WO2013001699A1 - 色素吸着装置および色素吸着方法 - Google Patents

色素吸着装置および色素吸着方法 Download PDF

Info

Publication number
WO2013001699A1
WO2013001699A1 PCT/JP2012/002809 JP2012002809W WO2013001699A1 WO 2013001699 A1 WO2013001699 A1 WO 2013001699A1 JP 2012002809 W JP2012002809 W JP 2012002809W WO 2013001699 A1 WO2013001699 A1 WO 2013001699A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
substrate
semiconductor layer
chamber
dye solution
Prior art date
Application number
PCT/JP2012/002809
Other languages
English (en)
French (fr)
Inventor
悟郎 古谷
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN201280031621.5A priority Critical patent/CN103650233A/zh
Priority to US14/129,145 priority patent/US20140134776A1/en
Priority to EP12805290.9A priority patent/EP2728663A4/en
Priority to KR1020137034148A priority patent/KR20140040759A/ko
Publication of WO2013001699A1 publication Critical patent/WO2013001699A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a dye adsorption device that adsorbs a dye to a porous semiconductor layer formed on the surface of a substrate.
  • the dye-sensitized solar cell has a basic structure in which a porous semiconductor layer (working electrode) that carries a sensitizing dye between a transparent electrode (cathode) 200 and a counter electrode (anode) 202 is used. 204 and the electrolyte layer 206 are sandwiched.
  • the semiconductor layer 204 is divided into cell units together with the transparent electrode 200, the electrolyte layer 206 and the counter electrode 202, and is formed on the transparent substrate 208 via the transparent electrode 200.
  • the counter electrode 202 is formed on the counter substrate 210 via the base electrode 205.
  • the transparent electrode 200 of each cell is electrically connected to the adjacent counter electrode 202, and a large number of cells are electrically connected in series or in parallel in the entire module.
  • a current collecting grid wiring 212 is formed on the transparent electrode 200 adjacent to each semiconductor layer (working electrode) 204 and extending in parallel therewith, and similarly on the opposite electrode (anode) 202 side directly opposite.
  • Grid wiring 214 is formed. Both grid wirings 212 and 214 are covered with protective insulating films 216 and 218, respectively.
  • the dye-sensitized solar cell having such a configuration, when visible light is irradiated from the back side of the transparent substrate 208, the dye supported on the semiconductor layer 204 is excited and emits electrons. The emitted electrons are guided to the transparent electrode 200 through the semiconductor layer 204 and sent out to the outside. The emitted electrons return to the counter electrode 202 via an external circuit (not shown), and are received again by the dye in the semiconductor layer 204 via ions in the electrolyte layer 206. In this way, light energy is immediately converted into electric power and output.
  • the immersion type dye adsorption treatment as described above requires a long treatment time (usually 10 hours or more) in spite of the large consumption of the dye solution, and all the steps in the production process of the dye-sensitized solar cell. This contributes to the rate-determining tact and reducing production efficiency. To solve this problem, it is conceivable to operate a plurality of immersion type dye adsorption devices in parallel, but at least several tens of devices must be prepared, which is not practical.
  • the present invention solves the above-mentioned problems of the prior art, and improves the throughput and dye usage efficiency of the dye adsorption process for adsorbing the dye to the porous semiconductor layer formed on the treated surface of the substrate.
  • An improved dye adsorption device is provided.
  • the dye adsorbing device of the present invention is a dye adsorbing device that adsorbs a dye to a porous semiconductor layer formed on a surface to be processed of a substrate, and discharges a dye solution in which the dye is dissolved in a predetermined solvent.
  • a dye solution dropping application section for applying the dye solution to the semiconductor layer on the substrate by dropping from the nozzle; and evaporating the solvent from the dye solution applied to the semiconductor layer on the substrate.
  • the dye adsorption method of the present invention is a dye adsorption method in which a dye is adsorbed to a porous semiconductor layer formed on a surface to be processed of a substrate, using a nozzle that discharges a dye solution in which the dye is dissolved in a predetermined solvent.
  • a third step of washing away unnecessary dye attached to the surface of the semiconductor layer on the substrate is a dye adsorption method in which a dye is adsorbed to a porous semiconductor layer formed on a surface to be processed of a substrate, using a nozzle that discharges a dye solution in which the dye is dissolved in a predetermined solvent.
  • a dye solution is dropped onto the semiconductor layer on the substrate, and the dye is soaked from the coating film into the inside of the semiconductor layer to be adsorbed on each part of the semiconductor layer.
  • the dye solution dripped and applied to the semiconductor layer on the substrate is forcibly evaporated by the solvent evaporating / removing section and removed almost completely.
  • the pigment is uniformly supported with high purity on the semiconductor layer.
  • dye which remained on the surface of the semiconductor layer is washed away by the rinse part.
  • the reproducibility and reliability of photoelectric conversion efficiency can be improved.
  • the above-described configuration and operation greatly improve the throughput of the dye adsorption process for adsorbing the dye to the porous semiconductor layer on the substrate and use the dye solution.
  • Dye usage efficiency can be greatly improved by minimizing the amount.
  • FIG. 1 shows a basic configuration of a dye adsorption device according to the present invention.
  • This dye adsorption device is used, for example, in a process of adsorbing a sensitizing dye to a porous semiconductor layer in a single wafer method in a production process of a dye-sensitized solar cell.
  • the transparent substrate on which the transparent electrode 200, the porous semiconductor layer 204, the grid wiring 212, and the protective layer 216 thereof are formed before the opposing members (the counter electrode 202, the counter substrate 210, and the electrolyte layer 206) are combined.
  • 208 (FIG. 10) is the substrate G to be processed in this dye adsorption apparatus.
  • the transparent substrate 208 is made of, for example, a transparent inorganic material such as quartz or glass, or a transparent plastic material such as polyester, acrylic, or polyimide.
  • the transparent electrode 200 is made of, for example, fluorine-doped SnO 2 (FTO) or indium-tin oxide (ITO).
  • the porous semiconductor layer 204 is made of a metal oxide such as TiO 2 , ZnO, SnO 2 , for example.
  • the grid wiring 212 is made of a conductor having a low resistivity such as Ag, and the protective layer 216 is made of an insulator such as UV curable resin.
  • the substrate G to be processed has a predetermined shape (for example, a quadrangle) and a predetermined size.
  • the transfer robot or a transfer mechanism that transfers the substrate G to be processed in the horizontal direction in a horizontal state (hereinafter referred to as “flat flow transfer mechanism”).
  • the dye adsorbing device is carried in / out by an external conveying device (not shown).
  • the dye adsorbing device 10 includes a dye solution dropping application unit 12, a solvent evaporation removing unit 14, a rinsing unit 16, a transport mechanism 18, and a controller 20 as basic device forms.
  • the dye solution dropping application unit 12 performs a first process (dropping and applying a dye solution to the porous semiconductor layer 204 on the substrate G with respect to the unprocessed substrate G carried into the dye adsorption device 10). (Dye solution dropping coating treatment).
  • the solvent evaporation removal unit 14 is configured to perform a second process (solvent removal process) for evaporating and removing the solvent from the dye solution applied to the semiconductor layer 204 on the substrate G.
  • the rinsing unit 16 is configured to perform a third process (rinsing process) for washing away and removing unnecessary or extra dye attached to the surface of the semiconductor layer 204 on the substrate G.
  • the transport mechanism 18 is configured to transfer the substrates G one by one between the dye solution dropping application unit 12, the solvent evaporation removing unit 14, and the rinse unit 16.
  • the controller 20 has a microcomputer and a required interface, and controls the operation of each part in the dye adsorption apparatus, and further controls the sequence of the entire apparatus for executing the dye adsorption process.
  • each processing unit (12, 14, 16) is modularized.
  • the dye solution dropping application unit 12 has a plurality of modules, for example, three modules 12 (1), 12 (2), and 12 (3) arranged vertically in parallel, and the three modules are arranged with a time difference of tact time T S.
  • the system is operated at the same time (parallel).
  • the solvent evaporating and removing unit 14 arranges a plurality of units, for example, twelve modules 14 (1) to 14 (12) vertically on both sides of the transport mechanism 18, and sets these twelve modules with a time difference of the tact time T S. We are trying to operate simultaneously (parallel).
  • the rinsing unit 16 has a plurality of modules, for example, three modules 16 (1), 16 (2), and 16 (3) arranged in a vertically stacked manner, and these three modules are simultaneously (parallel) with a time difference of tact time T S. ) I am trying to make it work.
  • a new or unprocessed substrate G is provided to each of the three modules 12 (1), 12 (2), and 12 (3) at a cycle of tact time T S by an external transfer device. Carry in sequentially and repeatedly.
  • the substrates G on which the dye solution dropping application processing has been completed from the modules 12 (1), 12 (2), 12 (3) at the cycle of the tact time T S are sequentially and repeatedly carried out one by one by the transport mechanism 18. Is done.
  • the transport mechanism 18 sequentially and repeatedly feeds the substrates G carried out from the dye solution dropping application unit 12 at the cycle of the tact time T S into the modules 14 (1) to 14 (12) of the solvent evaporation removing unit 14 one by one.
  • the substrates G after the solvent removal process are sequentially and repeatedly carried out one by one by the transport mechanism 18 from the modules 14 (1) to 14 (12) at a cycle of the tact time T S.
  • the transport mechanism 18, the module 16 of the rinsing unit 16 substrate G from the solvent evaporated off portion 14 was carried out in a cycle of tact time T S (1), 16 (2), successively and repeatedly turned one by one to 16 (3) ([3]).
  • the substrates G that have been rinsed from the modules 16 (1), 16 (2), and 16 (3) at the cycle of the tact time T S are sequentially and repeatedly carried out one by one by the external transfer device.
  • FIG. 4 shows the configuration of the transport mechanism 18.
