WO2012176726A1 - 循環流動層式ガス化炉および流動媒体の流量制御方法 - Google Patents

循環流動層式ガス化炉および流動媒体の流量制御方法 Download PDF

Info

Publication number
WO2012176726A1
WO2012176726A1 PCT/JP2012/065486 JP2012065486W WO2012176726A1 WO 2012176726 A1 WO2012176726 A1 WO 2012176726A1 JP 2012065486 W JP2012065486 W JP 2012065486W WO 2012176726 A1 WO2012176726 A1 WO 2012176726A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
medium
fluid medium
furnace
gasification
Prior art date
Application number
PCT/JP2012/065486
Other languages
English (en)
French (fr)
Inventor
正広 成川
誠 高藤
俊之 須田
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to JP2013521573A priority Critical patent/JP5605508B2/ja
Priority to CN201280029940.2A priority patent/CN103608624B/zh
Priority to AU2012274502A priority patent/AU2012274502B2/en
Priority to US14/123,662 priority patent/US9528053B2/en
Publication of WO2012176726A1 publication Critical patent/WO2012176726A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/005Fluidised bed combustion apparatus comprising two or more beds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/28Control devices specially adapted for fluidised bed, combustion apparatus
    • F23C10/30Control devices specially adapted for fluidised bed, combustion apparatus for controlling the level of the bed or the amount of material in the bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/28Control devices specially adapted for fluidised bed, combustion apparatus
    • F23C10/30Control devices specially adapted for fluidised bed, combustion apparatus for controlling the level of the bed or the amount of material in the bed
    • F23C10/32Control devices specially adapted for fluidised bed, combustion apparatus for controlling the level of the bed or the amount of material in the bed by controlling the rate of recirculation of particles separated from the flue gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0993Inert particles, e.g. as heat exchange medium in a fluidized or moving bed, heat carriers, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1606Combustion processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1853Steam reforming, i.e. injection of steam only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2206/00Fluidised bed combustion
    • F23C2206/10Circulating fluidised bed
    • F23C2206/102Control of recirculation rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Definitions

  • the present invention relates to a circulating fluidized bed gasification furnace that circulates a fluidized medium to gasify a gasification raw material, and a fluidized medium flow rate control method in the circulating fluidized bed gasification furnace.
  • the gasification furnace main body is designed to have such a size that a residence time during which the organic solid material sufficiently reacts is ensured.
  • gasification efficiency carbon conversion rate
  • the circulating amount of the fluid medium can be simply adjusted by taking out or adding the fluid medium from the gasification furnace main body.
  • a technique is disclosed in which a flow rate control device adjusts the derived amount of a fluid medium derived from a gasification furnace main body (for example, Patent Document 1).
  • a technique for adjusting the bed height of the fluidized bed by controlling the pressure in the chamber containing the fluidized bed to control the circulating amount of the fluidized medium is also known (for example, Patent Document 2). ).
  • Patent Document 1 since the flow path of the fluid medium is restricted at the outlet portion of the flow control device, there is a possibility that the fluid medium accompanied with water vapor is blocked. Further, the technology of Patent Document 2 has a large configuration, which not only increases the manufacturing cost and operation cost, but also cannot increase the adjustment range of the circulating amount of the fluid medium for the cost. Moreover, when the inside of a gasification furnace is a positive pressure, gasification gas may leak outside.
  • the present invention provides a circulating fluidized bed type gasification furnace and a fluidization method capable of realizing high-accuracy flow rate control with a simple configuration while ensuring the safety of the gasification furnace main body. It aims at providing the flow control method of a medium.
  • a circulating fluidized bed gasification furnace fluidizes a fluidized medium and gasifies the gasified raw material charged with the heat of the fluidized medium to produce a gasified gas.
  • a gasification furnace that generates a gas a combustion furnace that heats a fluid medium derived from the gasification furnace, a buffer unit that stores the fluid medium and leads it to the combustion furnace, and a gasification medium that is heated in the combustion furnace and a flow rate adjusting unit that distributes to the furnace and the buffer unit.
  • the buffer part may be provided with an extraction hole for taking out the stored fluid medium. Further, the buffer portion may be provided with an introduction hole for introducing a fluid medium from the outside.
  • At least a connecting portion between the buffer unit and the flow rate adjusting unit may be provided with a seal unit that prevents a backflow of gas from the buffer unit to the flow rate adjusting unit.
  • the present invention is derived from a gasification furnace that gasifies a fluidized medium and gasifies the gasified raw material that is input with heat of the fluidized medium to generate gasified gas, and the gasification furnace.
  • a combustion furnace that heats the fluidized medium, a buffer unit that stores the fluid medium and leads it to the combustion furnace, a flow rate measuring unit that measures the flow rate of the heated fluidized medium, and a gasified fluid medium heated in the combustion furnace
  • the present invention relates to a method for controlling the flow rate of a fluidized medium in a circulating fluidized bed gasification furnace including a flow rate adjusting unit that distributes a furnace and a buffer unit.
  • the flow rate of the fluidized medium in the gasification furnace is determined according to the target generation amount of the gasification gas, and the fluidized medium heated in the combustion furnace The flow rate of the fluidized medium is measured, and the flow rate of the fluidized medium in the gasification furnace is subtracted from the flow rate of the heated fluidized medium to derive a differential flow rate.
  • the flow medium having the differential flow rate is distributed to the buffer unit, and if the differential flow rate is a negative double, the flow medium having the differential flow rate is led to the combustion furnace.
  • FIG. 1 is a diagram for explaining a specific configuration of a circulating fluidized bed gasification furnace 100.
  • a circulating fluidized bed type gasification furnace 100 that flows sand in the horizontal direction will be described as an example.
  • a circulating moving bed type gas that forms a moving bed by sand flowing down vertically under its own weight.
  • a furnace can also be used.
  • a fluid medium composed of sand such as dredged sand (silica sand) having a particle size of about 300 ⁇ m is circulated as a heat medium.
  • the fluid medium is first heated to about 1000 ° C. in the combustion furnace 102 and introduced into the medium separator 104 together with the combustion exhaust gas.
  • the medium separator 104 the high-temperature fluid medium and the combustion exhaust gas are separated, and the separated high-temperature fluid medium is supplied to the gasifier 110 and the buffer unit 112 through the flow rate adjusting unit 106 and the seal city 108 (108a, 108b).
  • the combustion exhaust gas separated by the medium separator 104 is heat recovered by a boiler (not shown) or the like.
  • the fluid medium introduced into the gasification furnace 110 is fluidized by the gasifying agent (here, steam) introduced from the steam storage unit 114 and returned to the combustion furnace 102. Further, the fluid medium introduced into the buffer unit 112 flows by the fluidizing gas (here, nitrogen) introduced from the nitrogen storage unit 116 and is returned to the combustion furnace 102 like the gasification furnace 110.
  • the gasifying agent here, steam
  • the fluid medium introduced into the buffer unit 112 flows by the fluidizing gas (here, nitrogen) introduced from the nitrogen storage unit 116 and is returned to the combustion furnace 102 like the gasification furnace 110.
  • a water vapor storage unit 114 is provided below the gasification furnace 110, and water vapor supplied from a water vapor supply source (not shown) is temporarily stored in the water vapor storage unit 114.
  • the stored water vapor is introduced into the gasification furnace 110 from the bottom surface of the gasification furnace 110.
  • a fluidized bed is formed in the gasification furnace 110 by introducing water vapor into the high-temperature fluid medium introduced from the flow rate adjusting unit 106.
  • the gasification furnace 110 is also provided with a gasification raw material input unit for supplying a gasification raw material including an organic solid raw material such as coal such as lignite, petroleum coke soot, biomass and tire chips into the fluidized bed. 110a is provided.
  • the gasification raw material input from the gasification raw material input unit 110a is gasified by heat of about 700 ° C. to 900 ° C. included in the fluidized medium fluidized by steam, thereby generating gasified gas. If the gasification raw material is coal, gasification gas mainly containing hydrogen, carbon monoxide, carbon dioxide, and methane is generated.
  • the gasified gas generated in this way is derived from a gasified gas deriving unit 110b provided in the gasification furnace 110, and then recovered by a recovery device (not shown). Further, the gasification furnace 110 communicates with the combustion furnace 102 via a seal portion 108d.
  • the seal portion 108d is connected to a side wall that faces the side wall to which the flow rate adjusting unit 106 is connected. Therefore, the fluid medium introduced from the flow rate adjusting unit 106 flows toward the seal unit 108d in the gasification furnace 110, and then is led out to the combustion furnace 102 through the seal unit 108d.
  • the gasification efficiency (carbon conversion rate) is determined by the residence time of the gasification raw material in the gasification furnace 110. Therefore, in order to adjust the gasification efficiency, it is effective to adjust the flow rate of the fluidized medium in the gasification furnace 110. For example, when the flow rate of the fluidized medium is increased, the flow rate of the fluidized bed is increased and the gasification efficiency is lowered. On the other hand, when the flow rate of the fluidized medium is reduced, the flow rate of the fluidized bed is reduced and the gasification efficiency is increased. However, the bed height is maintained by adjusting the amount of water vapor according to the flow rate.
  • the flow rate of the fluidized medium in the gasification furnace 110 is provided by providing the flow rate adjusting unit 106 and the buffer unit 112 and bypassing the fluidizing medium circulating in the circulating fluidized bed gasification furnace 100 to the gasification furnace 110. , (Inventory amount) is adjusted.
  • the flow rate adjusting unit 106 distributes the fluidized medium heated in the combustion furnace 102 and further separated by the medium separator 104 to the gasification furnace 110 and the buffer part 112 (for example, 80% for the gasification furnace 110 and 20% for the buffer part). %), Respectively. However, the fluid medium can be distributed to only one side. Specifically, the flow rate adjusting unit 106 determines the flow rate of the fluid medium in the gasification furnace 110 according to the target generation amount of the gasification gas, and determines the flow rate of the fluid medium separated in the medium separator 104 as the flow rate measurement unit 118. Alternatively, it is measured based on the pressure distribution in the combustion furnace 102, and the flow rate of the fluidized medium in the gasification furnace 110 determined from the flow rate of the fluidized medium separated in the medium separator 104 is derived.
  • the flow rate adjusting unit 106 adjusts the flow rate if the differential flow rate is a positive value, that is, if the flow rate of the fluid medium separated in the medium separator 104 is higher than the desired flow rate of the fluid medium in the gasifier 110.
  • the flow medium having the differential flow rate is distributed from the unit 106 to the buffer unit 112 (the differential flow rate is led to the buffer unit 112 and the rest is led to the gasifier 110), and the derivation of the fluid medium from the buffer unit 112 to the combustion furnace 102 is stopped. Maintain the state to do.
  • the differential flow rate is a negative value, that is, if the flow rate of the fluid medium separated in the medium separator 104 is less than the desired flow rate of the fluid medium in the gasification furnace 110, the flow rate adjustment unit 106 The entire amount of the fluid medium separated in the separator 104 is guided to the gasification furnace 110 (the distribution of the fluid medium to the buffer part 112 is stopped), and the differential flow rate from the buffer part 112 to the combustion furnace 102 via the seal part 108c. Deriving the fluid housing.
  • the flow rate adjusting unit 106 guides the entire amount of the fluid medium separated in the medium separator 104 to the gasification furnace 110 and from the buffer unit 112 to the combustion furnace. The state where the derivation of the fluid medium to 102 is stopped is maintained. Such distribution of the fluid medium to the buffer unit 112 and derivation from the buffer unit 112 may be executed exclusively or in parallel.
  • the flow rate (combustion furnace 102 and medium separator 104) and the total amount of the fluidized medium in the circulating fluidized bed gasifier 100 as a whole have not changed, but the gasifier 110 maintains the total amount of the fluidized medium.
  • the flow rate of the introduced fluid medium varies.
  • Such a configuration is possible by the buffer unit 112 securing the change in the flow rate in the gasification furnace 110. That is, the flow rate of the fluidized medium in the entire circulating fluidized bed gasifier 100 is apportioned between the gasifier 110 and the buffer unit 112.
  • FIG. 2 is a diagram illustrating the configuration of the buffer unit 112.
  • a nitrogen storage unit 116 is provided below the buffer unit 112, and nitrogen supplied from a nitrogen supply source (not shown) is temporarily stored in the nitrogen storage unit 116 and stored in the nitrogen storage unit 116.
  • the nitrogen thus introduced is introduced into the buffer unit 112 from the bottom surface of the buffer unit 112.
  • nitrogen is used as the fluidizing gas for fluidizing the fluid medium, but air, oxygen, water vapor, carbon dioxide, or the like can also be used.
  • the buffer unit 112 temporarily stores the fluid medium distributed by the flow rate adjusting unit 106, and guides the stored fluid medium to the combustion furnace 102 according to a control command from the flow rate adjusting unit 106.
  • the differential flow rate if the differential flow rate is a positive value, the differential flow rate can be absorbed by the buffer unit 112, and if the differential flow rate is a negative value, the stored fluid medium is removed from the combustion furnace 102. And a fluid medium can be added to the system of the media separator 104.
  • the buffer part 112 is provided with an extraction hole 112a for taking out the stored fluid medium. Since the fluid medium includes residues such as ash that have not reacted in the gasification furnace 110 and the combustion furnace 102 among the gasification raw materials, it is necessary to periodically take out the fluid medium. In the present embodiment, the fluid medium containing such a residue is indirectly extracted from the buffer unit 112 for the purpose of adjusting the flow rate of the fluid medium, not directly from the gasification furnace 110 that generates the gasification gas. As a result, the burden on the gasification furnace 110 and the combustion furnace 102 can be reduced. In addition, since the gasification process is not affected, the fluid medium can be taken out while the gasification gas is being generated.
  • the buffer portion 112 is provided with an introduction hole 112b for introducing a new fluid medium from the outside. Accordingly, by introducing the fluid medium indirectly into the buffer 112 for the purpose of adjusting the flow rate of the fluid medium, not directly into the gasifier 110 or the combustion furnace 102, the gasifier is similar to the action by the extraction hole 112a. The burden on 110 and the combustion furnace 102 can be reduced.
  • Such a flow rate adjusting unit 106 can adjust the flow rate of the flowing medium in the gasification furnace 110 to a desired flow rate regardless of the flow rate of the flowing medium in the combustion furnace 102 and the medium separator 104, and stably It becomes possible to generate the chemical gas.
  • the seal portion 108a is formed of a J-valve type tube in which the tube is formed in a J shape.
  • the vertical uppermost surface of the part 120 of the flow path is lower than the vertical lowermost surface of the other part 122 of the flow path, so that the fluid medium flows into the recess 124 including the part 120.
  • the space is divided by the flowing medium, it is possible to avoid the gas in the buffer unit 112 from flowing back to the flow rate adjusting unit 106. By doing so, it is not necessary to adjust the pressure in the buffer unit 112, and it is possible to prevent the fluidization gas from leaking due to the positive pressure.
  • Such a seal part 108 is provided between the flow rate adjusting part 106 and the gasification furnace 110 (seal part 108b), between the buffer part 112 and the combustion furnace 102 (seal part 108c), and between the gasification furnace 110 and the combustion furnace 102. (Sealed portion 108d). As a result, the backflow of gas from the subsequent furnace can also be prevented in these parts as well as the seal portion 108a.
  • FIG. 3 is a flowchart for explaining the flow of processing of the flow rate control method.
  • the flow rate of the fluidized medium in the gasification furnace 110 is determined according to the target generation amount of the gasification gas (S200), and the flow rate measurement unit 118 is the latter stage of the medium separator 104.
  • the flow rate of the fluid medium heated in the combustion furnace 102 is measured (S202).
  • the difference flow rate is a positive value (S210). If the difference flow rate is a positive value (YES in S210), The flow rate adjusting unit 106 distributes the flow medium having the differential flow rate from the flow rate adjusting unit 106 to the buffer unit 112 and maintains the state in which the derivation of the flow medium from the buffer unit 112 to the combustion furnace 102 is stopped (S212). Is negative (NO in S210), the flow rate adjusting unit 106 guides the entire amount of the fluid medium separated in the medium separator 104 to the gasifier 110, and the buffer unit 112 causes the flow of the differential flow rate to flow. The medium is led out to the combustion furnace 102 (S214).
  • the configuration in which the buffer unit 112 for storing the fluid medium is provided in order to ensure the change in the fluid medium flow rate in the gasification furnace 110 is not limited to such a case.
  • a pipe connected from the adjustment unit 106 to the combustion furnace 102 may be provided, and the fluid medium may be stored with the residence time of the fluid medium in the pipe.
  • the present invention relates to a circulating fluidized bed gasification furnace that circulates a fluidized medium to gasify a gasification raw material, and a fluidized medium flow rate control method in the circulating fluidized bed gasification furnace.
  • ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to implement

Abstract

循環流動層式ガス化炉(100)のガス化炉(110)は、流動媒体を流動層化すると共に、投入されたガス化原料を流動媒体が有する熱でガス化させてガス化ガスを生成する。燃焼炉(102)は、ガス化炉から導出された流動媒体を加熱する。流量調整部(106)は、燃焼炉で加熱されキ流動媒体をガス化炉とバッファ部(112)とに振り分ける。こうして、循環流動層式ガス化炉(100)全体における流動媒体の流量に拘わらず、バッファ部(112)が流動媒体を燃焼炉にバイパスすることで、ガス化炉(110)の流動媒体の流量を所望する流量に維持することができる。

Description

循環流動層式ガス化炉および流動媒体の流量制御方法
 本発明は、流動媒体を循環させてガス化原料をガス化する循環流動層式ガス化炉および循環流動層式ガス化炉における流動媒体の流量制御方法に関する。
 本願は、2011年6月22日に日本に出願された特願2011-138496号に基づき優先権を主張し、その内容をここに援用する。
近年、石油に代えて、石炭やバイオマス、タイヤチップ等の有機固体原料をガス化してガス化ガスを生成する技術が開発されている。このようにして生成されたガス化ガスは、石炭ガス化複合発電(IGCC‥Integrated coal Gasification Combined Cycle)といった効率的な発電システムや、水素の製造、合成燃料(合成石油)の製造、化学肥料(尿素)等の化学製品の製造等に利用されている。ガス化ガスの原料となる有機固体原料のうち、特に石炭は、可採年数が150年程度と、石油の可採年数の3倍以上であり、また、石油と比較して埋蔵地が偏在していないため、長期に亘り安定供給が可能な天然資源として期待されている。
従来、石炭のガス化プロセスは、酸素や空気を用いて部分酸化することにより行われていたが、1800℃程度の高温、3MPa程度の高圧となるため、特別な耐熱、耐圧材料を要し、ガス化炉のコストが高くなるといった欠点を有していた。この間題を解決するために、水蒸気を利用し、700℃~900℃程度の低温かつ常圧で石炭をガス化する技術が開発されている。 この技術には、温度および圧力を低く設定することで、耐圧構造が不要な点や、既存の市販品が利用可能になるといったメリットがある。
ただし、上述した有機固体原料の水蒸気ガス化反応には、比較的長い反応時間を要する。そのため、ガス化炉本体は、有機固体原料が十分に反応する滞留時間が確保される大きさに設計されている。このようなガス化プロセスの下、実用面においてガス化炉でのガス化効率(炭素転換率)の調整を要する場合が生じる。しかしながら、ガス化炉本体の体積を変えることにより有機固体原料の滞留時間を変化させるのは現実的ではない。したがって、一硬に、ガス化における炭素転換率を調整する一つの手法として、ガス化炉本体内における流動媒体の循環量を調整し有機固体原料の滞留時間を変化させる手法が考えられる。
例えば、ガス化炉本体から、流動媒体を取り出したり、付加したりすることで単純に流動媒体の循環量を調整できる。また、循環流動層ボイラ装置において、流量制御装置が、ガス化炉本体から導出する流動媒体の導出量を調整する技術が開示されている(例えば、特許文献1)。さらに、循環流動層炉において、流動層を収容する室内の圧力を制御することで流動層の層高を調整し、流動媒体の循環量を制御する技術も知られている(例えば、特許文献2)。
日本国特開2005-274015号公報 国際特許出願公開公報No.WO2008/107929
しかし、特許文献1の技術では、流量制御装置の導出部位において流動媒体の流路を絞っているので、水蒸気を伴う流動媒体が閉塞する可能性がある。また、特許文献2の技術は、その構成が大掛かりであり、製造コストおよび運用コストが増大するばかりか、コストの割に流動媒体の循環量の調整範囲を大きくできない。また、ガス化炉内が正圧の場合、ガス化ガスが外部に漏洩する可能性がある。
そこで本発明は、このような課題に鑑み、ガス化炉本体の安全性を確保しつつ、簡易な構成で高精度な流量制御を実現することが可能な、循環流動層式ガス化炉および流動媒体の流量制御方法を提供することを目的としている。
上記課題を解決するために、本発明に係る循環流動層式ガス化炉は、流動媒体を流動層化すると共に、投入されたガス化原料を流動媒体が有する熱でガス化させてガス化ガスを生成するガス化炉と、ガス化炉から導出された流動媒体を加熱する燃焼炉と、流動媒体を貯留し、燃焼炉に導出するバッファ部と、燃焼炉で加熱された流動媒体をガス化炉とバッファ部とに振り分ける流量調整部と、を備える。
バッファ部には、貯留している流動媒体を外部に取り出す取出孔が設けられてもよい。また、バッファ部には、外部から流動媒体を導入する導入孔が設けられてもよい。
また、少なくとも前記バッファ部と前記流量調整部との接続部に、前記バッファ部から前記流量調整部への気体の逆流を防止するシール部が設けられてもよい。
また、本発明は、流動媒体を流動層化すると共に、投入されたガス化原料を流動媒体が有する熱でガス化させてガス化ガスを生成するガス化炉と、ガス化炉から導出された流動媒体を加熱する燃焼炉と、流動媒体を貯留し、燃焼炉に導出するバッファ部と、加熱された流動媒体の流量を測定する流量測定部と、燃焼炉で加熱された流動媒体をガス化炉とバッファ部とに振り分ける流量調整部とを備える循環流動層式ガス化炉において、流動媒体の流量を制御する方法に関する。上記課題を解決するために、本発明に係る流動媒体の流量制御方法では、ガス化ガスの目的生成量に応じてガス化炉における流動媒体の流量を決定し、燃焼炉で加熱された流動媒体の流量を測定し、加熱された流動媒体の流量から、決定されたガス化炉における流動媒体の流量を減算して差分流量を導出し、差分流量が正の値であれば、流量調整部からバッファ部に差分流量の流動媒体を振り分け、差分流量が負の倍であれば、差分流量の流動媒体を燃焼炉に導出する。
本発明によれば、ガス化炉本体の安全性を確保しつつ、簡易な構成で高精度な流動媒体の流量制御を実現することが可能となる。
循環流動層式ガス化炉の具体的な構成を説明するための図である。 バッファ部の構成を示す図である。 流動媒体の流量制御方法の処理の流れを説明するためのフローチャートである。
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
(循環流動層式ガス化炉100)
図1は、循環流動層式ガス化炉100の具体的な構成を説明するための図である。
ここでは、砂を水平方向に流動させる循環流動層式ガス化炉100を例に挙げて説明するが、砂が自重で鉛直下方向に流下することで移動層を形成する循環移動層方式のガス化炉を用いることもできる。
循環流動層式ガス化炉100では、全体として、粒径が300μm程度の硅砂砂(珪砂)等の砂で構成される流動媒体を熱媒体として循環させている。具体的には、まず、流動媒体は、燃焼炉102で1000℃程度に加熱され、燃焼排ガスと共に媒体分離器104に導入される。媒体分離器104においては、高温の流動媒体と燃焼排ガスとが分離され、分離された高温の流動媒体が流量調整部106およびシール都108(108a、108b)を通じてガス化炉110やバッファ部112に導出される。一方、媒体分離器104で分離された燃焼排ガスは、不図示のボイラ等で熱回収される。ガス化炉110に導入された流動媒体は、水蒸気貯留部114から導入されるガス化剤(ここでは水蒸気)によって流動し、燃焼炉102に戻される。また、バッファ部112に導入された流動媒体は、窒素貯留部116から導入される流動化ガス(ここでは窒素)によって流動し、ガス化炉110同様、燃焼炉102に戻される。以下に、循環流動層式ガス化炉100を構成する各装置について具体的に説明する。
(ガス化炉110)
ガス化炉110の下方には水蒸気貯留部114が設けられており、水蒸気供給源(図示せず)から供給された水蒸気が、水蒸気貯留部114に一時的に貯留され、この水蒸気貯留部114に貯留された水蒸気が、ガス化炉110の底面からガス化炉110内に導入されている。 このように、流量調整部106から導入された高温の流動媒体に水蒸気を導入することにより、ガス化炉110内において流動層が形成される。
また、ガス化炉110には、上記の流動層に、褐炭等の石炭、石油コークス(ベトロコークス) 、バイオマス、タイヤチップ等の有機固体原料を含むガス化原料を投入するためのガス化原料投入部110aが設けられている。このガス化原料投入部110aから投入されたガス化原料は、水蒸気によって流動層化した流動媒体が有する700℃~900℃程度の熱によってガス化し、これによってガス化ガスが生成される。仮にガス化原料が石炭である場合、水素、一酸化炭素、二酸化炭素、メタンを主成分とするガス化ガスが生成される。
このようにして生成されたガス化ガスは、ガス化炉110に設けられたガス化ガス導出部110bから導出された後、不図示の回収装置によって回収される。また、ガス化炉110は、シール部108dを介して燃焼炉102に連通している。このシール部108dは、流量調整部106が接続される側壁と対向する側壁に接続されている。したがって、流量調整部106から導入された流動媒体は、ガス化炉110内においてシール部108dに向かって流動した後に、シール部108dを介して燃焼炉102へと導出される。
本実施形態においては、水蒸気によりガス化原料をガス化しているので、ガス化炉110におけるガス化原料の滞留時間によってガス化効率(炭素転換率)が決まる。したがって、ガス化効率を調整するためには、ガス化炉110における流動媒体の流量を調整するのが効果的である。例えば、流動媒体の流量を多くすると流動層の流速が増しガス化効率が下がる。これに対して流動媒体の流量を少なくすると流動層の流速が減りガス化効率が高まる。ただし、流量に応じて水蒸気の量を調整することで、層高は維持される。
しかし、ガス化炉110の流入口110cや、ガス化炉110の導出口110dにおいて流路の開口度により流量を調整するのは流動媒体の閉塞を招く可能性があることや、可動部の高温耐久性の問題から現実的ではない。本実施形態においては、流量調整部106およびバッファ部112を設け、循環流動層ガス化炉100を循環する流動媒体をガス化炉110に対しバイパスすることで、ガス化炉110における流動媒体の流量、(インベントリー量)を調整する。
(流量調整部106)
流量調整部106は、燃焼炉102で加熱され、さらに媒体分離器104によって分離された流動媒体をガス化炉110とバッファ部112とに振り分け(例えばガス化炉110に80%、バッファ部に20%)、それぞれに導出する。ただし、流動媒体を一方にのみ振り分けることもできる。具体的に、流量調整部106は、ガス化ガスの目的生成量に応じてガス化炉110における流動媒体の流量を決定し、媒体分離器104において分離された流動媒体の流量を流量測定部118あるいは燃焼炉102の圧力分布に基づき測定させ、媒体分離器104において分離された流動媒体の流量から、決定されたガス化炉110における流動媒体の流量を減算して差分流量を導出する。
そして、流量調整部106は、差分流量が正の値であれば、すなわち、ガス化炉110における流動媒体の所望する流量より媒体分離器104において分離された流動媒体の流量が多い場合、流量調整部106からバッファ部112に差分流量の流動媒体を振り分ける(差分流量をバッファ部112に、残りをガス化炉110に導出する)と共に、バッファ部112から燃焼炉102への流動媒体の導出を停止する状態を維持する。
一方、差分流量が負の値であれば、すなわち、媒体分離器104において分離された流動媒体の流量がガス化炉110における流動媒体の所望する流量に満たない場合、流量調整部106は、媒体分離器104において分離された流動媒体の全量をガス化炉110に導く(バッファ部112への流動媒体の振り分けを停止する)と共に、バッファ部112から燃焼炉102にシール部108cを介して差分流量の流動妓体を導出する。
また、差分流量が0または0とみなせる許容範囲であった場合、流量調整部106は、媒体分離器104において分離された流動媒体の全量をガス化炉110に導くと共に、バッファ部112から燃焼炉102への流動媒体の導出を停止する状態を維持する。
このような、流動媒体に関する、バッファ部112への振り分けとバッファ部112からの導出は排他的に実行してもよいし、並行して実行してもよい。
このとき、循環流動層式ガス化炉100全体における流動媒体の流量(燃焼炉102および媒体分離器104)および総量は変化していないが、ガス化炉110では、流動媒体の総量こそ維持しているものの、導入される流動媒体の流量は変化する。このような構成は、ガス化炉110における流量の変化分を、バッファ部112が担保することで可能となる。つまり、循環流動層式ガス化炉100全体における流動媒体の流量をガス化炉110とバッファ部112とで按分している。
(バッファ部112)
図2は、バッファ部112の構成を示した図である。バッファ部112の下方には窒素貯留部116が設けられており、窒素供給源(図示せず)から供給された窒素が、窒素貯留部116に一時的に貯留され、この窒素貯留部116に貯留された窒素が、バッファ部112の底面からバッファ部112内に導入される。本実施形態では、流動媒体を流動化する流動化ガスとして窒素を用いているが、空気、酸素、水蒸気、二酸化炭素等を用いることもできる。このように、流量調整部106から導入された高温の流動媒体に窒素を導入することにより、バッファ部112内においても、ガス化炉110同様、流動層が形成される。バッファ部112は、流量調整部106によって振り分けられた流動媒体を一時的に貯留し、また、流量調整部106の制御指令に応じて貯留した流動媒体を燃焼炉102に導出する。
かかる構成により、差分流量が正の値であれば、その差分流量をバッファ部112で吸収することができ、また、差分流量が負の値であれば、貯留していた流動媒体を燃焼炉102および媒体分離器104の系に流動媒体を付加できる。
また、バッファ部112には、貯留している流動媒体を外部に取り出す取出孔112aが設けられている。流動媒体には、ガス化原料のうちガス化炉110および燃焼炉102において反応しなかった灰等の残渣等が含まれるため、定期的に流動媒体を取り出す作業が必要となる。本実施形態では、ガス化ガスを生成しているガス化炉110から直接ではなく、流動媒体の流量調整を目的とするバッファ部112から、そのような残渣が含まれる流動媒体を間接的に取り出すことで、ガス化炉110および燃焼炉102への負担を削減することが可能となる。また、ガス化プロセスに影響を及ぼさないので、ガス化ガスを生成している最中に、流動媒体を取り出すこともできる。
一方、メンテナンス等において流動媒体を抜き出した場合、新たに流動媒体を導入する必要が生じる。本実施形態では、バッファ部112が、外部から新規の流動媒体を導入する導入孔112bが設けられている。したがって、ガス化炉110または燃焼炉102に直接ではなく、流動媒体の流量調整を目的とするバッファ部112に流動媒体を間接的に導入することで、取出孔112aによる作用と同様、ガス化炉110および燃焼炉102への負担を削減することが可能となる。
このような流量調整部106によって、燃焼炉102および媒体分離器104における流動媒体の流量に拘わらず、ガス化炉110における流動媒体の流量を所望の流量に調整することができ、安定してガス化ガスを生成することが可能となる。
(シール部108)
しかし、単に、流量調整部106によってバッファ部112における流動媒体の流量を適切に制御すると、バッファ部112に振り分けられた流動媒体の流量が少ない場合に、バッファ部112の流入口112cの鉛直位置より流動層上面が低くなり、バッファ部112内の窒素等の気体が逆流する可能性が生じる。そこで、本実施形態では、図2に示すように、流量調整部106とバッファ部112との間の配管にシール部108aを設けている。
シール部108aは、管がJの字状に形成されたJバルブ型管で構成される。シール部108aでは、その流路の一部120の鉛直最上面が、流路の他の一部122の鉛直最下面より低くなっているので、流動媒体が、その一部120を含む凹部124に常に滞留する。したがって、その流動媒体によって空間が分断されるためバッファ部112内の気体が流量調整部106に逆流するのを回避することができる。こうすることでバッファ部112内の圧力を調整しなくても済み、正圧による流動化ガスの漏出を防止することが可能となる。
このようなシール部108は、流量調整部106とガス化炉110との間(シール部108b)、バッファ部112と燃焼炉102との間(シール部108c)、ガス化炉110と燃焼炉102との間(シール部108d)にも設けられている。その結果、これらの部位においても、シール部108a同様、後段の炉からの気体の逆流を防止することができる。
(流量制御方法)
続いて、上述した循環流動層式ガス化炉100を利用して流動媒体の流量を制御する流量制御方法を説明する。
図3は、流量制御方法の処理の流れを説明するためのフローチャートである。まず、循環流動層式ガス化炉100では、ガス化ガスの目的生成量に応じてガス化炉110における流動媒体の流量が決定され(S200)、流量測定部118が、媒体分離器104の後段(流量調整部106側)において、燃焼炉102で加熱された流動媒体の流量を測定する(S202)。
加熱された流動媒体の流量から、決定されたガス化炉110における流動媒体の流量が減算され、差分流量が導出されると(S204)、その差分流量が0または0とみなせる許容範囲であるか否か判定され(S206)、差分流量が0とみなせる許容範囲であった場合(S206におけるYES)、流量調整部106は、媒体分離器104において分離された流動媒体の全量をガス化炉110に導くと共に、バッファ部112から燃焼炉102への流動媒体の導出を停止する状態を維持する(S208)。
差分分量が0とみなせる範囲でなかった場合(S206におけるNO)、その差分流量が正の値であるか否か判定され(S210)、差分流量が正の値であれば(S210におけるYES)、流量調整部106が、流量調整部106からバッファ部112に差分流量の流動媒体を振り分けると共に、バッファ部112から燃焼炉102への流動媒体の導出を停止する状態を維持し(S212)、差分流量が負の値であれば(S210にけるNO)、流量調整部106は、媒体分離器104において分離された流動媒体の全量をガス化炉110に導くと共に、バッファ部112が、差分流量の流動媒体を燃焼炉102に導出する(S214)。
上述した流量制御方法によっても、ガス化炉110本体の安全性を確保しつつ、簡易な構成で高精度な流動媒体の流量制御を実現することが可能となる。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
例えば、上述した実施形態においては、ガス化炉110における流動媒体の流量の変化を担保すべく、流動媒体を貯留するバッファ部112を設ける構成を述べたが、かかる場合に限られず、例えば、流量調整部106から燃焼炉102に接続される管を設け、その管における流動媒体の滞留時間をもって流動媒体を貯留してもよい。
本発明は、流動媒体を循環させてガス化原料をガス化する循環流動層式ガス化炉および循環流動層式ガス化炉における流動媒体の流量制御方法に関する。本発明によればガス化炉本体の安全性を確保しつつ、簡易な構成で高精度な流動媒体の流量制御を実現することが可能となる。
100…循環流動層式ガス化炉、102…燃焼炉、104…媒体分離器、106…流量調整部、108…シール部、110…ガス化炉、112…バッファ部、114…水蒸気貯留部、116…窒素貯留部、118…流量測定部

Claims (6)

  1. 流動媒体を流動層化すると共に、投入されたガス化原料を流動媒体が有する熱でガス化させてガス化ガスを生成するガス化炉と、
    前記ガス化炉から導出された流動媒体を加熱する燃焼炉と、
    流動媒体を貯留し、前記燃焼炉に導出するバッファ部と、
    前記燃焼炉で加熱された流動媒体を前記ガス化炉と前記バッファ部とに振り分ける流量調整部と、
    を備える循環流動層式ガス化炉。
  2. 前記バッファ都に、貯留している流動媒体を外部に取り出す取出孔が設けられている請求項1に記載の循環流動層式ガス化炉。
  3. 前記バッファ部に、外部から流動媒体を導入する導入孔が設けられている請求項1に記載の循環流動層式ガス化炉。
  4. 前記バッファ部に、外部から流動媒体を導入する導入孔が設けられている請求項2に記載の循環流動層式ガス化炉。
  5. 少なくとも前記バッファ部と前記流量調整部との接続部に、前記バッファ部から前記流量調整部への気体の逆流を防止するシール部が設けられている請求項1に記載の循環流動層式ガス化炉。
  6. 流動媒体を流動層化すると共に、投入されたガス化原料を流動媒体が有する熱でガス化させてガス化ガスを生成するガス化炉と、ガス化炉から導出された流動媒体を加熱する燃焼炉と、流動媒体を貯留し、燃焼炉に導出するバッファ部と、加熱された流動媒体の流量を測定する流量測定部と、燃焼炉で加熱された流動媒体をガス化炉とバッファ部とに振り分ける流量調整部とを備える循環流動層式ガス化炉において、流動媒体の流量を制御する流量制御方法であって、
    前記ガス化ガスの目的生成量に応じて前記ガス化炉における流動媒体の流量を決定し、
    前記燃焼炉で加熱された流動媒体の流量を測定し、
    前記加熱された流動媒体の流量から、決定された前記ガス化炉における流動媒体の流量を減算して差分流量を導出し、
    前記差分流量が正の値であれば、前記流量調整部から前記バッファ部に前記差分流量の流動媒体を振り分け、
    前記差分流量が負の値であれば、前記差分流量の流動媒体を前記燃焼炉に導出する流量制御方法。
PCT/JP2012/065486 2011-06-22 2012-06-18 循環流動層式ガス化炉および流動媒体の流量制御方法 WO2012176726A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013521573A JP5605508B2 (ja) 2011-06-22 2012-06-18 循環流動層式ガス化炉
CN201280029940.2A CN103608624B (zh) 2011-06-22 2012-06-18 循环流动层式气化炉及流动介质的流量控制方法
AU2012274502A AU2012274502B2 (en) 2011-06-22 2012-06-18 Circulating fluidized bed-type gasification furnace and fluid medium flow rate control method
US14/123,662 US9528053B2 (en) 2011-06-22 2012-06-18 Circulating fluidized bed-type gasification furnace and fluid medium flow rate control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011138496 2011-06-22
JP2011-138496 2011-06-22

Publications (1)

Publication Number Publication Date
WO2012176726A1 true WO2012176726A1 (ja) 2012-12-27

Family

ID=47422563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065486 WO2012176726A1 (ja) 2011-06-22 2012-06-18 循環流動層式ガス化炉および流動媒体の流量制御方法

Country Status (5)

Country Link
US (1) US9528053B2 (ja)
JP (1) JP5605508B2 (ja)
CN (1) CN103608624B (ja)
AU (1) AU2012274502B2 (ja)
WO (1) WO2012176726A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102432401B1 (ko) * 2015-09-21 2022-08-16 한국전력공사 유동층 반응기 시스템 및 이를 이용한 분체 유동화 방법
US11697779B2 (en) * 2019-03-22 2023-07-11 King Fahd University Of Petroleum And Minerals Co-gasification of microalgae biomass and low-rank coal to produce syngas/hydrogen
CN114135865B (zh) * 2021-12-20 2024-02-27 重庆大学 一种高温灰储存装置和装有该装置的循环流化床锅炉

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327135A (en) * 1976-08-27 1978-03-14 Mitsubishi Heavy Ind Ltd Fluid layer furnace
JPH0979539A (ja) * 1995-09-13 1997-03-28 Mitsubishi Heavy Ind Ltd 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP2003207114A (ja) * 2002-01-11 2003-07-25 Ngk Insulators Ltd 流動炉における流動不良防止方法
JP2009040887A (ja) * 2007-08-09 2009-02-26 Ihi Corp 流動層ガス化方法及び設備
JP2011084608A (ja) * 2009-10-14 2011-04-28 Ihi Corp ガス化設備の燃焼炉燃焼不足防止方法及び装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3102819A1 (de) * 1980-01-29 1982-02-18 Babcock-Hitachi K.K., Tokyo Verfahren fuer die rueckgwinnung von waerme bei der kohlevergasung und vorrichtung dafuer
JPS5738930A (en) 1980-08-18 1982-03-03 Mitsubishi Heavy Ind Ltd Flow rate controlling system in exhaust gas treatment device
JPS57179289A (en) * 1981-04-28 1982-11-04 Agency Of Ind Science & Technol Recovering method of heat from gasified product of hydrocarbon
JPS5818001A (ja) 1981-07-24 1983-02-02 バブコツク日立株式会社 排ボイラの節炭器の出口給水温度制御方法
FI873735A0 (fi) * 1987-08-28 1987-08-28 Ahlstroem Oy Foerfarande och anordning foer foergasning av fast kolhaltigt material.
FI85909C (fi) * 1989-02-22 1992-06-10 Ahlstroem Oy Anordning foer foergasning eller foerbraenning av fast kolhaltigt material.
JP2825734B2 (ja) 1993-06-29 1998-11-18 新日本製鐵株式会社 石炭の乾燥・分級装置の制御装置
JPH1019206A (ja) 1996-06-28 1998-01-23 Mitsubishi Heavy Ind Ltd 循環量制御装置
JP2002235917A (ja) 2000-12-06 2002-08-23 Hitachi Zosen Corp 燃焼装置および燃焼装置の運転方法
FI112952B (fi) * 2001-12-21 2004-02-13 Foster Wheeler Energia Oy Menetelmä ja laitteisto hiilipitoisen materiaalin kaasuttamiseksi
JP2004132621A (ja) 2002-10-11 2004-04-30 Mitsui Eng & Shipbuild Co Ltd 循環流動層ボイラにおける粒子循環量制御方法及びその装置
EP1725635B1 (en) * 2003-09-16 2018-08-15 Anker Jarl Jacobsen A method and apparatus for producing synthesis gas from biomass
JP2005274015A (ja) 2004-03-24 2005-10-06 Mitsui Eng & Shipbuild Co Ltd 循環流動層ボイラ装置及びその運転制御方法
CN1318796C (zh) * 2004-07-26 2007-05-30 中国科学院工程热物理研究所<Del/> 煤气一蒸汽联产方法及带热解气化室的循环流化床锅炉
JP5261931B2 (ja) 2006-12-26 2013-08-14 株式会社Ihi 流動層ガス化方法及び装置
WO2008102414A1 (ja) * 2007-02-22 2008-08-28 Ihi Corporation 燃料ガス化設備
WO2008107929A1 (ja) 2007-03-02 2008-09-12 Ihi Corporation 循環流動層炉における粒子循環量制御装置
BRPI0722330B1 (pt) * 2007-12-12 2017-06-20 Outotec Oyj Process and installation to produce coal and fuel gas
JP5200691B2 (ja) * 2008-06-20 2013-06-05 株式会社Ihi 流動層ガス化方法及びその設備
JP5316843B2 (ja) * 2008-06-23 2013-10-16 株式会社Ihi 循環流動層ガス化炉のライザー頂部構造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327135A (en) * 1976-08-27 1978-03-14 Mitsubishi Heavy Ind Ltd Fluid layer furnace
JPH0979539A (ja) * 1995-09-13 1997-03-28 Mitsubishi Heavy Ind Ltd 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP2003207114A (ja) * 2002-01-11 2003-07-25 Ngk Insulators Ltd 流動炉における流動不良防止方法
JP2009040887A (ja) * 2007-08-09 2009-02-26 Ihi Corp 流動層ガス化方法及び設備
JP2011084608A (ja) * 2009-10-14 2011-04-28 Ihi Corp ガス化設備の燃焼炉燃焼不足防止方法及び装置

Also Published As

Publication number Publication date
CN103608624A (zh) 2014-02-26
US9528053B2 (en) 2016-12-27
CN103608624B (zh) 2016-02-24
JPWO2012176726A1 (ja) 2015-02-23
JP5605508B2 (ja) 2014-10-15
US20140091260A1 (en) 2014-04-03
AU2012274502B2 (en) 2015-11-19
AU2012274502A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
US8761943B2 (en) Control and optimization system and method for chemical looping processes
JP6098129B2 (ja) 循環流動層ガス化炉
JP5605508B2 (ja) 循環流動層式ガス化炉
AU2009272210B2 (en) Method and device for controlling bed height of fluidized bed gasification furnace in gasification facility
US9416327B2 (en) Hybrid gasification system
JP6573261B2 (ja) 超臨界水ガス化システム
US9399738B2 (en) Circulation type gasification furnace
AU2014239350B2 (en) Gasified-gas generation system
Kiso et al. A simulation study on the enhancement of the shift reaction by water injection into a gasifier
JP5200691B2 (ja) 流動層ガス化方法及びその設備
KR101515447B1 (ko) 가스화기의 미분탄 공급 시스템 및 공급 방법
CN108368440B (zh) 气化装置、气化装置的控制装置及方法、气化复合发电设备
JP5655536B2 (ja) 循環流動層ガス化設備のガス化制御方法及び装置
JP2012255114A (ja) ガス化ガス生成システムおよびガス化ガス生成方法
CN205710606U (zh) 蒸汽喷射器和包括蒸汽喷射器的系统
JP6259990B2 (ja) 循環流動層ガス化炉
JP7191528B2 (ja) 粉体燃料供給装置、ガス化炉設備およびガス化複合発電設備ならびに粉体燃料供給装置の制御方法
US9725374B2 (en) System and method for preventing catalyst from overheating
JP2019143099A (ja) 粉体燃料供給装置、ガス化炉設備およびガス化複合発電設備ならびに粉体燃料供給装置の制御方法
Azari et al. Two Phase Modeling of Char Combustion in a Circulating Fluidized Bed Reactor Using ASPEN PLUS

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280029940.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803203

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521573

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14123662

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012274502

Country of ref document: AU

Date of ref document: 20120618

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12803203

Country of ref document: EP

Kind code of ref document: A1