WO2013001645A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2013001645A1
WO2013001645A1 PCT/JP2011/065093 JP2011065093W WO2013001645A1 WO 2013001645 A1 WO2013001645 A1 WO 2013001645A1 JP 2011065093 W JP2011065093 W JP 2011065093W WO 2013001645 A1 WO2013001645 A1 WO 2013001645A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
rotating electrical
heat exchanger
electrical machine
Prior art date
Application number
PCT/JP2011/065093
Other languages
English (en)
French (fr)
Inventor
守 木村
小村 昭義
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to US14/127,629 priority Critical patent/US9419498B2/en
Priority to CN201180072018.7A priority patent/CN103636103B/zh
Priority to JP2013522600A priority patent/JP5629828B2/ja
Priority to PCT/JP2011/065093 priority patent/WO2013001645A1/ja
Publication of WO2013001645A1 publication Critical patent/WO2013001645A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing

Definitions

  • the present invention relates to a rotating electrical machine having a heat exchanger for cooling a rotor.
  • Patent Document 1 has a structure in which a cooling refrigerant passage is provided on the outer periphery of a stator core of a rotating electrical machine, a refrigerant that changes from a liquid phase to a gas phase is caused to flow through the passage, and heat generated by a stator coil is absorbed by the refrigerant. Is disclosed.
  • Patent Document 2 discloses a rotating electric machine having the following rotor cooling structure.
  • a hole is provided in the rotor shaft.
  • An air fan that ventilates the inside air through the air hole, and an air fan that vents the inside air in the gap between the stator and the rotor, and an outside air fan that ventilates the outside air are provided, and heat is exchanged between the inside air and the outside air.
  • a heat exchanger is provided outside the stator.
  • a heat exchanger is provided outside the stator.
  • the inside air exchanges heat with the coil end before flowing into the gap, and as a result, the heated inside air flows into the gap. As a result, the rotor could not be cooled efficiently.
  • a rotating electric machine a stator having a stator core and a stator coil, a rotor provided rotatably with respect to the stator via a gap, A housing that houses the rotor and the rotor, a blower fan that circulates the air inside the housing through the gap and circulates in the housing, a heat exchanger that cools the air circulated by the blower fan, and a cooling by the heat exchanger And an air guide plate in which an air guide path for guiding the cooling air is formed so that the air flows into the gap without contacting the stator coil.
  • the casing in the rotating electrical machine according to the first aspect, includes a cylindrical main body, a front bracket and a rear bracket that cover both ends of the main body and respectively support both ends of the rotating shaft.
  • the heat exchanger is preferably attached so as to be in contact with either the front bracket or the rear bracket, and is cooled from the outside air through the front bracket or the rear bracket with which the heat exchanger is in contact.
  • the wind guide plate is provided at the cooling air inlet of the gap, and the end portion of the stator coil is disposed outside the wind guide path. It is preferable to be provided.
  • the wind guide plate has the end portion of the stator coil guided between the cooling air outlet of the heat exchanger and the end face of the stator core. It is preferable to be disposed outside the wind path.
  • the rotor is disposed inside the stator, the heat exchanger is an annular body, and the annular heat exchanger is coaxial with the rotation axis of the rotor and is a front bracket or a rear bracket.
  • the rotating electric machine in the rotating electrical machine according to any one of the first to fifth aspects, further includes a rotating shaft connected to the rotor, and the blower fan is mounted on the rotating shaft. Preferably it is.
  • the blower fan is preferably a push-type blower fan or a centrifugal blower fan attached to one end of the rotating shaft.
  • the blower fan includes a first blower fan installed at one end of the rotary shaft and a second blower fan installed at the other end of the rotary shaft. It is preferable that one of the first and second sending fans is a push-in type fan and the other is a centrifugal type fan.
  • the heat exchanger includes first and second heat exchangers provided at both ends of the rotating shaft, respectively.
  • the stator includes a plurality of stator radial ducts that penetrate from the axial central portion of the gap to the circumferential surface in the radial direction, and the blower fan is It is preferable to include push-type first and second blower fans respectively provided at both ends of the rotating shaft.
  • the rotor in the rotating electrical machine according to the tenth aspect, includes a plurality of rotor radial ducts drilled from the central portion in the axial direction of the gap toward the inner diameter direction, It is preferable to include a rotor axial duct that extends from both end faces in the direction of the rotation axis and communicates with the rotor radial duct.
  • the stator in the rotating electric machine according to the ninth aspect, includes a plurality of stator split cores, the rotor includes a plurality of rotor split cores, and the plurality of stator split cores.
  • a stator radial duct structure having a plurality of duct spaces penetrating in a radial direction from the axial center of the gap is provided between two continuous stator split cores, and a plurality of rotor split cores are provided.
  • a rotor radial duct structure having a plurality of duct spaces penetrating in a radial direction from the axial central portion of the rotor axial duct is provided between two continuous rotor split cores
  • a blower fan Preferably includes push-type first and second blower fans respectively provided at both ends of the rotating shaft.
  • the blower fan is provided on the outer peripheral side of the stator and is driven to rotate from outside the rotating electrical machine.
  • the heat exchanger exchanges heat between the refrigerant supplied from the outside of the rotating electrical machine and the cooling air.
  • the casing includes a cylindrical main body, a front bracket and a rear bracket that cover both ends of the main body, and the heat exchanger includes the front bracket or It is preferable that it is provided in the vicinity of the rotor without contacting the rear bracket.
  • the rotor can be efficiently cooled.
  • the permanent magnet of the rotor is efficiently cooled, so that a rotating machine with a high output density can be realized.
  • FIG. 1 is a schematic diagram showing a first embodiment of a rotating electrical machine according to the present invention.
  • A is the structure which provided the fan on the opposite side to the heat exchanger for rotor cooling on both sides of a rotor.
  • B is a modification of the first embodiment, in which a fan is provided on the rotor cooling heat exchanger side.
  • FIG. 2 is a schematic view of a part of a cross section in a plane perpendicular to the axial direction of the rotary electric machine of FIG. 1 along line AA. It is the schematic which shows 2nd Embodiment of the rotary electric machine by this invention. It is the schematic which shows 3rd Embodiment of the rotary electric machine by this invention.
  • FIG. 1 It is a figure which shows 8th Embodiment of the rotary electric machine by this invention.
  • (B) is a schematic cross-sectional view of the rotary electric machine 1 shown in (a) on a plane perpendicular to the axial direction along the line DD, and shows a schematic structure of the radial duct 18 provided in the stator. It is the schematic which shows 9th Embodiment of the rotary electric machine by this invention.
  • (B) is a schematic cross-sectional view of the rotary electric machine 1 shown in (a) on a plane perpendicular to the axial direction along the line EE, and shows a schematic structure of the rotor radial duct 22 provided in the rotor.
  • FIG. 1 It is a figure for demonstrating the structure of the axial duct 21 and the rotor radial duct 22 which are shown in FIG.
  • (A) is the figure which took out only the rotor 9 and looked from the direction orthogonal to an axial direction.
  • (B) is the figure which looked at the rotor 9 from the axial direction.
  • FIG. 1 It is the schematic which shows 10th Embodiment of the rotary electric machine by this invention.
  • (A) is an axial sectional view showing the structure of the tenth embodiment provided with two divided stator cores and two divided rotor cores.
  • (B) shows the appearance of a stator radial duct structure provided between the two stator cores 3a and 3b, and (c) shows a rotor radial duct structure provided between the two rotor cores 9a and 9b. Shows the appearance of the body. It is the schematic which shows 11th Embodiment of the rotary electric machine by this invention. It is the schematic which shows 12th Embodiment of the rotary electric machine by this invention. (B) shows a cross section of the rotating electrical machine shown in (a) cut along a plane perpendicular to the axial direction along line FF.
  • Fig.1 (a) is the cross-sectional schematic of the generator axial direction of the permanent-magnet-type rotary electric machine 1 which is the 1st Embodiment of this invention.
  • a stator 3 and a rotor 9 and a fan 13 and heat exchangers 4 and 15 for cooling them are provided inside the housing 2.
  • This structure is suitable for a permanent magnet type rotating electrical machine of several hundred kW to several tens MW.
  • the housing 2 includes a cylindrical main body 2c, and a front bracket 2a and a rear bracket 2b that cover an end portion in the axial direction of the cylindrical main body 2c.
  • the brackets 2a and 2b are removable from the cylindrical main body 2c.
  • the stator 3 is a distributed winding stator in which, for example, coils 5 are distributed in a distributed manner. Regardless of the combination of the number of slots, the coil 5 may employ short-pitch winding, full-pitch winding, or concentrated winding.
  • a heat exchanger 4 for cooling the stator is disposed on the outer peripheral surface of the stator 3.
  • the heat exchanger 4 is air-cooled and is cooled by air circulated by a fan 13.
  • FIG. 2 which is a view of FIG. 1 (a) cut along a plane AA perpendicular to the axial direction, fins cooled by air circulated inside the rotating electrical machine are arranged on the outer peripheral surface of the stator core. It can be set as the structure protrudingly provided.
  • a rotor 9 is disposed inside the stator 3 so as to be rotatable through a gap 12.
  • the rotor 9 has a rotor core 8 and a permanent magnet 7 embedded outside the rotor core 8.
  • a rotating shaft 10 is projected from both ends of the rotor core 8, and both ends of the rotating shaft 10 are supported by bearings (not shown) provided on the front bracket 2a and the rear bracket 2b, respectively.
  • a centrifugal fan 13 that rotates together with the rotating shaft 10 is disposed on one end side of the rotating shaft 10, and the refrigerant in the housing 2, in this embodiment, air circulates by the fan 13.
  • the arrows in FIG. 1 indicate the flow of the refrigerant. That is, the refrigerant is a first circulation passage P1 by the gap 12 between the stator 3 and the rotor 9, a second circulation passage P2 between the stator coil end and the rear bracket 2b, and a stator cooling heat exchanger. 4 circulates in the circulation path constituted by the third circulation path P3 between the peripheral surface of the cylinder 4 and the cylindrical body 2c and the fourth circulation path P4 between the stator coil end and the front bracket 2a.
  • a heat exchanger 15 is arranged in a circulation passage P4 formed between the front bracket 2a and the stator 3.
  • the heat exchanger 15 has an annular outer shape and is attached to the front bracket 2a coaxially with the rotary shaft 10.
  • the heat exchanger 15 is an air-cooled type that is air-cooled through, for example, the front bracket 2a.
  • the heat exchanger 15 is a rectangular tube (see FIG. 6) or a ring (see FIG. 7) as a whole.
  • a wind guide plate 14 is provided between the heat exchanger 15 and the end face of the stator core.
  • the air guide plate 14 is cooled by the heat exchanger 15 and guides the cooling air so that the air flows into the gap 12 without contacting the stator coil ends.
  • the air guide plate 14 is formed in a funnel shape that guides the cooling air flowing out from the cooling air outlet of the heat exchanger 15 in the direction along the rotation axis, and guides the cooling air from the circulation passage P4 to the circulation passage P1. Constructs a wind guide path. Therefore, the end portion of the stator coil is located outside the air guide plate 14 that is the air guide path.
  • the air guide plate 14 is preferably in contact with the stator 3 through a packing having good heat insulation and vibration damping properties such as synthetic rubber, silicon rubber, or plastic.
  • a packing having good heat insulation and vibration damping properties such as synthetic rubber, silicon rubber, or plastic.
  • the refrigerant is cooled by heat exchange with a heat absorbing portion of the rotor cooling heat exchanger 15 disposed in the circulation passage P4, for example, a coolant or fins, and the stator 3 is in contact with the outer periphery of the stator core. It is cooled from the outer periphery by the heat exchanger 4 provided as described above.
  • the entire amount of the refrigerant flowing into the P4 from the circulation passage P3 by the rotation of the centrifugal fan 13 is introduced from the outer peripheral surface of the annular body of the heat exchanger 15 to the inner peripheral portion thereof. All the cooled refrigerant is introduced into the gap 12.