  • the transport mechanism 18 is configured to move in one horizontal direction (X direction) along, for example, a pair of guide rails 22, and rotates on the transport base 24 in the azimuth direction ( ⁇ direction). It has two upper and lower transfer arms MU and ML that can move up and down in the vertical direction (Z direction) and can independently move back and forth horizontally or extend and retract. More specifically, the transport mechanism 18 includes, for example, a lifting / lowering drive unit (not shown) having a linear motor or a ball screw mechanism in the transport base 24.
  • Conveying bodies 28U and 28L are mounted in two stages so that they can be moved up and down, and each of the conveying bodies 28U and 28L can be independently rotated in any direction in the azimuth direction ( ⁇ direction) on the lifting drive shaft 26.
  • the transport arms MU and ML can be independently advanced / retracted or expanded / contracted on the transport bodies 28U and 28L.
  • Each of the transfer arms MU and ML is configured to be able to detachably mount, carry or hold one rectangular substrate G one by one.
  • the transport mechanism 18 having such a configuration includes all the modules 12 (1) to 12 (3) of the dye solution dropping application unit 12, all the modules 14 (1) to 14 (12) of the solvent evaporation removing unit 14, and the rinse unit 16. All the modules 16 (1) to 16 (3) can be accessed. Then, in accessing each module 12 (i) of the dye solution dropping application unit 12, the substrate G that has been subjected to the dye solution dropping application process in the module 12 (i) is carried out using either one of the transfer arms MU and ML. To do. In the access to each module 14 (j) of the solvent evaporating / removing unit 14, the substrate G that has been subjected to the solvent removal processing by the module 14 (j) is carried out using either one of the transfer arms MU and ML, and replaced therewith.
  • Another substrate G carried from the dye solution dropping application unit 12 is loaded using the other of the transfer arms MU and ML. Then, when accessing each module 16 (k) of the rinsing unit 16, the substrate G that has been rinsed by the module 16 (k) is carried out using one of the transfer arms MU and ML, and transferred instead of the substrate G. Using the other of the arms MU and ML, another substrate G carried out from the solvent evaporation removing unit 14 is carried in. [Configuration and action of dye solution dropping application module]
  • the dye solution dropping application module 12 (i) is cascade-connected in one horizontal direction (X direction), and includes three chambers 30, 32, and 34, each of which can form an atmosphere independent from the atmosphere. Have. As will be described later, in these three chambers 30, 32, and 34, the pretreatment, the main treatment, and the posttreatment of the dye solution dropping application are performed simultaneously and individually in a pipeline manner.
  • the front chamber 30 at the front end has a flat space suitable for efficiently loading and unloading a single substrate G, so that the indoor atmosphere can be switched between an atmospheric pressure state and a reduced pressure state. It has become.
  • the front chamber 30 is connected to the inlet side door valve 36 facing the atmospheric space and the main chamber 32 at the rear stage on the side walls facing each other in the flat flow direction (X direction).
  • a gate valve 38 on the outlet side is attached to each.
  • a flat-flow conveyor for example, a belt conveyor 40, is provided, and a transport driving unit 42 having a motor or the like for driving the belt conveyor 40 is provided outside the front chamber 30. .
  • the pre-chamber 30 opens the door valve 36 to carry in a new substrate G under atmospheric pressure, and immediately after that closes the door valve 36 to evacuate the room and switch to a reduced pressure state.
  • one or more exhaust ports 44 are provided in the bottom wall of the front chamber 30. Each exhaust port 44 communicates with a vacuum exhaust part 48 having a vacuum pump or an ejector through an exhaust pipe 46.
  • An on-off valve 50 is provided in the middle of the exhaust pipe 46.
  • the prechamber 30 opens the gate valve 38 and sends the pretreated substrate G to the adjacent main chamber 32, and then closes the gate valve 38 and inserts the next new substrate G into the chamber. Is converted from a reduced pressure state to an atmospheric pressure state.
  • one or a plurality of purge gas introduction ports 52 are provided on the ceiling of the front chamber 30.
  • a purge gas supply unit 56 is connected to each purge gas inlet 52 via a gas supply pipe 54, and an open / close valve 58 is provided in the middle of the gas supply pipe 54.
  • air or nitrogen gas is used as the purge gas.
  • the prechamber 30 is configured to have a minimum volume necessary for taking in and out one substrate G, both vacuuming and purging can be efficiently performed in a short time.
  • a planar sheathed heater 60 is provided on the ceiling of the front chamber 30 as a heater for heating and drying.
  • a dehumidifying dryer 62 is also provided at one corner or bottom of the front chamber 30.
  • the vacuum exhaust unit is applied to the semiconductor layer 204 on the substrate G stationary on the belt conveyor 40 for a predetermined time (for example, several tens of seconds) as a pretreatment of the dye solution dropping application.
  • a predetermined time for example, several tens of seconds
  • a plurality of types of drying processes such as decompression by 48, heating by the sheath heater 60, and / or dehumidification by the dehumidifying dryer 62 are selectively or all performed simultaneously.
  • the heating temperature of the sheathed heater 60 is selected to a value that allows the substrate G to be subjected to the dye solution dropping application process at a substrate temperature lower than the boiling point of the dye solution in the next step (in the main chamber 32). Therefore, when the boiling point of the dye solution is 60 ° C., for example, an upper limit value slightly higher than 60 ° C. with respect to the heating temperature of the sheathed heater 60 is set.
  • the pressure of the reduced-pressure atmosphere achieved by the vacuum evacuation unit 48 is not particularly limited, but is preferably in the range of 50 mTorr to 100 mTorr from the viewpoint of the drying treatment effect obtained and utility efficiency.
  • the degree of drying achieved by the dehumidifying dryer 62 is not particularly limited, but a dew point in the range of ⁇ 30 ° C. to ⁇ 50 ° C. is preferable from the viewpoint of the obtained drying treatment effect and utility efficiency.
  • the intermediate main chamber 32 is used for moving the nozzle 64 relative to the substrate G for application scanning and a nozzle 64 for dropping and discharging the dye solution in order to perform the main processing of the dye solution dropping application.
  • Scanning mechanism 66 In this embodiment, the scanning mechanism 66 holds the nozzle 64 in a fixed position during processing, flows the substrate G flatly, and passes through just below the nozzle 64 by a transport mechanism such as a belt conveyor 68 (X direction). The scanning form is used to move to. Outside the chamber 32, a conveyance driving unit 70 having a motor and the like for driving the belt conveyor 68 is provided.
  • the gate valve 38 is on the inlet side in the main chamber 32.
  • the gate valve 38 is opened, and the substrate G can be transferred from the adjacent front chamber 30 to the main chamber 32 by the flat flow transfer by the belt conveyors 40 and 68.
  • a gate valve 72 for connecting to the subsequent chamber 34 is attached.
  • the interior of the main chamber 32 is always kept in a reduced pressure state.
  • one or more exhaust ports 74 are provided in the bottom wall of the main chamber 32.
  • Each exhaust port 74 communicates with a vacuum exhaust part 78 having a vacuum pump via an exhaust pipe 76.
  • An on-off valve 80 is provided in the middle of the exhaust pipe 76.
  • a dehumidifying dryer 82 is provided at one corner or bottom of the main chamber 32.
  • the dehumidifying dryer 82 can perform dehumidification indoors while forming a reduced pressure atmosphere by the vacuum exhaust unit 78. It has become.
  • the nozzle 64 is a drop discharge position facing the substrate G on the belt conveyor 68 at a predetermined close distance by a nozzle moving mechanism 84 provided on the ceiling of the main chamber 32, and a nozzle installed in the vicinity of the drop discharge position. It can move between the standby unit 86.
  • the nozzle standby part 86 is configured as a solvent reservoir having an upper surface opening corresponding to the shape and size of the nozzle 64. While the nozzle 64 is waiting on the nozzle standby part 86, the discharge port 65 on the lower surface of the nozzle 64 is exposed to the solvent vapor in the nozzle standby part 86, thereby preventing clogging.
  • an exhaust line (not shown) is opened to prevent local vapor in the nozzle standby part 86 so that solvent vapor does not leak from the nozzle standby part 86 to the surroundings. Is preferably performed.
  • the nozzle 64 is connected to the dye solution supply unit 90 via the supply pipe 88.
  • the dye solution supply unit 90 includes a container for storing the dye solution, a pump for pumping the dye solution from the container and pumping the dye solution to the nozzle 64, a control valve for adjusting the flow rate of the dye solution or the dripping amount per unit time, and the like.
  • the dye solution used in this dye adsorbing device is obtained by dissolving a sensitizing dye in a solvent at a predetermined concentration.
  • a sensitizing dye for example, a metal complex such as metal phthalocyanine, or an organic dye such as a cyanine dye or a basic dye is used.
  • the solvent for example, alcohols, ethers, amides, hydrocarbons and the like are used.
  • the nozzle 64 is configured as a long nozzle extending in the horizontal direction (Y direction) orthogonal to the application scanning direction (X direction), and has a hollow pin type or porous type discharge in the longitudinal direction.
  • the outlets 65 are provided in a line.
  • the diameter and pitch of the discharge ports 65 in the nozzle 64 correspond to the width W and pitch P of the cell pattern on the substrate G, that is, the pattern of the semiconductor layer 204.
  • the substrate G is a four-chamfer type that can take four solar cell panels, and the surface to be processed on the substrate G is divided into four product (panel) regions M 1 , M 2 , M 3 , and M 4.
  • product regions M 1 , M 2 , M 3 , and M 4 In each product region, a large number of strip-like patterns of the semiconductor layer 204 are formed in parallel at a constant pitch P.
  • the strip pattern of the semiconductor layer 204 in the first product region M 1 and the strip pattern of the semiconductor layer 204 in the second product region M 2 overlap on the same straight line, and in the third product region M 3 . overlap on the same straight line and the band-shaped pattern and the stripe pattern of the semiconductor layer 204 in the fourth product area M 4 of the semiconductor layer 204.
  • the first and second product areas M 1 and M 2 are filled with a half-size nozzle 64A, and the third and fourth product areas M 3 and M 4 are filled.
  • a configuration in which the half size nozzle 64B is filled can be suitably employed.
