WO2013002246A1 - 色素増感太陽電池及びその製造方法 - Google Patents

色素増感太陽電池及びその製造方法 Download PDF

Info

Publication number
WO2013002246A1
WO2013002246A1 PCT/JP2012/066352 JP2012066352W WO2013002246A1 WO 2013002246 A1 WO2013002246 A1 WO 2013002246A1 JP 2012066352 W JP2012066352 W JP 2012066352W WO 2013002246 A1 WO2013002246 A1 WO 2013002246A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide semiconductor
semiconductor layer
dye
electrode
porous oxide
Prior art date
Application number
PCT/JP2012/066352
Other languages
English (en)
French (fr)
Inventor
大介 松本
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2013522887A priority Critical patent/JP5627785B2/ja
Publication of WO2013002246A1 publication Critical patent/WO2013002246A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a dye-sensitized solar cell and a method for producing the same.
  • a dye-sensitized solar cell generally includes a working electrode, a counter electrode, a photosensitizing dye supported on the oxide semiconductor layer of the working electrode, and an electrolyte disposed between the working electrode and the counter electrode.
  • Patent Document 1 a dye is formed by using an optical semiconductor electrode in which an alkoxide of the same metal as the metal oxide semiconductor material is applied to the surface of the metal oxide semiconductor material and baked, and then a sensitizing dye is attached. It has been proposed to improve the photoelectric conversion efficiency of sensitized solar cells.
  • Patent Document 2 a coating liquid formed through processes such as hydrolysis and polycondensation using a titanium oxide precursor as a starting material is applied onto a transparent conductive film, and steps such as drying and baking of the coating liquid are performed. Proposed to improve the electron conductivity between the transparent conductive film and the semiconductor electrode film by forming an intermediate film having a predetermined surface roughness and forming a semiconductor electrode film on the intermediate film. Has been.
  • This invention is made
  • the present inventor has found that when the methods described in Patent Documents 1 and 2 are used, the surface of the particles constituting the porous oxide semiconductor layer of the working electrode has a smaller needle. It has been found that a sticky body adheres or a coarse granular body is formed instead of a needle-like body, and this is considered to be the cause of the above problem. In view of this, the present inventor has conducted further research with a particular focus on the shape and size of the adherent adhering to the surface of the particles constituting the conductive layer of the working electrode or the porous oxide semiconductor layer provided thereon.
  • the adhering body becomes a granular body having a predetermined average particle diameter and a predetermined minimum length / maximum length ratio, and the above problem can be solved by adhering the granular body to at least the conductive layer.
  • the headline and the present invention were completed.
  • the present invention provides a first electrode having a conductive layer and a porous oxide semiconductor layer, a second electrode provided opposite to the porous oxide semiconductor layer of the first electrode, and the first electrode.
  • a dye-sensitized solar cell comprising a photosensitizing dye supported on a porous oxide semiconductor layer and an electrolyte disposed between the first electrode and the second electrode, wherein the first electrode is granular
  • the granular body has at least a first granular body adhering to the conductive layer, and the granular body has a maximum length with respect to a minimum length when two-dimensionally observed with a scanning electron microscope.
  • the dye is a dye-sensitized solar cell made of titanium oxide having an average particle diameter of 5 nm or less.
  • a dye-sensitized solar cell having excellent photoelectric conversion efficiency is provided.
  • the first electrode has a granular material, and the granular material has at least a first granular material that adheres to the conductive layer.
  • the ratio of the maximum length to the minimum length of the granular material is 1 to 3, and this ratio (hereinafter referred to as “aspect ratio”) is more than 3.
  • the granular material has a shape close to a sphere. For this reason, the granular material adhering to a conductive layer among the said granular materials can be provided in the outer side of the area
  • the reverse electron movement in which the electrons that have reached the conductive layer from the photosensitizing dye through the porous oxide semiconductor layer move to the electrolyte is sufficiently suppressed by the first granular material attached to the conductive layer. Furthermore, since the average particle size of the granular material is as small as 5 nm or less, it is considered that the decrease in light transmittance can be sufficiently prevented. From the above, the inventor presumes that the dye-sensitized solar cell of the present invention has excellent photoelectric conversion efficiency.
  • the granular material is preferably made of titanium oxide having an average particle diameter of 1 nm or more.
  • the porous oxide semiconductor layer is in direct contact with the conductive layer, and the granular material is spaced apart from the first granular material and the conductive layer, and the porous It is preferable to have the 2nd granule adhering to an oxide semiconductor layer.
  • the granular material that is an oxide semiconductor also has a second granular material that is separated from the conductive layer and adheres to the porous oxide semiconductor layer. For this reason, the surface area of an oxide semiconductor increases more.
  • the electrons move from the particles constituting the porous oxide semiconductor layer to the particles, the movement of the electrons is promoted by the second granular material. For this reason, the electron transfer from a photosensitizing dye to an oxide semiconductor is performed efficiently. Further, reverse electron transfer in which electrons move from the porous oxide semiconductor layer to the electrolyte can be suppressed.
  • the porous oxide semiconductor layer is preferably composed of oxide semiconductor particles, and the second granular material preferably has an average particle size smaller than that of the oxide semiconductor particles.
  • the second granular material it is possible for the second granular material to be present densely in the gap between the oxide semiconductor particles as compared with the case where the oxide semiconductor particle has an average particle size equal to or smaller than the average particle size of the second granular material.
  • the leakage current from the oxide semiconductor particles can be more sufficiently reduced while allowing electrons to easily flow between the oxide semiconductor particles.
  • the first granular material is attached to the porous oxide semiconductor layer.
  • the movement of the electrons is promoted by the first granular material as an intermediary.
  • the adhesion between the porous oxide semiconductor layer and the conductive layer is enhanced by the first granular material.
  • the first granular material adhering to the porous oxide semiconductor layer among the first granular materials is disposed inside and outside the porous oxide semiconductor layer.
  • the 1st granule adhering to a porous oxide semiconductor layer is arrange
  • the electron transfer from the porous oxide semiconductor layer to the conductive layer is performed more efficiently.
  • the first granular material attached to the porous oxide semiconductor layer is attached to the porous oxide semiconductor layer not only inside but also outside the porous oxide semiconductor layer. Therefore, the time (length) during which electrons pass through the granular material is shortened, and the movement of electrons can be more efficiently promoted.
  • the first granular material attached to the porous oxide semiconductor layer is attached to the porous oxide semiconductor layer not only inside but also outside the porous oxide semiconductor layer. For this reason, the adhesiveness of a porous oxide semiconductor layer and a conductive layer is further improved.
  • the first electrode further includes a wiring part provided on the conductive layer around the porous oxide semiconductor layer, and the granular material is a surface of the wiring part. It is preferable to further have the 3rd granule provided in at least one part.
  • the porous oxide semiconductor layer is preferably composed of titanium oxide.
  • the granular material and the porous oxide semiconductor layer are composed of titanium oxide, the resistance between the porous oxide semiconductor layer and the granular material is sufficiently reduced, and electron transfer can be performed more efficiently. Can do.
  • the present invention provides a first electrode having a conductive layer and a porous oxide semiconductor layer, a second electrode provided facing the porous oxide semiconductor layer side of the first electrode, and the first electrode
  • a method for producing a dye-sensitized solar cell comprising: a photosensitizing dye supported on the porous oxide semiconductor layer; and an electrolyte disposed between the first electrode and the second electrode.
  • the one-electrode forming step includes a surface treatment step in which a surface treatment solution containing at least a titanium alkoxide and a diketone-containing solvent is applied on the conductive layer, and then the surface treatment solution is baked. It is a manufacturing method of a battery.
  • the above-described dye-sensitized solar cell can be produced. That is, it has a granular material having at least the first granular material adhering to the conductive layer, and the ratio of the maximum length to the minimum length when observed two-dimensionally with a scanning electron microscope is 1 to 3 in the granular material. And a dye-sensitized solar cell having a first electrode made of titanium oxide having an average particle diameter of 5 nm or less is obtained.
  • the first electrode forming step includes a porous oxide semiconductor layer forming step of forming the porous oxide semiconductor layer on the conductive layer before the surface treatment step, and the surface treatment In the step, it is preferable to apply the surface treatment solution on at least the conductive layer and the porous oxide semiconductor layer.
  • the porous oxide semiconductor layer is formed on the conductive layer before the surface treatment step, the granular material can be attached to the porous oxide semiconductor layer. For this reason, the surface area of an oxide semiconductor increases and it becomes possible to carry more photosensitizing dyes. For this reason, the dye-sensitized solar cell in which the electron transfer from a photosensitizing dye to an oxide semiconductor is performed efficiently can be obtained.
  • the first electrode forming step further includes a wiring portion forming step of forming a wiring portion on the conductive layer before the surface treatment step, and in the surface treatment step, at least the conductive layer and It is preferable to apply the surface treatment solution onto the wiring part.
  • a granular body made of titanium oxide having a ratio of the maximum length to the minimum length of 1 to 3 when observed two-dimensionally with a scanning electron microscope and having an average particle diameter of 5 nm or less is used as a conductive layer. It is possible to adhere not only to the top but also to the wiring portion. For this reason, in the dye-sensitized solar cell obtained, the surface of the wiring part is protected by the granular material, and corrosion of the wiring part due to the electrolyte can be sufficiently suppressed.
  • the molar ratio of the titanium alkoxide to the diketone is preferably 0.5 to 2.0.
  • the granular material can be formed more efficiently than when the molar ratio is out of the above range.
  • the molar ratio of the titanium alkoxide to the diketone is preferably 1.0 to 2.0.
  • the granular material can be formed more efficiently than when the molar ratio is out of the above range.
  • the porous oxide semiconductor layer is made of titanium oxide.
  • the granular material and the porous oxide semiconductor layer are composed of titanium oxide, the resistance between the porous oxide semiconductor layer and the granular material is sufficiently reduced, and the electron transfer is efficiently performed.
  • a dye-sensitized solar cell can be obtained.
  • the “average particle diameter” means an average value of the maximum lengths of 50 granular bodies observed two-dimensionally with a scanning electron microscope (hereinafter referred to as “SEM”).
  • the “aspect ratio” means an average value of 50 granular materials having a ratio of the maximum length to the minimum length observed two-dimensionally by SEM.
  • inside the porous oxide semiconductor layer means a region of the conductive layer covered with the porous oxide semiconductor layer.
  • a dye-sensitized solar cell having excellent photoelectric conversion efficiency and a method for producing the same are provided.
  • FIG. 2 is a view showing an SEM photograph near the surface of a porous oxide semiconductor layer of Example 1.
  • FIG. 2 is a view showing an SEM photograph near the surface of a transparent conductive film of Example 1.
  • FIG. 2 It is a figure which shows the SEM photograph of interface surface vicinity of the porous oxide semiconductor layer of the comparative example 1, and a transparent conductive film.
  • FIG. 1 is a sectional view showing a preferred embodiment of a dye-sensitized solar cell according to the present invention
  • FIG. 2 is a partially enlarged sectional view showing a working electrode of FIG.
  • the dye-sensitized solar cell 100 includes a working electrode 1 and a counter electrode 2 disposed so as to face the working electrode 1. Between the working electrode 1 and the counter electrode 2, a sealing portion 4 that connects the working electrode 1 and the counter electrode 2 is provided. The cell space surrounded by the working electrode 1, the counter electrode 2, and the sealing portion 4 is filled with an electrolyte 3.
  • the working electrode 1 includes a transparent substrate 6, a transparent conductive film 7 provided on the counter electrode 2 side of the transparent substrate 6, and a porous oxide semiconductor layer provided on the transparent conductive film 7 so as to face the counter electrode 2 directly. 8 and a wiring portion 11 provided on the transparent conductive film 7.
  • the porous oxide semiconductor layer 8 is in contact with the electrolyte 3, and a photosensitizing dye is supported on the porous oxide semiconductor layer 8 in the working electrode 1.
  • the wiring portion 11 includes a current collecting wiring 12 provided on the transparent conductive film 7 and a wiring protective layer 13 that covers and protects the current collecting wiring 12. The outermost part of the wiring part 11 is connected to the sealing part 4.
  • the working electrode 1 has a granular body 90 that exists on the counter electrode 2 side with respect to the transparent conductive film (conductive layer) 7, and the granular body 90 includes a plurality of granular bodies 9 a, 9 b, 9 c. , 9d, 9e.
  • the granular bodies 9a to 9e are made of titanium oxide having an average particle diameter of 5 nm or less.
  • the granular material 9 a as the first granular material provided on the transparent conductive film 7 is also attached to the porous oxide semiconductor layer 8.
  • the granular material 9 a does not exist inside the porous oxide semiconductor layer 8.
  • the granular material 9 b as the second granular material is attached to the porous oxide semiconductor layer 8 at a position away from the surface of the transparent conductive film 7. That is, the granular material 9 b is not in contact with the transparent conductive film 7.
  • the granular material 9 c as the first granular material adheres only to the surface of the transparent conductive film 7 and does not adhere to the oxide semiconductor particles 8 a of the porous oxide semiconductor layer 8.
  • the granular material 9d as the second granular material joins the granular materials 9b and adheres to the oxide semiconductor particles 8a via the granular material 9b.
