース先端部50からシース本体部60の基端側に向けて、剛性から柔軟性まで段階的な変化あるいは傾斜を持たせることが可能となる。剛性から柔軟性まで連続的に変化あるいは傾斜を持たせることも可能である。
 このようなシースチューブ形成素材によれば、シース先端部50において剛性を確保することによって、薄肉なイントロデューサー用シース20であっても、シース先端部50のめくれを抑制しつつ、皮膚や血管への挿入性を高めることが可能である。また、シース本体部60において基端部に向けて柔軟性を確保することによって、カテーテル70等のデバイス通過性を高めることができる。シース本体部60は、折れにくく、また折れても広がり易い。したがって、穿刺後にシースがキンクしても、元の形状に戻り易くなる(キンク復元性)、という利点がある。
 図11(A)(B)は、シースチューブ21を形成する素材であって、混合物中の第1と第2の材料の含有率を示す模式図である。
 図11(A)(B)を参照して、シースチューブ21を形成する素材85は、第1の材料と、第1の材料よりも柔らかい第2の材料との混合物である。シースチューブ21はこの混合物から形成された単層チューブである。そして、シース先端部50における先端側からシース本体部60における基端側に向かって混合物中の第1の材料の含有率86が低下し、かつ、第2の材料の含有率87が増加している。図示例では、シース先端部50における先端側の端部は第1の材料である剛性素材のみから形成され、シース本体部60における基端側の端部は第2の材料である柔軟素材のみから形成されている。
 イントロデューサー用シース20の長手方向に沿う部位ごとに第1と第2の材料の含有率86、87を変化させることによって、先端側においては剛性素材リッチとし、基端側においては柔軟素材リッチとすることができる。これによって、シース先端部50からシース本体部60の基端側に向けて、剛性から柔軟性まで連続的な変化あるいは傾斜を持たせることが可能となる。剛性から柔軟性まで段階的に変化あるいは傾斜を持たせることも可能である。ここで、剛性素材リッチとは剛性素材の含有率が高い状態を示し、柔軟素材リッチとは柔軟素材の含有率が高い状態を示している。
 剛性素材リッチから柔軟素材リッチへの変化の仕方は、徐々に双方の比率が変わっていく形態(図11(A)を参照))と、双方の樹脂が相溶した状態88を経て変化していく形態(図11(B)を参照))とがある。具体的には、図11(A)では、シース先端部50における先端側からシース本体部60における基端側に向かって混合物中の第1の材料の含有率86が低下し、かつ、第2の材料の含有率87が増加している。例えば、第1の材料及び第2の材料が混合されていない場合、図11(A)のようにシース先端部50における先端からシース本体部60における基端に向かって、素材85中の第1の材料からなる部材86の厚みが減少し、かつ、素材85中の第2の材料からなる部材87の厚みが増加する。また、第1の材料および第2の材料が混合された混合物の場合、図11(A)のようにシース先端部50における先端からシース本体部60における基端に向かって、素材85を構成する混合物の第1の材料の含有率86が低下し、かつ、素材85を構成する混合物の第2の材料の含有率87が増加する。また、図11(B)では、シース先端部50における先端側からシース本体部60における基端側に向かって混合物中の第1の材料の含有率86が低下し、双方の樹脂が相溶した状態88を経て、第2の材料の含有率87が増加している。すなわち、図11(B)のようにシース先端部50における先端からシース本体部60における基端に向かって、素材85中の第1の材料からなる部材86の厚みが減少し、かつ、素材85中の第2の材料からなる部材87の厚みが増加し、かつ、第1の材料からなる部材86及び第2の材料からなる部材87の境界面では双方の部材が相溶した状態の一定の厚みを有する層が形成されている。含有率86、87の調整は、押出成形技術の方法によって行うことができる。
 このようなシースチューブ形成素材によれば、シース先端部50において剛性を確保することによって、薄肉なイントロデューサー用シース20であっても、シース先端部50のめくれを抑制しつつ、皮膚や血管への挿入性を高めることが可能である。また、シース本体部60において基端部に向けて柔軟性を確保することによって、カテーテル70等のデバイス通過性を高めることができる。シース本体部60は、折れにくく、また折れても広がり易い。したがって、穿刺後にシースがキンクしても、元の形状に戻り易くなる(キンク復元性)、という利点がある。
 イントロデューサー用シース20において、肉厚を薄くしてもシース本体部60の柔軟性を確保するためには次のような構成も採用できる。
 すなわち、イントロデューサー用シース20は、カテーテル70などの長尺体を挿通自在な中空部21aを備えるシースチューブ21(管状部材に相当する)から形成され、シース先端部50とシース本体部60とを備えている。シース本体部60は、結晶性ポリマーを含み結晶性ポリマーの結晶化の程度を抑制したポリマー組成物から形成されている。
 結晶性ポリマー自体の剛性によってシース本体部60の剛性を確保し、かつ、結晶性ポリマーの結晶化の程度を抑制することによってシース本体部60における柔軟性を確保することができる。したがって、シース本体部60の肉厚を薄くしつつ、シース本体部60の柔軟性を確保したイントロデューサー用シース20を得ることができる。
 結晶化の抑制は、急冷工程を備える前述した第1の成形方法や第2の成形方法を適用すればよい。また、急冷工程に代えて、あるいは急冷工程とともに、結晶化を抑制する薬剤を添加するようにしてもよい。 
 なお、結晶性ポリマーの抑制された結晶化の程度は、チューブ径、肉厚、長さなどによって変わるので一義的に定まるものではなく、トライアンドエラーによって最適な結晶化の程度を選択している。したがって、抑制された結晶化の程度を、結晶化度を用いて特定する必要ない。
 結晶性ポリマーには、ポリエーテルエーテルケトン(PEEK)を好適に用いることができる。剛性強度が極めて高く、安定性も高いからである。
 シースチューブ21の肉厚は、0.01~0.20mm、好ましくは、0.03~0.15mmである。また、シースチューブ21の内径は、0.10~5.00mmである。
 以上、本発明のイントロデューサー用シース20を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではない。
 例えば、図10には、シースチューブ21を形成する素材80として3層構造を有する形態を示したが、2層構造、もしくは4層、5層構造を有するものでもよい。
 また、シース先端部50における先端側の端部を第1の材料である剛性素材のみから形成し、シース本体部60における基端側の端部を第2の材料である柔軟素材のみから形成した例を示したが(図11)、それぞれの端部において第1と第2の材料を含んでいてもよい。
 本出願は、2011年6月29日に出願された日本特許出願番号2011-144697号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。
10   イントロデューサー組立体、
20   イントロデューサー用シース、
21   シースチューブ(管状部材)、
21a  中空部、
30   ダイレーター、
50   シース先端部(先端部)、
60   シース本体部(本体部)、
81   第1の層、
82   第2の層、
86   第1の材料の含有率、
87   第2の材料の含有率、
φa   シース先端部の外径。