  • a beam-like support 92 that supports both nozzles 64A and 64B is coupled to a nozzle moving mechanism 84 (FIG. 5). Then, by causing relative movement in the coating scanning direction (X direction) between the substrate G and the two nozzles 64A and 64B in parallel with the belt-like pattern of the semiconductor layer 204, the ejection ports 65 of both the nozzles 64A and 64B.
  • the dye solution CS to be dropped and discharged is focused on each corresponding semiconductor layer 204 on the substrate G, so that all the semiconductor layers 204 on the substrate G are covered with a coating film of the dye solution CS as shown in FIG. And can be covered uniformly.
  • the semiconductor layer 204 on the substrate G in the prechamber 30 prior to dropping and supplying the dye solution CS to the semiconductor layer 204 on the substrate G in the main chamber 32, the semiconductor layer 204 on the substrate G in the prechamber 30 in a separate chamber.
  • a drying process (pretreatment) of reduced pressure, heating and / or dehumidification is selectively or multiply performed. Further, a reduced pressure atmosphere is formed in the main chamber 32 so that dehumidification can be continued.
  • the dye solution dripping coating is performed in a state in which water vapor (impurities) adhering or soaking into the semiconductor layer 204 in the atmosphere before the substrate G is carried into the dye adsorption device 10 is almost completely removed.
  • the dye solution CS dropped onto the substrate G is efficiently and quickly distributed to the inside of the porous semiconductor layer 204, and the dye in the dye solution CS is transferred to the semiconductor layer 204 with high purity. It can be adsorbed uniformly.
  • the belt conveyor 68 is stopped to keep the substrate G in the main chamber 32 for a while. During this time, the decompressed state in the main chamber 32 is maintained. It is also preferable to continue dehumidification. As described above, the substrate G is left in the reduced pressure atmosphere (or the reduced pressure and dehumidified atmosphere) for a while immediately after the completion of the solution dropping application process, whereby the dye adsorption on the semiconductor layer 204 is smoothly performed on the substrate G. Promoted.
  • the pressure of the reduced-pressure atmosphere formed in the main chamber 32 by the vacuum exhaust unit 78 is higher than the pressure of the reduced-pressure atmosphere in the front chamber 30 in order to promote the spreading of the dye solution CS and the adsorption of the dye in the semiconductor layer 204.
  • a higher value is preferable, and a range of 50 mTorr to 100 mTorr is preferable.
  • the degree of drying achieved by the dehumidifying dryer 82 is not particularly limited, but a dew point in the range of ⁇ 30 ° C. to ⁇ 50 ° C. is preferable in terms of both the effect of promoting dye adsorption and the utility efficiency obtained.
  • the time T 32 in which the substrate G stays in the main chamber 32 is the same as the stay time T 30 in the pre-chamber 30.
  • it can be set within a range of several tens of seconds to one minute.
  • the rear chamber 34 located at the rear end has a flat space suitable for carrying a single substrate G in a flat flow and taking it in and out, and the indoor atmosphere can be switched between an atmospheric pressure state and a reduced pressure state. It is like that.
  • a gate valve 72 on the inlet side for connection to the main chamber 32 on the front stage is provided on the opposite side wall of the post-chamber 34 in the flat flow direction (X direction).
  • a door valve 96 on the exit side is attached.
  • a conveyor for carrying a flat flow such as a belt conveyor 98, is provided, and a transport driving unit 100 having a motor or the like for driving the belt conveyor 98 is provided outside the rear chamber 34. .
  • the post chamber 34 opens the gate valve 72 to carry in a new substrate G under reduced pressure, and immediately after that, the gate valve 72 is closed and the interior is purged to switch to atmospheric pressure or positive pressure.
  • One or more exhaust ports 102 are provided in the bottom wall of the post chamber 34 for evacuation. Each exhaust port 102 communicates with a vacuum exhaust unit 106 having a vacuum pump or an ejector through an exhaust pipe 104.
  • An on-off valve 108 is provided in the middle of the exhaust pipe 104.
  • one or more purge gas inlets 110 are provided on the ceiling of the post chamber 34.
  • a purge gas supply unit 114 is connected to each purge gas introduction port 110 via a gas supply pipe 112, and an opening / closing valve 116 is provided in the middle of the gas supply pipe 112. For example, air or nitrogen gas is used as the purge gas.
  • the post chamber 34 is configured to have a minimum volume necessary for taking in and out one substrate G, both vacuuming and purging can be performed efficiently in a short time.
  • a planar sheathed heater 118 is provided on the ceiling of the post chamber 34 as a heater for heating and drying.
  • a dehumidifying dryer 120 is also provided at one corner or bottom of the post chamber 34.
  • the purge gas supply unit is applied to the semiconductor layer 204 on the substrate G stationary on the belt conveyor 98 as a post-treatment of the dye solution dropping application for a certain time (for example, several tens of seconds).
  • Plural kinds of drying processes such as purging under atmospheric pressure or positive pressure by 114, heating by the sheathed heater 118, and / or dehumidification by the dehumidifying dryer 120 are selectively or all performed simultaneously. These drying treatments promote the adsorption of the dye in the semiconductor layer 204 while removing the solvent from the dye solution CS dropped onto the semiconductor layer 204 at a relatively slow rate. It is also a pretreatment for (solvent evaporation removal treatment).
  • the heating temperature of the sheathed heater 118 is after the main processing of the dye solution dropping application is completed, there is no particular limitation, and the heating temperature may be higher than the boiling point of the dye solution CS.
  • the upper semiconductor layer 204 is preferably suppressed to 200 ° C. or lower because it has an undesirable thermal effect.
  • the degree of drying achieved by the dehumidifying dryer 120 is not particularly limited, but a dew point in the range of ⁇ 30 ° C. to ⁇ 50 ° C. is preferable from the viewpoint of the obtained drying treatment effect and utility efficiency.
  • Time the substrate G is to stay in the post-chamber 34 T 34 is also the same as the stay time T 30, T 32 of the pre-chamber 30 and the main chamber 32.
  • FIG. 8 shows the configuration of the solvent evaporation removal module 14 (j).
  • the solvent evaporation removal module 14 (j) allows the plate 122, on which a single substrate G is placed and conveyed, to be taken in and out of the main body heat treatment chamber 124 like a slide-out.
  • the transport mechanism 18 places the substrate G carried from the dye solution dropping application unit 12 on the plate 122 using one of the transport arms MU and ML (a), the plate 122 slides and the main body heat treatment is performed.
  • the substrate G is loaded into the chamber 124.
  • a planar heater 126 (FIG. 2) is provided on the ceiling.
  • the heater 126 allows the semiconductor layer 204 on the substrate G to be heated at a temperature of 200 ° C. for about 1 to 2 minutes, for example. Heat over time. By this heat treatment, the solvent of the dye solution CS adhering to the semiconductor layer 204 on the substrate G and the water generated in the dye adsorption process are evaporated until almost completely eliminated. As a result, the pigment is supported on the semiconductor layer 204 uniformly with high purity.
  • the plate 122 is waiting outside the main body heat treatment chamber 124 (c). Then, after the solvent evaporation removal process is completed, the plate 122 enters the main body heat treatment chamber 124 to receive the substrate G, takes out the received substrate G, and cools it by exposing it to the atmosphere for a certain period of time (b). . Thereafter, the raising and lowering pins 128 provided on the plate 122 are moved up and down in cooperation with the transfer arms MU and ML, so that the processed substrate G and the next substrate G on the plate 122 are switched (a).
  • FIG. 9 shows the configuration of the main part of the rinse module 16 (k).
  • the rinse module 16 (k) is a mechanical or vacuum chuck mechanism in which a rotary stage 132 is installed in the center of the inner side of the annular cup 130, a substrate G is placed on the rotary stage 132, and the rotary stage 132 is provided. The substrate G is held by (not shown). Then, while the substrate G is spin-rotated at an appropriate rotational speed integrally with the rotary stage 132 by the rotation drive unit 134 via the rotation shaft 136, a rinse liquid (for example, pure water) R is given from the nozzle 138 disposed above the substrate G.
  • a rinse liquid for example, pure water
  • the nozzle 140 may be reciprocated in the radial direction of the substrate G by rotating or swinging the arm 140 that supports the nozzle 138.
  • the nozzle 138 is a stationary type, a long nozzle that can cover the entire region of the substrate G with one rotation of the substrate G is preferable.
  • the dye that adsorbs the sensitizing dye to the porous semiconductor layer 204 formed on the surface to be processed of the substrate G in the production process of the dye-sensitized solar cell in addition to greatly improving the throughput of the adsorption process, the use amount of the dye solution can be minimized to greatly improve the dye use efficiency.
  • the module tact is reduced, but the pretreatment, the main treatment, and the posttreatment of the dye solution dropping application are performed using two chambers or a single chamber.
  • a simple module configuration is also possible. In that case, a purge mechanism may be added to the main chamber 32 so that evacuation by the vacuum exhaust section 78 and purging by the purge mechanism are alternately switched.
  • a module configuration in which the main treatment of the dye solution dropping application is performed under atmospheric pressure or positive pressure in the dye solution dropping application unit 12 is also possible.
  • the vacuum exhaust part 78 can be omitted.
  • the flat flow conveying mechanism in the module 12 (i) is not limited to a belt conveyor, and a roller conveyor or the like on which rollers are laid is also possible.
  • the substrate G can be stopped and the nozzle 64 can be moved in the horizontal direction.
  • the drop coating scan in the direction parallel to the strip pattern of the semiconductor layer 204 (X direction) as in the above embodiment (FIG. 6)
  • other forms are also possible.
  • the dye solution may be intermittently dropped and discharged only when the nozzle 64 passes (crosses) the semiconductor layer 204 during the scanning movement.
  • the nozzle 64 may have a slit-shaped discharge port.
  • the present invention can be suitably applied to the step of adsorbing the sensitizing dye to the porous semiconductor layer in the manufacturing process of the dye-sensitized solar cell as described above.
  • the present invention is applicable to a process of adsorbing an arbitrary dye on an arbitrary thin film (particularly a porous thin film) formed on the surface of the substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Coating Apparatus (AREA)