  • the granular material 9e as the third granular material adheres only on the surface 11a of the wiring part 11, and does not adhere to the transparent conductive film 7 or the porous oxide semiconductor layer 8.
  • the shape of the granular material 90 is, for example, a circular shape or a semicircular shape, but may be other shapes. In addition, the shape said here means the shape observed two-dimensionally by SEM.
  • the aspect ratio of the granular material 90 is 1 to 3.
  • the aspect ratio of the granular material 90 is an average value of 50 granular materials 90 having a ratio of the maximum length Lmax to the minimum length Lmin observed two-dimensionally by SEM, as shown in FIG. .
  • the working electrode 1 has a granular body 90, and the granular body 90 has granular bodies 9 a and 9 c that adhere to the transparent conductive film 7.
  • the aspect ratios of the granular bodies 9a and 9c are 1 to 3, and the granular bodies 9a and 9c have a shape close to a sphere as compared with the case where the aspect ratio exceeds 3. For this reason, it becomes possible to provide the said granular material 9a, 9c without a gap
  • the reverse electron movement in which the electrons that have reached the transparent conductive film 7 from the photosensitizing dye through the porous oxide semiconductor layer 8 move to the electrolyte 3 is sufficiently suppressed by the granular materials 9a and 9c. Furthermore, since the average particle diameter of the granular materials 9a and 9c is as small as 5 nm or less, it is possible to sufficiently prevent a decrease in light transmittance. From the above, the inventor presumes that the dye-sensitized solar cell 100 has excellent photoelectric conversion efficiency.
  • the granular material 9 a on the transparent conductive film 7 is also attached to the porous oxide semiconductor layer 8.
  • the granular material 9a acts as an intermediary to promote the movement of the electrons.
  • the adhesion between the porous oxide semiconductor layer 8 and the transparent conductive film 7 is enhanced by the granular material 9a.
  • the granular materials 9b and 9d which are oxide semiconductors, are attached to the porous oxide semiconductor layer 8. For this reason, the surface area of an oxide semiconductor increases more.
  • the particles 9b and 9d are considered to promote the movement of the electrons through the mediation. Therefore, electron transfer from the photosensitizing dye to the oxide semiconductor is efficiently performed. In addition, reverse electron transfer in which electrons move from the porous oxide semiconductor layer 8 to the electrolyte 3 can be suppressed.
  • the working electrode 1, the wiring part 11, the photosensitizing dye, the counter electrode 2, the electrolyte 3 and the sealing part 4 will be described in detail.
  • the material which comprises the transparent substrate 6 should just be a transparent material, for example, as such a transparent material, glass, such as borosilicate glass, soda lime glass, white plate glass, quartz glass, polyethylene terephthalate (PET), for example , Polyethylene naphthalate (PEN), polycarbonate (PC), polyethersulfone (PES) and the like.
  • PET polyethylene terephthalate
  • PEN Polyethylene naphthalate
  • PC polycarbonate
  • PES polyethersulfone
  • the thickness of the transparent substrate 6 is appropriately determined according to the size of the dye-sensitized solar cell 100 and is not particularly limited, but may be in the range of 50 to 10,000 ⁇ m, for example.
  • Examples of the material constituting the transparent conductive film 7 include tin-doped indium oxide (Indium-Tin-Oxide: ITO), tin oxide (SnO 2 ), and fluorine-doped tin oxide (Fluorine-doped-Tin-Oxide: FTO).
  • Examples include conductive metal oxides.
  • the transparent conductive film 7 may be a single layer or a laminate of a plurality of layers made of different conductive metal oxides. When the transparent conductive film 7 is composed of a single layer, the transparent conductive film 7 is preferably composed of FTO because it has high heat resistance and chemical resistance.
  • the transparent conductive film 7 it is preferable to use a laminated body composed of a plurality of layers as the transparent conductive film 7 because the characteristics of each layer can be reflected. Among these, it is preferable to use a laminate of a layer made of ITO and a layer made of FTO. In this case, the transparent conductive film 7 having high conductivity, heat resistance and chemical resistance can be realized.
  • the thickness of the transparent conductive film 7 may be in the range of 0.01 to 2 ⁇ m, for example.
  • the porous oxide semiconductor layer 8 is composed of a porous oxide semiconductor.
  • the porous oxide semiconductor includes, for example, titanium oxide (TiO 2 ), zinc oxide (ZnO), tungsten oxide (WO 5 ), niobium oxide (Nb 2 O 5 ), strontium titanate (SrTiO 5).
  • the average particle size of these oxide semiconductor particles 8a is 1 to 1000 nm, which increases the surface area of the oxide semiconductor covered with the photosensitizing dye, that is, widens the field for photoelectric conversion and increases the number of electrons.
  • the porous oxide semiconductor layer 8 is composed of a stacked body in which oxide semiconductor particles 8a having different particle size distributions are stacked. In this case, it becomes possible to cause reflection of light repeatedly in the laminated body, and light can be efficiently converted into electrons without escaping incident light to the outside of the laminated body.
  • the thickness of the porous oxide semiconductor layer 8 may be, for example, 0.5 to 50 ⁇ m.
  • the porous oxide semiconductor layer 8 can also be comprised with the laminated body of the several semiconductor layer which consists of a different material.
  • the oxide semiconductor particles 8a constituting the porous oxide semiconductor layer 8 have an average particle size larger than the granular materials 9b and 9d.
  • the granular materials 9b and 9d are densely present in the gaps between the oxide semiconductor particles 8a.
  • the leakage current from the oxide semiconductor particles 8a can be more sufficiently reduced while allowing electrons to easily flow between the oxide semiconductor particles 8a.
  • the average particle diameter of the granules 9a to 9e is preferably 1 nm or more. In this case, it becomes easier to maintain the crystallinity of the titanium oxide as compared with the case where the granular materials 9a to 9e are made of titanium oxide having an average particle diameter of less than 1 nm.
  • the average particle diameter of the granular materials 9a to 9e is more preferably 2 to 4 nm.
  • the aspect ratio of the granular materials 9a to 9e is preferably 1.5 to 2.5. In this case, the leakage current can be sufficiently reduced as compared with the case where the aspect ratio of the granular materials 9a to 9e is out of the above range.
  • the current collection wiring 12 should just be a material which has resistance lower than the transparent conductive film 7, As such a material, metals, such as gold
  • Examples of the material constituting the wiring protective layer 13 include a material capable of transmitting light, such as a non-lead low melting point glass frit, and a lead oxide glass frit that cannot transmit light. Materials.
  • the softening point of the low melting point glass frit is preferably 550 ° C. or less.
  • Photosensitizing dye examples include a ruthenium complex having a ligand containing a bipyridine structure, a terpyridine structure, and the like, and organic dyes such as porphyrin, eosin, rhodamine, and merocyanine.
  • the counter electrode 2 includes a counter electrode substrate 9, and a conductive catalyst layer (conductive layer) 10 that is provided on the working electrode 1 side of the counter electrode substrate 9 and promotes a reduction reaction on the surface of the counter electrode 2. It has.
  • the counter electrode substrate 9 is made of, for example, a corrosion-resistant metal material such as titanium, nickel, platinum, molybdenum, and tungsten, a glass substrate, the above-described transparent substrate 6 formed with a conductive oxide such as ITO or FTO, carbon, Consists of conductive polymer.
  • the thickness of the counter electrode substrate 9 is appropriately determined according to the size of the dye-sensitized solar cell 100 and is not particularly limited, but may be, for example, 0.005 to 0.1 mm.
  • the catalyst layer 10 is made of platinum, a carbon-based material, or a conductive polymer.
  • the electrolyte 3 is usually composed of an electrolytic solution, and this electrolytic solution contains an oxidation-reduction pair such as I ⁇ / I 3 ⁇ and an organic solvent.
  • organic solvents include acetonitrile, methoxyacetonitrile, methoxypropionitrile, propionitrile, ethylene carbonate, propylene carbonate, diethyl carbonate, ⁇ -butyrolactone, valeronitrile, pivalonitrile, glutaronitrile, methacrylonitrile, isobutyronitrile, Phenylacetonitrile, acrylonitrile, succinonitrile, oxalonitrile, pentanitrile, adiponitrile and the like can be used.
  • the redox pair include I ⁇ / I 3 — and a redox pair such as bromine / bromide ion, zinc complex, iron complex, and cobalt complex.
  • the electrolyte 3 may include an ionic liquid electrolyte made of a mixture of the ionic liquid and the organic solvent as a volatile component, instead of the organic solvent.
  • the electrolyte 3 may include an ionic liquid instead of the organic solvent.
  • the ionic liquid for example, a known iodine salt such as a pyridinium salt, an imidazolium salt, or a triazolium salt, and a room temperature molten salt that is in a molten state near room temperature is used.
  • room temperature molten salts examples include 1-methyl-3-methylimidazolium iodide, 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, 1-hexyl-3-methylimidazolium iodide.
  • the electrolyte 40 may further contain an additive.
  • the additive examples include LiI, I 2 , 4-t-butylpyridine, guanidinium thiocyanate, 1-methylbenzimidazole, 1-butylbenzimidazole and the like.
  • the electrolyte 3 may be a nanocomposite gel electrolyte, which is a pseudo-solid electrolyte formed by kneading nanoparticles such as SiO 2 , TiO 2 , and carbon nanotubes with the electrolyte, and may be polyvinylidene fluoride.
  • an electrolyte gelled with an organic gelling agent such as a polyethylene oxide derivative or an amino acid derivative may be used.
  • sealing part 4 examples of the material constituting the sealing portion 4 include inorganic insulating materials such as lead-free transparent low melting point glass frit, ionomers, ethylene-vinyl acetic anhydride copolymers, ethylene-methacrylic acid copolymers, ethylene -Various modified polyolefin resins including vinyl alcohol copolymers, ultraviolet curable resins, and resins such as vinyl alcohol polymers.
  • the sealing part 4 may be comprised only with resin, and may be comprised with resin and an inorganic filler.
  • the porous oxide semiconductor layer 8 and the granular materials 9a and 9b are made of titanium oxide
  • the porous oxide semiconductor layer 8 and the granular materials 9a and 9b The resistance between them is sufficiently reduced, and electron transfer can be performed more efficiently.
  • the granular material 9d couples the granular materials 9b to form a large number of conductive paths. This is considered to contribute to the dye-sensitized solar cell 100 having better photoelectric conversion efficiency.
  • the granular material 9 e is provided on the surface 11 a of the wiring portion 11. For this reason, the surface 11a of the wiring part 11 is protected by the granular material 9e. Therefore, corrosion of the wiring part 11 by the electrolyte 3 can be sufficiently suppressed by the granular material 9e.
  • the working electrode 1 is prepared as follows.
  • a transparent conductive film 7 is formed on a transparent substrate 6.
  • a sputtering method a vapor deposition method, a spray pyrolysis method (SPD), a CVD method, or the like is used.
  • the porous oxide semiconductor layer forming paste includes a resin such as polyethylene glycol and a solvent such as terpineol in addition to the oxide semiconductor particles 8a described above.
  • a printing method of the paste for forming the porous oxide semiconductor layer for example, a screen printing method, a doctor blade method, a bar coating method, or the like can be used.
  • the porous oxide semiconductor layer forming paste is fired to form the porous oxide semiconductor layer 8 on the transparent conductive film 7.
  • the firing temperature varies depending on the material of the oxide semiconductor particles, but is usually 350 ° C. to 600 ° C.
  • the firing time also varies depending on the material of the oxide semiconductor particles, but is usually 1 to 5 hours.
  • the current collector wiring 12 is formed on the transparent conductive film 7.
  • the current collector wiring 12 can be formed, for example, by applying and baking a metal paste around the porous oxide semiconductor layer 8 so as to be separated from the porous oxide semiconductor layer 8.
  • a wiring protective layer 13 is formed so as to cover the current collecting wiring 12 and to be in contact with the transparent conductive film 7.
  • the wiring protective layer 13 can be formed by, for example, applying and drying a paste containing a low melting point glass frit so as to cover the current collecting wiring 12, and then baking. In this way, the wiring part 11 is obtained.
  • the application includes application by dipping as well as application by ink jet, printing and spraying.
  • titanium alkoxide examples include titanium tetramethoxide, titanium tetraethoxide, titanium tetraisopropoxide, titanium tetraisobutoxide, titanium tetra-n-butoxide, titanium tetra-tert-butoxide, titanium tetra-2-ethylhexoxide, titanium tetraisoocta Examples thereof include xoxide, titanium tetra n-propoxide, and tetraoctadexoxide orthotitanate.
  • the solvent contained in the surface treatment solution only needs to contain a diketone. Therefore, the solvent may be composed only of a diketone, or may be a mixed solvent of a diketone and a solvent other than the diketone.
  • diketone examples include 1,3-diketone (acetylacetone), 1,2-diketone (diacetyl), 1,4-diketone (2,5-hexanedione), dimedone, and the like.
  • a solvent other than diketone for example, an organic solvent such as alcohol such as methanol, ethanol, and propanol can be used.
  • the molar ratio of titanium alkoxide to diketone is preferably 0.5 to 3.0.
  • the diketone is not excessive as compared with the case where the molar ratio is less than 0.5. Therefore, the exposed region of the transparent conductive film 7, the porous oxide semiconductor layer 8 and on the surface 11 a of the wiring portion 11, the granular bodies 9 a to 9 e are uniformly formed.
  • the titanium alkoxide is not excessive as compared with the case where the molar ratio exceeds 3, the granules 9a to 9e can be formed efficiently.
  • the molar ratio is preferably 0.5 to 2.0.
  • the granular materials 9a to 9e can be formed more efficiently than when the molar ratio is outside the range of 0.5 to 2.0. Further, the molar ratio is more preferably 1.0 to 2.0. In this case, the granular materials 9a to 9e can be formed more efficiently than when the molar ratio is outside the range of 1.0 to 2.0.
  • the concentration of titanium alkoxide in the surface treatment solution is preferably 40 to 2000 mM, more preferably 300 to 1500 mM.
  • the firing temperature is usually 100 to 650 ° C., preferably 350 to 550 ° C.
  • the average particle diameter of the oxide semiconductor particles 8a is set to 10 nm.
  • a photosensitizing dye is supported on the porous oxide semiconductor layer 8 of the working electrode 1.
  • the working electrode 1 is immersed in a dye-containing solution containing a photosensitizing dye, and the photosensitizing dye is adsorbed on the porous oxide semiconductor layer 8 and then the solvent component of the dye-containing solution.
  • the excess photosensitizing dye may be washed away and dried to adsorb the photosensitizing dye to the porous oxide semiconductor layer 8.
  • the photosensitizing dye is adsorbed to the porous oxide semiconductor porous layer 8 by applying a dye-containing solution containing the photosensitizing dye to the porous oxide semiconductor layer 8 and then drying it, the photosensitizing dye can be absorbed.
  • the dye-sensitive material can be supported on the porous oxide semiconductor layer 8.