  • the refrigerant cooled from the front bracket 2a side flows into the gap 12, flows back from the rear bracket 2b side along the inner surface of the cylindrical main body 2c to the front bracket 2a side again, and in the heat exchanger 15
  • the refrigerant is cooled, that is, the refrigerant flows through the circulation passages P1-P2-P3-P4.
  • the fan, heat exchanger, air guide plate, etc. are all arranged in the left and right reversed arrangement in FIG. Then, it may circulate in the opposite direction.
  • the front bracket 2a and the rear bracket 2b are also merely used here to distinguish the brackets on both sides of the rotating shaft, and the left and right sides may be reversed at the position shown in FIG. In the following description of the embodiment, it is the same even if the left and right sides are reversed in FIGS. 2 to 14. For convenience, it is assumed that the refrigerant flows into the gap 12 from the left side of the figure, and the left bracket is the front bracket and the right bracket. Is the rear bracket.
  • the outer peripheral portion of the rotor core 8 in which the permanent magnet 7 is embedded eddy current loss occurs due to slot ripple, power harmonics, etc., and heat is generated, and the temperature rises.
  • the permanent magnet 7 has temperature dependence, and the characteristics are lowered as the temperature rises. Furthermore, when the magnet operating point exceeds the nick point, irreversible demagnetization occurs. Therefore, the outer peripheral portion of the rotor core 8 needs to be sufficiently cooled so that the permanent magnet does not exceed the knick point.
  • the coil 5 has a higher temperature rise limit than the permanent magnet 7.
  • the temperature of the permanent magnet 7 determines the upper limit of the operating temperature of the permanent magnet type rotating electrical machine. That is, in order to reduce the size and increase the output density of the permanent magnet type rotating electrical machine, it is most important to improve the cooling performance of the permanent magnet. Therefore, when the heat exchanger 15 is disposed in the circulation passage, if the heat exchanger is installed only on the outer peripheral side of the stator as in the prior art, the refrigerant (for example, air) generates a heat generating part (for example, a coil end) other than the magnet in the ventilation path. The magnet cannot be preferentially cooled due to heat exchange with the stator core.
  • a refrigerant that does not exchange heat with a heat generating member such as a coil end can preferentially cool the rotor 9, and the permanent embedded in the rotor 9.
  • the magnet 7 can be kept at a low temperature.
  • the structure which can cool the rotor 9 efficiently can be achieved by enabling the heat exchanger 15 to be actively disposed in the vicinity of the rotor. By preferentially cooling the rotor 9 in this way, the temperature rise of the magnet can be reduced, and the permanent magnet type rotating electrical machine can be downsized.
  • the centrifugal fan 13 is rotated, and the air in the housing 2 is circulated from the circulation path P1 ⁇ P2 ⁇ P3 ⁇ P4. ⁇ Circulate as P1.
  • the air flowing into the circulation path P3 to P4 flows from the outer peripheral surface of the heat exchanger 15 into the inner peripheral space.
  • the circulating air is cooled by heat exchange in the heat exchanger 15.
  • the circulation path P4 is provided with an air guide plate 14 that allows the entire amount of air flowing from the circulation path P3 to flow into the heat exchanger 15.
  • the air guide plate 14 functions as a baffle plate that prevents air from flowing directly from the circulation passage P3 to the refrigerant inlet of the gap 12. Due to the presence of the air guide plate 14, it is possible to prevent the heated air from flowing into the circulation path P 4 from the circulation path P 3 and contacting the coil end of the stator 3 from flowing into the gap 12. Since only the air cooled by the heat exchanger 15 flows into the gap 12, the rotor 9 can be efficiently cooled.
  • FIG.1 (b) is a figure which shows the modification of 1st Embodiment.
  • a pushing fan 16 is arranged on the inner peripheral side of the heat exchanger 15.
  • air circulation similar to that of the rotating electrical machine of FIG. 1A can be realized, and the same effects can be achieved.
  • stator cooling heat exchanger 4 can be adopted in accordance with the output of the rotating electrical machine 1 and the heat generated by the stator 3. Instead of the air-cooled heat exchanger 4 shown in FIGS. 1A and 2, a liquid-cooled heat exchanger that cools the refrigerant liquid cooled from the outside of the rotating electrical machine 1 is supplied to the heat exchanger. May be. (3) When the output of the rotating electrical machine is small, the heat exchanger 4 is not necessary because the heat generation is small. That is, the heat exchanger 4 is not an essential component in the rotating electric machine of FIGS. 1 (a) and 1 (b).
  • the annular heat exchanger 15 centered on the rotating shaft 10 is provided, but the rotating electrical machine according to the present invention is not limited to the annular heat exchanger 15. .
  • the fan output (refrigerant flow rate), the capacity of the heat exchanger, and the number of these are designed so that the output and capacity are sufficient to cool the heat generated in the rotor and stator.
  • the heat exchanger 15 has been described as an air-cooled type that is air-cooled via the front bracket 2a, a liquid-cooled type that introduces a refrigerant from the outside and exchanges heat with the air inside the rotating electrical machine may be adopted.
  • the type of heat exchanger to be selected is designed according to the output of the motor, and is designed so that the heat generated by the motor does not impair the performance of the permanent magnet, as will be described later.
  • the heat exchanger 15 and the air guide plate 14 are separated, they may be integrated.
  • FIG. 3 is a diagram for explaining the rotating electrical machine according to the second embodiment.
  • FIGS. 1A and 1B show an example in which the heat exchanger 15 is installed on the inlet side to the refrigerant gap 12, that is, on the front bracket 2a side.
  • the pushing fan 16 is provided on the refrigerant inlet side of the gap, that is, on the front bracket 2a side, and the heat exchanger 15 is installed on the opposite side, that is, on the rear bracket 2b side.
  • a funnel-shaped air guide plate 14 is provided on the end face of the stator core so that the refrigerant warmed by the coil 5 does not enter directly from the refrigerant inlet side of the gap 12. To do.
  • the air that has flowed into the circulation path P4 flows through the funnel-shaped air guide path inside the air guide plate 14 and into the circulation path P1 that is the gap 12, and cools the rotor 9 efficiently. Due to the presence of the air guide plate 14 in the circulation passage P4, it is possible to prevent the heated air flowing into the circulation passage P4 from the circulation passage P3 and contacting the coil end of the stator 3 from directly flowing into the gap 12.
  • FIG. 4 is a diagram illustrating a rotating electrical machine according to the third embodiment.
  • an annular heat exchanger is additionally arranged on the refrigerant outlet side of the gap 12 with respect to the rotating electrical machine shown in FIG. That is, in the rotary electric machine according to the third embodiment, the heat exchanger 15a and the heat exchanger 15b are respectively disposed at both the refrigerant inlet / outlet of the gap 12.
  • the size of the heat exchangers 15a and 15b, that is, the heat exchange performance may not be the same.
  • the fan 13 rotates when the rotor 9 is rotated by the drive signal, and the air in the housing 2 is circulated from the circulation path P1 ⁇ P2 ⁇ P3 ⁇ P4 ⁇ . It circulates like P1.
  • the air flowing into the circulation passage P1 to P2 flows from the inner peripheral side to the outer peripheral side of the heat exchanger 15b.
  • the air is cooled by heat exchange in the heat exchanger 15b.
  • the cooled air flows from the circulation passage P2 into the circulation passages P3 and P4.
  • the air flowing into the circulation path P4 flows into the inner space from the outer peripheral surface of the heat exchanger 15. In this process, the circulating air is cooled by heat exchange in the heat exchanger 15.
  • the circulation path P4 is provided with an air guide plate 14 that allows the entire amount of air flowing from the circulation path P3 to flow into the heat exchanger 15.
  • the air guide plate 14 functions as a baffle plate that prevents air from flowing directly from the circulation passage P3 to the refrigerant inlet of the gap 12. Due to the presence of the air guide plate 14, it is possible to prevent the heated air from flowing into the circulation path P 4 from the circulation path P 3 and contacting the coil end of the stator 3 from flowing into the gap 12. As a result, the rotor 9 is efficiently cooled.
  • FIG. 5 is a diagram illustrating a rotating electrical machine according to the fourth embodiment.
  • an annular heat exchanger is additionally arranged on the refrigerant outlet side of the gap 12 with respect to the rotating electrical machine shown in FIG.
  • the heat exchanger 15a and the heat exchanger 15b are arranged at both the refrigerant inlet and outlet of the gap 12, respectively.
  • the size of the heat exchangers 15a and 15b, that is, the heat exchange performance may not be the same.
  • the cooling heat exchangers 15, 15 a, 15 b for the refrigerant flowing into the gap 12 have been described as annular heat exchangers having the rotation shaft 10 as a central axis.
  • specific examples of the rotor cooling heat exchangers 15, 15 a, and 15 b formed in an annular shape will be described as fifth and sixth embodiments.
  • FIG. 6 shows a rotating electrical machine according to the fifth embodiment.
  • 6A shows the arrangement of the heat exchanger 15 when the rotary electric machine is viewed from the axial direction
  • FIG. 6B is a cross-sectional view taken along the line BB of FIG. 6A.
  • the heat exchanger is shown as a plan view with the front bracket 2a or the rear bracket 2b removed, so that the positional relationship of each component inside the housing is easily understood.
  • the housing 2 is shown as a cylinder with an octagonal cross section. It may be round or polygonal.
  • the divided heat exchangers 15-1 to 15-4 having a rectangular shape in plan view around the rotation shaft 10 are arranged.
  • One end of each of the divided air guide plates 14-1 to 14-4 is connected to each of the divided heat exchangers 15-1 to 15-4, and the other end of each of the divided air guide plates 14-1 to 14-4 is Contact is made in the vicinity of the gap 12 on the end face of the stator core.
  • FIG. 6B shows the divided heat exchangers 15-1 to 15-3 and the divided air guide plates 14-1 to 14-3.
  • One ends of the divided air guide plates 14-1 to 14-4 are straight and are connected to the inner peripheral edges of the divided heat exchangers 15-1 to 15-4.
  • the other end of each of the divided air guide plates 14-1 to 14-4 that is, the portion in contact with the end surface of the stator core is formed in an arc shape.
  • adjacent sides of the divided air guide plates 14-1 to 14-4 are in close contact with each other, and the total amount of air introduced and cooled into the divided heat exchangers 15-1 to 15-4 is cooled. Is allowed to flow into the refrigerant inlet side of the gap 12 without leaking.
  • the air guide plate 14 has a funnel shape with a rectangular cross section.
  • the divided air guide plates 14-1 to 14-4 may be fixed to the divided heat exchangers 15-1 to 15-4, or may be fixed to the end face of the stator core. Assembly is easier if it is fixed to the -1 to 15-4 side.
  • the divided air guide plates 14-1 to 14-4 are preferably in contact with the stator 3 through a packing having good heat insulation and vibration damping properties such as synthetic rubber, silicon rubber, or plastic.
  • the square tubular heat exchanger 15 is constituted by four divided heat exchangers 15-1 to 15-4.
  • the heat exchanger may be configured by a larger number of divided heat exchangers.
  • FIG. 7 shows a rotating electrical machine according to the sixth embodiment.
  • the rotating electrical machine according to the sixth embodiment includes an annular heat exchanger 15.
  • 7A shows the arrangement of the annular heat exchanger 15 when the rotary electric machine is viewed from the axial direction
  • FIG. 7B is a cross-sectional view taken along the line CC of FIG. 7A.
  • the fins provided on the outer peripheral surface of the heat exchanger are provided radially with respect to the rotating shaft 10.
  • the air guide plate 14 has a funnel shape with a circular cross section.
  • the large-diameter end of the air guide plate 14 is connected to a circular air outlet of the heat exchanger 15, and the small-diameter end of the air guide plate 14 surrounds the cooling air inlet of the gap 12 at the stator end face.
  • the heat exchanger 15 is a flat annular body, and one end surface thereof is provided in contact with the front bracket 2a so as to dissipate heat to the front bracket 2a.
  • a circular air outlet is opened at the other end surface of the annular heat exchanger 15.
  • FIG. 8 shows a rotating electrical machine according to the seventh embodiment.
  • the rotating electrical machine shown in FIG. 8 is provided with heat exchangers 15 a and 15 b on both the front bracket 2 a and the rear bracket 2 b, and fans 13 and 16 on both ends of the rotating shaft 10.
  • the pushing fan 16 is disposed on the inner peripheral side of the heat exchanger 15a, and the centrifugal fan 13 is disposed on the inner peripheral side of the heat exchanger 15b.
  • the heat exchangers 15a and 15b may have the same capacity or different capacities.