Abstract

本発明は、基板上の多孔質半導体層に色素を吸着させる色素吸着処理のスループットおよび色素使用効率を改善する。 本発明の色素吸着装置において、色素溶液滴下塗布部(12)は、この色素吸着装置(10)に搬入された未処理の基板(G)に対して、基板(G)上の多孔質半導体層に色素溶液を滴下塗布する第1の処理(色素溶液滴下塗布処理)を行い、溶媒蒸発除去部(14)は、基板(G)上の半導体層に塗布された色素溶液から溶媒を蒸発させて除去する第2の処理(溶媒除去処理)を行い、リンス部(16)は、基板(G)上の半導体層の表面に付いている不要または余分な色素を洗い落として除去する第3の処理(リンス処理)を行う。

Description

色素吸着装置および色素吸着方法
 本発明は、基板の表面に形成されている多孔質の半導体層に色素を吸着させる色素吸着装置に関する。
 最近、色素増感型の太陽電池が、将来の低コスト太陽電池として有望視されている。図10に示すように、色素増感太陽電池は、基本構造として、透明電極(陰極)200と対向電極(陽極)202との間に増感色素を担持する多孔質の半導体層(作用極)204と電解質層206を挟み込んでいる。ここで、半導体層204は、透明電極200、電界質層206および対向電極202と共にセル単位に分割されており、透明基板208上に透明電極200を介して形成される。対向電極202は対向基板210上に下地電極205を介して形成されている。各セルの透明電極200は、隣の対向電極202と電気的に接続されており、モジュール全体で多数のセルが電気的に直列接続または並列接続されている。図示のタイプでは、透明電極200上に各々の半導体層(作用極)204に隣接してそれと平行に延びる集電用のグリッド配線212が形成され、真向かいの対向電極(陽極)202側にも同様のグリッド配線214が形成される。両グリッド配線212,214には保護用の絶縁膜216,218がそれぞれ被せられる。
 かかる構成の色素増感太陽電池においては、透明基板208の裏側から可視光が照射されると、半導体層204に担持されている色素が励起され、電子を放出する。放出された電子は半導体層204を介して透明電極200に導かれ、外部に送り出される。送り出された電子は、外部回路(図示せず)を経由して対向電極202に戻り、電界質層206中のイオンを介して再び半導体層204内の色素に受け取られる。こうして、光エネルギーを即時に電力に変換して出力するようになっている。
 このような色素増感太陽電池の製造プロセスにおいて、多孔質の半導体層204に増感色素を吸着させるために、従来は、透明基板208上に形成された半導体層204を色素溶液に浸漬する方法が採られていた。
特開2006-244954号公報
 上記のような浸漬方式の色素吸着処理は、色素溶液の消費量が多いにも拘わらず、長い処理時間(通常10時間以上)を要しており、色素増感太陽電池の製造プロセスにおいて全工程のタクトを律速し、生産効率を下げる一因になっている。この問題に対して、浸漬方式の色素吸着装置を複数台並列稼働させることも考えられるが、少なくとも数10台の装置を用意しなければならず、実用的ではない。
 本発明は、上記のような従来技術の問題点を解決するものであり、基板の被処理面に形成されている多孔質の半導体層に色素を吸着させる色素吸着処理のスループットおよび色素使用効率を改善する色素吸着装置を提供する。
 本発明の色素吸着装置は、基板の被処理面に形成されている多孔質の半導体層に色素を吸着させる色素吸着装置であって、前記色素を所定の溶媒に溶かした色素溶液を吐出するノズルを備え、前記基板上の前記半導体層に前記色素溶液を前記ノズルより滴下して塗布する色素溶液滴下塗布部と、前記基板上の前記半導体層に塗布された前記色素溶液から溶媒を蒸発させて除去する溶媒蒸発除去部と、前記基板上の前記半導体層の表面に付いている不要な色素を洗い落として除去するリンス部とを有する。
 本発明の色素吸着方法は、基板の被処理面に形成されている多孔質の半導体層に色素を吸着させる色素吸着方法であって、色素を所定の溶媒に溶かした色素溶液を吐出するノズルにより、前記基板上の前記半導体層に前記色素溶液を滴下して塗布する第1の工程と、前記基板上の前記半導体層に塗布された前記色素溶液から溶媒を蒸発させて除去する第2の工程と、前記基板上の前記半導体層の表面に付いている不要な色素を洗い落として除去する第3の工程とを有する。
 本発明においては、基板上の半導体層に色素溶液を滴下塗布して、その塗布膜から色素を半導体層の内奥へ浸み込ませて半導体層の各部に吸着させる。基板上の半導体層に滴下塗布された色素溶液は、溶媒蒸発除去部により強制的に蒸発させられて略完全に除去される。これによって、半導体層に色素が高純度で均一に担持されるようになる。そして、半導体層の表面に残った不要な色素は、リンス部によって洗い落とされる。このように、不要な色素を洗い落とすことによって、光電変換効率の再現性および信頼性を向上させることができる。
 本発明の色素吸着装置または色素吸着方法によれば、上記のような構成および作用により、基板上の多孔質半導体層に色素を吸着させる色素吸着処理のスループットを大きく改善するとともに、色素溶液の使用量を必要最小限に抑えて色素使用効率を大幅に改善することができる。
本発明における色素吸着装置の基本構成を示すブロック図である。 本発明の一実施形態における色素吸着装置の全体構成を示す縦断面図である。 上記実施形態における色素吸着装置の全体構成を示す平面図である。 上記色素吸着装置における搬送機構の構成を示す斜視図である。 色素溶液滴下塗布モジュールの構成を示す縦断面図である。 上記色素溶液滴下塗布モジュールにおけるノズルの吐出口と基板上の半導体層パターンとの対応関係を示す図である。 基板上に塗布された色素溶液中の色素が半導体層に進入する様子を模式的に示す断面図である。 色素溶液蒸発除去モジュールの構成を示す斜視図である。 リンスモジュールの構成を示す斜視図である。 色素増感太陽電池の基本構造を示す縦断面図である。
 以下、添付図を参照して本発明の好適な実施形態を説明する。
 
[装置の基本構成]
 図1に、本発明における色素吸着装置の基本構成を示す。この色素吸着装置は、たとえば、色素増感太陽電池の製造プロセスにおいて、多孔質の半導体層に増感色素を枚葉方式で吸着させる工程で使用される。その場合、対向側の部材(対向電極202、対向基板210、電解質層206)が組み合わされる前に透明電極200、多孔質の半導体層204、グリッド配線212およびその保護層216が形成された透明基板208(図10)が、この色素吸着装置における被処理基板Gとなる。
 ここで、透明基板208は、たとえば石英、ガラスなどの透明無機材料、あるいはポリエステル、アクリル、ポリイミドなどの透明プラスチック材料からなる。透明電極200は、たとえばフッ素ドープSnO2(FTO)、あるいはインジウム-スズ酸化物(ITO)からなる。多孔質の半導体層204は、たとえばTiO2、ZnO、SnO2などの金属酸化物からなる。また、グリッド配線212はたとえばAgなどの抵抗率の低い導体からなり、保護層216はたとえばUV硬化樹脂などの絶縁体からなる。被処理基板Gは、所定の形状(たとえば四角形)および所定のサイズを有し、たとえば搬送ロボットあるいは被処理基板Gを水平な状態で、水平方向に搬送する搬送機構(以後、「平流し搬送機構」と記載する。)からなる外部搬送装置(図示せず)によりこの色素吸着装置に搬入/搬出される。
 この色素吸着装置10は、基本的な装置形態として、色素溶液滴下塗布部12、溶媒蒸発除去部14、リンス部16、搬送機構18およびコントローラ20を備えている。ここで、色素溶液滴下塗布部12は、この色素吸着装置10に搬入された未処理の基板Gに対して、基板G上の多孔質半導体層204に色素溶液を滴下塗布する第1の処理(色素溶液滴下塗布処理)を行うように構成されている。溶媒蒸発除去部14は、基板G上の半導体層204に塗布された色素溶液から溶媒を蒸発させて除去する第2の処理(溶媒除去処理)を行うように構成されている。そして、リンス部16は、基板G上の半導体層204の表面に付いている不要または余分な色素を洗い落として除去する第3の処理(リンス処理)を行うように構成されている。搬送機構18は、色素溶液滴下塗布部12、溶媒蒸発除去部14およびリンス部16の間で基板Gを1枚ずつ転送するように構成されている。コントローラ20は、マイクロコンピュータおよび所要のインタフェースを有しており、この色素吸着装置内の各部の動作を制御し、さらには色素吸着処理を実行するための装置全体のシーケンスを制御する。

