WO2013001936A1 - 動力伝達装置 - Google Patents

動力伝達装置 Download PDF

Info

Publication number
WO2013001936A1
WO2013001936A1 PCT/JP2012/062819 JP2012062819W WO2013001936A1 WO 2013001936 A1 WO2013001936 A1 WO 2013001936A1 JP 2012062819 W JP2012062819 W JP 2012062819W WO 2013001936 A1 WO2013001936 A1 WO 2013001936A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotation
turbine
impeller
power transmission
Prior art date
Application number
PCT/JP2012/062819
Other languages
English (en)
French (fr)
Inventor
福永 孝夫
Original Assignee
株式会社エクセディ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エクセディ filed Critical 株式会社エクセディ
Priority to KR1020137030226A priority Critical patent/KR20140039192A/ko
Priority to US14/123,440 priority patent/US20140102087A1/en
Priority to CN201280025696.2A priority patent/CN103562599A/zh
Publication of WO2013001936A1 publication Critical patent/WO2013001936A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type
    • F16H41/24Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type
    • F16H41/04Combined pump-turbine units
    • F16H41/22Gearing systems consisting of a plurality of hydrokinetic units operating alternatively, e.g. made effective or ineffective by filling or emptying or by mechanical clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type
    • F16H41/04Combined pump-turbine units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/48Control of exclusively fluid gearing hydrodynamic
    • F16H61/50Control of exclusively fluid gearing hydrodynamic controlled by changing the flow, force, or reaction of the liquid in the working circuit, while maintaining a completely filled working circuit
    • F16H61/58Control of exclusively fluid gearing hydrodynamic controlled by changing the flow, force, or reaction of the liquid in the working circuit, while maintaining a completely filled working circuit by change of the mechanical connection of, or between, the runners

Definitions

  • the present invention relates to a power transmission device.
  • Some torque converters included in a conventional power transmission device include a forward rotation torque converter and a reverse rotation torque converter (see Non-Patent Document 1).
  • the hydraulic oil is extracted from the reverse rotation torque converter and the normal rotation torque converter is rotated by inserting the hydraulic oil into the forward rotation torque converter.
  • the reverse rotation torque converter rotates by removing the hydraulic oil from the forward rotation torque converter and inserting the hydraulic oil into the reverse rotation torque converter.
  • hydraulic oil circulates in the order of the impeller, stator, and turbine in the reverse torque converter.
  • the turbine of the reverse rotation torque converter rotates (reverses) in the opposite direction to the forward rotation torque converter turbine.
  • the hydraulic oil that has flowed out of the turbine may flow into the impeller so as to restrict the rotation of the impeller. That is, the inflow of the hydraulic oil from the turbine to the impeller works in a direction to suppress the rotation of the impeller. In particular, this tendency increases as the rotational speed of the turbine increases.
  • the torque (capacity) for rotating the impeller increases as the rotational speed of the turbine increases.
  • An object of the present invention is to provide a power transmission device capable of efficiently transmitting power.
  • the power transmission device includes an input-side impeller, an output-side turbine, a first stator, a second stator, and a rotation restricting portion.
  • the impeller rotates in the first rotation direction.
  • the turbine rotates in one of a first rotation direction and a second rotation direction opposite to the first rotation direction.
  • the first stator is configured to be rotatable in the first rotational direction between the impeller and the turbine in order to transmit the impeller power to the turbine.
  • the second stator is configured to be rotatable in the first rotation direction between the turbine and the impeller in order to transmit the power of the turbine to the impeller.
  • the rotation restricting portion permits the first stator and the second stator to rotate in the first rotation direction, and restricts the rotation in the first rotation direction and the rotation in the second rotation direction.
  • the first stator and the second stator are allowed to rotate in the first rotation direction by the rotation restricting portion, so that the turbine rotates in the first rotation direction. Guides the fluid for transmitting power to the turbine.
  • the rotation restricting portion restricts the rotation in the first rotation direction and the rotation in the second rotation direction with respect to the first stator and the second stator so that the turbine rotates in the second rotation direction.
  • the first stator guides fluid to the turbine.
  • this power transmission device power can be efficiently transmitted from the impeller to the turbine regardless of whether the turbine rotates in the first rotation direction or the second rotation direction.
  • the first stator rotates in the first rotation direction by the fluid guided by the impeller. Then, as described above, the rotation of the first stator rotates the turbine in the first rotation direction. Thus, even if the first stator exists, power can be reliably transmitted from the impeller to the turbine.
  • the first stator and the second stator are configured to be integrally rotatable.
  • the rotation restricting portion can simultaneously restrict the rotation of the first stator and the rotation of the second stator.
  • the rotation of the first stator and the rotation of the second stator can be permitted or restricted at the same time.
  • the rotation restricting portion restricts rotation with respect to the first stator by restricting rotation with respect to the second stator.
  • the first stator is configured to be rotatable integrally with the second stator, when the rotation of the second stator is restricted by the rotation restricting portion, the rotation of the first stator is also restricted. That is, the rotation of both the first stator and the second stator can be restricted only by restricting the rotation of the second stator. This eliminates the need to prepare a special device for restricting the rotation of the first stator, thereby reducing the size of the device.
  • the first stator is disposed between the impeller and the turbine on the outer peripheral side.
  • the second stator is disposed between the turbine and the impeller on the inner peripheral side.
  • the present power transmission device can be achieved without significantly changing the conventional arrangement of the impeller, turbine, and stator. Can be configured. That is, the power transmission device can be easily configured.
  • the impeller, the turbine, the first stator, and the second stator are included in the torque converter.
  • the rotation restricting portion is disposed in the transmission.
  • the torque converter has an impeller, a turbine, a first stator, and a second stator.
  • the transmission also has a rotation restricting portion.
  • the pulleys included in the continuously variable transmission can be forwardly rotated without any problem.
  • a gear or a mechanism corresponding to the gear needs to be specially incorporated on the transmission side.
  • the rotation of the turbine of the torque converter can be reversed only by the rotation restricting portion without preparing a special gear or mechanism. it can.
  • a power transmission device capable of efficiently transmitting power can be provided.
  • the skeleton figure which shows the power transmission device by one Embodiment of this invention.
  • the conceptual diagram which shows the operation
  • FIG. 1 is a skeleton diagram showing a power transmission device 1 as an embodiment of the present invention.
  • An engine (not shown) is arranged on the left side of FIG. 1, and a continuously variable transmission 70 is arranged on the right side of the figure.
  • OO shown in FIG. 1 is a rotating shaft of the torque converter 10.
  • the power transmission device 1 mainly includes a torque converter 10 and a continuously variable transmission 70 (hereinafter referred to as a transmission).
  • the torque converter 10 is a device for transmitting torque from an engine crankshaft (not shown) to the input shaft 50 of the transmission 70.
  • the torque converter 10 includes a front cover 11 and a torus-shaped fluid working chamber 6.
  • the torus-shaped fluid working chamber 6 has four types of rotating parts (an impeller 21, a turbine 22, a first stator 24, and a second stator 23).
  • the front cover 11 is a disk-shaped member and is disposed on the engine side. Torque from the engine is input to the front cover 11.
  • a center boss 16 is provided at the inner peripheral end of the front cover 11.
  • the center boss 16 is a cylindrical member extending in the axial direction, and is inserted into the center hole of the crankshaft.
  • An outer peripheral cylindrical portion 11 a extending toward the axial transmission 70 is formed on the outer periphery of the front cover 11.
  • the outer peripheral edge of the impeller shell 26 of the impeller 21 is fixed to the tip of the outer peripheral cylindrical portion 11a by welding.
  • the front cover 11 and the impeller 21 form a fluid chamber filled with a power transmission fluid (hereinafter referred to as hydraulic oil).
  • the impeller 21 is configured to be integrally rotatable in the first rotation direction.
  • the impeller 21 guides hydraulic oil to the first stator 24 so that the first stator 24 rotates in the first rotation direction by rotating in the first rotation direction.
  • the impeller 21 mainly includes an impeller shell 26, a plurality of impeller blades 27 fixed inside the impeller shell 26, and an impeller hub 28 fixed to the inner peripheral portion of the impeller shell 26.
  • the turbine 22 is configured to be rotatable in either the first rotation direction or the second rotation direction opposite to the first rotation direction.