  • the cooling air is pushed into the cooling air inlet of the gap 12 from the push-in type blowing fan 16, the cooling air is sucked out from the cooling air outlet of the gap 12 by the centrifugal blowing fan 13, and the air circulates in the housing 2. Compared with the case of using one fan, the air flow rate can be increased.
  • FIG. 9 shows a rotating electrical machine according to the eighth embodiment.
  • a stator radial duct 18 that penetrates from the gap 12 to the outer periphery in the radial direction at the center of the stator 3 of the rotating electrical machine of the seventh embodiment shown in FIG.
  • pushing fans 16a and 16b are installed on the inner peripheral sides of both heat exchangers 15a and 15b.
  • the outputs (air flow rate) of the two pushing fans 16a and 16b and the cooling capacities of the two heat exchangers 15a and 15b are designed to be approximately equal.
  • the above-described funnel-shaped air guide plates 14a and 14b are respectively provided between the opposing end surfaces of the stator 3 and the outer peripheral edges of the heat exchangers 15a and 15b.
  • the stator radial duct 18 functions as a circulation passage P5 inside the rotating electrical machine.
  • the air that is pushed in by the pushing fans 16a and 16b from both axial sides of the gap 12 toward the central portion passes through the stator 3 in the radial direction. It is led to the circulation passage P3 through the radial duct 18 (circulation passage P5).
  • the divided air divided into two flows in the circulation path P3 passes through the heat exchangers 15a and 15b in the circulation paths P2 and P4, and is sent to the gap 12 (circulation path P1) by the pushing fans 16a and 16b.
  • An air circulation path is formed.
  • FIG. 9B shows the structure of the rotating electrical machine 1 cut along a line perpendicular to the axial direction along the line DD and only a part of the stator core 3 is enlarged as shown in FIG. 9A. It is the schematic shown so that it might become easy.
  • a plurality of teeth 19 and slots 20 are formed in the stator core corresponding to the number of magnetic poles of the rotating electrical machine.
  • a coil (winding) 5 is installed inside the slot 20.
  • a stator radial duct 18 shown at the center of the stator 3 in FIG. 9A is provided on the teeth 19.
  • stator radial duct 18 is shown to be provided for each tooth 19 at the axial center of the stator 3, but the stator radial duct 18 is shown in FIG. As shown to (a), what is necessary is just to provide two or more so that it may become symmetrical with respect to a rotating shaft. The reason why the stator radial duct 18 is provided symmetrically with respect to the rotational axis is to prevent the magnetic properties of the magnetic poles of the stator 3 from being disturbed.
  • the cross section of the stator radial duct 18 may be rectangular or circular.
  • the stator 3 is further cooled by the cooling air flowing through the stator radial duct 18 of the stator core, as compared with the rotating electrical machines of the first to seventh embodiments. Therefore, the permanent magnet 7 that is in contact with the stator 9 via the gap 12 is further cooled.
  • FIG. 10 shows a rotating electrical machine according to the ninth embodiment.
  • the cooling air is further circulated inside the rotor 9 in addition to the rotating electrical machine of the eighth embodiment to improve the cooling efficiency.
  • a rotor axial duct 21 for cooling the outer periphery of the rotating shaft 10 is provided along the axial direction of the rotor 9.
  • the rotor axial duct 21 is illustrated as being inserted through the rotor axial duct 21, but actually, as shown in FIG. 10B, the rotor axial duct 21 is It is formed between the rotary shaft 10 and the rotor core 8 so as to penetrate in the axial direction.
  • a radial duct 22 that penetrates in the radial direction at the center of the rotor core 8 is provided.
  • the rotor axial duct 21 and the rotor radial duct 22 communicate with each other.
  • the rotor axial duct 21 and the rotor radial duct 22 function as air circulation passages P6 and P7 together with the circulation passages P1 to P4 and further the circulation passage P5 inside the rotating electrical machine.
  • the rotor 9 includes a plurality of rotor radial ducts 22 drilled from the central portion in the axial direction of the gap 12 toward the inner diameter side, and extends from both end surfaces of the rotor 9 in the rotational axis direction.
  • a rotor axial duct 21 communicating with the rotor radial duct 22 is provided.
  • the rotor core 8 and the rotating shaft 10 are connected by a spider 23 as shown in FIG. 11B except for the central portion of the stator core 8 where the radial duct 22 is provided. That is, the rotor core 8 has a hollow central portion, and the rotor core is connected to the rotary shaft 10 by the spider 23.
  • FIG. 10B shows an enlarged cross section of the rotor 9 of FIG. 10A cut along a plane perpendicular to the axial direction along the line EE.
  • the permanent magnet 7 has a shape elongated in the axial direction, and is embedded in the vicinity of the outer peripheral surface of the rotor core 8 in a number corresponding to the number of magnetic poles of the rotating electrical machine.
  • One or two permanent magnets are provided for one magnetic pole.
  • FIG. 10B shows an example of a structure in which the permanent magnets 7 are arranged at equal intervals in order to simplify the description. Actually, the interval between the permanent magnets 7 depends on the design of the rotor, and a skew structure extending obliquely in the axial direction is also employed.
  • some of the rotor radial ducts 22A are provided so as to penetrate the permanent magnet 7, and some of the rotor radial ducts are provided. 22B has penetrated the stator part in which the permanent magnet 7 is not installed. As shown in FIG. 10B, the rotor radial duct 22B may be provided so as to penetrate the permanent magnet. Conversely, the permanent magnet may be cut at the rotor radial duct 22 portion. Good. In this case, near the surface of the rotor core 9, a permanent magnet divided in two in the axial direction is embedded in the axial direction.
  • FIG. 11 shows only the rotor 9 shown in FIG. 10 and shows its appearance in order to make the structure of the rotor radial duct 22 easier to understand.
  • FIG. 11A is an external view of the rotor 9 from a direction perpendicular to the axial direction, and a plurality of elongated rectangular openings are provided on the outer periphery. These rectangular openings are outlets of the rotor radial duct 22 and open toward the gap 12 in FIG.
  • the cross-sectional shape of the rotor radial duct 22 may be a rectangle as shown in FIG. 11A, or may be a circle other than a rectangle, for example. Furthermore, instead of a radial duct having a rectangular cross section as shown in FIG.
  • FIG. 11A is a view of the rotor of FIG. 11A viewed from the axial direction, and a spider 23 that connects the rotary shaft 10 and the rotor core 8 is shown at the center of the rotor.
  • the ninth embodiment may be modified as follows.
  • the space between the rotor core 8 whose center portion is hollow in the axial direction and the rotary shaft 10 constitutes the rotor axial duct 21, but the rotor is close to the rotary shaft 10.
  • a plurality of rotor axial ducts 24 may be provided on the iron core 8 so that the rotor axial ducts communicate with the rotor radial duct 25.
  • the rotor axial duct 21 may be provided obliquely from the opening on the end face of the rotor to the connecting portion with the rotor radial duct 25.
  • one rotor radial duct 25 and one rotor axial duct 24 are shown, but in actuality, a plurality of them are provided in consideration of the balance of rotation of the rotor 9 and the equalization of magnetic pole characteristics. It is done.
  • one or more rotor radial ducts 25 and rotor axial ducts 24 may be provided for each magnetic pole of the rotor 9.
  • the plurality of rotor radial ducts 25 and the rotor axial duct 24 may communicate with each other.
  • FIG. 13A shows a rotating electrical machine according to the tenth embodiment.
  • the stator 3 is a split core type stator divided into two stators 3a and 3b, and the rotor 9 is rotated two times.
  • the split core type rotor is divided into the rotors 9a and 9b, and the cooling air flows between the two stators 3a and 3b and between the two rotors 9a and 9b.
  • the two rotors 3a and 3b are coupled to the rotary shaft 10 by a spider, as in the case of FIG.
  • An annular stator radial duct structure 28 as shown in FIG. 13B is provided between the two stators 3a and 3b. Further, an annular rotor radial duct structure 29 as shown in FIG. 13C is provided between the two rotors 9a and 9b.
  • a stator radial duct structure 28 shown in FIG. 13B includes, for example, two annular metal plates 28a and 28b, and a metal duct that holds a gap between the two annular metal plates therebetween. It comprises a plurality of ribs 28c called pieces.
  • a duct space 28d which is a space between the ribs 28c, has a space structure penetrating radially outward from the axially central portion facing the gap 12 of the stator radial duct structure 28.
  • the rotor radial duct structure 29 shown in FIG. 13 (c) is made of, for example, a metal that holds two annular metal plates 29a and 29b and a gap between the two annular metal plates between them.
  • the duct space 29d which is the space between the ribs 29c, is a space structure that penetrates from the rotating shaft side of the stator radial duct structure 29 toward the radially outer side. It has become. That is, these radial duct structures 28 and 29 have a structure in which a large number of stator radial ducts and rotor radial ducts as described in the ninth embodiment are provided from the rotating shaft side to the radially outer side. And
  • the radial duct structures 28 and 29 are made of a metal having good heat conduction characteristics. However, in order not to affect the performance of the rotating electrical machine, the radial duct structures 28 and 29 are less than or equal to the metal material of the stator and the rotor, respectively. A metal with permeability is preferred.
  • the stator radial duct structure 28 is fixed between the stators 3a and 3b, and the rotor radial duct structure is fixed between the rotors 9a and 9b.
  • these radial duct structures 28 and 29 are coupled to a stator or a rotor by welding or the like. Therefore, when the stator or the rotor is made of iron, the radial duct structures 28 and 29 are also preferably iron having the same characteristics from the viewpoint of weldability and magnetism.
  • the radial duct structures 28 and 29 are made of a non-magnetic material or a non-metal because the heat conduction characteristics are good and the connection of the stator or rotor is performed by a sufficiently solid connection by welding or a method other than welding. It is also possible to do.
  • more cooling air is present between the iron cores of the stators 3a and 3b than the flow rate of the cooling air passing through the stator radial duct 18 and the rotor radial duct 22 in the ninth embodiment. Since the cooling air flows between the iron cores of the rotors 9a and 9b, the rotor 9 is cooled more efficiently than in the ninth embodiment.
  • the radial duct structure 28 described above is provided between the two divided iron cores of the stator or the rotor. 29 may be provided.
  • FIG. 14 shows a rotating electrical machine according to the eleventh embodiment.
  • the rotating electrical machine of the eleventh embodiment is one in which the heat exchanger 15a is not fixed to the front bracket 2a, but is fixed to the air guide plate 14 provided on the stator end face.
  • the heat exchanger 15 a is disposed at a position close to the rotor 9 and the gap 12.
  • a pipe (not shown) is connected to the heat exchanger 15a, and the cooled refrigerant is supplied from the outside of the rotating electrical machine 1.
  • the heat exchanger 15a of the eleventh embodiment is also formed in an annular shape, and an air inlet and outlet are provided on the outer peripheral surface and the inner peripheral surface, respectively.
  • a circular air outlet is formed at the end face of the annular body facing the rotor.
  • the distance between the cooling air outlet of the heat exchanger 15a and the cooling air inlet of the gap 12 can be shortened compared to the rotating electrical machines of the other embodiments, and is cooled by the heat exchanger 15a.
  • the air can be introduced into the gap 12 without lowering the temperature of the air, and the rotor 9 can be cooled more efficiently.
  • FIG. 15 shows a rotating electrical machine according to the twelfth embodiment.
  • the air inside the rotating electrical machine is circulated by the fan provided on the rotating shaft 10.
  • the rotating electrical machine of the twelfth embodiment circulates the internal air in the housing 2 by a fan 26 driven by an external fan motor 27 on the outer peripheral side of the stator, as shown in FIG. It is configured.
  • FIG. 15B shows a surface obtained by cutting the rotating electrical machine shown in FIG. 15A along a line perpendicular to the axial direction along the line FF.
  • a plurality of such fans be provided symmetrically with respect to the axis in order to smoothly circulate the inside air.
  • the shape of the air guide plate is devised so that the inside air circulates evenly inside the rotating electrical machine.
  • the installation of the heat exchanger capable of cooling the high temperature portion is not limited to the permanent magnet type rotating electric machine. Applicable to all rotating electrical machines such as induction machines, synchronous machines, and AC excitation synchronous machines. Therefore, the present invention can be applied to an outer rotor type rotating electrical machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