 
[一実施形態における装置構成]
 図2および図3に、本発明の一実施形態における色素吸着装置10の具体的な構成を示す。この実施形態では、各処理部(12,14,16)をモジュール化している。色素溶液滴下塗布部12は、複数台たとえば3台のモジュール12(1),12(2),12(3)を縦に重ねて並列配置し、それら3台のモジュールをタクトタイムTSの時間差で同時(並列)稼働させるようにしている。溶媒蒸発除去部14は、複数台たとえば12台のモジュール14(1)~14(12)を搬送機構18の両側で縦に重ねて配置し、それら12台のモジュールをタクトタイムTSの時間差で同時(並列)稼働させるようにしている。リンス部16は、複数台たとえば3台のモジュール16(1),16(2),16(3)を縦に重ねて配置し、それら3台のモジュールをタクトタイムTSの時間差で同時(並列)稼働させるようにしている。
 色素溶液滴下塗布部12においては、外部搬送装置によりタクトタイムTSの周期で新規または未処理の基板Gが3台のモジュール12(1),12(2),12(3)に1枚ずつ順次かつ繰り返し搬入される。一方で、それらのモジュール12(1),12(2),12(3)からタクトタイムTSの周期で色素溶液滴下塗布処理の済んだ基板Gが搬送機構18により1枚ずつ順次かつ繰り返し搬出される。各モジュール12(i)(i=1,2,3)の構成および作用は後に詳細に述べる。
 搬送機構18は、色素溶液滴下塗布部12よりタクトタイムTSの周期で搬出した基板Gを溶媒蒸発除去部14のモジュール14(1)~14(12)に1枚ずつ順次かつ繰り返し投入する。一方で、それらのモジュール14(1)~14(12)からタクトタイムTSの周期で溶媒除去処理の済んだ基板Gが搬送機構18により1枚ずつ順次かつ繰り返し搬出される。各モジュール14(j)(j=1,2・・12)の構成および作用は後に詳細に述べる。
 搬送機構18は、溶媒蒸発除去部14よりタクトタイムTSの周期で搬出した基板Gをリンス部16のモジュール16(1),16(2),16(3)に1枚ずつ順次かつ繰り返し投入する([3])。一方で、それらのモジュール16(1),16(2),16(3)からタクトタイムTSの周期でリンス処理の済んだ基板Gが外部搬送装置により1枚ずつ順次かつ繰り返し搬出される。各モジュール16(k)(k=1,2,3)の構成および作用は後に詳細に述べる。
図4に、搬送機構18の構成を示す。この搬送機構18は、たとえば一対のガイドレール22に沿って水平な一方向(X方向)に移動可能に構成された搬送ベース24と、この搬送ベース24上で方位角方向(θ方向)に回転可能かつ鉛直方向(Z方向)に昇降可能であって、水平の進退または伸縮移動を各々独立に行える上下2段の搬送アームMU,MLを有している。より詳細には、搬送機構18は、たとえばリニアモータまたはボールネジ機構を有する昇降駆動部(図示せず)を搬送ベース24の中に備えており、その昇降駆動部の昇降駆動軸26に上部および下部搬送本体28U,28Lを2段に重ねて昇降可能に取り付け、昇降駆動軸26上で各搬送本体28U,28Lを方位角方向(θ方向)で各々独立に任意の方角に回転移動できるように構成し、搬送本体28U,28L上で両搬送アームMU,MLをそれぞれ独立に進退または伸縮移動できるように構成している。各々の搬送アームMU,MLは、矩形の基板Gを1枚ずつ着脱可能に載置、担持または保持できるように構成されている。
かかる構成の搬送機構18は、色素溶液滴下塗布部12の全てのモジュール12(1)~12(3)、溶媒蒸発除去部14の全てのモジュール14(1)~14(12)およびリンス部16の全てのモジュール16(1)~16(3)にアクセスすることができる。そして、色素溶液滴下塗布部12の各モジュール12(i)に対するアクセスでは、搬送アームMU,MLのいずれか一方を用いて当該モジュール12(i)で色素溶液滴下塗布処理の済んだ基板Gを搬出する。溶媒蒸発除去部14の各モジュール14(j)に対するアクセスでは、搬送アームMU,MLのいずれか一方を用いて当該モジュール14(j)で溶媒除去処理の済んだ基板Gを搬出し、それと入れ替わりに搬送アームMU,MLの他方を用いて色素溶液滴下塗布部12より運んできた別の基板Gを搬入する。そして、リンス部16の各モジュール16(k)に対するアクセスでは、搬送アームMU,MLのいずれか一方を用いて当該モジュール16(k)でリンス処理の済んだ基板Gを搬出し、それと入れ替わりに搬送アームMU,MLの他方を用いて溶媒蒸発除去部14より搬出して持ってきた別の基板Gを搬入する。
 
[色素溶液滴下塗布モジュールの構成および作用]
 図5~図7につき、色素溶液滴下塗布部12における各モジュール12(i)の構成および作用を説明する。
 図5に示すように、色素溶液滴下塗布モジュール12(i)は、水平な一方向(X方向)でカスケード接続され、各々が大気から独立した雰囲気を形成できる3つのチャンバ30,32,34を有している。後述するように、これら3つのチャンバ30,32,34において、色素溶液滴下塗布の前処理、本処理および後処理がパイプライン方式で同時かつ個別に行われるようになっている。
 先端の前置チャンバ30は、1枚の基板Gを平流し搬送で効率よく出し入れするのに適した扁平なスペースを有し、室内の雰囲気を大気圧状態と減圧状態との間で切り換えられるようになっている。基板Gを出し入れするために、前置チャンバ30の平流し搬送方向(X方向)で相対向する側壁には、大気空間に臨む入口側のドアバルブ36と、後段の主チャンバ32と連結するための出口側のゲートバルブ38がそれぞれ取り付けられている。前置チャンバ30の中には平流し搬送用のコンベアたとえばベルトコンベア40が設けられ、前置チャンバ30の外にベルトコンベア40を駆動するためのモータ等を有する搬送駆動部42が設けられている。
 前置チャンバ30は、ドアバルブ36を開けて大気圧の下で新規の基板Gを搬入し、その直後にドアバルブ36を閉めて、室内を真空引きして減圧状態に切り換えるようにしている。この真空引きのために、前置チャンバ30の底壁に1つまたは複数の排気口44が設けられている。各排気口44は、排気管46を介して真空ポンプまたはエジェクタを有する真空排気部48に通じている。排気管46の途中に開閉弁50が設けられている。
 また、前置チャンバ30は、ゲートバルブ38を開けて前処理の済んだ基板Gを隣の主チャンバ32へ送り出した後、次の新規の基板Gを向かい入れるためにゲートバルブ38を閉めて室内を減圧状態から大気圧状態に変換するようにしている。この減圧状態から大気圧状態への変換のために、前置チャンバ30の天井には1つまたは複数のパージガス導入口52が設けられている。各パージガス導入口52にはガス供給管54を介してパージガス供給部56が接続され、ガス供給管54の途中に開閉弁58が設けられている。パージガスには、たとえばエアまたは窒素ガスが用いられる。この実施形態では、前置チャンバ30が基板Gを1枚出し入れするのに必要最小限の容積を有するように構成されているので、真空引きおよびパージングのいずれも短時間で効率よく行える。
 前置チャンバ30の天井には、加熱乾燥用のヒータとしてたとえば面状のシーズヒータ60も設けられている。また、前置チャンバ30の片隅または底部には除湿乾燥機62も設けられている。
 かかる構成の前置チャンバ30では、ベルトコンベア40上で静止した基板G上の半導体層204に対して、色素溶液滴下塗布の前処理として、一定時間(たとえば数10秒)に亘り、真空排気部48による減圧、シーズヒータ60による加熱および/または除湿乾燥機62による除湿といった複数種類の乾燥処理が選択的または全部同時に行われるようになっている。
 なお、シーズヒータ60の加熱温度は、次工程(主チャンバ32内)で基板Gが色素溶液の沸点よりも低い基板温度で色素溶液滴下塗布の本処理を受けられるような値に選定される。したがって、色素溶液の沸点がたとえば60℃である場合は、シーズヒータ60の加熱温度に対して60℃を少し超える位の上限値が設定される。真空排気部48によって達成される減圧雰囲気の圧力は、特に制限はないが、得られる乾燥処理効果と用力効率の両面から50mTorr~100mTorrの範囲が好ましい。また、除湿乾燥機62によって達成される乾燥度も、特に制限はないが、得られる乾燥処理効果と用力効率の両面から露点-30℃~-50℃の範囲が好ましい。
 中間の主チャンバ32は、ここで色素溶液滴下塗布の本処理を行うために、色素溶液を滴下吐出するノズル64と、塗布走査のために基板Gに対してノズル64を相対的に移動させるための走査機構66とを備えている。この実施形態における走査機構66は、処理中にノズル64を定位置に保持し、基板Gを平流し搬送機構たとえばベルトコンベア68によりノズル64の直下を通過するように水平な一方向(X方向)に移動させる走査形態を採っている。チャンバ32の外には、ベルトコンベア68を駆動するためのモータ等を有する搬送駆動部70が設けられている。
 上記ゲートバルブ38は、主チャンバ32においては入口側になる。このゲートバルブ38を開状態にして、隣の前置チャンバ30から基板Gを両ベルトコンベア40,68による平流し搬送で主チャンバ32に移すことができる。主チャンバ32の出口側には、後段のチャンバ34と連結するためのゲートバルブ72が取り付けられている。
 この主チャンバ32の室内は、常時減圧状態に保たれるようになっている。このために、主チャンバ32の底壁には1つまたは複数の排気口74が設けられている。各排気口74は、排気管76を介して真空ポンプを有する真空排気部78に通じている。排気管76の途中に開閉弁80が設けられている。この実施形態では、主チャンバ32がノズル64を収容し、かつ基板Gを1枚出し入れするのに必要最小限の容積を有するように構成されているので、真空引きを最小の用力で効率よく持続することができる。一方、主チャンバ32の片隅または底部には除湿乾燥機82が設けられている。かかる構成により、主チャンバ32内で基板G上の半導体層204に色素溶液を滴下塗布する際にも、真空排気部78により減圧雰囲気を形成しつつ、除湿乾燥機82により室内の除湿を行えるようになっている。
 ノズル64は、主チャンバ32の天井に設けられたノズル移動機構84により、ベルトコンベア68上の基板Gに所定の至近距離で対向する滴下吐出位置と、この滴下吐出位置の近傍に設置されたノズル待機部86との間で移動できるようになっている。ノズル待機部86は、ノズル64の形状およびサイズに対応した上面開口を有する溶媒溜め部として構成されている。ノズル64がノズル待機部86上に待機している間は、ノズル64下面の吐出口65がノズル待機部86内の溶媒の蒸気に晒され、これによって目詰まりを起こさないようになっている。なお、ノズル64がノズル待機部86から離れている間は、ノズル待機部86から溶媒の蒸気が周囲に漏出しないように、排気ライン(図示せず)を開けてノズル待機部86内の局所排気を行うのが好ましい。
 ノズル64は、供給管88を介して色素溶液供給部90に接続されている。この色素溶液供給部90は、色素溶液を貯留する容器、この容器から色素溶液を汲み出してノズル64へ圧送するポンプ、色素溶液の流量または単位時間当たりの滴下量を調整する制御弁等を備えている。なお、この色素吸着装置で用いられる色素溶液は、増感色素を所定の濃度で溶媒に溶かしたものである。増感色素としては、たとえば金属フタロシアニンなどの金属錯体あるいはシアニン系色素、塩基性色素などの有機色素が用いられる。溶媒には、たとえばアルコール類、エーテル類、アミド類、炭化水素などが用いられる。
 ノズル64は、図6に示すように、塗布走査方向(X方向)と直交する水平方向(Y方向)に延びる長尺型のノズルとして構成され、その長手方向に中空ピン型または多孔型の吐出口65を一列に並べて設けている。ノズル64における吐出口65の口径およびピッチは、基板G上のセルパターンつまり半導体層204のパターンの幅WおよびピッチPに対応している。
 図示の例では、基板Gが4つの太陽電池パネルを取れる4面取りタイプであり、基板G上の被処理面が4つの製品(パネル)領域M1,M2,M3,M4に分割され、各々の製品領域内に半導体層204の帯状パターンが一定のピッチPで平行に多数形成されている。ここで、第1の製品領域M1における半導体層204の帯状パターンと第2の製品領域M2における半導体層204の帯状パターンとは同一直線上で重なっており、第3の製品領域M3における半導体層204の帯状パターンと第4の製品領域M4における半導体層204の帯状パターンとは同一直線上で重なっている。
 このような4面取りタイプの基板Gに対しては、第1および第2の製品領域M1,M2にハーフサイズのノズル64Aを充て、第3および第4の製品領域M3,M4にハーフサイズのノズル64Bを充てる構成を好適に採ることができる。図中、両ノズル64A,64Bを支持する梁状の支持体92はノズル移動機構84(図5)に結合されている。そして、基板Gと両ノズル64A,64Bとの間で半導体層204の帯状パターンと平行に塗布走査方向(X方向)での相対移動を行わせることにより、両ノズル64A,64Bの各吐出口65より滴下吐出される色素溶液CSを基板G上の各対応する半導体層204に的中させて、図7に示すように、基板G上の全ての半導体層204を色素溶液CSの塗布膜によって隈なく均一に覆うことができる。
 なお、図示の例においては、第1および第3の製品領域M1,M3と第2および第4の製品領域M2,M4との間に非製品領域が存在し、この部分では半導体層204がいったん途切れる。このように半導体層204が途切れる箇所または領域では、塗布走査中にノズル64(64A,64B)の滴下吐出を一時的に停止させてよく、それによって色素溶液CSの使用効率を一層向上させることができる。
 上記のように、この実施形態では、主チャンバ32内で基板G上の半導体層204に色素溶液CSを滴下供給するに先立って、別室の前置チャンバ30内で基板G上の半導体層204に減圧、加熱および/または除湿の乾燥処理(前処理)を選択的または多重に施すようにしている。さらには、主チャンバ32内でも減圧雰囲気を形成し、除湿も継続実施できるようにしている。こうして、この色素吸着装置10に基板Gが搬入される前に半導体層204に大気中で付着ないし浸み込んだ水蒸気(不純物)を略完全に除去した状態の下で、色素溶液滴下塗布の本処理が実施されることにより、基板G上に滴下塗布した色素溶液CSを多孔質半導体層204の内奥まで効率よく速やかに行き渡らせて、色素溶液CS中の色素を半導体層204に高純度で均一に吸着させることができる。
 この実施形態では、基板Gの後端がノズル64を通過した後、ベルトコンベア68を停止させて基板Gを主チャンバ32内にしばらく留める。この間も、主チャンバ32内の減圧状態は維持される。また、除湿を継続するのも好ましい。このように、溶液滴下塗布の本処理が終了した直後に基板Gが減圧雰囲気(あるいは減圧および除湿の雰囲気)中にしばらく放置されることによって、基板G上では半導体層204における色素吸着が円滑に促進される。
 真空排気部78によって主チャンバ32内に形成される減圧雰囲気の圧力は、半導体層204における色素溶液CSの拡がりと色素の吸着を促進させるうえで、前置チャンバ30内の減圧雰囲気の圧力よりも高い方がよく、50mTorr~100mTorrの範囲が好ましい。一方、除湿乾燥機82によって達成される乾燥度は、特に制限はないが、得られる色素吸着促進効果と用力効率の両面から露点-30℃~-50℃の範囲が好ましい。
 この実施形態の色素溶液滴下塗布モジュール12(i)においては、パイプライン方式を採るため、主チャンバ32内に基板Gが滞在する時間T32は、前置チャンバ30内の滞在時間T30と同じであり、たとえば数10秒~1分の範囲内に設定することができる。
 最後尾に位置する後置チャンバ34は、1枚の基板Gを平流し搬送で出し入れするのに適した扁平なスペースを有し、室内の雰囲気を大気圧状態と減圧状態との間で切り換えられるようになっている。基板Gを出し入れするために、後置チャンバ34の平流し搬送方向(X方向)で相対向する側壁には、前段の主チャンバ32と連結するための入口側のゲートバルブ72と、大気空間に臨む出口側のドアバルブ96とがそれぞれ取り付けられている。後置チャンバ34の中には平流し搬送用のコンベアたとえばベルトコンベア98が設けられ、後置チャンバ34の外にベルトコンベア98を駆動するためのモータ等を有する搬送駆動部100が設けられている。
 後置チャンバ34は、ゲートバルブ72を開けて減圧下で新規の基板Gを搬入し、その直後にゲートバルブ72を閉めて、室内をパージングして大気圧または正圧に切り換えるようにしている。真空引きのために、後置チャンバ34の底壁に1つまたは複数の排気口102が設けられている。各排気口102は、排気管104を介して真空ポンプまたはエジェクタを有する真空排気部106に通じている。排気管104の途中に開閉弁108が設けられている。また、パージングのために、後置チャンバ34の天井には1つまたは複数のパージガス導入口110が設けられている。各パージガス導入口110にはガス供給管112を介してパージガス供給部114が接続され、ガス供給管112の途中に開閉弁116が設けられている。パージガスには、たとえばエアまたは窒素ガスが用いられる。この実施形態では、後置チャンバ34が基板Gを1枚出し入れするのに必要最小限の容積を有するように構成されているので、真空引きおよびパージングのいずれも短時間で効率よく行える。
 後置チャンバ34の天井には、加熱乾燥用のヒータとしてたとえば面状のシーズヒータ118も設けられている。また、後置チャンバ34の片隅または底部には除湿乾燥機120も設けられている。
 かかる構成の後置チャンバ34では、ベルトコンベア98上で静止した基板G上の半導体層204に対して、色素溶液滴下塗布の後処理として、一定時間(たとえば数10秒)に亘り、パージガス供給部114による大気圧または正圧下のパージング、シーズヒータ118による加熱および/または除湿乾燥機120による除湿といった複数種類の乾燥処理が選択的または全部同時に行われるようになっている。これらの乾燥処理は、半導体層204上に滴下塗布された色素溶液CSから溶媒を比較的緩い速度で除去しながら半導体層204における色素の吸着を促進させるものであり、次工程または第2の処理(溶媒蒸発除去処理)に対する前処理でもある。
 ここで、シーズヒータ118の加熱温度は、色素溶液滴下塗布の本処理が終了した後なので、特に制限はなく、色素溶液CSの沸点より高くてもよいが、高すぎると色素吸着中の基板G上の半導体層204に望ましくない熱的影響を与えるので、200℃以下に抑制するのが好ましい。また、除湿乾燥機120によって達成される乾燥度は、特に制限はないが、得られる乾燥処理効果と用力効率の両面から露点-30℃~-50℃の範囲が好ましい。
 後置チャンバ34内に基板Gが滞在する時間T34も、前置チャンバ30および主チャンバ32内の滞在時間T30,T32と同じである。
 
