WO2012174839A1 - 惰性阳极铝电解槽用不定型耐火耐蚀材料及其制作方法 - Google Patents
惰性阳极铝电解槽用不定型耐火耐蚀材料及其制作方法 Download PDFInfo
- Publication number
- WO2012174839A1 WO2012174839A1 PCT/CN2011/084443 CN2011084443W WO2012174839A1 WO 2012174839 A1 WO2012174839 A1 WO 2012174839A1 CN 2011084443 W CN2011084443 W CN 2011084443W WO 2012174839 A1 WO2012174839 A1 WO 2012174839A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resistant
- corrosion
- electrolytic cell
- aluminum electrolytic
- inert anode
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/66—Monolithic refractories or refractory mortars, including those whether or not containing clay
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
- C04B35/101—Refractories from grain sized mixtures
- C04B35/1015—Refractories from grain sized mixtures containing refractory metal compounds other than those covered by C04B35/103 - C04B35/106
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/74—Ceramic products containing macroscopic reinforcing agents containing shaped metallic materials
- C04B35/76—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/522—Oxidic
- C04B2235/5224—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/522—Oxidic
- C04B2235/5228—Silica and alumina, including aluminosilicates, e.g. mullite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
- C04B2235/5244—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
- C04B2235/5248—Carbon, e.g. graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/526—Fibers characterised by the length of the fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5264—Fibers characterised by the diameter of the fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5292—Flakes, platelets or plates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5463—Particle size distributions
- C04B2235/5481—Monomodal
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9669—Resistance against chemicals, e.g. against molten glass or molten salts
- C04B2235/9676—Resistance against chemicals, e.g. against molten glass or molten salts against molten metals such as steel or aluminium
Definitions
- the invention relates to the technical field of electrolytic cells, in particular to an amorphous fire-resistant and corrosion-resistant material for an inert anode aluminum electrolytic cell and a manufacturing method thereof. Background technique
- cryolite-alumina molten salt electrolysis method Since the advent of Hall-Heroult's cryolite-alumina molten salt electrolysis method, this method has been the mainstream method for industrial production of primary aluminum.
- the principle is that in the electrolytic cell, the cryolite-alumina molten salt is used as an electrolyte, and the direct current is generated, and the alumina in the molten salt is decomposed.
- Aluminum water is precipitated at the cathode, and a gas is evolved at the anode.
- the density of aluminum water is higher than that of the electrolyte.
- the aluminum water converges at the bottom of the electrolytic cell. When there is a certain amount, the aluminum water is taken out and poured into an aluminum ingot.
- the anode gas overflows, and is treated after being cleaned and dusted, and then drained or collected.
- the inert anode aluminum electrolysis cell is gradually moving from the laboratory to the industrialization through the pilot test.
- the inert anode aluminum cell has the incomparable advantages of traditional aluminum cells: the anode no longer needs to be replaced frequently; the emission is no longer co 2 but oxygen.
- more refractory and corrosion resistant materials are needed.
- areas that are not in direct contact with the electrolyte or electrolyte atmosphere require a refractory material.
- the area with the electrolyte atmosphere also needs to be insulated and sealed with refractory and corrosion resistant material.
- the inert anode is not easy to consume, special insulation measures can be taken to reduce the heat loss, and the overall energy consumption of the inert anode aluminum electrolytic cell is significantly reduced. At the same time, this is also the insulation type inert anode aluminum electrolytic cell compared with the heat-dissipating conventional aluminum electrolytic cell.
- the insulation of the upper part of the carbon anode aluminum electrolytic cell is formed by the electrolyte itself, and a layer of alumina or a broken coating (a shell of high alumina content) is added to the shell, thereby forming a hard layer. shell.
- This type of insulation is difficult to seal and has a large amount of heat dissipation.
- the heat from the upper part of the carbon anode aluminum electrolytic cell plus the heat taken away by the flue gas accounts for about 50% of the total heat dissipation.
- the theoretical minimum energy consumption of the carbon anode aluminum electrolysis cell is 6320 kW*h/t (A1).
- the carbon anode aluminum electrolysis cell with high technical level has a ton of aluminum direct current energy. Consumption
- the theoretical minimum energy consumption of the inert anode aluminum electrolysis cell is 9240 kW*h/t (A1), which is higher than that of the carbon anode aluminum electrolysis cell.
- the inert anode aluminum electrolytic cell can dominate the overall energy consumption by reducing the heat loss, especially the heat loss in the upper part.
- a special refractory and corrosion-resistant material is used above the electrolyte liquid surface for heat preservation and sealing, so that the electrolyte is not naturally crusted, so that the entire electrolytic cell is in a "insulation type" groove, and the total heat loss is greatly reduced.
- the integrated energy consumption of the inert anode aluminum electrolytic cell will not be higher or lower than that of the existing pre-baked carbon anode aluminum electrolytic cell because of the more compact design.
- the upper insulation and sealing area of the inert anode aluminum electrolytic cell directly faces the molten electrolyte surface, high temperature (750 ⁇ 960 °C), strong corrosion (hydrofluoric acid, fluoride), strong oxidation (hot oxygen) environment for common materials. Corrosion can be very serious. At present, there is still no precedent for the practice of using the "artificial" method to directly heat and seal the upper part of the industrial aluminum electrolytic cell, especially the upper surface of the electrolyte, with the fire-resistant and corrosion-resistant material, so that the electrolyte does not crust and reduce the heat dissipation. .
- Electrolyte erosion is mainly manifested by dissolution, erosion and infiltration.
- materials containing silicon such as dry anti-seepage materials
- sodium fluoride and aluminum oxide in the electrolyte can combine with silica to form dense celsian, which can prevent further electrolyte penetration.
- Leak The corrosion of the electrolyte atmosphere is mainly manifested by destroying the structural structure of the material and changing the material properties.
- Hydrofluoric acid is particularly resistant to corrosion of materials.
- hydrofluoric acid or hydrogen fluoride gas can be combined with silicon to form silicon tetrafluoride. Silicon tetrafluoride overflows in the form of gas, and the material is powdered due to the loss of silicon.
- the electrolyte atmosphere of the inert anode aluminum electrolytic cell also contains a relatively high concentration of hot oxygen, which has strong oxidizing properties and is highly destructive to materials.
- materials with a high alumina content can resist the erosion of the electrolyte atmosphere for a considerable period of time.
- the material is required to have higher purity, lower porosity, and less impurity content, especially silicon (Si) content.
- Si silicon
- it must be convenient to construct and use, such as products with special shapes and different sizes, especially large-sized products that can be used as structural parts. It is also necessary to have sufficient strength and thermal shock resistance of the product.
- the cost of materials is relatively low.
- alumina ceramics and corundum products have relatively good corrosion resistance and can withstand corrosion of the electrolyte atmosphere for a considerable period of time.
- alumina ceramics and corundum products are difficult to manufacture into large-sized structural members, and the cost thereof is extremely high, and it is difficult to fully satisfy the requirements for use in thermal shock resistance, strength, and processing properties.
- High-alumina or corundum-shaped amorphous refractories have good workability and can be made into any desired shape as needed. At present, there are many types of unshaped refractories and their applications are also very extensive. Especially in the chemical industry and the steel industry. Application number is 01127472.7,
- Chinese patents such as 03113430.0, 200710055137.7, 200810121973.5, etc. describe the production method of acid-resistant or acid-resistant castables. Such castables are resistant to acid attack, but not to hydrofluoric acid. The content of silica in the material is high, and the corrosion of hydrofluoric acid is not very good, and there is no special explanation.
- the Chinese patents with application numbers 9910009.0, 200710189608.3, 200710052986.7, etc. describe refractory castables suitable for ladle and furnace lining.
- 200910064721.8 discloses a self-flowing castable for filling a back wall of an aluminum electrolytic cell.
- the patent says: The self-flowing castable is compounded by silicon carbide material, high aluminum material, silicon micro powder, aluminum micro powder and calcium aluminate cement.
- the content of silicon carbide material is relatively high, accounting for 72% ⁇ 80% of the total weight. It has good resistance to electrolyte corrosion in the electrolytic cell. This patent does not describe its ability to resist the erosion of an electrolyte atmosphere.
- Chinese Patent Application No. 200310121170.7 discloses a method of preparing a refractory castable. This patent focuses on the proportioning of the various materials in the castable and the way in which it is compounded. Although the material is mainly made of sintered plate-like corundum with higher purity, and no micro-powder is added, the purity of the whole is not explained, and the corrosion resistance is not described, and more aluminate cement is used in the formulation. 5 ⁇ 10%), not only will introduce more impurities, but also reduce the temperature intensity. The medium temperature strength (750 ⁇ 960 °C) of the material is also not described in the text.
- This patent has certain similarities with this patent, but it is fundamentally different.
- the structural components referred to in this patent while in contact with the electrolyte atmosphere, directly face the electrolyte surface crust, rather than the molten electrolyte surface.
- the structural member mainly functions to seal and collect the flue gas, like the gas collecting hood and the trough cover of the existing pre-baked carbon anode aluminum electrolytic cell. In this way, the environmental temperature and the concentration of the flue gas atmosphere are greatly reduced, and the corrosion resistance of the material is also greatly reduced.
- the technical problem to be solved by the present invention is to provide an amorphous fire-resistant and corrosion-resistant material for an inert anode aluminum electrolytic cell capable of effectively reducing the heat loss of the inert anode aluminum electrolytic cell, thereby reducing the comprehensive energy consumption of the inert anode aluminum electrolytic cell and Production Method.
- the present invention provides an amorphous type refractory and corrosion-resistant material for an inert anode aluminum electrolytic cell, which is made of sintered plate-shaped corundum particles, and is selected from the group consisting of sintered plate-shaped corundum fine powder and magnesium aluminum spinel.
- a method of preparing an amorphous refractory corrosion resistant material for an inert anode aluminum electrolytic cell comprising separately mixing aggregates and substrates of different size fractions, followed by stirring and mixing.
- a method for preparing an amorphous fire-resistant and corrosion-resistant material for an inert anode aluminum electrolytic cell comprising agitating and mixing the aggregate uniformly; and dispersing alumina and The pure calcium aluminate cement needs to be premixed and then mixed with other powder materials in the matrix.
- a method for preparing an amorphous fire-resistant and corrosion-resistant material for an inert anode aluminum electrolytic cell comprises mixing the aggregate, the matrix and the fiber at a use site, adding water and stirring, using clean tap water.
- the water temperature is greater than 5 °C
- the ambient temperature of the construction site is greater than 5 °C, after 16-48 hours of curing after pouring, demoulding and drying.
- the molten electrolyte is not crusted, and the heat loss of the inert anode aluminum electrolytic cell can be effectively reduced, thereby reducing the comprehensive energy consumption of the inert anode aluminum electrolytic cell.
- An amorphous refractory corrosion-resistant material for an inert anode aluminum electrolytic cell characterized in that the material is made of sintered slab-shaped corundum granules, selected from sintered plate-shaped corundum fine powder, magnesium aluminum spinel fine powder, and having different particle size distributions.
- Multi-peak calcined alumina micropowder, activated alumina micropowder, active ⁇ - ⁇ 1 2 3 micropowder, dispersible alumina micropowder and several powders of pure calcium aluminate cement as matrix, fiber is used for reinforcement and toughening Agent, made by compounding.
- the proportion of the weight of the sintered corrugated corundum particles is 68% to 72%; the proportion of the powder of the matrix is 28% to 32%; the proportion of the weight of the reinforcing and toughening fibers It is 0% ⁇ 2%; the balance is the powder of the matrix.
- the weight ratio composition of the aggregated slab-shaped corundum granules includes: 0% to 30% of sintered plate-shaped corundum granules with a particle size of 3-6 mm; and 18-46 of sintered slab-shaped corundum granules with a particle size of l-3 mm %; sintered plate-shaped corundum particles with a particle size of 0-lmm 12% ⁇ 25%; sintered plate-shaped corundum particles with a particle size of 0-0.5mm 0% ⁇ 6%.
- the weight ratio composition of the matrix powder includes: 8% ⁇ 18% of sintered plate-shaped corundum powder with particle size ⁇ 0.045 mm; 0% ⁇ 5% of spinel fine powder; 2% ⁇ 12% of calcined alumina fine powder; Alumina micro 0% ⁇ 2%; active p - A1 2 0 3 fine powder 0% ⁇ 5%; dispersed alumina fine powder 1%; pure calcium aluminate cement 2% ⁇ 5%.
- the multimodal calcined alumina fine powder has an average particle size of less than 0.02 mm.
- the average particle size of the activated alumina fine powder is less than 0.0012 mm.
- the average particle size of the active p-A1 2 0 3 fine powder is less than 0.005 mm.
- the particle size of the dispersed alumina fine powder is less than 0.010 mm.
- the powdery material of the matrix has a comprehensive purity of more than 95%, a silicon content of less than 0.1%, a calcium oxide content of less than 1.5%, a sodium oxide content of less than 0.5%, and an iron oxide content of less than 0.1%.
- the fiber is one or more of carbon fiber, silicon carbide fiber, aluminum silicate fiber, alumina fiber, and aluminum fiber.
- the fiber diameter is less than lOOum and the length is less than 2mm.
- Each material was configured in the following weight ratios.
- the weight ratio composition of the aggregated slab corundum granules comprises: 30% of sintered plate-shaped corundum particles having a particle diameter of 3-6 mm; 22% of sintered plate-shaped corundum particles having a particle diameter of l-3 mm; and a particle size of 0 -1 mm sintered plate-shaped corundum particles 12%; sintered plate-shaped corundum particles having a particle diameter of 0-0.5 mm 6%;
- the weight ratio composition of the matrix powder includes: sintered plate-shaped corundum fine powder having a particle diameter of 0.045 mm; 13%; calcined alumina fine powder 8%; activated alumina fine powder 2%; active p-alumina fine powder 2%; dispersive oxidation Aluminum powder 1%; pure calcium aluminate cement 4%.
- test results of the unshaped refractory and corrosion-resistant castables configured in this embodiment show that: the water content is 4.48 wt%, the fluidity is good, and no segregation; the bulk density at 33 ° C for 24 h is 3.312 g/cm 3 , and the open porosity of the surface is 10.8%.
- the weight ratio composition of the aggregated slab corundum granules includes: 28% of sintered plate-shaped corundum particles having a particle diameter of 3-6 mm; 26% of sintered plate-shaped corundum particles having a particle diameter of l-3 mm; -1 mm sintered plate-shaped corundum particles 16%.
- the weight ratio composition of the matrix powder includes: 10% of sintered plate-shaped corundum fine powder having a particle diameter of 0.045 mm; 4% of magnesium aluminum spinel fine powder having a particle diameter of 0.045 mm; 8% of calcined alumina; activated alumina Micropowder 2%; active p alumina fine powder 1%; dispersible alumina micropowder 1%; pure calcium aluminate cement 4%.
- the amorphous fire-resistant and corrosion-resistant castable configured in this embodiment has the test results:
- the weight ratio composition of the aggregated corrugated corundum particles comprises: 46% of sintered plate-shaped corundum particles having a particle diameter of l-3 mm; 15% of magnesium aluminum spinel particles having a particle diameter of 0.5-lmm; and a particle size of 0- 0.5 mm magnesium aluminum spinel particles 10%; magnesium aluminate spinel particles having a particle size of 0.045 mm 5%.
- the weight ratio composition of the matrix powder includes: 9% of sintered plate-shaped corundum fine powder having a particle diameter of 0.045 mm; 6% of calcined alumina fine powder; 2% of activated alumina fine powder; 1% of activated p alumina fine powder; and dispersive oxidation Aluminum micropowder 1%; pure calcium aluminate cement 5%.
- test results of the unshaped refractory and corrosion-resistant castables configured in this embodiment show that: the water addition amount is 4.8 wt%, the fluidity is good, and no segregation; the bulk density at 33 ° C for 24 h is 3.310 g/cm 3 , and the open porosity of the surface is 12.9%.
- flexural strength 16.8MPa compressive strength 118.2MPa
- 750 °C burned 24h surface without crack flexural strength 12.8MPa
- compressive strength 94MPa 750 °C cyclic air cooling 30 times, bending strength 11.4MPa, withstand voltage
- the strength is 79MPa; the surface of the electrolyte is placed at 800 °C for 48h without cracks, no powder, no obvious corrosion, the surface porosity is 13.4%, the flexural strength is 11.2MPa, and the compressive strength is 88MPa.
- the alumina fiber has an A1 2 0 3 content of > 80% by weight.
- the weight ratio composition of the aggregated slab corundum granules includes: 28% of sintered plate-shaped corundum particles having a particle diameter of 3-6 mm; 18% of sintered plate-shaped corundum particles having a particle diameter of l-3 mm; -1 mm sintered plate-shaped corundum particles 25%.
- the weight ratio composition of the matrix powder comprises: 8% of the sintered plate-shaped corundum fine powder having a particle diameter of 0.045 mm; 5% of the magnesium-aluminum spinel fine powder having a particle diameter of 0.045 mm; 8% of the calcined alumina fine powder; Alumina fine powder 2%; Dispersible alumina fine powder 1%; Pure calcium aluminate cement 4.8%.
- the mass percentage of alumina fibers was 0.2%.
- test results of the unshaped refractory and corrosion-resistant castables configured in this embodiment show that: the added water content is 4.5 wt%, the fluidity is good, and no segregation; the bulk density at 32 ° C for 24 h is 3.298 g/cm 3 , and the open porosity of the surface is 12.4%.
- the weight ratio composition of the aggregated slab corundum granules comprises: 28% of the sintered plate-shaped corundum particles having a particle diameter of 3-6 mm; 26% of the sintered plate-shaped corundum particles having a particle diameter of l-3 mm; 1 mm of sintered plate-shaped corundum particles are 15%.
- the weight ratio composition of the aggregated slab corundum granules comprises: a sintered plate-shaped corundum fine powder having a particle diameter of 0.045 mm; 15%; a magnesium-aluminum spinel fine powder having a particle diameter of 0.045 mm; 5%; a calcined alumina fine powder of 2%; Active p alumina fine powder 5%; dispersible alumina fine powder 1%; pure calcium aluminate cement 2%.
- the mass percentage of aluminum fiber is 1%.
- the weight ratio composition of the aggregated slab corundum granules comprises: 28% of sintered plate-shaped corundum particles having a particle diameter of 3-6 mm; 26% of sintered plate-shaped corundum particles having a particle diameter of l-3 mm; -lmm of sintered plate-shaped corundum particles 16%.
- the weight ratio composition of the matrix powder includes: sintered plate-shaped corundum fine powder of particle diameter 0.045 mm 13%; calcined alumina fine powder 6%; activated alumina fine powder 2%; active p alumina fine powder 1%; dispersive oxidation Aluminum micropowder 1%; pure calcium aluminate cement 5%.
- the mass percentage of heat resistant steel fiber is 2%;
- test results of the amorphous fire-resistant and corrosion-resistant castables configured in this embodiment show that: the water addition amount is 4.5 wt%, the fluidity is good, the segregation is not performed, the fibers are uniformly dispersed; the bulk density is dried at 110 ° C for 24 hours.
- This embodiment provides a method for preparing an amorphous fire-resistant and corrosion-resistant material for an inert anode aluminum electrolytic cell by separately mixing the aggregates and the matrix of different particle sizes, and then mixing them by stirring.
- This embodiment provides a method for preparing an amorphous fire-resistant and corrosion-resistant material for an inert anode aluminum electrolytic cell.
- the method comprises the following steps: First, the aggregate is mixed in a mixer. Then, the dispersible alumina and the pure calcium aluminate cement need to be premixed, and then mixed with other powdery materials in the matrix into the mixer for uniform mixing.
- This embodiment provides a method for preparing an amorphous fire-resistant and corrosion-resistant material for an inert anode aluminum electrolytic cell by mixing the aggregate, the matrix and the fiber at the use site, adding water to the mixer for stirring, using clean tap water or purified water.
- the water temperature is greater than 5 °C
- the ambient temperature of the construction site is greater than 5 °C
- the mold is demolded and dried.
- the amorphous fire-resistant and corrosion-resistant material prepared by the above specific embodiment has the characteristics of good fluidity, no segregation and easy construction. More importantly, the material has high density, low porosity, smooth cut surface, no crack, high corrosion resistance (except for Example 6), high thermal strength, good thermal shock resistance and long service life. The advantages are relatively low cost.
- the anti-corrosion test experimental condition in this embodiment is that the material directly faces the molten electrolyte liquid surface, the distance from the electrolyte liquid surface is less than 2 cm, the temperature is 800 ° C, and the electrolyte surface has no crust.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
一种惰性阳极铝电解槽用不定形耐火耐蚀材料。该材料的制备方法是:采用烧结板状刚玉颗粒做骨料,用选自烧结板状刚玉细粉、镁铝尖晶石细粉、具有不同粒度分布的多峰煅烧氧化铝微粉、活性氧化铝微粉、活性ρ-Αl2O3微粉、分散性氧化铝微粉以及纯铝酸弼水泥中的几种粉状物做基质,选用纤维做增强、增韧剂,进行混配而成。这种不定形耐火耐蚀材料,能较好抵抗电解质气氛腐蚀,具有热态强度高、抗热震性能好、易实施、使用周期长、成本相对较低等优点,适用于工业化惰性阳极铝电解槽的保温和密封,特别是用于电解槽上部,直接面对熔融电解质液面,有电解质气氛侵蚀的区域。
Description
惰性阳极铝电解槽用不定型耐火耐蚀材料及其制作方法 技术领域
本发明涉及电解槽技术领域, 特别涉及一种惰性阳极铝电解槽用不定 型耐火耐蚀材料及其制作方法。 背景技术
自 Hall-Heroult的冰晶石-氧化铝熔盐电解法问世以来, 该方法一直是 工业上生产原铝的主流方法。 其原理是在电解槽中, 以冰晶石 -氧化铝熔盐 做电解质, 通直流电, 熔盐中的氧化铝分解。 在阴极析出铝水, 在阳极析 出气体。 铝水密度高于电解质, 铝水在电解槽底部汇聚, 当有一定的量后, 取出铝水浇注成铝锭。 阳极气体溢出, 经净化除尘后排空或收集等处理。
随着工业技术的不断进步, 铝电解槽也有了很大的发展。 目前以炭阳 极为主要特征的预焙阳极铝电解槽, 成为当今铝工业的主流槽型。 预焙阳 极铝电解槽在不断的向大型化、 自动化、 高电流效率、 高寿命、 低能耗等 方向发展。 500kA大型铝电解槽已经成功投运, 600kA大型铝电解槽也在 试验中; 国内外已有较多铝厂其电流效率在 95%以上, 槽寿命超过 3000 天, 直流电耗已降低到 13000kW.h/t ( A1 ) 以下。
尽管预焙阳极铝电解技术已经取得了较好的指标, 但其自身有着固有 的缺陷: 如消耗性炭阳极需要定期更换, 不仅给操作带来较大的工作量, 也给碳素资源带来了很大的压力; 原铝电解和阳极焙烧生产过程排放大量 的 C02, 每生产 1吨铝约排放 1.8吨以上的 C02, 同时由于阳极效应产生 的强温室气体, 实际吨铝直接当量 C02的排放量超过 2.5吨。 这严重违背 了"低碳"经济的理念; 生产过程高能耗, 尽管直流电耗可降低到
13000kW«h/t ( A1 ) 以下, 但其能量利用率仍然仅有 50%左右。
随着科技的进一步发展, 惰性阳极铝电解槽正在逐步的从试验室通过 中试走向工业化。 惰性阳极铝电解槽有着传统铝电解槽不可比拟的优势: 阳极不再需要频繁更换; 排放的不再是 co2而是氧气。 然而, 对于惰性阳
极铝电解槽的建设, 需要用到较多的耐火耐蚀材料。 除了炉膛内衬外侧和 底部, 那些不直接接触电解质或电解质气氛的区域需要耐火耐蚀材料。 在 炉膛的上部, 有电解质气氛的区域, 也需要用耐火耐蚀材料进行保温和密 封。正是由于惰性阳极不易消耗, 因而可采取特殊保温措施减少散热损失, 显著降低惰性阳极铝电解槽的综合能耗, 同时这也是保温型惰性阳极铝电 解槽相比于散热型传统铝电解槽的优势。
炭阳极铝电解槽上部的保温是靠电解质自身形成结壳, 在结壳上添加 上一层氧化铝或破碎好的覆盖料(氧化铝含量很高的结壳块) , 从而形成 的一层硬壳。 这种保温方式, 难以密封, 散热量很大。 炭阳极铝电解槽上 部散热加上烟气带走的热量, 占总散热量的 50%左右。 炭阳极铝电解槽的 理论最低能耗为 6320kW*h/t ( A1 ) , 然而, 由于炭阳极铝电解槽散热过多, 使得具有较高技术水平的炭阳极铝电解槽, 其吨铝直流能耗也在
13000kW«h左右。
惰性阳极铝电解槽的理论最低能耗为 9240kW*h/t ( A1 ) , 高于炭阳极 铝电解槽。 但惰性阳极铝电解槽可通过降低散热损失, 特别是上部的热损 失, 反而在综合能耗方面占优势。 在电解质液面上方采用特殊的耐火耐蚀 材料进行保温和密封, 不让电解质自然结壳, 使电解槽整体呈"保温型 "槽, 总的散热损失会大大降低。 同时由于可以实现更紧凑的设计, 那么惰性阳 极铝电解槽的综合能耗将会不高于甚至低于现有预焙炭阳极铝电解槽。
惰性阳极铝电解槽上部保温和密封区域直接面对熔融电解质液面, 高 温( 750~960°C ) 、 强腐蚀(氢氟酸、 氟化物) 、 强氧化(热氧气) 的环境 对普通材料的腐蚀会非常严重。 目前, 采用"人为"的方式对工业化铝电解 槽上部, 特别是电解质液面上方, 用耐火耐蚀材料直接对其进行保温和密 封, 使电解质不结壳, 来降低散热的做法, 仍没有先例。
电解质对材料的侵蚀和电解质气氛对材料的侵蚀有很大不同。 电解质 的侵蚀主要表现为溶解、 冲刷和渗透。 在密闭的条件下, 如电解槽底部, 为预防电解质侵蚀或电解质渗漏, 往往采用含硅元素的材料(如干式防渗 料) 。 一方面因为其在电解质中的溶解度小, 再者电解质中的氟化钠、 氧 化铝可以与二氧化硅结合形成致密的霞长石, 能够阻止电解质的进一步渗
漏。 电解质气氛的腐蚀主要表现为破坏材料结构组织, 改变材料性能。 在 电解质气氛中有氟化氢气体, 它可以和水蒸气形成氢氟酸。 氢氟酸对材料 的腐蚀特别强。 对于含硅的材料, 氢氟酸或氟化氢气体可以与硅元素结合 生成四氟化硅, 四氟化硅以气体形态溢出,材料便会因硅元素流失而粉化。 并且, 惰性阳极铝电解槽的电解质气氛中还含有浓度较高的热氧气, 具有 很强的氧化性, 对材料的破坏性也很大。
针对电解质气氛的腐蚀特性, 并结合我们以往的试验结果, 采用高氧 化铝含量的材料可以在相当长的时间内抵抗电解质气氛的侵蚀。 但需要该 材料有较高的纯度、 较低的气孔率, 极少的杂质含量, 特别是硅(Si ) 的 含量。 同时结合施工的要求, 必须能够方便施工和使用, 如制作成特殊形 状, 尺寸大小不同的制品, 特别是可以做结构件使用的大尺寸制品。 还需 要制品有足够的强度和抗热震性能。 此外, 考虑工业化应用, 材料的成本 也要相对较低。
高纯氧化铝陶瓷和刚玉制品, 有相对较好的抗腐蚀性, 能够在相当长 的时间内抵抗电解质气氛的侵蚀。 然而氧化铝陶瓷和刚玉制品很难制作成 大尺寸的结构件, 其成本极高, 且抗热震性能、 强度、 加工性能等难以全 部满足使用要求。
高氧化铝含量或刚玉质的不定型耐火材料, 有良好的施工性能, 可以 根据需要制作成任意需要的形状。 目前不定型耐火材料种类繁多, 用途也 非常广泛。 特别是在化工行业和钢铁行业。 申请号为 01127472.7、
03113430.0、 200710055137.7、 200810121973.5等的中国专利, 阐述了耐酸 或耐酸碱的浇注料制作方法。 此类浇注料耐酸侵蚀, 但都不针对氢氟酸, 其材料中二氧化硅的含量均较高, 对氢氟酸的侵蚀不会很好, 也没有特别 说明。 申请号为 9910009.0、 200710189608.3、 200710052986.7等的中国专 利, 阐述了适用于钢包和加热炉内衬的耐火浇注料。
现有的高铝和刚玉质不定型耐火材料还没有用与抵抗电解质气氛腐蚀 的产品, 其纯度往往难以满足需求。 此外, 由于使用温度在 960°C以下, 正好处于该类材料的低强度区域, 特别是铝酸盐水泥结合的材料。 此类产 品为了增加浇注料的热强度,特别是中温强度,往往添加有硅微粉(Si02 )。
这在电解质气氛中, 特别是氢氟酸的作用下, 很快就会被腐蚀而粉化。 申请号为 200910064721.8的中国专利申请公开了,铝电解槽侧墙背缝 填充用自流浇注料。 该专利所述: 其自流浇注料由碳化硅料、 高铝料、 硅 微粉、 铝微粉、 铝酸钙水泥混配而成, 碳化硅料含量较高, 占总重量的 72%~80% , 具有较好的抗电解槽内电解质侵蚀的能力。 该专利没有说明其 抗电解质气氛的侵蚀能力。
申请号为 200310121170.7的中国专利申请公开了, 一种耐火浇注料的 制备方法。 该专利重点阐述了浇注料中各种物料的配比范围, 以及混配的 方式。尽管其物料主要采用纯度较高的烧结板状刚玉,也没有添加硅微粉, 但对整体的纯度没有说明, 也没有阐述其耐腐蚀性, 并且其配方中采用了 较多的铝酸盐水泥 (5~10% ) , 不仅会引入较多的杂质, 而且会使其中温 强度下降较多。 文中也没有对材料的中温强度( 750~960°C ) 进行说明。
申请号为 US 5 , 582, 695的美国专利申请公开了, Structural parts for electrolytic reduction cells for aluminum。该专利重点阐述了一种自、培阳极 4吕 电解槽上用于密封阳极和电解槽边部空间的结构部件, 该结构部件用金属 材料制作, 内层用耐火混凝土包裹。 在电解槽运行时接触电解质气氛。 耐 火混凝土成分包括 15%~30%的水泥, 5%~10%的二氧化硅微粉, 65%~85% 的耐火材料。
该专利与本专利有一定的相似之处, 但有本质上的不同。 该专利中所 指的结构部件, 虽然接触电解质气氛, 但其长期直接面对的是电解质表面 结壳, 而不是熔融态的电解质液面。 该结构件主要起到密封和收集烟气的 作用, 如同现有预焙炭阳极铝电解槽的集气罩和槽盖板。 如此作用, 其环 境温度、 烟气气氛的浓度都大幅降低, 则对材料的耐腐蚀性要求也大幅降 低。
因此, 仍然需要一种能够长期直接面对熔融电解质液面, 能够有较好 的耐氟化氢和其他氟化物挥发份腐蚀、 较高的热强度(中温强度) 、 良好 的抗热震性的材料。 此外还需要能够易实施, 成本相对较低, 能够满足工 业化惰性阳极铝电解槽生产的需要。
发明内容
本发明所要解决的技术问题是提供一种能够有效的降低惰性阳极铝电 解槽的散热损失, 从而降低惰性阳极铝电解槽的综合能耗的惰性阳极铝电 解槽用不定型耐火耐蚀材料及其制作方法。
为解决上述技术问题, 本发明提供了一种惰性阳极铝电解槽用不定型 耐火耐蚀材料, 采用烧结板状刚玉颗粒做骨料, 用选自烧结板状刚玉细粉、 镁铝尖晶石细粉、 具有不同粒度分布的多峰煅烧氧化铝微粉、 活性氧化铝 微粉、 活性 P -A1203微粉、 分散性氧化铝微粉以及纯铝酸钙水泥中的几种 粉状物做基质, 选用纤维做增强、 增韧剂, 进行混配而成。
根据本发明的另一个方面, 提供一种制备惰性阳极铝电解槽用不定型 耐火耐蚀材料的方法, 包括将不同粒级的骨料和基质分别单独混合好后, 再搅拌均勾混合。
根据本发明的另一个方面,提供一种制备权利要求 1-13任一项惰性阳 极铝电解槽用不定型耐火耐蚀材料的制备方法,包括将骨料搅拌混合均匀; 将分散性氧化铝和纯铝酸钙水泥需要预混后, 再与基质中的其它粉状料搅 拌均勾混合。
根据本发明的另一个方面, 提供一种惰性阳极铝电解槽用不定型耐火 耐蚀材料的制备方法, 包括在使用现场将所述骨料、基质及纤维进行混合, 加水搅拌, 用干净的自来水或纯净水, 水温大于 5 °C , 施工现场的环境温 度大于 5 °C , 浇筑后养护 16— 48小时后, 脱模并进行烘干处理。
本发明的惰性阳极铝电解槽用不定型耐火耐蚀材料, 具有以下优点:
( 1 )纯度高、 耐腐蚀性好, 可以以长期直接面对熔融电解质液面, 能 够抵抗高温、 高浓度电解质气氛的侵蚀。
( 2 )致密度高, 开口气孔率小, 切开后断面光滑、 致密、 无裂纹, 颗 粒 4非布均匀。
( 3 )常温强度高, 中温强度下降比例小, 抗热震性能好。 配置出的大 部分材料在 750°C下, 空冷可达 50次以上外观完整无裂纹, 水冷 30次以 上外观完整无裂纹。 特别适用于电解槽上部, 直接面对电解质液面, 有电 解质气氛的部位的, 具有较高的抗腐蚀性, 热态强度高、 抗热震性能好、
易实施、 使用周期长、 成本相对较低等优点。 通过使用该材料进行保温和 密封, 使熔融态的电解质不结壳, 能够有效的降低惰性阳极铝电解槽的散 热损失, 从而降低惰性阳极铝电解槽的综合能耗。 具体实施方式
惰性阳极铝电解槽用不定型耐火耐蚀材料, 其特征在于该材料采用烧 结板状刚玉颗粒做骨料, 用选自烧结板状刚玉细粉、 镁铝尖晶石细粉、 具 有不同粒度分布的多峰煅烧氧化铝微粉、 活性氧化铝微粉、 活性 ρ -Α1203 微粉、 分散性氧化铝微粉以及纯铝酸钙水泥中的几种粉状物做基质, 选用 纤维做增强、 增韧剂, 进行混配而成的。
其中, 烧结板状刚玉颗粒所占的重量比例为 68%~72%; 做基质的粉状 物所占的重量比例为 28%~32%; 做增强、增韧剂的纤维所占的重量比例为 0%~2%; 余量为做基质的粉状物。
做骨料烧结板状刚玉颗粒中重量比组成包括:粒径为 3-6mm的烧结板 状刚玉颗粒料 0%~30%; 粒径为 l-3mm的烧结板状刚玉颗粒料 18%~46%; 粒径为 0-lmm的烧结板状刚玉颗粒料 12%~25%; 粒径为 0-0.5mm的烧结 板状刚玉颗粒料 0%~6%。
做基质粉状物中重量比组成包括: 粒径 <0.045 mm烧结板状刚玉细粉 8%~18%; 尖晶石细粉 0%~5%; 煅烧氧化铝微粉 2%~12%; 活性氧化铝微 0%~2%; 活性 p - A1203微粉 0%~5%; 分散性氧化铝微粉 1 %; 纯铝酸 钙水泥 2%~5%。 多峰煅烧氧化铝微粉的平均粒度为小于 0.02mm。 活性氧 化铝微粉的平均粒度为小于 0.0012mm。 活性 p - A1203微粉的平均粒度为 小于 0.005mm。 分散性氧化铝微粉的粒度为小于 0.010mm。 作基质的粉状 料的氧化铝综合纯度大于 95% , 硅元素含量小于 0.1 % , 氧化钙含量小于 1.5% , 氧化钠含量小于 0.5% , 氧化铁含量小于 0.1 %。
纤维为碳纤维、 碳化硅纤维、 硅酸铝纤维、 氧化铝纤维、 铝纤维中的 一种或多种。 纤维直径小于 lOOum, 长度小于 2mm。
实施例 1
各物料按如下重量比例配置。 其中烧结板状刚玉的 A1203含量
99.5wt% , 煅烧氧化铝微粉的 A1203含量 > 99.6wt% , 活性 p - A1203微粉的 A1203含量 99.8wt% (去除灼减后 ) , 分散性氧化铝的 A1203含量 80wt% , 纯铝酸钙水泥的 A1203含量 73 wt%。
其中, 做骨料烧结板状刚玉颗粒中重量比组成包括: 粒径为 3-6mm的 烧结板状刚玉颗粒 30%; 粒径为 l-3mm的烧结板状刚玉颗粒 22%;粒径为 0-1 mm的烧结板状刚玉颗粒 12%; 粒径为 0-0.5mm的烧结板状刚玉颗粒 6%;
做基质粉状物中重量比组成包括: 粒径 0.045mm的烧结板状刚玉细 粉 13%; 煅烧氧化铝微粉 8%; 活性氧化铝微粉 2%; 活性 p氧化铝微粉 2%; 分散性氧化铝 粉 1 %; 纯铝酸钙水泥 4%。
本实施例配置的不定型耐火耐蚀浇注料, 其检测结果显示: 加水量 4.48wt% , 流动性好, 不偏析; 110 °C烘 24h体积密度 3.312g/cm3 , 表面开 口气孔率 10.8% , 抗折强度 17.5MPa, 耐压强度 121.2MPa; 750 °C烧 24h 表面无裂纹,抗折强度 13MPa, 耐压强度 96MPa; 750 °C循环空冷 30次后, 抗折强度 12.1MPa, 耐压强度 86MPa; 800 °C电解质气氛中放置 48h表面无 裂纹、 无掉粉、 无明显腐蚀, 表面开口气孔率 13.1% , 抗折强度 12.5MPa, 耐压强度 97MPa。
实施例 2
各物料按如下重量比例配置。 其中烧结板状刚玉的 A1203含量
99.5wt% ,镁铝尖晶石细粉的 A1203含量 > 74wt% ,煅烧氧化铝微粉的 A1203 含量 > 99.6wt% ,活性 p - A1203微粉的 A1203含量 99.8wt% (去除灼减后 ) , 分散性氧化铝的 A1203含量 80wt% , 纯铝酸钙水泥的 A1203含量 73wt%。
其中, 做骨料烧结板状刚玉颗粒中重量比组成包括: 粒径为 3-6mm的 烧结板状刚玉颗粒 28%;粒径为 l-3mm的烧结板状刚玉颗粒 26%;粒径为 0-1 mm的烧结板状刚玉颗粒 16%。
做基质粉状物中重量比组成包括: 粒径 0.045mm的烧结板状刚玉细 粉 10%; 粒径 0.045mm的镁铝尖晶石细粉 4%; 煅烧氧化铝微 8%; 活性 氧化铝微粉 2%; 活性 p氧化铝微粉 1 %; 分散性氧化铝微粉 1 %; 纯铝酸 钙水泥 4%。
本实施例配置的不定型耐火耐蚀浇注料, 其检测结果显示: 加水量
4.5wt%, 流动性好, 不偏析; 110°C烘 24h体积密度 3.313g/cm3, 表面开口 气孔率 11.8%, 抗折强度 18.5MPa, 耐压强度 125.4MPa; 750°C烧 24h表 面无裂纹, 抗折强度 13.6MPa, 耐压强度 lOl.lMPa; 750°C循环空冷 30次 后, 抗折强度 12.9MPa, 耐压强度 92MPa; 800°C电解质气氛中放置 48h 表面无裂纹、 无掉粉、 无明显腐蚀, 表面开口气孔率 13.18%, 抗折强度 13.8MPa, 耐压强度 105MPa。
实施例 3
各物料按如下重量比例配置。 其中烧结板状刚玉的 A1203含量
99.5wt%,镁铝尖晶石颗粒的 A1203含量 >74wt%,镁铝尖晶石细粉的 A1203 含量 >74wt%, 煅烧氧化铝微粉的 A1203含量 >99.6wt%, 活性 p - A1203 微粉的 A1203含量 99.8wt% (去除灼减后 ) , 分散性氧化铝的 A1203含量 80wt% , 纯铝酸钙水泥的 A1203含量 73wt%。
其中, 做骨料烧结板状刚玉颗粒中重量比组成包括: 粒径 l-3mm的烧 结板状刚玉颗粒 46%; 粒径 0.5-lmm的镁铝尖晶石颗粒 15%; 粒径为 0-0.5mm镁铝尖晶石颗粒 10%; 粒径 0.045mm的镁铝尖晶石颗粒 5%。
做基质粉状物中重量比组成包括: 粒径 0.045mm的烧结板状刚玉细 粉 9%; 煅烧氧化铝微粉 6%; 活性氧化铝微粉 2%; 活性 p氧化铝微粉 1%; 分散性氧化铝微粉 1%; 纯铝酸钙水泥 5%。
本实施例配置的不定型耐火耐蚀浇注料, 其检测结果显示: 加水量 4.8wt%, 流动性好, 不偏析; 110°C烘 24h体积密度 3.310g/cm3, 表面开口 气孔率 12.9%, 抗折强度 16.8MPa, 耐压强度 118.2MPa; 750°C烧 24h表 面无裂纹, 抗折强度 12.8MPa, 耐压强度 94MPa; 750°C循环空冷 30次后, 抗折强度 11.4MPa, 耐压强度 79MPa; 800°C电解质气氛中放置 48h表面无 裂纹、 无掉粉、 无明显腐蚀, 表面开口气孔率 13.4%, 抗折强度 11.2MPa, 耐压强度 88MPa。
实施例 4
各物料按如下重量比例配置。 其中烧结板状刚玉的 A1203含量
99.5wt%,镁铝尖晶石细粉的 A1203含量 >74wt%,煅烧氧化铝微粉的 A1203
含量 > 99.6wt% ,活性 p - A1203微粉的 A1203含量 99.8wt% (去除灼减后), 分散性氧化铝的 Α1203含量 80wt% , 纯铝酸钙水泥的 A1203含量 73wt%。 氧化铝纤维的 A1203含量 > 80wt%。
其中, 做骨料烧结板状刚玉颗粒中重量比组成包括: 粒径为 3-6mm的 烧结板状刚玉颗粒 28%; 粒径为 l-3mm 的烧结板状刚玉颗粒 18%; 粒径 为 0-1 mm的烧结板状刚玉颗粒 25%。
其中, 做基质粉状物中重量比组成包括: 粒径 0.045mm的烧结板状 刚玉细粉 8%; 粒径 0.045mm的镁铝尖晶石细粉 5%; 煅烧氧化铝微 粉 8%; 活性氧化铝微粉 2%; 分散性氧化铝微粉 1 %; 纯铝酸钙水泥 4.8%。
氧化铝纤维的质量百分比为 0.2%。
本实施例配置的不定型耐火耐蚀浇注料, 其检测结果显示: 加水量 4.5wt% , 流动性好, 不偏析; 110 °C烘 24h体积密度 3.298g/cm3 , 表面开口 气孔率 12.4% , 抗折强度 15.8MPa, 耐压强度 116MPa; 750 °C烧 24h表面 无裂纹, 抗折强度 14.2MPa, 耐压强度 l lOMPa; 750 °C循环空冷 30次后, 抗折强度 13.2MPa, 耐压强度 l lOMPa; 800 °C电解质气氛中放置 48h表面 无裂纹、无掉粉、无明显腐蚀,表面开口气孔率 13.5% ,抗折强度 15.2MPa, 耐压强度 114MPa。
实施例 5
各物料按如下重量比例配置。 其中烧结板状刚玉的 A1203含量
99.5wt% , 煅烧氧化铝微粉的 A1203含量 > 99.6wt% , 活性 p - A1203微粉的 A1203含量 99.8wt% (去除灼减后 ) , 分散性氧化铝的 A1203含量 80wt% , 纯铝酸钙水泥的 A1203含量 73wt%。 铝纤维的纯度 > 99.7wt%
其中, 做骨料烧结板状刚玉颗粒中重量比组成包括: 粒径为 3-6mm的 烧结板状刚玉颗粒 28%; 粒径为 l-3mm的烧结板状刚玉颗粒 26%; 粒径 0- 1 mm的烧结板状刚玉颗粒 15 %。
做骨料烧结板状刚玉颗粒中重量比组成包括: 粒径 0.045mm的烧结 板状刚玉细粉 15%; 粒径 0.045mm的镁铝尖晶石细粉 5%; 煅烧氧化铝 微粉 2%; 活性 p氧化铝微粉 5%; 分散性氧化铝微粉 1 %; 纯铝酸钙水 泥 2%。
铝纤维的质量百分比为 1%。
本实施例配置的不定型耐火耐蚀浇注料, 其检测结果显示: 加水量
4.85wt%, 流动性好, 不偏析; 110°C烘 24h体积密度 3.292g/cm3, 表面开 口气孔率 13.3%, 抗折强度 15.1MPa, 耐压强度 102MPa; 750°C烧 24h表 面无裂纹, 抗折强度 9.3MPa, 耐压强度 63MPa; 800 °C电解质气氛中放置 48h表面有较多微裂纹,略有膨胀,表面开口气孔率 18.1%,抗折强度 5MPa, 耐压强度 20MPa。
实施例 6
各物料按如下重量比例配置。 其中烧结板状刚玉的 A1203含量
99.5wt%, 煅烧氧化铝微粉的 A1203含量 > 99.6wt%, 活性 p - A1203微粉的 A1203含量 99.8wt% (去除灼减后 ) , 分散性氧化铝的 A1203含量 80wt%, 纯铝酸钙水泥的 A1203含量 73wt%。 耐热钢纤维的 20~25mm
其中, 做骨料烧结板状刚玉颗粒中重量比组成包括: 粒径为 3-6mm 的烧结板状刚玉颗粒 28%; 粒径为 l-3mm的烧结板状刚玉颗粒 26%; 粒 径为 0-lmm 的烧结板状刚玉颗粒 16%。
做基质粉状物中重量比组成包括: 粒径 0.045mm的烧结板状刚玉细 粉 13%;煅烧氧化铝微粉 6%;活性氧化铝微粉 2%;活性 p氧化铝微粉 1%; 分散性氧化铝微粉 1%; 纯铝酸钙水泥 5%。
耐热钢纤维的质量百分比为 2%;
本实施例配置的不定型耐火耐蚀浇注料, 其检测结果显示: 加水量 4.5wt%, 流动性好, 不偏析, 纤维分散均匀; 110°C烘 24h体积密度
3.293g/cm3,表面开口气孔率 13.5%,抗折强度 17.5MPa,耐压强度 120MPa; 750°C烧 24h表面无裂纹, 抗折强度 7MPa, 耐压强度 51MPa; 800°C电解 质气氛中放置 48h表面开裂、 钢纤维腐蚀严重, 基本没有强度。
实施例 7
该实施例提供一种制备惰性阳极铝电解槽用不定型耐火耐蚀材料的方 法是将不同粒级的骨料和基质分别单独混合好后, 再到搅拌均勾混合。
实施例 8
该实施例提供一种制备惰性阳极铝电解槽用不定型耐火耐蚀材料的方
法, 其包括: 首先, 将骨料在搅拌机中混合均勾。 然后, 将分散性氧化铝 和纯铝酸钙水泥需要预混后, 再与基质中的其它粉状料加入搅拌机中进行 均匀混合。
实施例 9
该实施例提供一种制备惰性阳极铝电解槽用不定型耐火耐蚀材料的方 法是在使用现场将所述骨料、基质及纤维进行混合,加水放入搅拌机搅拌, 用干净的自来水或纯净水, 水温大于 5 °C , 施工现场的环境温度大于 5 °C , 浇筑后养护 16— 48小时后, 脱模并进行烘干处理。
以上具体实施例制备的不定型耐火耐蚀材料, 具有流动性好、 不偏析、 易施工的特点。 更重要的是材料致密度高、 气孔率低, 切开断面光滑、 无 裂纹, 具有较高的抗腐蚀性 (实施例 6除外) , 热态强度高、 抗热震性能 好、 使用周期长、 成本相对较低等优点。 本实施例中的抗腐蚀测试实验条 件是材料直接面对熔融态电解质液面, 与电解质液面间距小于 2cm, 温度 为 800 °C , 电解质表面没有结壳。 而非限制, 尽管参照实例对本发明进行了详细说明, 本领域的普通技术人 员应当理解, 可以对本发明的技术方案进行修改或者等同替换, 而不脱离 本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。
Claims
1. 一种惰性阳极铝电解槽用不定型耐火耐蚀材料, 其特征在于: 采用烧结板状刚玉颗粒做骨料, 用选自烧结板状刚玉细粉、 镁铝尖晶 石细粉、 具有不同粒度分布的多峰煅烧氧化铝微粉、 活性氧化铝微粉、 活 性 p -A1203微粉、 分散性氧化铝微粉以及纯铝酸钙水泥中的几种粉状物做 基质, 选用纤维做增强、 增韧剂, 进行混配而成。
2. 根据权利要求 1所述的惰性阳极铝电解槽用不定型耐火耐蚀材料, 其特征在于:
所述烧结板状刚玉颗粒所占的重量比例为 68%~72%;做基质的粉状物 所占的重量比例为 28%~32%; 做增强、 增韧剂的纤维所占的重量比例为 0%~2%; 余量为做基质的粉状物。
3. 根据权利要求 1所述的惰性阳极铝电解槽用不定型耐火耐蚀材料, 其特征在于, 所述做骨料烧结板状刚玉颗粒中重量比组成包括:
粒径为 3-6mm的烧结板状刚玉颗粒料 0%~30%; 粒径为 l-3mm的烧 结板状刚玉颗粒料 18%~46%; 粒径为 0-lmm的烧结板状刚玉颗粒料 12%~25%; 粒径为 0-0.5mm的烧结板状刚玉颗粒料 0%~6%。
4. 根据权利要求 1所述的惰性阳极铝电解槽用不定型耐火耐蚀材料, 其特征在于, 所述做基质粉状物中重量比组成包括:
粒径 <0.045mm烧结板状刚玉细粉 8%~18%; 尖晶石细粉 0%~5%; 煅 烧氧化铝微粉 2%~12%; 活性氧化铝微粉 0%~2%; 活性 ρ - Α1203微粉 0%~5%; 分散性氧化铝微粉 1 %; 纯铝酸钙水泥 2%~5%。
5. 根据权利要求 1所述的惰性阳极铝电解槽用不定型耐火耐蚀材料, 其特征在于:
所述尖晶石细粉的平均粒度为小于 0.045mm。
6. 根据权利要求 1所述的惰性阳极铝电解槽用不定型耐火耐蚀材料, 其特征在于:
所述多峰煅烧氧化铝微粉的平均粒度为小于 0.02mm。
7. 根据权利要求 1所述的惰性阳极铝电解槽用不定型耐火耐蚀材料, 其特征在于: 所述活性氧化铝微粉的平均粒度为小于 0.0012mm。
8. 根据权利要求 1所述的惰性阳极铝电解槽用不定型耐火耐蚀材料, 其特征在于:
所述活性 p - A1203微粉的平均粒度为小于 0.005mm。
9. 根据权利要求 1所述的惰性阳极铝电解槽用不定型耐火耐蚀材料, 其特征在于:
所述分散性氧化铝微粉的粒度为小于 0.010mm。
10. 根据权利要求 1所述的惰性阳极铝电解槽用不定型耐火耐蚀材料, 其特征在于:
所述烧结板状刚玉的 A1203重量含量> 99.4% , 镁铝尖晶石细粉的 A1203重量含量> 74% , 煅烧氧化铝微粉的 A1203重量含量> 99.5% , 活性 P - A1203微粉的 A1203去除灼减后的重量含量> 99.8% , 分散性氧化铝的 A1203重量含量> 80% , 纯铝酸钙水泥的 A1203重量含量> 70%。
11. 根据权利要求 1所述的惰性阳极铝电解槽用不定型耐火耐蚀材料, 其特征在于:
所述纤维为碳纤维、 碳化硅纤维、 硅酸铝纤维、 氧化铝纤维、 铝纤维 中的一种或多种。
12. 根据权利要求 1所述的惰性阳极铝电解槽用不定型耐火耐蚀材料, 其特征在于:
所述纤维直径小于 lOOum, 长度小于 2mm。
13. 根据权利要求 1所述的惰性阳极铝电解槽用不定型耐火耐蚀材料, 其特征在于:
所述作基质的粉状料的氧化铝综合纯度大于 95% , 硅元素含量小于 0.1% ,氧化钙含量小于 1.5%,氧化钠含量小于 0.5%,氧化铁含量小于 0.1%。
14. 一种制备权利要求 1-13任一项所述的惰性阳极铝电解槽用不定型 耐火耐蚀材料的方法, 其特征在于, 包括:
将不同粒级的骨料和基质分别单独混合好后, 再搅拌均勾混合。
15. 一种制备权利要求 1-13任一项惰性阳极铝电解槽用不定型耐火耐 蚀材料的制备方法, 其特征在于, 包括: 将骨料搅拌混合均匀;
将分散性氧化铝和纯铝酸钙水泥需要预混后, 再与基质中的其它粉状 料进行搅拌均勾混合。
16. 一种制备权利要求 1-13任一项所述的惰性阳极铝电解槽用不定型 耐火耐蚀材料的制备方法, 其特征在于, 包括:
在使用现场将所述骨料、 基质及纤维进行混合, 加水搅拌, 用干净的 自来水或纯净水, 水温大于 5 °C , 施工现场的环境温度大于 5 °C , 浇筑后养 护 16— 48小时后, 脱模并进行烘干处理。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101666529A CN102344291A (zh) | 2011-06-21 | 2011-06-21 | 惰性阳极铝电解槽用不定型耐火耐蚀材料及其制作方法 |
CN201110166652.9 | 2011-06-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012174839A1 true WO2012174839A1 (zh) | 2012-12-27 |
Family
ID=45543410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/084443 WO2012174839A1 (zh) | 2011-06-21 | 2011-12-22 | 惰性阳极铝电解槽用不定型耐火耐蚀材料及其制作方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102344291A (zh) |
WO (1) | WO2012174839A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108046784A (zh) * | 2018-01-30 | 2018-05-18 | 黎文泰 | 一种高铝质耐火浇注料及其制备方法 |
CN114133227A (zh) * | 2021-12-08 | 2022-03-04 | 湖南仁海科技材料发展有限公司 | 一种长寿命搁丝板及其制备方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102978660B (zh) * | 2012-12-14 | 2015-02-18 | 郑州经纬科技实业有限公司 | 具保温结构的铝电解槽 |
CN103320817A (zh) * | 2013-07-09 | 2013-09-25 | 中国铝业股份有限公司 | 一种惰性电极铝电解槽炉膛上方的保温与密封结构的制备方法 |
CN112831803B (zh) * | 2021-01-05 | 2021-11-16 | 中南大学 | 一种双层密闭铝电解槽及其上部保温罩 |
CN115029736B (zh) * | 2022-06-24 | 2024-06-04 | 中国铝业股份有限公司 | 一种铝电解阳极覆盖料及其制备方法 |
CN115286369A (zh) * | 2022-08-30 | 2022-11-04 | 宜兴市耐火材料有限公司 | 一种氧化铝纤维增强型铝碳质滑板及其制备工艺 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1479809A (zh) * | 2001-01-12 | 2004-03-03 | �Ƹ��� | 采用惰性阳极的改进型铝电解槽 |
CN101434490A (zh) * | 2008-09-28 | 2009-05-20 | 瑞泰科技股份有限公司 | 一种复合结合耐火浇注料 |
CN101955363A (zh) * | 2010-09-29 | 2011-01-26 | 王明 | 乙烯裂解炉废热锅炉封头插件浇注料 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100348538C (zh) * | 2003-12-22 | 2007-11-14 | 北京天坛股份有限公司 | 一种耐火浇注料的制备方法 |
CN101462886B (zh) * | 2008-12-31 | 2012-10-31 | 武汉科技大学 | 一种Al2O3-MgO系耐火材料浇注料及其制备方法 |
-
2011
- 2011-06-21 CN CN2011101666529A patent/CN102344291A/zh active Pending
- 2011-12-22 WO PCT/CN2011/084443 patent/WO2012174839A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1479809A (zh) * | 2001-01-12 | 2004-03-03 | �Ƹ��� | 采用惰性阳极的改进型铝电解槽 |
CN101434490A (zh) * | 2008-09-28 | 2009-05-20 | 瑞泰科技股份有限公司 | 一种复合结合耐火浇注料 |
CN101955363A (zh) * | 2010-09-29 | 2011-01-26 | 王明 | 乙烯裂解炉废热锅炉封头插件浇注料 |
Non-Patent Citations (1)
Title |
---|
ZHANG, ZHIPING ET AL.: "Refractories for aluminium electrolytic bath", SPECIAL REPORT ON THE 40TH ANNIVERSARY OF REFRACTORIES, 31 December 2006 (2006-12-31), pages 137 - 144 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108046784A (zh) * | 2018-01-30 | 2018-05-18 | 黎文泰 | 一种高铝质耐火浇注料及其制备方法 |
CN114133227A (zh) * | 2021-12-08 | 2022-03-04 | 湖南仁海科技材料发展有限公司 | 一种长寿命搁丝板及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102344291A (zh) | 2012-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012174839A1 (zh) | 惰性阳极铝电解槽用不定型耐火耐蚀材料及其制作方法 | |
CN100436376C (zh) | 一种陶瓷化Al2O3-SiC质耐火砖及其制备方法 | |
CN102815951B (zh) | 一种耐火耐蚀涂料 | |
CN101550016B (zh) | 一种镁铬碳质涂抹料及其制备方法 | |
CN103819204B (zh) | 碳化硅电熔莫来石质耐磨浇注料 | |
CN109704774B (zh) | 一种代替碳砖的高炉炉底炉缸高导热率浇注料的制备方法 | |
CN108558421A (zh) | 废弃高压电瓷制备的垃圾焚烧炉用耐火浇注料及其方法 | |
CN107352977A (zh) | 一种钢包用渣线砖及制备方法 | |
CN101279853B (zh) | 一种工频有芯熔锌感应炉熔沟材料及其制备方法 | |
CN104909772B (zh) | 含复合添加剂的铝酸钙水泥结合刚玉质浇注料及其制备方法 | |
CN106966740B (zh) | 垃圾焚烧炉用六铝酸钙/碳化硅浇注料及其制备方法 | |
CN108530090B (zh) | 一种轻质中间包工作衬及其制备方法 | |
CN205996184U (zh) | 一种低耗材节能型钢包 | |
CN108046814A (zh) | 利用废弃浇注料再生料制备的高炉出铁沟用快干自流浇注料 | |
CN110423125A (zh) | 复合转炉镁碳砖及其制备方法与应用 | |
CN109111209B (zh) | 一种水泥窑用微晶材料 | |
CN106365654A (zh) | 一种添加ZrN‑SiAlON的抗锂电材料侵蚀耐火坩埚 | |
CN104446557B (zh) | 一种Al2O3-Cr2O3耐火浇注料 | |
CN111072393B (zh) | 一种适用于铝电解槽的环保型干式防渗料 | |
CN108117401B (zh) | 一种铁水包永久层用快干自流浇注料 | |
CN110723956A (zh) | 一种铝电解槽干式料及其制备方法 | |
CN106588049B (zh) | 一种连铸用无硅无碳刚玉质水口塞棒制品及其制备工艺 | |
CN109437865A (zh) | 一种含铝灰的高炉出铁沟浇注料及其制备方法 | |
CN105862078B (zh) | 一种利用瓷砖废渣制备铝电解槽干式防渗料及其制备方法 | |
CN105130459B (zh) | 铝用阳极碳素焙烧炉火道墙免烧预制大砖 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11868353 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11868353 Country of ref document: EP Kind code of ref document: A1 |