  • the turbine 22 is disposed to face the impeller 21 in the axial direction in the fluid chamber.
  • the turbine 22 mainly includes a turbine shell 30, a plurality of turbine blades 31 fixed to the surface on the impeller side, and a turbine hub 32 fixed to the inner peripheral edge of the turbine shell 30.
  • a spline shaft that engages with a spline groove formed on the outer peripheral surface of the input shaft 50 is formed on the inner peripheral surface of the turbine hub 32. Thereby, the turbine hub 32 can rotate integrally with the input shaft 50.
  • the first stator 24 rectifies the flow of hydraulic oil flowing from the impeller 21 to the turbine 22 and controls the rotation direction of the turbine 22. In other words, the first stator 24 changes the flow direction of the hydraulic oil guided to the turbine 22 and controls the rotation direction of the turbine 22.
  • the first stator 24 is configured to be rotatable in the first rotation direction between the impeller 21 and the turbine 22 in order to transmit the power of the impeller 21 to the turbine 22.
  • the first stator 24 is disposed between the impeller 21 and the turbine 22 on the outer peripheral side.
  • the first stator 24 is mainly composed of a stator connecting portion 124 and a plurality of first stator blades 125.
  • the stator connecting portion 124 is a portion connected to the second stator 23. Thereby, the first stator 24 rotates integrally with the second stator 23.
  • the plurality of first stator blades 125 are provided on the outer periphery of the stator coupling portion 124.
  • the plurality of first stator blades 125 are disposed between the outer periphery of the impeller 21 and the outer periphery of the turbine 22.
  • the second stator 23 rectifies the flow of hydraulic oil returning from the turbine 22 to the impeller 21 and amplifies the torque output from the turbine 22.
  • the second stator 23 is configured to be rotatable in the first rotation direction between the turbine 22 and the impeller 21 in order to transmit the power of the turbine 22 to the impeller 21.
  • the second stator 23 is a member integrally manufactured by casting with resin, aluminum alloy or the like.
  • the second stator 23 operates so that the impeller 21 rotates in the first rotation direction regardless of whether rotation in the first rotation direction is permitted by a clutch 60 described later or rotation is restricted by the clutch 60. Guide the oil.
  • the second stator 23 is disposed between the inner peripheral portion of the impeller 21 and the inner peripheral portion of the turbine 22.
  • the second stator 23 is mainly composed of an annular stator shell 35 and a plurality of second stator blades 36.
  • the stator shell 35 is supported by a cylindrical fixed shaft 39. Specifically, a spline shaft that engages with a spline groove formed on the outer peripheral surface of the fixed shaft 39 is formed on the inner peripheral surface of the stator shell 35. As a result, the stator shell 35 can rotate integrally with the fixed shaft 39.
  • the continuously variable transmission 70 includes an input shaft 50, a power transmission mechanism (not shown) that continuously changes the power input from the input shaft 50, and a clutch 60 (rotation restricting portion).
  • the clutch 60 (rotation restricting portion) has a mechanism that allows the first stator 24 and the second stator 23 to rotate in the first rotation direction, and the rotation in the first rotation direction and the rotation in the second rotation direction. And a mechanism for regulating Specifically, when the clutch 60 is off, the fixed shaft 39 can rotate. Thereby, the 1st stator 24 and the 2nd stator 23 become rotatable in the 1st rotation direction. When the clutch 60 is on, the rotation of the fixed shaft 39 is restricted.
  • the 1st stator 24 and the 2nd stator 23 cannot rotate in the 1st rotation direction and the 2nd rotation direction.
  • the rotation of the 1st stator 24 is also controlled simultaneously by restricting only the rotation of the 2nd stator 23 with the clutch 60.
  • FIG. 2 is a conceptual diagram showing the operation of the four elements (impeller 21, turbine 22, first stator 24, second stator 23) in the torque converter 10 and the flow lines of the hydraulic oil.
  • the rotation in the first rotation direction is indicated as normal rotation
  • the rotation in the second rotation direction is indicated as reverse rotation
  • the flow line of hydraulic oil at the time of forward rotation is indicated by a solid line
  • the flow line of hydraulic oil at the time of reverse rotation is indicated by a broken line.
  • the turbine 22 is rotated forward by the hydraulic oil.
  • the first stator 24 guides the hydraulic oil to the turbine 22 so that the turbine 22 rotates forward.
  • the first stator 24 guides the hydraulic oil to the turbine 22 such that the direction vector of the hydraulic oil flow has a vector component in the forward rotation direction.
  • the hydraulic oil is guided from the first stator 24 to the turbine 22 by the first stator blade 125 fixed by the clutch 60.
  • the turbine 22 is reversed by the hydraulic oil.
  • the first stator 24 guides the hydraulic oil to the turbine 22 so that the turbine 22 reverses.
  • the first stator 24 guides the hydraulic oil to the turbine 22 so that the direction vector of the hydraulic oil flow has a vector component in the reverse direction.
  • the direction of the flow of hydraulic oil guided by the first stator 24 is changed, and the rotation direction of the turbine 22 is changed.
  • power can be efficiently transmitted from the impeller 21 to the turbine 22 regardless of whether the turbine 22 rotates forward or reverse.
  • the first stator 24 rotates in the forward direction by the hydraulic oil guided by the impeller 21. Then, as described above, the turbine 22 rotates forward by the rotation of the first stator 24. Thus, even if the first stator 24 exists, power can be reliably transmitted from the impeller 21 to the turbine 22.
  • the first stator 24 and the second stator 23 are configured to be integrally rotatable, and therefore the rotation of the first stator 24 and the rotation of the second stator 23 are simultaneously restricted by the clutch 60. Can do. In other words, the rotation of the first stator 24 and the rotation of the second stator 23 can be permitted or restricted at the same time. Thereby, the direction of the flow of the hydraulic fluid guided by the first stator 24 can be reliably changed. That is, the rotation direction of the turbine 22 can be changed reliably.
  • the first stator 24 is configured to be rotatable integrally with the second stator 23. Therefore, when the rotation of the second stator 23 is restricted by the clutch 60, the first stator 24. Is also restricted. That is, the rotation of both the first stator 24 and the second stator 23 can be restricted only by restricting the rotation of the second stator 23. As a result, it is not necessary to prepare a special device for regulating the rotation of the first stator 24, so that the device can be reduced in size.
  • the power transmission device 1 since the first stator 24 is disposed on the outer peripheral side and the second stator 23 is disposed on the inner peripheral side, the arrangement of the impeller 21, the turbine 22, and the stator 23 in the related art is greatly increased.
  • the power transmission device 1 can be configured without change. That is, the power transmission device 1 can be easily configured.
  • this power transmission device 1 when the continuously variable transmission 70 is used, it is possible to perform normal rotation of the pulleys and the like included in the continuously variable transmission 70 without any problem. However, in order to reverse the rotation of the pulley or the like, it is necessary to specially incorporate a gear or a mechanism corresponding to the gear on the transmission 70 side. On the other hand, in this power transmission device 1, since the rotation of the turbine 22 of the torque converter 10 can be reversed only by the clutch 60 without preparing a special gear or mechanism, the size of the device is reduced. be able to.
  • the present invention can be widely used for power transmission devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