 本発明に係る回転電機は、固定子鉄心と固定子コイルとを有する固定子と、固定子に対してギャップを介して回転可能に設けられた回転子と、固定子および回転子を収納する筐体と、筐体内部の空気をギャップを通過して筐体内で循環する送風ファンと、送風ファンで循環する空気を冷却する熱交換器と、熱交換器で冷却され空気が、固定子コイルに接触せずにギャップに流入するように冷却風を案内する導風経路が内部に形成される導風板と、を備える。

Description

回転電機
 本発明は、回転子を冷却する熱交換器を有する回転電機に関する。
 近年、回転電機の大出力化が進み、出力密度を増加することが要求されている。しかし、出力密度の増加は発熱密度の増加につながり、コイルや永久磁石の温度上昇が問題となっている。特に永久磁石は高温で減磁するおそれがあるため、冷却の高効率化は必須である。
 特許文献1には、回転電機の固定子コアの外周に冷却冷媒の通路を設け、この通路に液相から気相に変化する冷媒を流し、この冷媒にステータコイルで発生した熱を吸収させる構造が開示されている。
 特許文献2には、次のような回転子冷却構造を有する回転電機が開示されている。回転子軸には穴が設けられている。そして、この風穴に内気を通風するとともに、固定子と回転子の間のギャップに内気を通風させる内気ファンと、外気を通風する外気ファンとが設けられ、さらに、内気と外気とを熱交換させる熱交換器が固定子の外側に設けられている。
特開2009-38864号公報 特開2007-97325号公報
 このような従来の回転電機の回転子冷却構造においては、熱交換器が固定子の外側に設けられていた。回転子と固定子の間のギャップに内気を通風して回転子を冷却する場合、内気はこのギャップに流入する前にコイルエンドと熱交換を行い、その結果、暖められた内気がギャップに流入するので、回転子を効率良く冷却することができなかった。
 本発明の第1の態様によると、回転電機であって、固定子鉄心と固定子コイルとを有する固定子と、固定子に対してギャップを介して回転可能に設けられた回転子と、固定子および回転子を収納する筐体と、筐体内部の空気をギャップを通過して筐体内で循環する送風ファンと、送風ファンで循環する空気を冷却する熱交換器と、熱交換器で冷却され空気が、固定子コイルに接触せずにギャップに流入するように冷却風を案内する導風経路が内部に形成される導風板、とを備える。
 本発明の第2の態様によると、第1の態様の回転電機において、筐体は、筒状の本体と、本体の両端を覆い、回転軸の両端をそれぞれが支承するフロントブラケットおよびリアブラケットを含み、熱交換器は、フロントブラケットおよびリアブラケットのいずれか一方に接触するように取り付けられ、熱交換器が接触するフロントブラケットまたはリアブラケットを介して外気から冷却されることが好ましい。
 本発明の第3の態様によると、第2の態様の回転電機において、導風板は、ギャップの冷却空気入口に設けられ、固定子コイルのエンド部が導風経路の外側になるように配設されることが好ましい。
 本発明の第4の態様によると、第3の態様の回転電機において、導風板は、熱交換器の冷却空気出口と固定子鉄心の端面との間において、固定子コイルのエンド部が導風経路の外側になるように配設されることが好ましい。
 本発明の第5の態様によると。第4の態様の回転電機において、回転子は固定子の内側に配設され、熱交換器は環状体であり、この環状熱交換器が回転子の回転軸芯と同軸でフロントブラケットまたはリアブラケットに設置され、冷却空気出口は環状熱交換器の固定子側端面に開口し、導風板は、冷却空気出口から流出する冷却空気が導風経路に案内されて回転軸芯に沿った方向に導かれてギャップに流入するように漏斗形状に形成されていることが好ましい。
 本発明の第6の態様によると、第1乃至第5の態様のいずれか1つ態様の回転電機において、回転子に接続された回転軸をさらに有し、送風ファンは回転軸に装着されていることが好ましい。
 本発明の第7の態様によると、第6の態様の回転電機において、送風ファンは、回転軸の一端に装着された押し込み型送風ファンまたは遠心型送風ファンであることが好ましい。
 本発明の第8の態様によると、第6の態様の回転電機において、送風ファンは、回転軸の一端に設置された第1送風ファンと、回転軸の他端に設置された第2送風ファンとを含み、第1および第2送付ファンは一方が押し込み型送風ファン、他方が遠心型送風ファンであることが好ましい。
 本発明の第9の態様によると、第1の態様の回転電機において、熱交換器は、回転軸の両端にそれぞれ設けた第1および第2の熱交換器を含むことが好ましい。
 本発明の第10の態様によると、第9の態様の回転電機において、固定子は、ギャップの軸方向中央部から径方向に周面に貫通する複数の固定子ラジアルダクトを備え、送風ファンは、回転軸の両端にそれぞれ設けられた押し込み型の第1および第2の送風ファンを含むことが好ましい。
 本発明の第11の態様によると、第10の態様の回転電機において、回転子は、ギャップの軸方向中央部から内径方向に向けて穿設された複数の回転子ラジアルダクトと、回転子の両端面から回転軸方向に延在して回転子ラジアルダクトに連通する回転子アキシャルダクトとを備えることが好ましい。
 本発明の第12の態様によると、第9の態様の回転電機において、固定子は複数の固定子スプリットコアから成り、回転子は複数の回転子スプリットコアから成り、複数の固定子スプリットコアの内、連続した2つの固定子スプリットコアの間には、ギャップの軸方向中央部から径方向に貫通する複数のダクトスペースを備えた固定子ラジアルダクト構造体が設けられ、複数の回転子スプリットコアの内、連続した2つの回転子スプリットコアの間には、回転子アキシャルダクトの軸方向中央部から径方向に貫通する複数のダクトスペースを備えた回転子ラジアルダクト構造体が設けられ、送風ファンは、回転軸の両端にそれぞれ設けられた押し込み型の第1および第2の送風ファンを含むことを特徴とすることが好ましい。
 本発明の第13の態様によると、第1乃至第5の態様のいずれか1つの態様の回転電機において、送風ファンは、固定子外周側に設けられ、回転電機外部から回転駆動されることが好ましい。
 本発明の第14の態様によると、第1の態様の回転電機において、熱交換器は、回転電機の外部から供給される冷媒と冷却空気との間で熱交換することが好ましい。
 本発明の第15の態様によると、第14の態様の回転電機において、筐体は、筒状の本体と、本体の両端を覆うフロントブラケットおよびリアブラケットを含み、熱交換器は、フロントブラケットまたはリアブラケットに接触せず、回転子近傍に設けられることが好ましい。
 本発明による回転電機によれば、回転子を効率良く冷却することができる。とくに、永久磁石式回転電機では、回転子の永久磁石が効率良く冷却されるので、高出力密度の回転電機を実現することができる。
本発明による回転電機の第1の実施形態を示す概略図である。(a)は、回転子を挟んで回転子冷却用熱交換器と反対側にファンを設けた構造である。(b)は、第1の実施形態の変形例であり、回転子冷却用熱交換器側にファンを設けている。 図1の回転電機のA-A線での軸方向に垂直な面での断面の一部の概略図である。 本発明による回転電機の第2の実施形態を示す概略図である。 本発明による回転電機の第3の実施形態を示す概略図である。 本発明による回転電機の第4の実施形態を示す概略図である。 本発明による回転電機の第5の実施形態を示す概略図である。(a)は、回転電機を軸方向から見た熱交換器の配置を示し、(b)は(a)のB-B線断面図である。 本発明による回転電機の第6の実施形態を示す図である。(a)は、回転電機を軸方向から見た円環状の熱交換器の配置を示し、(b)は(a)のC-C線断面図である。 本発明による回転電機の第7の実施形態を示す図である。 本発明による回転電機の第8の実施形態を示す図である。(b)は、(a)に示す回転電機1のD-D線での軸方向に垂直な面での断面概略図であり、固定子に設けたラジアルダクト18の構造概略を示す。 本発明による回転電機の第9の実施形態を示す概略図である。(b)は、(a)に示す回転電機1のE-E線での軸方向に垂直な面での断面概略図であり、回転子に設けた回転子ラジアルダクト22の構造概略を示す。 図10に示すアキシャルダクト21と回転子ラジアルダクト22の構造を説明するための図である。(a)は、回転子9のみを取り出して、軸方向と直角の方向から外観した図である。(b)は回転子9を軸方向から外観した図である。 図10に示すアキシャルダクト21とは異なる構造のアキシャルダクトの例(第10の実施形態の変形実施例)を示す概略図である。 本発明による回転電機の第10の実施形態を示す概略図である。(a)は2つの分割された固定子鉄心および2つの分割された回転子鉄心を備えた第10の実施形態の構造を示す軸方向の断面図である。(b)は2つの固定子鉄心3aと3bの間に設けられる固定子ラジアルダクト構造体の外観を示し、(c)は2つの回転子鉄心9aと9bの間に設けられる回転子ラジアルダクト構造体の外観を示す。 本発明による回転電機の第11の実施形態を示す概略図である。 本発明による回転電機の第12の実施形態を示す概略図である。(b)は、(a)に示す回転電機をF-F線で軸方向に対し垂直な面で切断した断面を示す。
 以下、本発明の詳細を図1~図14を参照して説明する。各図において同一部分は同じ番号を付与している。
<第1の実施形態>
 図1(a)は、本発明第1の実施形態である永久磁石式回転電機1の発電機軸方向の断面概略図である。筐体2の内部に、固定子3と回転子9、およびこれらを冷却するためのファン13や熱交換器4および15を備えている。当該構造は、数百kWから数十MWの永久磁石式回転電機に適している。
 筐体2は、円筒形状の本体2cと、円筒状本体2cの軸方向端部を覆うフロントブラケット2aおよびリアブラケット2bとで構成され、ブラケット2a、2bは円筒状本体2cから取り外し可能である。
 固定子3は、例えばコイル5を分布的に巻いた分布巻固定子である。スロット数の組合せを問わず、コイル5に短節巻、全節巻、集中巻を採用しても良い。固定子3の外周面には、固定子冷却用の熱交換器4が配設されている。この熱交換器4は空冷式であり、ファン13により循環される空気により冷却される。例えば、図1(a)を軸方向に垂直な面A-Aで切断した図である図2に示すように、回転電機内部で循環される空気により冷却されるフィンを固定子鉄心の外周面に突設した構造とすることができる。
 固定子3の内側には回転子9がギャップ12を介して回転可能に配置されている。回転子9は、回転子鉄心8と、回転子鉄心8の外側に埋め込まれ永久磁石7とを有している。回転子鉄心8には両端から回転軸10が突設され、回転軸10の両端がフロントブラケット2aとリアブラケット2bに設けた不図示の軸受けによりそれぞれ支持されている。
 回転軸10の一端側には、回転軸10と共に回転する遠心ファン13が配置され、ファン13により筐体2内の冷媒、この実施の形態では空気が循環する。図1中の矢印は冷媒の流れを示している。すなわち、冷媒は、固定子3と回転子9との間のギャップ12による第1循環通路P1、固定子コイルエンドとリアブラケット2bとの間の第2循環通路P2、固定子冷却用熱交換器4の周面と円筒状本体2cとの間の第3循環通路P3、固定子コイルエンドとフロントブラケット2aとの間の第4循環通路P4により構成される循環通路を循環する。図1(a)では、フロントブラケット2aと固定子3との間に形成されている循環通路P4内に熱交換器15が配置されている。
 熱交換器15は、環状の外観形状を呈し、回転軸10と同軸でフロントブラケット2aに取り付けられている。熱交換器15は、例えばフロントブラケット2aを介して空冷される空冷型である。後述するように、熱交換器15は全体として角筒(図6参照)、もしくは円環(図7参照)である。
 熱交換器15と固定子鉄心の端面との間には導風板14が設けられている。導風板14は、熱交換器15で冷却され空気が固定子コイルエンドに接触せずにギャップ12に流入するように冷却風を案内する。換言すると、導風板14は、熱交換器15の冷却空気出口から流出する冷却空気を回転軸芯に沿った方向に導く漏斗形状に形成され、循環通路P4から循環通路P1へ冷却風を導く導風経路を構成する。したがって、固定子コイルのエンド部は導風経路である導風板14の外側に位置することになる。
 導風板14は合成ゴム、シリコンゴム、あるいはプラスチック等の断熱性および制振性の良好なパッキンを介して固定子3に接触することが好ましい。
 導風板14の形状は熱交換器15の形状に対応して様々な形状がある。熱交換器形状に応じた導風板形状については後述する。
 冷媒は、循環通路P4に配置された回転子冷却用熱交換器15の吸熱部、例えば冷却液やフィンとの間で熱交換されて冷却され、固定子3は、固定子鉄心の外周に接するように設けられた熱交換器4により外周から冷却される。
 以上説明した熱交換器15と導風板14により、遠心ファン13の回転により、循環通路P3からP4に流れ込む冷媒は、全量が熱交換器15の環状体外周面からその内周部に導入され、冷却された冷媒が全量、ギャップ12に導入される。
