WO2013001629A1 - 化学反応装置、及び化学反応方法 - Google Patents

化学反応装置、及び化学反応方法 Download PDF

Info

Publication number
WO2013001629A1
WO2013001629A1 PCT/JP2011/064965 JP2011064965W WO2013001629A1 WO 2013001629 A1 WO2013001629 A1 WO 2013001629A1 JP 2011064965 W JP2011064965 W JP 2011064965W WO 2013001629 A1 WO2013001629 A1 WO 2013001629A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
chemical reaction
microwave
contents
microwaves
Prior art date
Application number
PCT/JP2011/064965
Other languages
English (en)
French (fr)
Inventor
章斤 石塚
巌 吉野
邦堯 百田
Original Assignee
マイクロ波環境化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロ波環境化学株式会社 filed Critical マイクロ波環境化学株式会社
Priority to DK11868832.4T priority Critical patent/DK2727647T3/da
Priority to IN534CHN2014 priority patent/IN2014CN00534A/en
Priority to PCT/JP2011/064965 priority patent/WO2013001629A1/ja
Priority to CN201180071600.1A priority patent/CN103747866B/zh
Priority to JP2013522409A priority patent/JP5781160B2/ja
Priority to US14/123,174 priority patent/US11224852B2/en
Priority to MYPI2013702468A priority patent/MY170052A/en
Priority to KR1020137033106A priority patent/KR101838330B1/ko
Priority to EP11868832.4A priority patent/EP2727647B1/en
Priority to ES11868832T priority patent/ES2776997T3/es
Priority to BR112013033215-8A priority patent/BR112013033215B1/pt
Publication of WO2013001629A1 publication Critical patent/WO2013001629A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1862Stationary reactors having moving elements inside placed in series
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/806Apparatus for specific applications for laboratory use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00139Controlling the temperature using electromagnetic heating
    • B01J2219/00141Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • B01J2219/00166Controlling or regulating processes controlling the flow controlling the residence time inside the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00182Controlling or regulating processes controlling the level of reactants in the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/002Sensing a parameter of the reaction system inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00238Control algorithm taking actions modifying the operating conditions of the heat exchange system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1209Features relating to the reactor or vessel
    • B01J2219/1212Arrangements of the reactor or the reactors
    • B01J2219/1218Multiple reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1248Features relating to the microwave cavity
    • B01J2219/1266Microwave deflecting parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1248Features relating to the microwave cavity
    • B01J2219/1272Materials of construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1275Controlling the microwave irradiation variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1275Controlling the microwave irradiation variables
    • B01J2219/1284Intensity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1287Features relating to the microwave source
    • B01J2219/129Arrangements thereof
    • B01J2219/1296Multiple sources

Definitions

  • the present invention relates to a chemical reaction apparatus that irradiates microwaves in a reactor.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a chemical reaction apparatus and the like that can irradiate the contents in the reactor with microwaves more efficiently.
  • a chemical reaction apparatus includes a horizontal flow reactor in which contents flow horizontally with an unfilled space above, and a microwave generator that generates microwaves. And one or more waveguides for transmitting the microwave generated by the microwave generator to the unfilled space of the reactor.
  • the chemical reaction apparatus according to the present invention may further include one or more stirring means for stirring the contents in the reactor.
  • the contents are agitated, so that the contents in the reactor can be more uniformly irradiated with microwaves.
  • microwaves are irradiated only to a part of the contents in the reactor.
  • the stirring means may perform stirring by any one or more methods of rotational stirring, bubbling stirring, and ultrasonic stirring.
  • the reactor is one in which the raw material and the solid catalyst flow, and may further include a catalyst separation unit that separates the solid catalyst from the product after the reaction in the reactor.
  • a catalyst separation unit that separates the solid catalyst from the product after the reaction in the reactor.
  • the chemical reaction apparatus may further include a mixing unit that mixes the raw material and the solid catalyst, and the raw material and the solid catalyst mixed by the mixing unit may be placed upstream of the reactor.
  • the solid catalyst may have microwave absorbability or microwave sensitivity. With such a configuration, the solid catalyst is heated more efficiently, and the reaction of the raw material in the vicinity of the solid catalyst is further promoted.
  • the reactor may have a plurality of chambers continuous in series. With such a configuration, the contents react while staying in each chamber. As a result, in each chamber, the contents can be effectively irradiated with microwaves, and unreacted raw material is output from the reactor (ie, from the inflow hole of the reactor to the outflow hole). It can be avoided that the raw material flows in a short circuit.
  • the reactor has a plurality of partition plates that divide the interior into a plurality of chambers, and each partition plate has a flow path through which contents flow from the upstream side to the downstream side. Also good. With such a configuration, a plurality of chambers in the reactor can be realized by the partition plate.
  • the flow path may be a flow path in which the content overflows above each partition plate, or a flow path in which the content flows in a gap between the partition plates.
  • each partition plate may be microwave permeable.
  • microwaves are also irradiated through the partition plate, and the contents can be irradiated with microwaves more efficiently.
  • each waveguide may be provided at the position of the partition plate.
  • a plurality of temperature measuring units that measure the internal temperature for each chamber of the reactor, and the microwave output to be irradiated to each chamber according to the temperature measured by each temperature measuring unit.
  • a microwave control unit for controlling.
  • the chemical reaction apparatus may include two or more microwave generators, and the two or more microwave generators may generate microwaves having two or more frequencies. With such a configuration, microwaves can be applied to a wider object.
  • the contents can be irradiated with microwaves more efficiently, and the reaction of the contents can be promoted.
  • the figure which shows the structure of the chemical reaction apparatus by Embodiment 1 of this invention The figure which shows an example of an internal structure of the reactor by the embodiment.
  • the figure which shows the example of the partition plate in the same embodiment The figure which shows the example of the partition plate in the same embodiment
  • the figure which shows the example of the partition plate in the same embodiment The figure which shows the example of the partition plate in the same embodiment
  • the figure which shows the example of the partition plate in the same embodiment The figure which shows the example of the partition plate in the same embodiment
  • the figure which shows the example of the partition plate in the same embodiment The graph which shows the ester conversion rate in the Example of the same embodiment
  • the figure which shows another example of the reactor in the same embodiment The figure which shows another example of the microwave generation part and waveguide in the same embodiment
  • the figure for demonstrating the irradiation position of the microwave in the embodiment The figure for demonstrating the irradiation position of the microwave in the embodiment
  • Embodiment 1 A chemical reaction apparatus according to Embodiment 1 of the present invention will be described with reference to the drawings.
  • the chemical reaction apparatus according to the present embodiment irradiates the contents of the reactor with microwaves.
  • FIG. 1 is a diagram showing a configuration of a chemical reaction apparatus 1 according to the present embodiment.
  • the chemical reaction apparatus 1 according to the present embodiment includes a mixing unit 12, a reactor 13, a microwave generator 14, a waveguide 15, a microwave control unit 16, a catalyst separation unit 17, and a processing liquid storage tank. 18.
  • the mixing unit 12 mixes the raw material and the solid catalyst.
  • the mixing part 12 may mix a raw material etc. and a reactive agent.
  • the raw material may include a plurality of substances. For example, when esterification is performed in the reactor 13, fats and oils and alcohols may be used as raw materials.
  • the raw material and the solid catalyst may be supplied to the mixing unit 12 by a pump 11 as shown in FIG. 1, or may be supplied to the mixing unit 12 by other methods.
  • the mixing unit 12 may mix two or more substances by rotating a blade-shaped member, a wing-shaped member, or a screw-shaped member.
  • the catalyst mixed with the raw material is a solid catalyst (heterogeneous catalyst)
  • the catalyst may be a liquid catalyst (homogeneous catalyst).
  • the solid catalyst may or may not form a fluidized bed in the reactor 13.
  • the shape of the solid catalyst is not limited.
  • the shape of the solid catalyst may be, for example, an amorphous granular shape, a cylindrical shape (may be hollow or not), a spherical shape, a pellet shape, a ring shape, a shell shape, and the like.
  • the solid catalyst may or may not have, for example, microwave absorption or microwave sensitivity.
  • the solid catalyst When the solid catalyst has microwave absorptivity or microwave sensitivity, the solid catalyst is heated by the microwave when the microwave is irradiated inside the reactor 13 described later, and in the vicinity of the solid catalyst. The chemical reaction will be promoted.
  • the microwave absorbability and microwave sensitivity depend on the frequency of the irradiated microwave, the temperature inside the reactor 13, and the like. In other words, the microwave absorption is high in the microwave frequency to be used and the temperature inside the reactor 13 in which the raw material is reacted. Therefore, for example, a solid catalyst containing such a substance having a high microwave absorption property may be used.
  • the solid catalyst may contain a substance having such microwave absorbability.
  • the solid catalyst may be a composite in which such a substance having microwave absorbability and microwave sensitivity and a metal or a metal oxide are combined.
  • the composite may be a combination of a substance having wave sensitivity and a catalyst such as an alkali catalyst or an acid catalyst, or a substance having microwave absorption or microwave sensitivity and a catalyst such as an alkali catalyst or an acid catalyst.
  • the mixing unit 12 may be a composite in which a metal or a metal oxide is combined.
  • the compositing may be performed, for example, by physical adsorption, may be performed by chemical bonding, may be performed by alloying, or may be performed by other methods.
  • preliminary heating may or may not be performed in preparation for the reaction in the reactor 13.
  • the temperature of the preliminary heating in the mixing unit 12 is controlled so that the raw material or the like has a desired temperature or a desired temperature range when entering the reactor 13. It is.
  • the heating corresponding to the preheating may be performed in the reactor 13.
  • the raw material and the solid catalyst mixed in the mixing unit 12 are put on the upstream side of the reactor 13.
  • the reactor 13 is a horizontal flow reactor in which the contents flow in the horizontal direction with an unfilled space above.
  • the content is, for example, a mixture of a raw material and a catalyst.
  • the raw material and the catalyst mixed in the mixing unit 12 flow in the reactor 13.
  • a product is produced
  • FIG. That is, it can be said that the content is a raw material and / or a product.
  • the contents are usually other than gas, that is, solid or liquid. Usually, the contents are liquid.
  • the inner wall of the reactor 13 is preferably made of a material that reflects microwaves. An example of a substance that reflects microwaves is metal. The internal configuration of the reactor 13 will be described later.
  • the microwave generator 14 generates microwaves.
  • the chemical reaction apparatus 1 may include one microwave generator 14 or may include two or more microwave generators 14.
  • the frequency of the microwave is not limited, but may be, for example, 2.45 GHz, 5.8 GHz, 24 GHz, 913 MHz, or other The frequency may be in the range of 300 MHz to 300 GHz.
  • the waveguide 15 transmits the microwave generated by the microwave generator 14 to the unfilled space of the reactor 13. As shown in FIG. 1, there are usually as many waveguides 15 as the number of microwave generators 14. In addition, it is preferable to use the waveguide 15 having a standard corresponding to the frequency of the microwave generated by the microwave generator 14.
  • the microwave control unit 16 controls the output of the microwave irradiated to the reactor 13 according to the temperature measured by the temperature measurement unit 25 described later. By the control by the microwave control unit 16, the inside of the reactor 13 can be maintained at a desired temperature or a desired temperature range.
  • the catalyst separation unit 17 separates the catalyst from the product after the reaction in the reactor 13.
  • the catalyst mixed with the raw material is a solid catalyst
  • the solid catalyst may be separated by a filter, or the solid catalyst may be separated by precipitating one of the solid catalyst and the product.
  • the solid catalyst may be separated by adsorbing the solid catalyst with a magnet (a permanent magnet or an electromagnet).
  • the separated solid catalyst can be reused as appropriate.
  • the catalyst may be separated by performing distillation, extraction, or neutralization in the catalyst separation unit 17.
  • the product from which the catalyst is separated in the catalyst separation unit 17 is placed. And it will be divided into final products and by-products as appropriate.
  • the raw material is a free fatty acid and esterification is performed in the reactor 13
  • a product that is a biodiesel fuel and a by-product that is water are obtained.
  • an acid catalyst is used.
  • the raw material is triglyceride and transesterification is performed in the reactor 13
  • a product that is biodiesel fuel and a by-product that is glycerin are obtained.
  • an alkali catalyst is used.
  • a cooler for cooling the substance after the reaction in the reactor 13 may be provided in the subsequent stage of the reactor 13 or not. In the former case, for example, the cooler may cool the substance after the reaction in the reactor 13 with water.
  • FIG. 2 is a diagram showing an example of the internal structure of the reactor 13 according to the present embodiment.
  • the reactor 13 has a plurality of chambers 31, 32, 33, and 34 that are continuous in series.
  • Each of the chambers 31 to 34 is partitioned by a plurality of partition plates 21 that partition the inside of the reactor 13.
  • the unfilled space 22 exists above the reactor 13.
  • the unfilled space 22 is irradiated with the microwave generated by the microwave generator 14 through the waveguide 15.
  • Each waveguide 15 may or may not be provided at the position of the partition plate 21 as shown in FIG. In the former case, for example, the microwave transmitted to the unfilled space 22 by one waveguide 15 is mainly divided into two chambers separated by a partition plate 21 at a position corresponding to the waveguide 15.
  • the partition plate 21 may be microwave transmissive, microwave absorptive, or may reflect microwaves.
  • the material that transmits microwaves include Teflon (registered trademark), quartz glass, ceramic, and silicon nitride alumina. Therefore, the microwave-permeable partition plate 21 may be made of such a material that transmits microwaves. Examples of materials that absorb microwaves include carbons other than fullerene. Accordingly, the microwave-absorbing partition plate 21 may be made of a material that absorbs such microwaves.
  • the partition plate 21 that does not transmit microwaves may be made of a material that reflects such microwaves.
  • the partition plate 21 may be comprised by the combination of arbitrary 2 or more materials among a microwave transparent material, a microwave absorptive material, and a microwave reflective material.
  • the raw material 20 that has entered the reactor 13 flows between the chambers 31 to 34 and is finally output from the downstream (the right end of the reactor 13 in FIG. 2).
  • the partition plate 21 has a flow path through which the contents flow.
  • the flow path is a flow path in which the contents mainly flow from the upstream side (left side in FIG. 2) to the downstream side (right side in FIG. 2) of the reactor 13, but as indicated by the arrows in FIG.
  • a part may flow from the downstream side to the upstream side.
  • the flow path of the partition plate 21 may be, for example, a flow path in which the content overflows above the partition plate 21, or may be a flow path in which the content flows in a gap between the partition plates 21.
  • FIGS. 3A to 3F are views of the partition plate 21 provided in the cylindrical reactor 13 as seen from the length direction of the reactor 13.
  • the partition plate 21 does not exist at the position of the unfilled space 22, and the position (that is, above the partition plate 21) is the content. Things may flow.
  • a concave portion 41 through which the contents flow may be provided on the upper side of the partition plate 21.
  • the content circulates through the notch (notch) of the recess 41.
  • the shape of the recessed part 41 is not ask
  • FIG. 3B shows a case where the concave portion 41 has a semicircular shape
  • the cut shape of the concave portion 41 may be, for example, a triangle, a rectangle, or other shapes.
  • the number of the concave portions 41 is not limited.
  • the number may be one as shown in FIG. 3B or may be plural.
  • a gap 27 may exist between the partition plate 21 and the inner wall of the reactor 13 as shown in FIG. 3C.
  • FIG. 3C There may be a gap 27 in 21 itself.
  • the size of the gap 27 is preferably larger than the content can be circulated.
  • the shape and number of the gaps 27 are not limited.
  • FIG. 3C shows a case where the gap 27 has an annular shape
  • the shape of the gap 27 may be, for example, a C shape in which a part of the annular ring is closed.
  • 3D shows the case where the gap 27 is circular
  • the shape of the gap 27 may be, for example, a triangle, a rectangle, or any other shape.
  • the number of the gaps 27 may be larger or smaller than that in FIG. 3D, for example (one or more).
  • the overflow channel and the channel of the gap 27 of the partition plate 21 may be combined.
  • the reactor 13 may or may not have a slope that decreases from the upstream side toward the downstream side.
  • the reactor 13 also has a stirring means 23. That is, the chemical reaction apparatus 1 according to the present embodiment also has one or more stirring means 23 for stirring the contents in the reactor 13.
  • FIG. 2 shows the case where the stirring means 23 is present in each of the chambers 31 to 34, this need not be the case.
  • the stirring means 23 may not be present in one or more chambers.
  • FIG. 2 shows a case where the stirring means 23 has a blade shape, but this schematically shows the stirring means 23, and the stirring means 23 performs, for example, rotary stirring. It may be one that performs bubbling stirring, one that performs ultrasonic stirring, or one that combines two or more of them. Good.
  • the stirring may be performed by rotating a blade-shaped member, a blade-shaped member, a rod-shaped member, or the like, for example.
  • the blade-shaped member, wing-shaped member, rod-shaped member, or the like may be a microwave transmissive member, a microwave absorbing member, or a microwave reflecting member. Alternatively, it may be constituted by a combination of any two or more materials among a microwave transmissive material, a microwave absorptive material, and a microwave reflective material.
  • the rotation may be performed, for example, by rotating a blade-like member or the like attached to the shaft according to the rotation of the shaft, or may be rotated using magnetism, such as a magnetic stirrer. Good.
  • the shaft may be independent for each chamber, or may be commonly used in a plurality of chambers.
  • a magnetic stirrer such as a rod, blade or wing is rotated by a magnet.
  • the rotating agitation is performed using a blade-like member or a wing-like member, the rotation of these members is used to flow the contents of the reactor 13 in the direction from upstream to downstream or in the opposite direction. It may or may not be.
  • the stirring means 23 performs bubbling stirring, the stirring may be performed by blowing gas into the contents in the reactor 13, for example.
  • the injected gas may be, for example, an inert gas such as helium or argon, nitrogen, or air.
  • the stirring means 23 performs ultrasonic stirring, the stirring is performed, for example, by generating ultrasonic waves on the bottom surface or side surface of the reactor 13 and irradiating the generated ultrasonic waves to the contents of the reactor 13. May be performed. Note that rotational stirring, bubbling stirring, and ultrasonic stirring are already known and will not be described in detail. Further, the stirring means 23 may perform stirring by a stirring method other than those. For example, the stirring means 23 may perform rocking stirring that vibrates the reactor 13 itself.
  • the first reason that the stirring means 23 stirs the contents is to heat the contents uniformly by the microwave. Although it depends on the type of contents and the temperature of the contents, the depth of penetration of a certain microwave is fixed, so that the entire contents are uniformly irradiated with microwaves and stirred so that they are heated uniformly. Will do. Moreover, if the surface area of the content in the unfilled space 22 becomes large, it becomes possible to irradiate the content more efficiently. Therefore, the second reason for stirring the contents is to increase the microwave irradiation area.
  • the stirring of the contents by the stirring means 23 is so intense that a wave is generated on the surface of the contents in the unfilled space 22, but this need not be the case (for the first reason). This is because if the corresponding stirring is performed, the entire contents are heated as a result, which may be sufficient).
  • the raw material is stirred using the stirring means 23 as described above, even when two or more substances having different densities are contained in the raw material, both are appropriately mixed and reacted. Will be able to. For example, in a vertical flow type reactor, even if alcohols and waste oils having different densities are reacted, they are easily separated. If the stirring means 23 is present, both can be appropriately mixed and reacted.
  • stirring means 23 when a plurality of stirring means 23 exist in the reactor 13, the types of stirring may be the same or different. In the latter case, for example, rotational stirring may be performed in the chamber 31, bubbling stirring may be performed in the chamber 32, and ultrasonic stirring may be performed in the chamber 33.
  • the reactor 13 also has a temperature measuring unit 25. That is, the chemical reaction device 1 according to the present embodiment may include a temperature measurement unit 25 that measures the temperature inside the reactor 13.
  • the temperature inside the reactor 13 is preferably the temperature of the contents of the reactor 13.
  • FIG. 2 shows the case where the temperature measuring unit 25 is present in each of the chambers 31 to 34, this need not be the case.
  • the temperature measuring unit 25 may not be present in one or more chambers. 2 schematically shows the temperature measuring unit 25, the temperature measuring unit 25 may measure the temperature with a thermocouple, measure the temperature with an infrared sensor, or use an optical fiber, for example. The temperature may be measured by, or the temperature may be measured by other methods.
  • the temperature measured by the temperature measuring unit 25 (strictly speaking, it is data indicating temperature) is passed to the microwave control unit 16 and used for controlling the microwave output by the microwave generator 14.
  • the control is for maintaining the temperature of each of the chambers 31 to 34 at a desired temperature or a desired temperature range as described above. For example, as shown in FIG. 2, when microwaves are irradiated to the position of the partition plate 21, the control of the output of the microwaves irradiated to that position is performed, for example, at the position where the microwaves are irradiated. Of the temperatures of the two chambers separated by the partition plate 21, the temperature may be determined using one or both.
  • control may be performed using a lower temperature, control may be performed using a higher temperature, or control may be performed using a predetermined room temperature. You may go. In the latter case, for example, the control may be performed using the average of both.
  • the height of the liquid level of the content 20 may be, for example, 1/10 to 9/10 of the maximum value of the height inside the reactor 13. That is, the height of the unfilled space 22 may be, for example, 1/10 to 9/10 of the maximum value of the height inside the reactor 13. Moreover, the height of the liquid level of the contents 20 may be, for example, 1/5 to 4/5 of the maximum value of the height inside the reactor 13. 3C to 3F, when the gap 27 exists, the height of the liquid level is determined by the position of the outflow hole through which the product etc. flows out from the reactor 13. . Therefore, the position of the outflow hole may be provided at a position corresponding to the desired liquid level.
  • the position of the outflow hole of the reactor 13 may be set so that a desired unfilled space 22 can be secured.
  • the liquid level in the chambers 31 to 33 other than the most downstream chamber 34 depends on the height of the partition plate 21. (In this case also, the height of the liquid level in the most downstream chamber 34 is determined by the position of the outflow hole). Therefore, the partition plate 21 having a height corresponding to the desired liquid level may be provided inside the reactor 13. That is, the height (position) of the overflow channel in the partition plate 21 may be set so that a desired unfilled space 22 can be secured.
  • the height of the liquid level of the content 20 and the height of the unfilled space 22 are not limited to those described above as long as the content 20 can be appropriately irradiated with microwaves.
  • the shape of the reactor 13 is not ask
  • the reactor 13 may have a cylindrical shape in which the left-right direction in FIG. 2 is the length direction, may have a rectangular parallelepiped shape, or may have another shape.
  • 3A to 3F also show the partition plate 21 when the reactor 13 is cylindrical as described above.
  • the wall surface of the reactor 13 may be covered with a heat insulating material. By doing so, it is possible to prevent the heat inside the reactor 13 from being released to the outside.
  • the raw material and the catalyst are supplied to the mixing unit 12 by the pump 11. And it mixes in the mixing part 12, and is thrown into the reactor 13.
  • FIG. The supply speed of the raw material or the like to the reactor 13 may be determined in advance.
  • the raw materials and the like supplied to the reactor 13 flow from the upstream side to the downstream side while being stirred by the stirring means 23.
  • the microwave generated by the microwave generator 14 is transmitted to the unfilled space 22 of the reactor 13 through the waveguide 15 and irradiated to the raw material or the like.
  • the raw material and the like are heated, and the reaction of the raw material and the like is promoted.
  • the temperatures of the chambers 31 to 34 are measured by the temperature measuring unit 25 and passed to the microwave control unit 16 through a path (not shown).
  • the microwave control unit 16 controls the output of the microwave generator 14 so that the temperature of each of the chambers 31 to 34 becomes a desired temperature or a desired temperature range.
  • the product output from the reactor 13 is input to the catalyst separation unit 17 to separate the catalyst. Then, the product from which the catalyst is separated is introduced into the treatment liquid storage tank 18 by the pump 11, and is divided into a target product and a by-product in the treatment liquid storage tank 18. In this way, the final product is obtained. In addition, by repeatedly executing such processing, target products are sequentially generated.
  • the catalyst separation process in the catalyst separation unit 17 and the product and by-product separation process in the treatment liquid storage tank 18 may be performed sequentially each time the product is added, or It may be carried out in a lump after the charged product has accumulated a certain amount. That is, the processing in the reactor 13 is processed by a flow method (flow type), but the processing in the subsequent catalyst separation unit 17 and the processing liquid storage tank 18 may be processed by a flow method or by a batch method. May be processed.
  • the chemical reaction performed in the chemical reaction apparatus 1 according to the present embodiment is anything as long as it is a microwave reaction itself or a chemical reaction caused by heating according to the microwave irradiation. Also good.
  • biodiesel fuel may be generated by esterification or transesterification, ink raw material that is an ester, or other chemical reaction may be used.
  • Example of reaction system construction In this example, as a raw material, a mixture of fats and oils and free fatty acids and alcohol were used. Alcohol is a reactant.
  • the raw material and the catalyst are respectively sent to the mixing unit 12 by the pump 11 and mixed uniformly.
  • the mixed solution is supplied to the reactor 13.
  • the mixed liquid in the reactor 13 is irradiated with microwaves generated from the microwave generator 14 to promote the esterification reaction. Further, the mixed liquid in the reactor 13 is filled in the chambers 31 to 34 partitioned by the partition plate 21 in the reactor 13.
  • the reaction proceeds by microwave irradiation while the mixed solution is stirred by the stirring means 23 together with the catalyst.
  • the microwave is applied to the unfilled space 22 existing inside the reactor 13 and diffuses into the reactor 13.
  • the reaction solution in each chamber moves to the next chamber through a flow path provided in the partition plate 21.
  • the reaction liquid is discharged out of the reactor 13 after maintaining a certain residence time in the reactor 13.
  • the mixed liquid after the reaction discharged from the reactor 13 is supplied to the catalyst separation unit 17, where the catalyst is separated and filled into the treatment liquid storage tank 18.
  • the reaction liquid after the catalyst separation is separated from the by-product water and glycerin in the treatment liquid storage tank 18, and the target crude methyl ester is taken out.
  • FIG. 4 shows the conversion rate of fatty acid methyl ester by the esterification reaction of fatty acid and methanol in this example.
  • the esterification reaction proceeded rapidly after the start of the reaction, and the conversion rate reached 87% in 30 minutes. Thereafter, the conversion rate increased gradually, and the reaction was almost complete in 1.5 hours. Equilibrium has been reached. In addition, the other components in the waste oil were not particularly changed. From this result, it is possible for the esterification reaction by the flow reactor according to the present embodiment to efficiently carry out the esterification reaction on the free fatty acids in the waste oil and continuously carry out a stable reaction. I understand that.
  • the contents can be efficiently irradiated to the contents in the reactor 13.
  • the chemical reaction inside the reactor 13 can be promoted.
  • the contents can be evenly irradiated with microwaves. It can become possible.
  • the reactor 13 is divided into a plurality of chambers, the contents react while staying in the respective chambers, so that the contents can be effectively irradiated with microwaves in each chamber. It becomes like this.
  • the solid catalyst has microwave absorptivity and microwave sensitivity, the solid catalyst is efficiently heated by the microwave irradiation, which may promote a chemical reaction in the vicinity of the solid catalyst. it can. As described above, the chemical reaction inside the reactor 13 is promoted, so that the product can be obtained more efficiently.
  • the mixing part 12 which mixes a raw material and a catalyst was demonstrated, it is not necessary.
  • a solid catalyst flowing in the reactor 13 remains in the reactor 13, or a solid catalyst flowing in the reactor 13
  • the chemical reaction apparatus 1 may not include the mixing unit 12.
  • the fixed bed solid catalyst usually exists inside the reactor 13.
  • the solid catalyst of the fixed bed may be affixed to the inner wall of the reactor 13 or may be fixed by being packed in a catalyst packed bed or a column inside the reactor 13. There may be.
  • the shape of the solid catalyst is, for example, amorphous granular, cylindrical (which may or may not be hollow), spherical, pellet, ring, shell, honeycomb, foam, It may be a fiber, cloth, plate, or other shape.
  • the reactor 13 may be composed of a plurality of independent chambers communicating with each other. In the case of the configuration as shown in FIG. 5, it is preferable to irradiate microwaves in each chamber.
  • the stirring means 23 and the temperature measurement part 25 may be provided for every chamber.
  • the reactor 13 has four chambers 31 to 34 that are continuous in series as shown in FIG. 2, or three that are continuous in series as shown in FIG.
  • the number of this chamber is not ask
  • the larger the number of chambers the more effectively the raw material can be prevented from flowing short-circuiting from the inflow hole of the reactor 13 to the outflow hole.
  • the volume of the chamber does not change according to the increase or decrease of the number of the chambers, the residence time until the contents of the reactor 13 flows into the reactor 13 and flows out becomes longer as the number of the chambers increases.
  • the smaller the number of chambers the shorter the residence time. Therefore, in that case, the number of the chambers can be adjusted so as to obtain a desired residence time.
  • the reactor 13 is multi-staged, that is, the case where the reactor 13 is divided into the plurality of chambers 31 to 34 by the partition plate 21, has been described.
  • the reactor 13 may have one chamber instead of multiple stages.
  • the microwave generated by the microwave generator 14 may be transmitted to a plurality of locations by a waveguide 15 having a branch.
  • the plurality of locations may be, for example, a plurality of chambers.
  • FIG. 6 shows the case where the chemical reaction apparatus 1 includes only one microwave generator 14, but when the chemical reaction apparatus 1 includes two or more microwave generators 14, Microwaves generated by any of the plurality of microwave generators 14 may be transmitted to a plurality of locations by the waveguide 15 having branches. This is the same even when each chamber is independent as shown in FIG.
  • the microwave control unit 16 transmits each chamber to which the microwave generated by the microwave generator 14 is transmitted. Any or all of these temperatures may be used to control the output of the microwave generator 14.
  • the microwave control unit 16 may perform control using an average of all temperatures in each room, or may perform control using the maximum value or the minimum value of the temperature in each room.
  • the chemical reaction apparatus 1 includes the temperature measurement unit 25 and the microwave control unit 16
  • the temperature of the reactor 13 can be maintained at a desired temperature or temperature range by setting the microwave output to a predetermined value, the microwave output control using the temperature is performed. It is not necessary to perform.
  • the catalyst separation unit 17 is provided in the subsequent stage of the reactor 13 in the subsequent stage of the reactor 13 has been described, but this need not be the case.
  • the catalyst is separated by another device, or when the solid catalyst flowing in the reactor 13 remains in the reactor 13, when a solid catalyst in a fixed bed is used instead of the solid catalyst flowing in the reactor 13,
  • the catalyst separation unit 17 may not be provided.
  • the case where the raw material and the catalyst are mixed and charged into the reactor 13 has been described, but this need not be the case.
  • only the raw material may be charged into the reactor 13.
  • the raw material and the catalyst are not mixed, only the raw material may flow through the reactor 13. That is, the content of the reactor 13 may be, for example, a mixture of a plurality of raw materials.
  • the raw material and the catalyst may flow through the reactor 13. Good.
  • the mixing part 12 may mix a raw material, for example, or may mix a raw material (substrate) and a reactive agent. Moreover, when mixing of the raw material etc. is unnecessary, the chemical reaction apparatus 1 does not need to be provided with the mixing part 12 as mentioned above.
  • stirring means 23 for stirring the raw material in the reactor 13 has been described, but this need not be the case.
  • the stirring means 23 may not be provided.
  • the chemical reaction apparatus 1 includes the treatment liquid storage tank 18
  • product extraction or the like may be performed in another apparatus.
  • the chemical reaction apparatus 1 includes two or more microwave generators 14, and the two or more microwave generators 14 may generate microwaves having two or more frequencies. . That is, the contents of the reactor 13 may be irradiated with microwaves having two or more frequencies. In that case, microwaves of two or more frequencies may be irradiated at the same position, and microwaves of two or more frequencies may be irradiated at different positions. For example, as shown in FIG. 7A, microwaves of the frequencies X and Y generated by the microwave generators 14 a and 14 d may be irradiated at the same position of the reactor 13, that is, in the midstream region of the reactor 13.
  • the microwaves of the frequencies X and Y are transmitted to the reactor 13 via the waveguides 15a and 15d, respectively.
  • the microwave of the frequency X generated by the microwave generators 14 a, 14 b, and 14 c is irradiated from the upstream side of the reactor 13 to the midstream region, and on the downstream side of the reactor 13, You may irradiate the microwave of the frequency Y which 14d of microwave generators generate
  • the microwaves having the frequency X are transmitted to the reactor 13 via the waveguides 15a, 15b, and 15c, respectively. Further, the microwave of frequency Y is transmitted to the reactor 13 via the waveguide 15d.
  • the number of frequencies may be two, or three or more.
  • the two or more frequencies may be any combination as long as they are two or more frequencies selected from the range of 300 MHz to 300 GHz.
  • the combination of the frequencies may be 2.45 GHz and 5.8 GHz, may be 2.45 GHz and 24 GHz, and may be 2.45 GHz. It may be 913 MHz, 5.8 GHz and 24 GHz, 5.8 GHz and 913 MHz, or 24 GHz and 913 MHz.
  • microwaves having two or more frequencies may be irradiated at the same time, or microwaves may be irradiated so that the period of irradiation differs for each frequency.
  • the microwave of the frequency X may be irradiated in a certain period, and the microwave of the frequency Y may be irradiated in the next period.
  • microwaves with two or more frequencies are irradiated, microwaves are also applied to substances that are not subjected to microwave action (for example, heating) by microwave irradiation with one frequency. Therefore, microwaves can be applied to a wider material.
  • information such as threshold values, mathematical formulas, addresses, etc. used by each component in the processing is temporarily stored in a recording medium (not shown) even if it is not specified in the above description. Alternatively, it may be held for a long time. Further, the storage of information in the recording medium (not shown) may be performed by each component or a storage unit (not shown). Further, reading of information from the recording medium (not shown) may be performed by each component or a reading unit (not shown).
  • information used by each component for example, information such as a threshold value, an address, and various setting values used by each component may be changed by the user Even if it is not specified in the above description, the user may be able to change the information as appropriate, or it may not be. If the information can be changed by the user, the change is realized by, for example, a not-shown receiving unit that receives a change instruction from the user and a changing unit (not shown) that changes the information in accordance with the change instruction. May be.
  • the change instruction received by the receiving unit (not shown) may be received from an input device, information received via a communication line, or information read from a predetermined recording medium, for example. .
  • each component may be configured by dedicated hardware, or a component that can be realized by software may be realized by executing a program.
  • each component can be realized by a program execution unit such as a CPU reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the chemical reaction apparatus or the like According to the chemical reaction apparatus or the like according to the present invention, an effect that the raw material or the like can be efficiently irradiated with microwaves can be obtained.
  • a chemical reaction apparatus that performs a chemical reaction that requires heating or the like Useful as.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Clinical Laboratory Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】内容物に効率よくマイクロ波を照射することができる化学反応装置を提供する。 【解決手段】内容物が、上方に未充填空間を有した状態で水平方向に流れる横型のフロー式のリアクター13と、マイクロ波を発生するマイクロ波発生器14と、マイクロ波発生器14の発生したマイクロ波を、リアクター13の未充填空間に伝送する1以上の導波管15と、を備える。このようにして、より広い表面積にマイクロ波を照射することができ、マイクロ波の照射効率が高くなる。

Description

化学反応装置、及び化学反応方法
 本発明は、リアクターにおいてマイクロ波を照射する化学反応装置等に関する。
 従来、反応物質に対してマイクロ波(電磁波)を照射することにより、熱処理等を行う化学反応装置や化学反応方法が知られている(例えば、特許文献1参照)。
特表2006-516008号公報
 そのような従来の化学反応装置等において、マイクロ波をより効率よく照射することにより、化学反応をより促進したいという要望があった。
 本発明は、上記事情を考慮してなされたものであり、リアクター内の内容物に対してより効率よくマイクロ波を照射することができる化学反応装置等を提供することを目的とする。
 上記目的を達成するため、本発明による化学反応装置は、内容物が、上方に未充填空間を有した状態で水平方向に流れる横型のフロー式のリアクターと、マイクロ波を発生するマイクロ波発生器と、マイクロ波発生器の発生したマイクロ波を、リアクターの未充填空間に伝送する1以上の導波管と、を備えたものである。
 このような構成により、より広い表面積に対してマイクロ波を照射することができる。その結果、内容物に対してマイクロ波を効率よく照射することができ、その内容物の反応を促進させることができる。
 また、本発明による化学反応装置では、リアクター内の内容物を撹拌する1以上の撹拌手段をさらに備えてもよい。
 このような構成により、内容物が撹拌されることによって、リアクター内の内容物に対して、より均一にマイクロ波を照射することができるようになる。その結果、例えば、リアクター内の一部の内容物にだけマイクロ波が照射されるような事態を回避することができる。
 また、本発明による化学反応装置では、撹拌手段は、回転撹拌、バブリング撹拌、超音波撹拌のうち、いずれか1以上の方法で撹拌を行ってもよい。
 また、本発明による化学反応装置では、リアクターは、原料と固体触媒とが流れるものであり、リアクターにおける反応後の生成物から固体触媒を分離する触媒分離部をさらに備えてもよい。
 このような構成により、固体触媒の分離された反応後の生成物を得ることができるようになる。
 また、本発明による化学反応装置では、原料と固体触媒とを混合させる混合部をさらに備え、リアクターの上流側に、混合部によって混合された原料と固体触媒とが入れられてもよい。
 このような構成により、リアクターに入れられる前に、原料と固体触媒とが混合されるため、リアクター内での反応がより促進されることになる。
 また、本発明による化学反応装置では、固体触媒は、マイクロ波吸収性またはマイクロ波感受性を有してもよい。
 このような構成により、固体触媒がより効率よく加熱されることになり、固体触媒の近傍での原料の反応がより促進されることになる。
 また、本発明による化学反応装置では、リアクターは、直列に連続した複数の室を有してもよい。
 このような構成により、内容物が各室に滞留しながら反応することになる。その結果、各室において、内容物にマイクロ波を効果的に照射することができうるようになり、リアクターから未反応の原料が出力されること(すなわち、リアクターの流入孔から流出孔に対して原料が短絡して流れること)を回避することができうる。
 また、本発明による化学反応装置では、リアクターは、内部を複数の室に区切る複数の仕切り板を有し、各仕切り板には、内容物が上流側から下流側に流れる流路が存在してもよい。
 このような構成により、仕切り板によって、リアクターにおける複数の室を実現することができる。
 また、本発明による化学反応装置では、流路は、各仕切り板の上方において内容物がオーバーフローする流路、または、各仕切り板の隙間において内容物が流れる流路であってもよい。
 また、本発明による化学反応装置では、各仕切り板は、マイクロ波透過性のものであってもよい。
 このような構成により、仕切り板を介してもマイクロ波が照射されることになり、内容物に対してより効率よくマイクロ波を照射することができるようになる。
 また、本発明による化学反応装置では、各導波管は、仕切り板の位置に設けられてもよい。
 このような構成により、一の導波管によって、仕切り板で仕切られた2個の室に対してマイクロ波を照射することができるようになる。その結果、より効率よくマイクロ波を照射することができるようになる。
 また、本発明による化学反応装置では、リアクターの室ごとに内部の温度を測定する複数の温度測定部と、各温度測定部が測定した温度に応じて、各室に照射するマイクロ波の出力を制御するマイクロ波制御部と、をさらに備えてもよい。
 このような構成により、各室の温度を所望の温度に維持することができるようになる。
 また、本発明による化学反応装置では、マイクロ波発生器を2以上備えており、2以上のマイクロ波発生器は、2以上の周波数のマイクロ波を発生させてもよい。
 このような構成により、より幅の広い対象に対してマイクロ波を作用させることができるようになる。
 本発明による化学反応装置等によれば、内容物に対してより効率よくマイクロ波を照射することができ、内容物の反応を促進させることができる。
本発明の実施の形態1による化学反応装置の構成を示す図 同実施の形態によるリアクターの内部の構成の一例を示す図 同実施の形態における仕切り板の例を示す図 同実施の形態における仕切り板の例を示す図 同実施の形態における仕切り板の例を示す図 同実施の形態における仕切り板の例を示す図 同実施の形態における仕切り板の例を示す図 同実施の形態における仕切り板の例を示す図 同実施の形態の実施例におけるエステル転化率を示すグラフ 同実施の形態におけるリアクターの他の一例を示す図 同実施の形態におけるマイクロ波発生部と導波管の他の一例を示す図 同実施の形態におけるマイクロ波の照射位置について説明するための図 同実施の形態におけるマイクロ波の照射位置について説明するための図
 以下、本発明による化学反応装置について、実施の形態を用いて説明する。なお、以下の実施の形態において、同じ符号を付した構成要素は同一または相当するものであり、再度の説明を省略することがある。
 (実施の形態1)
 本発明の実施の形態1による化学反応装置について、図面を参照しながら説明する。本実施の形態による化学反応装置は、リアクターの内容物に対してマイクロ波を照射するものである。
 図1は、本実施の形態による化学反応装置1の構成を示す図である。本実施の形態による化学反応装置1は、混合部12と、リアクター13と、マイクロ波発生器14と、導波管15と、マイクロ波制御部16と、触媒分離部17と、処理液貯留槽18とを備える。
 混合部12は、原料と固体触媒とを混合させる。混合部12は、原料等と反応剤とを混合させてもよい。原料は、複数の物質を含むものであってもよい。例えば、リアクター13においてエステル化を行う場合には、油脂とアルコールが原料であってもよい。その原料と、固体触媒とは、図1で示されるように、ポンプ11によって混合部12に供給されてもよく、あるいは、他の方法によって混合部12に供給されてもよい。混合部12は、例えば、羽根状の部材や翼状の部材、スクリュー状の部材を回転させることによって、2以上の物質を混合してもよい。なお、本実施の形態では、原料と混合される触媒が固体触媒(不均一系触媒)である場合について説明するが、触媒は液状の触媒(均一系触媒)であってもよい。また、固体触媒は、リアクター13内で流動床を形成してもよく、あるいは、そうでなくてもよい。また、その固体触媒の形状は問わない。固体触媒の形状は、例えば、無定型の粒状、円柱状(中空であってもよく、そうでなくてもよい)、球状、ペレット状、リング状、シェル状等であってもよい。また、その固体触媒は、例えば、マイクロ波吸収性もしくはマイクロ波感受性を有してもよく、または、そうでなくてもよい。固体触媒がマイクロ波吸収性やマイクロ波感受性を有する場合には、後述するリアクター13の内部においてマイクロ波を照射した際に、固体触媒がマイクロ波によって加熱されることになり、その固体触媒近傍での化学反応が促進されることになる。なお、そのマイクロ波吸収性やマイクロ波感受性については、照射されるマイクロ波の周波数やリアクター13の内部の温度等に依存することになる。すなわち、使用するマイクロ波の周波数、及び原料を反応させるリアクター13の内部の温度において、誘電損失係数の高いものがマイクロ波吸収性の高いものとなる。したがって、例えば、そのようなマイクロ波吸収性の高い物質を含む固体触媒を用いるようにしてもよい。例えば、2.45GHzのマイクロ波が照射される場合には、マイクロ波吸収性を有する物質として、フラーレンを除くカーボン類(例えば、グラファイト、カーボンナノチューブ、または活性炭など)や、鉄、ニッケル、コバルト、またはフェライト等がある。したがって、固体触媒は、そのようなマイクロ波吸収性を有する物質を含むものであってもよい。具体的には、固体触媒は、そのようなマイクロ波吸収性やマイクロ波感受性を有する物質と、金属もしくは金属酸化物とを組み合わせたコンポジットであってもよく、そのようなマイクロ波吸収性やマイクロ波感受性を有する物質と、アルカリ触媒もしくは酸触媒等の触媒とを組み合わせたコンポジットであってもよく、または、マイクロ波吸収性やマイクロ波感受性を有する物質と、アルカリ触媒もしくは酸触媒等の触媒と、金属もしくは金属酸化物とを組み合わせたコンポジットであってもよい。そのコンポジット化は、例えば、物理吸着によって行われてもよく、化学結合によって行われてもよく、合金化によって行われてもよく、その他の方法によって行われてもよい。また、混合部12において、リアクター13での反応に備えて、予備的な加熱を行ってもよく、あるいは、行わなくてもよい。その予備的な加熱を行う場合には、原料等がリアクター13に入る時点において所望の温度または所望の温度幅となるように、混合部12における予備的な加熱の温度が制御されることが好適である。なお、混合部12での予備加熱が行われない場合には、その予備加熱に対応する加熱がリアクター13において行われてもよい。混合部12で混合された原料と固体触媒は、リアクター13の上流側に入れられる。
 リアクター13は、内容物が、上方に未充填空間を有した状態で水平方向に流れる横型のフロー式の反応器である。その内容物は、例えば、原料と触媒との混合物である。そのリアクター13の内部を、混合部12で混合された、原料と触媒とが流れることになる。なお、リアクター13における化学反応によって、原料から生成物が生成されるため、リアクター13の内容物には生成物が含まれていると考えてもよい。すなわち、その内容物は、原料及び/または生成物であると言うこともできる。また、内容物の上方に未充填空間が存在するため、内容物は通常、気体以外のもの、すなわち、固体か液状のものである。通常、内容物は液状のものである。リアクター13の内壁は、マイクロ波を反射する物質で構成されていることが好適である。マイクロ波を反射する物質としては、例えば、金属がある。このリアクター13の内部の構成については後述する。
 マイクロ波発生器14は、マイクロ波を発生する。本実施の形態による化学反応装置1は、1個のマイクロ波発生器14を備えていてもよく、あるいは、2個以上のマイクロ波発生器14を備えていてもよい。そのマイクロ波の周波数は限定されるものではないが、例えば、2.45GHzであってもよく、5.8GHzであってもよく、24GHzであってもよく、913MHzであってもよく、その他の300MHzから300GHzの範囲内の周波数であってもよい。
 導波管15は、マイクロ波発生器14の発生したマイクロ波を、リアクター13の未充填空間に伝送する。導波管15は、通常、図1で示されるように、マイクロ波発生器14の個数と同じ個数だけ存在することになる。なお、導波管15は、マイクロ波発生器14が発生するマイクロ波の周波数に応じた規格のものを使用することが好適である。
 マイクロ波制御部16は、後述する温度測定部25が測定した温度に応じて、リアクター13に照射するマイクロ波の出力を制御する。このマイクロ波制御部16による制御によって、リアクター13の内部を所望の温度または所望の温度幅に維持することが可能となる。
 触媒分離部17は、リアクター13における反応後の生成物から触媒を分離する。原料と混合された触媒が固体触媒である場合には、例えば、フィルタによって固体触媒を分離してもよく、固体触媒と生成物の一方を沈澱させることによって固体触媒を分離してもよい。また、固体触媒が磁性体を含むものである場合には、磁石(永久磁石でもよく、電磁石でもよい)によって固体触媒を吸着することによって、固体触媒を分離してもよい。なお、分離された固体触媒は、適宜、再利用することができうる。また、液体の触媒を用いた場合には、触媒分離部17において、蒸留や抽出、中和を行うことによって、触媒を分離してもよい。
 処理液貯留槽18には、触媒分離部17において触媒の分離された生成物が入れられる。そして、適宜、最終的な製造物と副生成物等に分けられることになる。例えば、原料が遊離脂肪酸であり、リアクター13においてエステル化が行われた場合には、バイオディーゼル燃料である製造物と、水である副生成物とが得られることになる。その場合には、酸触媒が用いられる。また、例えば、原料がトリグリセリドであり、リアクター13においてエステル交換が行われた場合には、バイオディーゼル燃料である製造物と、グリセリンである副生成物とが得られることになる。その場合には、アルカリ触媒が用いられる。
 なお、リアクター13の後段に、リアクター13での反応後の物質を冷却する図示しない冷却器を備えてもよく、あるいは、そうでなくてもよい。前者の場合には、例えば、その冷却器は、リアクター13での反応後の物質を水冷するものであってもよい。
 図2は、本実施の形態によるリアクター13の内部構造の一例を示す図である。図2において、リアクター13は、直列に連続した複数の室31,32,33,34を有する。その各室31~34は、リアクター13の内部を仕切る複数の仕切り板21によって区切られたものである。前述のように、リアクター13の内部では、上方に未充填空間22が存在する。その未充填空間22に対して、導波管15を介して、マイクロ波発生器14で発生されたマイクロ波が照射されることになる。各導波管15は、図2で示されるように、仕切り板21の位置に設けられてもよく、あるいは、そうでなくてもよい。前者の場合には、例えば、一の導波管15によって未充填空間22に伝送されたマイクロ波が、その導波管15に対応する位置の仕切り板21で区切られる2個の室に主に照射されることになる。仕切り板21は、マイクロ波透過性のものであってもよく、マイクロ波吸収性のものであってもよく、あるいは、マイクロ波を反射するものであってもよい。マイクロ波を透過する材料としては、例えば、テフロン(登録商標)や、石英ガラス、セラミック、窒化珪素アルミナ等がある。したがって、マイクロ波透過性の仕切り板21は、そのようなマイクロ波を透過する材料で構成されたものであってもよい。また、マイクロ波を吸収する材料としては、例えば、フラーレンを除くカーボン類等がある。したがって、マイクロ波吸収性の仕切り板21は、そのようなマイクロ波を吸収する材料で構成されたものであってもよい。また、マイクロ波を反射する材料としては、例えば、金属がある。したがって、マイクロ波を透過しない仕切り板21は、そのようなマイクロ波を反射する材料で構成されたものであってもよい。また、仕切り板21は、マイクロ波透過性の材料、マイクロ波吸収性の材料、マイクロ波反射性の材料のうち、任意の2以上の材料の組み合わせによって構成されてもよい。
 リアクター13に入った原料等20は、各室31~34の間を流通し、最終的に下流(図2のリアクター13の右端)から出力されることになる。なお、その仕切り板21には、内容物が流通する流路が存在する。その流路は、内容物が主にリアクター13の上流側(図2の左側)から、下流側(図2の右側)に向かって流れていく流路であるが、図2で示す矢印のように、一部は下流側から上流側に流れてもよい。その仕切り板21の流路は、例えば、仕切り板21の上方において内容物がオーバーフローする流路であってもよく、あるいは、仕切り板21の隙間において内容物が流れる流路であってもよい。図3A~図3Fは、円筒形のリアクター13に設けられた仕切り板21を、そのリアクター13の長さ方向から見た図である。前者のオーバーフローの流路の場合には、例えば、図3A、図3Bのように、未充填空間22の位置に仕切り板21が存在せず、その位置(すなわち、仕切り板21の上方)を内容物が流れてもよい。その場合に、図3Bのように、仕切り板21の上方の辺に、内容物が流れる凹部41が設けられていてもよい。その場合には、例えば、内容物20の液面が仕切り板21の上辺と同じレベルであったとしても、その凹部41の切り込み(切り欠き)を介して内容物が流通することになる。なお、その凹部41の形状は問わない。図3Bでは、凹部41が半円形状の場合を示しているが、凹部41の切り込み形状は、例えば、三角形であってもよく、矩形であってもよく、その他の形状であってもよい。また、その凹部41の個数も問わない。例えば、図3Bのように1個であってもよく、あるいは、複数であってもよい。また、後者の隙間の流路の場合には、例えば、図3Cのように、仕切り板21とリアクター13の内壁との間に隙間27が存在してもよく、図3Dのように、仕切り板21自体に隙間27が存在してもよい。その隙間27の大きさは、内容物が流通可能である以上の大きさであることが好適である。なお、その隙間27の形状や個数は問わない。図3Cでは、隙間27が円環形状の場合を示しているが、隙間27の形状は、例えば、円環の一部が塞がれたC字形状であってもよい。また、図3Dでは、隙間27が円形状の場合を示しているが、隙間27の形状は、例えば、三角形であってもよく、矩形であってもよく、その他の形状であってもよい。また、隙間27の個数は、例えば、図3Dよりも多くてもよく、少なくてもよい(1個でもよく、複数でもよい)。また、図3Eや図3Fのように、オーバーフローの流路と、仕切り板21の隙間27の流路とを組み合わせるようにしてもよい。なお、リアクター13は、上流側から下流側に向かって低くなる傾斜を有してもよく、そうでなくてもよい。
 また、図2で示されるように、リアクター13は、撹拌手段23をも有している。すなわち、本実施の形態による化学反応装置1は、リアクター13内の内容物を撹拌する1以上の撹拌手段23をも有するものである。図2では、各室31~34に撹拌手段23が存在する場合について示しているが、そうでなくてもよい。1以上の室に撹拌手段23が存在しなくてもよい。また、図2では、撹拌手段23が羽根状のものである場合について示しているが、これは撹拌手段23を模式的に示したものであり、撹拌手段23は、例えば、回転撹拌を行うものであってもよく、バブリング撹拌を行うものであってもよく、超音波撹拌を行うものであってもよく、あるいは、それらの任意の2以上のものを組合せた撹拌を行うものであってもよい。撹拌手段23が回転撹拌を行う場合には、その撹拌は、例えば、羽根状の部材、翼状の部材、あるいは、棒状の部材等が回転されることによって行われてもよい。その羽根状の部材、翼状の部材、あるいは、棒状の部材等は、マイクロ波透過性のものであってもよく、マイクロ波吸収性のものであってもよく、マイクロ波反射性のものであってもよく、あるいは、マイクロ波透過性の材料、マイクロ波吸収性の材料、マイクロ波反射性の材料のうち、任意の2以上の材料の組み合わせによって構成されたものであってもよい。その回転は、例えば、シャフトに装着された羽根状の部材等がシャフトの回転に応じて回転されることによって行われてもよく、あるいは、マグネティックスターラーのように、磁性を用いて回転されてもよい。シャフトを用いる前者の場合には、そのシャフトは室ごとに独立したものであってもよく、あるいは、複数の室において共通して用いられるものであってもよい。磁性を用いる後者の場合には、棒状や羽根状、翼状等の磁性撹拌子が、磁石によって回転されることになる。また、回転撹拌が羽根状の部材や翼状の部材を用いて行われる場合に、それらの部材の回転が、上流から下流の方向、あるいは、逆の方向にリアクター13の内容物を流すため用いられてもよく、あるいは、そうでなくてもよい。また、撹拌手段23がバブリング撹拌を行う場合には、その撹拌は、例えば、気体をリアクター13内の内容物に吹き込むことによって行われてもよい。その吹き込まれる気体は、例えば、ヘリウムやアルゴンなどの不活性気体、窒素、あるいは、空気等であってもよい。また、撹拌手段23が超音波撹拌を行う場合には、その撹拌は、例えば、リアクター13の底面や側面において超音波を発生させ、その発生された超音波をリアクター13の内容物に照射することによって行われてもよい。なお、回転撹拌、バブリング撹拌、超音波撹拌については、すでに公知であり、それらの詳細な説明を省略する。また、撹拌手段23は、それら以外の撹拌方法によって撹拌を行ってもよい。例えば、撹拌手段23は、リアクター13自体を振動させる揺動撹拌等を行ってもよい。
 ここで、撹拌手段23がリアクター13の内容物を撹拌する理由について簡単に説明する。撹拌手段23が内容物を撹拌する第1の理由は、マイクロ波によって内容物が均一に加熱されるようにするためである。内容物の種類や内容物の温度にも依存するが、あるマイクロ波が浸透する深さは決まっているため、内容物の全体に均一にマイクロ波が照射され、均一に加熱されるように撹拌することになる。また、未充填空間22における内容物の表面積が大きくなると、マイクロ波をより効率よく内容物に照射することができるようになる。したがって、内容物を撹拌する第2の理由は、マイクロ波の照射面積をより広くするためである。そのため、撹拌手段23による内容物の撹拌は、未充填空間22における内容物の表面に波が起こる程度の激しさであることが好適であるが、そうでなくてもよい(第1の理由に応じた撹拌が行われるのであれば、結果として内容物の全体が加熱され、それで十分である場合もあるからである)。また、このように、撹拌手段23を用いて原料等の撹拌を行うため、原料に密度の異なる2以上の物質が含まれている場合であっても、両者を適切に混合して反応させることができるようになる。例えば、縦型のフロー式のリアクターにおいて、アルコールと廃油のように、密度の違うものを反応させようとしても、両者が容易に分離してしまうことになるが、本実施の形態のように横型のフロー式のリアクター13であって、撹拌手段23が存在する場合には、両者を適切に混合して反応させることができるようになる。また、リアクター13に複数の撹拌手段23が存在する場合に、その撹拌の種類はすべて同じであってもよく、あるいは、異なっていてもよい。後者の場合には、例えば、室31では回転撹拌を行い、室32ではバブリング撹拌を行い、室33では超音波撹拌を行うようにしてもよい。
 また、図2で示されるように、リアクター13は、温度測定部25をも有している。すなわち、本実施の形態による化学反応装置1は、リアクター13の内部の温度を測定する温度測定部25を備えていてもよい。リアクター13の内部の温度は、リアクター13の内容物の温度であることが好適である。図2では、各室31~34に温度測定部25が存在する場合について示しているが、そうでなくてもよい。1以上の室に温度測定部25が存在しなくてもよい。また、図2では、温度測定部25を模式的に示しているが、温度測定部25は、例えば、熱電対によって温度を測定してもよく、赤外線センサによって温度を測定してもよく、光ファイバーによって温度を測定してもよく、その他の方法によって温度を測定してもよい。温度測定部25が測定した温度(厳密に言えば、温度を示すデータである)は、マイクロ波制御部16に渡され、マイクロ波発生器14によるマイクロ波の出力の制御のために用いられる。その制御は、前述のように、各室31~34の温度を所望の温度または所望の温度幅に維持するための制御である。例えば、図2で示されるように、仕切り板21の位置にマイクロ波が照射される場合には、その位置に照射されるマイクロ波の出力の制御を、例えば、マイクロ波が照射される位置の仕切り板21で区切られる2個の室の温度のうち、一方を用いて行ってもよく、あるいは、両者を用いて行ってもよい。前者の場合には、例えば、低い方の温度を用いて制御を行ってもよく、高い方の温度を用いて制御を行ってもよく、あるいは、あらかじめ決められた室の温度を用いて制御を行ってもよい。後者の場合には、例えば、両者の平均を用いて制御を行ってもよい。
 本実施の形態のリアクター13において、内容物20の液面の高さは、例えば、リアクター13の内側の高さの最大値の1/10から9/10の高さであってもよい。すなわち、未充填空間22の高さは、例えば、リアクター13の内側の高さの最大値の1/10から9/10の高さであってもよい。また、内容物20の液面の高さは、例えば、リアクター13の内側の高さの最大値の1/5から4/5の高さであってもよい。なお、図3C~図3Fの仕切り板21のように、隙間27が存在する場合には、リアクター13から生成物等が流出する流出孔の位置によって、その液面の高さが決まることになる。したがって、所望の液面の高さに応じた位置にその流出孔の位置を設ければよいことになる。すなわち、所望の未充填空間22を確保できるように、リアクター13の流出孔の位置を設定すればよいことになる。一方、図3A、図3Bの仕切り板21のように、原料等がオーバーフローする場合には、最下流の室34以外の室31~33の液面の高さは、仕切り板21の高さによって決まることになる(なお、この場合にも最下流の室34の液面の高さは、流出孔の位置によって決まることになる)。したがって、所望の液面の高さに応じた高さを有する仕切り板21をリアクター13内部に設ければよいことになる。すなわち、所望の未充填空間22を確保できるように、仕切り板21におけるオーバーフローの流路の高さ(位置)を設定すればよいことになる。なお、内容物20に対して適切にマイクロ波を照射できるのであれば、内容物20の液面の高さや未充填空間22の高さが上述のものに限定されないことは言うまでもない。
 また、リアクター13の形状は問わない。例えば、リアクター13は、図2の左右方向が長さ方向となる円筒状のものであってもよく、直方体の形状であってもよく、あるいは、その他の形状であってもよい。本実施の形態では、リアクター13が円筒状である場合について説明する。図3A~図3Fにおいても、前述のように、リアクター13が円筒状である場合の仕切り板21について示している。
 また、リアクター13の壁面は、断熱材で覆われていてもよい。そのようにすることで、リアクター13の内部の熱が外部に放出されることを防止することができる。
 次に、本実施の形態による化学反応装置1の動作について簡単に説明する。原料と触媒とは、ポンプ11によって混合部12に供給される。そして、混合部12において混合され、リアクター13に投入される。そのリアクター13への原料等の供給速度は、あらかじめ決められていてもよい。
 リアクター13に供給された原料等は、撹拌手段23によって撹拌されながら、上流側から下流側に流れていく。その際に、マイクロ波発生器14が発生したマイクロ波が導波管15を介してリアクター13の未充填空間22に伝送され、原料等に照射される。その結果、原料等が加熱されることになり、原料等の反応が促進されることになる。なお、各室31~34の温度は、温度測定部25によって測定され、図示しない経路によって、マイクロ波制御部16に渡される。そして、マイクロ波制御部16は、各室31~34の温度が所望の温度または所望の温度幅となるようにマイクロ波発生器14の出力を制御する。
 リアクター13から出力された生成物は、触媒分離部17に投入され、触媒が分離される。そして、触媒の分離された生成物がポンプ11によって処理液貯留槽18に投入され、処理液貯留槽18において、目的とする製造物と副生成物とに分けられる。このようにして、最終的な製造物が得られることになる。また、このような処理が繰り返して実行されることにより、目的とする製造物が順次、生成されていくことになる。
 なお、触媒分離部17における触媒の分離の処理や、処理液貯留槽18における製造物と副生成物との分離の処理は、生成物が投入されるごとに順次、行ってもよく、あるいは、投入された生成物が一定の分量だけたまってから、一括して行ってもよい。すなわち、リアクター13における処理はフロー式(流通式)で処理されるが、その後段の触媒分離部17や処理液貯留槽18における処理は、フロー式で処理されてもよく、あるいは、バッチ式で処理されてもよい。
 また、本実施の形態による化学反応装置1において行われる化学反応は、マイクロ波の照射自体、あるいは、マイクロ波の照射に応じた加熱によって引き起こされる化学反応であれば、どのようなものであってもよい。例えば、エステル化やエステル交換によるバイオディーゼル燃料の生成であってもよく、エステルであるインク原料の生成であってもよく、その他の化学反応であってもよい。
 次に、本実施の形態による化学反応装置1を用いて廃油からバイオディーゼル燃料(脂肪酸メチルエステル)を生成する処理について、実施例を用いて説明する。なお、本発明がその実施例に限定されないことはいうまでもない。
 (反応システム構築例)
 本実施例において、原料として、油脂と遊離脂肪酸との混合物、及びアルコールを用いた。アルコールは、反応剤である。その原料と触媒とは、それぞれポンプ11で混合部12へ送られ、均一に混合される。その混合液はリアクター13へ供給される。リアクター13内の混合液に対して、マイクロ波発生器14から発生したマイクロ波が照射され、エステル化反応が促進される。また、そのリアクター13内の混合液は、リアクター13内の仕切り板21で仕切られた各室31~34に充填される。混合液は触媒と共に撹拌手段23によって撹拌されながらマイクロ波の照射によって反応が進行する。マイクロ波はリアクター13内部に存在する未充填空間22に対して照射され、リアクター13内部へ拡散する。各室内の反応液は仕切り板21に設けられた流路により次段の室へ移動する。反応液はリアクター13内で一定の滞留時間を保持した後、リアクター13外へ排出される。リアクター13から排出された反応後の混合液は触媒分離部17に供給され、その触媒分離部17において触媒が分離されて処理液貯留槽18へ充填される。触媒分離後の反応液は処理液貯留槽18において副生成物である水、グリセリンと分離され、目的物である粗メチルエステルが取り出される。
 (工業廃油のエステル化反応)
 工業廃油を用いた遊離脂肪酸のエステル化反応の典型的な実施例を示す。遊離脂肪酸34wt%含有の工業廃油(その他、トリグリセリドや、ピッチ成分等を含有している)と、反応剤であるメタノール2.8モル当量(工業廃油の遊離脂肪酸をオレイン酸に換算した際のモル当量である)と、固体酸触媒3wt%(工業廃油に対する重量%である)を混合部12で混合した後にリアクター13へ供給した。リアクター13への供給速度は、次に示す空間速度で約1.2/hとした。ここで、反応器容量とは、本実施例では、リアクター13内の全容量から未充填空間22の容量を減算した容量である。
 (空間速度)=(廃油の体積流量)/(反応器容量)
 リアクター13のマイクロ波出力は各室31~34の内部温度によるフィードバック制御を行い、各室31~34の温度を一定に保った。本実験では反応温度を70℃に設定した。図4は、本実施例における脂肪酸とメタノールのエステル化反応による脂肪酸メチルエステルの転化率を示している。メチルエステル転化率の計算式は次の通りである。
 メチルエステル転化率(%)=[メチルエステル濃度]/[脂肪酸初濃度]×100
 図4から明らかなように、エステル化反応は反応開始後急速に進行し、30分で転化率は87%に達した、その後、転化率は緩やかに増加し、1.5時間で反応はほぼ平衡に達した。なお、廃油中のその他の成分は、特に変化は見られなかった。この結果から、本実施の形態による流通式反応器によるエステル化反応は、廃油中の遊離脂肪酸に対して効率よくエステル化反応を進行させ、かつ安定した反応を連続的に行うことが可能であることがわかる。
 以上のように、本実施の形態による化学反応装置1によれば、リアクター13において内容物に効率よくマイクロ波を照射することができる。その結果、リアクター13の内部における化学反応を促進することができる。特に、撹拌手段23を用いてリアクター13内部で内容物を撹拌することによって、マイクロ波の浸透深さがあまり深くない場合であっても、内容物に対して均等にマイクロ波を照射することができるようになりうる。また、リアクター13が複数の室に分かれていることによって、内容物が各室に滞留しながら反応することになるため、各室において、内容物にマイクロ波を効果的に照射することができうるようになる。その結果、リアクター13から未反応の原料が出力されること(すなわち、リアクター13の流入孔から流出孔に対して原料が短絡して流れること)を回避することができうる。また、固体触媒がマイクロ波吸収性やマイクロ波感受性を有する場合には、マイクロ波の照射によって、固体触媒が効率よく加熱されることになり、固体触媒の近傍での化学反応を促進することができる。このように、リアクター13内部での化学反応が促進されることによって、より効率よく生成物を得ることができるようになる。
 なお、本実施の形態では、原料と触媒とを混合する混合部12が存在する場合について説明したが、そうでなくてもよい。例えば、あらかじめ混合された原料と触媒とを用いる場合や、リアクター13において混合をも行う場合、リアクター13内を流れる固体触媒がリアクター13内に留まっている場合、または、リアクター13内を流れる固体触媒に代えて固定床の固体触媒を用いる場合などには、化学反応装置1は、混合部12を備えなくてもよい。なお、固定床の固体触媒を用いる場合には、通常、その固定床の固体触媒はリアクター13の内部に存在することになる。その固定床の固体触媒は、例えば、リアクター13の内壁に貼着されたものであってもよく、あるいは、リアクター13の内部において触媒充填層やカラム等に充填されることによって固定されたものであってもよい。その固体触媒の形状は、例えば、無定型の粒状、円柱状(中空であってもよく、そうでなくてもよい)、球状、ペレット状、リング状、シェル状、ハニカム状、発泡体状、繊維状、布状、板状、あるいは、その他の形状であってもよい。
 また、本実施の形態では、リアクター13の内部が仕切り板で仕切られることによって、複数の室31~34が構成される場合について説明したが、そうでなくてもよい。リアクター13は、図5で示されるように、互いに連通した複数の独立した室から構成されてもよい。図5のような構成の場合には、各室においてそれぞれマイクロ波を照射することが好適である。なお、室ごとに撹拌手段23や温度測定部25を備えていてもよいことは、前述の通りである。
 また、本実施の形態では、リアクター13が、図2で示されるように、直列に連続した4個の室31~34を有する場合や、図5で示されるように、直列に連続した3個の室を有する場合について説明したが、この室の個数は問わない。通常、室の数が多いほど、リアクター13の流入孔から流出孔に対して原料が短絡して流れることを効果的に防止できる。また、その室の数の増減に応じて室の容積が変わらない場合には、室の数が多いほど、リアクター13の内容物がリアクター13に流入してから流出するまでの滞留時間が長くなり、室の数が少ないほど、その滞留時間が短くなる。したがって、その場合には、所望の滞留時間となるように、その室の個数を調整することができうる。
 また、本実施の形態では、リアクター13が多段である場合、すなわち、仕切り板21によって複数の室31~34に区分される場合について説明したが、そうでなくてもよい。リアクター13は、多段でなく、一の室を有するものであってもよい。
 また、本実施の形態では、複数のマイクロ波発生器14を備える場合について説明したが、そうでなくてもよい。例えば、図6で示されるように、マイクロ波発生器14で発生されたマイクロ波を、分岐を有する導波管15によって、複数の箇所に伝送してもよい。複数の箇所は、例えば、複数の室であってもよい。なお、図6では、化学反応装置1が一のマイクロ波発生器14のみを備えている場合について示しているが、化学反応装置1が2以上のマイクロ波発生器14を備えている場合に、その複数のマイクロ波発生器14のいずれかで発生されたマイクロ波が、分岐を有する導波管15によって複数の箇所に伝送されてもよい。このことは、図5で示されるように、各室が独立している場合であっても同様である。例えば、マイクロ波発生器14で発生されたマイクロ波が複数の室に伝送される場合には、マイクロ波制御部16は、そのマイクロ波発生器14で発生されたマイクロ波が伝送される各室の温度のいずれか、あるいは、すべてを用いて、そのマイクロ波発生器14の出力を制御してもよい。例えば、マイクロ波制御部16は、各室のすべての温度の平均を用いて制御を行ってもよく、各室の温度の最高値または最低値を用いて制御を行ってもよい。
 また、本実施の形態では、化学反応装置1が温度測定部25とマイクロ波制御部16とを備える場合について説明したが、そうでなくてもよい。例えば、マイクロ波の出力をあらかじめ決められた値にすることによって、リアクター13の内部の温度を所望の温度や温度幅に維持することができる場合には、温度を用いたマイクロ波の出力の制御を行わなくてもよい。
 また、本実施の形態では、リアクター13の後段に触媒分離部17を備えた場合について説明したが、そうでなくてもよい。他の装置によって触媒を分離する場合や、リアクター13内を流れる固体触媒がリアクター13内に留まっている場合、リアクター13内を流れる固体触媒に代えて固定床の固体触媒を用いる場合、リアクター13での化学反応に触媒を用いない場合などのように、本実施の形態による化学反応装置1において触媒の分離を行わなくてもよい場合には、触媒分離部17を備えていなくてもよい。
 また、本実施の形態では、原料と触媒とが混合されてリアクター13に投入される場合について説明したが、そうでなくてもよい。例えば、原料のみがリアクター13に投入されてもよい。また、原料と触媒との混合が行われない場合には、リアクター13の内部を、原料のみが流れてもよい。すなわち、リアクター13の内容物は、例えば、複数の原料の混合物であってもよい。また、原料と触媒との混合が行われない場合であっても、例えば、リアクター13内を流れる固体触媒がリアクター13内に留まっているときには、リアクター13の内部を原料と触媒とが流れてもよい。また、原料と触媒との混合が行われない場合には、混合部12は、例えば、原料を混合させてもよく、あるいは、原料(基質)と反応剤とを混合させてもよい。また、その原料等の混合が必要ない場合には、前述のように、化学反応装置1は、混合部12を備えていなくてもよい。
 また、本実施の形態では、リアクター13内の原料を撹拌する1以上の撹拌手段23を備える場合について説明したが、そうでなくてもよい。例えば、リアクター13がマイクロ波を原料の全体に容易に照射することができるような構成である場合(例えば、リアクター13の内径が小さい場合等)には、撹拌手段23がなくてもよい。
 また、本実施の形態では、化学反応装置1が処理液貯留槽18を備える場合について説明したが、そうでなくてもよい。例えば、化学反応装置1から出力された生成物や副生成物が混合したものについて、他の装置において生成物の抽出等が行われてもよい。
 また、本実施の形態において、化学反応装置1は2以上のマイクロ波発生器14を備えており、その2以上のマイクロ波発生器14は、2以上の周波数のマイクロ波を発生してもよい。すなわち、リアクター13の内容物に対して、2以上の周波数のマイクロ波が照射されてもよい。その場合において、2以上の周波数のマイクロ波を同じ位置において照射してもよく、2以上の周波数のマイクロ波をそれぞれ異なる位置において照射してもよい。例えば、図7Aで示されるように、リアクター13の同じ位置において、すなわちリアクター13の中流域において、マイクロ波発生器14a、14dがそれぞれ発生した周波数X,Yのマイクロ波を照射してもよい。なお、周波数X,Yのマイクロ波はそれぞれ、導波管15a,15dを介してリアクター13に伝送される。また、例えば、図7Bで示されるように、リアクター13の上流側から中流域において、マイクロ波発生器14a、14b、14cが発生した周波数Xのマイクロ波を照射し、リアクター13の下流側において、マイクロ波発生器14dが発生した周波数Yのマイクロ波を照射してもよい。なお、周波数Xのマイクロ波はそれぞれ、導波管15a,15b,15cを介してリアクター13に伝送される。また、周波数Yのマイクロ波は、導波管15dを介してリアクター13に伝送される。ここで、図7A、図7Bは、それぞれリアクター13を上方から見た図であり、図中の矢印は、リアクター13内における内容物の流れを示すものである。なお、2以上の周波数のマイクロ波が照射される場合に、その周波数の個数は、2個であってもよく、あるいは、3個以上であってもよい。その2以上の周波数は、300MHzから300GHzの範囲から選択される2以上の周波数であればどのような組み合わせであってもよい。例えば、2個の周波数のマイクロ波が照射される場合に、その周波数の組み合わせは、2.45GHzと5.8GHzであってもよく、2.45GHzと24GHzであってもよく、2.45GHzと913MHzであってもよく、5.8GHzと24GHzであってもよく、5.8GHzと913MHzであってもよく、24GHzと913MHzであってもよい。また、2以上の周波数のマイクロ波を照射する場合に、それらを照射するタイミングは問わない。例えば、2以上の周波数のマイクロ波を同時に照射してもよく、あるいは、周波数ごとに照射する期間が異なるようにマイクロ波を照射してもよい。例えば、後者の場合には、ある期間には周波数Xのマイクロ波が照射され、次の期間には周波数Yのマイクロ波が照射されてもよい。なお、2以上の周波数のマイクロ波を照射した場合には、1個の周波数のマイクロ波の照射ではマイクロ波の作用(例えば、加熱等)の対象とならなかった物質に対してもマイクロ波を作用させることができ、より幅の広い物質に対してマイクロ波を作用させることができるようになる。
 また、上記実施の形態において、各構成要素が処理で用いるしきい値や数式、アドレス等の情報等は、上記説明で明記していない場合であっても、図示しない記録媒体において、一時的に、あるいは長期にわたって保持されていてもよい。また、その図示しない記録媒体への情報の蓄積を、各構成要素、あるいは、図示しない蓄積部が行ってもよい。また、その図示しない記録媒体からの情報の読み出しを、各構成要素、あるいは、図示しない読み出し部が行ってもよい。
 また、上記実施の形態において、各構成要素等で用いられる情報、例えば、各構成要素が処理で用いるしきい値やアドレス、各種の設定値等の情報がユーザによって変更されてもよい場合には、上記説明で明記していない場合であっても、ユーザが適宜、それらの情報を変更できるようにしてもよく、あるいは、そうでなくてもよい。それらの情報をユーザが変更可能な場合には、その変更は、例えば、ユーザからの変更指示を受け付ける図示しない受付部と、その変更指示に応じて情報を変更する図示しない変更部とによって実現されてもよい。その図示しない受付部による変更指示の受け付けは、例えば、入力デバイスからの受け付けでもよく、通信回線を介して送信された情報の受信でもよく、所定の記録媒体から読み出された情報の受け付けでもよい。
 また、上記実施の形態において、各構成要素は専用のハードウェアにより構成されてもよく、あるいは、ソフトウェアにより実現可能な構成要素については、プログラムを実行することによって実現されてもよい。例えば、ハードディスクや半導体メモリ等の記録媒体に記録されたソフトウェア・プログラムをCPU等のプログラム実行部が読み出して実行することによって、各構成要素が実現され得る。
 また、本発明は、以上の実施の形態に限定されることなく、種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることは言うまでもない。
 以上より、本発明による化学反応装置等によれば、原料等に対して効率的にマイクロ波を照射することができるという効果が得られ、例えば、加熱の必要な化学反応を行う化学反応装置等として有用である。

Claims (15)

  1. 内容物が、上方に未充填空間を有した状態で水平方向に流れる横型のフロー式のリアクターと、
    マイクロ波を発生するマイクロ波発生器と、
    前記マイクロ波発生器の発生したマイクロ波を、前記リアクターの未充填空間に伝送する1以上の導波管と、を備えた化学反応装置。
  2. 前記リアクター内の内容物を撹拌する1以上の撹拌手段をさらに備えた、請求項1記載の化学反応装置。
  3. 前記撹拌手段は、回転撹拌、バブリング撹拌、超音波撹拌のうち、いずれか1以上の方法で撹拌を行う、請求項2記載の化学反応装置。
  4. 前記リアクターは、原料と固体触媒とが流れるものであり、
    前記リアクターにおける反応後の生成物から固体触媒を分離する触媒分離部をさらに備えた、請求項1から請求項3のいずれか記載の化学反応装置。
  5. 原料と固体触媒とを混合させる混合部をさらに備え、
    前記リアクターの上流側に、前記混合部によって混合された原料と固体触媒とが入れられる、請求項1から請求項4のいずれか記載の化学反応装置。
  6. 前記固体触媒は、マイクロ波吸収性またはマイクロ波感受性を有する、請求項4または請求項5記載の化学反応装置。
  7. 前記リアクターは、直列に連続した複数の室を有する、請求項1から請求項6のいずれか記載の化学反応装置。
  8. 前記リアクターは、内部を複数の室に区切る複数の仕切り板を有し、
    前記各仕切り板には、内容物が上流側から下流側に流れる流路が存在する、請求項7記載の化学反応装置。
  9. 前記流路は、前記各仕切り板の上方において内容物がオーバーフローする流路、または、前記各仕切り板の隙間において内容物が流れる流路である、請求項8記載の化学反応装置。
  10. 前記各仕切り板は、マイクロ波透過性のものである、請求項8または請求項9記載の化学反応装置。
  11. 前記各導波管は、前記仕切り板の位置に設けられる、請求項8から請求項10のいずれか記載の化学反応装置。
  12. 前記リアクターの室ごとに内部の温度を測定する複数の温度測定部と、
    前記各温度測定部が測定した温度に応じて、各室に照射するマイクロ波の出力を制御するマイクロ波制御部と、をさらに備えた、請求項7から請求項11のいずれか記載の化学反応装置。
  13. 前記マイクロ波発生器を2以上備えており、
    当該2以上のマイクロ波発生器は、2以上の周波数のマイクロ波を発生させる、請求項1から請求項12のいずれか記載の化学反応装置。
  14. 内容物が、上方に未充填空間を有した状態で水平方向に流れる横型のフロー式のリアクターにおいて、前記未充填空間にマイクロ波を照射しながら、内容物を前記リアクターの上流側から下流側に向かって移動させて反応させる、化学反応方法。
  15. 前記リアクターは、直列に連続した複数の室を有しており、
    内容物を上流側の室から下流側の室に向かって移動させて反応させる、請求項14記載の化学反応方法。
PCT/JP2011/064965 2011-06-29 2011-06-29 化学反応装置、及び化学反応方法 WO2013001629A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
DK11868832.4T DK2727647T3 (da) 2011-06-29 2011-06-29 Kemisk reaktionsapparat og kemisk reaktionsmetode
IN534CHN2014 IN2014CN00534A (ja) 2011-06-29 2011-06-29
PCT/JP2011/064965 WO2013001629A1 (ja) 2011-06-29 2011-06-29 化学反応装置、及び化学反応方法
CN201180071600.1A CN103747866B (zh) 2011-06-29 2011-06-29 化学反应装置以及化学反应方法
JP2013522409A JP5781160B2 (ja) 2011-06-29 2011-06-29 化学反応装置、及び化学反応方法
US14/123,174 US11224852B2 (en) 2011-06-29 2011-06-29 Chemical reaction apparatus and chemical reaction method
MYPI2013702468A MY170052A (en) 2011-06-29 2011-06-29 Chemical reaction apparatus and chemical reaction method
KR1020137033106A KR101838330B1 (ko) 2011-06-29 2011-06-29 화학 반응 장치 및 화학 반응 방법
EP11868832.4A EP2727647B1 (en) 2011-06-29 2011-06-29 Chemical reaction apparatus, and chemical reaction method
ES11868832T ES2776997T3 (es) 2011-06-29 2011-06-29 Aparato de reacción química y procedimiento de reacción química
BR112013033215-8A BR112013033215B1 (pt) 2011-06-29 2011-06-29 Aparelho de reação química e método de reação química

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/064965 WO2013001629A1 (ja) 2011-06-29 2011-06-29 化学反応装置、及び化学反応方法

Publications (1)

Publication Number Publication Date
WO2013001629A1 true WO2013001629A1 (ja) 2013-01-03

Family

ID=47423571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064965 WO2013001629A1 (ja) 2011-06-29 2011-06-29 化学反応装置、及び化学反応方法

Country Status (10)

Country Link
US (1) US11224852B2 (ja)
EP (1) EP2727647B1 (ja)
JP (1) JP5781160B2 (ja)
KR (1) KR101838330B1 (ja)
CN (1) CN103747866B (ja)
BR (1) BR112013033215B1 (ja)
DK (1) DK2727647T3 (ja)
ES (1) ES2776997T3 (ja)
IN (1) IN2014CN00534A (ja)
WO (1) WO2013001629A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122428A1 (ja) * 2014-02-14 2015-08-20 マイクロ波化学株式会社 有機化合物の製造方法、及びエステルの製造方法
CN105163842A (zh) * 2014-02-27 2015-12-16 微波化学有限公司 化学反应装置
US10315126B2 (en) 2013-03-14 2019-06-11 Donald W. Ramer Apparatus for molecular targeting and separation of feedstock fluids
US10464040B2 (en) 2011-11-11 2019-11-05 Microwave Chemical Co., Ltd. Chemical reaction method
US10661247B2 (en) * 2013-10-07 2020-05-26 Dai-Ichi High Frequeny Co., Ltd. Ferromagnetic-particle manufacturing apparatus
JPWO2019230368A1 (ja) * 2018-05-29 2021-07-26 株式会社サイダ・Fds 装置およびこれに用いる触媒
US11229895B2 (en) 2011-11-11 2022-01-25 Microwave Chemical Co., Ltd. Chemical reaction method using chemical reaction apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10457930B2 (en) 2010-06-30 2019-10-29 Microwave Chemical Co., Ltd. Oil-based material-producing method and oil-based material-producing apparatus
EP2727647B1 (en) 2011-06-29 2020-01-15 Microwave Chemical Co., Ltd. Chemical reaction apparatus, and chemical reaction method
JP5114616B1 (ja) * 2011-11-11 2013-01-09 マイクロ波化学株式会社 化学反応装置
GB2536485A (en) * 2015-03-19 2016-09-21 Kouzaev Guennadi Scalable reactor for microwave-and ultrasound-assisted chemistry
CN108472622A (zh) * 2015-11-02 2018-08-31 埃科卡技术有限公司 用时变微波频率或多个微波频率微波照射室
CN105898908A (zh) * 2016-06-15 2016-08-24 成都恩承科技股份有限公司 一种微波波导管及其微波加热装置
JP6446573B1 (ja) * 2018-01-18 2018-12-26 マイクロ波化学株式会社 マイクロ波処理装置、および炭素繊維の製造方法
JP7550450B2 (ja) * 2018-06-28 2024-09-13 リシナジー,インク. 炭化水素系廃棄物をオイルおよびガス燃料に変換するマイクロ波方法
CN115003410A (zh) * 2019-12-26 2022-09-02 株式会社钟化 流动式反应器
EP4226085A4 (en) * 2020-10-12 2024-10-16 The Regents Of The Univ Of Colorado A Body Corporate MICROWAVE-BASED PYROLYSIS REACTOR AND RELATED METHODS

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141679A (ja) * 1974-08-07 1976-04-08 British Petroleum Co Kagakuhannoookonauhoho
JPH03109296U (ja) * 1990-02-22 1991-11-11
JPH08501016A (ja) * 1992-01-30 1996-02-06 エマリー マイクロウエイブ マネージメント インコーポレーテッド 有機物質のコントロールした還元のための方法および装置
JP2006512554A (ja) * 2002-12-23 2006-04-13 オウトクンプ テクノロジー オサケ ユキチュア 流動層の粒状固体の熱処理方法およびプラント
JP2006516008A (ja) 2002-12-23 2006-06-15 アルディヴィア エスアー 再循環システムに組み込まれた、断続的な誘電加熱による熱処理を備えた化学合成法

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3170769A (en) * 1960-02-19 1965-02-23 Pullman Inc Liquid phase conversion apparatus
US3463627A (en) 1966-06-16 1969-08-26 Brockway Glass Co Inc Method for producing colored glass
JPS5122696A (en) * 1974-08-21 1976-02-23 Asahi Dow Ltd Ensoganjujugotaino renzokutankasochi
JPS5235350A (en) 1975-09-16 1977-03-17 Toshiba Corp Micro-wave heating device
DE2805915C3 (de) 1978-02-13 1981-11-05 Dynamit Nobel Ag, 5210 Troisdorf Reaktor zur Oxidation von Gemischen aus p-Xylol und p-Toluylsäuremethylester mit sauerstoffhaltigen Gasen in flüssiger Phase
US4279722A (en) 1978-10-24 1981-07-21 Kirkbride Chalmer G Use of microwaves in petroleum refinery operations
JPS594431A (ja) 1982-06-28 1984-01-11 Toshiba Corp マイクロ波加熱流動床反応装置
EP0185931B1 (en) * 1984-12-25 1991-07-24 Ebara Corporation Method and apparatus for processing waste matter
JPH0648314B2 (ja) 1987-02-13 1994-06-22 動力炉・核燃料開発事業団 放射性廃液の処理方法
JPS63285121A (ja) 1987-05-18 1988-11-22 Power Reactor & Nuclear Fuel Dev Corp マイクロ波加熱焙焼・還元装置
JP2539254B2 (ja) 1988-09-01 1996-10-02 動力炉・核燃料開発事業団 マイクロ波加熱容器
US5458897A (en) 1989-05-16 1995-10-17 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Environment Microwave-assisted extraction from materials containing organic matter
JPH0641545A (ja) 1992-05-26 1994-02-15 Agency Of Ind Science & Technol 微細藻類からの重油状物質の製造方法
FR2703071B1 (fr) 1993-03-26 1996-01-05 Rmg Services Pty Ltd Procédé de lixiviation de minerais contenant du nickel, du cobalt et du manganèse.
JP3496768B2 (ja) 1994-03-25 2004-02-16 第一高周波工業株式会社 固体原料の加熱反応方法
JP2885305B2 (ja) 1994-05-13 1999-04-19 山本ビニター株式会社 ロータリーフィーダ
JPH08242783A (ja) 1995-03-14 1996-09-24 Asahi Denka Kogyo Kk 密封包装品の加熱方法及びその装置
WO1997025284A1 (en) * 1996-01-11 1997-07-17 Containerless Research, Inc. Fiber drawing from undercooled molten materials
JPH09285282A (ja) 1996-04-23 1997-11-04 Kumeta Seisakusho:Kk マイクロ波殺菌装置
FR2747672B1 (fr) 1996-04-23 1998-05-15 Commissariat Energie Atomique Procede et four de fusion homogene par micro-ondes a oscillation d'ondes stationnaires pour la vitrification de materiaux
JP3676125B2 (ja) 1999-06-29 2005-07-27 大和製罐株式会社 マイクロ波殺菌方法
US6723999B2 (en) 1999-07-02 2004-04-20 Holl Technologies Company Electromagnetic wave assisted chemical processing
US6641737B2 (en) * 2000-04-20 2003-11-04 Ashbrook Corporation Vertical filter
JP2002079078A (ja) 2000-09-04 2002-03-19 Takehiro Matsuse マイクロ波化学反応装置
US7348182B2 (en) 2000-10-03 2008-03-25 Mirari Biosciences, Inc. Directed microwave chemistry
DE10145532A1 (de) * 2001-06-01 2003-01-23 Degussa Verfahren zur Calcinierung von edelmetallhaltigen Komplexen und Verbindungen
US6909075B2 (en) 2002-09-20 2005-06-21 Leroy Eclat Ag Method and apparatus for heat treatment of raw materials
JP2004216200A (ja) 2002-11-22 2004-08-05 Yyl:Kk 化学反応制御方法と装置
DE10260743B4 (de) 2002-12-23 2008-05-15 Outokumpu Oyj Verfahren und Anlage zum thermischen Behandeln von körnigen Feststoffen in einem Wirbelbett
JP2004201967A (ja) 2002-12-25 2004-07-22 Tokyo Electric Power Co Inc:The 有機ハロゲン化合物の処理方法およびその処理装置
JP4145335B2 (ja) 2004-04-20 2008-09-03 三光化学工業株式会社 マイクロ波を応用した化学反応装置
US7087220B2 (en) 2004-05-28 2006-08-08 Reheis, Inc. High pH antiperspirant compositions of enhanced efficacy
JP4784117B2 (ja) 2005-03-17 2011-10-05 三菱化学株式会社 ポリアルキレンエーテルグリコールジエステル類の製造方法及び反応装置
EP1873233B1 (en) 2005-04-12 2013-09-25 Denso Corporation Microalgae and process for producing hydrocarbon
JP5343297B2 (ja) 2005-06-23 2013-11-13 株式会社豊田中央研究所 触媒反応装置、触媒加熱方法、及び燃料改質方法
JP2007059318A (ja) 2005-08-26 2007-03-08 Hideo Sugai プラズマ発生装置
JP2007059317A (ja) 2005-08-26 2007-03-08 Honda Electronic Co Ltd プラズマ発生装置、及びプラズマ発生方法
JP2007222696A (ja) 2005-12-23 2007-09-06 Tokyo Electric Power Co Inc:The マイクロ波反応用の触媒カラム及びそれを用いた分解処理方法
JP2007307440A (ja) 2006-05-16 2007-11-29 Hitachi Plant Technologies Ltd 化学反応装置
JP5461758B2 (ja) 2006-06-07 2014-04-02 四国計測工業株式会社 マイクロ波化学反応容器および装置
EP2415807A3 (en) 2006-10-26 2012-10-31 Xyleco, Inc. Method of making butanol from biomass
JP5016984B2 (ja) * 2007-06-06 2012-09-05 四国計測工業株式会社 マイクロ波化学反応装置および方法
FR2921844B1 (fr) 2007-10-09 2011-11-25 Saipem Sa Dispositif de separation liquide/gaz horizontal et procede de separation, notamment des phases liquide et gazeuse d'un petrole brut
JP5243809B2 (ja) 2008-02-06 2013-07-24 定頼 保科 発酵油と製造方法
JPWO2009110245A1 (ja) 2008-03-05 2011-07-14 マイクロ波環境化学株式会社 マイクロ波化学反応装置及びその装置を用いた反応方法
JP2011521669A (ja) 2008-06-02 2011-07-28 クレシー,ウッド ド バイオ燃料、バイオディーゼルおよび他の有用化学物質用の脂肪酸を生成する方法
WO2010013696A1 (ja) 2008-07-28 2010-02-04 国立大学法人京都大学 マイクロ波照射装置、連結型マイクロ波照射装置、及び植物材料から糖成分を製造する方法
JP5463550B2 (ja) 2008-10-10 2014-04-09 国立大学法人 東京大学 炭化水素の製造方法及び炭化水素製造システム
US8177411B2 (en) 2009-01-08 2012-05-15 Halliburton Energy Services Inc. Mixer system controlled based on density inferred from sensed mixing tub weight
JP2010184230A (ja) 2009-01-15 2010-08-26 Asahi Glass Co Ltd 連続式マイクロ波反応装置および連続式マイクロ波反応システム
CN101954266B (zh) 2009-07-20 2013-03-20 北京思践通科技发展有限公司 一种化学反应设备及该设备在化学反应中的应用
JP5603134B2 (ja) 2010-05-13 2014-10-08 マイクロ波化学株式会社 化学反応装置、及び化学反応方法
JP4874411B2 (ja) 2010-05-13 2012-02-15 マイクロ波環境化学株式会社 化学反応装置、及び化学反応方法
KR101070771B1 (ko) * 2011-04-05 2011-10-07 김산 소형 마이크로웨이브 발생기를 이용한 연속유동 가열 바이오디젤 제조장치
EP2727647B1 (en) 2011-06-29 2020-01-15 Microwave Chemical Co., Ltd. Chemical reaction apparatus, and chemical reaction method
JP5109004B1 (ja) 2011-11-11 2012-12-26 マイクロ波化学株式会社 化学反応装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141679A (ja) * 1974-08-07 1976-04-08 British Petroleum Co Kagakuhannoookonauhoho
JPH03109296U (ja) * 1990-02-22 1991-11-11
JPH08501016A (ja) * 1992-01-30 1996-02-06 エマリー マイクロウエイブ マネージメント インコーポレーテッド 有機物質のコントロールした還元のための方法および装置
JP2006512554A (ja) * 2002-12-23 2006-04-13 オウトクンプ テクノロジー オサケ ユキチュア 流動層の粒状固体の熱処理方法およびプラント
JP2006516008A (ja) 2002-12-23 2006-06-15 アルディヴィア エスアー 再循環システムに組み込まれた、断続的な誘電加熱による熱処理を備えた化学合成法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10464040B2 (en) 2011-11-11 2019-11-05 Microwave Chemical Co., Ltd. Chemical reaction method
US11229895B2 (en) 2011-11-11 2022-01-25 Microwave Chemical Co., Ltd. Chemical reaction method using chemical reaction apparatus
US10315126B2 (en) 2013-03-14 2019-06-11 Donald W. Ramer Apparatus for molecular targeting and separation of feedstock fluids
US10661247B2 (en) * 2013-10-07 2020-05-26 Dai-Ichi High Frequeny Co., Ltd. Ferromagnetic-particle manufacturing apparatus
US10661248B2 (en) 2013-10-07 2020-05-26 Dai-Ichi High Frequency Co., Ltd. Ferromagnetic-particle manufacturing apparatus
WO2015122428A1 (ja) * 2014-02-14 2015-08-20 マイクロ波化学株式会社 有機化合物の製造方法、及びエステルの製造方法
CN105163842A (zh) * 2014-02-27 2015-12-16 微波化学有限公司 化学反应装置
EP2998019A4 (en) * 2014-02-27 2017-01-18 Microwave Chemical Co., Ltd. Chemical reaction device
US9833764B2 (en) 2014-02-27 2017-12-05 Microwave Chemical Co., Ltd. Chemical reaction apparatus
JPWO2019230368A1 (ja) * 2018-05-29 2021-07-26 株式会社サイダ・Fds 装置およびこれに用いる触媒

Also Published As

Publication number Publication date
IN2014CN00534A (ja) 2015-04-03
EP2727647A1 (en) 2014-05-07
EP2727647B1 (en) 2020-01-15
DK2727647T3 (da) 2020-03-16
CN103747866A (zh) 2014-04-23
CN103747866B (zh) 2016-08-17
BR112013033215B1 (pt) 2019-02-26
JPWO2013001629A1 (ja) 2015-02-23
US11224852B2 (en) 2022-01-18
JP5781160B2 (ja) 2015-09-16
KR101838330B1 (ko) 2018-04-26
US20140121395A1 (en) 2014-05-01
KR20140038457A (ko) 2014-03-28
EP2727647A4 (en) 2015-04-01
BR112013033215A2 (pt) 2017-03-01
ES2776997T3 (es) 2020-08-03

Similar Documents

Publication Publication Date Title
JP5781160B2 (ja) 化学反応装置、及び化学反応方法
JP4874411B2 (ja) 化学反応装置、及び化学反応方法
JP5603134B2 (ja) 化学反応装置、及び化学反応方法
JP5114616B1 (ja) 化学反応装置
US9573112B2 (en) Chemical reaction apparatus
JP5997816B2 (ja) 化学反応装置、及び化学反応方法
JP5901247B2 (ja) 化学反応装置
JP5763234B1 (ja) 化学反応装置
JP5702016B1 (ja) 化学反応装置
JP2015151400A (ja) 有機化合物の製造方法、及びエステルの製造方法
JP5753600B1 (ja) 有機化合物の製造方法、及びエステルの製造方法
US11229895B2 (en) Chemical reaction method using chemical reaction apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868832

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14123174

Country of ref document: US

Ref document number: 2011868832

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013522409

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137033106

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013033215

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013033215

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131223