Claims (12)

  1.  長尺体を挿通自在な中空部を備える管状部材から形成され、先端部と本体部とを備えるイントロデューサー用シースであって、前記先端部が前記本体部よりも硬いイントロデューサー用シース。
  2.  前記先端部の軸方向の押し潰し強度が、前記本体部の軸方向の押し潰し強度よりも大きい請求項1に記載のイントロデューサー用シース。
  3.  前記先端部の結晶化度が、前記本体部の結晶化度よりも大きい請求項1または請求項2に記載のイントロデューサー用シース。
  4.  前記先端部の外径が先端側に向かって漸次小さく形成され、軸方向との角度が15度未満である請求項1~請求項3の何れか1つに記載のイントロデューサー用シース。
  5.  前記本体部における基端側の肉厚が、前記本体部における先端側の肉厚よりも大きい請求項1~請求項4の何れか1つに記載のイントロデューサー用シース。
  6.  前記管状部材が、一の材料から形成された単層である請求項1~請求項5の何れか1つに記載のイントロデューサー用シース。
  7.  前記管状部材は、第1の材料から形成された第1の層と、第1の材料よりも柔らかい第2の材料から形成された第2の層とを含み、前記先端部における前記第1の層の厚みが前記本体部における前記第1の層の厚みよりも大きく、前記先端部における前記第2の層の厚みが前記本体部における前記第2の層の厚みよりも小さい請求項1~請求項5の何れか1つに記載のイントロデューサー用シース。
  8.  前記管状部材は、第1の材料と、第1の材料よりも柔らかい第2の材料との混合物によって形成され、前記先端部における先端側から前記本体部における基端側に向かって前記混合物中の前記第1の材料の含有率が低下し、かつ、前記第2の材料の含有率が増加する請求項1~請求項5の何れか1つに記載のイントロデューサー用シース。
  9.  前記先端部における先端側の端部は第1の材料のみから形成され、前記本体部における基端側の端部は第2の材料のみから形成されている請求項8に記載のイントロデューサー用シース。
  10.  長尺体を挿通自在な中空部を備える管状部材から形成され、先端部と本体部とを備えるイントロデューサー用シースであって、前記本体部が、結晶性ポリマーを含み結晶性ポリマーの結晶化の程度を抑制したポリマー組成物から形成されてなるイントロデューサー用シース。
  11.  前記結晶性ポリマーが、ポリエーテルエーテルケトンである請求項10に記載のイントロデューサー用シース。
  12.  前記管状部材の肉厚が、0.01~0.20mmである請求項10または請求項11に記載のイントロデューサー用シース。
PCT/JP2012/066433 2011-06-29 2012-06-27 イントロデューサー用シース WO2013002286A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280032057.9A CN103648572B (zh) 2011-06-29 2012-06-27 插管器用鞘
EP12805274.3A EP2727622B1 (en) 2011-06-29 2012-06-27 Sheath for introducer
JP2013522913A JP6007175B2 (ja) 2011-06-29 2012-06-27 イントロデューサー用シース
AU2012276660A AU2012276660B2 (en) 2011-06-29 2012-06-27 Sheath for introducer
US14/139,075 US10086172B2 (en) 2011-06-29 2013-12-23 Introducer sheath

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011144697 2011-06-29
JP2011-144697 2011-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/139,075 Continuation US10086172B2 (en) 2011-06-29 2013-12-23 Introducer sheath

Publications (1)

Publication Number Publication Date
WO2013002286A1 true WO2013002286A1 (ja) 2013-01-03

Family

ID=47424175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066433 WO2013002286A1 (ja) 2011-06-29 2012-06-27 イントロデューサー用シース

Country Status (6)

Country Link
US (1) US10086172B2 (ja)
EP (1) EP2727622B1 (ja)
JP (1) JP6007175B2 (ja)
CN (1) CN103648572B (ja)
AU (1) AU2012276660B2 (ja)
WO (1) WO2013002286A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146542A1 (ja) * 2012-03-27 2013-10-03 テルモ株式会社 イントロデューサー
WO2013146543A1 (ja) * 2012-03-27 2013-10-03 テルモ株式会社 イントロデューサー
WO2013146544A1 (ja) * 2012-03-27 2013-10-03 テルモ株式会社 イントロデューサー
WO2014119527A1 (ja) * 2013-01-29 2014-08-07 テルモ株式会社 イントロデューサ
CN105392433A (zh) * 2013-08-05 2016-03-09 库克医学技术有限责任公司 具有可释放管状构件的医疗装置及其使用方法
CN105722547A (zh) * 2013-09-19 2016-06-29 W.L.戈尔及同仁股份有限公司 扩张器系统和方法
JP2018000515A (ja) * 2016-06-30 2018-01-11 テルモ株式会社 イントロデューサー用シース、およびイントロデューサー
US10086172B2 (en) 2011-06-29 2018-10-02 Terumo Kabushiki Kaisha Introducer sheath
JP2019017875A (ja) * 2017-07-20 2019-02-07 テルモ株式会社 イントロデューサー用シース、およびイントロデューサー
JP2019524226A (ja) * 2016-07-06 2019-09-05 アビオメド オイローパ ゲーエムベーハー 血管アクセスのためのイントロデューサシース
CN111700675A (zh) * 2020-05-28 2020-09-25 广州新诚生物科技有限公司 一种界面螺钉
JPWO2020208702A1 (ja) * 2019-04-09 2020-10-15
WO2024071115A1 (ja) * 2022-09-29 2024-04-04 テルモ株式会社 医療用長尺体、およびバルーンカテーテル
WO2024157913A1 (ja) * 2023-01-26 2024-08-02 テルモ株式会社 カテーテル、およびカテーテルの製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11219740B2 (en) 2015-05-29 2022-01-11 Covidien Lp Catheter including tapering coil member
US10357631B2 (en) 2015-05-29 2019-07-23 Covidien Lp Catheter with tapering outer diameter
US10398874B2 (en) * 2015-05-29 2019-09-03 Covidien Lp Catheter distal tip configuration
JP6970753B2 (ja) 2016-12-08 2021-11-24 アビオメド インコーポレイテッド ピールアウェイ式イントロデューサ設計のためのオーバーモールド技法
CN117258132A (zh) 2017-11-06 2023-12-22 阿比奥梅德公司 剥离式止血阀
AU2019269627A1 (en) 2018-05-16 2020-12-03 Abiomed, Inc. Peel-away sheath assembly
WO2020054331A1 (ja) * 2018-09-12 2020-03-19 テルモ株式会社 カテーテル組立体
JP7356441B2 (ja) * 2018-09-19 2023-10-04 テルモ株式会社 カテーテル組立体
CN109876280A (zh) * 2019-04-03 2019-06-14 张健 一种北斗星塑形超滑导丝组件
US12077338B2 (en) 2019-07-15 2024-09-03 Bayer Healthcare Llc Fluid-container and method for controlling crystallinity in blow-molded container
CN111449694A (zh) * 2020-05-21 2020-07-28 上海市胸科医院 引导鞘管及引导鞘管的使用方法
CN115212426B (zh) * 2022-09-19 2022-11-18 苏州汇禾医疗科技有限公司 一种用于结构性心脏病介入治疗的输送鞘管及输送系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335531A (ja) * 1993-04-22 1994-12-06 Nippon Zeon Co Ltd イントロデューサ
JPH08131552A (ja) 1994-11-07 1996-05-28 Terumo Corp イントロデューサー