 なお、上記ではフロントブラケット2a側から冷却された冷媒がギャップ12に流入し、リアブラケット2b側から円筒形状の本体2cの内面に沿って、再びフロントブラケット2a側に還流し、熱交換器15で冷却される、すなわち循環通路P1-P2-P3-P4を冷媒が流れるように説明した。図1に示す回転電機は、左右逆の配置であっても同等であり、従ってファン、熱交換器、導風板等を全て図1で左右逆の配置として、冷媒が流れる経路もこれに対応して逆の方向で循環するものであってもよい。また、従ってフロントブラケット2aとリアブラケット2bも、ここでは単に回転軸の両側のブラケットを区別するためのものであり、図1の位置で左右が逆となっていてもよい。以下の実施形態の説明においても、図2から図14で全て左右を逆にしても同等であり、便宜上図の左側からギャップ12に冷媒が流入するとし、左側のブラケットをフロントブラケット、右側のブラケットをリアブラケットとする。
 ここで、永久磁石7が埋め込まれている回転子鉄心8の外周部では、スロットリプル、電源高調波等によりうず電流損失が発生して発熱し、温度が上昇する。永久磁石7は温度依存性を持っており、温度上昇に伴い特性が低下する。さらに磁石動作点がクニック点を超えた場合、不可逆減磁が発生する。従って、回転子鉄心8の外周部は、永久磁石がクニック点を超えないように、充分に冷却される必要がある。
 通常、永久磁石7にくらべコイル5は温度上昇限度が高い。このため永久磁石7の温度が永久磁石式回転電機の使用温度の上限値を決めている。すなわち永久磁石式回転電機の小型化、高出力密度化のためには、永久磁石の冷却性能を改善することが最も重要である。よって循環通路内に熱交換器15を配置する際、従来のように熱交換器を固定子外周側のみに設置すると、冷媒(例えば空気)が通風路中の磁石以外の発熱部(例えばコイルエンドや固定子コア)との熱交換を行うため磁石を優先的に冷やすことができない。
 そこで、熱交換器15を回転子9の近傍に配置することで、コイルエンドなどの発熱部材と熱交換されない冷媒が回転子9を優先的に冷やすことができ、回転子9に埋め込まれた永久磁石7を低い温度に保持することができる。また、熱交換器15を回転子近傍に積極的に配置可能とすることで、回転子9を効率的に冷却できる構造とすることができる。このように回転子9を優先的に冷却することで、磁石の温度上昇を低減でき、永久磁石式回転電機の小型化が可能となる。
 以上のように構成された第1の実施の形態の回転電機では、駆動信号により回転子9が回転すると遠心ファン13が回転し、筐体2内の空気が循環通路P1→P2→P3→P4→P1のように循環する。循環通路P3からP4に流入する空気は、熱交換器15の外周面からその内周空間に流入する。この過程で、循環空気は熱交換器15で熱交換されて冷却される。循環通路P4には、循環通路P3から流入する空気の全量を熱交換器15へ流入させる導風板14が設けられている。換言すると、導風板14は、循環通路P3からギャップ12の冷媒流入口に空気が直接流れないようにする邪魔板として機能する。この導風板14の存在により、循環通路P3から循環通路P4に流入して固定子3のコイルエンドに接触して加熱された空気がギャップ12に流入することが回避される。ギャップ12には、熱交換器15で冷却された空気のみが流入するので、回転子9を効率よく冷却することができる。
<第1の実施形態の変形例>
 第1の実施の形態を次のように変形して実施することもできる。
(1)図1(b)は、第1の実施の形態の変形例を示す図である。図1(a)に示す遠心ファン13に代えて、押し込みファン16を熱交換器15の内周側に配設したものである。図1(b)の回転電機においても、図1(a)の回転電機と同様の空気の循環が実現でき、同様の作用効果を奏することができる。
(2)回転電機1の出力や固定子3での発熱に合わせて、固定子冷却用熱交換器4は種々の形態が採用可能である。図1(a)、図2で示した空冷式熱交換器4に代えて、回転電機1の外部から冷却された冷媒液を熱交換器に供給して冷却する液冷式熱交換器を採用してもよい。
(3)回転電機の出力が小さい場合は、発熱も少ないので、熱交換器4が不要の場合もある。すなわち、図1(a)、(b)の回転電機で熱交換器4は必須の構成ではない。
(4)図1(a)、(b)では、回転軸10を中心とした環状の熱交換器15を設けたが、本発明による回転電機は、環状熱交換器15に限定するものではない。また、ファンの出力(冷媒流量)や熱交換器の容量、およびこれらの個数は、回転子および固定子で発生する熱を冷却するのに充分な出力や容量となるように設計される。
(5)熱交換器15は、フロントブラケット2aを介して空冷される空冷型として説明したが、外部から冷媒を導入して回転電機内部の空気と熱交換する液冷型を採用してもよい。どのようなタイプの熱交換器を選択するかは、モータの出力に対応して設計され、後述するようにモータの発熱が永久磁石の性能を損なわないように設計される。
(6)熱交換器15と導風板14とを別体としたが、両者を一体化してもよい。
<第2の実施形態>
 図3は、第2の実施の形態の回転電機を説明する図である。
 図1(a)、(b)では、冷媒のギャップ12への入り口側、すなわちフロントブラケット2a側に熱交換器15を設置した例を示しているが、第2の実施の形態の回転電機では、図3に示すように押し込みファン16をギャップの冷媒入り口側、すなわちフロントブラケット2a側に設け、これと反対側、すなわちリアブラケット2b側に熱交換器15を設置している。第2の実施の形態でも、図示するように、固定子鉄心の端面に漏斗状の導風板14を設けて、コイル5で暖められた冷媒がギャップ12の冷媒入り口側から直接入り込まないようにする。
 以上のように構成された第2の実施の形態の回転電機では、駆動信号により回転子9が回転すると押込ファン16が回転し、筐体2内の空気が循環通路P1→P2→P3→P4→P1のように循環する。循環通路P1からP2に流入する空気は、熱交換器15の内周側から外周側に流れる。この過程で、空気は熱交換器15で交換されて冷却される。冷却された空気は循環通路P2から循環通路P3、P4に流入する。循環通路P4に流入した空気は、導風板14内部の漏斗状の導風経路を流れてギャップ12である循環通路P1に流れ込み、回転子9を効率よく冷却する。
 循環通路P4の導風板14の存在により、循環通路P3から循環通路P4に流入して固定子3のコイルエンドに接触して加熱された空気がギャップ12に直接流入することが抑制される。
<第3の実施形態>
 図4は第3の実施の形態の回転電機を説明する図である。
 第3の実施の形態による回転電機では、図1(a)に示した回転電機に対して、ギャップ12の冷媒出口側に環状の熱交換器が追加的に配置されている。すなわち、第3の実施の形態の回転電機では、ギャップ12の冷媒出入口の双方に熱交換器15aと熱交換器15bがそれぞれ配設されている。これら熱交換器15a,15bの大きさ、すなわち熱交換性能は左右同一でなくてもよい。
 以上のように構成された第3の実施の形態の回転電機では、駆動信号により回転子9が回転するとファン13が回転し、筐体2内の空気が循環通路P1→P2→P3→P4→P1のように循環する。循環通路P1からP2に流入する空気は、熱交換器15bの内周側から外周側に流れる。この過程で、空気は熱交換器15bで熱交換されて冷却される。冷却された空気は循環通路P2から循環通路P3、P4に流入する。循環通路P4に流入する空気は、熱交換器15の外周面からその内周空間に流入する。この過程で、循環空気は熱交換器15で熱交換されて冷却される。循環通路P4には、循環通路P3から流入する空気の全量を熱交換器15へ流入させる導風板14が設けられている。換言すると、導風板14は、循環通路P3からギャップ12の冷媒流入口に空気が直接流れないようにする邪魔板として機能する。この導風板14の存在により、循環通路P3から循環通路P4に流入して固定子3のコイルエンドに接触して加熱された空気がギャップ12に流入することが回避される。その結果、回転子9が効率よく冷却される。
 循環通路P4の導風板14の存在により、循環通路P3から循環通路P4に流入して固定子3のコイルエンドに接触して加熱された空気がギャップ12に直接流入することが抑制される。また、熱交換器15a,熱交換器15bを設けたので、筐体2内の循環空気をより冷却することができる。
<第4の実施形態>
 図5は第4の実施の形態の回転電機を説明する図である。
 第4の実施の形態による回転電機では、図1(b)に示した回転電機に対して、ギャップ12の冷媒出口側に環状の熱交換器が追加的に配置されている。すなわち、第4の実施の形態の回転電機では、ギャップ12の冷媒出入口の双方に熱交換器15aと熱交換器15bがそれぞれ配設されている。これら熱交換器15a,15bの大きさ、すなわち熱交換性能は左右同一でなくてもよい。
 以上のように構成された第4の実施の形態の回転電機における冷却空気の循環と回転子9の冷却メカニズムは第3実施形態と同様であり、説明を省略する。
<第5の実施形態>
 ギャップ12に流入する冷媒の冷却用熱交換器15、15a、15bは、回転軸10を中心軸とする環状の熱交換器として説明した。以下では、第5および第6の実施形態として、環状に形成した回転子冷却用熱交換器15,15a,15bの具体例を説明する。
 図6は第5の実施の形態による回転電機を示す。図6(a)は、回転電機を軸方向から見た熱交換器15の配置を示し、図6(b)は図6(a)のB-B線断面図である。なお、ここでは筐体内部での各部品の位置関係が分かり易いように、フロントブラケット2aもしくはリアブラケット2bを取り外して熱交換器を平面図として示している。
 図6(a)では、筐体2は、断面8角形の筒状として示している。丸型でも多角形でもよい。図6(a)に示すように、第5の実施形態では、回転軸10を中心として平面視矩形の分割熱交換器15-1~15-4が配置されている。それぞれの分割熱交換器15-1~15-4には分割導風板14-1~14-4の一端がそれぞれ接続され、この分割導風板14-1~14-4の他端は、固定子鉄心の端面のギャップ12の近傍にそれぞれ接触されている。
 図6(b)には、分割熱交換器15-1~15-3と分割導風板14-1~14-3が示されている。分割導風板14-1~14-4の一端は直線であり、分割熱交換器15-1~15-4の内周縁に接続されている。分割導風板14-1~14-4の他端、すなわち固定子鉄心の端面と接する部分は円弧形状に成形されている。また、各分割導風板14-1~14-4の隣接する辺同士は互いに密接に接していて、分割熱交換器15-1~15-4の内部に導入されて冷却された空気の全量が洩れることなくギャップ12の冷媒入口側に流入するようにしている。
 導風板14は断面矩形の漏斗形状である。分割導風板14-1~14-4は分割熱交換器15-1~15-4に固定されていても、あるいは固定子鉄心の端面に固定されていてもよいが、分割熱交換器15-1~15-4側に固定されている方が組み立てが容易である。分割導風板14-1~14-4は合成ゴム、シリコンゴム、あるいはプラスチック等の断熱性および制振性の良好なパッキンを介して固定子3に接触することが好ましい。
 第5の実施の形態では4つの分割熱交換器15-1~15-4により角筒状熱交換器15を構成した。しかしながら、さらに多数個の分割熱交換器により熱交換器を構成してもよい。
<第6の実施形態>
 図7は第6の実施の形態による回転電機を示す。第6の実施の形態の回転電機は、円環状熱交換器15を備えている。図7(a)は、回転電機を軸方向から見た円環状熱交換器15の配置を示し、図7(b)は図7(a)のC-C線断面図である。図7のような円環形状の熱交換器の場合は、熱交換器の外周面に設けられたフィンは、回転軸10に対し放射状に設けられる。導風板14は断面円形の漏斗形状である。導風板14の大径端は熱交換器15の円形形状の空気吐き出し口に接続され、導風板14の小径端は固定子端面において、ギャップ12の冷却空気入口を取り囲むようにされている。熱交換器15は扁平環状体であり、一端面がフロントブラケット2aに接触して設けられ、フロントブラケット2aに放熱するようにされている。また、環状の熱交換器15の他端面に円形形状の空気吐き出し口が開口している。
<第7の実施形態>
 図8は第7の実施の形態による回転電機を示す。
 図8に示す回転電機は、フロントブラケット2aとリアブラケット2bの双方に熱交換器15a、15bをそれぞれ設けるとともに、回転軸10の両端にファン13、16を設けたものである。熱交換器15aの内周側に押込ファン16が配設され、熱交換器15bの内周側に遠心ファン13が配設されている。熱交換器15aと15bは同じ容量のものであっても、異なる容量であってもよい。
 押し込み型送風ファン16からギャップ12の冷却空気入口に冷却空気が押し込まれ、ギャップ12の冷却空気出口から遠心型送風ファン13で冷却空気を吸い出して筐体2内で空気が循環する。1台のファンを用いる場合に比べて、送風流量を大きくすることができる。
<第8の実施形態>
 図9は第8の実施の形態による回転電機を示す。