  • the counter electrode 2 is prepared as follows.
  • the counter electrode substrate 9 is prepared.
  • the catalyst layer 10 is formed on the counter electrode substrate 9.
  • a sputtering method, a vapor deposition method, or the like is used as a method for forming the catalyst layer 10. Of these, sputtering is preferred from the viewpoint of film uniformity.
  • an electrolyte 3 is prepared and placed, for example, on the working electrode 1.
  • an annular sheet made of a thermoplastic resin is prepared.
  • the working electrode 1 having the porous oxide semiconductor layer 8 carrying the photosensitizing dye and the counter electrode 2 are sandwiched between the sheet and the electrolyte 3, the sheet is heated and melted, and the working electrode 1 and the counter electrode 2 are bonded together.
  • the porous oxide semiconductor layer 8 is arranged inside the annular sheet. In this way, the sealing part 4 is formed between the working electrode 1 and the counter electrode 2, and the dye-sensitized solar cell 100 is obtained, and the manufacture of the dye-sensitized solar cell 100 is completed.
  • the sealing portion 4 is formed on the working electrode 1 by fixing the sheet on the working electrode 1 by heating and melting, and the electrolyte 3 is placed on the working electrode 1.
  • the dye-sensitized solar cell 100 can be obtained even if the working electrode 1 and the counter electrode 2 are bonded together after being disposed inside the sealing portion 4 formed above.
  • the sealing electrode 4 may be formed on the counter electrode 2, and the working electrode 1 and the counter electrode 2 may be bonded together after the electrolyte 3 is disposed inside the sealing electrode 4.
  • the working electrode 1 and the counter electrode 2 may be bonded together after the sealing portion 4 is formed on each of the electrodes and the electrolyte 3 is disposed inside one of the working electrode 1 and the counter electrode 2.
  • the counter electrode 2 may be prepared after the electrolyte 3 is disposed on the working electrode 1.
  • this compound A Since this compound A is delocalized and stabilized, even when water or the like enters the surface treatment solution, it does not react with water. For this reason, when applying the surface treatment solution onto the exposed region of the transparent conductive film 7, the porous oxide semiconductor layer 8 and the surface 11a of the wiring portion 11, a small amount of water or the like enters the surface treatment solution. Even so, the compound A is considered not to change to a different compound. As a result, it becomes possible to stably form the granular materials 9a to 9e.
  • the compound A is considered to be neutral. For this reason, even if the surface treatment solution is applied onto the surface 11 a of the wiring part 11 after the wiring part 11 is formed, the wiring part 11 does not melt.
  • titanium tetrachloride may be used as the surface treatment solution, and titanium tetrachloride is used by mixing an appropriate amount of water.
  • titanium tetrachloride reacts with water with the passage of time to produce Ti (OH) 4 .
  • titanium tetrachloride immediately reacts with water in a water-containing environment to produce Ti (OH) 4 .
  • the surface treatment solution is baked with Ti (OH) 4 being generated in this way, even if particles with a small particle diameter are to be produced, the particles are aggregated to control the particle diameter. Becomes difficult.
  • titanium tetrachloride solution is applied and fired to obtain uniform particle sizes, needle-like particles are formed. Although this reason is not certain, it is thought that it originates from titanium tetrachloride being acidic.
  • the fact that the titanium tetrachloride is acidic is apparent from the fact that the silver or glass frit forming the wiring portion 11 is melted even if the surface treatment is performed with the titanium tetrachloride solution after the wiring portion 11 is formed.
  • the present invention is not limited to the above embodiment.
  • the body 9a may exist.
  • the granular material 9 a that is on the transparent conductive film 7 and also adhered to the porous oxide semiconductor layer 8 is provided inside and outside the porous oxide semiconductor layer 8. become.
  • the granular material 9 a on the transparent conductive film 7 attached to the porous oxide semiconductor layer 8 is inside and outside of the porous oxide semiconductor layer 8. Therefore, compared with the case where the granular material 9 a is disposed only on either the inside or the outside of the porous oxide semiconductor layer 8, the transparent conductive film 7 is formed from the porous oxide semiconductor layer 8. Electron transfer to is performed more efficiently.
  • the granular material 9 a on the transparent conductive film 7 attached to the porous oxide semiconductor layer 8 is attached to the porous oxide semiconductor layer 8 not only inside but also outside the porous oxide semiconductor layer 8. . Therefore, the time (length) for electrons to pass through the granular material 9a is shortened, and the movement of electrons can be more efficiently promoted.
  • the granular material 9 a on the transparent conductive film 7 is attached to the porous oxide semiconductor layer 8 not only inside but also outside the porous oxide semiconductor layer 8. For this reason, the adhesiveness of the porous oxide semiconductor layer 8 and the transparent conductive film 7 is further improved.
  • the porous oxide semiconductor layer 8 In order to attach a granular material like the working electrode 201 to the porous oxide semiconductor layer 8, specifically, after attaching the granular material 9c on the transparent conductive film 7, at least one of the granular material 9c.
  • the porous oxide semiconductor layer 8 may be formed so as to cover the portion, and then the granular materials 9b and 9d may be attached to the porous oxide semiconductor layer 8.
  • the granular material 9c which adhered to the porous oxide semiconductor layer 8 among the granular materials 9c turns into the granular material 9a.
  • the granular material 9 a on the transparent conductive film 7 adhered to the porous oxide semiconductor layer 8 on the inner side and the outer side of the porous oxide semiconductor layer 8 as a granular material porous Only the granular material 9c which does not adhere to the oxide semiconductor layer 8 but adheres only to the transparent conductive film 7 and the granular material 9e on the surface 11a of the wiring part 11 may be provided. That is, the granular materials 9b and 9d may not be provided.
  • the granular material 9 c is adhered on the transparent conductive film 7, and after the granular material 9 e is adhered on the surface 11 a of the wiring portion 11, at least the granular material 9 c is formed.
  • the porous oxide semiconductor layer 8 may be formed so as to cover a part. In this case, the granular material 9 c becomes the granular material 9 a when it adheres to the porous oxide semiconductor layer 8.
  • the granular material 9e is disposed on the surface 11a of the wiring portion 11.
  • the granular material 9e does not necessarily have to be disposed on the surface 11a of the wiring portion 11.
  • the wiring part 11 is not necessarily required and can be omitted.
  • Example 1 (Production of working electrode) First, an FTO / glass substrate having an FTO film formed on a glass substrate was prepared. Then, this FTO / glass substrate is cleaned, this substrate is subjected to UV-O 3 treatment, and a titanium oxide nanoparticle paste containing titanium oxide nanoparticles having an average particle diameter of 20 nm (made by Solaronix) is screen-printed on the substrate. , Ti nanoixide T / sp) was applied to prepare a 50 ⁇ 50 mm ⁇ 12 ⁇ m film. Then, this board
  • titanium tetraisopropoxide and acetylacetone as a diketone were prepared, and these were mixed at a molar ratio of 1: 1, and this mixed solution was added to ethanol to obtain a surface treatment solution.
  • the molar concentration of titanium tetraisopropoxide and acetylacetone in the surface treatment solution was 40 mM.
  • the laminate was immersed in the surface treatment solution obtained as described above for 24 hours, and then baked at 450 ° C. for 30 minutes.
  • a working electrode was obtained.
  • the surface of the porous oxide semiconductor layer was observed using SEM.
  • FIG. 5 it was confirmed that the granular material with an average particle diameter of 3 nm adhered on the surface of the porous oxide semiconductor layer.
  • the vicinity of the surface of the FTO film, which is a transparent conductive film, was observed with an SEM.
  • the aspect ratio of the granular material adhering to the porous oxide semiconductor layer and the granular material adhering to the FTO film were both 1.5.
  • N719 dye which is a photosensitizing dye
  • a mixed solvent in which acetonitrile and t-butyl alcohol were mixed at 1: 1 (volume ratio) to prepare a dye solution.
  • the working electrode was immersed in this dye solution for 24 hours, and the photosensitizing dye was supported on the porous oxide semiconductor layer.
  • an ionic liquid hexylmethylimidazolium iodide
  • an iodine / iodide ion redox pair is prepared as an electrolyte, and this is converted into a porous oxide semiconductor carrying a photosensitizing dye by screen printing. It apply
  • thermoplastic resin sheet made of high Milan (trade name, manufactured by Mitsui DuPont Polychemical Co., Ltd.) as an ionomer was sandwiched as a separator. At this time, the electrolyte was arranged inside the thermoplastic resin sheet. Then, the thermoplastic resin sheet was heated and melted at 180 ° C. for 5 minutes to bond the working electrode and the counter electrode. Thus, a dye-sensitized solar cell was obtained.
  • Example 2 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the solute concentration in the surface treatment solution was changed from 40 mM to 500 mM as shown in Table 1.
  • Example 2 when the working electrode of the dye-sensitized solar cell of Example 2 was also observed using SEM, as in Example 1, particles having an average particle diameter of 3 nm adhered to the porous oxide semiconductor layer. It was confirmed that particles having an average particle diameter of 3 nm were adhered to the FTO film.
  • the aspect ratio of the granular material adhering to the porous oxide semiconductor layer and the granular material adhering to the FTO film were both 1.5.
  • Example 3 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the concentration of the solute in the surface treatment solution was changed from 40 mM to 2000 mM as shown in Table 1.
  • Example 4 After forming the porous oxide semiconductor layer on the FTO film, a wiring part is produced on the FTO film as follows, and then the surface treatment solution is formed on the porous oxide semiconductor layer, the FTO film and the wiring part.
  • a dye-sensitized solar cell was produced in the same manner as in Example 1 except that the surface treatment was conducted at
  • a silver wiring was prepared by applying a paste containing Ag on a FTO / glass substrate treated with UV-O 3 by a screen printing method and baking it. Thereafter, the silver wiring was covered with a glass protective film made of glass frit. In this way, a wiring part composed of the silver wiring and the glass protective film was produced.
  • Example 4 the working electrode of the dye-sensitized solar cell of Example 4 was also observed using SEM in the same manner as in Example 1. As a result, particles with an average particle diameter of 3 nm adhered to the porous oxide semiconductor layer. It was confirmed that particles having an average particle diameter of 3 nm were adhered to the FTO film. Furthermore, it was confirmed that the granular material with an average particle diameter of 3 nm was adhered also to the wiring part. The aspect ratio of the granular material adhering to each of the porous oxide semiconductor layer, the FTO film, and the wiring portion was 1.5.
  • Example 5 The concentration of the solute in the surface treatment solution was changed from 40 mM to 500 mM as shown in Table 1, and the solute / solvent (molar ratio) was changed from 1/1 to 1/2 as shown in Table 1.
  • Example 5 The concentration of the solute in the surface treatment solution was changed from 40 mM to 500 mM as shown in Table 1, and the solute / solvent (molar ratio) was changed from 1/1 to 1/2 as shown in Table 1.
  • Example 6 The concentration of the solute in the surface treatment solution was changed from 40 mM to 500 mM as shown in Table 1, and the solute / solvent (molar ratio) was changed from 1/1 to 2/1 as shown in Table 1.
  • Example 6 The concentration of the solute in the surface treatment solution was changed from 40 mM to 500 mM as shown in Table 1, and the solute / solvent (molar ratio) was changed from 1/1 to 2/1 as shown in Table 1.
  • Example 7 The concentration of the solute in the surface treatment solution was changed from 40 mM to 500 mM as shown in Table 1, and the solute / solvent (molar ratio) was changed from 1/1 to 1/3 as shown in Table 1.
  • Example 7 Prepared a dye-sensitized solar cell in the same manner as in Example 1.
  • Example 8 The concentration of the solute in the surface treatment solution was changed from 40 mM to 500 mM as shown in Table 1, and the solute / solvent (molar ratio) was changed from 1/1 to 3/2 as shown in Table 1.
  • Example 8 The concentration of the solute in the surface treatment solution was changed from 40 mM to 500 mM as shown in Table 1, and the solute / solvent (molar ratio) was changed from 1/1 to 3/2 as shown in Table 1.
  • Example 8 when the working electrode of the dye-sensitized solar cell of Example 8 was also observed using SEM in the same manner as in Example 1, particles having an average particle diameter of 5 nm adhered to the porous oxide semiconductor layer. It was confirmed that particles having an average particle diameter of 5 nm were adhered to the FTO film.
  • the aspect ratio of the granular material adhering to the porous oxide semiconductor layer and the granular material adhering to the FTO film were both 1.5.
  • a dye was prepared in the same manner as in Example 4 except that a surface treatment solution obtained by adding a titanium tetrachloride solution (manufactured by Aldrich) to pure water to a concentration of 40 mM was used. A sensitized solar cell was produced.
  • Example 2 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the laminate formed by forming the porous oxide semiconductor layer on the FTO film was not immersed in the surface treatment solution.
  • Example 3 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that a surface treatment solution prepared without using acetylacetone was used as the surface treatment solution.
  • Example 4 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that a surface treatment solution prepared without using titanium tetraisopropoxide was used as the surface treatment solution.
  • Example 5 A dye-sensitized solar cell was produced in the same manner as in Example 4 except that the surface treatment was not performed on the laminate formed by forming the porous oxide semiconductor layer on the FTO film.
  • a dye was prepared in the same manner as in Example 4 except that a surface treatment solution obtained by adding a titanium tetrachloride solution (manufactured by Aldrich) to pure water to a concentration of 40 mM was used. A sensitized solar cell was produced.
  • the working electrode of the dye-sensitized solar cell of Comparative Example 7 was also observed using SEM in the same manner as in Example 1. As a result, particles with an average particle diameter of 3 nm adhered to the porous oxide semiconductor layer. It was confirmed that particles having an average particle diameter of 3 nm were adhered to the FTO film. Moreover, the aspect ratio of the granular material adhering to the porous oxide semiconductor layer and the granular material adhering to the FTO film
  • the working electrode of the dye-sensitized solar cell of Comparative Example 8 was also observed using SEM in the same manner as in Example 1. As a result, particles with an average particle diameter of 4 nm adhered to the porous oxide semiconductor layer. It was confirmed that particles having an average particle diameter of 4 nm were adhered to the FTO film. Moreover, the aspect ratio of the granular material adhering to the porous oxide semiconductor layer and the granular material adhering to the FTO film

