JP2022183588A - スラグ流の生成デバイス、前記生成デバイスを備えた化学物質の処理装置、スラグ流の生成方法、及びスラグ流を用いた化学物質の処理方法 - Google Patents
スラグ流の生成デバイス、前記生成デバイスを備えた化学物質の処理装置、スラグ流の生成方法、及びスラグ流を用いた化学物質の処理方法 Download PDFInfo
- Publication number
- JP2022183588A JP2022183588A JP2021090993A JP2021090993A JP2022183588A JP 2022183588 A JP2022183588 A JP 2022183588A JP 2021090993 A JP2021090993 A JP 2021090993A JP 2021090993 A JP2021090993 A JP 2021090993A JP 2022183588 A JP2022183588 A JP 2022183588A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- slug flow
- fluid
- flow
- slug
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 239000000126 substance Substances 0.000 title claims abstract description 26
- 239000007788 liquid Substances 0.000 claims abstract description 100
- 239000012530 fluid Substances 0.000 claims abstract description 76
- 238000000926 separation method Methods 0.000 claims description 36
- 238000006243 chemical reaction Methods 0.000 claims description 23
- 230000007246 mechanism Effects 0.000 claims description 19
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 18
- 239000002893 slag Substances 0.000 claims description 16
- 239000001569 carbon dioxide Substances 0.000 claims description 9
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 9
- 238000012993 chemical processing Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 9
- 238000009825 accumulation Methods 0.000 abstract 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 33
- 239000012071 phase Substances 0.000 description 26
- 230000000052 comparative effect Effects 0.000 description 25
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 20
- 238000012546 transfer Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000000605 extraction Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000005086 pumping Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 230000016507 interphase Effects 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- 238000003756 stirring Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000010923 batch production Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000010977 unit operation Methods 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000000622 liquid--liquid extraction Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 238000001423 gas--liquid extraction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009904 heterogeneous catalytic hydrogenation reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
Images
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
【課題】スラグ流の発現に要するポンプの台数を減らし、小型化、簡略化し、広い流量範囲で精密な送液を行えるスラグ流の生成デバイス及び生成方法を提供する。【解決手段】複数の流体供給部、逆止的に作動する吸引側の弁と吐出側の弁に挟まれた空間を画定する複数の筐体を有し、各筐体内の流体が交互に間欠的に圧送される往復動ポンプ、前記複数の流体保持部と前記複数の筐体をそれぞれ接続する複数の吸引配管部、前記複数の筐体と流体合流部をそれぞれ接続する複数の吐出配管部、及び、前記流体合流部の下流に接続する流体滞留部を有するスラグ流の生成デバイス、及び前記生成デバイスを備えた化学物質の処理装置。【選択図】図3
Description
本発明は、スラグ流の生成デバイス、前記スラグ流の生成デバイスを備えた化学物質の処理装置、並びにスラグ流の生成方法、及びスラグ流を用いた化学物質の処理方法に関する。ここでの処理とは、化学物質に関する反応又は分離(抽出、吸収、晶析等)又は反応分離をさす。
従来の化学反応プロセスにおいて、スケールアップによる効率化が求められていた。さらに近年においては、環境負荷の軽減、省資源及び省エネルギーの要求も加わる。
今後の成長が期待される医薬品や機能性化学品ないしはファインケミカルのような高付加価値品の生産においては、少量生産に向くバッチ生産方式が主流である。しかし、エネルギーロスが大きく、共生成物を多く排出するため、近年、反応から分離精製までを連続操作で行うフロー生産方式(以下、「フロープロセス」という。)により各バッチ処理工程間のロスの低減を試みる動きがある。また、必要に応じて反応モジュールや分離精製モジュールを組み替えることで、多種多様な機能性化学品の製造に対応できるよう、フロープロセスに組み込まれる各単位操作をモジュール化する研究開発の動きがある(非特許文献1)。
今後の成長が期待される医薬品や機能性化学品ないしはファインケミカルのような高付加価値品の生産においては、少量生産に向くバッチ生産方式が主流である。しかし、エネルギーロスが大きく、共生成物を多く排出するため、近年、反応から分離精製までを連続操作で行うフロー生産方式(以下、「フロープロセス」という。)により各バッチ処理工程間のロスの低減を試みる動きがある。また、必要に応じて反応モジュールや分離精製モジュールを組み替えることで、多種多様な機能性化学品の製造に対応できるよう、フロープロセスに組み込まれる各単位操作をモジュール化する研究開発の動きがある(非特許文献1)。
フロープロセスでは配管内ないしは配管の途中に接続された装置を流体が流通する過程で、温度調整、圧力調整、混合、反応、抽出、分離精製等の操作が行われる。各単位操作のモジュールの要件として、コンパクトかつ高速処理であることが求められる。特にフロープロセスにおいて、重要な対象は、互いに一部が溶け合うか、全く溶け合わない多相流体の流動が関わるプロセスである(例として、液液反応、気液反応、液液抽出、気液抽出、気液分離、液液分離)。通例、多相流体が関わるプロセスにおいて、プロセスのコンパクト化、高速処理化を目指すとき、相間物質移動抵抗を低減することが重要になる(非特許文献2、3、4)。
相間物質移動抵抗は、相間の接触界面が大きい程低減され、反応性が向上する。
相間物質移動抵抗を低減する手段としては、反応器内に撹拌機構を組み込んで、相間の接触界面を増大することが知られている。
非特許文献5には、バッチリアクター内の撹拌機構により、乱流と呼ばれる流動状態を積極的に利用することが記載されている。
特許文献1には、複数の試料流体の導入部の下流に超音波振動子を配置して、前記の試料流体を撹拌混合する方法が記載されている。
また、特許文献2には、流路中の凹部でカーボンナノチューブからなる微小な撹拌子を回転させて撹拌し、層流から乱流に変化させて反応時間を短縮することが記載されている。
しかし、上記方法を採用する場合には、流路の形態を複雑にしたり、混合のための振動子や撹拌子を配置したりすることが必要であり、装置設計上必ずしも容易ではなかった。また、互いに相溶しない液体を細かく分散させ過ぎると、エマルジョン状態(図1(f)に示す流動状態)となり、大きな相間の接触界面が得られ、反応又は抽出等に有利である反面、相分離の効率を上げることが困難であった。
相間物質移動抵抗を低減する手段としては、反応器内に撹拌機構を組み込んで、相間の接触界面を増大することが知られている。
非特許文献5には、バッチリアクター内の撹拌機構により、乱流と呼ばれる流動状態を積極的に利用することが記載されている。
特許文献1には、複数の試料流体の導入部の下流に超音波振動子を配置して、前記の試料流体を撹拌混合する方法が記載されている。
また、特許文献2には、流路中の凹部でカーボンナノチューブからなる微小な撹拌子を回転させて撹拌し、層流から乱流に変化させて反応時間を短縮することが記載されている。
しかし、上記方法を採用する場合には、流路の形態を複雑にしたり、混合のための振動子や撹拌子を配置したりすることが必要であり、装置設計上必ずしも容易ではなかった。また、互いに相溶しない液体を細かく分散させ過ぎると、エマルジョン状態(図1(f)に示す流動状態)となり、大きな相間の接触界面が得られ、反応又は抽出等に有利である反面、相分離の効率を上げることが困難であった。
多相流体プロセスにおいて、目的とする単位操作に有利な流動状態を積極的に利用するために装置をコンパクト化することも挙げられる。通例少量生産を目的としたフロープロセスでは、バッチプロセスで扱われる空間に比べてスケールが小さく、また流量が低いため、レイノルズ数が低く、層流が支配的になる。このような層流域においても、分離状態にある異なる相の流体が交互に流れるスラグ流(セグメンテッド流、テイラー流とも呼ばれる。図1(a)、(b)に示す流動状態。)は、壁面からのせん断に由来にするスラグ内の内部循環流により、界面更新が促進されることで物質移動抵抗が低減する。また、大きな流体塊を形成可能であるため、相分離に要する時間が比較的短いという長所がある(特許文献3)。
図1は混相流の代表的な流動状態であり、例えば図1(c)~(f)に示す流動状態では、物質移動抵抗の低減効果が得られないのに対して、(a)、(b)に示すスラグ流では、内部循環流による物質移動抵抗の低減効果が発揮される。
図1は混相流の代表的な流動状態であり、例えば図1(c)~(f)に示す流動状態では、物質移動抵抗の低減効果が得られないのに対して、(a)、(b)に示すスラグ流では、内部循環流による物質移動抵抗の低減効果が発揮される。
従来、スラグ流は、異なる相の複数の流体を、それぞれの流体に対応する複数の流体移送手段であるポンプを用いて圧送することにより生成されてきた。
図2(a)、(b)に従来のスラグ流の生成デバイスの概念図を示す。
具体的には、2相流体の場合、特許文献3(請求項9)、非特許文献4(Fig.2)に示されるように、互いに相溶しない液体をそれぞれポンプで送液してT字流路等で合流させてスラグ流を生成している。
三相流体の場合も、3つ以上のポンプを用いて送液された流体を合流させて、スラグ流を生成することができる(非特許文献6 Fig.1、非特許文献7 Fig.1)。
図2(a)、(b)に従来のスラグ流の生成デバイスの概念図を示す。
具体的には、2相流体の場合、特許文献3(請求項9)、非特許文献4(Fig.2)に示されるように、互いに相溶しない液体をそれぞれポンプで送液してT字流路等で合流させてスラグ流を生成している。
三相流体の場合も、3つ以上のポンプを用いて送液された流体を合流させて、スラグ流を生成することができる(非特許文献6 Fig.1、非特許文献7 Fig.1)。
また、スラグ流の生成をより安定的に行う手段として、特許文献8には、互いに相溶しない2種類の液体を、流路内に設置した弁の切り替えによって、交互に流してスラグ流を生成し、抽質を抽出分離する方法が記載されている。このような方法によれば、層流支配の状況において、再現性良く交互に送流を行うことが可能である。
非特許文献9には、2台のピエゾマイクロポンプの動作を、電圧と周波数を変化させて連動して制御することにより、スラグ長さを制御できることが記載されている。
非特許文献9には、2台のピエゾマイクロポンプの動作を、電圧と周波数を変化させて連動して制御することにより、スラグ長さを制御できることが記載されている。
NEDO、「機能性化学品の連続精密生産プロセス技術の開発」2020/06/25, https://www.nedo.go.jp/activities/ZZJP_100152.html 「機能性化学品の連続精密生産プロセス技術の開発」基本計画、https://www.nedo.go.jp/content/100893512.pdf (最終更新日2021年3月3日)
J. R. Burns and C. Ramshaw、The intensification of rapid reactions in multiphase systems usingslug flow in capillaries、Lab Chip, 2001, 1, 10-15
Matthew W. Losey, Martin A. Schmidt, and Klavs F. Jensen、Microfabricated MultiphasePacked-Bed Reactors: Characterization of Mass Transfer and Reactions、Ind. Eng. Chem. Res.2001, 40, 12, 2555-2562
Madhvanand N. Kashid、Albert Renken、Lioubov Kiwi-Minske、Gas-liquid and liquid-liquid mass transfer in microstructuredreactors、Chemical Engineering Science 66 (2011) 3876-3897
Fanfu Guan, Nikil Kapur, J. Taylor, Jialin Wen, Xumu Zhang and A.John Blacker、A universal reactor platform for batch and flow: application tohomogeneous and heterogeneous hydrogenation、React. Chem. Eng., 2020, 5, 1903-1908
Shusaku Asano, Yu Takahashi, Taisuke Maki, Yosuke Muranaka, Nikolay Cherkasov& Kazuhiro Mae、Contactless mass transfer for intra-droplet extraction、Scientific Reports、10 (2020)、pp. 7685-7693
Nobuaki Aoki, Ryuichi Ando, and Kazuhiro、Mae,Gas-Liquid-Liquid Slug Flow for Improving Liquid-Liquid Extraction inMiniaturized Channels、Ind. Eng. Chem. Res. 2011, 50, 8, 4672-4677
門脇信傑、マイクロ化学プロセス用三方電磁弁の開発と応用、岡山大学大学院博士論文、3章、2014年3月
化学工学会第86年会K301 SCEJ 86th Annual Meeting 連動した2台のポンプによる液液スラグ流の発生
スラグ流の生成は、相間物質移動抵抗の低減に効果的であるが、従来の生成デバイスにおいては、1種類の流体の圧送に一つ以上のポンプが必要であり、また流量制御のための機構や交互送液を行うための切換え弁等が必要となるため、装置が大型化、複雑化していた。また、各ポンプには個体差があるため、複数のポンプの組み合わせを変える度に送液量や送液速度条件を調整する必要があった。
また、非特許文献9に記載されたピエゾマイクロポンプ(PMP)は圧電素子を用いたダイヤフラム式ポンプで、電圧によりダイヤフラムの振幅巾を変えて吐出圧を制御しており、吐出圧が低圧であるため、逆流の発生を抑止し難く、精密な送液が困難であった。
さらに、既存技術で発生させた三相スラグ流においては、抽出分離できる液体種の組み合わせが制限されており、汎用性に乏しかった。
そこで、本発明は、スラグ流の発現に要するポンプの台数を減らして小型化、簡略化し、相間物質移動抵抗の低減に効果的な条件を保持しながら精密な送液を行えるスラグ流の生成デバイスを提供すること、及びこのスラグ流の生成デバイスを備えた化学物質の処理装置を提供することを課題とする。
また、非特許文献9に記載されたピエゾマイクロポンプ(PMP)は圧電素子を用いたダイヤフラム式ポンプで、電圧によりダイヤフラムの振幅巾を変えて吐出圧を制御しており、吐出圧が低圧であるため、逆流の発生を抑止し難く、精密な送液が困難であった。
さらに、既存技術で発生させた三相スラグ流においては、抽出分離できる液体種の組み合わせが制限されており、汎用性に乏しかった。
そこで、本発明は、スラグ流の発現に要するポンプの台数を減らして小型化、簡略化し、相間物質移動抵抗の低減に効果的な条件を保持しながら精密な送液を行えるスラグ流の生成デバイスを提供すること、及びこのスラグ流の生成デバイスを備えた化学物質の処理装置を提供することを課題とする。
本発明者らは、1台のダブルプランジャーポンプの各プランジャーが交互に流体を圧送する機構に着目し、完全相溶しない複数の流体を、一流体が流れている間はそれ以外の流体が流れない圧送方法とすることで、スラグ流を生成することができることを見いだした。
すなわち、上記課題を解決するために、本発明では、以下の手段を採用するものである。
[1]複数の流体のスラグ流を生成するデバイスであって、
前記複数の流体をそれぞれ保持する複数の流体保持部、
逆止的に作動する吸引側の弁と吐出側の弁に挟まれた空間を画定する複数の筐体を有し、各筐体内の流体が交互に間欠的に圧送される往復動ポンプ、
前記複数の流体保持部と前記複数の筐体をそれぞれ接続する複数の吸引配管部、
前記複数の筐体と流体合流部をそれぞれ接続する複数の吐出配管部、及び、
前記流体合流部の下流に接続する流体滞留部を有するスラグ流の生成デバイス。
[2]前記往復動ポンプが、カムシャフトを用いた機械的な駆動方式により吸引と吐出を行う前記[1]のスラグ流の生成デバイス。
[3]前記流体滞留部で反応又は分離が行われる前記[1]又は[2]のスラグ流の生成デバイス。
[4]前記複数の筐体の少なくとも1つが、筐体内を流通する流体の液体状態を保つ温度調節機能を有する前記[1]~[3]のいずれか1のスラグ流の生成デバイス。
[5]前記スラグ流の一相が液化二酸化炭素であり、他の相が液体である前記[4]のスラグ流の生成デバイス。
[6]前記[1]~[5]のいずれか1のスラグ流の生成デバイスを備えた化学物質の処理装置。
[7]前記スラグ流の生成デバイスの下流に液液分離機構を有する前記[6]の化学物質の処理装置。
[8]前記スラグ流の生成デバイスと前記液液分離機構の間に気液分離機構を有する前記[7]の化学物質の処理装置。
[9]前記気液分離機構の上部には圧力制御機構を備えた気体排出管が接続され、下部には、前記液液分離機構に接続する液体排出管が接続されている前記[8]の化学物質の処理装置。
[10]逆止的に作動する吸引側の弁と吐出側の弁に挟まれた空間を画定する複数の筐体を有する往復動ポンプを用い、
複数の流体供給部と前記複数の筐体のそれぞれを接続する複数の吸引配管手段、及び前記複数の筐体のそれぞれと複数の流体の合流部を接続する複数の吐出配管手段を介して複数の流体を交互に間欠的に送液し、
前記合流部の下流に設けられた流体滞留部で前記複数の流体のスラグ流を生成する方法。
[11]前記往復動ポンプとしてカムシャフトを用いた機械的な駆動方式により吸引と吐出を行うポンプを用いる前記[10]のスラグ流を生成する方法。
[12]前記[10]又は[11]のスラグ流を生成する方法を含む化学物質の処理方法。
[13]生成したスラグ流を液液分離する前記[12]の化学物質の処理方法。
[14]生成したスラグ流を気液分離してから液液分離する前記[13]の化学物質の処理方法。
[15]前記気液分離された気体に背圧を加えて流体全体の圧力を制御する前記[14]の化学物質の処理方法。
[1]複数の流体のスラグ流を生成するデバイスであって、
前記複数の流体をそれぞれ保持する複数の流体保持部、
逆止的に作動する吸引側の弁と吐出側の弁に挟まれた空間を画定する複数の筐体を有し、各筐体内の流体が交互に間欠的に圧送される往復動ポンプ、
前記複数の流体保持部と前記複数の筐体をそれぞれ接続する複数の吸引配管部、
前記複数の筐体と流体合流部をそれぞれ接続する複数の吐出配管部、及び、
前記流体合流部の下流に接続する流体滞留部を有するスラグ流の生成デバイス。
[2]前記往復動ポンプが、カムシャフトを用いた機械的な駆動方式により吸引と吐出を行う前記[1]のスラグ流の生成デバイス。
[3]前記流体滞留部で反応又は分離が行われる前記[1]又は[2]のスラグ流の生成デバイス。
[4]前記複数の筐体の少なくとも1つが、筐体内を流通する流体の液体状態を保つ温度調節機能を有する前記[1]~[3]のいずれか1のスラグ流の生成デバイス。
[5]前記スラグ流の一相が液化二酸化炭素であり、他の相が液体である前記[4]のスラグ流の生成デバイス。
[6]前記[1]~[5]のいずれか1のスラグ流の生成デバイスを備えた化学物質の処理装置。
[7]前記スラグ流の生成デバイスの下流に液液分離機構を有する前記[6]の化学物質の処理装置。
[8]前記スラグ流の生成デバイスと前記液液分離機構の間に気液分離機構を有する前記[7]の化学物質の処理装置。
[9]前記気液分離機構の上部には圧力制御機構を備えた気体排出管が接続され、下部には、前記液液分離機構に接続する液体排出管が接続されている前記[8]の化学物質の処理装置。
[10]逆止的に作動する吸引側の弁と吐出側の弁に挟まれた空間を画定する複数の筐体を有する往復動ポンプを用い、
複数の流体供給部と前記複数の筐体のそれぞれを接続する複数の吸引配管手段、及び前記複数の筐体のそれぞれと複数の流体の合流部を接続する複数の吐出配管手段を介して複数の流体を交互に間欠的に送液し、
前記合流部の下流に設けられた流体滞留部で前記複数の流体のスラグ流を生成する方法。
[11]前記往復動ポンプとしてカムシャフトを用いた機械的な駆動方式により吸引と吐出を行うポンプを用いる前記[10]のスラグ流を生成する方法。
[12]前記[10]又は[11]のスラグ流を生成する方法を含む化学物質の処理方法。
[13]生成したスラグ流を液液分離する前記[12]の化学物質の処理方法。
[14]生成したスラグ流を気液分離してから液液分離する前記[13]の化学物質の処理方法。
[15]前記気液分離された気体に背圧を加えて流体全体の圧力を制御する前記[14]の化学物質の処理方法。
本発明によれば、幅広い流量範囲でスラグ流を安定的に生成することができるので、スラグ流を利用した化学物質の製造装置をコンパクト化しつつ、高速処理を可能とする。
また、往復動ポンプの駆動方式が、モーターの回転に連動して偏心するカムシャフトによるものであるため、高い吐出圧が得られ、逆流の発生を防いで高精度な送液を実現することができる。
また、往復動ポンプの駆動方式が、モーターの回転に連動して偏心するカムシャフトによるものであるため、高い吐出圧が得られ、逆流の発生を防いで高精度な送液を実現することができる。
以下、本明細書で使用する用語について説明する。
ポンプの「逆止的に作動する吸引側の弁と吐出側の弁に挟まれた空間を画定する複数の筐体」を「ヘッド」という。
ポンプのヘッド数に応じた液体種を各ヘッドで供給し、一流体が流れている間はそれ以外の流体が流れていない圧送方法を「交互圧送」という。
一流体を一つ以上のヘッドで送液することを特徴とした一般的な圧送方法を「一液圧送」という。
ポンプの「逆止的に作動する吸引側の弁と吐出側の弁に挟まれた空間を画定する複数の筐体」を「ヘッド」という。
ポンプのヘッド数に応じた液体種を各ヘッドで供給し、一流体が流れている間はそれ以外の流体が流れていない圧送方法を「交互圧送」という。
一流体を一つ以上のヘッドで送液することを特徴とした一般的な圧送方法を「一液圧送」という。
本発明は、通常のスラグ流が、一つ以上のヘッドを有する1台のポンプで一流体を圧送する一液圧送を複数のポンプを組み合わせて行って生成されるのに対して、複数のヘッドを有する1台のポンプを用いて、一流体が流れている間はそれ以外の流体が流れていないように複数の流体を交互に間欠的に圧送する交互圧送によりスラグ流を生成する点に特徴を有する。
また、本発明は、前記スラグ流の滞留中で反応又は分離(抽出、吸収、晶析等)又は反応分離された化学物質を液液分離、必要に応じて気液分離することにより、化学物質の処理を可能とする点に特徴を有する。
以下、本発明の実施形態(以下、「本実施形態」という。)に基づいて説明するが、本発明は本実施形態に限定されるものではない。
また、本発明は、前記スラグ流の滞留中で反応又は分離(抽出、吸収、晶析等)又は反応分離された化学物質を液液分離、必要に応じて気液分離することにより、化学物質の処理を可能とする点に特徴を有する。
以下、本発明の実施形態(以下、「本実施形態」という。)に基づいて説明するが、本発明は本実施形態に限定されるものではない。
[スラグ流生成デバイス及びスラグ流生成方法]
複数のヘッドを有する往復動ポンプとして、1台のポンプに2つ以上のプランジャーを有するダブルプランジャーポンプ又は3連プランジャーポンプが既に知られている。これらのポンプは、複数のヘッドを有し、各プランジャーの往復動により各ヘッド内の流体を交互に送液し、各ヘッドからの流量変動を相殺し合い、脈動の発生を抑制する機構を内在している。しかし、通常、各ヘッドから送液される流体は同一であるから、これらのポンプの送液は定流量の一液圧送である。
複数のヘッドを有する往復動ポンプとして、1台のポンプに2つ以上のプランジャーを有するダブルプランジャーポンプ又は3連プランジャーポンプが既に知られている。これらのポンプは、複数のヘッドを有し、各プランジャーの往復動により各ヘッド内の流体を交互に送液し、各ヘッドからの流量変動を相殺し合い、脈動の発生を抑制する機構を内在している。しかし、通常、各ヘッドから送液される流体は同一であるから、これらのポンプの送液は定流量の一液圧送である。
本実施形態では、上記既知のポンプの脈動の抑制機構を利用し、各ヘッドにそれぞれ異なる流体を供給する。図3(a)、(b)に、プランジャーポンプを用いた場合の構成を示す。なお、前記往復動ポンプの駆動方式は、精密な送液が行われるように高い圧送力が得られる機械式であることが好ましく、モーターの回転に連動して偏心するカムシャフトによるものであることが好ましい。代表的には、上記のプランジャーポンプのほかにダイヤフラムポンプが挙げられる。
図4に、後述する本実施例に使用したプランジャーポンプと、往復動が圧電素子により電気式に行わるピエゾマイクロポンプ(PMP)との送液精度の比較を示す。前者の結果の一例が図4(a)であり、後者の結果の一例が図4(b)である。近似直線のR2値を指標とすると、前者はR2=1.0(>0.999)であり、後者のR2=0.968であることから、プランジャーポンプはPMPよりも送液精度が高いことがわかる。
図4に、後述する本実施例に使用したプランジャーポンプと、往復動が圧電素子により電気式に行わるピエゾマイクロポンプ(PMP)との送液精度の比較を示す。前者の結果の一例が図4(a)であり、後者の結果の一例が図4(b)である。近似直線のR2値を指標とすると、前者はR2=1.0(>0.999)であり、後者のR2=0.968であることから、プランジャーポンプはPMPよりも送液精度が高いことがわかる。
異なる流体としては、相溶する流体同士ではスラグ流を生成しないから、完全には相溶しない流体を組み合わせる。水相と油相の液-液であってよく、液相と気相の気-液でもよい。液相は液化ガス、例えば液化二酸化炭素であってもよい。超臨界流体、亜臨界流体、イオン液体が相溶しない流体のいずれか1つであってもよい。
流体の1つ以上が常温常圧で気体である場合、当該流体がポンプのヘッドを通過する際に液化するために、当該流体が通過するヘッドに当該流体の液体状態を保つ温度調節機能を有することが好ましい。
スラグ流を生成し得る好ましい気体としては、気液平衡温度が31℃度以下である二酸化炭素が挙げられる。
スラグ流を生成し得る好ましい気体としては、気液平衡温度が31℃度以下である二酸化炭素が挙げられる。
水相と二酸化炭素の組み合わせの一例として、ポンプ吐出時は液化二酸化炭素である場合が想定される。その場合、プロセスは二酸化炭素の臨界圧(7.4MPa)以上であることが好ましく、スラグ流領域の下流に背圧弁を設けて、ポンプから背圧弁までの圧力を制御することができる。二酸化炭素は高圧条件下でのみ、有機溶剤の代替が可能となるため、水相中の疎水性有価物は高圧二酸化炭素によって抽出されることが期待される。
前記複数の流体は、各流体を保持する複数の流体保持部(液体タンク又はガスボンベ等)と前記複数のヘッドを接続する複数の吸引配管部、及び前記各ヘッドと流体合流部を接続する複数の吐出配管部を介して、前記流体合流部へ交互に間欠的に圧送され、流体合流部の下流に接続する流体滞留部でスラグ流を生成することができる。
図5(a)、(b)に流体合流部の合流パターンを示す。ただし、衝突順序、衝突角θは図5に規定されるものではない。
前記流体滞留部では、液液反応、気液反応、固体触媒反応を含む反応、抽出、吸収、晶析等による分離、又は反応分離を行うことができる。
前記流体滞留部では、液液反応、気液反応、固体触媒反応を含む反応、抽出、吸収、晶析等による分離、又は反応分離を行うことができる。
[化学物質の処理装置及び処理方法]
本実施形態では、図6に示すように、スラグ流が生成された前記流体滞留部で反応、分離、又は反応分離が行われた後、前記流体滞留部の下流に液液分離器を配置し、また、必要に応じて、前記流体滞留部と前記液液分離器の間に気液分離器を配置して、化学物質を含む相を連続的に分離精製する。
気液分離器を配置する場合、気液分離器の上部には背圧弁を設けた気体排出管が接続され、下部には前記液液分離器に接続する液体排出管が接続される。
背圧弁によりポンプ出口から背圧弁の間の圧力を制御することができる。
本実施形態では、図6に示すように、スラグ流が生成された前記流体滞留部で反応、分離、又は反応分離が行われた後、前記流体滞留部の下流に液液分離器を配置し、また、必要に応じて、前記流体滞留部と前記液液分離器の間に気液分離器を配置して、化学物質を含む相を連続的に分離精製する。
気液分離器を配置する場合、気液分離器の上部には背圧弁を設けた気体排出管が接続され、下部には前記液液分離器に接続する液体排出管が接続される。
背圧弁によりポンプ出口から背圧弁の間の圧力を制御することができる。
以下、実施例及び比較例に基づいて本発明を具体的に説明するが、実施例は、本発明の好適な例を示すものであり、本発明は、実施例によって何ら限定されるものではない。
<実施例1>
カムシャフトにより駆動し、脈流を抑制する機構を有するダブルプランジャーポンプ(日本精密科学NP-KX-220P、プランジャー径4.6mm、ストローク長:5mm(1ストローク当たりの送液量0.0831mL))を用い、一方のヘッドの吸引側にA液としてトルエンを貯留するタンクを吸引配管を介して接続し、他方のヘッドの吸引側にB液として水を貯留するタンクを他の吸引配管を介して接続した。各ヘッドの吐出側には、それぞれの吐出配管を介して内径2mmのSUSティで構成されたA液とB液の合流部を接続した。前記合流部の下流に内径2mm、長さ30cmのガラスチューブからなる流体滞留部を接続した。
A液及びB液の各流量が、それぞれ0.5、1、2、4、6、8及び10mL/min相当となるように各プランジャーを往復動させて交互圧送し、前記流体滞留部における流動状態を目視でチェックした。
カムシャフトにより駆動し、脈流を抑制する機構を有するダブルプランジャーポンプ(日本精密科学NP-KX-220P、プランジャー径4.6mm、ストローク長:5mm(1ストローク当たりの送液量0.0831mL))を用い、一方のヘッドの吸引側にA液としてトルエンを貯留するタンクを吸引配管を介して接続し、他方のヘッドの吸引側にB液として水を貯留するタンクを他の吸引配管を介して接続した。各ヘッドの吐出側には、それぞれの吐出配管を介して内径2mmのSUSティで構成されたA液とB液の合流部を接続した。前記合流部の下流に内径2mm、長さ30cmのガラスチューブからなる流体滞留部を接続した。
A液及びB液の各流量が、それぞれ0.5、1、2、4、6、8及び10mL/min相当となるように各プランジャーを往復動させて交互圧送し、前記流体滞留部における流動状態を目視でチェックした。
<実施例2~4>
B液を、エタノール/水の体積比が1:1(実施例2)、2:1(実施例3)、3:1(実施例4)の溶液に変更した以外は、実施例1と同様に交互圧送した。
B液を、エタノール/水の体積比が1:1(実施例2)、2:1(実施例3)、3:1(実施例4)の溶液に変更した以外は、実施例1と同様に交互圧送した。
<比較例1~4>
実施例1と同じダブルプランジャーポンプを2台用い、一方のポンプの二つのヘッドにA液を供給し、他方のポンプの二つのヘッドにB液を供給し、各流量が実施例1と同じになるように各ポンプでA液及びB液を一液圧送した以外は実施例1~4と同様にして、比較例1とした。
また、B液をそれぞれ実施例2~4と同じ体積比のエタノール/水の溶液に変更した以外は、比較例1と同様に送液し、それぞれ比較例2~4とした。
実施例1と同じダブルプランジャーポンプを2台用い、一方のポンプの二つのヘッドにA液を供給し、他方のポンプの二つのヘッドにB液を供給し、各流量が実施例1と同じになるように各ポンプでA液及びB液を一液圧送した以外は実施例1~4と同様にして、比較例1とした。
また、B液をそれぞれ実施例2~4と同じ体積比のエタノール/水の溶液に変更した以外は、比較例1と同様に送液し、それぞれ比較例2~4とした。
<実施例5>
トルエンと、エタノール/水の体積比が1:1の液体とを同量混合後、分液し、トルエンリッチ液をA液、エタノールリッチ液をB液とした。すなわちA液とB液は完全に非相溶な二液である。このA液及びB液を実施例1と同様に1台のダブルプランジャーポンプを用いて交互圧送を行った。
トルエンと、エタノール/水の体積比が1:1の液体とを同量混合後、分液し、トルエンリッチ液をA液、エタノールリッチ液をB液とした。すなわちA液とB液は完全に非相溶な二液である。このA液及びB液を実施例1と同様に1台のダブルプランジャーポンプを用いて交互圧送を行った。
<比較例5>
実施例5と同じA液及びB液を、比較例1と同様に2台のダブルプランジャーポンプを用いて一液圧送した。
実施例5と同じA液及びB液を、比較例1と同様に2台のダブルプランジャーポンプを用いて一液圧送した。
図7~11に実施例1~5、及び比較例1~5の各液流量における流体滞留部における流動状態を示す。
図中、〇はスラグ流、●は下流でスラグ流発生、□は層状流、△は環状流を表し、サイズを問わず液滴が混ざった流動は‘(プライム)を付けた。
また、図12、13は、実施例1と比較例1、及び実施例3と比較例3において、各液流量が4mL/minのときの流体滞留部における流動状態の経時変化を、光電センサにより二値化された電位によって可視化したものである。スラグ流が安定な状態で流れれば、2相の交互流れを反映した規則的な矩形の電位変化を示す。
図中、〇はスラグ流、●は下流でスラグ流発生、□は層状流、△は環状流を表し、サイズを問わず液滴が混ざった流動は‘(プライム)を付けた。
また、図12、13は、実施例1と比較例1、及び実施例3と比較例3において、各液流量が4mL/minのときの流体滞留部における流動状態の経時変化を、光電センサにより二値化された電位によって可視化したものである。スラグ流が安定な状態で流れれば、2相の交互流れを反映した規則的な矩形の電位変化を示す。
図7によると、実施例1と比較例1では、各液の流量が0.5~10mL/minのいずれであってもスラグ流が発生したことがわかる。しかし、図12によると、比較例1では、スラグ流の交互周期が平均0.20secと短く、流体滞留部に引き続く化学物質の分離精製の困難性が予測される一方、実施例1では、平均1.24secと長周期の交互流が観察され、スラグ流中で反応、抽出等が行われた後の分離精製が容易であることが見て取れる。
図8によると、比較例2では、スラグ流を生成する流量範囲が狭く限られているが、実施例2では、1~10mL/minの流量でスラグ流が生成したことがわかる。図9における比較例3と実施例3の関係も同様であり、比較例3では、4mL/min以下の流量でないとスラグ流が生成しないが、実施例3では、8mL/minの流量まででスラグ流が生成したことがわかる。
また、図10によると、比較例2、3よりB液の有機分が多い比較例4(A液との極性、比重の差がより小さい)では、スラグ流が得られていないが、実施例4では、幅広い流量範囲でスラグ流の生成が見られたことがわかる。
また、図10によると、比較例2、3よりB液の有機分が多い比較例4(A液との極性、比重の差がより小さい)では、スラグ流が得られていないが、実施例4では、幅広い流量範囲でスラグ流の生成が見られたことがわかる。
実施例3の液滴を含むスラグ流について、流動状態の経時変化を図13で確認すると、A液とB液の交互送液に由来するとみられる平均1.27secの周期的な波形が見られた。一方、比較例3からは規則性のないランダムな波形しか得られなかった。
図11によると、トルエンリッチ、エタノールリッチの2相流においても、比較例5ではスラグ流の生成が殆ど見られなかったのに対して、実施例5では、1~10mL/minの流量範囲で、液滴を含むものの、スラグ流の生成が見られた。
本発明に係るスラグ流の生成デバイスは、幅広い流量範囲で精密度の高いスラグ流を安定的に生成することができるので、異なる流体間の物質移動を促進し、高品質な化学物質の合成反応が可能である。また、この生成デバイスの下流に液液分離機構、気液分離機構等を連結することにより、抽出分離等を高速、低コストで行うことが期待される。本発明により多種多様な機能性化学品を含む化学物質に関する反応から分離精製までのプロセスを連続的に行うことが可能となる。また、連続プロセスへの適用に限らず、バッチプロセスで実施される反応または抽出分離等に適用することで同様に高速、低コストで行うことが期待される。
Claims (15)
- 複数の流体のスラグ流を生成するデバイスであって、
前記複数の流体をそれぞれ保持する複数の流体保持部、
逆止的に作動する吸引側の弁と吐出側の弁に挟まれた空間を画定する複数の筐体を有し、各筐体内の流体が交互に間欠的に圧送される往復動ポンプ、
前記複数の流体保持部と前記複数の筐体をそれぞれ接続する複数の吸引配管部、
前記複数の筐体と流体合流部をそれぞれ接続する複数の吐出配管部、及び、
前記流体合流部の下流に接続する流体滞留部を有するスラグ流の生成デバイス。 - 前記往復動ポンプが、カムシャフトを用いた機械的な駆動方式により吸引と吐出を行う請求項1に記載のスラグ流の生成デバイス。
- 前記流体滞留部で反応又は分離が行われる請求項1又は2に記載のスラグ流の生成デバイス。
- 前記複数の筐体の少なくとも1つが、筐体内を流通する流体の液体状態を保つ温度調節機能を有する請求項1~3のいずれか1項に記載のスラグ流の生成デバイス。
- 前記スラグ流の一相が液化二酸化炭素であり、他の相が液体である請求項4に記載のスラグ流の生成デバイス。
- 請求項1~5のいずれかに記載のスラグ流の生成デバイスを備えた化学物質の処理装置。
- 前記スラグ流の生成デバイスの下流に液液分離機構を有する請求項6に記載の化学物質の処理装置。
- 前記スラグ流の生成デバイスと前記液液分離機構の間に気液分離機構を有する請求項7に記載の化学物質の処理装置。
- 前記気液分離機構の上部には圧力制御機構を備えた気体排出管が接続され、下部には前記液液分離機構に接続する液体排出管が接続されている請求項8に記載の化学物質の処理装置。
- 逆止的に作動する吸引側の弁と吐出側の弁に挟まれた空間を画定する複数の筐体を有する往復動ポンプを用い、
複数の流体供給部と前記複数の筐体のそれぞれを接続する複数の吸引配管手段、及び前記複数の筐体のそれぞれと複数の流体の合流部を接続する複数の吐出配管手段を介して複数の流体を交互に間欠的に送液し、
前記合流部の下流に設けられた流体滞留部で前記複数の流体のスラグ流を生成する方法。 - 前記往復動ポンプとしてカムシャフトを用いた機械的な駆動方式により吸引と吐出を行うポンプを用いる請求項10に記載のスラグ流を生成する方法。
- 請求項10又は11に記載のスラグ流を生成する方法を含む化学物質の処理方法。
- 生成したスラグ流を液液分離する請求項12に記載の化学物質の処理方法。
- 生成したスラグ流を気液分離してから液液分離する請求項13に記載の化学物質の処理方法。
- 前記気液分離された気体に背圧を加えて流体全体の圧力を制御する請求項14に記載の化学物質の処理方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021090993A JP2022183588A (ja) | 2021-05-31 | 2021-05-31 | スラグ流の生成デバイス、前記生成デバイスを備えた化学物質の処理装置、スラグ流の生成方法、及びスラグ流を用いた化学物質の処理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021090993A JP2022183588A (ja) | 2021-05-31 | 2021-05-31 | スラグ流の生成デバイス、前記生成デバイスを備えた化学物質の処理装置、スラグ流の生成方法、及びスラグ流を用いた化学物質の処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022183588A true JP2022183588A (ja) | 2022-12-13 |
Family
ID=84437897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021090993A Pending JP2022183588A (ja) | 2021-05-31 | 2021-05-31 | スラグ流の生成デバイス、前記生成デバイスを備えた化学物質の処理装置、スラグ流の生成方法、及びスラグ流を用いた化学物質の処理方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022183588A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7493115B1 (ja) | 2023-01-13 | 2024-05-30 | 株式会社トクヤマ | アミノ基含有化合物の製造方法、およびアミノ基含有化合物の分離方法 |
WO2024150477A1 (ja) * | 2023-01-13 | 2024-07-18 | 株式会社トクヤマ | アミノ基含有化合物の製造方法、アミノ基含有化合物の分離方法、およびアミノ基含有化合物の製造装置 |
-
2021
- 2021-05-31 JP JP2021090993A patent/JP2022183588A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7493115B1 (ja) | 2023-01-13 | 2024-05-30 | 株式会社トクヤマ | アミノ基含有化合物の製造方法、およびアミノ基含有化合物の分離方法 |
WO2024150477A1 (ja) * | 2023-01-13 | 2024-07-18 | 株式会社トクヤマ | アミノ基含有化合物の製造方法、アミノ基含有化合物の分離方法、およびアミノ基含有化合物の製造装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2022183588A (ja) | スラグ流の生成デバイス、前記生成デバイスを備えた化学物質の処理装置、スラグ流の生成方法、及びスラグ流を用いた化学物質の処理方法 | |
Jensen | Flow chemistry—microreaction technology comes of age | |
Bennett et al. | Role of continuous flow processes in green manufacturing of pharmaceuticals and specialty chemicals | |
Weeranoppanant et al. | Design of multistage counter-current liquid–liquid extraction for small-scale applications | |
Plouffe et al. | From Batch to Continuous Chemical Synthesis A Toolbox Approach | |
Haverkamp et al. | Hydrodynamics and mixer‐induced bubble formation in micro bubble columns with single and multiple‐channels | |
US7641871B2 (en) | Fine channel device and a chemically operating method for fluid using the device | |
US7032607B2 (en) | Capillary reactor distribution device and method | |
Leclerc et al. | Gas–liquid selective oxidations with oxygen under explosive conditions in a micro-structured reactor | |
Weeranoppanant | Enabling tools for continuous-flow biphasic liquid–liquid reaction | |
US20040156762A1 (en) | Micro-reactor for reactions between gases and liquids | |
JP5145559B2 (ja) | 流動調整装置、マイクロリアクター及びそれらの用途 | |
US10449509B2 (en) | Synthesis of organic peroxydes using an oscillatory flow mixing reactor | |
Yao et al. | Bubble/droplet formation and mass transfer during gas–liquid–liquid segmented flow with soluble gas in a microchannel | |
Liu et al. | Hydrodynamics and local mass transfer characterization under gas–liquid–liquid slug flow in a rectangular microchannel | |
CN1652865A (zh) | 流体反应器 | |
JP5749987B2 (ja) | 液体混合方法及び装置 | |
US20070274840A1 (en) | Magnetohydrodynamic pump | |
Singh et al. | Hydrodynamics and mass transfer studies of liquid-liquid two-phase flow in parallel microchannels | |
Wang et al. | Microdispersion of gas or water in an anthraquinone working solution for the H2O2 synthesis process intensification | |
Sheng et al. | Remarkable improvement of gas–liquid mass transfer by modifying the structure of conventional T‐junction microchannel | |
JP4687238B2 (ja) | 微小流路構造体 | |
WO2020044359A1 (en) | Dual function multiphase microreactor | |
A. Lapkin et al. | Solids in continuous flow reactors for specialty and pharmaceutical syntheses | |
JP2023013422A (ja) | スラグ流生成装置、前記スラグ流生成装置を備えた化学物質の処理装置、スラグ流生成方法、及びスラグ流を用いた化学物質の処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210708 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240509 |