 第8の実施の形態の回転電機は、図8に示した第7の実施の形態の回転電機の固定子3の中央部に、ギャップ12から径方向で外周部に貫通する固定子ラジアルダクト18を設け、熱交換器15aおよび15bの双方の内周側に押し込みファン16a、16bを設置したものである。2つの押し込みファン16a、16bの出力(送風量)および2つの熱交換器15a、15bの冷却能力はそれぞれ略等しく設計されている。また、上述した漏斗状の導風板14a、14bがそれぞれ、固定子3の対向する端面と熱交換器15a、15bの外周縁との間に設けられている。
 固定子ラジアルダクト18は、回転電機内部の循環通路P5として機能する。このような構成の回転電機とすることで、ギャップ12の軸方向両側から中央部に向かって押し込みファン16a、16bで押し込まれた空気は、固定子3の中央部で径方向に貫通する固定子ラジアルダクト18(循環通路P5)を通って循環通路P3に導かれる。循環通路P3で2つの流れに分流されたそれぞれの分流空気が循環経路P2とP4内の熱交換器15a、15bを通過し、また押し込みファン16a、16bによりギャップ12(循環通路P1)に送り込まれる空気の循環路が形成される。
 図9(b)は図9(a)に示すように、回転電機1をD-D線で軸方向に対し垂直な面で切断し、固定子鉄心3の一部分のみを拡大して構造が分かり易くなるように示した概略図である。
 固定子鉄心には、回転電機の磁極の数に対応して、複数のティース19およびスロット20が形成されている。スロット20の内部にはコイル(巻線)5が設置されている。図9(a)の固定子3の中央部に示す固定子ラジアルダクト18は、ティース19に設けられている。
 なお、図9(b)では、固定子3の軸方向中央部に、固定子ラジアルダクト18がティース19毎に設けられているように示されているが、固定子ラジアルダクト18は、図9(a)に示すように、回転軸に対して対称となるように複数個設けられていればよい。固定子ラジアルダクト18を回転軸に対し対称に設けるのは、固定子3の各磁極の磁気特性の対称性を阻害しないようにするためである。
 なお、この固定子ラジアルダクト18の断面形状は矩形であっても円形であってもよい。
 以上の第8の実施形態の回転電機によれば、第1~第7の実施形態の回転電機に比べて、固定子鉄心の固定子ラジアルダクト18を流れる冷却空気により固定子3がより冷却されるので、固定子9とギャップ12を介して接する永久磁石7もより冷却される。
<第9の実施形態>
 図10は第9の実施の形態による回転電機を示す。
 第9の実施の形態の回転電機は、第8の実施の形態の回転電機にさらに、回転子9の内部に冷却空気を循環させて冷却効率を高めたものである。
 第9の実施の形態の回転電機では、図10に示すように、回転軸10の外周を冷却するための回転子アキシャルダクト21が回転子9の軸芯方向に沿って設けられている。図10(a)では、便宜上、回転子アキシャルダクト21内を回転軸10が挿通しているように図示しているが、実際は、図10(b)に示すように、回転子アキシャルダクト21は回転軸10と回転子鉄心8の間に軸方向に貫通して形成されている。
 また、回転子鉄心8の中央部で径方向に貫通するラジアルダクト22が設けられている。回転子アキシャルダクト21と回転子ラジアルダクト22とは連通している。回転子アキシャルダクト21と回転子ラジアルダクト22は、回転電機内部の循環通路P1~P4、さらには循環通路P5とともにそれぞれ空気循環通路P6,P7として機能する。換言すると、回転子9には、ギャップ12の軸方向中央部から内径側に向けて穿設された複数の回転子ラジアルダクト22と、回転子9の両端面から回転軸方向に延在して回転子ラジアルダクト22に連通する回転子アキシャルダクト21とが設けられている。
 なお、回転子鉄心8と回転軸10とは、ラジアルダクト22が設けられる固定子鉄心8の中央部分を除き、図11(b)に示すように、スパイダ23で連結されている。すなわち、回転子鉄心8は中央部分が中空になっており、この回転子鉄心がスパイダ23で回転軸10に連結された構造となっている。
 ラジアルダクト22の貫通位置について図10(b)を参照して説明する。図10(b)は、図10(a)の回転子9をE-E線で軸方向に対し垂直な面で切断した断面を拡大して表示している。
 永久磁石7は軸方向に長尺な形状であり、回転電機の磁極数に対応した数だけ回転子鉄心8の外周表面付近に埋め込まれている。1つの磁極に対し1つあるいは2つの永久磁石が設けられる。図10(b)では説明を簡単にするため、等間隔に永久磁石7が配置された構造の例を示している。実際には、永久磁石7の間隔は回転子の設計に依存し、軸方向に斜めに延在するスキュー構造なども採用される。
 第9の実施の形態の回転電機では、図10(b)に示すように、一部の回転子ラジアルダクト22Aは永久磁石7を貫通するように設けられており、一部の回転子ラジアルダクト22Bは永久磁石7の設置されていない固定子部分を貫通している。
 なお、図10(b)に示すように、回転子ラジアルダクト22Bは永久磁石を貫通するように設けてもよく、また、逆に、回転子ラジアルダクト22の部分で永久磁石を切断してもよい。この場合、回転子鉄心9の表面付近には、軸方向に2つに分割された永久磁石が軸方向に埋め込まれることになる。
 図11は、回転子ラジアルダクト22の構造を分かり易くするため、図10に示す回転子9のみ取り出して、その外観を示したものである。図11(a)は、回転子9を、軸方向に直角な方向から外観したものであり、外周に細長い矩形の開口部が複数設けられている。これらの矩形の開口部は回転子ラジアルダクト22の出口であり、図10のギャップ12に面して開口している。なお、回転子ラジアルダクト22の断面形状は図11(a)に示すように矩形であってよく、また矩形以外の例えば円形であってもよい。更に、図11(a)に示すような矩形の断面形状を持つラジアルダクトの代わりに、これより小さな断面を持つ矩形のラジアルダクトを複数設けてもよい。同様に矩形以外の例えば円形の断面のラジアルダクトで、小さな断面のラジアルダクトを複数設けてもよい。
 図11(b)は図11(a)の回転子を軸方向から見た図であり、回転子中心部に、回転軸10と回転子鉄心8を結合するスパイダ23が示されている。
<第9の実施形態の変形例>
 第9の実施の形態を次のように変形して実施することもできる。
 第9の実施形態では、中心部分が軸方向に中空の回転子鉄心8と回転軸10との間の空間が回転子アキシャルダクト21を構成するようにしたが、回転軸10の近くで回転子鉄心8に複数の回転子アキシャルダクト24を設け、この回転子アキシャルダクトが回転子ラジアルダクト25と連通するようにしてもよい。
 回転子アキシャルダクト21は、図12に示すように、回転子の端面の開口から回転子ラジアルダクト25との接続部にかけて斜めに設けてもよい。斜めに回転子アキシャルダクト24を設けることにより、回転により冷却空気が吹き込む効果を期待できる。
 なお、図12では見易くするため、回転子ラジアルダクト25と回転子アキシャルダクト24をそれぞれ1つ示してあるが、実際は回転子9の回転バランスおよび磁極の特性の均等化を考慮して複数個設けられる。例えば、回転子9の磁極毎に1つまたは複数の回転子ラジアルダクト25および回転子アキシャルダクト24を設けるとよい。更に、これらの複数の回転子ラジアルダクト25と回転子アキシャルダクト24は、互いに連通していてもよい。
<第10の実施形態>
 図13(a)は第10の実施の形態による回転電機を示す。
 第10の実施の形態の回転電機は、図13(a)に示すように、固定子3を2つの固定子3a、3bに分割したスプリットコア型の固定子とし、回転子9を2つの回転子9a、9bに分割したスプリットコア型の回転子とし、これら2つの固定子3a、3bの間および2つの回転子9a、9bの間を冷却空気が流れるようにしたものである。なお、2つの回転子3a、3bは、それぞれ図11の場合と同様に、スパイダで回転軸10と結合されている。
 2つの固定子3aと3bの間には、図13(b)で示すような、円環状の固定子ラジアルダクト構造体28が設けられている。また2つの回転子9aと9bの間には、図13(c)に示すような円環状の回転子ラジアルダクト構造体29が設けられている。
 図13(b)に示す固定子ラジアルダクト構造体28は、例えば2枚の円環状の金属板28a、28bと、その間にこれら2枚の円環状の金属板の間隔を保持する金属製のダクトピースと呼ばれる複数のリブ28cとで構成されている。これらリブ28cの間の空間であるダクトスペース28dは、固定子ラジアルダクト構造体28のギャップ12に面した軸方向中央部側から、径方向外側に向かって貫通した空間構造となっている。
 また、図13(c)に示す回転子ラジアルダクト構造体29は、例えば2枚の円環状の金属板29a、29bと、その間にこれら2枚の円環状の金属板の間隔を保持する金属製のダクトピースと呼ばれる複数のリブ29cとで構成されている。上記の固定子ラジアルダクト構造体28と同様に、これらリブ29cの間の空間であるダクトスペース29dは、固定子ラジアルダクト構造体29の回転軸側から、径方向外側に向かって貫通した空間構造となっている。
 すなわち、これらのラジアルダクト構造体28、29は、回転軸側から径方向外側に向けて、実施形態9で説明したような固定子ラジアルダクトおよび回転子ラジアルダクトを多数備えたような構造となっており、
 以上のようにラジアルダクト構造体28、29は熱伝導特性の良い金属で作製されているが、回転電機の性能に影響がないように、それぞれ固定子および回転子の金属材質と同程度以下の透磁率の金属であることが好ましい。また、固定子ラジアルダクト構造体28は、固定子3aと3bの間に、また回転子ラジアルダクト構造体は回転子9aと9bの間に固定される。例えば、これらのラジアルダクト構造体28、29はそれぞれ固定子あるいは回転子に溶接等で結合される。従って、固定子あるいは回転子が鉄で製造されている場合は、ラジアルダクト構造体28、29も、溶接性および磁性の観点から同様の特性の鉄であることが好ましい。
 また、熱伝導特性がよく、また固定子あるいは回転子の結合が溶接または溶接以外の方法で充分堅固な結合によって行われることにより、ラジアルダクト構造体28、29を非磁性体あるいは非金属で作製することも可能である。
 この第10の実施形態では、第9の実施形態における固定子ラジアルダクト18や回転子ラジアルダクト22を通過する冷却空気の流量に比べ、より多くの冷却空気が固定子3a、3bの鉄心の間および回転子9a、9bの鉄心の間を冷却空気が流れるので、回転子9が第9の実施形態に比べてよりいっそう効率よく冷却される。
 なお、固定子3および回転子がそれぞれ更に多くの分割された鉄心から構成されている場合は、固定子あるいは回転子の分割された2つの鉄心の間毎に、上記のラジアルダクト構造体28、29を設けてもよい。
<第11の実施形態>
 図14は第11の実施の形態による回転電機を示す。
 第11の実施の形態の回転電機は、図14に示すように、熱交換器15aをフロントブラケット2aに固定せず、固定子端面に設けた導風板14に固定したものである。熱交換器15aは、回転子9やギャップ12に近い位置に配置される。熱交換器15aには不図示の配管が接続され、回転電機1の外部から冷却された冷媒が供給される。
 なお、第11の実施形態の熱交換器15aも環状に形成され、空気の入口と出口をそれぞれ外周面と内周面に設け。回転子と対向する環状体端面に円形の空気出口が形成される。
 第11の実施形態の回転電機では、熱交換器15aの冷却空気出口とギャップ12の冷却空気入口との距離が他の実施形態の回転電機に比べて短くでき、熱交換器15aで冷却された空気の温度を低下させずにギャップ12に導入することができ、よりいっそう回転子9を効率よく冷却することができる。
<第12の実施形態>
 図15は第12の実施の形態による回転電機を示す。
 第1~第11の実施の形態の回転電機では、回転軸10に設けられたファンにより回転電機内部の空気を循環させるようにした。しかしながら、第12の実施の形態の回転電機は、図15(a)に示すように、固定子外周側に外部のファンモータ27により駆動されるファン26により筐体2内の内気を循環するように構成したものである。なお、図15(b)は、図15(a)に示す回転電機をF-F線で軸方向に対し垂直な面で切断した面を示す。
 このようなファンは、内気循環をスムーズに行うため、軸に対して対称的に複数設けられることが好ましい。あるいは、たとえばこのようなファンが1個だけ設けられている場合は、導風板の形状を工夫して回転電機内部で均等に内気が循環するようにする。
 以上の第1~第12の実施の形態はインナーロータ型の永久磁石式回転電機として説明したが、高温部分を冷やすことができる熱交換器を設置することは、永久磁石式回転電機に限らず誘導機、同期機、交流励磁同期機などすべての回転電機に適用できる。したがって、アウタロータ型の回転電機にも本発明を適用することができる。
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。とりわけ、上記の種々の実施形態を適宜組み合わせた、様々な態様で実施することが可能である。