 動力を効率良く伝達可能な動力伝達装置を提供することにある。本動力伝達装置(1)では、回転規制部(60)によって、第1ステータ(24)及び第2ステータ(23)に対する、第1回転方向への回転が許可されることによって、タービン(22)が第1回転方向に回転するように、第1ステータ(24)は流体をタービン(22)に案内する。回転規制部(60)によって、第1ステータ(24)及び第2ステータ(23)に対する、第1回転方向への回転と第2回転方向への回転とが、規制されることによって、タービン(22)が第2回転方向に回転するように、第1ステータ(24)は流体をタービン(22)に案内する。

Description

動力伝達装置
 本発明は、動力伝達装置に関する。
 従来の動力伝達装置に含まれるトルクコンバータには、正転用のトルクコンバータと、逆転用のトルクコンバータとを、備えたものがある(非特許文献1を参照)。このタイプのトルクコンバータでは、逆転用のトルクコンバータからは作動油を抜き、正転用のトルクコンバータには作動油を入れることによって、正転用のトルクコンバータが回転する。一方で、正転用のトルクコンバータからは作動油を抜き、逆転用のトルクコンバータには作動油を入れることによって、逆転用のトルクコンバータが回転する。
石原智男、石原貞男、高木猛著、流体伝動装置の設計、株式会社オーム社、昭和42年11月30日発行、第44頁から第45頁
 上述したタイプのトルクコンバータでは、逆転用のトルクコンバータにおいて、インペラ、ステータ、タービンの順に、作動油が循環する。本構成でステータを固定することによって、逆転用のトルクコンバータのタービンは、正転用のトルクコンバータのタービンと反対の方向に回転する(逆転する)。この場合、タービンから流出した作動油は、インペラの回転を規制するように、インペラに流入するおそれがある。すなわち、タービンからインペラへの作動油の流入は、インペラの回転を抑制する方向に働くことになる。特に、タービンの回転速度が大きくなればなるほど、この傾向は大きくなる。このように、逆転用のトルクコンバータでは、タービンの回転速度が大きくなるにつれて、インペラを回転させるトルク(容量)は大きくなる。
 本発明の目的は、動力を効率良く伝達可能な動力伝達装置を提供することにある。
 請求項1に係る動力伝達装置は、入力側のインペラと、出力側のタービンと、第1ステータと、第2ステータと、回転規制部とを、備えている。インペラは、第1回転方向に回転する。タービンは、第1回転方向、及び第1回転方向とは反対の第2回転方向のいずれか一方に、回転する。第1ステータは、インペラの動力をタービンに伝達するために、インペラとタービンとの間において、第1回転方向に回転可能に構成される。第2ステータは、タービンの動力をインペラに伝達するために、タービンとインペラとの間において、第1回転方向に回転可能に構成される。回転規制部は、第1ステータ及び第2ステータに対して、第1回転方向への回転を許可し、第1回転方向への回転及び第2回転方向への回転を規制する。
 この動力伝達装置では、回転規制部によって、第1ステータ及び第2ステータに対する、第1回転方向への回転が、許可されることによって、タービンが第1回転方向に回転するように、第1ステータは、動力を伝達するための流体を、タービンに案内する。回転規制部によって、第1ステータ及び第2ステータに対する、第1回転方向への回転と第2回転方向への回転とが、規制されることによって、タービンが第2回転方向に回転するように、第1ステータは、流体をタービンに案内する。
 この場合、回転規制部によって、第1ステータ及び第2ステータに対する第1回転方向への回転が許可された場合、第1ステータによって案内された流体によって、タービンが第1回転方向に回転する。一方で、回転規制部によって、第1ステータ及び第2ステータに対する、第1回転方向への回転と第2回転方向への回転とが、規制された場合、第1ステータによって案内された流体によって、タービンが第2回転方向に回転する。すなわち、第1ステータ及び第2ステータを回転させるか否かによって、第1ステータによって案内される流体の流れの方向が変更され、タービンの回転方向が変更される。このように、本動力伝達装置では、タービンが第1回転方向に回転する場合も第2回転方向に回転する場合も、動力をインペラからタービンへと効率良く伝達することができる。本動力伝達装置では、従来の装置のように特別に逆転用の装置を用意する必要がないので、従来の装置と比較して、装置そのものを小型化することができる。
 請求項2に係る動力伝達装置では、請求項1に記載の装置において、インペラが、第1回転方向に回転することによって、インペラは、第1ステータが第1回転方向に回転するように、流体を第1ステータに案内する。
 この場合、インペラが第1回転方向に回転すると、インペラによって案内された流体によって、第1ステータが第1回転方向に回転する。そして、この第1ステータの回転によって、上述したように、タービンが第1回転方向に回転する。このように、第1ステータが存在していても、動力をインペラからタービンへと確実に伝達することができる。
 請求項3に係る動力伝達装置では、請求項1又は2に記載の装置において、第1ステータ及び第2ステータが、一体回転可能に構成されている。
 この場合、第1ステータ及び第2ステータが一体回転可能に構成されているので、回転規制部によって、第1ステータの回転及び第2ステータの回転を、同時に規制することができる。言い換えると、第1ステータの回転及び第2ステータの回転を、同時に、許可したり規制したりすることができる。これにより、第1ステータによって案内される流体の流れの方向を、確実に変更することができる。すなわち、タービンの回転方向を、確実に変更することができる。
 請求項4に係る動力伝達装置では、請求項3に記載の装置において、回転規制部が、第2ステータに対する回転を規制することによって、第1ステータに対する回転を規制する。
 この場合、第1ステータは第2ステータと一体回転可能に構成されているので、第2ステータの回転が回転規制部によって規制されると、第1ステータの回転も規制される。すなわち、第2ステータの回転だけを規制するだけで、第1ステータ及び第2ステータの両方の回転を規制することができる。これにより、第1ステータの回転を規制するための特別な装置を用意する必要がなくなるので、装置を小型化することができる。
 請求項5に係る動力伝達装置では、請求項1から4のいずれかに記載の装置において、第1ステータが、外周側において、インペラとタービンとの間に配置されている。第2ステータは、内周側において、タービンとインペラとの間に配置されている。
 この場合、第1ステータが外周側に配置され、第2ステータが内周側に配置されているので、従来におけるインペラ、タービン、及びステータの配置形態を大幅に変更することなく、本動力伝達装置を構成することができる。すなわち、本動力伝達装置を容易に構成することができる。
 請求項6に係る動力伝達装置では、請求項1から5のいずれかに記載の装置において、インペラと、タービンと、第1ステータと、第2ステータとが、トルクコンバータに含まれている。回転規制部は、トランスミッションに配置されている。