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316706A (en) * 1992-08-05 1994-05-31 Advanced Cardiovascular Systems Method of manufacturing jointless catheter
US5614136A (en) * 1995-03-02 1997-03-25 Scimed Life Systems, Inc. Process to form dimensionally variable tubular members for use in catheter procedures
US5873864A (en) * 1995-12-18 1999-02-23 Luther Medical Products, Inc. Catheter with beveled needle tip
US6048339A (en) * 1998-06-29 2000-04-11 Endius Incorporated Flexible surgical instruments with suction
US6942648B2 (en) * 1999-12-09 2005-09-13 Advanced Cardiovascular Systems, Inc. Catheter with a transparent shaft
US20030153873A1 (en) * 2000-03-13 2003-08-14 Luther Ronald B. Hard tip over-the-needle intravenous catheter
DE60114785T2 (de) * 2000-03-21 2006-07-13 Cook Inc., Bloomington Einführungshülse
US6648024B2 (en) * 2001-02-26 2003-11-18 James C. Wang Tubular product
US20040065979A1 (en) * 2001-02-26 2004-04-08 Wang James C. Injector tip-and-die assembly construction and method
US6444915B1 (en) * 2001-02-26 2002-09-03 James C. Wang Foldable electric cord arrangement and manufacture
US20030114831A1 (en) * 2001-12-14 2003-06-19 Scimed Life Systems, Inc. Catheter having improved curve retention and method of manufacture
US7005097B2 (en) * 2002-01-23 2006-02-28 Boston Scientific Scimed, Inc. Medical devices employing chain extended polymers
US7163523B2 (en) 2003-02-26 2007-01-16 Scimed Life Systems, Inc. Balloon catheter
US7166099B2 (en) * 2003-08-21 2007-01-23 Boston Scientific Scimed, Inc. Multilayer medical devices
US7601285B2 (en) * 2003-12-31 2009-10-13 Boston Scientific Scimed, Inc. Medical device with varying physical properties and method for forming same
CA2541234C (en) * 2003-12-31 2014-04-15 Boston Scientific Limited Medical device with varying physical properties and method for forming same
US20090088791A1 (en) * 2007-10-02 2009-04-02 Boston Scientific Scimed, Inc. Carotid System Simplification
US20100160862A1 (en) * 2008-12-22 2010-06-24 Cook Incorporated Variable stiffness introducer sheath with transition zone
US9226772B2 (en) * 2009-01-30 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical device
JP5755835B2 (ja) * 2009-09-29 2015-07-29 富士フイルム株式会社 内視鏡用可撓管及びその製造方法
CN201624697U (zh) * 2010-02-04 2010-11-10 张士更 可视尿道插管器
WO2013002286A1 (ja) 2011-06-29 2013-01-03 テルモ株式会社 イントロデューサー用シース

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335531A (ja) * 1993-04-22 1994-12-06 Nippon Zeon Co Ltd イントロデューサ
JPH08131552A (ja) 1994-11-07 1996-05-28 Terumo Corp イントロデューサー

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10086172B2 (en) 2011-06-29 2018-10-02 Terumo Kabushiki Kaisha Introducer sheath
US9586028B2 (en) 2012-03-27 2017-03-07 Terumo Kabushiki Kaisha Introducer
WO2013146543A1 (ja) * 2012-03-27 2013-10-03 テルモ株式会社 イントロデューサー
WO2013146544A1 (ja) * 2012-03-27 2013-10-03 テルモ株式会社 イントロデューサー
US10124151B2 (en) 2012-03-27 2018-11-13 Terumo Kabushiki Kaisha Introducer
US9265917B2 (en) 2012-03-27 2016-02-23 Terumo Kabushiki Kaisha Introducer
US10124150B2 (en) 2012-03-27 2018-11-13 Terumo Kabushiki Kaisha Introducer
WO2013146542A1 (ja) * 2012-03-27 2013-10-03 テルモ株式会社 イントロデューサー
AU2014211058B2 (en) * 2013-01-29 2018-03-08 Terumo Kabushiki Kaisha Introducer
JPWO2014119527A1 (ja) * 2013-01-29 2017-01-26 テルモ株式会社 イントロデューサ
JP2018140195A (ja) * 2013-01-29 2018-09-13 テルモ株式会社 イントロデューサ組立体
US20160058976A1 (en) * 2013-01-29 2016-03-03 Terumo Kabushiki Kaisha Introducer
WO2014119527A1 (ja) * 2013-01-29 2014-08-07 テルモ株式会社 イントロデューサ
JP2016529979A (ja) * 2013-08-05 2016-09-29 クック・メディカル・テクノロジーズ・リミテッド・ライアビリティ・カンパニーCook Medical Technologies Llc 解放可能なチューブ状部材を有する医療機器およびその使用方法
US10166017B2 (en) 2013-08-05 2019-01-01 Cook Medical Technologies Llc Medical devices having a releasable tubular member and methods of using the same
CN105392433A (zh) * 2013-08-05 2016-03-09 库克医学技术有限责任公司 具有可释放管状构件的医疗装置及其使用方法
CN105722547A (zh) * 2013-09-19 2016-06-29 W.L.戈尔及同仁股份有限公司 扩张器系统和方法
JP2019141607A (ja) * 2013-09-19 2019-08-29 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated ダイレーターシステムおよび方法
JP2018000515A (ja) * 2016-06-30 2018-01-11 テルモ株式会社 イントロデューサー用シース、およびイントロデューサー
US10702677B2 (en) 2016-06-30 2020-07-07 Terumo Kabushiki Kaisha Introducer sheath and introducer
JP2019524226A (ja) * 2016-07-06 2019-09-05 アビオメド オイローパ ゲーエムベーハー 血管アクセスのためのイントロデューサシース
JP2022088684A (ja) * 2016-07-06 2022-06-14 アビオメド オイローパ ゲーエムベーハー イントロデューサシース及びイントロデューサセット
JP2019017875A (ja) * 2017-07-20 2019-02-07 テルモ株式会社 イントロデューサー用シース、およびイントロデューサー
JPWO2020208702A1 (ja) * 2019-04-09 2020-10-15
JP7411640B2 (ja) 2019-04-09 2024-01-11 朝日インテック株式会社 カテーテル
CN111700675A (zh) * 2020-05-28 2020-09-25 广州新诚生物科技有限公司 一种界面螺钉
WO2024071115A1 (ja) * 2022-09-29 2024-04-04 テルモ株式会社 医療用長尺体、およびバルーンカテーテル
WO2024157913A1 (ja) * 2023-01-26 2024-08-02 テルモ株式会社 カテーテル、およびカテーテルの製造方法

Also Published As

Publication number Publication date
JP6007175B2 (ja) 2016-10-12
US10086172B2 (en) 2018-10-02
EP2727622A1 (en) 2014-05-07
CN103648572B (zh) 2016-04-27
JPWO2013002286A1 (ja) 2015-02-23
EP2727622B1 (en) 2019-06-12
US20140114290A1 (en) 2014-04-24
AU2012276660B2 (en) 2016-08-11
CN103648572A (zh) 2014-03-19
AU2012276660A1 (en) 2014-01-09
EP2727622A4 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP6007175B2 (ja) イントロデューサー用シース
US11744986B2 (en) Catheter having an expandable lumen and method of manufacture
US10799671B2 (en) Distal access aspiration guide catheter
CN107376101B (zh) 用于经导管动脉化疗栓塞术(tace)的微导管
US20130253417A1 (en) Distal Access Balloon Guide Catheter
US20120116350A1 (en) Translation dilator and stand alone vascular guide catheter
JP5713732B2 (ja) 弁付きカテーテル
JP2018140195A (ja) イントロデューサ組立体
US20150088151A1 (en) Elongated member for medical use and connecting member
US10286186B2 (en) Guiding catheter assembly and method of using the same
JP2015109881A (ja) イントロデューサー用シース
WO2022198810A1 (zh) 一种导引导管及导引导管系统
JP2013005974A (ja) 内腔と外周が異なるテーパー構造を有するカテーテル
JP2005152181A (ja) 埋込み可能な管状体治療具
JP2024117101A (ja) チューブステントセット
JP2005329062A (ja) イントロデューサーシース
JP2015109882A (ja) イントロデューサー用シース
JP2006130098A (ja) イントロデューサーシース

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280032057.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522913

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012276660

Country of ref document: AU

Date of ref document: 20120627

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012805274

Country of ref document: EP