Claims (15)

  1.  固定子鉄心と固定子コイルとを有する固定子と、
     前記固定子に対してギャップを介して回転可能に設けられた回転子と、
     前記固定子および回転子を収納する筐体と、
     前記筐体内部の空気を前記ギャップを通過して筐体内で循環する送風ファンと、
     前記送風ファンで循環する空気を冷却する熱交換器と、
     前記熱交換器で冷却され空気が、前記固定子コイルに接触せずに前記ギャップに流入するように冷却風を案内する導風経路が内部に形成される導風板とを備えることを特徴とする回転電機。
  2.  請求項1に記載の回転電機において、
     前記筐体は、筒状の本体と、前記本体の両端を覆い、前記回転軸の両端をそれぞれが支承するフロントブラケットおよびリアブラケットを含み、
     前記熱交換器は、前記フロントブラケットおよびリアブラケットのいずれか一方に接触するように取り付けられ、前記熱交換器が接触する前記フロントブラケットまたは前記リアブラケットを介して外気から冷却されることを特徴とする回転電機。
  3.  請求項2に記載の回転電機において、
     前記導風板は、前記ギャップの冷却空気入口に設けられ、前記固定子コイルのエンド部が前記導風経路の外側になるように配設されることを特徴とする回転電機。
  4.  請求項3に記載の回転電機において、
     前記導風板は、前記熱交換器の冷却空気出口と前記固定子鉄心の端面との間において、前記固定子コイルのエンド部が前記導風経路の外側になるように配設されることを特徴とする回転電機。
  5.  請求項4に記載の回転電機において、
     前記回転子は前記固定子の内側に配設され、
     前記熱交換器は環状体であり、この環状熱交換器が前記回転子の回転軸芯と同軸で前記フロントブラケットまたはリアブラケットに設置され、前記冷却空気出口は前記環状熱交換器の固定子側端面に開口し、
     前記導風板は、前記冷却空気出口から流出する冷却空気が前記導風経路に案内されて前記回転軸芯に沿った方向に導かれて前記ギャップに流入するように漏斗形状に形成されていることを特徴とする回転電機。
  6.  請求項1乃至5のいずれか1項に記載の回転電機において、
     前記回転子に接続された回転軸をさらに有し、
     前記送風ファンは前記回転軸に装着されていることを特徴とする回転電機。
  7.  請求項6に記載の回転電機において、
     前記送風ファンは、前記回転軸の一端に装着された押し込み型送風ファンまたは遠心型送風ファンであることを特徴とする回転電機。
  8.  請求項6に記載の回転電機において、
     前記送風ファンは、前記回転軸の一端に設置された第1送風ファンと、前記回転軸の他端に設置された第2送風ファンとを含み、第1および第2送付ファンは一方が押し込み型送風ファン、他方が遠心型送風ファンであることを特徴とする回転電機。
  9.  請求項1に記載の回転電機において、
     前記熱交換器は、前記回転軸の両端にそれぞれ設けた第1および第2の熱交換器を含むことを特徴とする回転電機。
  10.  請求項9に記載の回転電機において、
     前記固定子は、前記ギャップの軸方向中央部から径方向に周面に貫通する複数の固定子ラジアルダクトを備え、
     前記送風ファンは、前記回転軸の両端にそれぞれ設けられた押し込み型の第1および第2の送風ファンを含むことを特徴とする回転電機。
  11.  請求項10に記載の回転電機において、
     前記回転子は、前記ギャップの軸方向中央部から内径方向に向けて穿設された複数の回転子ラジアルダクトと、前記回転子の両端面から回転軸方向に延在して前記回転子ラジアルダクトに連通する回転子アキシャルダクトとを備えることを特徴とする回転電機。
  12.  請求項9に記載の回転電気において、
     前記固定子は複数の固定子スプリットコアから成り、
     前記回転子は複数の回転子スプリットコアから成り、
     前記複数の固定子スプリットコアの内、連続した2つの固定子スプリットコアの間には、前記ギャップの軸方向中央部から径方向に貫通する複数のダクトスペースを備えた固定子ラジアルダクト構造体が設けられ、
     前記複数の回転子スプリットコアの内、連続した2つの回転子スプリットコアの間には、前記回転子アキシャルダクトの軸方向中央部から径方向に貫通する複数のダクトスペースを備えた回転子ラジアルダクト構造体が設けられ、
     前記送風ファンは、前記回転軸の両端にそれぞれ設けられた押し込み型の第1および第2の送風ファンを含むことを特徴とする回転電機。
  13.  請求項1乃至5のいずれか1項に記載の回転電機において、
     前記送風ファンは、固定子外周側に設けられ、前記回転電機外部から回転駆動されることを特徴とする回転電機。
  14.  請求項1に記載の回転電機において、
     前記熱交換器は、前記回転電機の外部から供給される冷媒と前記冷却空気との間で熱交換することを特徴とする回転電機。
  15.  請求項14に記載の回転電機において、
     前記筐体は、筒状の本体と、前記本体の両端を覆うフロントブラケットおよびリアブラケットを含み、
     前記熱交換器は、前記フロントブラケットまたはリアブラケットに接触せず、前記回転子近傍に設けられることを特徴とする回転電機。
PCT/JP2011/065093 2011-06-30 2011-06-30 回転電機 WO2013001645A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/127,629 US9419498B2 (en) 2011-06-30 2011-06-30 Rotary electric machine
CN201180072018.7A CN103636103B (zh) 2011-06-30 2011-06-30 旋转电机
JP2013522600A JP5629828B2 (ja) 2011-06-30 2011-06-30 回転電機
PCT/JP2011/065093 WO2013001645A1 (ja) 2011-06-30 2011-06-30 回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/065093 WO2013001645A1 (ja) 2011-06-30 2011-06-30 回転電機

Publications (1)

Publication Number Publication Date
WO2013001645A1 true WO2013001645A1 (ja) 2013-01-03

Family

ID=47423585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065093 WO2013001645A1 (ja) 2011-06-30 2011-06-30 回転電機

Country Status (4)

Country Link
US (1) US9419498B2 (ja)
JP (1) JP5629828B2 (ja)
CN (1) CN103636103B (ja)
WO (1) WO2013001645A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162936A (ja) * 2014-02-26 2015-09-07 株式会社東芝 全閉型電動機
JP2016005325A (ja) * 2014-06-16 2016-01-12 株式会社富士通ゼネラル 圧縮機
JP2016213936A (ja) * 2015-05-01 2016-12-15 株式会社明電舎 回転電機
JP2017135932A (ja) * 2016-01-29 2017-08-03 富士電機株式会社 アウターロータ型回転電機
JP2017192163A (ja) * 2016-04-11 2017-10-19 東芝三菱電機産業システム株式会社 全閉形回転電機
JP2017216837A (ja) * 2016-06-01 2017-12-07 シンフォニアテクノロジー株式会社 回転電気機械およびそのロータに付設されるファンブレード
JP2018148776A (ja) * 2017-03-09 2018-09-20 株式会社明電舎 回転電機
CN112564413A (zh) * 2020-11-06 2021-03-26 贵州雅光电子科技股份有限公司 一种用于旋转电机的散热方法及利用其散热的旋转电机
JP7031074B1 (ja) * 2021-05-17 2022-03-07 三菱電機株式会社 回転電機

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130019918A1 (en) 2011-07-18 2013-01-24 The Regents Of The University Of Michigan Thermoelectric devices, systems and methods
EP3123532B1 (en) 2014-03-25 2018-11-21 Matrix Industries, Inc. Thermoelectric devices and systems
WO2016014600A1 (en) * 2014-07-21 2016-01-28 Prime Datum Development Company, Llc Cooling schemes and methods for cooling tower motors
KR101711457B1 (ko) * 2014-12-24 2017-03-13 주식회사 효성 발전기 또는 전동기용 회전자
EP3116108B1 (en) * 2015-05-12 2020-07-22 Mitsubishi Electric Corporation Rotary electrical machine
JP6637683B2 (ja) * 2015-06-19 2020-01-29 東芝三菱電機産業システム株式会社 回転電機
CN105071598A (zh) * 2015-07-27 2015-11-18 中科盛创(青岛)电气有限公司 一种双冷却电机的内风路结构
DE102015215009A1 (de) * 2015-08-06 2017-02-09 Continental Automotive Gmbh Luftgekühlter Elektromotor mit einer Parallelschaltung zweier Lüfterräder
US10574118B2 (en) * 2016-04-05 2020-02-25 Denso Corporation Rotating electric machine
CN108631492B (zh) * 2017-03-21 2024-03-22 光陆机电有限公司 具有冷却功能的电机
CN108347135A (zh) * 2018-04-26 2018-07-31 重庆智驱科技有限公司 电机冷却结构
CN112470367A (zh) * 2018-06-07 2021-03-09 马威动力控制技术有限公司 用于包括空气冷却元件的电机的转子以及包括所述转子的电机
CN109120104B (zh) * 2018-09-28 2020-05-08 北京金风科创风电设备有限公司 风力发电机组、电机、电机气隙的气流输送装置
DE102019100907A1 (de) * 2019-01-15 2020-07-16 Gkn Sinter Metals Engineering Gmbh Elektrischer Motor
CN110061586B (zh) * 2019-06-03 2024-06-21 湖南国磁动力科技有限公司 一种相变散热电机机壳及其应用的电机
DE102019214696A1 (de) * 2019-09-25 2021-03-25 Mahle International Gmbh Elektrische Antriebsvorrichtung und Herstellverfahren für eine Wärmetauschereinrichtung, insbesondere zur Verwendung bei einer elektrischen Antriebsvorrichtung
CN112383173B (zh) * 2020-11-30 2022-02-18 东风商用车有限公司 一种设有转子冷却结构的永磁同步电机
EP4016813A1 (en) * 2020-12-17 2022-06-22 Rolls-Royce Deutschland Ltd & Co KG Electric motor with a cooling device
FR3118547B1 (fr) * 2020-12-28 2023-11-10 Alstom Transp Tech Moteur électrique et véhicule comportant un tel moteur

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541197A (en) * 1978-09-14 1980-03-22 Siemens Ag Fully closed fan type electric machine
JPS5579665U (ja) * 1978-11-24 1980-06-02
JPS57166850A (en) * 1981-04-08 1982-10-14 Toshiba Corp Cooler for rotary electric machine
JP2002119018A (ja) * 2000-08-23 2002-04-19 Abb Industrie Ag 高速回転する電気機器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3684906A (en) * 1971-03-26 1972-08-15 Gen Electric Castable rotor having radially venting laminations
JPS57195361U (ja) * 1981-06-08 1982-12-10
US4609840A (en) * 1984-11-05 1986-09-02 General Electric Company Baffle for improving coolant gas flow distribution in the gap region of a gas cooled dynamoelectric machine
FR2800931B1 (fr) * 1999-11-09 2004-01-23 Alstom Dispositif de ventilation et moteur electrique de traction ferroviaire equipe d'un tel dispositif
US6239520B1 (en) * 2000-04-24 2001-05-29 Capstone Turbine Corporation Permanent magnet rotor cooling system and method
JP2003111356A (ja) * 2001-10-01 2003-04-11 Mitsubishi Electric Corp 空気冷却式全閉形回転電機
JP2007097325A (ja) 2005-09-29 2007-04-12 East Japan Railway Co 全閉形電動機
JP5157138B2 (ja) 2006-11-24 2013-03-06 株式会社日立製作所 永久磁石式回転電機及び風力発電システム
DE102007021723B4 (de) * 2007-05-09 2009-09-17 Siemens Ag Luftgekühlte rotierende elektrische Maschine
JP2009038864A (ja) 2007-07-31 2009-02-19 Nissan Motor Co Ltd モータの冷却装置およびその冷却方法。
CN201113678Y (zh) * 2007-10-08 2008-09-10 南阳防爆集团有限公司 大容量同步发电机冷却风路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541197A (en) * 1978-09-14 1980-03-22 Siemens Ag Fully closed fan type electric machine
JPS5579665U (ja) * 1978-11-24 1980-06-02
JPS57166850A (en) * 1981-04-08 1982-10-14 Toshiba Corp Cooler for rotary electric machine
JP2002119018A (ja) * 2000-08-23 2002-04-19 Abb Industrie Ag 高速回転する電気機器

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162936A (ja) * 2014-02-26 2015-09-07 株式会社東芝 全閉型電動機
JP2016005325A (ja) * 2014-06-16 2016-01-12 株式会社富士通ゼネラル 圧縮機
JP2016213936A (ja) * 2015-05-01 2016-12-15 株式会社明電舎 回転電機
JP2017135932A (ja) * 2016-01-29 2017-08-03 富士電機株式会社 アウターロータ型回転電機
JP2017192163A (ja) * 2016-04-11 2017-10-19 東芝三菱電機産業システム株式会社 全閉形回転電機
JP2017216837A (ja) * 2016-06-01 2017-12-07 シンフォニアテクノロジー株式会社 回転電気機械およびそのロータに付設されるファンブレード
JP2018148776A (ja) * 2017-03-09 2018-09-20 株式会社明電舎 回転電機
CN112564413A (zh) * 2020-11-06 2021-03-26 贵州雅光电子科技股份有限公司 一种用于旋转电机的散热方法及利用其散热的旋转电机
CN112564413B (zh) * 2020-11-06 2023-11-03 贵州雅光电子科技股份有限公司 一种用于旋转电机的散热方法及利用其散热的旋转电机
JP7031074B1 (ja) * 2021-05-17 2022-03-07 三菱電機株式会社 回転電機

Also Published As

Publication number Publication date
JPWO2013001645A1 (ja) 2015-02-23
US20140152154A1 (en) 2014-06-05
US9419498B2 (en) 2016-08-16
JP5629828B2 (ja) 2014-11-26
CN103636103A (zh) 2014-03-12
CN103636103B (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5629828B2 (ja) 回転電機
KR101683494B1 (ko) 계자권선형 구동모터의 회전자
JP5482376B2 (ja) 密閉型回転電機
US20150162805A1 (en) Rotor of rotating electrical machine and rotating electrical machine
JP6059906B2 (ja) アキシャルギャップ型回転電機
JP2008131813A (ja) 永久磁石式回転電機,風力発電システム,永久磁石の着磁方法
KR20100106247A (ko) 전기 기계를 냉각시키기 위한 장치 및 방법
JP2014033584A (ja) 回転電機の風冷構造
JP2015047034A (ja) アキシャルギャップ型発電機
KR101098841B1 (ko) 복합 냉각 케이싱이 구비된 전동기
CN104682623B (zh) 串激电机
EP3703227A1 (en) Rotary electric device
WO2016079806A1 (ja) 回転電機
CN210806936U (zh) 高速永磁电机
US9935512B2 (en) Permanent magnet rotating electrical machine
KR20150068224A (ko) 구동모터의 냉각유닛
KR100858290B1 (ko) 공랭식 전동장치
CN112383173B (zh) 一种设有转子冷却结构的永磁同步电机
KR20200082285A (ko) 회전전기기계
KR20140038598A (ko) 발전기 또는 전동기의 냉각구조
EP4329163A1 (en) Magnetic-geared electrical machine, electric power generation system, and drive system
KR101843456B1 (ko) 동기 발전기
JP7548428B2 (ja) 回転電機
JP2015198512A (ja) 永久磁石式回転電機
TW202244398A (zh) 馬達、送風裝置及冷凍裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522600

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14127629

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11868467

Country of ref document: EP

Kind code of ref document: A1