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

 本発明は、導電層及び多孔質酸化物半導体層を有する第1電極と、第1電極の多孔質酸化物半導体層に対向して設けられる第2電極と、第1電極の多孔質酸化物半導体層に担持される光増感色素と、第1電極及び前記第2電極の間に配置される電解質とを備える色素増感太陽電池であって、第1電極が粒状体を有し、粒状体が、少なくとも導電層に付着する第1粒状体を有し、粒状体において、走査型電子顕微鏡で二次元的に観察したときの最小長さに対する最大長さの比が1~3であり、粒状体は、5nm以下の平均粒径を有する酸化チタンからなる色素増感太陽電池である。

Description

色素増感太陽電池及びその製造方法
 本発明は、色素増感太陽電池及びその製造方法に関する。
 近年、光電変換素子として、安価で、高い光電変換効率が得られることから色素増感太陽電池が注目されている。
 色素増感太陽電池は一般に、作用極と、対極と、作用極の酸化物半導体層に担持される光増感色素と、作用極及び対極間に配置される電解質とを備えている。
 このような色素増感太陽電池については光電変換効率のさらなる改善が求められており、そのために種々の研究が行われている。
 例えば下記特許文献1には、金属酸化物半導体材料の表面にこの金属酸化物半導体材料と同じ金属のアルコキシドを塗布し焼成した後、増感色素を付着させてなる光半導体電極を用いることによって色素増感太陽電池の光電変換効率を改善することが提案されている。
 また下記特許文献2には、酸化チタン前駆体を出発原料として、加水分解、重縮合等の工程を経て形成した塗布液を透明導電膜上に塗布し、塗布液の乾燥、焼成等の工程を経て所定の表面粗さを有する中間膜を形成し、さらにその中間膜の上に半導体電極膜を形成することによって、透明導電膜と半導体電極膜との間の電子伝導性を向上させることが提案されている。
特開2000-294814号公報 特開2004-281288号公報
 しかし、上述した特許文献1、2に記載の方法により得られる光半導体電極又は半導体電極膜を有する色素増感太陽電池では、光電変換効率が未だ十分とは言えないものであった。
 本発明は、上記事情に鑑みてなされたものであり、優れた光電変換効率を有する色素増感太陽電池及びその製造方法を提供することを目的とする。
 本発明者は、上記課題が生じる原因について検討した結果、上記特許文献1,2に記載の方法を使用すると、作用極の多孔質酸化物半導体層を構成する粒子の表面にそれよりも小さい針状体が付着したり、針状体ではなく粗大な粒状体が形成されたりすることを見出し、このことが、上記課題が生じる原因ではないかと考えた。そこで、本発明者は、作用極の導電層又はその上に設けられる多孔質酸化物半導体層を構成する粒子の表面に付着している付着体の形状及び大きさに特に着目してさらに鋭意研究を重ねたところ、付着体が所定の平均粒径及び所定の最小長さ/最大長さ比を有する粒状体となり且つこの粒状体を少なくとも導電層に付着させることで上記課題を解決し得ることを見出し、本発明を完成するに至った。
 即ち本発明は、導電層及び多孔質酸化物半導体層を有する第1電極と、前記第1電極の前記多孔質酸化物半導体層に対向して設けられる第2電極と、前記第1電極の前記多孔質酸化物半導体層に担持される光増感色素と、前記第1電極及び前記第2電極の間に配置される電解質とを備える色素増感太陽電池であって、前記第1電極が粒状体を有し、前記粒状体が、少なくとも前記導電層に付着する第1粒状体を有し、前記粒状体において、走査型電子顕微鏡で二次元的に観察したときの最小長さに対する最大長さの比が1~3であり、前記粒状体は、5nm以下の平均粒径を有する酸化チタンからなる、色素増感太陽電池である。
 本発明によれば、優れた光電変換効率を有する色素増感太陽電池が提供される。
 本発明の色素増感太陽電池が優れた光電変換効率を有することとなる理由についてはいまだ明らかではないが、本発明者は以下の理由によるものと推測している。
 即ち、本発明の色素増感太陽電池においては、第1電極が粒状体を有し、粒状体が、少なくとも導電層に付着する第1粒状体を有している。しかも、上記粒状体の最小長さに対する最大長さの比(最大長さ/最小長さ)が1~3であり、この比(以下、「アスペクト比」と呼ぶ)が3を超える場合に比べて、上記粒状体は球に近い形状を有する。このため、導電層の表面のうち少なくとも多孔質酸化物半導体層が形成されている領域の外側に上記粒状体のうち導電層に付着する粒状体を隙間なく設けることができる。従って、光増感色素から多孔質酸化物半導体層を経て導電層に到達した電子が電解質に移動する逆電子移動が、導電層に付着する第1粒状体によって十分に抑制される。さらには、粒状体の平均粒径が5nm以下とかなり小さいために、光透過率の低下を十分に防止することができるものと考えられる。以上のことから、本発明の色素増感太陽電池は、優れた光電変換効率を有するものと本発明者は推測している。
 本発明の色素増感太陽電池においては、前記粒状体は、1nm以上の平均粒径を有する酸化チタンからなることが好ましい。
 この場合、粒状体が1nm未満の平均粒径を有する酸化チタンからなる場合に比べて、酸化チタンの結晶性を維持しやすくなる。
 本発明の色素増感太陽電池においては、前記多孔質酸化物半導体層が前記導電層と直接接しており、前記粒状体が、前記第1粒状体と、前記導電層から離間して前記多孔質酸化物半導体層に付着する第2粒状体とを有することが好ましい。
 この場合、酸化物半導体である粒状体が、導電層から離間して多孔質酸化物半導体層に付着する第2粒状体をも有している。このため、酸化物半導体の表面積がより増加することになる。また、多孔質酸化物半導体層を構成する粒子から粒子に電子が移動する際に、第2粒状体が仲介となって、電子の移動が促進される。このため、光増感色素から酸化物半導体への電子移動が効率よく行われる。また、電子が多孔質酸化物半導体層から電解質に移動する逆電子移動を抑えることができる。
 本発明の色素増感太陽電池においては、前記多孔質酸化物半導体層が酸化物半導体粒子で構成され、前記第2粒状体が、前記酸化物半導体粒子よりも小さい平均粒径を有することが好ましい。
 この場合、酸化物半導体粒子が、第2粒状体の平均粒径以下の平均粒径を有する場合に比べて、第2粒状体が酸化物半導体粒子同士間の隙間で密に存在することが可能となり、酸化物半導体粒子同士間で電子を流しやすくしつつも、酸化物半導体粒子からの漏れ電流をより十分に低減できる。
 本発明の色素増感太陽電池においては、前記第1粒状体の少なくとも一部が、前記多孔質酸化物半導体層に付着していることが好ましい。
 この場合、多孔質酸化物半導体層から導電層に電子が移動する際に第1粒状体が仲介となって、電子の移動が促進される。加えて、第1粒状体によって多孔質酸化物半導体層と導電層との密着性も高められる。
 ここで、前記第1粒状体のうち、前記多孔質酸化物半導体層に付着する前記第1粒状体が、前記多孔質酸化物半導体層の内側及び外側に配置されることが好ましい。
 この場合、多孔質酸化物半導体層に付着する第1粒状体が、多孔質酸化物半導体層の内側及び外側に配置されているため、その第1粒状体が、多孔質酸化物半導体層の内側及び外側のいずれか一方にのみ配置される場合に比べて、多孔質酸化物半導体層から導電層への電子移動がより効率的に行われる。
 また、多孔質酸化物半導体層に付着する第1粒状体は、多孔質酸化物半導体層の内側のみならず外側においても多孔質酸化物半導体層に付着している。従って、電子が粒状体を通過する時間(長さ)が短くなり、電子の移動をより効率よく促進できる。
 さらに、多孔質酸化物半導体層に付着する第1粒状体は、多孔質酸化物半導体層の内側のみならず外側においても多孔質酸化物半導体層に付着している。このため、多孔質酸化物半導体層と導電層との密着性がより高められる。
 本発明の色素増感太陽電池においては、前記第1電極が、前記導電層上に前記多孔質酸化物半導体層の周囲に設けられる配線部をさらに有し、前記粒状体が前記配線部の表面の少なくとも一部に設けられる第3粒状体をさらに有することが好ましい。
 この場合、配線部の表面の少なくとも一部が第3粒状体によって保護されるため、電解質による配線部の腐食を十分に抑制することが可能となる。
 本発明の色素増感太陽電池において、前記多孔質酸化物半導体層が酸化チタンから構成されていることが好ましい。
 この場合、粒状体及び多孔質酸化物半導体層が酸化チタンで構成されるため、多孔質酸化物半導体層と粒状体との間の抵抗が十分に低減され、電子移動をより効率よく行わせることができる。
 また本発明は、導電層及び多孔質酸化物半導体層を有する第1電極と、前記第1電極の前記多孔質酸化物半導体層側に対向して設けられる第2電極と、前記第1電極の前記多孔質酸化物半導体層に担持される光増感色素と、前記第1電極及び前記第2電極の間に配置される電解質とを備える色素増感太陽電池の製造方法であって、前記第1電極を形成する第1電極形成工程と、前記第1電極に光増感色素を担持させる色素担持工程と、前記第1電極及び前記第2電極を貼り合わせる貼合せ工程とを含み、前記第1電極形成工程が、少なくとも前記導電層上に、チタンアルコキシドと、ジケトンを含む溶媒とを含む表面処理用溶液を塗布した後、前記表面処理用溶液を焼成する表面処理工程を含む色素増感太陽電池の製造方法である。
 本発明の製造方法によれば、上述した色素増感太陽電池を製造することができる。すなわち、少なくとも導電層に付着する第1粒状体を有する粒状体を有し、粒状体において、走査型電子顕微鏡で二次元的に観察したときの最小長さに対する最大長さの比が1~3であり、粒状体が、5nm以下の平均粒径を有する酸化チタンからなる第1電極を有する色素増感太陽電池が得られる。
 上記製造方法において、前記第1電極形成工程が、前記表面処理工程の前に、前記導電層上に前記多孔質酸化物半導体層を形成する多孔質酸化物半導体層形成工程を含み、前記表面処理工程において、少なくとも前記導電層及び前記多孔質酸化物半導体層上に前記表面処理用溶液を塗布することが好ましい。
 この場合、上記表面処理工程の前に、導電層上に多孔質酸化物半導体層が形成されるため、多孔質酸化物半導体層にも上記粒状体を付着させることが可能となる。このため、酸化物半導体の表面積がより増加し、より多くの光増感色素を担持させることが可能となる。このため、光増感色素から酸化物半導体への電子移動が効率よく行われる色素増感太陽電池を得ることができる。
 上記製造方法において、前記第1電極形成工程が、前記表面処理工程の前に、前記導電層上に配線部を形成する配線部形成工程をさらに含み、前記表面処理工程において、少なくとも前記導電層及び前記配線部上に前記表面処理用溶液を塗布することが好ましい。
 この場合、走査型電子顕微鏡で二次元的に観察したときの最小長さに対する最大長さの比が1~3であり、5nm以下の平均粒径を有する酸化チタンからなる粒状体を、導電層上のみならず、配線部上にも付着させることが可能となる。このため、得られる色素増感太陽電池において、配線部の表面が粒状体によって保護され、電解質による配線部の腐食を十分に抑制することが可能となる。
 また前記溶媒においては、前記ジケトンに対する前記チタンアルコキシドのモル比が0.5~2.0であることが好ましい。
 この場合、モル比が上記範囲を外れる場合に比べて、粒状体をより効率よく形成できる。
 さらに前記溶媒においては、前記ジケトンに対する前記チタンアルコキシドのモル比が1.0~2.0であることが好ましい。
 この場合、モル比が上記範囲を外れる場合に比べて、粒状体をより効率よく形成できる。
 上記製造方法において、前記多孔質酸化物半導体層が酸化チタンから構成されていることが好ましい。
 この場合、粒状体及び多孔質酸化物半導体層が酸化チタンで構成されることとなるため、多孔質酸化物半導体層と粒状体との間の抵抗が十分に低減され、電子移動を効率よく行わせることができる色素増感太陽電池を得ることができる。
 なお、本発明において、「平均粒径」とは、走査型電子顕微鏡(以下、「SEM」と呼ぶ)で二次元的に観察される50個の粒状体の最大長さの平均値を言うものとする。
 また「アスペクト比」とは、SEMで二次元的に観察される最小長さに対する最大長さの比の50個の粒状体の平均値を言うものとする。
 さらに「多孔質酸化物半導体層の内側」とは、導電層のうち多孔質酸化物半導体層で覆われている領域のことを言うものとする。
 本発明によれば、優れた光電変換効率を有する色素増感太陽電池及びその製造方法が提供される。
本発明の色素増感太陽電池の一実施形態を示す断面図である。 図1の作用極を示す部分拡大断面図である。 図2の粒状体を示す断面図である。 図1の作用極の変形例を示す部分拡大断面図である。 図1の作用極の他の変形例を示す部分拡大断面図である。 実施例1の多孔質酸化物半導体層の表面付近のSEM写真を示す図である。 実施例1の透明導電膜の表面付近のSEM写真を示す図である。 比較例1の多孔質酸化物半導体層と透明導電膜との界面表面付近のSEM写真を示す図である。
 以下、本発明の実施形態について図面を参照しながら詳細に説明する。なお、全図中、同一又は同等の構成要素には同一符号を付し、重複する説明を省略する。
 図1は、本発明に係る色素増感太陽電池の好適な実施形態を示す断面図、図2は、図1の作用極を示す部分拡大断面図である。
 図1に示すように、色素増感太陽電池100は、作用極1と、作用極1に対向するように配置される対極2とを備えている。作用極1と対極2との間には、作用極1及び対極2を連結する封止部4が設けられている。そして、作用極1と対極2と封止部4とによって包囲されるセル空間内には電解質3が充填されている。
 作用極1は、透明基板6と、透明基板6の対極2側に設けられる透明導電膜7と、透明導電膜7の上に直接且つ対極2に対向するように設けられる多孔質酸化物半導体層8と、透明導電膜7上に設けられる配線部11とを備えている。多孔質酸化物半導体層8は電解質3に接触しており、作用極1のうちの多孔質酸化物半導体層8には光増感色素が担持されている。また配線部11は、透明導電膜7上に設けられる集電配線12と、集電配線12を被覆して保護する配線保護層13とを有している。配線部11のうち最も外側の部分は、封止部4に連結されている。
 図2に示すように、作用極1は、透明導電膜(導電層)7に対して対極2側に存在する粒状体90を有し、粒状体90は、複数の粒状体9a,9b,9c,9d,9eを有している。上記粒状体9a~9eは、5nm以下の平均粒径を有する酸化チタンからなる。
 透明導電膜7上に設けられる第1粒状体としての粒状体9aは、多孔質酸化物半導体層8にも付着している。本実施形態では、粒状体9aは、多孔質酸化物半導体層8の内側には存在していない。
 第2粒状体としての粒状体9bは、透明導電膜7の表面から離間した位置で多孔質酸化物半導体層8に付着している。即ち粒状体9bは透明導電膜7には接触していない。
 第1粒状体としての粒状体9cは、透明導電膜7の表面にのみ付着し、多孔質酸化物半導体層8の酸化物半導体粒子8aには付着していない。第2粒状体としての粒状体9dは粒状体9b同士を結合するものであり、粒状体9bを介して酸化物半導体粒子8aに付着している。第3粒状体としての粒状体9eは、配線部11の表面11a上にのみ付着しており、透明導電膜7にも多孔質酸化物半導体層8にも付着していない。
 粒状体90の形状は、例えば円形状又は半円形状であるが、これら以外の形状であってもよい。なお、ここで言う形状とは、SEMで二次元的に観察される形状のことを言う。粒状体90のアスペクト比は1~3である。ここで、粒状体90のアスペクト比は、図3に示すように、SEMで二次元的に観察される最小長さLminに対する最大長さLmaxの比の50個の粒状体90の平均値を言う。
 上述した色素増感太陽電池100によれば、優れた光電変換効率を有することが可能となる。
 色素増感太陽電池100が優れた光電変換効率を有することとなる理由についてはいまだ明らかではないが、本発明者は以下の理由によるものと推測している。
 即ち、色素増感太陽電池100においては、作用極1が粒状体90を有し、粒状体90が、透明導電膜7に付着する粒状体9a,9cを有している。しかも、粒状体9a,9cのアスペクト比が1~3であり、このアスペクト比が3を超える場合に比べて、上記粒状体9a,9cは球に近い形状を有する。このため、透明導電膜7上の多孔質酸化物半導体層8が形成されている領域の外側に上記粒状体9a,9cを隙間なく設けることが可能となる。このため、光増感色素から多孔質酸化物半導体層8を経て透明導電膜7に到達した電子が電解質3に移動する逆電子移動が粒状体9a,9cによって十分に抑制される。さらには、粒状体9a,9cの平均粒径が5nm以下とかなり小さいために、光透過率の低下を十分に防止することができる。以上のことから、色素増感太陽電池100は、優れた光電変換効率を有するものと本発明者は推測している。
 また色素増感太陽電池100においては、透明導電膜7上の粒状体9aが、多孔質酸化物半導体層8にも付着している。
 この場合、多孔質酸化物半導体層8から透明導電膜7に電子が移動する際に粒状体9aが仲介となって、電子の移動を促進するものと考えられる。加えて、粒状体9aによって多孔質酸化物半導体層8と透明導電膜7との密着性が高められる。
 また色素増感太陽電池100では、酸化物半導体である粒状体9b,9dが多孔質酸化物半導体層8に付着している。このため、酸化物半導体の表面積がより増加することになる。また、多孔質酸化物半導体層8の粒子から粒子に電子が移動する際に、粒状体9b,9dが仲介となって、電子の移動を促進するものと考えられる。従って、光増感色素から酸化物半導体への電子移動が効率よく行われる。また、電子が多孔質酸化物半導体層8から電解質3に移動する逆電子移動を抑えることができる。
 次に、作用極1、配線部11、光増感色素、対極2、電解質3及び封止部4について詳細に説明する。
 (作用極)
 透明基板6を構成する材料は、例えば透明な材料であればよく、このような透明な材料としては、例えばホウケイ酸ガラス、ソーダライムガラス、白板ガラス、石英ガラスなどのガラス、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリエーテルスルフォン(PES)などが挙げられる。透明基板6の厚さは、色素増感太陽電池100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば50~10000μmの範囲にすればよい。
 透明導電膜7を構成する材料としては、例えばスズ添加酸化インジウム(Indium-Tin-Oxide:ITO)、酸化スズ(SnO)、フッ素添加酸化スズ(Fluorine-doped-Tin-Oxide:FTO)などの導電性金属酸化物が挙げられる。透明導電膜7は、単層でも、異なる導電性金属酸化物で構成される複数の層の積層体で構成されてもよい。透明導電膜7が単層で構成される場合、透明導電膜7は、高い耐熱性及び耐薬品性を有することから、FTOで構成されることが好ましい。また透明導電膜7として、複数の層で構成される積層体を用いると、各層の特性を反映させることが可能となることから好ましい。中でも、ITOで構成される層と、FTOで構成される層との積層体を用いることが好ましい。この場合、高い導電性、耐熱性及び耐薬品性を持つ透明導電膜7が実現できる。透明導電膜7の厚さは例えば0.01~2μmの範囲にすればよい。
 多孔質酸化物半導体層8は、多孔質酸化物半導体で構成される。図2に示すように、多孔質酸化物半導体は、例えば酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化タングステン(WO)、酸化ニオブ(Nb)、チタン酸ストロンチウム(SrTiO)、酸化スズ(SnO)、酸化インジウム(In)、酸化ジルコニウム(ZrO)、酸化タリウム(Ta)、酸化ランタン(La)、酸化イットリウム(Y)、酸化ホルミウム(Ho)、酸化ビスマス(Bi)、酸化セリウム(CeO)、酸化アルミニウム(Al)又はこれらの2種以上で構成される酸化物半導体粒子8aで構成される。これら酸化物半導体粒子8aの平均粒径は1~1000nmであることが、光増感色素で覆われた酸化物半導体の表面積が大きくなり、即ち光電変換を行う場が広くなり、より多くの電子を生成することができることから好ましい。ここで、多孔質酸化物半導体層8が、粒度分布の異なる酸化物半導体粒子8aを積層させてなる積層体で構成されることが好ましい。この場合、積層体内で繰り返し光の反射を起こさせることが可能となり、入射光を積層体の外部へ逃がすことなく効率よく光を電子に変換することができる。多孔質酸化物半導体層8の厚さは、例えば0.5~50μmとすればよい。なお、多孔質酸化物半導体層8は、異なる材料からなる複数の半導体層の積層体で構成することもできる。
 多孔質酸化物半導体層8を構成する酸化物半導体粒子8aは、粒状体9b、9dよりも大きい平均粒径を有することが好ましい。この場合、酸化物半導体粒子8aが粒状体9b、9dの平均粒径以下の平均粒径を有する場合に比べて、粒状体9b、9dが酸化物半導体粒子8a同士間の隙間で密に存在することが可能となり、酸化物半導体粒子8a同士間で電子を流しやすくしつつも、酸化物半導体粒子8aからの漏れ電流をより十分に低減できる。
 粒状体9a~9eの平均粒径は、好ましくは1nm以上である。この場合、粒状体9a~9eが1nm未満の平均粒径を有する酸化チタンからなる場合に比べて、酸化チタンの結晶性を維持しやすくなる。
 粒状体9a~9eの平均粒径は、2~4nmであることがより好ましい。
 粒状体9a~9eのアスペクト比は好ましくは1.5~2.5である。この場合、粒状体9a~9eのアスペクト比が、上記範囲を外れる場合に比べて、漏れ電流をより十分に低減できる。
 (配線部)
 集電配線12は、透明導電膜7よりも低い抵抗を有する材料であればよく、このような材料としては、例えば金、銀、銅、白金、アルミニウム、チタン及びニッケルなどの金属が挙げられる。
 配線保護層13を構成する材料としては、例えば非鉛系の低融点ガラスフリットなどの光を透過させることが可能な材料や、光を透過させることが不可能な酸化鉛系のガラスフリットなどの材料が挙げられる。ここで、低融点ガラスフリットの軟化点は550℃以下であることが好ましい。
 (光増感色素)
 光増感色素としては、例えばビピリジン構造、ターピリジン構造などを含む配位子を有するルテニウム錯体や、ポルフィリン、エオシン、ローダミン、メロシアニンなどの有機色素が挙げられる。
 (対極)
 対極2は、図1に示すように、対極基板9と、対極基板9のうち作用極1側に設けられて対極2の表面における還元反応を促進する導電性の触媒層(導電層)10とを備えている。
 対極基板9は、例えばチタン、ニッケル、白金、モリブデン、タングステン等の耐食性の金属材料や、ガラス基板や、上述した透明基板6にITO、FTO等の導電性酸化物を形成したものや、炭素、導電性高分子で構成される。対極基板9の厚さは、色素増感型太陽電池100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば0.005~0.1mmとすればよい。
 触媒層10は、白金、炭素系材料又は導電性高分子などから構成される。
 (電解質)
 電解質3は通常、電解液で構成され、この電解液は例えばI/I などの酸化還元対と有機溶媒とを含んでいる。有機溶媒としては、アセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリル、プロピオニトリル、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ-ブチロラクトン、バレロニトリル、ピバロニトリル、グルタロニトリル、メタクリロニトリル、イソブチロニトリル、フェニルアセトニトリル、アクリロニトリル、スクシノニトリル、オキサロニトリル、ペンタニトリル、アジポニトリルなどを用いることができる。酸化還元対としては、例えばI/I のほか、臭素/臭化物イオン、亜鉛錯体、鉄錯体、コバルト錯体などのレドックス対などの対が挙げられる。
 なお、電解質3は、上記有機溶媒に代えて、イオン液体と揮発性成分としての上記有機溶媒との混合物からなるイオン液体電解質を含んでいてもよい。また、電解質3は、上記有機溶媒に代えて、イオン液体を含んでもよい。イオン液体としては、例えばピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等の既知のヨウ素塩であって、室温付近で溶融状態にある常温溶融塩が用いられる。このような常温溶融塩としては、例えば1-メチル-3-メチルイミダゾリウムヨーダイド、1-エチル-3-メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド、1-ヘキシル-3-メチルイミダゾリウムヨーダイド、1-エチル-3-プロピルイミダゾリウムヨーダイド、ジメチルイミダゾリウムアイオダイド、エチルメチルイミダゾリウムアイオダイド、ジメチルプロピルイミダゾリウムアイオダイド、ブチルメチルイミダゾリウムアイオダイド、又は、メチルプロピルイミダゾリウムアイオダイドが好適に用いられる。また電解質40はさらに添加剤を含んでいてもよい。添加剤としては、LiI、I、4-t-ブチルピリジン、グアニジウムチオシアネート、1-メチルベンゾイミダゾール、1-ブチルベンゾイミダゾールなどが挙げられる。さらに電解質3としては、上記電解質にSiO、TiO、カーボンナノチューブなどのナノ粒子を混練してゲル様となった擬固体電解質であるナノコンポジットゲル電解質を用いてもよく、また、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などの有機系ゲル化剤を用いてゲル化した電解質を用いてもよい。
 (封止部)
 封止部4を構成する材料としては、例えば非鉛系の透明な低融点ガラスフリットなどの無機絶縁材料や、アイオノマー、エチレン-ビニル酢酸無水物共重合体、エチレン-メタクリル酸共重合体、エチレン-ビニルアルコール共重合体などを含む各種変性ポリオレフィン樹脂、紫外線硬化樹脂、及び、ビニルアルコール重合体などの樹脂が挙げられる。なお、封止部4は樹脂のみで構成されてもよいし、樹脂と無機フィラーとで構成されていてもよい。
 さらに色素増感太陽電池100では、多孔質酸化物半導体層8及び粒状体9a,9bのいずれも酸化チタンから構成される場合には、多孔質酸化物半導体層8と粒状体9a,9bとの間の抵抗が十分に低減され、電子移動をより効率よく行わせることができる。さらに粒状体9dは粒状体9b同士を結合しており、多数の導電パスを形成している。このことは、色素増感太陽電池100がより優れた光電変換効率を有することに寄与しうるものと考えられる。
 さらにまた色素増感太陽電池100では、配線部11の表面11a上に粒状体9eが設けられている。このため、粒状体9eによって配線部11の表面11aが保護される。従って、粒状体9eにより電解質3による配線部11の腐食を十分に抑制することが可能となる。
 次に、色素増感太陽電池100の製造方法について説明する。
 <第1電極形成工程>
 まず作用極1を以下のようにして準備する。
 はじめに透明基板6の上に透明導電膜7を形成する。透明導電膜7の形成方法としては、スパッタ法、蒸着法、スプレー熱分解法(SPD:Spray Pyrolysis Deposition)及びCVD法などが用いられる。
 (多孔質酸化物半導体層形成工程)
 次に、透明導電膜7上に、多孔質酸化物半導体層形成用ペーストを印刷する。多孔質酸化物半導体層形成用ペーストは、上述した酸化物半導体粒子8aのほか、ポリエチレングリコールなどの樹脂及び、テレピネオールなどの溶媒を含む。多孔質酸化物半導体層形成用ペーストの印刷方法としては、例えばスクリーン印刷法、ドクターブレード法、バーコート法などを用いることができる。
 次に、多孔質酸化物半導体層形成用ペーストを焼成して透明導電膜7上に多孔質酸化物半導体層8を形成する。焼成温度は酸化物半導体粒子の材質により異なるが、通常は350℃~600℃であり、焼成時間も、酸化物半導体粒子の材質により異なるが、通常は1~5時間である。
 (配線部形成工程)
 次に、透明導電膜7上に集電配線12を形成する。集電配線12は、例えば金属ペーストを多孔質酸化物半導体層8と離間するように多孔質酸化物半導体層8の周囲に塗布し焼成することによって形成することができる。
 続いて、集電配線12を覆い且つ透明導電膜7に接触するように配線保護層13を形成する。配線保護層13は、例えば低融点ガラスフリットを含むペーストを、集電配線12を覆うように塗布し乾燥させた後、焼成することにより形成することができる。こうして配線部11が得られる。
 (表面処理工程)
 次に、透明導電膜7のうち露出した領域、多孔質酸化物半導体層8、及び配線部11の表面11a上に、チタンアルコキシド及びジケトンを含む溶媒とを含む表面処理用溶液を塗布した後、この表面処理用溶液を焼成する。これにより粒状体90が得られる。すなわち、透明導電膜7上に粒状体9a,9cが形成されるとともに、多孔質酸化物半導体層8上に粒状体9b,9dが形成される。さらに配線部11の表面11a上には粒状体9eが形成される。
 ここで、塗布には、インクジェット、印刷、スプレーによる塗布はもとより、浸漬による塗布も含まれる。
 チタンアルコキシドとしては、例えばチタンテトラメトキシド、チタンテトラエトキシド、チタンテトライソプロポキシド、チタンテトライソブトキシド、チタンテトラn-ブトキシド、チタンテトラ-tert-ブトキシド、チタンテトラ2-エチルヘキサド、チタンテトライソオクタキシド、チタンテトラn-プロポキシド、オルトチタン酸テトラオクタデキシドなどが挙げられる。
 上記表面処理用溶液に含まれる溶媒はジケトンを含んでいればよい。従って、溶媒はジケトンのみで構成されてもよく、ジケトンとジケトン以外の溶媒との混合溶媒であってもよい。
 ジケトンとしては、例えば1,3-ジケトン(アセチルアセトン)、1,2-ジケトン(ジアセチル)、1,4-ジケトン(2,5-ヘキサンジオン)、ジメドンなどが挙げられる。ジケトン以外の溶媒としては、例えばメタノール、エタノール、プロパノールなどのアルコールなどの有機溶媒を用いることができる。
 上記表面処理用溶液中においては、ジケトンに対するチタンアルコキシドのモル比は、0.5~3.0とすることが好ましい。上記モル比が上記範囲内にあると、上記モル比が0.5未満である場合に比べて、ジケトンが過剰に余らないため、透明導電膜7のうち露出した領域、多孔質酸化物半導体層8、及び配線部11の表面11a上に、上記粒状体9a~9eが満遍なく形成される。また、上記モル比が3を超える場合に比べて、チタンアルコキシドが過剰に余らないので、粒状体9a~9eを効率よく形成できる。上記モル比は、0.5~2.0であることが好ましい。この場合、モル比が0.5~2.0の範囲を外れる場合に比べて、粒状体9a~9eをより効率よく形成できる。さらに上記モル比は1.0~2.0であることがより好ましい。この場合、モル比が1.0~2.0の範囲を外れる場合に比べて、粒状体9a~9eをより効率よく形成できる。
 表面処理用溶液中のチタンアルコキシドの濃度は、好ましくは40~2000mMであり、より好ましくは300~1500mMである。
 焼成温度は通常は100~650℃とすればよいが、好ましくは350~550℃である。
 多孔質酸化物半導体層8が付着する透明導電膜7上の粒状体9aが多孔質酸化物半導体層8の内側に存在しないようにするには、例えば酸化物半導体粒子8aの平均粒径を10nm以下とすることによって粒状体9aが多孔質酸化物半導体層8の内側に入り込むのを防止したり、多孔質酸化物半導体層8の厚さを増大することによって粒状体9aが透明導電膜7まで達しないようにしたりすればよい。以上のようにして作用極1が得られる。
 <色素担持工程>
 次に、作用極1の多孔質酸化物半導体層8に光増感色素を担持させる。このためには、作用極1を、光増感色素を含有する色素含有溶液中に浸漬させ、その光増感色素を多孔質酸化物半導体層8に吸着させた後に上記色素含有溶液の溶媒成分で余分な光増感色素を洗い流し、乾燥させることで、光増感色素を多孔質酸化物半導体層8に吸着させればよい。但し、光増感色素を含有する色素含有溶液を多孔質酸化物半導体層8に塗布した後、乾燥させることによって光増感色素を多孔質酸化物半導体多孔層8に吸着させても、光増感色素を多孔質酸化物半導体層8に担持させることが可能である。
 <対極準備工程>
 一方、以下のようにして対極2を準備する。
 まず対極基板9を準備する。そして、対極基板9の上に触媒層10を形成する。触媒層10の形成方法としては、スパッタ法、蒸着法などが用いられる。これらのうちスパッタ法が膜の均一性の点から好ましい。
 次に、電解質3を用意し、例えば作用極1上に配置する。
 <貼合せ工程>
 次に、例えば熱可塑性樹脂からなる環状のシートを準備する。そして、光増感色素を担持した多孔質酸化物半導体層8を有する作用極1と対極2とで上記シート及び電解質3を挟み、シートを加熱溶融させ、作用極1と対極2とを貼り合せる。このとき、環状のシートの内側に多孔質酸化物半導体層8が配置されるようにする。こうして、作用極1と対極2との間に封止部4が形成され、色素増感太陽電池100が得られ、色素増感太陽電池100の製造が完了する。
 なお、電解質3を作用極1上に配置する前に、上記シートを加熱溶融により作用極1上に固定することにより作用極1上に封止部4を形成し、電解質3を、作用極1上に形成した封止部4の内側に配置した後に作用極1と対極2とを貼り合せても色素増感太陽電池100を得ることができる。このとき、対極2上に封止部4を形成し、その封止部4の内側に電解質3を配置した後に作用極1と対極2とを貼り合せてもよいし、作用極1及び対極2の各々に封止部4を形成し、作用極1及び対極2のうちいずれか一方の内側に電解質3を配置した後に作用極1と対極2とを貼り合せてもよい。また対極2は、電解質3を作用極1上に配置した後に用意してもよい。
 色素増感太陽電池100を上記のようにして製造すると、以下の効果が得られる。
 すなわち、上述した色素増感太陽電池100の製造方法では、透明導電膜7上に多孔質酸化物半導体層8及び配線部11を形成した後、透明導電膜7のうち露出した領域、多孔質酸化物半導体層8、及び配線部11の表面11a上に、チタンアルコキシド及びジケトンを含む溶媒とを含む表面処理用溶液を塗布し、この表面処理用溶液を焼成する。ここで、チタンアルコキシドとジケトンとが反応すると、表明処理用溶液を塗布してから焼成するまでの間、下記反応式に示す化合物Aが生成されると考えられる。なお、下記チタンアルコキシドを表す構造式中、Rは有機基を表す。
Figure JPOXMLDOC01-appb-C000001
 この化合物Aは非局在化し安定化するので、水等が表面処理用溶液中に入っても、水と反応しない。このため、表面処理用溶液を透明導電膜7のうち露出した領域、多孔質酸化物半導体層8及び配線部11の表面11a上に塗布する際に、水等が表面処理用溶液中に少量入ったとしても、上記化合物Aは、異なる化合物に変化しないものと考えられる。その結果、安定して粒状体9a~9eを形成することが可能となる。
 しかも、チタンアルコキシドとジケトンを含む溶媒とを含む表面処理用溶液が用いられると、平均粒径が5nm以下の粒状体(アスペクト比1~3)9a~9eを安定して形成することができる。この理由は定かではないが、表面処理用溶液を焼成する際には、上記化合物Aにおいて、ジケトン部分が切れて純粋なチタンだけになることや、チタンアルコキシドもジケトンも中性であることにあるのではないかと考えられる。
 更に上記化合物Aは中性であると考えられる。このため、配線部11を形成した後に、配線部11の表面11a上に表面処理用溶液を塗布しても配線部11が溶けたりしない。
 なお、表面処理用溶液として一般に、四塩化チタンが使用されることがあり、四塩化チタンは、水を適量混ぜることで使用される。しかし、この場合、時間の経過と共に四塩化チタンは水と反応し、Ti(OH)を生成させる。また、水が混ぜられなくても、水分含有環境下においては、四塩化チタンはすぐに水と反応し、Ti(OH)を生成させる。そして、このようにTi(OH)が生成されたまま表面処理用溶液を焼成すると、小さい粒径の粒子を作製しようとしても、それらの粒子同士が凝集してしまい、粒径を制御することが難しくなる。あるいは四塩化チタン溶液を塗布し焼成して粒径が揃ったとしても、針状の粒子が形成されてしまう。この理由は定かではないが、四塩化チタンが酸性であることに由来するためと考えられる。四塩化チタンが酸性であることは、配線部11を形成した後に、四塩化チタン溶液によって表面処理をしようとしても、配線部11を形成する銀やガラスフリットが溶けてしまうことから明らかである。
 本発明は、上記実施形態に限定されるものではない。例えば上記実施形態では、多孔質酸化物半導体層8の内側には、透明導電膜7上にあって且つ多孔質酸化物半導体層8にも付着している粒状体が存在していないが、図4に示す作用極201のように、作用極1に対し、多孔質酸化物半導体層8の内側に、透明導電膜7上にあって且つ多孔質酸化物半導体層8にも付着している粒状体9aが存在していてもよい。この場合、作用極201においては、透明導電膜7上にあって且つ多孔質酸化物半導体層8にも付着している粒状体9aが多孔質酸化物半導体層8の内側及び外側に設けられることになる。このような作用極201を用いた色素増感太陽電池によれば、多孔質酸化物半導体層8に付着する透明導電膜7上の粒状体9aが、多孔質酸化物半導体層8の内側及び外側に配置されているため、その粒状体9aが、多孔質酸化物半導体層8の内側及び外側のいずれか一方にのみ配置される場合に比べて、多孔質酸化物半導体層8から透明導電膜7への電子移動がより効率的に行われる。
 また、多孔質酸化物半導体層8に付着する透明導電膜7上の粒状体9aは、多孔質酸化物半導体層8の内側のみならず外側においても多孔質酸化物半導体層8に付着している。従って、電子が粒状体9aを通過する時間(長さ)が短くなり、電子の移動をより効率よく促進できる。
 さらに、透明導電膜7上の粒状体9aは、多孔質酸化物半導体層8の内側のみならず外側においても多孔質酸化物半導体層8に付着している。このため、多孔質酸化物半導体層8と透明導電膜7との密着性がより高められる。
 多孔質酸化物半導体層8に作用極201のように粒状体を付着させるには、具体的には、透明導電膜7の上に粒状体9cを付着させた後、その粒状体9cの少なくとも一部を覆うように多孔質酸化物半導体層8を形成し、続いて、多孔質酸化物半導体層8に粒状体9b、9dを付着させればよい。なお、粒状体9cのうち多孔質酸化物半導体層8と付着することとなった粒状体9cは粒状体9aとなる。
 また図5に示す作用極301のように、粒状体として、多孔質酸化物半導体層8の内側及び外側で多孔質酸化物半導体層8に付着する透明導電膜7上の粒状体9a,多孔質酸化物半導体層8に付着せず透明導電膜7上にのみ付着する粒状体9c、及び配線部11の表面11a上の粒状体9eのみが設けられていてもよい。即ち粒状体9b,9dは設けられていなくてもよい。このような作用極301を形成するには、透明導電膜7の上に粒状体9cを付着させるとともに、配線部11の表面11a上に粒状体9eを付着させた後、その粒状体9cの少なくとも一部を覆うように多孔質酸化物半導体層8を形成すればよい。この場合、粒状体9cは、多孔質酸化物半導体層8にも付着することとなる場合には粒状体9aとなる。
 さらに上述した作用極1,201,301では、配線部11の表面11a上に粒状体9eが配置されているが、粒状体9eは必ずしも配線部11の表面11a上に配置されていなくてもよい。また配線部11は必ずしも必要なものではなく、省略可能である。
 以下、本発明の内容を、実施例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 (実施例1)
 (作用極の作製)
 はじめに、ガラス基板上にFTO膜が形成されたFTO/ガラス基板を準備した。そして、このFTO/ガラス基板を洗浄し、この基板にUV-O処理を行い、その基板上にスクリーン印刷により、20nmの平均粒径を有する酸化チタンナノ粒子を含む酸化チタンナノ粒子ペースト(Solaronix社製、Ti nanoixide T/sp)を塗布し50×50mm×12μmの膜を作製した。その後、この膜付き基板を、熱風循環タイプのオーブンに入れて500℃で1時間焼成し、FTO膜上に多孔質酸化物半導体層を形成し、積層体を得た。
 一方、チタンテトライソプロポキシドと、ジケトンとしてのアセチルアセトンとを用意し、これらをモル比で1:1に混合し、この混合液をエタノールに添加し、表面処理用溶液を得た。なお、表面処理用溶液中のチタンテトライソプロポキシド及びアセチルアセトンの個々のモル濃度は40mMとした。
 次に、上記積層体を、上記のようにして得た表面処理用溶液中に24時間浸漬させ、その後、450℃で30分間焼成処理を行った。こうして作用極を得た。この作用極について、SEMを用いて多孔質酸化物半導体層の表面を観察した。結果を図5に示す。図5に示すように、多孔質酸化物半導体層の表面上には平均粒径3nmの粒状体が付着していることが確認された。また透明導電膜であるFTO膜の表面付近をSEMで観察した。結果を図6に示す。図6に示すように、FTO膜上にも平均粒径3nmの粒状体が付着していることが確認された。また多孔質酸化物半導体層に付着している粒状体及びFTO膜に付着している粒状体のアスペクト比はいずれも1.5であった。
 (光増感色素の担持)
 次に、光増感色素であるN719色素を、アセトニトリルとt-ブチルアルコールとを1:1(体積比)で混合した混合溶媒中に溶かして色素溶液を作製した。そして、この色素溶液中に上記作用極を24時間浸漬させ、多孔質酸化物半導体層に光増感色素を担持させた。
 (対極の作製)
 一方、作用極の作製で用いたのと同じFTO/ガラス基板を用意し、この基板のFTO膜上にスパッタリング法によってPtを堆積させた。こうして対極を作製した。
 (電解質)
 他方、電解質として、ヨウ素/ヨウ化物イオンレドックス対を含有するイオン液体(へキシルメチルイミダゾリウムアイオダイド)を用意し、これを、スクリーン印刷法によって、光増感色素を担持した多孔質酸化物半導体層を有する作用極に多孔質酸化物半導体層を覆うように塗布した。
 (封止)
 作用極と対極との間に、アイオノマーであるハイミラン(商品名、三井・デュポンポリケミカル社製)からなる環状の熱可塑性樹脂シートをセパレータとして挟んだ。このとき、熱可塑性樹脂シートの内側に電解質が配置されるようにした。そして、熱可塑性樹脂シートを180℃で5分間加熱して溶融させ、作用極と対極とを接着した。こうして色素増感太陽電池を得た。
 (実施例2)
 表面処理用溶液中の溶質の濃度を表1に示す通り、40mMから500mMに変更したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
 なお、実施例2の色素増感太陽電池の作用極についても、実施例1と同様に、SEMを用いて観察したところ、多孔質酸化物半導体層には平均粒径3nmの粒状体が付着していることが確認され、FTO膜にも平均粒径3nmの粒状体が付着していることが確認された。また多孔質酸化物半導体層に付着している粒状体及びFTO膜に付着している粒状体のアスペクト比はいずれも1.5であった。
 (実施例3)
 表面処理用溶液中の溶質の濃度を表1に示す通り、40mMから2000mMに変更したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
 なお、実施例3の色素増感太陽電池の作用極についても、実施例1と同様に、SEMを用いて観察したところ、多孔質酸化物半導体層には平均粒径3nmの粒状体が付着していることが確認され、FTO膜にも平均粒径3nmの粒状体が付着していることが確認された。また多孔質酸化物半導体層に付着している粒状体及びFTO膜に付着している粒状体のアスペクト比はいずれも1.5であった。
 (実施例4)
 FTO膜上に多孔質酸化物半導体層を形成した後、FTO膜上に以下のようにして配線部を作製し、その後、多孔質酸化物半導体層、FTO膜及び配線部上に表面処理用溶液にて表面処理したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
 即ち、UV-O処理をしたFTO/ガラス基板上にスクリーン印刷法によってAgを含むペーストを塗布し焼成して銀配線を作製した。その後、銀配線をガラスフリットからなるガラス保護膜で覆った。こうして銀配線とガラス保護膜とからなる配線部を作製した。
 なお、実施例4の色素増感太陽電池の作用極についても、実施例1と同様に、SEMを用いて観察したところ、多孔質酸化物半導体層には平均粒径3nmの粒状体が付着していることが確認され、FTO膜にも平均粒径3nmの粒状体が付着していることが確認された。さらに配線部にも平均粒径3nmの粒状体が付着していることが確認された。また多孔質酸化物半導体層、FTO膜および配線部の各々に付着している粒状体のアスペクト比はいずれも1.5であった。
 また配線部におけるガラス保護膜を観察したところ、ガラスの外観に変化は見られず、その下の銀配線についても、その外観に変化が見られなかった。
 (実施例5)
 表面処理用溶液中の溶質の濃度を表1に示す通り、40mMから500mMに変更するとともに、溶質/溶媒(モル比)を表1に示す通り、1/1から1/2に変更したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
 なお、実施例5の色素増感太陽電池の作用極についても、実施例1と同様に、SEMを用いて観察したところ、多孔質酸化物半導体層には平均粒径3nmの粒状体が付着していることが確認され、FTO膜にも平均粒径3nmの粒状体が付着していることが確認された。また多孔質酸化物半導体層に付着している粒状体及びFTO膜に付着している粒状体のアスペクト比はいずれも1であった。
 (実施例6)
 表面処理用溶液中の溶質の濃度を表1に示す通り、40mMから500mMに変更するとともに、溶質/溶媒(モル比)を表1に示す通り、1/1から2/1に変更したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
 なお、実施例6の色素増感太陽電池の作用極についても、実施例1と同様に、SEMを用いて観察したところ、多孔質酸化物半導体層には平均粒径3nmの粒状体が付着していることが確認され、FTO膜にも平均粒径3nmの粒状体が付着していることが確認された。また多孔質酸化物半導体層に付着している粒状体及びFTO膜に付着している粒状体のアスペクト比はいずれも3であった。
 (実施例7)
 表面処理用溶液中の溶質の濃度を表1に示す通り、40mMから500mMに変更するとともに、溶質/溶媒(モル比)を表1に示す通り、1/1から1/3に変更したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
 なお、実施例7の色素増感太陽電池の作用極についても、実施例1と同様に、SEMを用いて観察したところ、多孔質酸化物半導体層には平均粒径1nmの粒状体が付着していることが確認され、FTO膜にも平均粒径1nmの粒状体が付着していることが確認された。また多孔質酸化物半導体層に付着している粒状体及びFTO膜に付着している粒状体のアスペクト比はいずれも1.5であった。
 (実施例8)
 表面処理用溶液中の溶質の濃度を表1に示す通り、40mMから500mMに変更するとともに、溶質/溶媒(モル比)を表1に示す通り、1/1から3/2に変更したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
 なお、実施例8の色素増感太陽電池の作用極についても、実施例1と同様に、SEMを用いて観察したところ、多孔質酸化物半導体層には平均粒径5nmの粒状体が付着していることが確認され、FTO膜にも平均粒径5nmの粒状体が付着していることが確認された。また多孔質酸化物半導体層に付着している粒状体及びFTO膜に付着している粒状体のアスペクト比はいずれも1.5であった。
 (比較例1)
 表面処理用溶液として、四塩化チタン溶液(アルドリッチ社製)を、40mMの濃度になるように純水に添加して得た表面処理用溶液を用いたこと以外は実施例4と同様にして色素増感太陽電池を作製した。
 なお、比較例1の色素増感太陽電池の作用極についても、実施例1と同様に、SEMを用いて観察したところ、図7に示すように、FTO膜上に針状体が付着していることが確認された。また色素増感太陽電池の作用極の多孔質酸化物半導体層の表面付近を実施例1と同様にSEMを用いて観察したところ、多孔質酸化物半導体層に針状体が付着していることが確認された。これらの針状体の平均粒径は7nmであり、アスペクト比は4であった。FTO膜上にも多孔質酸化物半導体層上にも平均粒径3nmの粒状体は確認されなかった。
 (比較例2)
 FTO膜上に多孔質酸化物半導体層を形成してなる積層体を表面処理用溶液中に浸漬させなかったこと以外は実施例1と同様にして色素増感太陽電池を作製した。
 なお、比較例2の色素増感太陽電池の作用極についても、実施例1と同様に、SEMを用いて観察したところ、FTO膜上にも多孔質酸化物半導体層上にも粒状体は確認できなかった。
 (比較例3)
 表面処理用溶液として、アセチルアセトンを用いないで作製した表面処理用溶液を用いたこと以外は実施例1と同様にして色素増感太陽電池を作製した。
 なお、比較例3の色素増感太陽電池の作用極についても、実施例1と同様に、SEMを用いて観察したところ、酸化チタンの凝集体が確認された。この凝集体の平均粒径は20nmであり、凝集体を構成する酸化チタンの平均粒径は8nmであった。
 (比較例4)
 表面処理用溶液として、チタンテトライソプロポキシドを用いないで作製した表面処理用溶液を用いたこと以外は実施例1と同様にして色素増感太陽電池を作製した。
 なお、比較例4の色素増感太陽電池の作用極についても、実施例1と同様に、SEMを用いて観察したところ、FTO膜上にも多孔質酸化物半導体層上にも粒状体は確認できなかった。
 (比較例5)
 FTO膜上に多孔質酸化物半導体層を形成してなる積層体に対して表面処理を行わなかったこと以外は実施例4と同様にして色素増感太陽電池を作製した。
 なお、比較例5の色素増感太陽電池の作用極についても、実施例1と同様に、SEMを用いて観察したところ、FTO膜上にも多孔質酸化物半導体層上にも粒状体は確認できなかった。
 (比較例6)
 表面処理用溶液として、四塩化チタン溶液(アルドリッチ社製)を、40mMの濃度になるように純水に添加して得た表面処理用溶液を用いたこと以外は実施例4と同様にして色素増感太陽電池を作製した。
 なお、比較例6の色素増感太陽電池の作用極についても、実施例1と同様に、SEMを用いて観察したところ、FTO膜上に針状体が付着していることが確認された。また色素増感太陽電池の作用極の多孔質酸化物半導体層の表面付近を実施例1と同様にSEMを用いて観察したところ、多孔質酸化物半導体層に針状体が付着していることも確認された。この針状体の平均粒径は7nmであり、アスペクト比は4であった。FTO膜上にも多孔質酸化物半導体層上にも平均粒径3nmの粒状体は確認されなかった。
 さらに配線部におけるガラス保護膜を観察したところ、ガラスが溶けて、ガラスに穴が開いており、さらにその下の銀配線も溶けていることが確認された。
 (比較例7)
 表面処理用溶液中の溶質の濃度を表1に示す通り、40mMから500mMに変更するとともに、溶質/溶媒(モル比)を表1に示す通り、1/1から4/1に変更したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
 なお、比較例7の色素増感太陽電池の作用極についても、実施例1と同様に、SEMを用いて観察したところ、多孔質酸化物半導体層には平均粒径3nmの粒状体が付着していることが確認され、FTO膜にも平均粒径3nmの粒状体が付着していることが確認された。また多孔質酸化物半導体層に付着している粒状体及びFTO膜に付着している粒状体のアスペクト比はいずれも6であった。
 (比較例8)
 表面処理用溶液中の溶質の濃度を表1に示す通り、40mMから500mMに変更するとともに、溶質/溶媒(モル比)を表1に示す通り、1/1から2/3に変更したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
 なお、比較例8の色素増感太陽電池の作用極についても、実施例1と同様に、SEMを用いて観察したところ、多孔質酸化物半導体層には平均粒径4nmの粒状体が付着していることが確認され、FTO膜にも平均粒径4nmの粒状体が付着していることが確認された。また多孔質酸化物半導体層に付着している粒状体及びFTO膜に付着している粒状体のアスペクト比はいずれも3であった。
 上記のようにして得られた実施例1~8及び比較例1~8の色素増感太陽電池について、光電変換効率η(%)を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1に示す結果より、実施例1~8の色素増感太陽電池は、比較例1~8の色素増感太陽電池よりも優れた光電変換効率を有することが分かった。
 よって、本発明によれば、優れた光電変換効率を有する色素増感太陽電池が提供されることが確認された。
 1,201,301…作用極(第1電極)
 2…対極(第2電極)
 3…電解質
 7…透明導電膜(導電層)
 8…多孔質酸化物半導体層
 8a…酸化物半導体粒子
 9a,9c…粒状体(第1粒状体)
 9b,9d…粒状体(第2粒状体)
 9e…粒状体(第3粒状体)
 90…粒状体
 100…色素増感太陽電池
 Lmax…最大長さ
 Lmin…最小長さ

Claims (14)

  1.  導電層及び多孔質酸化物半導体層を有する第1電極と、
     前記第1電極の前記多孔質酸化物半導体層に対向して設けられる第2電極と、
     前記第1電極の前記多孔質酸化物半導体層に担持される光増感色素と、
     前記第1電極及び前記第2電極の間に配置される電解質とを備える色素増感太陽電池であって、
     前記第1電極が粒状体を有し、前記粒状体は、少なくとも前記導電層に付着する第1粒状体を有し、
     前記粒状体において、走査型電子顕微鏡で二次元的に観察したときの最小長さに対する最大長さの比が1~3であり、
     前記粒状体は、5nm以下の平均粒径を有する酸化チタンからなる、色素増感太陽電池。
  2.  前記粒状体は、1nm以上の平均粒径を有する酸化チタンからなる、請求項1に記載の色素増感太陽電池。
  3.  前記多孔質酸化物半導体層が前記導電層と直接接しており、
     前記粒状体が、前記第1粒状体と、前記導電層から離間して前記多孔質酸化物半導体層に付着する第2粒状体とを有する請求項1又は2に記載の色素増感太陽電池。
  4.  前記多孔質酸化物半導体層が酸化物半導体粒子で構成され、
     前記第2粒状体が、前記酸化物半導体粒子よりも小さい平均粒径を有する、請求項3に記載の色素増感太陽電池。
  5.  前記第1粒状体の少なくとも一部が、前記多孔質酸化物半導体層に付着している請求項1~4のいずれか一項に記載の色素増感太陽電池。
  6.  前記第1粒状体のうち、前記多孔質酸化物半導体層に付着している前記第1粒状体が、前記多孔質酸化物半導体層の内側及び外側に配置されている請求項5に記載の色素増感太陽電池。
  7.  前記第1電極が、前記導電層上に前記酸化物半導体層の周囲に設けられる配線部をさらに有し、
     前記粒状体が、前記配線部の表面の少なくとも一部に設けられる第3粒状体をさらに有する、請求項1~6のいずれか一項に記載の色素増感太陽電池。
  8.  前記多孔質酸化物半導体層が酸化チタンから構成されている請求項1~7のいずれか一項に記載の色素増感太陽電池。
  9.  導電層及び多孔質酸化物半導体層を有する第1電極と、
     前記第1電極の前記多孔質酸化物半導体層側に対向して設けられる第2電極と、
     前記第1電極の前記多孔質酸化物半導体層に担持される光増感色素と、
     前記第1電極及び前記第2電極の間に配置される電解質とを備える色素増感太陽電池の製造方法であって、
     前記第1電極を形成する第1電極形成工程と、
     前記第1電極に光増感色素を担持させる色素担持工程と、
     前記第1電極及び前記第2電極を貼り合わせる貼合せ工程とを含み、
     前記第1電極形成工程が、少なくとも前記導電層上に、チタンアルコキシドと、ジケトンを含む溶媒とを含む表面処理用溶液を塗布した後、前記表面処理用溶液を焼成する表面処理工程を含む色素増感太陽電池の製造方法。
  10.  前記第1電極形成工程が、前記表面処理工程の前に、前記導電層上に前記多孔質酸化物半導体層を形成する多孔質酸化物半導体層形成工程を含み、前記表面処理工程において、少なくとも前記導電層及び前記多孔質酸化物半導体層上に前記表面処理用溶液を塗布する請求項9に記載の色素増感太陽電池の製造方法。
  11.  前記第1電極形成工程が、前記表面処理工程の前に、前記導電層上に配線部を形成する配線部形成工程をさらに含み、前記表面処理工程において、少なくとも前記導電層及び前記配線部上に前記表面処理用溶液を塗布する、請求項9又は10に記載の色素増感太陽電池の製造方法。
  12.  前記溶媒において、前記ジケトンに対する前記チタンアルコキシドのモル比が0.5~3である請求項9~11のいずれか一項に記載の色素増感太陽電池の製造方法。
  13.  前記溶媒において、前記ジケトンに対する前記チタンアルコキシドのモル比が1~2である請求項12に記載の色素増感太陽電池の製造方法。
  14.  前記多孔質酸化物半導体層が酸化チタンから構成されている請求項9~13のいずれか一項に記載の色素増感太陽電池の製造方法。
     
     
PCT/JP2012/066352 2011-06-30 2012-06-27 色素増感太陽電池及びその製造方法 WO2013002246A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013522887A JP5627785B2 (ja) 2011-06-30 2012-06-27 色素増感太陽電池及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-145139 2011-06-30
JP2011145139 2011-06-30

Publications (1)

Publication Number Publication Date
WO2013002246A1 true WO2013002246A1 (ja) 2013-01-03

Family

ID=47424137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066352 WO2013002246A1 (ja) 2011-06-30 2012-06-27 色素増感太陽電池及びその製造方法

Country Status (2)

Country Link
JP (1) JP5627785B2 (ja)
WO (1) WO2013002246A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3203490A4 (en) * 2014-09-30 2018-05-30 Fujikura Ltd. Dye-sensitized photoelectric conversion element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352868A (ja) * 2001-05-29 2002-12-06 Toyota Central Res & Dev Lab Inc 光電極及びこれを備えた色素増感型太陽電池
JP2004134298A (ja) * 2002-10-11 2004-04-30 Toyota Central Res & Dev Lab Inc 色素増感型太陽電池の製造方法及び色素増感型太陽電池
JP2007018909A (ja) * 2005-07-08 2007-01-25 Kyocera Corp 光電変換装置の製造方法
JP2010192214A (ja) * 2009-02-17 2010-09-02 Ulvac Japan Ltd 光電変換素子及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3715911B2 (ja) * 2000-09-21 2005-11-16 キヤノン株式会社 酸化物針状結晶の製造方法、酸化物針状結晶および光電変換装置
JP2002305041A (ja) * 2001-04-04 2002-10-18 Seiko Epson Corp 太陽電池
JP5401832B2 (ja) * 2008-05-29 2014-01-29 住友化学株式会社 ナノ構造中空炭素材料を有する光電変換素子
JP2011108514A (ja) * 2009-11-18 2011-06-02 Osaka Univ 色素増感太陽電池素子及びその製造方法
JP5170118B2 (ja) * 2010-01-25 2013-03-27 アイシン精機株式会社 光電変換素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352868A (ja) * 2001-05-29 2002-12-06 Toyota Central Res & Dev Lab Inc 光電極及びこれを備えた色素増感型太陽電池
JP2004134298A (ja) * 2002-10-11 2004-04-30 Toyota Central Res & Dev Lab Inc 色素増感型太陽電池の製造方法及び色素増感型太陽電池
JP2007018909A (ja) * 2005-07-08 2007-01-25 Kyocera Corp 光電変換装置の製造方法
JP2010192214A (ja) * 2009-02-17 2010-09-02 Ulvac Japan Ltd 光電変換素子及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3203490A4 (en) * 2014-09-30 2018-05-30 Fujikura Ltd. Dye-sensitized photoelectric conversion element

Also Published As

Publication number Publication date
JP5627785B2 (ja) 2014-11-19
JPWO2013002246A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5274690B1 (ja) 色素増感太陽電池
US8802976B2 (en) Dye-sensitized solar cell
JP4925605B2 (ja) 光電変換装置およびそれを用いた光発電装置
JP5144986B2 (ja) 色素増感太陽電池および色素増感太陽電池モジュール
WO2014162639A1 (ja) 色素増感太陽電池素子
WO2013031939A1 (ja) 光電変換素子用電極、その製造方法及び、光電変換素子
JP5688006B2 (ja) カーボン対極及びこのカーボン対極を備えた色素増感太陽電池
JP5996995B2 (ja) 色素増感太陽電池及び色素増感太陽電池モジュール
JP5627785B2 (ja) 色素増感太陽電池及びその製造方法
JP6773859B1 (ja) 光電変換素子用電解質及び光電変換素子
JP5778027B2 (ja) 作用極の製造方法および作用極
JP5380618B1 (ja) 色素増感太陽電池用電解質、その製造方法、及び、色素増感太陽電池
JP6215651B2 (ja) 電極、及び、これを有する色素増感太陽電池
JP5689773B2 (ja) 光電変換素子用電極、光電変換素子、及び、光電変換素子用電極の製造に用いられる銀ペースト
JP2012156070A (ja) 色素増感太陽電池における光触媒膜の形成方法および色素増感太陽電池
JP6694370B2 (ja) 光電変換素子の製造方法
JP5905619B1 (ja) 色素増感光電変換素子の製造方法
JP6576784B2 (ja) 光電変換素子用電解質、及び、これを用いた光電変換素子
JP6006075B2 (ja) 色素増感太陽電池および色素増感太陽電池モジュール
JP5380617B1 (ja) 色素増感太陽電池用電解質および色素増感太陽電池
JP2020205348A (ja) 光電変換素子用電解質、これを用いた光電変換素子及び光電変換素子用電極構造体
JP2014053111A (ja) 色素増感太陽電池モジュール
JP2010198834A (ja) 光電変換素子モジュールの製造方法
WO2014162641A1 (ja) 色素増感太陽電池用電解質および色素増感太陽電池
JP2018006690A (ja) 光電変換素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522887

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12805387

Country of ref document: EP

Kind code of ref document: A1