WO2012176391A1 - 液体混合方法及び装置 - Google Patents

液体混合方法及び装置 Download PDF

Info

Publication number
WO2012176391A1
WO2012176391A1 PCT/JP2012/003721 JP2012003721W WO2012176391A1 WO 2012176391 A1 WO2012176391 A1 WO 2012176391A1 JP 2012003721 W JP2012003721 W JP 2012003721W WO 2012176391 A1 WO2012176391 A1 WO 2012176391A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
mixing
groove
flow path
insoluble fluid
Prior art date
Application number
PCT/JP2012/003721
Other languages
English (en)
French (fr)
Inventor
大介 西川
岳史 山下
西村 真
野一色 公二
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201280030183.0A priority Critical patent/CN103608095A/zh
Priority to EP12803145.7A priority patent/EP2724774B1/en
Priority to KR1020137033624A priority patent/KR101566605B1/ko
Priority to US14/125,417 priority patent/US9776145B2/en
Publication of WO2012176391A1 publication Critical patent/WO2012176391A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/454Mixing liquids with liquids; Emulsifying using flow mixing by injecting a mixture of liquid and gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4331Mixers with bended, curved, coiled, wounded mixing tubes or comprising elements for bending the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/302Micromixers the materials to be mixed flowing in the form of droplets
    • B01F33/3021Micromixers the materials to be mixed flowing in the form of droplets the components to be mixed being combined in a single independent droplet, e.g. these droplets being divided by a non-miscible fluid or consisting of independent droplets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • B01J2219/00898Macro-to-Micro (M2M)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • B01J2219/00903Segmented flow

Definitions

  • the present invention relates to a method and apparatus for mixing mutually soluble liquids in a fine channel.
  • microchannel reactor As a method for producing a desired reaction product by bringing liquids (reactants) that are mutually soluble into contact with each other and mixing them, a method using a flow channel forming body called a so-called microchannel reactor is known.
  • the microchannel reactor includes a substrate having a groove formed on the surface, and a fine flow path is configured by the groove.
  • Patent Document 2 discloses forming a plurality of convex portions for promoting mixing in the flow path.
  • Patent Document 3 discloses that an electrode pair is provided in the middle of the mixing channel and an AC voltage is applied thereto.
  • forming a plurality of fine recesses in the flow path as described in Patent Document 2 leads to complication of the flow path shape, and increases the number of steps for creating and maintaining (particularly cleaning) the flow path.
  • the arrangement of electrodes as described in Patent Document 3 leads to a complicated structure of the microchannel reactor and a significant increase in cost.
  • An object of the present invention is a liquid mixing method and apparatus using a flow path forming body for forming a mixing flow path, which is a significant increase in the shape of the mixing flow path and the promotion of mixing.
  • An object of the present invention is to provide a device that can promote the mixing without requiring facilities.
  • the present inventors have conceived that a slag flow is forcibly formed in a flow path for mixing liquids to be mixed, and a remarkable mixing promoting effect is thereby achieved. It was confirmed that it was obtained.
  • the “slag flow” refers to a flow in which cells made of the liquid to be mixed and cells made of other fluid are alternately arranged in the flow channel length direction in a micro flow channel. It was confirmed that the formation of such a slag flow dramatically promotes the mixing of the liquids to be mixed within the cell containing the liquid to be mixed. This effect is due to the fact that mixing of the liquids to be mixed is performed in each minute cell and that a microcirculation flow effective for promoting the mixing of the liquids to be mixed is formed in each cell. Inferred.
  • the present invention has been made from such a viewpoint, and is a method useful for mixing a first liquid and a second liquid, which are liquids to be mixed, that are mutually soluble in a mixing flow path that is a fine flow path.
  • the method includes a step of joining the first liquid and the second liquid into the mixing flow channel, and the first and second liquids in a direction intersecting the flow channel with respect to the merged liquid flowing in the flow channel.
  • the first liquid and the second liquid that are mutually soluble means a fluid having such a property that the liquids do not separate into layers even when the liquid mixture is left after mixing the liquids. It means that both mixing target liquids are highly hydrophilic, and both mixing target liquids are both highly lipophilic.
  • the “insoluble fluid having insolubility with respect to the first liquid and the second liquid” for example, when the first and second liquids have high hydrophilicity, for example, oil or gas with low water solubility ( Nitrogen gas, inert gas, hydrocarbon gas, etc.), and when the first and second liquids have high lipophilicity, for example, water, highly hydrophilic liquid, gas with low solubility in oil Examples thereof include nitrogen gas and inert gas.
  • the present invention also provides a liquid mixing apparatus suitable for performing the above mixing.
  • the apparatus includes a flow path forming body that forms a mixing flow path for mixing a first liquid and a second liquid that are mutually soluble, and a first liquid supply that supplies the first liquid to the flow path forming body. And a second liquid supply unit that supplies the second liquid to the flow path forming body, and an insoluble fluid that is insoluble to both the first liquid and the second liquid is supplied to the flow path forming body.
  • the mixing flow path formed by the flow path forming body includes a first liquid introduction section into which the first liquid supplied from the first liquid supply section is introduced and a second liquid supply from the second liquid supply section.
  • a second liquid is introduced and has a terminal end communicating with the terminal end of the first liquid introducing part so that the introduced second liquid and the first liquid introduced into the first liquid introducing part are merged.
  • the slag flow is And a insoluble fluid introduction portion having a terminal end which communicates with the mixing unit to form a mixed portion of the downstream side from the position of the introduction of the fluid.
  • FIG. 6A is a sectional view taken along line 6A-6A in FIG. 5A, and FIG.
  • FIG. 5B is a sectional view taken along line 6B-6B in FIG.
  • (b) is sectional drawing which shows the slag flow formed in the said mixing groove. It is a graph which shows the relationship between the flow volume of sodium hydroxide aqueous solution and acetic acid aqueous solution in 1st Example of this invention, and the distance required for these neutralization reaction.
  • (A) and (b) are graphs showing the relationship between the nitrogen gas flow rate and the distance required for the neutralization reaction of the aqueous sodium hydroxide solution and aqueous acetic acid solution in the first embodiment of the present invention, and (b) the nitrogen gas flow rate It is a graph which shows the relationship between time required for the said neutralization reaction.
  • FIG. 1 and 2 show a liquid mixing apparatus according to this embodiment.
  • This device is for mixing a first liquid and a second liquid that are soluble in each other, and a flow path forming body FB that forms a mixing flow path 50 for the mixing, and the flow path forming body.
  • a first liquid supply unit 10 for supplying the first liquid; a second liquid supply unit 20 for supplying the second liquid to the flow path forming body FB; and an insoluble fluid in the flow path forming body, ie, the first
  • An insoluble fluid supply unit 30 that supplies a fluid that is insoluble in both the liquid and the second liquid, and a recovery container 40 are provided.
  • the first liquid supply unit 10 includes a first liquid container 12 that contains the first liquid, a first liquid pipe 14 that connects the inside of the first liquid container 12 and the flow path forming body FB, and A first liquid pump 16 that pumps the first liquid in the first liquid container 12 to the flow path forming body FB through the first liquid pipe 14;
  • the second liquid supply unit 20 includes a second liquid container 22 that stores the second liquid, and a second liquid pipe 24 that connects the inside of the second liquid container 22 and the flow path forming body FB.
  • a second liquid pump 26 that pumps the second liquid in the second liquid container 22 to the flow path forming body FB through the second liquid pipe 24.
  • this apparatus includes a thermostatic chamber 42 shared by the first liquid supply unit 10 and the second liquid supply unit 20.
  • the thermostat 42 is for keeping the temperature of the first and second liquids supplied to the flow path forming body FB constant, but may be omitted as appropriate depending on the application.
  • a midway portion of each of the pipes 14 and 24 is formed in a spiral shape, and this portion is immersed in warm water accommodated in the thermostat 42.
  • the first liquid and the second liquid that are objects of the present invention may be water-soluble or water-insoluble as long as they are soluble in each other.
  • both liquids may be water or an aqueous solution, or both liquids may be oil-based.
  • the mixing ratio can be set freely.
  • the insoluble fluid supply unit 30 includes an insoluble fluid container 32 that contains an insoluble fluid, an insoluble fluid pipe 34 that connects the inside of the insoluble fluid container 32 and the flow path forming body FB, and the insoluble fluid pipe 34 through the insoluble fluid pipe 34. And a flow rate regulator for adjusting the flow rate of the insoluble fluid supplied from the insoluble fluid container 32 to the flow path forming body FB.
  • gas is used as the insoluble fluid
  • the insoluble fluid container 32 is constituted by a gas cylinder in which the gas is sealed in a compressed state. And the gas which is the said insoluble fluid is pumped by the pressure in this gas cylinder to the said flow-path formation body FB.
  • the insoluble fluid used in the present invention is not particularly limited as long as it is insoluble in both the first liquid and the second liquid.
  • first and second liquids are water or an aqueous solution
  • a water-insoluble gas or liquid can be used.
  • the first and second liquids are oil-based, for example, water is used. It is also possible.
  • the insoluble fluid supply unit 30 may be provided with an insoluble fluid supply liquid pump similar to the first and second liquid pumps 16 and 26.
  • the flow rate adjuster 36 can be omitted depending on the application.
  • the mixing flow path 50 formed by the flow path forming body FB includes a first liquid introduction section 51 and a second liquid introduction section 52 into which the first liquid and the second liquid are introduced, respectively. And a mixing portion 54 and an insoluble fluid introduction portion 53 into which the insoluble fluid is introduced.
  • the first liquid introduction part 51 has an inlet end connected to the first liquid pipe 14 of the first liquid supply part 10 and a terminal end on the opposite side.
  • the second liquid introduction part 52 has an inlet end connected to the second liquid pipe 24 of the second liquid supply part 20 and a terminal end on the opposite side.
  • the terminal ends of the first and second liquid introducing portions 51 and 52 are at the joining position Pj so that the first liquid and the second liquid introduced into the liquid introducing portions 51 and 52 are joined at the predetermined joining position Pj. Communicate with each other.
  • the mixing unit 54 is for mixing while flowing both fluids merged at the merge position Pj, and has a flow path length necessary for the mixing.
  • the mixing portion 54 has a start end connected to the ends of the liquid introduction portions 51 and 52 at the merging position Pj and an outlet end on the opposite side. The outlet end receives the mixed liquid at a predetermined discharge position Pd.
  • the recovery container 40 is connected to the recovery container 40 so as to be discharged.
  • the insoluble fluid introduction part 53 has an inlet end connected to the insoluble fluid piping 34 of the insoluble fluid supply part 30 and a terminal end opposite to the inlet end.
  • the mixed liquid flowing in the mixing portion 54 at the midway position Pm is introduced into the mixing portion 54 so as to be introduced from the direction intersecting the mixing portion 54 (in this embodiment, the thickness direction of the substrate 100). Connected.
  • the flow path forming body FB includes a base body on which grooves constituting the mixing flow path 50 are formed, and a lid body mounted on the base body so as to cover the grooves.
  • the base body is constituted by the substrate 100 shown in FIGS. 3 to 6, and the lid body is the first lid plate 110 and the second lid plate shown in FIGS. 120.
  • the substrate 100 has a flat plate shape having a rectangular first side surface 101 and a second side surface 102 on the back side, and the first cover plate 110 and the second cover plate 120 are respectively the substrate.
  • the substrate 100 is laminated together with the substrate 100 so as to be superimposed on the first side surface 101 and the second side surface 102.
  • the grooves are formed on both side surfaces 101 and 102 of the substrate 100, whereby a mixing apparatus capable of efficient mixing processing with a compact structure is constructed.
  • the substrate 100 includes a first liquid inlet port 131, a second liquid inlet port 132, an insoluble fluid inlet port 133, an outlet port 134, a plurality of first liquid grooves 141, and a plurality of holes.
  • the second liquid groove 142, a plurality of insoluble fluid grooves 143, a plurality of mixing grooves 144, a merging hole 150, and an insoluble fluid introduction hole 153 are provided. These are formed by etching the substrate 100.
  • Each of the ports 131 to 134 is configured by a through hole that penetrates the substrate 100 in the thickness direction, and the first cover plate 110 and the second cover plate 120 also have a plurality of similar through holes in the ports 131 to 134. Each has a corresponding position. However, the lowermost second lid plate 120 does not have a through hole for sealing the fluid.
  • the through holes are formed in the uppermost first lid plate 110, and the first liquid pipe 14, the second liquid pipe 24, the insoluble fluid pipe 34, and the recovery container 40 are connected to the through holes, respectively. Is done.
  • the first liquid grooves 141 are formed in the first side surface 101 to constitute the first liquid introduction part 51.
  • the first liquid grooves 141 according to this embodiment extend in a straight line from the first liquid inlet port 131 to the joining position Pj along the long side of the substrate 100 in a state parallel to each other.
  • Each first liquid groove 141 has a depth smaller than 1 ⁇ 2 of the thickness of the substrate 100.
  • the number of the second liquid grooves 142 is the same as the number of the first liquid grooves 141, and the second liquid grooves 142 are formed on the second side surface 102 so as to be parallel to each other to constitute the second liquid introduction part 52.
  • Each of the second liquid grooves 142 changes from the second liquid inlet port 132 toward the first liquid groove 141 in a direction perpendicular to the first liquid groove 141, and the second liquid groove 142 is turned 90 ° from this portion to the downstream side and corresponds to the second liquid groove 142. And a portion extending along the first liquid groove 141 to the joining position Pj on the back side of the one liquid groove 141.
  • Each of the second liquid grooves 142 has a depth equivalent to the depth of each of the first liquid grooves 141, that is, a depth smaller than 1 ⁇ 2 of the thickness of the substrate 100.
  • the merging hole 150 penetrates the substrate 100 in the thickness direction at the merging position Pj, thereby communicating the end of the first liquid groove 141 and the end of the second liquid groove 142. That is, the first liquid flowing through the first liquid groove 141 and the second liquid flowing through the second liquid groove 142 can be merged.
  • the number of the mixing grooves 144 is the same as the number of the first liquid grooves 141 and is formed on the first side surface 101 so as to be parallel to each other to constitute the mixing portion 54.
  • Each mixing groove 144 has a shape that leads to the end of each first liquid groove 141 at the joining position Pj and reaches the outlet port 134 while meandering from the joining position Pj.
  • Each mixing groove 144 has a depth larger than the depth of both the liquid grooves 141 and 142 (in this embodiment, a depth larger than 1 ⁇ 2 of the thickness of the substrate 100). And communicated with both liquid grooves 141 and 142. Therefore, the first liquid and the second liquid that have joined together in the joining hole 150 can flow into the mixing groove 144.
  • the insoluble fluid grooves 143 are the same in number as the mixing grooves 144 and are formed in the second side surface 102 so as to be parallel to each other to constitute the insoluble fluid introduction portion 53.
  • Each insoluble fluid groove 143 includes a portion that approaches the mixing groove 144 from the insoluble solution inlet port 133 from a direction orthogonal thereto, a 90 ° turn from this portion to the downstream side, and the back side of the corresponding mixing groove 144 And an L-shape having a portion extending along the mixing groove 144 to the middle position Pm.
  • Each insoluble fluid groove 143 has a depth smaller than 1 ⁇ 2 of the thickness of the substrate 100.
  • the insoluble fluid introduction hole 153 penetrates the substrate 100 in the thickness direction at the midway position Pm, thereby communicating the midway portion of the mixing groove 144 and the end of the insoluble fluid groove 143. That is, it is possible to introduce the insoluble fluid flowing through the insoluble solution groove 143 to the liquid flowing through the mixing groove 144 (the liquid after the first liquid and the second liquid merge).
  • the first cover plate 110 is overlapped with and bonded to the substrate 100 so as to cover the first side surface 101, thereby forming the first liquid groove 141 and the mixing groove 144 formed on the first side surface 101.
  • the first liquid introduction part 51 and the mixing part 54 are respectively constructed in a sealed manner.
  • the second cover plate 120 is overlapped with and bonded to the substrate 100 so as to cover the second side surface 102, and thereby the second liquid groove 142 formed on the second side surface 102 and the insoluble layer are insoluble.
  • the fluid groove 143 is sealed, thereby constructing the second liquid introduction part 52 and the insoluble fluid introduction part 53, respectively.
  • the substrate 100 may be alternately stacked with a cover plate over a plurality of stages. This laminated body can mix and process more liquid.
  • the cover plate interposed between the substrates 100 covers both the first side surface 101 of the one substrate 100 and the second side surface 102 of the other substrate 100, which contributes to further downsizing of the flow path forming body. Can do.
  • the first liquid and the second liquid supplied from the first liquid supply part 10 and the second liquid supply part 20 to the flow path forming body 100 are respectively the first liquid introduction part 51 (first of the flow path forming body 100). 1 liquid groove 141) and the second liquid introduction part 52 (second liquid groove 142), and merge through the merge hole 150 at the merge position Pj (FIG. 5A). Both liquids are mixed while flowing through the mixing section 54 (mixing groove 144) on the downstream side.
  • an insoluble fluid is supplied from the insoluble fluid supply unit 30 to the flow path forming body 100, and the insoluble fluid is insoluble in the flow path forming body 100.
  • the fluid is introduced into the mixing portion 54 through the fluid introduction portion 53 (insoluble fluid groove 143 and insoluble fluid introduction hole 153) at an intermediate position Pm.
  • the insoluble fluid is separated at intervals by dividing the liquid flowing through the mixing portion 54 (the liquid after the first liquid and the second liquid are merged; hereinafter referred to as “the post-merging liquid”).
  • the supply flow rates of the first liquid, the second liquid, and the insoluble fluid are set so as to form a slag flow on the downstream side of Pm.
  • the “slag flow” referred to here is a flow in which the mixing target cells 60 made of the post-merging liquid and the insoluble fluid cells 63 made of the insoluble fluid are alternately arranged as shown in FIGS. 7 (a) and 7 (b).
  • the formation of this slag flow dramatically promotes the mixing of the first liquid and the second liquid flowing in the mixing portion 54 as will be described later in the section of the embodiment. This effect is due to the fact that after the merging, the liquid is divided into the mixing target cells 60 having a very small volume and mixed therein, and a circulation flow effective for mixing is formed in each mixing target cell 60. Inferred.
  • the volume ratio between the mixing target cell 60 and the insoluble fluid cell 63 in the slag flow can be freely set by adjusting the introduction flow rate of the insoluble fluid. Specifically, as will be described later in the section of the embodiment, the volume (size) of each mixing target cell 60 can be reduced as the introduction flow rate of the insoluble fluid is increased. 7A and 7B, as the volume of the mixing target cell 60 is reduced, the degree to which the circulating flow in the cell 60 contributes to the mixing promotion increases. On the other hand, if the volume share of the insoluble fluid cell increases, the processing efficiency of the liquid to be mixed decreases, leading to an increase in pressure loss and an unnecessary increase in consumption of insoluble fluid. Therefore, the volume ratio is preferably set from such a viewpoint. In general, it is preferably set within a range of 1/5 or more and 4 or less.
  • the mixing channel according to the present invention is not limited to the one constituted by the grooves formed in the base as described above.
  • the mixing channel can be formed by a tube having a minute inner diameter.
  • Examples and comparative examples according to the present invention will be described.
  • a sodium hydroxide (NaOH) aqueous solution is used as the first liquid
  • an acetic acid aqueous solution is used as the second liquid
  • the apparatus shown in FIGS. 1 to 6 is used to neutralize both. Both liquids were mixed, and the distance (distance in the mixing part 54) and time required for completion of the neutralization reaction were measured.
  • Example 2 Insoluble fluid Nitrogen gas (Examples 1, 3, 4) or dodecane (Example 2) is used as the insoluble fluid. Nitrogen gas is supplied to the flow path forming body FB by the internal pressure (initial pressure of about 0.3 MPaG) of the gas cylinder (insoluble fluid container 32) into which the nitrogen gas is pressed. Dodecane is supplied to the flow path forming body FB by a dedicated pump. In either case, the supply flow rate is adjusted by the flow rate adjuster 36.
  • FIG. 8 shows the supply flow rate of the first liquid (NaOH aqueous solution) and the second liquid (acetic acid aqueous solution) in the case where no insoluble fluid is supplied (supply flow per channel; the same applies to other figures) and the neutralization reaction.
  • the required distance (the distance that the fluid needs to flow through the mixing section 54 until the neutralization of both liquids is completed) is shown.
  • the neutralization reaction required distance simply increases as the supply flow rates of both liquids increase.
  • Example 1 The mixing method according to the present invention was carried out using 1N sodium hydroxide aqueous solution as the first liquid, 1N acetic acid aqueous solution as the second liquid, and nitrogen gas as the insoluble fluid. Specifically, when both the flow rates of the two aqueous solutions are adjusted to 0.5 ml / min, the nitrogen gas supply flow rate is appropriately changed for each of the cases where the flow rate is adjusted to 1 ml / min. The relationship between the neutralization reaction required distance and the neutralization reaction required time was investigated. The results are shown in FIGS. 9 (a) and 9 (b).
  • Example 2 The mixing method according to the present invention was carried out using a 1N aqueous sodium hydroxide solution as the first liquid, a 1N aqueous acetic acid solution as the second liquid, and dodecane, which is a petroleum-based liquid, as the insoluble fluid. Specifically, when both the flow rates of the aqueous solutions are adjusted to 0.5 ml / min, the dodecane supply flow rate is appropriately changed and repeated for each of the cases where the aqueous solution is adjusted to 1 ml / min. The relationship with the sum required distance was investigated. The result is shown in FIG.
  • Examples 3 and 4 In exactly the same manner as in Example 1, the mixing method according to the present invention was carried out using 1N sodium hydroxide aqueous solution as the first liquid, 1N acetic acid aqueous solution as the second liquid, and nitrogen gas as the insoluble fluid. However, by adding ethylene glycol having a viscosity of 23.5 cP (@ 20 ° C.) to the aqueous sodium hydroxide solution (Example 3) or adding ethylene glycol to both aqueous solutions (Example 4), the viscosity of the added aqueous solution is increased. Was increased from 1.0 cP (@ 20 ° C.) to about 12.0 cP. The result is shown in FIG.
  • the graph of FIG. 11 also closely approximates the graph of FIG. 9A according to the first embodiment. This indicates that the mixing promotion effect by the mixing method according to the present invention can be stably obtained even if the viscosity of the first and second liquids slightly increases or decreases (in a range that does not affect the formation of the slag flow). Yes. Moreover, the fact that the above-mentioned mixing promotion effect is obtained regardless of the mixing of ethylene glycol, which is an organic solvent, suggests that the present invention can exert the effect not only in the mixing of aqueous solutions but also in the mixing of oil-based liquids. To do.
  • the purpose of mixing according to the present invention is not limited to the neutralization reaction.
  • the present invention can be applied to mixing for a reaction (reductive aldol reaction) for producing an alcohol from an aldehyde compound.
  • a reaction reductive aldol reaction
  • the product in producing an alcohol by reaction with the third reactant R 3 —CO—R 4
  • the present invention can be applied to the mixing of the first and second reactants.
  • the first and second reactants are the first and second liquids, respectively, and nitrogen gas is introduced as an insoluble fluid after the merging, thereby forming a slag flow in the same manner as above to mix the two liquids. Can be promoted.
  • the present invention provides a method useful for mixing the first liquid and the second liquid, which are the liquids to be mixed, that are soluble in each other in the mixing flow path that is a fine flow path.
  • the first liquid and the second liquid are merged in the mixing flow path, and the first liquid from a direction intersecting the flow path with respect to the merged liquid flowing in the flow path.
  • a mixing target cell composed of the combined liquid and an insoluble fluid cell composed of the insoluble fluid Are formed in the flow path on the downstream side of the supply position of the insoluble fluid, whereby the first liquid and the second liquid in each mixing target cell are formed in the flow path on the downstream side. Mixing with a liquid.
  • the first liquid and the first liquid are formed by forming a slag flow in which cells to be mixed composed of the first and second liquids merged in the mixing flow path and insoluble fluid cells composed of the insoluble fluid are alternately arranged. Since the mixing with the two liquids is promoted, the mixing efficiency can be increased without requiring the complexity of the flow path shape and the addition of the voltage application unit as in the conventional case.
  • the first liquid and the second liquid that are mutually soluble means a fluid having such a property that the liquids do not separate into layers even when the liquid mixture is left after mixing the liquids. It means that both mixing target liquids are highly hydrophilic, and both mixing target liquids are both highly lipophilic.
  • the “insoluble fluid having insolubility with respect to the first liquid and the second liquid” for example, when the first and second liquids have high hydrophilicity, for example, oil or gas with low water solubility ( Nitrogen gas, inert gas, hydrocarbon gas, etc.), and when the first and second liquids have high lipophilicity, for example, water, highly hydrophilic liquid, gas with low solubility in oil Examples thereof include nitrogen gas and inert gas.
  • the method according to the present invention further includes the step of separating the insoluble fluid from the liquid to be mixed after the completion of the mixing of the first and second liquids, thereby obtaining the originally desired mixed fluid. It is. In this case, by using a gas as the insoluble fluid, separation of the insoluble fluid and the liquid to be mixed is significantly facilitated.
  • the liquid to be mixed according to the present invention that is, the first and second liquids to be mixed, for example, those having water solubility are suitable.
  • a water-insoluble fluid may be used as the insoluble fluid, and nitrogen gas or inert gas is particularly suitable.
  • the volume ratio between the mixing target cell and the insoluble fluid cell in the slag flow can be freely set by adjusting the flow rate of the insoluble fluid introduced.
  • the volume ratio is preferably 1 ⁇ 2 or more and 2 or less.
  • the fine channel for example, a channel constituted by a groove formed in the substrate can be used.
  • the present invention also provides a liquid mixing apparatus suitable for performing the above mixing.
  • the apparatus includes a flow path forming body that forms a mixing flow path for mixing a first liquid and a second liquid that are mutually soluble, and a first liquid supply that supplies the first liquid to the flow path forming body. And a second liquid supply unit that supplies the second liquid to the flow path forming body, and an insoluble fluid that is insoluble to both the first liquid and the second liquid is supplied to the flow path forming body.
  • the mixing flow path formed by the flow path forming body includes a first liquid introduction section into which the first liquid supplied from the first liquid supply section is introduced and a second liquid supply from the second liquid supply section.
  • a second liquid is introduced and has a terminal end communicating with the terminal end of the first liquid introducing part so that the introduced second liquid and the first liquid introduced into the first liquid introducing part are merged.
  • the slag flow is And a insoluble fluid introduction portion having a terminal end which communicates with the mixing unit to form a mixed portion of the downstream side from the position of the introduction of the fluid.
  • the substrate comprises a substrate having a first side surface and a second side surface behind the first side surface, and grooves are formed on both side surfaces of the substrate, so that the mixing channel is suitable for the liquid mixing method with a compact structure.
  • the substrate is formed on the first side surface so as to be connected to the first liquid groove formed on the first side surface and constituting the first liquid introducing portion, and to the end of the first liquid groove.
  • a second liquid groove having a shape, and a groove formed on the second side surface and constituting the insoluble fluid introduction portion, the end of the groove being located behind the middle portion of the mixing portion. And a junction that allows the first liquid and the second liquid to merge by penetrating the substrate in the thickness direction so as to communicate the end of the first liquid groove and the end of the second liquid groove.
  • the communication hole, the middle part of the mixing groove and the end of the non-solution body groove communicate with each other.
  • the first liquid and the second liquid are merged, the insoluble fluid is introduced into the liquid after the merge, and the slag flow formed by the introduction is used. It is possible to efficiently promote the mixing of the two liquids with a compact structure, and the promotion of the mixing makes it possible to reduce the required length of the mixing groove.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Accessories For Mixers (AREA)

Abstract

 微小流路でなる混合流路内で互いに可溶性を有する第1液体及び第2液体を混合させる方法が提供される。この方法は、前記混合流路内に前記第1液体及び前記第2液体を合流させる工程と、前記流路内を流れる合流後の液体に対して当該流路と交差する方向から前記両混合対象液体に対して不溶性を有する不溶流体を供給して当該合流後の液体を間隔をおいて分断することにより当該合流後の液体からなる混合対象セル60と当該不溶流体からなる不溶流体セル63とが交互に並ぶスラグ流を前記不溶流体の供給位置よりも下流側の流路内に形成し、これにより、前記下流側の流路内において各混合対象セル内の前記第1混合対象液体と前記第2混合対象液体とを混合させる工程と、を含む。

Description

液体混合方法及び装置
 本発明は、互いに可溶性を有する液体同士を、微細流路内で混合するための方法及び装置に関する。
 従来、互いに可溶性を有する液体(反応剤)同士を接触させ、混合することにより、所望の反応生成物を製造するための方法として、いわゆるマイクロチャネルリアクタと呼ばれる流路形成体を用いるものが知られている(特許文献1)。このマイクロチャネルリアクタは、表面に溝が形成された基体を備え、当該溝により微細流路が構成される。この微小流路内に混合対象液体を流すことにより、単位体積あたりにおける混合対象液体同士の接触面積が飛躍的に増大し、このことが当該混合対象液体同士の混合の効率を高める。
 このマイクロチャネルリアクタでは、前記接触面積の増大に加え、さらなる混合の促進が望まれる。このような混合の促進は、当該混合の完了までに必要な前記微小流路の流路長の短縮を可能にし、これによりマイクロチャネルリアクタ全体の小型化を可能にする。また、混合操作に要する時間の短縮は、当該混合操作中での不要な副反応の発生の抑制にもつながる。
 当該混合を促進するための手段として、特許文献2には、流路内に混合促進用の複数の凸部を形成することが開示されている。また特許文献3には、混合流路の途中に電極対を設け、これに交流電圧を印加することが開示されている。しかし、特許文献2記載のように流路内に細かい複数の凹部を形成することは流路形状の複雑化につながり、当該流路の作成及びメンテナンス(特に洗浄)の工数を増大させる。また、特許文献3記載のような電極の配備も、マイクロチャネルリアクタの構造の複雑化及び著しいコストの増加を招く。
特開2008-168173号公報 特開2006-102681号公報 特開2006-320878号公報
 本発明の目的は、混合用流路を形成する流路形成体を用いた液体の混合方法及び装置であって、当該混合用流路の形状の著しい複雑化や、混合促進のための大掛かりな設備を要することなく、当該混合を促進することができるものを提供することにある。
 この目的を達成するために、本発明者らは、混合対象液体同士を混合させるための流路内で強制的にスラグ流を形成することに想到し、かつ、これにより顕著な混合促進効果が得られることを確認した。ここにいう「スラグ流」とは、前記混合対象液体からなるセルと、それ以外の流体からなるセルとが微小流路内でその流路長方向に交互に並ぶような流れをいう。このようなスラグ流の形成により前記混合対象液体を含むセル内で当該混合対象液体同士の混合が飛躍的に促進されることを、確認することができた。この効果は、前記混合対象液体同士の混合が微小な各セル内で行われること、及び、各セル内で前記混合対象液体同士の混合の促進に有効な微小循環流が形成されていることによるものと推察される。
 本発明は、このような観点からなされたものであって、微細流路でなる混合流路内で互いに可溶性を有する混合対象液体である第1液体及び第2液体を混合させるのに有用な方法を提供する。この方法は、前記混合流路内に前記第1液体及び前記第2液体を合流させる工程と、前記流路内を流れる合流後の液体に対して当該流路と交差する方向から前記第1及び第2液体に対して不溶性を有する不溶流体を供給して当該合流後の液体を間隔をおいて分断することにより当該合流後の液体からなる混合対象セルと当該不溶流体からなる不溶流体セルとが交互に並ぶスラグ流を前記不溶流体の供給位置よりも下流側の流路内に形成し、これにより、前記下流側の流路内において各混合対象セル内の前記第1液体と前記第2液体とを混合させる工程と、を含む。
 ここで、「互いに可溶性を有する第1液体及び第2液体」とは、これらの液体同士の混合後にその混合液を静置してもその液体同士が層状に分離しないような性質をもつ流体を意味し、両混合対象液体がいずれも親水性の高いものである場合や、両混合対象液体がいずれも親油性の高いものである場合が例示される。一方、「第1液体及び第2液体に対して不溶性を有する不溶流体」としては、例えば当該第1及び第2液体が親水性の高いものである場合には例えば油や水溶性の低い気体(窒素ガスや不活性ガス、炭化水素系ガスなど)が例示され、当該第1及び第2液体が親油性の高いものである場合には例えば水や親水性の高い液体、油に対する溶解度の低い気体(窒素ガスや不活性ガスなど)が例示される。
 また本発明は、前記のような混合を行うのに好適な液体混合装置を提供する。この装置は、互いに可溶性を有する第1液体及び第2液体を混合させるための混合用流路を形成する流路形成体と、この流路形成体に前記第1液体を供給する第1液体供給部と、前記流路形成体に前記第2液体を供給する第2液体供給部と、前記流路形成体に前記第1液体及び前記第2液体の双方に対して不溶性を有する不溶流体を供給する不溶流体供給部とを備える。前記流路形成体が形成する混合用流路は、前記第1液体供給部から供給される第1液体が導入される第1液体導入部と、前記第2液体供給部から供給される第2液体が導入されるとともに、この導入された第2液体と前記第1液体導入部に導入された第1液体とを合流させるように前記第1液体導入部の終端と連通する終端をもつ第2液体導入部と、両液体導入部の終端につながり、当該終端で合流した後の液体を流しながら混合するための混合部と、前記不溶流体供給部から供給される不溶流体を前記混合部の途中位置においてその混合部内を流れる前記合流後の液体に対してその混合部と交差する方向から導入することにより当該合流後の液体からなる混合対象セルと当該不溶流体からなる不溶流体セルとが交互に並ぶスラグ流を前記不溶流体の導入位置よりも下流側の混合部内に形成するように当該混合部に連通する終端をもつ不溶流体導入部とを有する。
本発明の実施の形態に係る液体混合装置の全体構成を示す図である。 前記液体混合装置における各流体の流れの概略を示すフローシートである。 前記液体混合装置を構成する基板の第1側面を示す平面図である。 前記基板の第2側面を示す底面図である。 (a)は前記基板における第1液体溝と第2液体溝との連通部位を示す断面正面図、(b)は同基板における混合溝の途中部位と不溶流体溝との連通部位を示す断面正面図である。 (a)は図5(a)の6A-6A線断面図、(b)は図5(b)の6B-6B線断面図である。 (a)(b)は前記混合溝内に形成されるスラグ流を示す断面図である。 本発明の第1実施例における水酸化ナトリウム水溶液及び酢酸水溶液の流量とこれらの中和反応に必要な距離との関係を示すグラフである。 (a)(b)は、本発明の第1実施例における窒素ガス流量と水酸化ナトリウム水溶液及び酢酸水溶液の中和反応に必要な距離との関係を示すグラフ、(b)は当該窒素ガス流量と当該中和反応に必要な時間との関係を示すグラフである。 本発明の第2実施例におけるドデカン流量と前記中和反応に必要な距離との関係を示すグラフである。 本発明の第3及び第4実施例における窒素ガス流量と前記中和反応に必要な距離との関係を示すグラフである。
 本発明の好ましい実施の形態を、図面を参照しながら説明する。
 図1及び図2は、この実施の形態にかかる液体混合装置を示す。この装置は、互いに可溶性を有する第1液体及び第2液体を混合させるためのものであり、当該混合のための混合用流路50を形成する流路形成体FBと、この流路形成体に前記第1液体を供給する第1液体供給部10と、前記流路形成体FBに前記第2液体を供給する第2液体供給部20と、前記流路形成体に不溶流体、すなわち前記第1液体及び前記第2液体の双方に対して不溶性を有する流体、を供給する不溶流体供給部30と、回収容器40とを備える。
 前記第1液体供給部10は、前記第1液体を収容する第1液体容器12と、この第1液体容器12の内部と前記流路形成体FBとを接続する第1液体配管14と、この第1液体配管14を通じて前記第1液体容器12内の第1液体を前記流路形成体FBに圧送する第1液体ポンプ16とを有する。同様に、前記第2液体供給部20は、前記第2液体を収容する第2液体容器22と、この第2液体容器22の内部と前記流路形成体FBとを接続する第2液体配管24と、この第2液体配管24を通じて前記第2液体容器22内の第2液体を前記流路形成体FBに圧送する第2液体ポンプ26とを有する。
 また、この装置は、前記第1液体供給部10及び前記第2液体供給部20に共用される恒温槽42を具備する。この恒温槽42は、前記流路形成体FBに供給される第1及び第2液体の温度を一定に保つためのものであるが、用途により適宜省略可能である。この実施の形態では、前記各配管14,24の途中部分が螺旋状に形成され、この部分が前記恒温槽42内に収容された温水中に浸漬されている。
 本発明の対象となる第1液体及び第2液体は、互いに可溶性を有するものであればよく、水溶性、非水溶性を問わない。例えば、両液体が水または水溶液であってもよいし、両液体が油系のものであってもよい。また、その混合比も自由に設定が可能である。
 前記不溶流体供給部30は、不溶流体を収容する不溶流体容器32と、この不溶流体容器32の内部と前記流路形成体FBとを接続する不溶流体配管34と、この不溶流体配管34を通じて前記不溶流体容器32から前記流路形成体FBに供給される不溶流体の流量を調節する流量調整器36とを備える。この実施の形態では前記不溶流体としてガスが用いられ、前記不溶流体容器32は当該ガスが圧縮状態で封入されたガスボンベにより構成される。そして、このガスボンベ内の圧力によって前記不溶流体であるガスが前記流路形成体FBに圧送される。
 本発明において用いられる不溶流体は、前記第1液体および前記第2液体の双方に対して不溶性を有するものであればよく、ガス、液体を問わない。例えば、第1及び第2液体が水または水溶液である場合には、非水溶性のガスまたは液体が使用可能であり、第1及び第2液体が油系である場合には、例えば水を用いることも可能である。不溶流体として液体が用いられる場合、前記不溶流体供給部30には前記第1および第2液体ポンプ16,26と同様の不溶流体供給用液体ポンプが配備されればよい。また、前記流量調整器36は用途により省略が可能である。
 前記流路形成体FBが形成する混合用流路50は、図2に示すように、前記第1液体及び前記第2液体がそれぞれ導入される第1液体導入部51及び第2液体導入部52と、混合部54と、前記不溶流体が導入される不溶流体導入部53とを有する。
 前記第1液体導入部51は、前記第1液体供給部10の第1液体配管14に接続される入口端と、その反対側の終端とを有する。同様に、前記第2液体導入部52は、前記第2液体供給部20の第2液体配管24に接続される入口端と、その反対側の終端とを有する。第1及び第2液体導入部51,52の終端は、各液体導入部51,52に導入された第1液体と第2液体とを所定の合流位置Pjで合流させるように当該合流位置Pjで相互に連通される。
 前記混合部54は、前記合流位置Pjで合流した両流体を流しながら混合させるためのもので、当該混合に必要な流路長さを有する。この混合部54は、前記合流位置Pjで前記両液体導入部51,52の終端とつながる始端と、その反対側の出口端とを有し、この出口端は所定の排出位置Pdで混合液体を前記回収容器40に排出するように当該回収容器40に接続される。
 前記不溶流体導入部53は、前記不溶流体供給部30の不溶流体配管34に接続される入口端と、その反対側の終端とを有し、この終端は、前記不溶流体を前記混合部54の途中位置Pmにおいてその混合部54内を流れる前記合流後の液体に対してその混合部54と交差する方向(この実施の形態では基板100の板厚方向)から導入するように当該混合部54につながる。
 次に、前記流路形成体FBの構造の詳細について、図3~図6を併せて参照しながら説明する。
 前記流路形成体FBは、前記混合用流路50を構成する溝が形成された基体と、その溝を覆うように当該基体に装着される蓋体と、を有する。この実施の形態に係る流路形成体FBでは、前記基体は図3~図6に示す基板100により構成され、前記蓋体は図5及び図6に示す第1蓋板110及び第2蓋板120により構成される。前記基板100は、この実施の形態では、矩形状の第1側面101及びその裏側の第2側面102を有する平板状をなし、前記第1蓋板110及び前記第2蓋板120はそれぞれ前記基板100の前記第1側面101上及び第2側面102上に重ねられるようにして当該基板100とともに積層される。
 この装置では、前記基板100の両側面101,102に前記溝が形成されることにより、コンパクトな構造で効率的な混合処理が可能な混合装置が構築される。具体的に、前記基板100には、第1液体入口ポート131と、第2液体入口ポート132と、不溶流体入口ポート133と、出口ポート134と、複数本の第1液体溝141と、複数本の第2液体溝142と、複数本の不溶流体溝143と、複数本の混合溝144と、合流用孔150と、不溶流体導入孔153と、を有する。これらは基板100のエッチング処理により形成されている。前記各ポート131~134はいずれも基板100をその厚み方向に貫通する貫通穴により構成され、第1蓋板110および第2蓋板120も同様の複数の貫通穴を前記各ポート131~134にそれぞれ対応した位置に有する。ただし、最下段の第2蓋板120は、流体を封止するために貫通穴をもたない。最上段の第1蓋板110には前記貫通穴が形成されており、各貫通穴に前記第1液体配管14、前記第2液体配管24、前記不溶流体配管34および前記回収容器40がそれぞれ接続される。
 前記各第1液体溝141は、前記第1側面101に形成されて前記第1液体導入部51を構成する。この実施の形態に係る第1液体溝141は、互いに平行な状態で、前記第1液体入口ポート131から前記基板100の長辺に沿って前記合流位置Pjに至るまで直線状に延びる。各第1液体溝141は、前記基板100の厚みの1/2よりも小さい深さを有する。
 前記第2液体溝142は、前記第1液体溝141と同数であり、互いに平行となるように前記第2側面102に形成されて前記第2液体導入部52を構成する。各第2液体溝142は、前記第2液体入口ポート132から前記第1液体溝141に対してこれと直交する方向から近づく部分と、この部分から下流側へ90°方向転換しかつ対応する第1液体溝141の裏側で当該第1液体溝141に沿って前記合流位置Pjに至るまで延びる部分と、を有するL字状をなしている。前記各第2液体溝142は、前記各第1液体溝141の深さと同等の深さ、すなわち、前記基板100の厚みの1/2よりも小さい深さを有する。
 前記合流用孔150は、前記合流位置Pjで前記基板100をその厚み方向に貫通し、これにより、前記第1液体溝141の終端と前記第2液体溝142の終端とを連通する。すなわち、前記第1液体溝141を流れる第1液体と前記第2液体溝142を流れる第2液体との合流を可能にする。
 前記混合溝144は前記第1液体溝141と同数であり、互いに平行となるように前記第1側面101に形成されて前記混合部54を構成する。各混合溝144は、前記合流位置Pjで前記各第1液体溝141の終端につながり、当該合流位置Pjから蛇行しながら前記出口ポート134に至る形状を有する。各混合溝144は、前記両液体溝141,142の深さよりも大きい深さ(この実施の形態では基板100の厚みの1/2よりも大きい深さ)を有し、前記各合流用孔150を通じて両液体溝141,142と連通する。従って、当該合流用孔150で互いに合流した第1液体及び第2液体は前記混合溝144内に流入することが可能である。
 前記不溶流体溝143は、前記混合溝144と同数であり、互いに平行となるように前記第2側面102に形成されて前記不溶流体導入部53を構成する。各不溶流体溝143は、前記不溶液体入口ポート133から前記混合溝144に対してこれと直交する方向から近づく部分と、この部分から下流側へ90°方向転換しかつ対応する混合溝144の裏側で当該混合溝144に沿ってその途中位置Pmに至るまで延びる部分とを有するL字状をなしている。前記各不溶流体溝143は、前記基板100の厚みの1/2よりも小さい深さを有する。
 前記不溶流体導入孔153は、前記途中位置Pmで前記基板100をその厚み方向に貫通し、これにより、前記混合溝144の途中部位と前記不溶流体溝143の終端とを連通する。すなわち、前記混合溝144を流れる液体(第1液体と第2液体とが合流した後の液体)に対して前記不溶液体溝143を流れる不溶流体を導入することを可能にする。
 前記第1蓋板110は、前記第1側面101を覆うようにして前記基板100に重ね合わされ、接合されることにより、当該第1側面101に形成された第1液体溝141及び混合溝144を密閉し、前記第1液体導入部51および前記混合部54をそれぞれ構築する。同様に、前記第2蓋板120は、前記第2側面102を覆うようにして前記基板100に重ね合わされ、接合されることにより、当該第2側面102に形成された第2液体溝142及び不溶流体溝143を密閉し、これにより前記第2液体導入部52及び前記不溶流体導入部53をそれぞれ構築する。
 なお、前記基板100は複数段にわたって蓋板と交互に積層されてもよい。この積層体は、より多くの液体を混合処理することが可能である。また、各基板100同士の間に介在する蓋板は、一方の基板100の第1側面101と他方の基板100の第2側面102の双方を覆うから、流路形成体のさらなるコンパクト化に寄与し得る。
 次に、この装置を用いて前記第1液体と前記第2液体とを混合させる方法について説明する。
 前記第1液体供給部10及び前記第2液体供給部20から前記流路形成体100に供給される第1液体及び第2液体はそれぞれ当該流路形成体100の第1液体導入部51(第1液体溝141)及び第2液体導入部52(第2液体溝142)に導入され、合流位置Pjで合流用孔150を通じて合流する(図5(a))。そして、下流側の混合部54(混合溝144)を流れるうちに両液体が混合される。
 この方法の特徴として、前記第1液体及び前記第2液体に加え、前記不溶流体供給部30から前記流路形成体100に不溶流体が供給され、この不溶流体は当該流路形成体100の不溶流体導入部53(不溶流体溝143および不溶流体導入孔153)を通じて前記混合部54にその途中位置Pmで導入される。そして、この不溶流体が前記混合部54を流れる液体(第1液体と第2液体が合流した後の液体;以下「合流後液体」と称する。)を間隔をおいて分断することにより当該途中位置Pmの下流側にスラグ流を形成するように、前記第1液体、前記第2液体、及び不溶流体の供給流量が設定される。
 ここでいう「スラグ流」とは、図7(a)(b)に示すように、前記合流後液体からなる混合対象セル60と前記不溶流体からなる不溶流体セル63とが交互に並ぶ流れをいう。このスラグ流の形成は、後の実施例の項でも示すように、混合部54内を流れる第1液体と第2液体との混合を飛躍的に促進する。この効果は、合流後液体が体積のきわめて小さい混合対象セル60に分断されてその中で混合されること、及び、各混合対象セル60内で混合に有効な循環流が形成されていることによるものと推察される。
 前記スラグ流における混合対象セル60と不溶流体セル63との体積比は、前記不溶流体の導入流量の調節によって自由に設定することが可能である。具体的には、後の実施例の項でも示すように、不溶流体の導入流量を増やすほど各混合対象セル60の体積(サイズ)を小さくすることができる。図7(a)(b)を比較して明らかなように、前記混合対象セル60の体積を抑えるほど当該セル60での循環流が混合促進に寄与する度合いが高まり、実際に混合促進効果は高まるが、その反面、不溶流体セルの体積の占有率が大きくなると混合対象液体の処理効率が下がり、また圧力損失の増加や不溶流体の消費量の不必要な増加につながる。従って、このような観点から前記体積比が設定されるのがよい。一般には1/5以上4以下の範囲内で設定されるのが好ましい。
 なお、本発明に係る混合用流路は、前記のように基体に形成された溝により構成されるものに限られない。例えば、微小な内径を有する管によっても前記混合用流路が形成されることが可能である。
 本発明に係る実施例及び比較例について説明する。以下に示す実施例及び比較例では、第1液体として水酸化ナトリウム(NaOH)水溶液、第2液体として酢酸水溶液が用いられ、両者を中和反応させるべく前記図1~図6に示す装置を用いて両液体の混合が行われ、中和反応の完了に必要な距離(混合部54における道のり)及び時間が測定された。
[各例に共通する条件]
(1)第1液体及び第2液体について
・第1液体と第2液体を流量比が1:1の割合で流路形成体FBに同時供給する。
・恒温槽42は使用せず、両液体は常温(20°C程度)のまま供給される。
・中和反応の完了は、第1液体(NaOH水溶液)に混入させたチモールブルーの変色(青色→黄色)により確認される。
・粘度調整のため、第1液体または第1及び第2液体に適量のエチレングリコールが付与される(実施例3及び4)
(2)不溶流体について
 不溶流体には窒素ガス(実施例1,3,4)またはドデカン(実施例2)を使用。窒素ガスは、これが圧入されたガスボンベ(不溶流体容器32)の内圧(初期圧0.3MPaG程度)によって流路形成体FBに供給される。ドデカンは専用ポンプにより前記流路形成体FBに供給される。いずれの場合も流量調整器36によって供給流量が調整される。
(3)流路形成体FBについて
・基板100の材質及び板厚:SUS316L製、厚み0.8mm
・各溝141~144の本数:15本
・液体溝141,142及び不溶流体溝143の深さ(半円断面の半径):0.2mm
・混合溝144の全長及び深さ(半円断面の半径):3m×0.45mm
・合流用孔150及び不溶流体導入孔153の孔径:0.5mm
[比較例]
 図8は、不溶流体を供給しない場合の第1液体(NaOH水溶液)及び第2液体(酢酸水溶液)の供給流量(1流路あたりの供給流量。他の図においても同じ。)と中和反応必要距離(両液体の中和が完了するまでに当該流体が混合部54を流れる必要がある距離)とを示したものである。この図に示されるように、両液体の供給流量が増えると中和反応必要距離も単純に増大する。
[実施例1]
 第1液体に1N水酸化ナトリウム水溶液、第2液体に1N酢酸水溶液、不溶流体に窒素ガスを用いて本発明に係る混合方法を実施した。具体的には、前記両水溶液の流量をともに0.5ml/minに調節した場合、1ml/minに調節した場合のそれぞれについて窒素ガス供給流量を適宜変更して繰り返し実施し、当該窒素ガス供給流量と中和反応必要距離及び中和反応必要時間との関係を調べた。その結果を図9(a)(b)に示す。
 これらの図から明らかなように、第1及び第2液体である各水溶液の流量にかかわらず、窒素ガス流量を増やすにつれて中和反応必要距離及び中和反応必要時間がともに著しく減少し、窒素ガス流量を2ml/min以上にするとほぼ瞬時(1秒以内)に中和反応が完了することが確認された。
[実施例2]
 第1液体に1N水酸化ナトリウム水溶液、第2液体に1N酢酸水溶液、不溶流体に石油系液体であるドデカンを用いて本発明に係る混合方法を実施した。具体的には、前記両水溶液の流量をともに0.5ml/minに調節した場合、1ml/minに調節した場合のそれぞれについてドデカン供給流量を適宜変更して繰り返し実施し、当該ドデカン供給流量と中和反応必要距離との関係を調べた。その結果を図10に示す。
 この図10のグラフは、前記実施例1に係る図9(a)のグラフとよく近似している。このことは、本発明に係る混合方法による混合促進効果が、不溶流体として液体を用いた場合にも同様に得られることを教示している。ただし、(図10には示されていないが)ドデカン流量が10ml/min以上の領域では混合促進効果が低下する。その理由については後述するが、スラグ流の安定した形成のためには不溶流体としてガスを用いることが、より好ましい。また、当該ガスは混合終了の液体から回収容器40内において容易に分離されることが可能である。
[実施例3及び4]
 実施例1と全く同様に、第1液体に1N水酸化ナトリウム水溶液、第2液体に1N酢酸水溶液、不溶流体に窒素ガスを用いて本発明に係る混合方法を実施した。ただし、水酸化ナトリウム水溶液に粘度23.5cP(@20℃)のエチレングリコールを添加し(実施例3)または両水溶液にエチレングリコールを添加する(実施例4)ことにより、その添加した水溶液の粘度を1.0cP(@20℃)から約12.0cPまで上昇させて実験を行った。その結果を図11に示す。
 この図11のグラフも、前記実施例1に係る図9(a)のグラフとよく近似している。このことは、第1及び第2液体の粘度が(スラグ流の形成に影響のない範囲で)多少増減しても本発明に係る混合方法による混合促進効果が安定して得られることを示している。また、有機溶媒であるエチレングリコールの混入にかかわらず前記混合促進効果が得られることは、本発明が水溶液同士の混合のみならず、油系液体同士の混合にもその効果を奏し得ることを示唆するものである。
 なお、本発明に係る混合の目的は前記の中和反応に限定されない。例えば、本発明は、アルデヒド化合物からアルコールを作る反応(還元的アルドール反応)のための混合にも適用可能である。具体的には、第一反応物(R=C=CCOR)と第二反応物(M-H金属水素化物)との完全混合および反応による中間体金属エノラートの生成後、その生成物と第三反応物R-CO-Rとの反応によりアルコールを生成するにあたり、前記第一及び第二反応物の混合に本発明が適用され得る。この場合、第一及び第二反応物をそれぞれ第1及び第2液体とし、その合流後に窒素ガスを不溶流体として導入することにより、前記と同様にスラグ流を形成して前記両液体の混合を促進することができる。
 以上のように、本発明は、微細流路でなる混合流路内で互いに可溶性を有する混合対象液体である第1液体及び第2液体を混合させるのに有用な方法を提供する。この方法は、前記混合流路内に前記第1液体及び前記第2液体を合流させる工程と、前記流路内を流れる合流後の液体に対して当該流路と交差する方向から前記第1液体及び第2液体に対して不溶性を有する不溶流体を供給して当該合流後の液体を間隔をおいて分断することにより当該合流後の液体からなる混合対象セルと当該不溶流体からなる不溶流体セルとが交互に並ぶスラグ流を前記不溶流体の供給位置よりも下流側の流路内に形成し、これにより、前記下流側の流路内において各混合対象セル内の前記第1液体と前記第2液体とを混合させる工程と、を含む。
 この方法では、混合流路内で合流した第1及び第2液体からなる混合対象セルと不溶流体からなる不溶流体セルとが交互に並ぶスラグ流を形成することにより、前記第1液体と前記第2液体との混合が促進されるから、従来のような流路形状の複雑化や電圧印加部の付設を要することなく混合効率を高めることができる。
 ここで、「互いに可溶性を有する第1液体及び第2液体」とは、これらの液体同士の混合後にその混合液を静置してもその液体同士が層状に分離しないような性質をもつ流体を意味し、両混合対象液体がいずれも親水性の高いものである場合や、両混合対象液体がいずれも親油性の高いものである場合が例示される。一方、「第1液体及び第2液体に対して不溶性を有する不溶流体」としては、例えば当該第1及び第2液体が親水性の高いものである場合には例えば油や水溶性の低い気体(窒素ガスや不活性ガス、炭化水素系ガスなど)が例示され、当該第1及び第2液体が親油性の高いものである場合には例えば水や親水性の高い液体、油に対する溶解度の低い気体(窒素ガスや不活性ガスなど)が例示される。
 本発明に係る方法は、さらに、前記第1及び第2液体の混合完了後にこれらの混合対象液体から前記不溶流体を分離する工程を含むことにより、本来所望される混合流体を取得することが可能である。この場合、前記不溶流体としてガスが用いられることにより、当該不溶流体と前記混合対象液体との分離が著しく容易化される。
 本発明の混合対象となる液体、すなわち前記第1及び第2混合対象液体としては、例えば水溶性を有するものが好適である。この場合、前記不溶流体としては非水溶性の流体が用いられればよく、特に窒素ガスや不活性ガスが好適である。
 本発明において、スラグ流における混合対象セルと不溶流体セルとの体積比は、前記不溶流体の導入流量の調節によって自由に設定することが可能である。混合対象セルの体積が小さいほど循環流による混合促進効果は高まるが、その反面、不溶流体セルの体積の占有率が大きくなると混合対象液体の処理効率が下がり、また圧力損失の増加や不溶流体の消費量の不必要な増加につながる。このような観点から、前記体積比は1/2以上2以下であることが好ましい。
 前記微細流路には、例えば、基体に形成された溝により構成されたものを用いることが可能である。
 また本発明は、前記のような混合を行うのに好適な液体混合装置を提供する。この装置は、互いに可溶性を有する第1液体及び第2液体を混合させるための混合用流路を形成する流路形成体と、この流路形成体に前記第1液体を供給する第1液体供給部と、前記流路形成体に前記第2液体を供給する第2液体供給部と、前記流路形成体に前記第1液体及び前記第2液体の双方に対して不溶性を有する不溶流体を供給する不溶流体供給部とを備える。前記流路形成体が形成する混合用流路は、前記第1液体供給部から供給される第1液体が導入される第1液体導入部と、前記第2液体供給部から供給される第2液体が導入されるとともに、この導入された第2液体と前記第1液体導入部に導入された第1液体とを合流させるように前記第1液体導入部の終端と連通する終端をもつ第2液体導入部と、両液体導入部の終端につながり、当該終端で合流した後の液体を流しながら混合するための混合部と、前記不溶流体供給部から供給される不溶流体を前記混合部の途中位置においてその混合部内を流れる前記合流後の液体に対してその混合部と交差する方向から導入することにより当該合流後の液体からなる混合対象セルと当該不溶流体からなる不溶流体セルとが交互に並ぶスラグ流を前記不溶流体の導入位置よりも下流側の混合部内に形成するように当該混合部に連通する終端をもつ不溶流体導入部とを有する。
 前記流路形成体としては、前記混合用流路を構成する溝が形成された基体と、その溝を覆うように当該基体に装着される蓋体とを有するものが、好適である。特に、前記基体が第1側面及びその裏側の第2側面を有する基板からなり、この基板の両側面に溝が形成されることにより、コンパクトな構造で前記液体混合方法に好適な混合用流路を形成することが可能である。具体的には、前記基板が、その第1側面に形成されて前記第1液体導入部を構成する第1液体溝と、この第1液体溝の終端につながるように前記第1側面に形成されて前記混合部を構成する混合溝と、前記第2側面に形成されて前記第2液体導入部を構成する溝であってその溝の終端が前記第1液体溝の終端の裏側に位置する形状をもつ第2液体溝と、前記第2側面に形成されて前記不溶流体導入部を構成する溝であってその溝の終端が前記混合部の途中部位の裏側に位置する形状をもつ不溶流体溝と、前記第1液体溝の終端と前記第2液体溝の終端とを連通するように前記基板をその厚み方向に貫通して前記第1液体と前記第2液体との合流を可能にする合流用孔と、前記混合溝の途中部位と前記不溶液体溝の終端とを連通するように前記基板をその厚み方向に貫通して前記混合溝内を流れる液体に対しての前記不溶流体の導入を可能にする不溶流体導入孔と、が設けられたものが好適である。この基板は、その第1側面と第2側面の双方の利用により、第1液体及び第2液体の合流と、その合流後の液体に対する不溶流体の導入と、その導入により形成されたスラグ流での前記両液体の混合の促進とをコンパクトな構造で効率よく行うことを可能にし、かつ、その混合の促進が前記混合溝の必要長さの短縮を可能にする。

Claims (8)

  1.  微細流路でなる混合流路内で互いに可溶性を有する混合対象液体である第1液体及び第2液体を混合させるための方法であって、
     前記混合流路内に前記第1液体及び前記第2液体を合流させる工程と、
     前記流路内を流れる合流後の液体に対して前記両混合対象液体に対して不溶性を有する不溶流体を供給して当該合流後の液体を間隔をおいて分断することにより当該合流後の液体からなる混合対象セルと当該不溶流体からなる不溶流体セルとが交互に並ぶスラグ流を前記不溶流体の供給位置よりも下流側の流路内に形成し、これにより、前記下流側の流路内において各混合対象セル内の前記第1混合対象液体と前記第2混合対象液体とを混合させる工程と、を含む、液体混合方法。
  2.  請求項1記載の液体混合方法において、前記不溶流体が気体である、液体混合方法。
  3.  請求項2記載の液体混合方法において、前記第1及び第2液体の混合完了後にこれら第1液体及び第2液体から前記不溶流体を分離する工程をさらに含む、液体混合方法。
  4.  請求項1~3のいずれかに記載の液体混合方法において、前記スラグ流における混合対象セルと不溶流体セルとの体積比が1/5以上4以下となるように前記不溶流体の導入流量が設定される、液体混合方法。
  5.  請求項1に記載の液体混合方法において、前記微細流路が基体に形成された溝により構成されたものである、液体混合方法。
  6.  互いに可溶性を有する第1液体及び第2液体を混合させるための装置であって、
     前記第1液体及び前記第2液体を混合させるための混合用流路を形成する流路形成体と、
     この流路形成体に前記第1液体を供給する第1液体供給部と、
     前記流路形成体に前記第2液体を供給する第2液体供給部と、
     前記流路形成体に前記第1液体及び前記第2液体の双方に対して不溶性を有する不溶流体を供給する不溶流体供給部と、を備え、
     前記流路形成体が形成する混合用流路は、前記第1液体供給部から供給される第1液体が導入される第1液体導入部と、前記第2液体供給部から供給される第2液体が導入されるとともに、この導入された第2液体と前記第1液体導入部に導入された第1液体とを合流させるように前記第1液体導入部の終端と連通する終端をもつ第2液体導入部と、両液体導入部の終端につながり、当該終端で合流した後の液体を流しながら混合するための混合部と、前記不溶流体供給部から供給される不溶流体を前記混合部の途中位置においてその混合部内を流れる前記合流後の液体に対してその混合部と交差する方向から導入することにより当該合流後の液体からなる混合対象セルと当該不溶流体からなる不溶流体セルとが交互に並ぶスラグ流を前記不溶流体の導入位置よりも下流側の混合部内に形成するように当該混合部に連通する終端をもつ不溶流体導入部とを有する、液体混合装置。
  7.  請求項6記載の液体混合装置において、前記流路形成体は、前記混合用流路を構成する溝が形成された基体と、その溝を覆うように当該基体に装着される蓋体とを有する、液体混合装置。
  8.  請求項7記載の液体混合装置において、前記基体が第1側面及びその裏側の第2側面を有する基板からなり、この基板には、その第1側面に形成されて前記第1液体導入部を構成する第1液体溝と、この第1液体溝の終端につながるように前記第1側面に形成されて前記混合部を構成する混合溝と、前記第2側面に形成されて前記第2液体導入部を構成する溝であってその溝の終端が前記第1液体溝の終端の裏側に位置する形状をもつ第2液体溝と、前記第2側面に形成されて前記不溶流体導入部を構成する溝であってその溝の終端が前記混合部の途中部位の裏側に位置する形状をもつ不溶流体溝と、前記第1液体溝の終端と前記第2液体溝の終端とを連通するように前記基板をその厚み方向に貫通して前記第1液体と前記第2液体との合流を可能にする合流用孔と、前記混合溝の途中部位と前記不溶液体溝の終端とを連通するように前記基板をその厚み方向に貫通して前記混合溝内を流れる液体に対しての前記不溶流体の導入を可能にする不溶流体導入孔と、が設けられる、液体混合装置。
PCT/JP2012/003721 2011-06-22 2012-06-07 液体混合方法及び装置 WO2012176391A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280030183.0A CN103608095A (zh) 2011-06-22 2012-06-07 液体混合方法及装置
EP12803145.7A EP2724774B1 (en) 2011-06-22 2012-06-07 Liquid mixing method and device
KR1020137033624A KR101566605B1 (ko) 2011-06-22 2012-06-07 액체 혼합 방법 및 장치
US14/125,417 US9776145B2 (en) 2011-06-22 2012-06-07 Liquid mixing method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011138868A JP5749987B2 (ja) 2011-06-22 2011-06-22 液体混合方法及び装置
JP2011-138868 2011-06-22

Publications (1)

Publication Number Publication Date
WO2012176391A1 true WO2012176391A1 (ja) 2012-12-27

Family

ID=47422254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003721 WO2012176391A1 (ja) 2011-06-22 2012-06-07 液体混合方法及び装置

Country Status (6)

Country Link
US (1) US9776145B2 (ja)
EP (1) EP2724774B1 (ja)
JP (1) JP5749987B2 (ja)
KR (1) KR101566605B1 (ja)
CN (1) CN103608095A (ja)
WO (1) WO2012176391A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136689A1 (ja) * 2012-03-12 2013-09-19 株式会社神戸製鋼所 多流路機器の運転方法及び多流路機器
WO2015001989A1 (ja) * 2013-07-04 2015-01-08 株式会社神戸製鋼所 吸収方法及び吸収装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107732266B (zh) * 2017-08-29 2019-08-06 成都安普利菲能源技术有限公司 高通量配液方法
CN107768694B (zh) * 2017-08-29 2019-08-06 成都安普利菲能源技术有限公司 精准取液机构及方法和精准配液机构及方法
JP2020179337A (ja) * 2019-04-24 2020-11-05 国立研究開発法人産業技術総合研究所 流通管内壁の洗浄方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504512A (ja) * 2002-05-09 2006-02-09 ザ ユニバーシティー オブ シカゴ 圧力駆動プラグによる輸送と反応のための装置および方法
JP2006102681A (ja) 2004-10-07 2006-04-20 Hitachi Ltd 流体混合器及びマイクロリアクタシステム
JP2006167719A (ja) * 2006-01-06 2006-06-29 Konica Minolta Holdings Inc 液体混合機構
JP2006320878A (ja) 2005-05-20 2006-11-30 Univ Of Tokyo 流体混合装置
JP2008168173A (ja) 2007-01-09 2008-07-24 Kobe Steel Ltd 反応装置及び反応方法
JP2008194593A (ja) * 2007-02-09 2008-08-28 Tokyo Institute Of Technology マイクロ反応装置および触媒反応方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10119718A1 (de) * 2001-04-21 2002-10-31 Boehringer Ingelheim Pharma Verfahren zur kontinuierlichen Herstellung inhalierfähiger Arzneistoffe, Vorrichtung zur Durchführung des Verfahrens und nach diesem Verfahren hergestellter Arzneistoff
US7901939B2 (en) 2002-05-09 2011-03-08 University Of Chicago Method for performing crystallization and reactions in pressure-driven fluid plugs
US6911132B2 (en) * 2002-09-24 2005-06-28 Duke University Apparatus for manipulating droplets by electrowetting-based techniques
US20040197275A1 (en) * 2002-10-17 2004-10-07 Ecole Polytechnique Federale De Lausanne Process for the manufacture of powders of inhalable medicaments
GB2395196B (en) * 2002-11-14 2006-12-27 Univ Cardiff Microfluidic device and methods for construction and application
US8968659B2 (en) * 2003-09-05 2015-03-03 Stokes Bio Limited Sample dispensing
JP2006239640A (ja) 2005-03-07 2006-09-14 Ime Sogo Kenkyusho:Kk 難分解性有機化合物の酸化分解用のマイクロリアクター
JP2007254176A (ja) * 2006-03-20 2007-10-04 Ymc Co Ltd 微粒子製造方法、微粒子製造に用いるスタティックミキサー及びスタティックミキサーを用いた複数の流体の混合方法。
CN100512752C (zh) * 2007-01-12 2009-07-15 天津市先石光学技术有限公司 光程可选择的无创人体成分检测方法及检测装置
JP4515521B2 (ja) * 2009-01-13 2010-08-04 株式会社神戸製鋼所 反応装置及び反応装置の製造方法
JP4515520B2 (ja) 2009-01-13 2010-08-04 株式会社神戸製鋼所 反応装置及び反応装置の製造方法
JP5642488B2 (ja) * 2010-10-04 2014-12-17 株式会社神戸製鋼所 流路構造体
JP5547120B2 (ja) 2011-03-18 2014-07-09 株式会社神戸製鋼所 流路構造体、流体の混合方法、抽出方法及び反応方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504512A (ja) * 2002-05-09 2006-02-09 ザ ユニバーシティー オブ シカゴ 圧力駆動プラグによる輸送と反応のための装置および方法
JP2006102681A (ja) 2004-10-07 2006-04-20 Hitachi Ltd 流体混合器及びマイクロリアクタシステム
JP2006320878A (ja) 2005-05-20 2006-11-30 Univ Of Tokyo 流体混合装置
JP2006167719A (ja) * 2006-01-06 2006-06-29 Konica Minolta Holdings Inc 液体混合機構
JP2008168173A (ja) 2007-01-09 2008-07-24 Kobe Steel Ltd 反応装置及び反応方法
JP2008194593A (ja) * 2007-02-09 2008-08-28 Tokyo Institute Of Technology マイクロ反応装置および触媒反応方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2724774A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136689A1 (ja) * 2012-03-12 2013-09-19 株式会社神戸製鋼所 多流路機器の運転方法及び多流路機器
JP2013188641A (ja) * 2012-03-12 2013-09-26 Kobe Steel Ltd 多流路機器の運転方法
US9656235B2 (en) 2012-03-12 2017-05-23 Kobe Steel, Ltd. Operation method for multichannel apparatus and multichannel apparatus
WO2015001989A1 (ja) * 2013-07-04 2015-01-08 株式会社神戸製鋼所 吸収方法及び吸収装置
JP2015013247A (ja) * 2013-07-04 2015-01-22 株式会社神戸製鋼所 微細流路を用いた吸収方法及び吸収装置
US9914089B2 (en) 2013-07-04 2018-03-13 Kobe Steel, Ltd. Absorption method and absorption device
KR101900140B1 (ko) * 2013-07-04 2018-09-18 가부시키가이샤 고베 세이코쇼 흡수 방법 및 흡수 장치

Also Published As

Publication number Publication date
US9776145B2 (en) 2017-10-03
JP5749987B2 (ja) 2015-07-15
KR101566605B1 (ko) 2015-11-05
JP2013006130A (ja) 2013-01-10
EP2724774A4 (en) 2014-12-03
KR20140016981A (ko) 2014-02-10
CN103608095A (zh) 2014-02-26
US20140133262A1 (en) 2014-05-15
EP2724774A1 (en) 2014-04-30
EP2724774B1 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
WO2012176391A1 (ja) 液体混合方法及び装置
JP6234959B2 (ja) マイクロリアクタシステム
JP5062383B2 (ja) マイクロミキサー
WO2013122993A4 (en) Two fluid pump
JP2009262106A (ja) マイクロリアクタ
CN108786678B (zh) 一种具有强化混合功能的新型微反应器以及合成系统
JP5340443B2 (ja) 多流路機器の運転方法
JP6190352B2 (ja) 流体流通装置及びその運転方法
US9234778B2 (en) Operation method of multi-flow passage device, and multi-flow passage device
JP2012170898A (ja) 流体混合装置
US20100163114A1 (en) Micro mixer
JP2022183588A (ja) スラグ流の生成デバイス、前記生成デバイスを備えた化学物質の処理装置、スラグ流の生成方法、及びスラグ流を用いた化学物質の処理方法
JP2014028343A (ja) マイクロ反応器における外部配管の接合方法並びに該方法により接合された接合構造を有するマイクロ反応器、そのバンドル並びにモジュール構造
JP5712610B2 (ja) マイクロリアクタ―及び混合流体の製造方法
CN214330884U (zh) 高度集成式储液输液装置及其应用设备
CN105673462B (zh) 侧吸管液体混合输送无阀压电泵
EP3406334A1 (en) Flow path device and droplet forming method
CN112392721A (zh) 高度集成式储液输液装置及其应用设备
JP4771151B2 (ja) マイクロミキサー
JP2012107559A (ja) 液体用容積型ポンプ
JP2012166172A (ja) 流体混合装置
CN116324326A (zh) 具有可互换壁结构的热控制流体通道的流动反应器
De Mas Valls Scalable multiphase microchemical systems for direct fluorination
JP2010012363A (ja) マイクロミキサー
JP2010012364A (ja) マイクロミキサー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803145

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012803145

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14125417

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137033624

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE