WO2013000390A1 - 一种电子膨胀阀 - Google Patents

一种电子膨胀阀 Download PDF

Info

Publication number
WO2013000390A1
WO2013000390A1 PCT/CN2012/077508 CN2012077508W WO2013000390A1 WO 2013000390 A1 WO2013000390 A1 WO 2013000390A1 CN 2012077508 W CN2012077508 W CN 2012077508W WO 2013000390 A1 WO2013000390 A1 WO 2013000390A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
electronic expansion
limiting
expansion valve
valve stem
Prior art date
Application number
PCT/CN2012/077508
Other languages
English (en)
French (fr)
Inventor
吕铭
袁泽
Original Assignee
浙江三花股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江三花股份有限公司 filed Critical 浙江三花股份有限公司
Priority to US14/124,223 priority Critical patent/US9506677B2/en
Priority to EP12803789.2A priority patent/EP2725267B1/en
Priority to JP2014516181A priority patent/JP5843209B2/ja
Priority to KR1020147000845A priority patent/KR101577692B1/ko
Publication of WO2013000390A1 publication Critical patent/WO2013000390A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/50Mechanical actuating means with screw-spindle or internally threaded actuating means
    • F16K31/508Mechanical actuating means with screw-spindle or internally threaded actuating means the actuating element being rotatable, non-rising, and driving a non-rotatable axially-sliding element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/047Actuating devices; Operating means; Releasing devices electric; magnetic using a motor characterised by mechanical means between the motor and the valve, e.g. lost motion means reducing backlash, clutches, brakes or return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/53Mechanical actuating means with toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of fluid control components, and in particular to an electronic expansion valve. Background technique
  • the electronic expansion valve is an important component of the refrigeration system and is another essential component in the four basic components of the refrigeration system, except for the evaporator, compressor and condenser.
  • the operation of the electronic expansion valve is generally as follows: As the coil unit is energized or de-energized, the valve needle adjusts the opening of the valve port to regulate the flow rate of the refrigerant.
  • FIG. 1 is a schematic structural view of an electronic expansion valve in the prior art.
  • the prior art electronic expansion valve includes a valve seat 1' in which a sleeve portion 2' is provided, the sleeve portion 2' including a guide portion 2'' and a head portion 2' 2, the head 2'2 is sealed and supported by a gear base 3', and the gear base 3' is provided with a gear system 8'.
  • the gear system 8' is connected with a screw rod 4'; as shown in Fig. 1, the gear base 3'
  • the upper end portion is further sealedly connected to the motor casing 5, and the motor casing 5' is internally provided with a motor 5' which is drivingly coupled to the gear system 8' via an output shaft.
  • a slidable valve stem 6' is disposed in the guiding portion 2, and a nut 7' is protruded from the upper end portion of the valve stem 6'.
  • the nut 7' is further disposed in the limiting portion 3 ⁇ in the lower cavity of the gear housing 3'. Due to the limit of the limiting portion 3 ⁇ , the nut 7' can slide in the axial direction of the limiting portion 3 ⁇ , but cannot rotate in the circumferential direction.
  • the motor 5' is activated, its output shaft is rotated, and the rotation is further transmitted to the screw 4' through the gear system 8', since the screw 4' is threaded into the nut 7', and the nut 7' is The limiting portion 3 ⁇ can only slide in the axial direction and cannot rotate in the circumferential direction. Therefore, as the screw 4' rotates, the nut 7' slides in the axial direction, and the nut 7' drives the valve stem 6' to guide Department 2 Sliding in the axial direction, thereby achieving the purpose of adjusting the opening of the valve port.
  • the upper end portion of the gear base 3' is sealingly connected to the motor casing 5' by a screwing engagement, and the lower end portion of the gear base 3' is sealingly connected to the head portion 2'2 of the sleeve portion 2' by screwing, so that there are two There are more sealing parts and more sealing parts, which leads to a greater probability of leakage.
  • the assembly structure is also second.
  • the upper end of the valve stem 6' needs to protrude with a nut 7', and the nut 7' is matched with the limiting portion 3 ⁇ .
  • the circumferential limit of the valve stem 6' is achieved, but since the nut 7' needs to protrude from the upper end of the wide rod 6', the axial dimension of the entire spool member is large, which in turn leads to the axial dimension of the valve body. Further, since the outer diameter of the nut 7' is significantly smaller than the outer diameter of the valve stem 6', the entire spool member is made larger and smaller, so that the head portion 2 of the sleeve portion 2' is processed during the processing of the respective components.
  • the inner diameter of '2 is smaller than the inner diameter of the guide portion 2'', and the outer diameter of the lower end portion of the gear holder 3' is to be reduced, so that the inner diameter portion of the inner portion is smaller, so that the sleeve portion 2 is known.
  • the structure of the gear base 3' is more complicated, which makes the machining difficult , the processing cost is high; at the same time, since the valve core component composed of the nut 7' and the valve stem 6' is large and small, the nut 7', the valve stem 6', the gear carrier 3', the sleeve portion 2' and the valve seat 1 'The assembly process is more complicated and the assembly is difficult.
  • the technical problem to be solved by the present invention is to provide an electronic expansion valve which is structurally designed to reduce the number of sealing portions thereof, thereby effectively reducing the probability of leakage thereof, and capable of squeezing its assembly structure.
  • the present invention provides an electronic expansion valve including a lead screw and a motor provided with an output shaft, and the output shaft is connected to the screw drive through a gear system; the gear system is supported on the gear base. And the screw rod passes through the gear base; the electronic expansion further includes a valve seat provided with a valve cavity and a motor casing disposed outside the motor; the gear seat is further disposed in the valve cavity And the upper end portion of the valve seat is further connected to the lower end portion of the motor casing.
  • the valve seat comprises a seat body and a sleeve disposed at an upper end of the seat body, The upper end portion of the sleeve is further connected to the lower end portion of the motor case; the gear holder is further disposed inside the sleeve.
  • the sleeve includes a sleeve body portion and a sleeve bending portion bent outward, the sleeve body portion is coupled to the seat body, the sleeve bending portion and the motor housing
  • the lower end portion is connected;
  • the gear base is further provided with a connecting portion in the circumferential direction, and the connecting portion is connected to a circumferential inner wall of the sleeve body portion.
  • a support portion having a reduced outer diameter is further disposed above the connecting portion, and the gear system is supported on the support portion.
  • the gear system includes a first gear coupled to the output shaft, a second gear coupled to the lead screw, and a transmission gear transmitting the motion of the first gear to the second gear
  • the transmission gear is provided with a positioning shaft, and a lower end portion of the positioning shaft is further connected to the support portion.
  • the support portion is provided with a projection protruding in a radial direction from a circumferential side thereof, and a lower end portion of the positioning shaft is further connected to the projection.
  • the lower end surface of the gear base is further supported on the upper end surface of the seat body.
  • the lead screw is connected to the gear rod through a wide rod; one of the gear base and the valve stem is provided with a limit HJ slot, and the other is disposed in the limit EJ slot.
  • a limiting protrusion that slides in the axial direction; the limiting protrusion is disposed in the limiting groove to define a relative position of the valve stem and the gear seat in a circumferential direction.
  • the limiting protrusion is a first limiting rod member disposed on one of the gear seat and the wide rod in an axial direction, and the limiting groove is disposed in the axial direction And a first limiting hole on the other of the gear base and the wide rod, wherein the first limiting rod member is slidably disposed in the first limiting hole in the axial direction.
  • the gear base is provided with a lower cavity, an upper end portion of the wide bar projects into the lower cavity;
  • the limiting protrusion is a sidewall disposed in the lower cavity and the side a second limiting rod member on one of the side walls of the valve stem, the limiting groove being radially disposed on the other side of the side wall of the lower chamber and the side wall of the valve stem Second limit hole.
  • the gear base is provided with a plurality of axially extending positioning rod members, each of the positioning rod members circumferentially enclosing a lower chamber, and an upper end portion of the valve rod extends into the lower chamber; Limit projection a second limiting rod member disposed on a side wall of the wide rod; wherein each of the positioning rod members has a gap between at least one set of adjacent positioning rod members forming a finite gap, and the limiting gap is formed The limiting groove; the second limiting rod member is inserted into the limiting gap.
  • the gear seat provided by the present invention is disposed in the valve cavity, and the upper end portion of the valve seat is further connected to the lower end portion of the motor casing.
  • the upper end portion of the valve seat needs to be The lower end of the motor casing is hermetically connected.
  • the gear base is further disposed in the inner cavity of the valve seat, and the upper end portion of the valve seat is sealingly connected with the lower end portion of the motor casing, so that the structure has a sealing portion, the sealing portion is less, and the leakage The probability is lower.
  • the gear holder is provided in the valve chamber, and the upper end portion of the valve seat is connected to the lower end portion of the motor casing, so that the assembly structure thereof is barreled as compared with the prior art.
  • the electronic expansion valve provided by the present invention can reduce the number of sealing portions thereof, thereby effectively reducing the probability of leakage thereof, and can cylindricalize its assembly structure.
  • FIG. 1 is a schematic structural view of an electronic expansion valve in the prior art
  • FIG. 2 is a schematic structural view of an electronic expansion valve according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing the assembly of the gear system and the gear base of the electronic expansion valve of FIG. 2;
  • FIG. 4 is a schematic view showing the assembly of the gear system and the gear base of FIG. 3 from another angle of view;
  • FIG. 5 is a gear system and a gear base of FIG. a front view of the assembly structure;
  • Figure 6 is a schematic structural view of the gear holder of Figure 3.
  • Figure 7 is a schematic structural view of a valve stem engaged with the gear base of Figure 6;
  • FIG. 8 is a schematic view showing the assembly of a gear base and a valve stem according to another embodiment of the present invention.
  • Figure 8-1 is a cross-sectional view showing the assembled structure of the gear base and the valve stem of Figure 8;
  • Figure 8-2 is a schematic structural view of the gear base of Figure 8.
  • Figure 8-3 is a schematic structural view of the valve stem of Figure 8.
  • 9-1 is a schematic structural view of a gear holder according to still another embodiment of the present invention.
  • Figure 9-2 is a schematic view showing the structure of the valve stem in cooperation with the gear base of Figure 9-1;
  • 10-1 is a schematic structural view of a gear holder according to still another embodiment of the present invention.
  • Figure 10-2 is a schematic view showing the structure of an electronic expansion valve including the gear holder of Figure 10-1.
  • the correspondence between the reference numerals and the component names in FIG. 1 is:
  • 3 gear seat 31 connection part; 32 support part; 321 protrusion part; 33 step; 34 first limit rod member; 35 second limit hole; 36 lower chamber; 361 discontinuity; 362 positioning rod; Position gap; 38 non-circular shaped groove; 39 positioning hole;
  • valve seat 41 seat body; 42 sleeve; 421 sleeve body part; 422 sleeve bending part; 51 first gear; 52 second gear; 53 transmission gear; 54 positioning shaft;
  • valve stem 61 first limit hole; 62 second limit rod; 63 nut; 64 non-circular shaped part.
  • the core of the present invention is to provide an electronic expansion valve which is structurally designed to reduce the number of sealing portions thereof, thereby effectively reducing the probability of leakage thereof, and capable of squeezing its assembly structure.
  • FIG. 2 is a schematic structural view of an electronic expansion valve according to an embodiment of the present invention.
  • the electronic expansion valve includes a motor casing 22, and the motor casing 22 is provided with a motor 2, and the output shaft 21 of the motor 2 is drivingly connected with the screw rod 1 through a gear system, so that the screw rod 1 follows the output.
  • the shaft 21 rotates; as shown in FIG. 2, the gear system is supported on the gear base 3, and the screw rod 1 is connected to the valve stem 6 through the gear base 3.
  • the valve stem 6 moves up and down in the axial direction. The movement, thereby adjusting the opening of the valve port on the valve seat 4, achieves the purpose of refrigerant flow regulation.
  • the gear base 3 is further disposed in the valve cavity of the valve seat 4, and the upper end portion of the valve seat 4 is further connected to the lower end portion of the motor casing 22, specifically, The upper end portion of the valve seat 4 requires a lower end portion of the motor casing 22 to be hermetically connected.
  • the gear base 3 is further disposed in the inner cavity of the valve seat 4, and the upper end portion of the valve seat 4 and the lower end portion of the motor casing 22 Sealed connection, so there is a sealing part in the structure, the sealing part is less, and the probability of leakage is low.
  • the gear holder 3 is provided in the valve chamber, and the upper end portion of the valve seat 4 is connected to the lower end portion of the motor casing 22, so that the assembly structure thereof is cylinderized as compared with the prior art.
  • the valve seat 4 may be a split structure, including a seat body 41 and a sleeve 42 disposed at an upper end portion of the seat body 41.
  • the upper end portion of the sleeve 42 is further coupled to the motor housing 22.
  • the lower end portion is connected; the gear base 3 is further disposed inside the sleeve 42.
  • the valve seat 4 is divided into a seat body 41 and a sleeve 42, and this structural design makes the processing of the valve seat 4 into a cylinder.
  • the valve seat 4 can also be a unitary structure, that is, the seat body 41 and the sleeve 42 are integrally formed and integrally formed.
  • FIG. 3 is a schematic view showing the assembly of the gear system and the gear base of the electronic expansion valve of FIG. 2.
  • FIG. 4 is a schematic view showing the assembly of the gear system and the gear base of FIG. 3 is a front view of the assembly structure of the gear system and the gear base;
  • FIG. 6 is a schematic structural view of the gear base of FIG. 3;
  • FIG. 7 is a structural schematic view of the valve stem engaged with the gear base of FIG.
  • the sleeve 42 includes a sleeve body portion 421 and a sleeve bending portion 422 bent outward.
  • the sleeve body portion 421 is coupled to the seat body 41, and the sleeve bending portion 422 and the motor housing 22 are The lower end portion is connected; as shown in FIG. 3, FIG. 5 and FIG. 6, the gear base 3 is further provided with a connecting portion 31 in the circumferential direction.
  • the connecting portion 31 can further be circumferentially of the sleeve body portion 421.
  • the inner wall is connected.
  • the existence of the sleeve bending portion 422 can facilitate the connection between the sleeve 42 and the lower end portion of the motor casing 22 on the one hand, and also provide sufficient space for the installation of the gear system on the other hand, thereby facilitating the installation of the gear system. Further, the large space formed by the sleeve bent portion 422 also facilitates the connection between the connecting portion 31 and the circumferential inner wall of the sleeve body portion 421.
  • the connecting portion 31 is further provided with a support portion 32 having a reduced outer diameter, the gear system is supported on the support portion 32; and the circumferential side surface and the connecting portion of the support portion 32 A step 33 is formed on the upper end surface of 31.
  • the arrangement of the step 33 further provides a suitable space for the connection between the connecting portion 31 and the circumferential inner wall of the sleeve body portion 421.
  • the connecting portion 31 can be realized by soldering or laser welding in the appropriate space. A connection with the circumferential inner wall of the sleeve body portion 421.
  • the gear system includes a first gear 51, a second gear 52 and a transmission gear 53; the first gear 51 meshes with a gear on the output shaft 21 of the motor 2, and the second gear 52 is coupled to the screw shaft 1 and disposed in the upper chamber of the gear carrier 3; The second gear 52 is meshed, and the transmission gear 53 shares the positioning shaft 54 with the first gear 51, so that the transmission gear 53 can transmit the motion of the first gear 51 to the second gear 52.
  • the transmission gear 53 is further provided with a positioning shaft 54, which is fixedly coupled to the support portion 32 of the gear holder 3.
  • the support portion 32 is provided with a projection portion 321 which protrudes in the radial direction from the circumferential side thereof, and the projection portion is provided with a positioning hole 39, and the lower end portion of the positioning shaft 54 is further connected. In the positioning hole 39.
  • this structural design enables the connection between the positioning shaft 54 and the support portion 32, and on the other hand, it is possible to facilitate the formation of the step 33 between the support portion 32 and the connecting portion 31.
  • the sleeve body portion 421 is fitted on the outer side of the upper end portion of the seat body 41.
  • the lower end surface of the gear base 3 can be further supported by the seat body 41.
  • the gear base 3 is further supported and fixed by the seat body 41, thereby further improving the stability of the axial limit.
  • one of the gear holder 3 and the wide rod 6 provided by the present invention is provided with a limiting groove, and the other is provided with a limiting protrusion which can slide in the axial direction in the limiting groove;
  • a limiting projection is provided in the limiting groove to define a relative position of the valve stem 6 and the gear carrier 3 in the circumferential direction.
  • the nut 63 may be provided to the valve stem 6 in this configuration.
  • the internal design of the valve body, which is formed by the valve stem 6 and the nut 63, can significantly reduce the axial dimension of the valve body, as compared with the prior art design in which the nut protrudes from the valve stem.
  • the nut 63 can be built in the valve stem 6, the outer shape of the valve core member is determined by the valve stem 6, so that the large and small structure of the valve core member in the prior art can be avoided, and the valve stem 6 can be matched.
  • the machining process of the gear holder 3 becomes cylindrical, and the assembly structure of the gear holder 3, the valve stem 6, and the valve seat 4 becomes cylindrical.
  • the above technical solution limits the position between the gear base 3 and the valve stem 6
  • the structure of the portion and the limiting groove is not limited, and any of the matching structures of the limiting protrusion and the limiting groove can slide the valve stem 6 up and down along the axial direction of the gear base 3, and can make the valve stem 6 is fixed relative to the gear carrier 3 in the circumferential direction, and should be within the protection scope of the present invention.
  • the gear base 3 is provided with the limiting groove, and the limiting groove is a non-circular shaped groove 38; as shown in FIG. 7, the valve stem 6 is provided with the limiting convex
  • the outer portion of the non-circular shaped portion 64 conforms to the inner contour of the non-circular shaped groove 38, and the non-circular shaped portion 64 is not inserted into the non-circular shaped groove 38. .
  • This structural design facilitates the sliding of the valve stem 6 in the axial direction and the fixing in the circumferential direction.
  • non-circular shaped portion 64 and the non-circular shaped groove 38 are not limited to the hexagonal shape shown in the drawing; obviously, as long as it is not circular and can restrict any shape in which the valve stem 6 rotates in the circumferential direction, it should be It is within the scope of the invention.
  • the limiting protrusion is a first limiting rod provided on one of the gear base 3 and the valve stem 6. 34.
  • the limiting groove is a first limiting hole 61 disposed on the other of the gear base 3 and the valve stem 6.
  • the first limiting rod member 34 is axially slidably disposed at the first limiting position. In the hole 61.
  • the structural design can also achieve the purpose of axial sliding of the valve stem 6 and circumferentially limiting, and since the structure adopts a matching structure of the rod and the hole, the limiting structure in relation to FIGS. 3 to 7 is Significantly reduced material cost expenditures.
  • the gear base 3 is provided with a first limiting rod member 34, and the first limiting rod member 34 is disposed on the lower end surface of the gear base 3.
  • the cost is lower; as shown in Figure 8-3, the valve stem 6 is provided with a first limiting hole 61, and the inside of the valve stem 6 is provided with a nut 63 that cooperates with the screw rod 1.
  • the first limiting hole 61 is opened in the nut.
  • the structural design realizes the integrated fusion of the first limiting hole 61 and the nut 63, and the structure is cylindrical.
  • first limiting rod member 34 may be a cylindrical rod member
  • first limiting hole 61 may be a cylindrical hole; on the basis of the first limiting rod member 34 and the first limiting hole 61 The same, both of which are at least two, and each of the first limiting rods 34 is disposed corresponding to each of the first limiting holes 61.
  • the first limiting rod member 34 is a non-circular shaped rod and the first limiting hole 61 is a non-circular shaped hole corresponding thereto, the first limiting rod member 34 and the first limiting hole 61
  • the number can be one; of course, in order to ensure the limit strength in the circumferential direction, the first limit member 34 and the first limit
  • the number of the bit holes 61 is plural and distributed in the circumferential direction.
  • the gear base 3 is provided with a lower cavity 36, and the upper end portion of the valve stem 6 extends into the lower cavity 36; the limiting projection is disposed radially in the lower portion.
  • the second limit hole 35 on the other one.
  • this structural design can also achieve the purpose of axial sliding of the valve stem 6 and circumferential limit, and compared with the limit structure in Figs. 3 to 7, the structure is relatively simple and the processing cost is low.
  • a second limiting rod member 62 may be disposed on the sidewall of the valve stem 6, and a second limiting hole 35 may be disposed on the sidewall of the lower chamber 36.
  • the second limiting hole 35 penetrates the side wall of the lower chamber 36 in the radial direction. Further, the second limiting hole 35 penetrates the lower end surface of the gear holder 3 in the axial direction.
  • the side wall of the lower chamber 36 may be a discontinuous structure including at least one discontinuity 361, and the second limiting hole 35 is provided on the discontinuous portion 361.
  • FIG. 10-1 is a schematic structural view of a gear base according to still another embodiment of the present invention
  • FIG. 10-2 is an electronic expansion valve including the gear base of FIG. Schematic.
  • the gear base 3 is provided with a plurality of axially extending positioning rod members 362 in the circumferential direction.
  • Each of the positioning rod members 362 circumferentially encloses a lower chamber 36, and the upper end portion of the valve stem 6 extends into the lower end portion.
  • a gap between at least one set of adjacent positioning rods 362 forms a finite gap 363, and a limiting gap 363 forms the limiting groove;
  • the second limiting rod member 62 is disposed on the side wall of the valve stem 6; as shown in Fig. 10-2, the second limiting rod member 62 is inserted into the limiting gap 363.
  • the number of the positioning rods is four, and two limit gaps 363 are formed in two pairs.
  • the second limiting rod member 62 is inserted into the limiting gap. 363.
  • this structural design also achieves the axial sliding of the valve stem 6 and the circumferential limit, and further saves the material cost and the tubular structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Mechanically-Actuated Valves (AREA)

Abstract

一种电子膨胀阀,包括丝杆(1)和设有输出轴(21)的电机(2),输出轴(21)通过齿轮系统与丝杆(1)传动连接;齿轮系统支撑于齿轮座(3)上,并且丝杆(1)穿过齿轮座(3);电子膨胀阀还包括设有阀腔的阀座(4)及设于电机(2)外部的电机壳(22);齿轮座(3)进一步设于阀腔中,并且阀座(4)的上端部进一步与电机壳(22)的下端部连接。该电子膨胀阀的结构设计能够减少其密封部位的数量,从而有效降低其泄露的概率,并且能够简化其装配结构。

Description

一种电子膨胀阀 本申请要求于 2011 年 06 月 27 日提交中国专利局、 申请号为 201110175336.8、 发明名称为"一种电子膨胀阀"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及流体控制部件技术领域, 特别涉及一种电子膨胀阀。 背景技术
电子膨胀阀是组成制冷系统的重要部件, 是制冷系统四个基本部件中 除去蒸发器、 压缩机和冷凝器之外的另一基本部件。 电子膨胀阀的工作过 程一般为: 随着线圈装置的通电或断电, 阀针调节阀口的开度, 从而调节 制冷剂的流量。
在现有技术中, 专利号为 200580023202.7的中国专利公开了一种电子 膨胀阀, 具体请参考图 1 , 图 1为现有技术中一种电子膨胀阀的结构示意 图。
如图 1所示, 该现有技术中的电子膨胀阀包括阀座 1', 该阀座 1'内设 有套筒部 2', 该套筒部 2'包括导向部 2Ί和头部 2'2, 头部 2'2密封支撑有 齿轮座 3', 齿轮座 3'内设有齿轮系统 8', 该齿轮系统 8'传动连接有丝杆 4'; 如图 1所示, 齿轮座 3'的上端部进一步与电机壳 5Ί密封连接, 电机壳 5Ί 内部设有电机 5', 该电机 5'通过输出轴与齿轮系统 8'传动连接。 导向部 2Ί 内设有可滑动的阀杆 6', 并阀杆 6'的上端部伸出有螺母 7', 该螺母 7'进一 步设于齿轮座 3'下腔内的限位部 3Ί内, 由于该限位部 3Ί的限位, 该螺母 7'在该限位部 3Ί内可沿其轴向滑动, 但并不能沿周向旋转。
工作时, 电机 5'启动, 其输出轴发生转动, 该转动动作进而通过齿轮 系统 8'传递给丝杆 4', 由于丝杆 4'通过螺纹配合伸入螺母 7'内, 并螺母 7' 在限位部 3Ί 内只能沿轴向滑动, 并不能沿周向发生旋转, 因而随着丝杆 4'转动, 螺母 7'沿轴向发生滑动, 该螺母 7'进而带动阀杆 6'在导向部 2Ί内 沿轴向发生滑动, 从而实现调节阀口的开度的目的。
然而, 上述现有技术中的电子膨胀阀存在有以下缺陷:
第一, 齿轮座 3'的上端部通过螺纹配合与电机壳 5Ί 密封连接, 齿轮 座 3'的下端部通过螺纹配合与套筒部 2'的头部 2'2密封连接,因而存在有两 个密封部位, 密封部位较多, 导致泄漏的概率较大; 同时装配结构也比较 第二,阀杆 6'的上端部需要伸出有螺母 7',该螺母 7'与限位部 3Ί配合, 从而实现阀杆 6'的周向限位,但是由于螺母 7'需要从阔杆 6'的上端部伸出, 因而导致整个阀芯部件的轴向尺寸较大, 进而导致阀体的轴向尺寸较大; 此外, 由于螺母 7'的外径明显小于阀杆 6'的外径, 导致整个阀芯部件下大 上小, 因而在各个部件的加工过程中, 套筒部 2'的头部 2'2的内径要小于 导向部 2Ί 的内径, 并且齿轮座 3'下端部的外径要减小, 以便在其内腔中 安装内径较小的限位部 3Ί , 由此可知, 套筒部 2'和齿轮座 3'的结构比较复 杂, 导致加工难度大, 加工成本高; 同时, 由于螺母 7'和阀杆 6'组成的阀 芯部件下大上小, 因而螺母 7'、 阀杆 6'、 齿轮座 3'、 套筒部 2'和阀座 1'的 装配过程比较复杂, 装配难度大。
有鉴于此, 如何对现有技术中的电子膨胀阔作出改进, 从而降低其泄 漏的概率, 并筒化其装配结构, 是本领域技术人员亟需解决的问题。 发明内容
本发明要解决的技术问题为提供一种电子膨胀阀, 该电子膨胀阀的结 构设计能够减少其密封部位的数量, 从而有效降低其泄漏的概率, 并且能 够筒化其装配结构。
为解决上述技术问题, 本发明提供一种电子膨胀阀, 包括丝杆和设有 输出轴的电机, 并所述输出轴通过齿轮系统与丝杆传动连接; 所述齿轮系 统支撑于齿轮座上, 并所述丝杆穿过所述齿轮座; 所述电子膨胀阔还包括 设有阀腔的阀座及设于所述电机外部的电机壳; 所述齿轮座进一步设于所 述阀腔中, 并所述阀座的上端部进一步与所述电机壳的下端部连接。
优选地, 所述阀座包括座本体、 及设于所述座本体上端部的套筒, 所 述套筒的上端部进一步与所述电机壳的下端部连接; 所述齿轮座进一步设 于所述套筒的内部。
优选地, 所述套筒包括套筒本体部及向外侧弯曲的套筒折弯部, 所述 套筒本体部连接于所述座本体上, 所述套筒折弯部与所述电机壳的下端部 连接; 所述齿轮座沿周向进一步设有连接部, 所述连接部与所述套筒本体 部的周向内壁连接。
优选地, 所述连接部上方进一步设有外径减小的支撑部, 所述齿轮系 统支撑于所述支撑部上。
优选地, 所述齿轮系统包括连接于所述输出轴上的第一齿轮、 连接于 所述丝杆上的第二齿轮及将所述第一齿轮的运动传递给所述第二齿轮的传 动齿轮; 所述传动齿轮设有定位轴, 所述定位轴的下端部进一步连接于所 述支撑部上。
优选地, 所述支撑部设有沿径向凸出于其周向侧面的凸出部, 所述定 位轴的下端部进一步连接于所述凸出部上。
优选地, 所述齿轮座的下端面进一步支撑于所述座本体的上端面上。 优选地, 所述丝杆穿过所述齿轮座连接有阔杆; 所述齿轮座和所述阀 杆中, 一者设有限位 HJ槽, 另一者设有可在该限位 EJ槽中沿轴向滑动的限 位凸出部; 所述限位凸出部设于所述限位凹槽中, 以便限定所述阀杆与所 述齿轮座在周向上的相对位置。
优选地, 所述限位凸出部为沿轴向设于所述齿轮座和所述阔杆中一者 上的第一限位杆件, 所述限位凹槽为沿轴向设于所述齿轮座和所述阔杆中 另一者上的第一限位孔, 所述第一限位杆件可沿轴向滑动地设于所述第一 限位孔中。
优选地, 所述齿轮座设有下腔, 所述阔杆的上端部伸入所述下腔中; 所述限位凸出部为沿径向设于所述下腔的侧壁和所述阀杆的侧壁中一者上 的第二限位杆件, 所述限位凹槽为沿径向设于所述下腔的侧壁和所述阀杆 的侧壁中另一者上的第二限位孔。
优选地, 所述齿轮座设有多个沿轴向延伸的定位杆件, 各所述定位杆 件沿周向围成下腔, 所述阀杆的上端部伸入该下腔中; 所述限位凸出部为 设于所述阔杆的侧壁上的第二限位杆件; 各所述定位杆件中, 至少有一组 相邻的定位杆件之间的间隙形成有限位间隙, 所述限位间隙形成所述限位 凹槽; 所述第二限位杆件插入所述限位间隙中。
在现有技术的基础上, 本发明所提供的齿轮座设于阀腔中, 并所述阀 座的上端部进一步与所述电机壳的下端部连接, 具体地, 阀座的上端部需 要电机壳的下端部密封连接。 与现有技术相比, 齿轮座进一步设于阀座的 内腔中, 并阀座的上端部与电机壳的下端部密封连接, 因而该结构存在有 一个密封部位, 密封部位较少, 泄漏的概率较低。 此外, 在本发明中, 齿 轮座设于阀腔中, 并阀座的上端部与电机壳的下端部连接, 因而与现有技 术相比, 其装配结构得到了筒化。
综上所述, 本发明所提供的电子膨胀阀能够减少其密封部位的数量, 从而有效降低其泄漏的概率, 并且能够筒化其装配结构。 附图说明
图 1为现有技术中一种电子膨胀阀的结构示意图;
图 2为本发明一种实施例中电子膨胀阀的结构示意图;
图 3为图 2中电子膨胀阀的齿轮系统和齿轮座的装配示意图; 图 4为图 3中齿轮系统和齿轮座在另一视角下的装配示意图; 图 5为图 3中齿轮系统和齿轮座的装配结构的主视图;
图 6为图 3中的齿轮座的结构示意图;
图 7为与图 6中的齿轮座配合的阀杆的结构示意图;
图 8为本发明另一种实施例中齿轮座和阀杆的装配示意图;
图 8-1为图 8中齿轮座和阀杆的装配结构的剖视图;
图 8-2为图 8中齿轮座的结构示意图;
图 8-3为图 8中阀杆的结构示意图;
图 9-1为本发明再一种实施例中齿轮座的结构示意图;
图 9-2为与图 9-1中的齿轮座的配合的阀杆的结构示意图;
图 10-1为本发明又一种实施例中齿轮座的结构示意图;
图 10-2为包括图 10-1中的齿轮座的电子膨胀阀的结构示意图。 其中, 图 1中附图标记与部件名称之间的对应关系为:
1'阀座; 2'套筒部; 2Ί导向部; 2'2头部; 3'齿轮座; 4'丝杆; 5'电机; 5Ί电机壳; 6'阀杆; 7'螺母; 8'齿轮系统。
图 2至图 10-2中附图标记与部件名称之间的对应关系为:
1丝杆; 2电机; 21输出轴; 22电机壳;
3齿轮座; 31连接部; 32支撑部; 321凸出部; 33台阶; 34第一限位 杆件; 35第二限位孔; 36下腔; 361间断部; 362定位杆件; 363限位间 隙; 38非圆异形槽; 39定位孔;
4阀座; 41座本体; 42套筒; 421套筒本体部; 422套筒折弯部; 51第一齿轮; 52第二齿轮; 53传动齿轮; 54定位轴;
6阀杆; 61第一限位孔; 62第二限位杆件; 63螺母; 64非圆异形部。 具体实施方式
本发明的核心为提供一种电子膨胀阀, 该电子膨胀阀的结构设计能够 减少其密封部位的数量, 从而有效降低其泄漏的概率, 并且能够筒化其装 配结构。
为了使本领域的技术人员更好地理解本发明的技术方案, 下面结合附 图和具体实施例对本发明作进一步的详细说明。
请参考图 2, 图 2为本发明一种实施例中电子膨胀阀的结构示意图。 量, 如图 2所示, 电子膨胀阀包括电机壳 22, 电机壳 22内设有电机 2, 电 机 2的输出轴 21通过齿轮系统与丝杆 1传动连接,因而丝杆 1随着输出轴 21发生转动; 如图 2所示, 齿轮系统支撑于齿轮座 3上, 并丝杆 1穿过齿 轮座 3连接有阀杆 6, 随着丝杆 1的转动, 阀杆 6沿轴向上下运动, 从而 调节阀座 4上的阀口的开度, 从而实现制冷剂流量调节的目的。
如图 2所示, 在上述现有技术的基础上, 齿轮座 3进一步设于阀座 4 的阀腔中, 并阀座 4的上端部进一步与电机壳 22的下端部连接, 具体地, 阀座 4的上端部需要电机壳 22的下端部密封连接。与现有技术相比,齿轮 座 3进一步设于阀座 4的内腔中,并阀座 4的上端部与电机壳 22的下端部 密封连接, 因而该结构存在有一个密封部位, 密封部位较少, 泄漏的概率 较低。 此外, 在本发明中, 齿轮座 3设于阀腔中, 并阀座 4的上端部与电 机壳 22的下端部连接, 因而与现有技术相比, 其装配结构得到了筒化。
需要说明的是, 在上述实施例中, 阀座 4可以为分体结构, 包括座本 体 41、及设于座本体 41上端部的套筒 42,套筒 42的上端部进一步与电机 壳 22的下端部连接; 齿轮座 3进一步设于套筒 42的内部。 阀座 4分为座 本体 41和套筒 42, 该种结构设计使得阀座 4的加工变得筒化。 当然, 阀 座 4也可以为一体结构, 亦即座本体 41和套筒 42为一体化构件, 一体加 工成型。
请参考图 3至图 7, 图 3为图 2中电子膨胀阀的齿轮系统和齿轮座的 装配示意图;图 4为图 3中齿轮系统和齿轮座在另一视角下的装配示意图; 图 5为图 3中齿轮系统和齿轮座的装配结构的主视图; 图 6为图 3中的齿 轮座的结构示意图; 图 7为与图 6中的齿轮座配合的阀杆的结构示意图。
如图 2所示,套筒 42包括套筒本体部 421及向外侧弯曲的套筒折弯部 422, 套筒本体部 421连接于座本体 41上, 套筒折弯部 422与电机壳 22 的下端部连接; 如图 3、 图 5和图 6所示, 齿轮座 3沿周向进一步设有连 接部 31 , 如图 2所示, 连接部 31可以进一步与套筒本体部 421的周向内 壁连接。 套筒折弯部 422的存在, 一方面可以便于套筒 42与电机壳 22的 下端部之间的连接, 另一方面也为齿轮系统的安装设置了足够的空间, 从 而便于齿轮系统的安装; 此外, 套筒折弯部 422形成的较大空间也便于实 现连接部 31与套筒本体部 421的周向内壁之间的连接。
具体地, 还可以对齿轮座 3的结构作出进一步改进。 比如, 如图 3和 图 6所示, 连接部 31上方进一步设有外径减小的支撑部 32, 所述齿轮系 统支撑于支撑部 32上; 并且, 支撑部 32的周向侧面与连接部 31的上端面 形成有台阶 33。 该台阶 33的设置, 进一步为连接部 31与套筒本体部 421 的周向内壁之间的连接提供了适当空间, 比如可以在该适当空间通过钎焊 或激光焊等焊接方式,实现连接部 31与套筒本体部 421的周向内壁之间的 连接。
需要说明的是, 如图 3、 图 4和图 5所示, 齿轮系统包括第一齿轮 51、 第二齿轮 52和传动齿轮 53; 第一齿轮 51与电机 2的输出轴 21上的齿轮 啮合, 第二齿轮 52连接于丝杆 1上, 并设于齿轮座 3的上腔中; 传动齿轮 53与第二齿轮 52啮合, 并且传动齿轮 53与第一齿轮 51共用定位轴 54, 因而传动齿轮 53可以将第一齿轮 51的运动传递给第二齿轮 52。如图 2所 示, 传动齿轮 53进一步设有定位轴 54, 该定位轴 54固定连接于齿轮座 3 的支撑部 32上。该种结构设计非常方便地实现了齿轮系统与齿轮座 3之间 的连接, 并且结构比较筒单, 成本较低。
此外,如图 3和图 6所示, 支撑部 32设有沿径向凸出于其周向侧面的 凸出部 321 , 凸出部上设有定位孔 39, 定位轴 54的下端部进一步连接于定 位孔 39中。该种结构设计一方面能够实现定位轴 54与支撑部 32之间的连 接, 另一方面能够便于在支撑部 32与连接部 31之间形成有台阶 33。
如图 2所示, 在上述任一种技术方案中, 套筒本体部 421套装于座本 体 41的上端部的外侧,在此基础上,齿轮座 3的下端面可以进一步支撑于 座本体 41的上端面上。 由座本体 41进一步对齿轮座 3进行支撑固定, 从 而进一步提高了其轴向限位的稳定性。
此外, 请参考图 8至图 9-2, 在上述任一种技术方案的基础上, 还可 以作出进一步改进。 比如, 本发明所提供的齿轮座 3和阔杆 6中, 一者设 有限位凹槽, 另一者设有可在该限位凹槽中沿轴向滑动的限位凸出部; 所 述限位凸出部设于所述限位凹槽中, 以便限定阀杆 6与齿轮座 3在周向上 的相对位置。
在本发明中, 由于在齿轮座 3和阀杆 6之间形成有限位结构, 而不是 在齿轮座 3和螺母 63之间形成限位结构, 因而在该结构中螺母 63可以设 于阀杆 6的内部, 相对于现有技术中螺母伸出于阀杆的结构设计, 可以显 著减少由阀杆 6和螺母 63组成的阀芯部件的轴向尺寸 ,进而可以减少阀体 的轴向尺寸。 此外, 由于螺母 63可以内置于阀杆 6中, 阀芯部件的外形尺 寸由阀杆 6决定, 因而可以避免现有技术中阀芯部件下大上小的结构, 进 而可以使得与阀杆 6配合的齿轮座 3的加工工艺变得筒化, 并使得齿轮座 3、 阀杆 6和阀座 4的装配结构变得筒化。
需要说明的是, 上述技术方案对于齿轮座 3与阀杆 6之间的限位凸出 部和限位凹槽的结构不作限制,任一种限位凸出部和限位凹槽的配合结构, 只要能够使得阀杆 6可沿齿轮座 3的轴向上下滑动, 并能够使得阀杆 6相 对于齿轮座 3周向固定, 就均应该在本发明的保护范围之内。
具体地, 如图 5所示, 齿轮座 3设有所述限位凹槽, 并且该限位凹槽 为非圆异形槽 38; 如图 7所示, 阀杆 6设有所述限位凸出部, 并且该限位 凸出部为非圆异形部 64, 该非圆异形部 64的外部轮廓与非圆异形槽 38的 内部轮廓一致, 并非圆异形部 64插入该非圆异形槽 38中。 该种结构设计 非常方便地实现了阀杆 6沿轴向滑动并沿周向限位固定的目的。
需要说明的是, 非圆异形部 64和非圆异形槽 38并不限于图中所示的 六角形; 显然, 只要不是圆形、 并能够限制阀杆 6沿周向转动的任意形状, 均应该在本发明的保护范围之内。
具体地,还可以对齿轮座 3与阀杆 6之间的限位结构作出进一步设计。 比如, 请参考图 8、 图 8-1、 图 8-2和图 8-3 , 所述限位凸出部为设于齿轮 座 3和阀杆 6中一者上的第一限位杆件 34, 所述限位凹槽为设于齿轮座 3 和阀杆 6中另一者上的第一限位孔 61 , 第一限位杆件 34可沿轴向滑动地 设于第一限位孔 61中。显然,该种结构设计也能够实现阀杆 6的轴向滑动 并周向限位的目的, 并且由于该种结构采用杆与孔的配合结构, 因而相对 于图 3至图 7中的限位结构, 显著减少了材料成本的支出。
具体地, 如图 8-2所示, 齿轮座 3设有第一限位杆件 34, 并第一限位 杆件 34设于齿轮座 3的下端面上, 该种结构比较筒单, 制造成本较低; 如 图 8-3所示, 阀杆 6设有第一限位孔 61 , 并阀杆 6的内部设有与丝杆 1配 合的螺母 63 , 第一限位孔 61开设于螺母 63上, 该种结构设计实现了第一 限位孔 61和螺母 63的集成融合, 筒化了结构。
进一步地, 第一限位杆件 34可以为圆柱形杆件, 第一限位孔 61可以 为圆柱形孔; 在此基础上,第一限位杆件 34与第一限位孔 61的数量相同, 并均为至少两个,且各第一限位杆件 34与各第一限位孔 61分别对应设置。
需要说明的是, 当第一限位杆件 34为非圆异形杆, 第一限位孔 61为 与之对应的非圆异形孔时, 第一限位杆件 34和第一限位孔 61的数量可以 均为一个; 当然, 为了保证周向上的限位强度, 第一限位杆件 34和第一限 位孔 61的数量最好为多个, 并沿周向均勾分布。
具体地,还可以对齿轮座 3与阀杆 6之间的限位结构作出进一步设计。 比如, 请参考图 9-1和图 9-2, 齿轮座 3设有下腔 36, 阀杆 6的上端部伸 入下腔 36中; 所述限位凸出部为沿径向设于下腔 36的侧壁和阀杆 6的侧 壁中一者上的第二限位杆件 62, 所述限位凹槽为沿径向设于下腔 36的侧 壁和阀杆 6的侧壁中另一者上的第二限位孔 35。 显然, 该种结构设计也能 够实现阀杆 6的轴向滑动并周向限位的目的, 并且相对于图 3至图 7中的 限位结构, 结构比较筒单, 加工成本较低。
具体地, 如图 9-1和图 9-2所示, 阀杆 6的侧壁上可以设有第二限位 杆件 62, 下腔 36的侧壁上可以设有第二限位孔 35; 第二限位孔 35沿径向 贯穿下腔 36的侧壁。 进一步地, 第二限位孔 35沿轴向贯穿齿轮座 3的下 端面。 该种结构设计可以使得第二限位杆件 62和第二限位孔 35的加工工 艺变得筒化, 因而能够进一步降低加工成本。
此外, 为了减少材料成本的支出, 如图 11所示, 下腔 36的侧壁可以 为间断结构,包括至少一个间断部 361 ,第二限位孔 35设于间断部 361上。
请参考图 10-1和图 10-2, 图 10-1为本发明又一种实施例中齿轮座的 结构示意图; 图 10-2为包括图 10-1 中的齿轮座的电子膨胀阀的结构示意 图。
还可以对齿轮座 3作出进一步改进。 比如, 如图 10-1所示, 齿轮座 3 沿周向设有多个沿轴向延伸的定位杆件 362, 各个定位杆件 362沿周向围 成下腔 36, 阀杆 6的上端部伸入该下腔 36中; 各个定位杆件 362中, 至 少有一组相邻的定位杆件 362之间的间隙形成有限位间隙 363 , 限位间隙 363形成所述限位凹槽; 所述限位凸出部为设于阀杆 6的侧壁上的第二限 位杆件 62; 如图 10-2所示, 第二限位杆件 62插入限位间隙 363中。
如图 10-1所示, 定位杆件的数量为 4个, 并且两两形成有两个限位间 隙 363; 并结合图 10-2所示, 第二限位杆件 62插入该限位间隙 363中。 显然, 该种结构设计也能实现阀杆 6的轴向滑动并周向限位的目的, 并且 进一步节省了材料成本和筒化了结构。
以上对本发明所提供的一种电子膨胀阀进行了详细介绍。 本文中应用 是用于帮助理解本发明的方法及其核心思想。 应当指出, 对于本技术领域 的普通技术人员来说, 在不脱离本发明原理的前提下, 还可以对本发明进 行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims

权 利 要 求
1、 一种电子膨胀阀, 包括丝杆(1 )和设有输出轴(21)的电机(2), 并所述输出轴(21 )通过齿轮系统与丝杆( 1 )传动连接; 所述齿轮系统支 撑于齿轮座(3)上, 并所述丝杆(1 ) 穿过所述齿轮座(3); 所述电子膨 胀阀还包括设有阀腔的阀座( 4 )及设于所述电机 ( 2 )外部的电机壳( 22 ); 其特征在于, 所述齿轮座(3)进一步设于所述阀腔中, 并所述阀座(4) 的上端部进一步与所述电机壳 (22) 的下端部连接。
2、 如权利要求 1所述的电子膨胀阀, 其特征在于, 所述阀座(4) 包 括座本体(41)、 及设于所述座本体(41 )上端部的套筒 (42), 所述套筒 (42)的上端部进一步与所述电机壳(22)的下端部连接; 所述齿轮座(3) 进一步设于所述套筒 (42) 的内部。
3、 如权利要求 2所述的电子膨胀阀, 其特征在于, 所述套筒(42)包 括套筒本体部(421)及向外侧弯曲的套筒折弯部(422), 所述套筒本体部
(421 )连接于所述座本体(41 )上, 所述套筒折弯部 (422) 与所述电机 壳( 22 )的下端部连接; 所述齿轮座( 3 )沿周向进一步设有连接部( 31 ), 所述连接部 (31 )与所述套筒本体部 (421) 的周向内壁连接。
4、 如权利要求 3所述的电子膨胀阀, 其特征在于, 所述连接部 (31) 上方进一步设有外径减小的支撑部(32),所述齿轮系统支撑于所述支撑部
(32)上。
5、 如权利要求 4所述的电子膨胀阀, 其特征在于, 所述齿轮系统包括 连接于所述输出轴(21 )上的第一齿轮(51)、 连接于所述丝杆(1 )上的 第二齿轮( 52 )及将所述第一齿轮( 51 )的运动传递给所述第二齿轮( 52 ) 的传动齿轮( 53 ); 所述传动齿轮( 53 )设有定位轴( 54 ),所述定位轴( 54 ) 的下端部进一步连接于所述支撑部 (32)上。
6、 如权利要求 5所述的电子膨胀阀, 其特征在于, 所述支撑部 (32) 设有沿径向凸出于其周向侧面的凸出部 (321), 所述定位轴 (54) 的下端 部进一步连接于所述凸出部 (321)上。
7、 如权利要求 2至 6任一项所述的电子膨胀阀, 其特征在于, 所述齿 轮座(3) 的下端面进一步支撑于所述座本体(41 ) 的上端面上。
8、 如权利要求 1至 6任一项所述的电子膨胀阀, 其特征在于, 所述丝 杆( 1 )穿过所述齿轮座( 3 )连接有阀杆( 6 ); 所述齿轮座( 3 )和所述阀 杆(6)中, 一者设有限位 W槽, 另一者设有可在该限位 EJ槽中沿轴向滑动 的限位凸出部; 所述限位凸出部设于所述限位凹槽中, 以便限定所述阀杆 (6)与所述齿轮座(3)在周向上的相对位置。
9、 如权利要求 8所述的电子膨胀阀, 其特征在于, 所述限位凸出部为 设于所述齿轮座(3)和所述阀杆(6) 中一者上的第一限位杆件(34), 所 述限位凹槽为设于所述齿轮座(3)和所述阀杆(6) 中另一者上的第一限 位孔( 61 ), 所述第一限位杆件( 34 )可沿轴向滑动地设于所述第一限位孔 (61) 中。
10、 如权利要求 8所述的电子膨胀阀, 其特征在于, 所述齿轮座(3) 设有下腔, 所述阀杆(6)的上端部伸入所述下腔中; 所述限位凸出部为沿 径向设于所述下腔的侧壁和所述阀杆( 6 )的侧壁中一者上的第二限位杆件
(62), 所述限位凹槽为设于所述下腔的侧壁和所述阀杆(6) 的侧壁中另 一者上的第二限位孔( 35 )。
11、 如权利要求 8所述的电子膨胀阀, 其特征在于, 所述齿轮座(3) 设有多个沿轴向延伸的定位杆件(362), 各所述定位杆件(362)沿周向围 成下腔(36), 所述阀杆(6) 的上端部伸入该下腔(36) 中; 所述限位凸 出部为设于所述阀杆(6) 的侧壁上的第二限位杆件 (62); 各所述定位杆 件(362) 中, 至少有一组相邻的定位杆件(362)之间的间隙形成有限位 间隙(363 ), 所述限位间隙(363 )形成所述限位凹槽; 所述第二限位杆件 (62)插入所述限位间隙 (363 ) 中。
PCT/CN2012/077508 2011-06-27 2012-06-26 一种电子膨胀阀 WO2013000390A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/124,223 US9506677B2 (en) 2011-06-27 2012-06-26 Electronic expansion valve
EP12803789.2A EP2725267B1 (en) 2011-06-27 2012-06-26 Electronic expansion valve
JP2014516181A JP5843209B2 (ja) 2011-06-27 2012-06-26 電子膨張弁
KR1020147000845A KR101577692B1 (ko) 2011-06-27 2012-06-26 전자팽창밸브

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110175336.8 2011-06-27
CN201110175336.8A CN102853598B (zh) 2011-06-27 2011-06-27 一种电子膨胀阀

Publications (1)

Publication Number Publication Date
WO2013000390A1 true WO2013000390A1 (zh) 2013-01-03

Family

ID=47400412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077508 WO2013000390A1 (zh) 2011-06-27 2012-06-26 一种电子膨胀阀

Country Status (6)

Country Link
US (1) US9506677B2 (zh)
EP (1) EP2725267B1 (zh)
JP (1) JP5843209B2 (zh)
KR (1) KR101577692B1 (zh)
CN (1) CN102853598B (zh)
WO (1) WO2013000390A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512287B (zh) * 2012-06-15 2016-09-07 浙江三花股份有限公司 一种电子膨胀阀
CN104613185B (zh) * 2013-11-01 2018-04-13 浙江三花制冷集团有限公司 电子膨胀阀
EP3150889A1 (en) * 2015-10-01 2017-04-05 IMI Hydronic Engineering International SA An actuator for controlling a valve
EP3184939B1 (en) 2015-12-21 2019-12-04 Trane International Inc. Electronic expansion device
JP1589530S (zh) * 2016-09-22 2017-10-30
USD842969S1 (en) * 2017-01-11 2019-03-12 Zhejiang Sanhua Automotive Components Co., Ltd. Electronic expansion valve
CN108692042A (zh) * 2017-04-12 2018-10-23 杭州三花研究院有限公司 电子膨胀阀
CN109555891B (zh) * 2017-09-27 2020-08-25 杭州三花研究院有限公司 电子膨胀阀
CN109723826B (zh) 2017-10-27 2023-02-28 浙江三花商用制冷有限公司 一种电动阀
CN109723877B (zh) * 2017-10-27 2021-06-18 浙江三花制冷集团有限公司 一种电动阀
CN110296222B (zh) * 2018-03-23 2023-05-23 浙江三花智能控制股份有限公司 电子膨胀阀
CN110529605B (zh) * 2018-05-25 2024-04-19 浙江三花智能控制股份有限公司 电子膨胀阀
CN110939775B (zh) * 2018-09-25 2023-12-29 浙江三花智能控制股份有限公司 一种电子膨胀阀
JP7232907B2 (ja) * 2018-12-26 2023-03-03 浙江盾安人工環境股▲ふん▼有限公司 電子膨張弁
FR3097610B1 (fr) 2019-06-20 2021-08-06 Moving Magnet Tech Vanne de réglage compacte
US11174961B2 (en) * 2019-09-25 2021-11-16 Jiangxi Audy Brasswork Inc. Valve element for electronic expansion valve
DE102019134524A1 (de) * 2019-12-16 2021-06-17 Hanon Systems Vorrichtung zum Regeln eines Durchflusses und Expandieren eines Fluids in einem Fluidkreislauf und Verfahren zum Betreiben der Vorrichtung
CN114867973B (zh) * 2019-12-20 2023-12-22 丹佛斯有限公司 膨胀阀
CN114278777B (zh) * 2021-11-12 2023-02-03 浙江新涛电子科技有限公司 燃气阀及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2703169Y (zh) * 2004-06-02 2005-06-01 浙江盾安精工集团有限公司 变频空调用减速式电子膨胀阀
CN1985118A (zh) * 2004-07-09 2007-06-20 丹佛斯公司 用于制冷系统的流量控制阀
KR20080098725A (ko) * 2007-05-07 2008-11-12 (주)신한전기 전자식 팽창밸브
JP2009287769A (ja) * 2008-05-28 2009-12-10 Korea Inst Of Mach & Materials ディスクベローズが内蔵された低騷音型電子式膨張バルブ
KR100944762B1 (ko) * 2007-12-17 2010-03-03 한국기계연구원 단순구조를 갖는 전자식 팽창밸브
CN101858455A (zh) * 2010-06-04 2010-10-13 烟台冰轮高压氧舱有限公司 一种电动调节阀

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US601967A (en) * 1898-04-05 Hydrant
US3533598A (en) 1968-10-28 1970-10-13 Cassius L Tillman Gate valve
JPS5812971A (ja) * 1981-07-17 1983-01-25 株式会社鷺宮製作所 冷暖房装置
JPS5977179A (ja) * 1982-10-27 1984-05-02 Syst Hoomuzu:Kk 電子膨張弁
US4436279A (en) 1982-12-27 1984-03-13 Acf Industries, Incorporated Stem connection for gate valve
US4556193A (en) * 1983-09-30 1985-12-03 Fuji Koki Manufacturing Co., Ltd. Motor-driven expansion valve
US5402652A (en) * 1984-08-08 1995-04-04 Alsenz; Richard H. Apparatus for monitoring solenoid expansion valve flow rates
CN1008297B (zh) 1985-04-29 1990-06-06 浙江省瑞安永久机电研究所 多功能电磁阀
SU1555583A1 (ru) 1986-07-09 1990-04-07 Симферопольское Головное Специальное Конструкторско-Технологическое Бюро Пневмооборудования Электропневмоклапан
US4754949A (en) * 1987-09-08 1988-07-05 Rikuo Fukamachi Actuator for valve
JP2989402B2 (ja) * 1992-12-14 1999-12-13 三菱重工業株式会社 真空用弁
US5364066A (en) * 1993-07-15 1994-11-15 Sporlan Valve Company Dual port valve with stepper motor actuator
US5318064A (en) 1993-09-24 1994-06-07 Marotta Scientific Controls, Inc. Motor-operated valve
JPH084931A (ja) 1994-06-15 1996-01-12 Hitachi Ltd 電動式流量調節弁及びこれを備えている流量制御装置
JPH08303638A (ja) 1995-04-28 1996-11-22 Mitsubishi Denki Bill Techno Service Kk 開閉度表示機能付電子膨張弁
DE19518429C1 (de) 1995-05-19 1996-09-26 Emerson Electric Gmbh Ventilanordnung
JPH10132124A (ja) * 1996-10-28 1998-05-22 Mitsubishi Electric Corp 電動弁
US6568656B1 (en) 1998-07-09 2003-05-27 Sporlan Valve Company Flow control valve with lateral port balancing
JP2000346227A (ja) * 1999-06-09 2000-12-15 Pacific Ind Co Ltd 電動膨張弁
US6257271B1 (en) * 1999-11-04 2001-07-10 Eaton Corporation Servo operated valve with sonically welded housing and method of making same
JP2001295957A (ja) * 2000-04-14 2001-10-26 Sharp Corp 膨張弁
JP2002089731A (ja) * 2000-07-10 2002-03-27 Toshiba Corp 電動流量調整弁及び冷凍サイクル装置
JP4442788B2 (ja) * 2000-11-15 2010-03-31 株式会社鷺宮製作所 電動弁
JP5060689B2 (ja) 2001-04-13 2012-10-31 株式会社鷺宮製作所 流量制御弁及び流量制御弁の制御装置
CN2735101Y (zh) 2004-10-11 2005-10-19 李维谦 节流装置
CN2775430Y (zh) 2005-02-02 2006-04-26 于长琳 带流向指示的逆止阀
JP4713934B2 (ja) * 2005-04-28 2011-06-29 株式会社不二工機 電動弁
CN2823701Y (zh) 2005-07-29 2006-10-04 张步健 冷量分配阀
CN201013922Y (zh) 2007-03-16 2008-01-30 浙江盾安精工集团有限公司 一种制冷用电子膨胀阀
JP4999664B2 (ja) * 2007-12-04 2012-08-15 Juki株式会社 テープフィーダ型の部品供給装置
IT1391672B1 (it) * 2008-08-18 2012-01-17 Carel S P A Struttura di valvola di regolazione, particolarmente per la regolazione del flusso di fluidi frigoriferi
CN201265694Y (zh) 2008-09-11 2009-07-01 江苏星A包装机械集团有限公司 气动进液阀
CN101749467A (zh) 2008-12-01 2010-06-23 上海一诺仪表有限公司 流量自控仪的平衡阀
US20110023513A1 (en) * 2009-07-28 2011-02-03 Hamilton Sundstrand Corporation Expansion valve for a refrigerant system
JP5389570B2 (ja) * 2009-08-25 2014-01-15 株式会社不二工機 多方切換弁
CN102032380A (zh) 2009-09-27 2011-04-27 浙江三花股份有限公司 电子膨胀阀
CN102042416B (zh) 2009-10-09 2012-11-21 浙江三花股份有限公司 电子膨胀阀
US8960637B2 (en) * 2009-11-18 2015-02-24 Parker Hannifin Corporation Electric expansion valve
CN201706059U (zh) 2009-12-22 2011-01-12 上海泓阳机械有限公司 一种多工位流量调节器
CN202149257U (zh) 2011-06-27 2012-02-22 浙江三花股份有限公司 一种流量调节阀
CN202109047U (zh) 2011-06-27 2012-01-11 浙江三花股份有限公司 一种流量调节阀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2703169Y (zh) * 2004-06-02 2005-06-01 浙江盾安精工集团有限公司 变频空调用减速式电子膨胀阀
CN1985118A (zh) * 2004-07-09 2007-06-20 丹佛斯公司 用于制冷系统的流量控制阀
KR20080098725A (ko) * 2007-05-07 2008-11-12 (주)신한전기 전자식 팽창밸브
KR100944762B1 (ko) * 2007-12-17 2010-03-03 한국기계연구원 단순구조를 갖는 전자식 팽창밸브
JP2009287769A (ja) * 2008-05-28 2009-12-10 Korea Inst Of Mach & Materials ディスクベローズが内蔵された低騷音型電子式膨張バルブ
CN101858455A (zh) * 2010-06-04 2010-10-13 烟台冰轮高压氧舱有限公司 一种电动调节阀

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2725267A4

Also Published As

Publication number Publication date
US20140091246A1 (en) 2014-04-03
JP2014520245A (ja) 2014-08-21
KR20140025575A (ko) 2014-03-04
EP2725267A4 (en) 2015-04-08
CN102853598A (zh) 2013-01-02
US9506677B2 (en) 2016-11-29
JP5843209B2 (ja) 2016-01-13
EP2725267A1 (en) 2014-04-30
KR101577692B1 (ko) 2015-12-15
EP2725267B1 (en) 2018-03-14
CN102853598B (zh) 2015-04-15

Similar Documents

Publication Publication Date Title
WO2013000390A1 (zh) 一种电子膨胀阀
JP5755806B2 (ja) 流量調整弁
WO2015106724A1 (zh) 一种直动式电动阀及其装配方法
WO2014023014A1 (zh) 一种电子膨胀阀
WO2019179517A1 (zh) 电子膨胀阀
US20230417340A1 (en) Electric valve
US11333415B2 (en) Electronic expansion valve
WO2017202366A1 (zh) 电子膨胀阀及具有其的制冷设备
EP3702650B1 (en) Electrical valve
EP2749824B1 (en) Bidirectional filter and heat pump system
EP3702649B1 (en) Electrically operated valve
US11473820B2 (en) Air conditioning system and electronic expansion valve thereof
JP5987834B2 (ja) 電動弁
JP2014081046A (ja) 流量制御弁
EP3872380A1 (en) Electronic expansion valve
KR102445410B1 (ko) 전자 팽창 밸브
WO2023143028A1 (zh) 电子膨胀阀
CN102589205B (zh) 一种电子膨胀阀
CN102853597B (zh) 一种电子膨胀阀
WO2012109993A1 (zh) 一种电子膨胀阀
CN111527336A (zh) 一种电动阀及其制造方法
WO2014101709A1 (zh) 一种具有中央螺栓的凸轮轴调节器
WO2023143026A1 (zh) 电子膨胀阀及阀座的加工方法
CN115727134A (zh) 一种电子膨胀阀结构和车辆
CN103147980A (zh) 转子泵的机械密封装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803789

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012803789

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14124223

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014516181

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147000845

Country of ref document: KR

Kind code of ref document: A