 この場合、トルクコンバータは、インペラと、タービンと、第1ステータと、第2ステータとを、有している。また、トランスミッションは、回転規制部を有している。例えば、動力伝達装置において連続可変トランスミッションが用いられた場合、連続可変トランスミッションに含まれるプーリー等を、正転させることは問題なく実行することができる。しかしながら、プーリー等の回転を逆転させようとすると、ギア又はギアに相当する機構を、トランスミッション側に特別に組み込む必要がある。これに対して、本動力伝達装置では、特別なギアや機構を用意しなくても、回転規制部だけで、トルクコンバータのタービンの回転を逆転させることができるので、装置を小型化することができる。
 本発明では、動力を効率良く伝達可能な動力伝達装置を提供することができる。
本発明の一実施形態による動力伝達装置を示すスケルトン図。 前記動力伝達装置における4要素の動作と、作動油の流線を示す概念図。
 図1は、本発明の一実施形態としての動力伝達装置1を示すスケルトン図である。図1の左側にはエンジン(図示せず)が配置され、図の右側に連続可変トランスミッション70が配置されている。図1に示すO-Oは、トルクコンバータ10の回転軸である。
 [動力伝達装置の全体構成]
 動力伝達装置1は、図1に示すように、主に、トルクコンバータ10と、連続可変トランスミッション70(以下、トランスミッションと呼ぶ)とを、備えている。トルクコンバータ10は、エンジンのクランクシャフト(図示しない)からトランスミッション70の入力シャフト50にトルクを伝達するための装置である。
 トルクコンバータ10は、フロントカバー11と、トーラス形状の流体作動室6とから、構成されている。トーラス形状の流体作動室6は、4種の回転部(インペラ21、タービン22、第1ステータ24、第2ステータ23)を有している。
 フロントカバー11は、円板状の部材であり、エンジン側に配置されている。フロントカバー11には、エンジンからのトルクが入力される。フロントカバー11の内周端には、センターボス16が設けられている。センターボス16は、軸方向に延びる円筒形状の部材であり、クランクシャフトの中心孔内に挿入されている。フロントカバー11の外周部には、軸方向トランスミッション70側に延びる外周側筒状部11aが、形成されている。この外周側筒状部11aの先端には、インペラ21のインペラーシェル26の外周縁が、溶接によって固定されている。この結果、フロントカバー11とインペラ21とによって、動力伝達用の流体(以下、作動油と呼ぶ)が充填された流体室が、形成されている。
 インペラ21は、第1回転方向に一体回転可能に構成されている。インペラ21は、第1回転方向に回転することによって、第1ステータ24が第1回転方向に回転するように、作動油を第1ステータ24に案内する。インペラ21は、主に、インペラーシェル26と、その内側に固定された複数のインペラーブレード27と、インペラーシェル26の内周部に固定されたインペラーハブ28とから構成されている。
 タービン22は、第1回転方向、及び第1回転方向とは反対の第2回転方向のいずれか一方に、回転可能に構成されている。タービン22は、流体室内でインペラ21に対して軸方向に対向して配置されている。タービン22は、主に、タービンシェル30と、そのインペラ側の面に固定された複数のタービンブレード31と、タービンシェル30の内周縁に固定されたタービンハブ32とから構成されている。タービンハブ32の内周面には、入力シャフト50の外周面に形成されたスプライン溝に係合するスプライン軸が形成されている。これにより、タービンハブ32は入力シャフト50と一体回転可能になっている。
 第1ステータ24は、インペラ21からタービン22へ流入する作動油の流れを整流し、タービン22の回転方向を制御する。言い換えると、第1ステータ24は、タービン22に案内する作動油の流れの方向を、変更し、タービン22の回転方向を制御する。第1ステータ24は、インペラ21の動力をタービン22に伝達するために、インペラ21とタービン22との間において、第1回転方向に回転可能に構成されている。
 第1ステータ24は、外周側において、インペラ21とタービン22との間に配置されている。第1ステータ24は、主に、ステータ連結部124と、複数の第1ステータブレード125とから、構成されている。ステータ連結部124は、第2ステータ23に連結される部分である。これにより、第1ステータ24は、第2ステータ23と一体に回転する。複数の第1ステータブレード125は、ステータ連結部124の外周部に設けられている。複数の第1ステータブレード125は、インペラ21の外周部とタービン22の外周部と間に、配置されている。
 第2ステータ23は、タービン22からインペラ21に戻る作動油の流れを整流し、タービン22から出力されるトルクを増幅させる。第2ステータ23は、タービン22の動力をインペラ21に伝達するために、タービン22とインペラ21との間において、第1回転方向に回転可能に構成されている。第2ステータ23は、樹脂やアルミ合金等で鋳造により一体に製作された部材である。
 第2ステータ23は、後述するクラッチ60によって第1回転方向への回転が許可された場合も、クラッチ60によって回転が規制された場合も、インペラ21が第1回転方向に回転するように、作動油を案内する。第2ステータ23は、インペラ21の内周部とタービン22の内周部と間に配置されている。第2ステータ23は、主に、環状のステータシェル35と、複数の第2ステータブレード36とから、構成されている。ステータシェル35は、筒状の固定シャフト39に支持されている。具体的には、ステータシェル35の内周面には、固定シャフト39の外周面に形成されたスプライン溝に係合するスプライン軸が形成されている。これにより、ステータシェル35は固定シャフト39と一体回転可能になっている。
 連続可変トランスミッション70は、入力シャフト50と、入力シャフト50から入力された動力を連続的に変化させる動力変速機構(図示しない)と、クラッチ60(回転規制部)を有している。クラッチ60(回転規制部)は、第1ステータ24及び第2ステータ23に対して、第1回転方向への回転を許可する機構と、第1回転方向への回転及び第2回転方向への回転を規制する機構とを、有している。具体的には、クラッチ60がオフの場合、固定シャフト39が回転可能になる。これにより、第1ステータ24及び第2ステータ23は、第1回転方向に回転可能になる。クラッチ60がオンの場合、固定シャフト39の回転が規制される。これにより、第1ステータ24及び第2ステータ23は、第1回転方向及び第2回転方向に回転不能になる。ここでは、第1ステータ24と第2ステータ23とは一体回転可能に構成されているので、クラッチ60によって第2ステータ23の回転だけを規制することによって、第1ステータ24の回転も同時に規制される。
 [動力伝達装置の動作]
 図2は、トルクコンバータ10における、4要素(インペラ21、タービン22、第1ステータ24、第2ステータ23)の動作と、作動油の流線を示す概念図である。図2では、第1回転方向の回転を正転と示し、第2回転方向の回転を逆転と示している。図2では、正転時の作動油の流線を実線で示し、逆転時の作動油の流線を破線で示している。以下では、図2を参照しながら、動力伝達装置1の動作を説明する。
<クラッチがオフの場合>
 クラッチ60がオフの場合、第1ステータ24及び第2ステータ23は、正転可能になっている。この状態において、インペラ21が正転すると、作動油が、インペラーブレード27によって、インペラ21から第1ステータ24へと案内される。すると、この作動油によって第1ステータ24が正転する。
 そして、作動油が、第1ステータブレード125によって、第1ステータ24からタービン22へと案内されると、この作動油によって、タービン22が正転する。言い換えると、タービン22が正転するように、第1ステータ24は、作動油をタービン22に案内する。具体的には、作動油の流れの方向ベクトルが、正転方向にベクトル成分を持つように、第1ステータ24が作動油をタービン22へと案内する。
 そして、作動油が、タービンブレード31によって、タービン22から第2ステータ23へと案内されると、この作動油によって、第2ステータ23が正転する。そして、作動油が、第2ステータブレード36によって、第2ステータ23からインペラ21へと案内される。なお、第2ステータ23がインペラ21へと案内する作動油によって、エンジンのトルクが増幅される。これら一連の動作によって、トルクコンバータ10においてタービン22を正転させることができる。
<クラッチがオンの場合>
 クラッチ60がオンの場合、第1ステータ24及び第2ステータ23は、正転及び逆転が不能になっている。この状態において、インペラ21が正転すると、作動油が、インペラーブレード27によって、インペラ21から第1ステータ24へと案内される。すると、作動油が、クラッチ60によって固定された第1ステータブレード125によって、第1ステータ24からタービン22へと案内される。すると、この作動油によって、タービン22が逆転する。言い換えると、タービン22が逆転するように、第1ステータ24は、作動油をタービン22に案内する。具体的には、作動油の流れの方向ベクトルが、逆転方向にベクトル成分を持つように、第1ステータ24が作動油をタービン22へと案内する。
 そして、作動油が、タービンブレード31によって、タービン22から第2ステータ23へと案内される。すると、作動油が、クラッチ60によって固定された第2ステータブレード36によって、第2ステータ23からインペラ21へと案内される。なお、第2ステータ23がインペラ21へと案内する作動油によって、エンジンのトルクが増幅される。これら一連の動作によって、トルクコンバータ10においてタービン22を逆転させることができる。
 [動力伝達装置の有利な効果]
 本動力伝達装置1では、クラッチ60によって、第1ステータ24及び第2ステータ23に対する正転(第1回転方向に回転)が許可された場合、第1ステータ24によって案内された作動油によって、タービン22が正転する。一方で、クラッチ60によって、第1ステータ24及び第2ステータ23に対する、正転(第1回転方向の回転)及び逆転(第2回転方向の回転)が規制された場合、すなわちクラッチ60によって第1ステータ24の回転及び第2ステータ23の回転が固定された場合、第1ステータ24によって案内された作動油によって、タービン22が逆転する。すなわち、第1ステータ24及び第2ステータ23を回転させるか否かによって、第1ステータ24によって案内される作動油の流れの方向が変更され、タービン22の回転方向が変更される。このように、本動力伝達装置1では、タービン22が正転する場合も逆転する場合も、インペラ21からタービン22へと動力を効率良く伝達することができる。また、本動力伝達装置1では、従来の装置のように特別に逆転用の装置を用意する必要がないので、従来の装置と比較して、装置そのものを小型化することができる。
 本動力伝達装置1では、インペラ21が正転すると、インペラ21によって案内された作動油によって、第1ステータ24が正転する。そして、この第1ステータ24の回転によって、上述したように、タービン22が正転する。このように、第1ステータ24が存在していても、動力をインペラ21からタービン22へと確実に伝達することができる。
 本動力伝達装置1では、第1ステータ24及び第2ステータ23が一体回転可能に構成されているので、クラッチ60によって、第1ステータ24の回転及び第2ステータ23の回転を、同時に規制することができる。言い換えると、第1ステータ24の回転及び第2ステータ23の回転を、同時に、許可したり規制したりすることができる。これにより、第1ステータ24によって案内される作動油の流れの方向を、確実に変更することができる。すなわち、タービン22の回転方向を、確実に変更することができる。
 詳細には、本動力伝達装置1では、第1ステータ24は第2ステータ23と一体回転可能に構成されているので、第2ステータ23の回転がクラッチ60によって規制されると、第1ステータ24の回転も規制される。すなわち、第2ステータ23の回転だけを規制するだけで、第1ステータ24及び第2ステータ23の両方の回転を規制することができる。これにより、第1ステータ24の回転を規制するための特別な装置を用意する必要がなくなるので、装置を小型化することができる。
 本動力伝達装置1では、第1ステータ24が外周側に配置され、第2ステータ23が内周側に配置されているので、従来におけるインペラ21、タービン22、及びステータ23の配置形態を大幅に変更することなく、本動力伝達装置1を構成することができる。すなわち、本動力伝達装置1を容易に構成することができる。
 本動力伝達装置1では、連続可変トランスミッション70が用いられた場合、連続可変トランスミッション70に含まれるプーリー等を、正転させることは問題なく実行することができる。しかしながら、プーリー等の回転を逆転させようとすると、ギア又はギアに相当する機構を、トランスミッション70側に特別に組み込む必要がある。これに対して、本動力伝達装置1では、特別なギアや機構を用意しなくても、クラッチ60だけで、トルクコンバータ10のタービン22の回転を逆転させることができるので、装置を小型化することができる。
 [他の実施形態]
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の実施形態及び変形例は必要に応じて任意に組合せ可能である。
(a)前記実施形態では、クラッチ60が、第2ステータ23の回転を規制することによって、第1ステータ24の回転を規制する場合の例を示したが、第1ステータ24及び第2ステータ23の両方の回転を規制することができれば、どのステータの回転を規制してもよい。この場合においても、上記と同様の効果を得ることができる。
(b)前記実施形態では、第1ステータ24及び第2ステータ23が一体回転可能に構成される場合の例を示したが、第1ステータ24及び第2ステータ23が独立に回転するように構成してもよい。この場合、クラッチ60によって、第1ステータ24の回転及び第2ステータ23の回転を個別に規制することによって、上記と同様の効果を得ることができる。
(c)前記実施形態では、連続可変トランスミッションが用いられる場合の例を示したが、他の形式のトランスミッションが用いられた場合にも、本発明は適用することができる。この場合も、上記と同様の効果を得ることができる。
 本発明は、動力伝達装置に広く利用することができる。
 1  動力伝達装置
 10 トルクコンバータ
 21 インペラ
 22 タービン
 24 第1ステータ
 23 第2ステータ
 60 クラッチ(回転規制部)
 

Claims (6)

  1.  第1回転方向に回転する入力側のインペラと、
     前記第1回転方向、及び前記第1回転方向とは反対の第2回転方向のいずれか一方に、回転する出力側のタービンと、
     前記インペラの動力を前記タービンに伝達するために、前記インペラと前記タービンとの間において、前記第1回転方向に回転可能に構成される第1ステータと、
     前記タービンの動力を前記インペラに伝達するために、前記タービンと前記インペラとの間において、前記第1回転方向に回転可能に構成される第2ステータと、
     前記第1ステータ及び前記第2ステータに対して、前記第1回転方向への回転を許可し、前記第1回転方向への回転及び前記第2回転方向への回転を規制する回転規制部と、
    を備え、
     回転規制部によって、前記第1ステータ及び前記第2ステータに対する、前記第1回転方向への回転が、許可されることによって、前記タービンが前記第1回転方向に回転するように、前記第1ステータは、動力を伝達するための流体を、前記タービンに案内し、
     前記回転規制部によって、前記第1ステータ及び前記第2ステータに対する、前記第1回転方向への回転と前記第2回転方向への回転とが、規制されることによって、前記タービンが前記第2回転方向に回転するように、前記第1ステータは、前記流体を前記タービンに案内する、
    動力伝達装置。
  2.  前記インペラは、前記第1回転方向に回転することによって、前記第1ステータが前記第1回転方向に回転するように、前記流体を前記第1ステータに案内する、
    請求項1に記載の動力伝達装置。
  3.  前記第1ステータ及び前記第2ステータは、一体回転可能に構成されている、
    請求項1又は2に記載の動力伝達装置。
  4.  前記回転規制部は、前記第2ステータに対する回転を規制することによって、前記第1ステータに対する回転を規制する、
    請求項3に記載の動力伝達装置。
  5.  前記第1ステータは、外周側において、前記インペラと前記タービンとの間に配置されており、
     前記第2ステータは、内周側において、前記タービンと前記インペラとの間に配置されている、
    請求項1から4のいずれかに記載の動力伝達装置。
  6.  前記インペラと、前記タービンと、前記第1ステータと、前記第2ステータとは、トルクコンバータに含まれており、
     前記回転規制部は、トランスミッションに配置されている、
    請求項1から5のいずれかに記載の動力伝達装置。
     
PCT/JP2012/062819 2011-06-27 2012-05-18 動力伝達装置 WO2013001936A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137030226A KR20140039192A (ko) 2011-06-27 2012-05-18 동력 전달 장치
US14/123,440 US20140102087A1 (en) 2011-06-27 2012-05-18 Power transmission device
CN201280025696.2A CN103562599A (zh) 2011-06-27 2012-05-18 动力传递装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-141401 2011-06-27
JP2011141401A JP5575707B2 (ja) 2011-06-27 2011-06-27 動力伝達装置

Publications (1)

Publication Number Publication Date
WO2013001936A1 true WO2013001936A1 (ja) 2013-01-03

Family

ID=47423839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062819 WO2013001936A1 (ja) 2011-06-27 2012-05-18 動力伝達装置

Country Status (5)

Country Link
US (1) US20140102087A1 (ja)
JP (1) JP5575707B2 (ja)
KR (1) KR20140039192A (ja)
CN (1) CN103562599A (ja)
WO (1) WO2013001936A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220373068A1 (en) * 2019-09-10 2022-11-24 Staporn Suprichakorn Fluid coupling for a continuous variable transmission

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563350A (en) * 1979-06-13 1981-01-14 Twin Disc Inc Propelling power transmitting device for ship
JPH02159451A (ja) * 1988-12-10 1990-06-19 Suzuki Motor Co Ltd 車両用無段変速機
JPH02190671A (ja) * 1989-01-13 1990-07-26 Daikin Mfg Co Ltd 逆転式トルクコンバータ
JPH07190192A (ja) * 1993-12-27 1995-07-28 Toyo Umpanki Co Ltd トルクコンバータ
JP2004225838A (ja) * 2003-01-24 2004-08-12 Nissan Motor Co Ltd トルクコンバータ
JP2007139004A (ja) * 2005-11-15 2007-06-07 Toyota Motor Corp 前後進切替え機構

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3187511A (en) * 1963-05-22 1965-06-08 Ford Motor Co Multiple element hydrokinetic torque converter mechanism
US3320746A (en) * 1965-09-10 1967-05-23 Borg Warner Forward/reverse drive
DE2931540A1 (de) * 1979-08-03 1981-02-19 Fichtel & Sachs Ag Drehmomentwandler mit schaufelrad
JP2005530970A (ja) * 2002-06-27 2005-10-13 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト トルク伝達装置
US7785229B2 (en) * 2007-02-14 2010-08-31 Gm Global Technology Operations, Inc. Variable K-factor torque converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563350A (en) * 1979-06-13 1981-01-14 Twin Disc Inc Propelling power transmitting device for ship
JPH02159451A (ja) * 1988-12-10 1990-06-19 Suzuki Motor Co Ltd 車両用無段変速機
JPH02190671A (ja) * 1989-01-13 1990-07-26 Daikin Mfg Co Ltd 逆転式トルクコンバータ
JPH07190192A (ja) * 1993-12-27 1995-07-28 Toyo Umpanki Co Ltd トルクコンバータ
JP2004225838A (ja) * 2003-01-24 2004-08-12 Nissan Motor Co Ltd トルクコンバータ
JP2007139004A (ja) * 2005-11-15 2007-06-07 Toyota Motor Corp 前後進切替え機構

Also Published As

Publication number Publication date
KR20140039192A (ko) 2014-04-01
US20140102087A1 (en) 2014-04-17
JP5575707B2 (ja) 2014-08-20
CN103562599A (zh) 2014-02-05
JP2013007461A (ja) 2013-01-10

Similar Documents

Publication Publication Date Title
WO2010038548A1 (ja) 流体継手及び発進装置
US20140079570A1 (en) Launch torus torque converter
JP2006258264A (ja) クラッチ装置
JP2005249146A (ja) トルクコンバータ
JP2001221318A (ja) 流体式トルク伝達装置
JP5575707B2 (ja) 動力伝達装置
JP5167218B2 (ja) トルクコンバータ
JP6176997B2 (ja) トルクコンバータのロックアップ装置
KR102036564B1 (ko) 차량용 토크 컨버터
US20140290235A1 (en) Torque converter
JP2006300135A (ja) トルクコンバータ
JP5242514B2 (ja) トルクコンバータ
JP2009299825A (ja) 車両用ポンプ装置
JP4999437B2 (ja) トルクコンバータ
US10487908B2 (en) Lock-up device for torque converter
KR102036244B1 (ko) 차량용 토크 컨버터
JP5766149B2 (ja) トルクコンバータにおけるステータ構造
JP6531685B2 (ja) ダンパ装置
JP7003002B2 (ja) 車両用トルクコンバータ
JP7126850B2 (ja) トルクコンバータ用のスラストワッシャ
JP2006105282A (ja) トルクコンバータのステータ
JP2020079627A (ja) トルクコンバータ
JP2016130525A (ja) トルクコンバータ
WO2017002413A1 (ja) トルクコンバータ
KR100854115B1 (ko) 차량용 토크컨버터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803963

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137030226

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14123440

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803963

Country of ref document: EP

Kind code of ref document: A1