[溶媒蒸発除去部およびリンス部の構成および作用]
 図8に、溶媒蒸発除去モジュール14(j)の構成を示す。この溶媒蒸発除去モジュール14(j)は、1枚の基板Gを載置して搬送するプレート122を、スライド式で引き出しのように本体熱処理室124に出し入れできるようにしている。搬送機構18が、搬送アームMU,MLのいずれか一方を用いて色素溶液滴下塗布部12より運んできた基板Gをプレート122の上に載せると(a)、プレート122はスライド移動して本体熱処理室124の中に基板Gをローディングする。本体熱処理室124内には、たとえば天井に面状ヒータ126(図2)が設けられており、このヒータ126により基板G上の半導体層204をたとえば200℃の温度で1分~2分程度の時間をかけて加熱する。この熱処理によって、基板G上の半導体層204に付着している色素溶液CSの溶媒および色素吸着過程で生成される水分が略完全に無くなるまで蒸発する。その結果、半導体層204に色素が高純度で均一に担持されるようになる。
 上記のような熱処理つまり溶媒蒸発除去処理を行っている間、プレート122は本体熱処理室124の外で待機している(c)。そして、溶媒蒸発除去処理が終了した後に、プレート122は、本体熱処理室124の中に入って基板Gを受け取り、受け取った基板Gを外に出して大気下で一定時間晒して冷却する(b)。その後、プレート122に備わっている昇降ピン128を搬送アームMU,MLと連携して昇降動作させることにより、プレート122上で処理済みの基板Gと次の基板Gとを入れ替える(a)。
 図9に、リンスモジュール16(k)の要部の構成を示す。このリンスモジュール16(k)は、環状カップ130の内側中心部に回転ステージ132を設置し、この回転ステージ132上に基板Gを載せ、回転ステージ132に備え付けているメカニカル式またはバキューム式のチャック機構(図示せず)によって基板Gを保持する。そして、回転駆動部134により回転軸136を介して基板Gを回転ステージ132と一体に適度な回転速度でスピン回転させながら、その上方に配置したノズル138よりリンス液(たとえば純水)Rを所定の流量で基板Gの表面に噴き付ける。ノズル138が移動型の場合は、ノズル138を支持するアーム140を旋回運動または揺動させて、ノズル138を基板Gの半径方向で往復移動させてよい。ノズル138が、定置型の場合は、基板Gの1回転で基板Gの全領域をカバーできるような長尺型ノズルが好ましい。このリンス処理によって、基板G上の半導体層204の表面に付着している不要な色素が除去される。このリンス処理の終了後に、ステージ132を高速回転させて、基板Gに付着しているリンス液を飛ばし、液切りする(乾燥させる)。
 このように、基板G上の半導体層204の表面に付着している不要な色素を洗い落とすことによって、光電変換効率の再現性および信頼性を向上させることができる。
 上記のように、この実施形態の色素吸着装置においては、色素増感太陽電池の製造プロセスにおいて、基板Gの被処理面に形成されている多孔質の半導体層204に増感色素を吸着させる色素吸着処理のスループットを大きく改善するとともに、色素溶液の使用量を必要最小限に抑えて色素使用効率を大幅に改善することができる。
 
[他の実施形態または変形例]
 以上、本発明の好適な一実施形態を説明したが、本発明は上述した実施形態に限定されるものではなく、その技術的思想の範囲内で他の実施形態または種種の変形が可能である。
 たとえば、色素溶液滴下塗布部12において、モジュールタクトの低下を伴うが、色素溶液滴下塗布の前処理、本処理および後処理を2つのチャンバを用いて、あるいは単一のチャンバを用いて実施するようなモジュール構成も可能である。その場合、主チャンバ32にパージ機構を増設して、真空排気部78による真空引きと該パージ機構によるパージングとを交互に切り換えるようにすればよい。
 あるいは、色素溶液滴下塗布部12において、色素溶液滴下塗布の本処理を大気圧または正圧の下で行うようなモジュール構成も可能である。その場合は、真空排気部78を省くことができる。
 色素溶液滴下塗布モジュール12(i)内の各部についても種種の変形が可能である。たとえば、モジュール12(i)内の平流し搬送機構は、ベルトコンベアに限定されず、コロを敷設するローラコンベア等も可能である。あるいは、平流し搬送機構の代わりに、搬送ロボットが搬送アームを用いて基板出し入れの一切を行うような装置構成も可能である。
 また、色素溶液滴下塗布の本処理(塗布走査)を行うために、基板Gを静止させて、ノズル64を水平方向に移動させることも可能である。上記実施形態(図6)のように半導体層204の帯状パターンと平行な方向(X方向)に滴下塗布の走査を行うのは、本発明の好適な一態様ではあるが、他の形態も可能である。たとえば、半導体層204の帯状パターンと直交する方向(Y方向)に滴下塗布の走査を行うことも可能である。その場合、走査移動の中でノズル64が半導体層204の上を通過(横断)する時だけ断続的に色素溶液を滴下吐出してもよい。あるいは、色素溶液の使用量が増えるが、ノズル64が色素溶液を連続的に滴下吐出しながら基板Gを一端から他端まで走査する形態も可能である。ノズル64は、スリット形の吐出口を有するものであってもよい。
 本発明は、上述したように色素増感太陽電池の製造プロセスにおいて多孔質の半導体層に増感色素を吸着させる工程に好適に適用できる。しかし、基板の表面に形成されている任意の薄膜(特に多孔質の薄膜)に任意の色素を吸着させる処理に本発明は適用可能である。
  10  色素吸着装置
  12  色素溶液滴下塗布部
  12(1)~12(3),12(i)   色素溶液滴下塗布モジュール
  14  溶媒蒸発除去部
  14(1)~14(12),14(j)   溶媒蒸発除去モジュール
  16  リンス部
  16(1)~16(3),16(k)   リンスモジュール
  18  搬送機構
  20  コントローラ
  30  前置チャンバ
  32  主チャンバ
  34  後置チャンバ
  40,68,98  ベルトコンベア
  48,78,106  真空排気部
  56,114  パージガス供給部
  60,118  シーズヒータ
  62,82,120  除湿乾燥機
  64  ノズル
  90  色素溶液供給部
 

Claims (20)

  1.  基板の被処理面に形成されている多孔質の半導体層に色素を吸着させる色素吸着装置であって、
     色素を所定の溶媒に溶かした色素溶液を吐出するノズルを備え、前記基板上の前記半導体層に前記色素溶液を前記ノズルより滴下して塗布する色素溶液滴下塗布部と、
     前記基板上の前記半導体層に塗布された前記色素溶液から溶媒を蒸発させて除去する溶媒蒸発除去部と、
     前記基板上の前記半導体層の表面に付いている不要な色素を洗い落として除去するリンス部と
     を有する色素吸着装置。
  2.  前記ノズルが、前記基板上に形成される前記半導体層のパターンに応じた口径およびピッチの吐出口を多数有する、請求項1に記載の色素吸着装置。
  3.  前記色素溶液滴下塗布部が、前記基板上で前記色素溶液の塗布膜が前記半導体層を隈なく覆うように、前記ノズルと前記基板との間で相対的な移動を行わせる走査機構を有する、請求項1に記載の色素吸着装置。
  4.  前記色素溶液滴下塗布部が、大気から独立した雰囲気を形成できる第1のチャンバを有し、前記基板上の前記半導体層に対する前記色素溶液の滴下塗布を前記第1のチャンバの中で行う、請求項1に記載の色素吸着装置。
  5.  前記第1のチャンバの室内を減圧状態にするための第1の真空排気部を有する、請求項4に記載の色素吸着装置。
  6.  前記第1のチャンバの室内を除湿するための第1の除湿乾燥機を有する、請求項4に記載の色素吸着装置。
  7.  前記第1のチャンバ内に前記基板を平流しで出し入れするための第1の搬送機構を有する、請求項4に記載の色素吸着装置。
  8.  前記色素溶液滴下塗布部が、大気から独立した雰囲気を形成できる第2のチャンバを有し、前記基板上の前記半導体層に対する前記色素溶液の滴下塗布に先立つ所定の前処理を前記第2のチャンバの中で行う、請求項1に記載の色素吸着装置。
  9.  前記第2のチャンバの室内を減圧状態にするための第2の真空排気部を有する、請求項8に記載の色素吸着装置。
  10.  前記第2のチャンバ内で前記基板上の前記半導体層の表面を加熱するための第1の加熱部を有する、請求項8に記載の色素吸着装置。
  11.  前記第2のチャンバの室内を除湿するための第2の除湿乾燥機を有する、請求項8に記載の色素吸着装置。
  12.  前記第2のチャンバ内に前記基板を平流しで出し入れするための第2の搬送機構を有する、請求項8に記載の色素吸着装置。
  13.  前記色素溶液滴下塗布部が、大気から独立した雰囲気を形成できる第3のチャンバを有し、前記基板上の前記半導体層に対する前記色素溶液の滴下塗布に続く所定の後処理を前記第3のチャンバの中で行う、請求項4に記載の色素吸着装置。
  14.  前記第3のチャンバ内にパージガスを供給して室内を大気圧状態または正圧状態にするためのパージ機構を有する、請求項13に記載の色素吸着装置。
  15.  前記第3のチャンバ内で前記基板上の前記半導体層の表面を加熱するための第2の加熱部を有する、請求項13に記載の色素吸着装置。
  16.  前記第3のチャンバの室内を除湿するための第3の除湿乾燥機を有する、請求項13に記載の色素吸着装置。
  17.  前記第3のチャンバ内に前記基板を平流しで出し入れするための第3の搬送機構を有する、請求項13に記載の色素吸着装置。
  18.  基板の被処理面に形成されている多孔質の半導体層に色素を吸着させる色素吸着方法であって、
     色素を所定の溶媒に溶かした色素溶液を吐出するノズルにより、前記基板上の前記半導体層に前記色素溶液を滴下して塗布する第1の工程と、
     前記基板上の前記半導体層に塗布された前記色素溶液から溶媒を蒸発させて除去する第2の工程と、
     前記基板上の前記半導体層の表面に付いている不要な色素を洗い落として除去する第3の工程と
     を有する色素吸着方法。
  19.  前記半導体層のパターンに応じた口径およびピッチの吐出口を多数有する前記ノズルを用いて、前記ノズルの吐出口より滴下吐出される色素溶液を半導体層のパターン領域に限定して塗布する、請求項18に記載の色素吸着方法。
  20.  前記第1の工程において、前記基板上で前記色素溶液の塗布膜が前記半導体層を隈なく覆うように、前記ノズルと前記基板との間で相対的な移動を行わせる、請求項18に記載の色素吸着方法。
PCT/JP2012/002809 2011-06-29 2012-04-24 色素吸着装置および色素吸着方法 WO2013001699A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280031621.5A CN103650233A (zh) 2011-06-29 2012-04-24 染料吸附装置以及染料吸附方法
US14/129,145 US20140134776A1 (en) 2011-06-29 2012-04-24 Dye adsorption device and dye adsorption method
EP12805290.9A EP2728663A4 (en) 2011-06-29 2012-04-24 Dye adsorption device and dye adsorption method
KR1020137034148A KR20140040759A (ko) 2011-06-29 2012-04-24 색소 흡착 장치 및 색소 흡착 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011144542A JP5520258B2 (ja) 2011-06-29 2011-06-29 色素吸着装置及び色素吸着方法
JP2011-144542 2011-06-29

Publications (1)

Publication Number Publication Date
WO2013001699A1 true WO2013001699A1 (ja) 2013-01-03

Family

ID=47423632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002809 WO2013001699A1 (ja) 2011-06-29 2012-04-24 色素吸着装置および色素吸着方法

Country Status (7)

Country Link
US (1) US20140134776A1 (ja)
EP (1) EP2728663A4 (ja)
JP (1) JP5520258B2 (ja)
KR (1) KR20140040759A (ja)
CN (1) CN103650233A (ja)
TW (1) TW201316593A (ja)
WO (1) WO2013001699A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10434804B2 (en) 2008-06-13 2019-10-08 Kateeva, Inc. Low particle gas enclosure systems and methods
US11975546B2 (en) 2008-06-13 2024-05-07 Kateeva, Inc. Gas enclosure assembly and system
KR101970449B1 (ko) 2013-12-26 2019-04-18 카티바, 인크. 전자 장치의 열 처리를 위한 장치 및 기술
US9343678B2 (en) * 2014-01-21 2016-05-17 Kateeva, Inc. Apparatus and techniques for electronic device encapsulation
EP3975229A1 (en) 2014-01-21 2022-03-30 Kateeva, Inc. Apparatus and techniques for electronic device encapsulation
KR102059313B1 (ko) 2014-04-30 2019-12-24 카티바, 인크. 가스 쿠션 장비 및 기판 코팅 기술

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246076A (ja) * 2001-02-15 2002-08-30 Nec Corp 色素増感湿式太陽電池の製造方法
JP2005347136A (ja) * 2004-06-04 2005-12-15 Sony Corp 色素増感型光電変換装置の製造方法
JP2006244954A (ja) 2005-03-07 2006-09-14 Fujimori Kogyo Co Ltd 色素増感型太陽電池セルの配線接続構造および色素増感型太陽電池モジュール
JP2010218788A (ja) * 2009-03-16 2010-09-30 National Institute Of Advanced Industrial Science & Technology 色素増感太陽電池
JP2011048938A (ja) * 2009-08-25 2011-03-10 Sony Corp 色素増感型太陽電池モジュールの製造方法及びリンス装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002337090A1 (en) * 2002-09-12 2004-04-30 Agfa-Gevaert N-type metal oxide semiconductor spectrally sensitized with a cationic spectral sensitizer
WO2011105089A1 (ja) * 2010-02-25 2011-09-01 東京エレクトロン株式会社 色素増感太陽電池の製造装置及び色素増感太陽電池の製造方法
JP5584653B2 (ja) * 2010-11-25 2014-09-03 東京エレクトロン株式会社 基板処理装置及び基板処理方法
US20140102526A1 (en) * 2011-06-24 2014-04-17 Sony Corporation Photoelectric conversion device, method for manufacturing same, dye adsorption device, liquid retaining jig used for dye adsorption device, and method for manufacturing photoelectric conversion element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246076A (ja) * 2001-02-15 2002-08-30 Nec Corp 色素増感湿式太陽電池の製造方法
JP2005347136A (ja) * 2004-06-04 2005-12-15 Sony Corp 色素増感型光電変換装置の製造方法
JP2006244954A (ja) 2005-03-07 2006-09-14 Fujimori Kogyo Co Ltd 色素増感型太陽電池セルの配線接続構造および色素増感型太陽電池モジュール
JP2010218788A (ja) * 2009-03-16 2010-09-30 National Institute Of Advanced Industrial Science & Technology 色素増感太陽電池
JP2011048938A (ja) * 2009-08-25 2011-03-10 Sony Corp 色素増感型太陽電池モジュールの製造方法及びリンス装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2728663A4

Also Published As

Publication number Publication date
EP2728663A1 (en) 2014-05-07
JP5520258B2 (ja) 2014-06-11
KR20140040759A (ko) 2014-04-03
EP2728663A4 (en) 2014-12-10
CN103650233A (zh) 2014-03-19
US20140134776A1 (en) 2014-05-15
JP2013012404A (ja) 2013-01-17
TW201316593A (zh) 2013-04-16

Similar Documents

Publication Publication Date Title
JP5520258B2 (ja) 色素吸着装置及び色素吸着方法
US10490427B2 (en) Apparatus for treating substrate
KR100307721B1 (ko) 기판양면세정장치및이것을사용하는세정방법
JP4033689B2 (ja) 液処理装置および液処理方法
JP5584653B2 (ja) 基板処理装置及び基板処理方法
WO2014082212A1 (en) Method and apparatus for cleaning semiconductor wafer
JPH0917761A (ja) 洗浄処理装置
JP5551625B2 (ja) 基板処理装置及び基板処理方法
JP2013254904A (ja) 基板処理装置及び基板処理方法
KR20090013732A (ko) 기판 지지 기구 및 감압 건조 장치 및 기판 처리 장치
JP5735809B2 (ja) 基板処理装置
KR20190111100A (ko) 기판 처리 장치 및 기판 처리 방법
US7404409B2 (en) Substrate processing system and substrate processing method
US9093222B2 (en) Dye adsorption apparatus and dye adsorption method
KR101979604B1 (ko) 기판 처리 방법
JPWO2003001579A1 (ja) 基板処理装置及び基板処理方法
JP2001023907A (ja) 成膜装置
KR100330720B1 (ko) 기판처리장치
TWI640659B (zh) 基板處理系統及基板處理方法
JP5597602B2 (ja) 基板処理装置、基板処理方法及びその基板処理方法を実行させるためのプログラムを記録した記憶媒体
JP2004111073A (ja) 薄膜形成装置
WO2011142193A1 (ja) 金属膜形成システム、金属膜形成方法及びコンピュータ記憶媒体
KR102193031B1 (ko) 기판처리장치 및 방법
JP2008166820A (ja) 基板処理装置、基板処理方法、基板の製造方法及び電子機器
TW202248463A (zh) 預濕模組及預濕方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137034148

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012805290

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14129145

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE