WO2012173114A1 - 含浸処理炭酸カルシウム、その製造方法、ポリマー組成物及びポリマー前駆体組成物 - Google Patents

含浸処理炭酸カルシウム、その製造方法、ポリマー組成物及びポリマー前駆体組成物 Download PDF

Info

Publication number
WO2012173114A1
WO2012173114A1 PCT/JP2012/065009 JP2012065009W WO2012173114A1 WO 2012173114 A1 WO2012173114 A1 WO 2012173114A1 JP 2012065009 W JP2012065009 W JP 2012065009W WO 2012173114 A1 WO2012173114 A1 WO 2012173114A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium carbonate
impregnated
resin
acid
weight
Prior art date
Application number
PCT/JP2012/065009
Other languages
English (en)
French (fr)
Inventor
悠 酒井
善貞 萱野
周浩 筬部
Original Assignee
白石工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 白石工業株式会社 filed Critical 白石工業株式会社
Priority to JP2013520556A priority Critical patent/JP5312714B2/ja
Priority to CN201280028883.6A priority patent/CN103608292B/zh
Priority to EP12799794.8A priority patent/EP2719665A4/en
Priority to KR20137032884A priority patent/KR20140033114A/ko
Priority to US14/126,144 priority patent/US9085668B2/en
Publication of WO2012173114A1 publication Critical patent/WO2012173114A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/021Calcium carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention relates to impregnated calcium carbonate, a production method thereof, a polymer composition containing impregnated calcium carbonate, and a polymer precursor composition.
  • calcium carbonate is blended with a polymer for the purpose of imparting various properties to a polymer composition such as a resin or rubber.
  • a polymer composition such as a resin or rubber.
  • fine calcium carbonate having a BET specific surface area of about 10 to 40 m 2 / g may be used.
  • Patent Document 1 discloses that calcium carbonate having a BET specific surface area of 10 m 2 / g or more surface-treated with a fatty acid salt is blended in a resin or the like.
  • the main object of the present invention is to provide an impregnated calcium carbonate that is difficult to disperse and has excellent dispersibility in a polymer composition, a method for producing the impregnated calcium carbonate, a polymer composition containing the impregnated calcium carbonate, and a polymer precursor composition.
  • the impregnated calcium carbonate of the present invention is obtained by impregnating a surface-treated calcium carbonate obtained by surface-treating calcium carbonate with at least one of a fatty acid, a resin acid and a derivative thereof with a liquid organic compound at room temperature.
  • the impregnation amount of the organic compound that is liquid at room temperature is 3 to 22 parts by weight with respect to 100 parts by weight of the surface-treated calcium carbonate.
  • the impregnated calcium carbonate of the present invention is impregnated with 3 parts by weight or more of a liquid organic compound at room temperature with respect to 100 parts by weight of the surface-treated calcium carbonate, it is difficult to scatter. Therefore, the impregnated calcium carbonate of the present invention is easy to handle.
  • the impregnated calcium carbonate of the present invention is impregnated with 3 to 22 parts by weight of an organic compound that is liquid at room temperature with respect to 100 parts by weight of the surface-treated calcium carbonate. Dispersed quickly and uniformly in polymers.
  • impregnation refers to impregnating the surface-treated calcium carbonate particles with a liquid organic compound at room temperature.
  • the organic compound that is liquid at room temperature is preferably at least one of a plasticizer, an oil agent, and polypropylene glycols.
  • examples of the oil agent include mineral oil, synthetic oil, vegetable oil and the like.
  • the calcium carbonate is preferably synthetic calcium carbonate.
  • the average particle diameter of the surface-treated calcium carbonate is preferably 20 nm to 200 nm.
  • the BET specific surface area of the surface-treated calcium carbonate is preferably 10 m 2 / g to 100 m 2 / g.
  • the treatment amount of at least one of fatty acid, resin acid and derivatives thereof with respect to calcium carbonate is preferably 2 to 15 parts by weight with respect to 100 parts by weight of calcium carbonate.
  • the polymer composition of the present invention contains a polymer and impregnated calcium carbonate.
  • the impregnated calcium carbonate is uniformly dispersed in the polymer composition. Therefore, the polymer composition of the present invention can be suitably used for various applications.
  • the polymer precursor composition of the present invention includes a polymer precursor and impregnated calcium carbonate.
  • the impregnated calcium carbonate is uniformly dispersed in the polymer precursor composition. Therefore, the polymer precursor composition of the present invention can be suitably used for various applications.
  • the method for producing impregnated calcium carbonate of the present invention comprises a step of surface-treating calcium carbonate with at least one of fatty acids, resin acids and derivatives thereof to obtain surface-treated calcium carbonate, and an organic compound that is liquid at room temperature, A step of impregnating 3 to 22 parts by weight with respect to 100 parts by weight of the surface-treated calcium carbonate.
  • the present invention it is possible to provide impregnated calcium carbonate that is difficult to scatter and has excellent dispersibility in a polymer composition or a polymer precursor composition.
  • FIG. 1 is a schematic diagram of a powder tester used for scattering evaluation in Examples 1 to 4 and Comparative Examples 1 to 3.
  • FIG. 2 is a graph showing the relationship between dispersibility and kneading time in Examples 1 to 4 and Comparative Examples 1 to 3.
  • FIG. 3 is a graph showing the time required to reach the degree of dispersion A in Examples 1 to 4 and Comparative Examples 1 to 3.
  • FIG. 4 is a graph showing the relationship between dispersibility and kneading time in Example 5 and Example 6.
  • FIG. 5 is a graph showing the time until the degree of dispersion A is reached in Example 5 and Example 6.
  • FIG. 6 is a graph showing the relationship between dispersibility and kneading time in Example 7 and Comparative Example 4.
  • FIG. 7 is a graph showing the relationship between dispersibility and kneading time in Example 8 and Comparative Example 5.
  • FIG. 8 is a graph showing the relationship between dispersibility and kneading time in Example 9
  • the impregnated calcium carbonate is obtained by impregnating calcium carbonate formed by surface-treating calcium carbonate with at least one of fatty acid, resin acid and derivatives thereof at room temperature.
  • the calcium carbonate constituting the impregnated calcium carbonate is not particularly limited.
  • conventionally known calcium carbonate can be used.
  • Specific examples of calcium carbonate include synthetic calcium carbonate and natural calcium carbonate (heavy calcium carbonate).
  • the calcium carbonate is preferably synthetic calcium carbonate.
  • Synthetic calcium carbonate is not particularly limited.
  • Examples of the synthetic calcium carbonate include precipitated (collaged) calcium carbonate and light calcium carbonate.
  • Synthetic calcium carbonate can be produced, for example, by reacting calcium hydroxide with carbon dioxide.
  • Calcium hydroxide can be produced, for example, by reacting calcium oxide with water.
  • Calcium oxide can be produced, for example, by co-firing raw limestone with coke. In this case, since carbon dioxide gas is generated during firing, calcium carbonate can be produced by reacting this carbon dioxide gas with calcium hydroxide.
  • Natural calcium carbonate is obtained by pulverizing naturally produced calcium carbonate ore by a known method.
  • Examples of the method for pulverizing the raw calcium carbonate include a roller mill, a high-speed rotation mill (impact shear mill), a container drive medium mill (ball mill), a medium stirring mill, a planetary ball mill, and a jet mill.
  • the average particle size of calcium carbonate is usually about 20 nm to 200 nm, preferably about 20 nm to 150 nm, and more preferably about 30 nm to 100 nm.
  • the average particle size of calcium carbonate is a value measured by image analysis using a transmission electron microscope.
  • Fatty acids, resin acids and their derivatives are not particularly limited. Examples of fatty acids and derivatives thereof include fatty acids, metal salts thereof, and esterified products thereof.
  • fatty acid examples include saturated or unsaturated fatty acids having 6 to 31 carbon atoms.
  • saturated fatty acids include caproic acid, caprylic acid, pelargonic acid, capric acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, alignic acid, behenic acid, lignoceric acid, serotic acid, montanic acid, Examples include melicic acid. Among these, palmitic acid, stearic acid, and lauric acid are preferably used.
  • Unsaturated fatty acids include obsilic acid, carloleic acid, undecylenic acid, Linderic acid, tuzuic acid, fizeteric acid, molistoleic acid, palmitoleic acid, petrothelic acid, oleic acid, elaidic acid, asclebic acid, vaccenic acid , Gadoleic acid, gondoic acid, cetreic acid, erucic acid, brassic acid, ceracoleic acid, ximenoic acid, lumectric acid, sorbic acid, linoleic acid and the like.
  • fatty acid metal salts examples include alkali metal salts such as sodium salts and potassium salts of the above fatty acids, and alkaline earth metal salts such as magnesium salts and calcium salts. Among these, alkali metal salts such as sodium salts and potassium salts of the above fatty acids are preferable.
  • esterified fatty acid examples include stearyl stearate, lauryl stearate, stearyl palmitate, lauryl palmitate and the like.
  • More preferable fatty acids and derivatives thereof include sodium salts and potassium salts of saturated fatty acids having 9 to 21 carbon atoms.
  • sodium palmitate, sodium stearate, and sodium laurate are particularly preferable.
  • Resin acid and its derivatives are not particularly limited. Examples of the resin acid and derivatives thereof include resin acid, metal salts thereof, and other derivatives.
  • resin acid examples include abietic acid, pimaric acid, repopimaric acid, neoabietic acid, pulpstriic acid, dehydroapitic acid, dihydroabietic acid, tetraabietic acid, dextropimaric acid, isodextropimaric acid and the like. It is done.
  • metal salt of the resin acid examples include alkali metal salts such as sodium salt and potassium salt of the above resin acid, and alkaline earth metal salts such as magnesium salt and calcium salt.
  • examples of the resin acid derivative include hydrogenated rosin, disproportionated rosin, polymerized rosin, rosin ester, maleated rosin, maleated rosin ester, and rosin-modified phenol.
  • Preferred resin acids and derivatives thereof include abietic acid, neoabietic acid, dehydroabietic acid, tetraabietic acid, pimaric acid, dextropimaric acid, hydrogenated rosin, disproportionated rosin, and maleated rosin.
  • the treatment amount of at least one of fatty acid, resin acid and derivatives thereof with respect to calcium carbonate is usually about 2 to 15 parts by weight and about 2 to 10 parts by weight with respect to 100 parts by weight of calcium carbonate. It is preferably about 2.5 to 5 parts by weight. If the treatment amount of at least one of fatty acid, resin acid and derivatives thereof relative to calcium carbonate is too small, the surface-treated calcium carbonate tends to aggregate, which is not preferable. On the other hand, if the amount of at least one of fatty acid, resin acid and derivatives thereof is too large, an effect proportional to the surface treatment amount cannot be obtained and the cost is increased, which is not preferable because it is economically disadvantageous.
  • the adhesion amount of at least one of fatty acid, resin acid and derivatives thereof to 100 parts by weight of calcium carbonate is usually about 1.6 parts by weight to 14.9 parts by weight, and 1.6 parts by weight to 9.9 parts by weight.
  • the amount is preferably about parts by weight, more preferably about 2.0 parts by weight to 4.9 parts by weight.
  • Organic compounds that are liquid at room temperature is not particularly limited.
  • the liquid at normal temperature means a liquid at 25 ° C. under 1 atm.
  • the average molecular weight of an organic compound that is liquid at room temperature is usually about 30 to 6000 g / mol.
  • the viscosity of the organic compound that is liquid at room temperature is preferably about 5 mPa ⁇ s / 20 ° C. to 3500 mPa ⁇ s / 20 ° C.
  • the plasticizer is not particularly limited.
  • a plasticizer the well-known plasticizer added to polymer compositions, such as resin and rubber
  • the plasticizer phthalic acid plasticizers, polyester plasticizers, sulfonic acid plasticizers, phosphoric acid plasticizers and the like are preferable.
  • the phthalic acid plasticizer include di-2-ethylhexyl phthalate (DOP), dimethyl phthalate (DMP), diisononyl phthalate (DlNP), diptyl phthalate (DBP), diisodecyl phthalate (DlDP), and the like. It is done.
  • Specific examples of the polyester plasticizer include propyl polyadipate and propyl sebacate.
  • sulfonic acid plasticizer examples include benzenesulfonic acid butyramide.
  • phosphate plasticizer examples include tricresyl phosphate, trioctyl phosphate, and triphenyl phosphate.
  • oil agent examples include mineral oil, synthetic oil, and vegetable oil.
  • Mineral oil is a heavy oil obtained in the process of producing crude oil.
  • Mineral oil is not particularly limited.
  • the viscosity of the mineral oil is preferably about 5 mPa ⁇ s / 20 ° C. to 3500 mPa ⁇ s / 20 ° C., more preferably about 10 mPa ⁇ s / 20 ° C. to 1000 mPa ⁇ s / 20 ° C.
  • the mineral oil is preferably at least one selected from the group consisting of paraffinic mineral oil, naphthenic mineral oil and aromatic mineral oil, more preferably paraffinic mineral oil or naphthenic mineral oil. More preferably, it is a naphthenic mineral oil.
  • Paraffinic mineral oils include those used as process oils. Specific examples of paraffinic mineral oil include Diana Process Oil PW-32, PW-90, PW-380, PS-32, PS-90, PS-430 (all trade names) manufactured by Idemitsu Kosan Co., Ltd. Can be mentioned.
  • naphthenic mineral oils include those used as process oils.
  • Specific examples of the naphthenic mineral oil include Diana Process Oil NS-24, NS-100, NR-68, NM-26, NM-280, NP-24 manufactured by Idemitsu Kosan Co., Ltd.
  • Aromatic mineral oils include those used as process oils. Specific examples of the aromatic mineral oil include Diana Process Oil AC-12, AC460, AH-16, AH-24 manufactured by Idemitsu Kosan Co., Ltd.
  • Synthetic oil is not particularly limited. Synthetic oils include chemically synthesized oils such as polyalphaolefins and polyol esters.
  • Plant oils include castor oil, soybean oil, rapeseed oil, corn oil, safflower oil, rice oil, cottonseed oil, sesame oil, peanut oil, olive oil, palm oil and the like.
  • the amount of impregnation of the surface-treated calcium carbonate with an organic compound that is liquid at room temperature is about 3 to 22 parts by weight with respect to 100 parts by weight of the surface-treated calcium carbonate.
  • the impregnation amount of the organic compound that is liquid at room temperature is preferably about 5 to 20 parts by weight, and more preferably about 5 to 15 parts by weight with respect to 100 parts by weight of the surface-treated calcium carbonate. That is, the adhesion amount of the organic compound that is liquid at normal temperature to the surface-treated calcium carbonate is usually about 3 to 22 parts by weight and about 5 to 20 parts by weight with respect to 100 parts by weight of the surface-treated calcium carbonate.
  • the amount is preferably about 5 to 15 parts by weight.
  • the amount of impregnation of the organic compound that is liquid at room temperature is not affected by the average particle diameter of the surface-treated calcium carbonate, the BET specific surface area, the amount of fatty acid surface treatment, and the like.
  • the impregnated calcium carbonate is obtained by impregnating a surface-treated calcium carbonate obtained by surface-treating calcium carbonate with at least one of fatty acid, resin acid and derivatives thereof with an organic compound that is liquid at room temperature.
  • the method for producing impregnated calcium carbonate includes a surface treatment step of surface-treating calcium carbonate with at least one of fatty acid, resin acid and derivatives thereof to obtain surface-treated calcium carbonate, and an organic compound that is liquid at room temperature.
  • the method for surface-treating calcium carbonate with at least one of fatty acids, resin acids and derivatives thereof is not particularly limited.
  • a method of adding a fatty acid, a resin acid and at least one of these derivatives to a slurry containing calcium carbonate and water, followed by dehydration and drying can be employed.
  • the following method is mentioned as a specific method of surface-treating calcium carbonate with an alkali metal salt of a fatty acid.
  • the fatty acid is saponified while being heated in an alkali metal aqueous solution such as NaOH aqueous solution or KOH aqueous solution to obtain an alkali metal aqueous solution of fatty acid.
  • an alkali metal aqueous solution of a fatty acid is added to a slurry of calcium carbonate and water and stirred. Thereby, the surface of calcium carbonate can be surface-treated with a fatty acid.
  • the solid content of calcium carbonate in the slurry of calcium carbonate and water can be adjusted as appropriate in consideration of the average particle diameter of calcium carbonate, the dispersibility of the calcium carbonate in the slurry, the ease of slurry dehydration, etc. Good. In general, by adjusting the solid content of the slurry to about 2 to 30% by weight, preferably about 5 to 20% by weight, a slurry with an appropriate viscosity can be obtained.
  • the slurry may be dehydrated by a method such as a filter press. Further, the drying may be performed by, for example, a box type dryer.
  • the surface of calcium carbonate can be treated with a fatty acid without saponifying the fatty acid into a metal salt of the fatty acid.
  • the surface of calcium carbonate can be treated with a fatty acid by stirring the calcium carbonate while heating it to a temperature equal to or higher than the melting point of the fatty acid, adding the fatty acid thereto, and stirring.
  • the surface of calcium carbonate can be treated with the fatty acid ester by adding the fatty acid ester thereto while stirring the calcium carbonate while heating it above the melting point of the fatty acid ester.
  • the BET specific surface area of the surface-treated calcium carbonate is usually about 10 m 2 / g to 100 m 2 / g, preferably about 10 m 2 / g to 60 m 2 / g, and about 15 m 2 / g to 40 m 2 / g. It is more preferable that
  • the average particle diameter of the surface-treated calcium carbonate is usually about 20 nm to 200 nm, preferably about 20 nm to 150 nm, more preferably about 30 nm to 100 nm.
  • the average particle diameter of the surface-treated calcium carbonate is a value measured by image analysis using a transmission electron microscope.
  • the method for impregnating the surface-treated calcium carbonate with a liquid organic compound at room temperature is not particularly limited.
  • impregnated calcium carbonate is obtained by mixing surface-treated calcium carbonate and an organic compound that is liquid at room temperature.
  • a specific example of the impregnation treatment there may be mentioned a method of spraying a liquid organic compound at normal temperature onto the dried surface-treated calcium carbonate, followed by stirring.
  • the stirring method is not particularly limited, and stirring may be performed using, for example, a mixer or a super mixer.
  • the temperature at which the surface-treated calcium carbonate and the liquid organic compound are mixed at normal temperature is not particularly limited. For example, what is necessary is just to mix under room temperature (25 degreeC).
  • the mixing time is usually about 0.1 seconds to 10 minutes.
  • the polymer composition includes a polymer and impregnated calcium carbonate.
  • Examples of the polymer composition include a resin composition and a rubber composition.
  • the polymer contained in the polymer composition is not particularly limited. Examples of the polymer include resin and rubber.
  • the resin contained in the resin composition is not particularly limited.
  • the resin include known resins such as polyvinyl chloride resin, polyurethane resin, modified silicone resin, polysulfide resin, acrylic resin, silicone resin, and polypropylene glycols.
  • the resin composition may further contain a resin plasticizer, a filler, a crosslinking agent, and other additives as necessary.
  • the resin plasticizer, filler, cross-linking agent, and other additives may be composed of only one type or may be composed of a plurality of types.
  • the resin plasticizer examples include dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), diheptyl phthalate (DHP), dioctyl phthalate (DOP), diisononyl phthalate ( DINP), diisodecyl phthalate (DIDP), ditridecyl phthalate (DTDP), butylbenzyl phthalate (BBP), dicyclohexyl phthalate (DCHP), tetrahydrophthalic acid ester, dioctyl adipate (DOA), diisononyl adipate (DINA) Diisodecyl adipate (DIDA), di-n-alkyl adipate, dibutyl diglycol adipate (BXA), bis (2-ethylhexyl) azelate (DOZ), dibutyl sebacate (DBS), dioctyl se
  • fillers include inorganic fillers and organic fillers.
  • inorganic fillers include calcium carbonate (natural products and synthetic products) other than calcium carbonate used in the impregnated calcium carbonate of the present invention (natural products and synthetic products), calcium magnesium carbonate (natural products and synthetic products), and basic properties.
  • organic fillers examples include powders such as wood powder, walnut powder, cork powder, wheat flour, starch, ebonite powder, rubber powder, lignin, phenol resin, high styrene resin, polyethylene resin, silicon resin, urea resin, or Examples include beads, cellulose powder, pulp powder, synthetic fiber powder, amide wax, and castor oil wax.
  • the resin composition is obtained by mixing a resin, impregnated calcium carbonate, and, if necessary, a resin plasticizer, a filler, a crosslinking agent, and other additives.
  • a resin plasticizer e.g., ethylene glycol dimethacrylate
  • a filler e.g., polyethylene glycol dimethacrylate
  • a crosslinking agent e.g., polyethylene glycol dimethacrylate
  • other additives e.g., polyst copolymer, polyurethane, polyurethane, polyurethane, polyurethane, polyurethane, polyurethane, polyurethane, polyurethane, polyurethane, polyurethane, polyurethane, polyurethane, polyurethane, polyurethane, polyurethane, polyurethane, polyurethane, polyurethane, polyurethane, polyurethane, polyurethane, polyurethane, polyurethane, polyurethane, poly
  • the rubber contained in the rubber composition is not particularly limited. Examples of the rubber include natural rubber and synthetic rubber.
  • Natural rubber is a rubbery polymer obtained from natural plants. As long as the natural rubber has a cis-1,4-polyisoprene structure, the shape, color tone and the like are not particularly limited.
  • Synthetic rubbers include, for example, isoprene rubber, styrene butadiene rubber, butadiene rubber, chloroprene rubber, acrylonitrile butadiene rubber, butyl rubber, halogenated butyl rubber, ethylene propylene rubber, urethane rubber, silicone rubber, fluorine rubber, chlorosulfonated polyethylene, epichlorohydride. Rubber, polysulfide rubber and the like.
  • the rubber may be a latex mainly composed of rubber.
  • the rubber composition may contain various commonly used rubber compounding agents.
  • rubber compounding agents include carbon black, silica, clay, other fillers such as calcium carbonate, silane coupling agents, vulcanization accelerators, activators, oils, zinc white, stearic acid, softeners, and aging.
  • examples thereof include additives such as inhibitors, retarders, and vulcanizing agents such as sulfur vulcanization accelerators.
  • vulcanization accelerator examples include thiazoles such as di-2-benzothiazolyl disulfide (DM) and 2-mercaptobenzothiazole (M), N-cyclohexyl-2-benzothiazolylsulfenamide (CZ), Sulfenamides such as N-tert-butyl-2-benzothiazolylsulfenamide (NS) and N, N-dicyclohexyl-2-benzothiazole sulfenamide (DZ), tetramethylthiuram monosulfide (TS), Examples thereof include thiuram compounds such as tetramethylthiuram disulfide (TT), thiocarbamic acid compounds such as zinc dimethylthiocarbamate (PZ), and xanthate salt vulcanization accelerators such as zinc isopropylxanthate (ZIX).
  • thiazoles such as di-2-benzothiazolyl disulfide (DM) and 2-mercaptobenzothiazo
  • the rubber composition can be produced by mixing rubber and impregnated calcium carbonate.
  • Examples of the method of mixing the rubber and impregnated calcium carbonate include a Banbury mixer, a pressure kneader, a closed kneader such as an intermix, a method of mixing the impregnated calcium carbonate while kneading the rubber with an open roll or the like. It is done.
  • the content of the impregnated calcium carbonate in the polymer composition is usually about 10 to 400 parts by weight and preferably about 10 to 300 parts by weight with respect to 100 parts by weight of the polymer composition.
  • the polymer precursor composition includes a polymer precursor and impregnated calcium carbonate.
  • the polymer precursor composition include a composition containing the above resin precursor, a composition containing the above rubber precursor, and the like.
  • the polymer precursor composition may further contain the same resin plasticizer, filler, cross-linking agent, other additives, various rubber compounding agents and the like as described above, if necessary.
  • the content of the impregnated calcium carbonate in the polymer precursor composition is usually about 10 parts by weight to 400 parts by weight and about 10 parts by weight to 300 parts by weight with respect to 100 parts by weight of the polymer precursor composition. It is preferable.
  • the impregnated calcium carbonate of the present invention is excellent in dispersibility with respect to the polymer composition and the polymer precursor composition, it is suitable as a compounding agent for inks, paints, sealing materials, PVC sols, acrylic sols, resins, rubbers and the like. Can be used.
  • the resin composition and the resin precursor composition of the present invention can be suitably used as a sealant material, PVC sol, acrylic sol, adhesive, and the like.
  • the rubber composition and rubber precursor composition of the present invention can be suitably used as vibration-proof rubber, packing, weather strip, hose, gasket, O-ring, and the like.
  • the value of BET specific surface area is about 10 to 40 m 2 / g, and the average particle size is several tens of nm to several hundreds. Mixing fine calcium carbonate of about nm is performed.
  • the impregnated calcium carbonate of the present invention is impregnated with 3 to 22 parts by weight of an organic compound that is liquid at room temperature with respect to 100 parts by weight of the surface-treated calcium carbonate. Thereby, even if the average particle diameter of the surface-treated calcium carbonate is very fine, for example, about 20 nm to 200 nm, it is difficult to be scattered and easy to handle.
  • the impregnated calcium carbonate of the present invention is very excellent in terms of dispersibility in a polymer composition such as a resin and rubber and a polymer precursor composition.
  • the impregnated calcium carbonate of the present invention has a very short time until it becomes uniform when mixed with a polymer such as a resin or rubber, or a polymer precursor.
  • the impregnated calcium carbonate of the present invention is uniformly dispersed very quickly even when mixed with a resin plasticizer or the like. Therefore, the impregnated calcium carbonate of the present invention can be easily mixed with a polymer or a polymer precursor to form a polymer composition or a polymer precursor composition.
  • the impregnated calcium carbonate is uniformly dispersed. Therefore, the polymer composition of the present invention can be suitably used for various applications.
  • inorganic particles such as calcium oxide and calcium hydroxide may be impregnated with a liquid organic compound at room temperature to obtain impregnated inorganic particles.
  • Such impregnated inorganic particles are also excellent in dispersibility in the polymer composition and the polymer precursor composition. Further, even if the impregnated inorganic particles are very fine, for example, about 20 nm to 200 nm, they are difficult to scatter and are easy to handle.
  • Example 1 Warm water was added to 2 kg of synthetic calcium carbonate having a BET specific surface area of 20 m 2 / g so that the solid content would be 10% by weight, and a calcium carbonate slurry solution was prepared using a stirring type disperser. While stirring the slurry with a disperser, 60 g of sodium stearate was added and further stirred for 5 minutes. Next, the obtained slurry was dehydrated by a filter press, dried by a box dryer, and powdered to obtain about 2 kg of surface-treated calcium carbonate whose surface was treated with sodium stearate.
  • a powder tester PT-D manufactured by Hosokawa Micron Corporation was used for the evaluation of scattering properties. As shown in FIG. 1, using a powder tester 1, a circular watch glass 4 (radius 5 cm) is provided below a glass cylinder 2 (radius 5 cm, length 35 cm), and a circular sample table 3 (radius 2. 10 g of sample 5 (impregnated calcium carbonate) was naturally dropped from 5 cm). The distance from the lower part of the sample stage 3 to the upper part of the glass cylinder was 16 cm, and the distance from the lower part of the glass cylinder 2 to the watch glass 4 was 11 cm. Scatterability (dispersion degree) was evaluated based on the value obtained by the following equation. The results are shown in Table 1 below.
  • Example 2 Impregnated calcium carbonate was obtained in the same manner as in Example 1 except that the amount of Diana Process Oil NP-24 (trade name) was 10 parts by weight with respect to 100 parts by weight of the surface-treated calcium carbonate.
  • the scattering property (dispersion degree) of the impregnated calcium carbonate obtained in Example 2 was evaluated. The results are shown in Table 1 below.
  • a resin paste was prepared by mixing the impregnated calcium carbonate obtained in Example 2 and a resin, and the dispersibility of the impregnated calcium carbonate in the obtained resin paste was adjusted. evaluated.
  • Table 2 shows the ratio of the amount of each component contained in the resin paste to which the impregnated calcium carbonate was added. The evaluation results of dispersibility are shown in Table 4, FIG. 2 and FIG.
  • Example 3 Impregnated calcium carbonate was obtained in the same manner as in Example 1, except that the amount of Diana Process Oil NP-24 (trade name) was 14 parts by weight with respect to 100 parts by weight of the surface-treated calcium carbonate.
  • the scattering property (dispersion degree) of the impregnated calcium carbonate obtained in Example 3 was evaluated. The results are shown in Table 1 below.
  • the impregnated calcium carbonate obtained in Example 3 and a resin were mixed to prepare a resin paste, and the dispersibility of the impregnated calcium carbonate in the resin paste was evaluated.
  • Table 2 shows the ratio of the amount of each component contained in the resin paste to which the impregnated calcium carbonate was added. The evaluation results of dispersibility are shown in Table 4, FIG. 2 and FIG.
  • Example 4 Impregnated calcium carbonate was obtained in the same manner as in Example 1 except that the amount of Diana Process Oil NP-24 (trade name) was 20 parts by weight with respect to 100 parts by weight of the surface-treated calcium carbonate. Next, in the same manner as in Example 1, the scattering property (dispersion degree) of the impregnated calcium carbonate obtained in Example 4 was evaluated. The results are shown in Table 1 below. Next, in the same manner as in Example 1, the impregnated calcium carbonate obtained in Example 4 and a resin were mixed to prepare a resin paste, and the dispersibility of the impregnated calcium carbonate in the resin paste was evaluated. Table 2 shows the ratio of the amount of each component contained in the resin paste to which the impregnated calcium carbonate was added. The evaluation results of dispersibility are shown in Table 4, FIG. 2 and FIG.
  • Comparative Example 1 In the same manner as in Example 1, a surface-treated calcium carbonate having a surface treated with sodium stearate was obtained. Next, the impregnation treatment was not performed, and the scattering property (dispersion degree) of the surface-treated calcium carbonate whose surface was treated with sodium stearate obtained in Comparative Example 1 was evaluated in the same manner as in Example 1. The results are shown in Table 1 below.
  • a resin paste was prepared in the same manner as in Example 1, and Diana Process Oil NP-24 (trade name) was further added to the resin paste and stirred to obtain a resin paste.
  • the amount of Diana Process Oil NP-24 (trade name) added was 10 parts by weight with respect to 100 parts by weight of the surface-treated calcium carbonate added to the resin.
  • the surface-treated calcium carbonate obtained in Comparative Example 1 was added to the obtained resin paste, and the dispersibility of the surface-treated calcium carbonate in the resin paste was evaluated in the same manner as in Example 1.
  • Table 2 shows the ratio of the amount of each component contained in the resin paste to which the surface-treated calcium carbonate is added. The evaluation results of dispersibility are shown in Table 4, FIG. 2 and FIG.
  • the surface-treated calcium carbonate particles are covered with a liquid organic compound at room temperature, and the affinity between the surface-treated calcium carbonates is weakened by the liquid organic compound at room temperature, As a result, it is considered that the resin is excellent in dispersibility.
  • Comparative Example 3 where 25 parts by weight of Diana Process Oil NP-24 was used, 1500 seconds longer than Comparative Example 1 was required until the impregnated calcium carbonate was uniformly dispersed in the resin. . From this result, impregnation with a large amount of liquid organic compound at room temperature does not improve the dispersibility of the surface-treated calcium carbonate in the resin, but the amount of impregnation of the liquid organic compound at room temperature is set within a specific range. It turns out that is important. If the amount of the liquid organic compound impregnated at room temperature is too large, the surface-treated calcium carbonate is covered with a large amount of the liquid organic compound at room temperature, and conversely, it is considered that dispersion into a resin or the like is hindered.
  • Impregnated calcium carbonate was obtained in the same manner as in Example 2 except that diisononyl phthalate (DINP) was used instead of Diana Process Oil NP-24 (trade name).
  • DINP diisononyl phthalate
  • the scattering property (dispersion degree) of the impregnated calcium carbonate obtained in Example 5 was evaluated. The results are shown in Table 5 below.
  • the impregnated calcium carbonate obtained in Example 5 and the resin were mixed to prepare a resin paste, and the dispersibility of the impregnated calcium carbonate in the resin paste was evaluated.
  • Table 6 shows the ratio of the amount of each component contained in the resin paste to which the impregnated calcium carbonate was added. The evaluation results of dispersibility are shown in Table 7, FIG. 4 and FIG.
  • Impregnated calcium carbonate was obtained in the same manner as in Example 2 except that polypropylene glycol (Uniol D-250 manufactured by NOF Corporation) was used instead of Diana Process Oil NP-24 (trade name).
  • the scattering property (dispersion degree) of the impregnated calcium carbonate obtained in Example 6 was evaluated. The results are shown in Table 5 below.
  • the impregnated calcium carbonate obtained in Example 6 and the resin were mixed to prepare a resin paste, and the dispersibility of the impregnated calcium carbonate in the resin paste was evaluated.
  • Table 6 shows the ratio of the amount of each component contained in the resin paste to which the impregnated calcium carbonate was added. The evaluation results of dispersibility are shown in Table 7, FIG. 4 and FIG.
  • Example 7 In accordance with the formulation shown in Table 8 below, 92 parts by weight of polypropylene glycol (EXCENOL 3020 manufactured by Asahi Glass Co., Ltd.) and 88 parts by weight of impregnated calcium carbonate prepared in Example 6 were added as a resin precursor and kneaded to obtain a paste. It was. Evaluation of dispersibility of the obtained paste was performed in the same manner as in Example 1. The results are shown in Table 9 and FIG.
  • Comparative Example 4 According to the formulation shown in Table 8 below, 100 parts by weight of polypropylene glycol (EXCENOL 3020 manufactured by Asahi Glass Co., Ltd.) as a resin precursor and 80 parts by weight of the surface-treated calcium carbonate obtained in Comparative Example 1 were added, and the paste was kneaded. Obtained. Evaluation of dispersibility of the obtained paste was performed in the same manner as in Example 1. The results are shown in Table 9 and FIG.
  • Example 8 According to the formulation shown in Table 8 below, 94 parts by weight of a modified silicone polymer (MS polymer S203 manufactured by Kaneka Corporation) as a resin precursor and 66 parts by weight of impregnated calcium carbonate prepared in Example 6 were added, kneaded and paste Got. Evaluation of dispersibility of the obtained paste was performed in the same manner as in Example 1. The results are shown in Table 9 and FIG.
  • Comparative Example 5 (Comparative Example 5)
  • 100 parts by weight of a modified silicone polymer (MS polymer S203 manufactured by Kaneka Corporation) as a resin precursor and 60 parts by weight of the surface-treated calcium carbonate obtained in Comparative Example 1 were added and kneaded.
  • a paste was obtained. Evaluation of dispersibility of the obtained paste was performed in the same manner as in Example 1. The results are shown in Table 9 and FIG.
  • Example 9 In accordance with the formulation shown in Table 8 below, 90 parts by weight of diisononyl phthalate (Sansoizer DINP manufactured by Shin Nippon Rika Co., Ltd.) and 110 parts by weight of impregnated calcium carbonate prepared in Example 6 were added and kneaded as a resin precursor. A paste was obtained. Evaluation of dispersibility of the obtained paste was performed in the same manner as in Example 1. The results are shown in Table 9 and FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

 飛散しにくく、ポリマー組成物への分散性に優れた含浸処理炭酸カルシウム、その製造方法及び含浸処理炭酸カルシウムを含むポリマー組成物を提供する。 脂肪酸、樹脂酸及びこれらの誘導体の少なくとも1種で炭酸カルシウムを表面処理してなる表面処理炭酸カルシウムに、常温で液体の有機化合物を、表面処理炭酸カルシウム100重量部に対して3~22重量部含浸してなる含浸処理炭酸カルシウム。

Description

含浸処理炭酸カルシウム、その製造方法、ポリマー組成物及びポリマー前駆体組成物
 本発明は、含浸処理炭酸カルシウム、その製造方法、含浸処理炭酸カルシウムを含むポリマー組成物及びポリマー前駆体組成物に関する。
 従来、樹脂、ゴムなどのポリマー組成物に種々の特性を付与することを目的として、炭酸カルシウムをポリマーに配合することが行われている。ポリマー組成物の強度などの特性を改善することを目的として炭酸カルシウムを配合する場合、例えばBET比表面積の値が10~40m/g程度の微細な炭酸カルシウムが使用されることがある。
 例えば、特許文献1には、脂肪酸塩で表面処理されたBET比表面積が10m/g以上の炭酸カルシウムを樹脂などに配合することが開示されている。
 しかしながら、炭酸カルシウムの粒子径を小さくすると、炭酸カルシウムが飛散しやすくなり、取り扱いが困難になるという問題がある。また、脂肪酸などで表面処理された炭酸カルシウムは、飛散しやすいという問題点もある。
特開2010-228976号公報
 本発明は、飛散しにくく、ポリマー組成物への分散性に優れた含浸処理炭酸カルシウム、その製造方法、含浸処理炭酸カルシウムを含むポリマー組成物及びポリマー前駆体組成物を提供することを主な目的とする。
 本発明の含浸処理炭酸カルシウムは、脂肪酸、樹脂酸及びこれらの誘導体の少なくとも1種で炭酸カルシウムを表面処理してなる表面処理炭酸カルシウムに、常温で液体の有機化合物を含浸したものである。常温で液体の有機化合物の含浸量は、表面処理炭酸カルシウム100重量部に対して3~22重量部である。
 本発明の含浸処理炭酸カルシウムは、表面処理炭酸カルシウム100重量部に対して常温で液体の有機化合物が3重量部以上含浸されたものであるため、飛散しにくい。よって、本発明の含浸処理炭酸カルシウムは、取り扱いが容易である。また、本発明の含浸処理炭酸カルシウムは、表面処理炭酸カルシウム100重量部に対して常温で液体の有機化合物が3重量部~22重量部含浸されたものであるため、ポリマーと混合したときに、ポリマーなどに迅速かつ均一に分散される。
 なお、本発明において、「含浸」とは、表面処理炭酸カルシウムの粒子間に、常温で液体の有機化合物を染み込ませることをいう。
 本発明において、常温で液体の有機化合物は、可塑剤、油剤、及びポリプロピレングリコール類の少なくとも1種であることが好ましい。
 本発明において、油剤としては、鉱物油、合成油、植物油などが挙げられる。
 本発明において、炭酸カルシウムは、合成炭酸カルシウムであることが好ましい。
 本発明において、表面処理炭酸カルシウムの平均粒子径は、20nm~200nmであることが好ましい。
 本発明において、表面処理炭酸カルシウムのBET比表面積は、10m/g~100m/gであることが好ましい。
 本発明において、炭酸カルシウムに対する脂肪酸、樹脂酸及びこれらの誘導体の少なくとも1種の処理量は、炭酸カルシウム100重量部に対して、2重量部~15重量部であることが好ましい。
 本発明のポリマー組成物は、ポリマーと含浸処理炭酸カルシウムとを含む。本発明のポリマー組成物は、ポリマー組成物中に含浸処理炭酸カルシウムが均一に分散している。よって、本発明のポリマー組成物は、種々の用途に好適に使用できる。
 本発明のポリマー前駆体組成物は、ポリマーの前駆体と含浸処理炭酸カルシウムとを含む。本発明のポリマー前駆体組成物は、ポリマー前駆体組成物中に含浸処理炭酸カルシウムが均一に分散している。よって、本発明のポリマー前駆体組成物は、種々の用途に好適に使用できる。
 本発明の含浸処理炭酸カルシウムの製造方法は、脂肪酸、樹脂酸及びこれらの誘導体の少なくとも1種で炭酸カルシウムを表面処理して、表面処理炭酸カルシウムを得る工程、及び常温で液体の有機化合物を、表面処理炭酸カルシウム100重量部に対して3~22重量部含浸する工程を備える。
 本発明によれば、飛散しにくく、ポリマー組成物やポリマー前駆体組成物への分散性に優れた含浸処理炭酸カルシウムを提供することができる。また、本発明によれば、含浸処理炭酸カルシウムが均一に分散したポリマー組成物及びポリマー前駆体組成物を提供することができる。
図1は、実施例1~4及び比較例1~3において飛散性評価に使用したパウダーテスターの模式図である。 図2は、実施例1~4及び比較例1~3における分散性と混練時間との関係を表したグラフである。 図3は、実施例1~4及び比較例1~3において、分散度Aに至るまでの時間を示したグラフである。 図4は、実施例5及び実施例6における分散性と混練時間との関係を表したグラフである。 図5は、実施例5及び実施例6において、分散度Aに至るまでの時間を示したグラフである。 図6は、実施例7及び比較例4における分散性と混練時間との関係を表したグラフである。 図7は、実施例8及び比較例5における分散性と混練時間との関係を表したグラフである。 図8は、実施例9及び比較例6における分散性と混練時間との関係を表したグラフである。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 本実施形態において、含浸処理炭酸カルシウムは、脂肪酸、樹脂酸及びこれらの誘導体の少なくとも1種で炭酸カルシウムを表面処理してなる炭酸カルシウムに、常温で液体の有機化合物が含浸されたものである。
 (炭酸カルシウム)
 含浸処理炭酸カルシウムを構成する炭酸カルシウムは、特に限定されない。例えば、従来公知の炭酸カルシウムを用いることができる。炭酸カルシウムの具体例としては、合成炭酸カルシウム、天然炭酸カルシウム(重質炭酸カルシウム)などが挙げられる。炭酸カルシウムは、合成炭酸カルシウムであることが好ましい。
 合成炭酸カルシウムは、特に限定されない。合成炭酸カルシウムとしては、例えば沈降性(膠質)炭酸カルシウム、軽質炭酸カルシウムなどが挙げられる。合成炭酸カルシウムは、例えば水酸化カルシウムを炭酸ガスと反応させることによって製造することができる。水酸化カルシウムは、例えば酸化カルシウムを水と反応させることによって製造することができる。酸化カルシウムは、例えば石灰石原石をコークスなどで混焼することによって製造することができる。この場合、焼成時に炭酸ガスが発生するので、この炭酸ガスを水酸化カルシウムと反応させることによって炭酸カルシウムを製造することができる。
 天然炭酸カルシウムは、天然に産出する炭酸カルシウム原石を公知の方法で粉砕することにより得られるものである。炭酸カルシウム原石を粉砕する方法としては、ローラーミル、高速回転ミル(衝撃剪断ミル)、容器駆動媒体ミル(ボールミル)、媒体撹拌ミル、遊星ボールミル、ジェットミルなどで粉砕する方法が挙げられる。
 炭酸カルシウムの平均粒子径は、通常20nm~200nm程度であり、20nm~150nm程度であることが好ましく、30nm~100nm程度であることがより好ましい。なお、炭酸カルシウムの平均粒子径は、透過型電子顕微鏡による画像解析によって測定した値である。
 (脂肪酸、樹脂酸及びこれらの誘導体)
 脂肪酸及びその誘導体は、特に限定されない。脂肪酸及びその誘導体としては、例えば脂肪酸、その金属塩、そのエステル化物などが挙げられる。
 脂肪酸としては、例えば炭素数6~31の飽和または不飽和の脂肪酸が挙げられる。
 飽和脂肪酸の具体例としては、カプロン酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アライン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸などが挙げられる。これらの中でも、パルミチン酸、ステアリン酸及びラウリン酸が好ましく用いられる。
 また、不飽和脂肪酸としては、オブッシル酸、カルロレイン酸、ウンデシレン酸、リンデル酸、ツズ酸、フィゼテリン酸、モリストレイン酸、パルミトレイン酸、ペトロセリン酸、オレイン酸、エライジン酸、アスクレビン酸、バクセン酸、ガドレイン酸、ゴンドイン酸、セトレイン酸、エルカ酸、ブラシジン酸、セラコレイン酸、キシメン酸、ルメクエン酸、ソルビン酸、リノール酸などが挙げられる。
 脂肪酸の金属塩としては、例えば、上記脂肪酸のナトリウム塩、カリウム塩などのアルカリ金属塩、マグネシウム塩、カルシウム塩などのアルカリ土類金属塩などが挙げられる。これらの中でも上記脂肪酸のナトリウム塩、カリウム塩などのアルカリ金属塩が好ましい。
 脂肪酸のエステル化物としては、例えば、ステアリン酸ステアリル、ステアリン酸ラウリル、パルミチン酸ステアリル、パルミチン酸ラウリルなどが挙げられる。
 より好ましい脂肪酸及びその誘導体としては、炭素数9~21の飽和脂肪酸のナトリウム塩、カリウム塩が挙げられる。これらの中でも、パルミチン酸ナトリウム、ステアリン酸ナトリウム及びラウリン酸ナトリウムが特に好ましい。
 樹脂酸及びその誘導体は、特に限定されない。樹脂酸及びその誘導体としては、例えば樹脂酸、その金属塩、その他の誘導体などが挙げられる。
 樹脂酸の具体例としては、アビエチン酸、ピマル酸、レポピマール酸、ネオアビエチン酸、パルストリン酸、デヒドロアピエチン酸、ジヒドロアビエチン酸、テトラアビエチン酸、デキストロピマール酸、イソデキストロピマール酸などが挙げられる。
 樹脂酸の金属塩としては、例えば上記樹脂酸のナトリウム塩、カリウム塩などのアルカリ金属塩、マグネシウム塩、カルシウム塩などのアルカリ土類金属塩などが挙げられる。
 また、樹脂酸の誘導体としては、水添ロジン、不均化ロジン、重合ロジン、ロジンエステル、マレイン化ロジン、マレイン化ロジンエステル、ロジン変性フェノールなども挙げられる。
 好ましい樹脂酸及びその誘導体としては、アビエチン酸、ネオアビエチン酸、デヒドロアビエチン酸、テトラアビエチン酸、ピマル酸、デキストロピマール酸、水添ロジン、不均化ロジン、マレイン化ロジンが挙げられる。
 炭酸カルシウムに対する脂肪酸、樹脂酸及びこれらの誘導体の少なくとも1種の処理量は、炭酸カルシウム100重量部に対して、通常2重量部~15重量部程度であり、2重量部~10重量部程度であることが好ましく、2.5重量部~5重量部程度であることが
より好ましい。炭酸カルシウムに対する脂肪酸、樹脂酸及びこれらの誘導体の少なくとも1種の処理量が少なすぎると、表面処理炭酸カルシウムが凝集しやすくなり好ましくない。また、脂肪酸、樹脂酸及びこれらの誘導体の少なくとも1種の処理量が多すぎると、表面処理量に比例した効果が得られなくなると共にコストが高くなり、経済的に不利となり好ましくない。
 なお、脂肪酸、樹脂酸及びこれらの誘導体の少なくとも1種は、上記処理量の80~99重量%程度が炭酸カルシウムの表面に付着する。すなわち、炭酸カルシウム100重量部に対する脂肪酸、樹脂酸及びこれらの誘導体の少なくとも1種の付着量は、通常1.6重量部~14.9重量部程度であり、1.6重量部~9.9重量部程度であることが好ましく、2.0重量部~4.9重量部程度であることがより好ましい。
 (常温で液体の有機化合物)
 常温で液体の有機化合物は、特に限定されない。なお、常温で液体とは、1気圧下、25℃で液体であることをいう。
 常温で液体の有機化合物の平均分子量は、通常30~6000g/mol程度である。また、常温で液体の有機化合物の粘度は、5mPa・s/20℃~3500mPa・s/20℃程度であることが好ましい。
 常温で液体の有機化合物としては、例えば可塑剤、油剤、ポリプロピレングリコール類などが挙げられる。
 可塑剤は、特に制限されない。可塑剤としては、例えば樹脂、ゴムなどのポリマー組成物に添加される公知の可塑剤が挙げられる。可塑剤としては、フタル酸系可塑剤、ポリエステル系可塑剤、スルホン酸系可塑剤、リン酸系可塑剤などが好ましい。フタル酸系可塑剤の具体例としては、フタル酸ジー2エチルヘキシル(DOP)、フタル酸ジメチル(DMP)、フタル酸ジイソノニル(DlNP)、フタル酸ジプチル(DBP)、フタル酸ジイソデシル(DlDP)などが挙げられる。ポリエステル系可塑剤の具体例としては、ポリアジピン酸プロピル、ポリセバシン酸プロピルなどが挙げられる。スルホン酸系可塑剤の具体例としては、ベンゼンスルホン酸ブチルアミドなどが挙げられる。リン酸系可塑剤の具体例としては、リン酸トリクレジル、リン酸トリオクチル、リン酸トリフェニルなどが挙げられる。
 油剤としては、鉱物油、合成油、植物油などが挙げられる。
 鉱物油は、原油の生成過程で得られる重質油である。鉱物油は、特に限定されない。鉱物油の粘度は、5mPa・s/20℃~3500mPa・s/20℃程度であることが好ましく、10mPa・s/20℃~1000mPa・s/20℃程度であることがより好ましい。
 鉱物油は、パラフィン系鉱物油、ナフテン系鉱物油及び芳香族系鉱物油からなる群から得らばれる少なくとも1種であることが好ましく、パラフィン系鉱物油またはナフテン系鉱物油であることがより好ましく、ナフテン系鉱物油であることがさらに好ましい。
 パラフィン系鉱物油としては、プロセスオイルとして使用されるものが挙げられる。パラフィン系鉱物油の具体例としては、出光興産株式会社製のダイアナプロセスオイルPW-32,PW-90,PW-380,PS-32,PS-90,PS-430(いずれも商品名)などが挙げられる。
 ナフテン系鉱物油としては、プロセスオイルとして使用されるものが挙げられる。ナフテン系鉱物油の具体例としては、出光興産株式会社製のダイアナプロセスオイルNS-24,NS-100,NR-68,NM-26,NM-280,NP-24などが挙げられる。
 芳香族系鉱物油としては、プロセスオイルとして使用されるものが挙げられる。芳香族系鉱物油の具体例としては、出光興産株式会社製のダイアナプロセスオイルAC-12,AC460,AH-16,AH-24などが挙げられる。
 合成油は、特に限定されない。合成油としては、ポリアルファオレフィン、ポリオールエステルなどの化学合成油などが挙げられる。
 植物油としては、ひまし油、大豆油、菜種油、コーン油、紅花油、米油、綿実油、胡麻油、ピーナツ油、オリーブ油、パーム油などが挙げられる。
 表面処理炭酸カルシウムに対する常温で液体の有機化合物の含浸量は、表面処理炭酸カルシウム100重量部に対して3重量部~22重量部程度である。常温で液体の有機化合物の含浸量は、表面処理炭酸カルシウム100重量部に対して5重量部~20重量部程度であることが好ましく、5重量部~15重量部程度であることがより好ましい。すなわち、表面処理炭酸カルシウムに対する常温で液体の有機化合物の付着量は、表面処理炭酸カルシウム100重量部に対して通常3重量部~22重量部程度であり、5重量部~20重量部程度であることが好ましく、5重量部~15重量部程度であることがより好ましい。
 表面処理炭酸カルシウムに対する常温で液体の有機化合物の含浸量が少なすぎると、表面処理炭酸カルシウムが飛散しやすく、ポリマー組成物への分散性も改善されない。また、常温で液体の有機化合物の含浸量が多すぎると、ポリマー組成物への分散性が悪くなる。
 常温で液体の有機化合物の含浸量は、表面処理炭酸カルシウムの平均粒子径、BET比表面積、脂肪酸表面処理量などによっては影響されない。
 上記のとおり、含浸処理炭酸カルシウムは、脂肪酸、樹脂酸及びこれらの誘導体の少なくとも1種で炭酸カルシウムを表面処理して得られる表面処理炭酸カルシウムに、常温で液体の有機化合物を含浸したものである。すなわち、含浸処理炭酸カルシウムの製造方法は、脂肪酸、樹脂酸及びこれらの誘導体の少なくとも1種で炭酸カルシウムを表面処理して、表面処理炭酸カルシウムを得る表面処理工程と、常温で液体の有機化合物を、表面処理炭酸カルシウム100重量部に対して3~22重量部含浸する含浸工程とを備える。
 (表面処理)
 炭酸カルシウムを脂肪酸、樹脂酸及びこれらの誘導体の少なくとも1種で表面処理する方法は特に限定されない。
 表面処理は、例えば、炭酸カルシウムと水とを含むスラリーに、脂肪酸、樹脂酸及びこれらの誘導体の少なくとも1種とを添加した後、脱水、乾燥する方法などが採用できる。例えば、脂肪酸のアルカリ金属塩で炭酸カルシウムを表面処理する具体的な方法としては、次のような方法が挙げられる。
 脂肪酸をNaOH水溶液、KOH水溶液などのアルカリ金属水溶液中で加熱しながら鹸化し、脂肪酸のアルカリ金属水溶液にする。次に、炭酸カルシウムと水とのスラリーに、脂肪酸のアルカリ金属水溶液を添加して攪拌する。これにより、炭酸カルシウムの表面を脂肪酸で表面処理することができる。
 炭酸カルシウムと水とのスラリー中の炭酸カルシウムの固形分の含有量は、炭酸カルシウムの平均粒子径、炭酸カルシウムのスラリー中への分散性、スラリー脱水の容易さなどを考慮して適宜調整すればよい。一般的には、スラリーの固形分含有量を2~30重量%程度、好ましくは5~20重量%程度となるように調整することにより、適度な粘度のスラリーとすることができる。
 スラリーの脱水は、例えばフィルタープレスなどの方法によって行えばよい。また、乾燥は、例えば箱型乾燥機などによって行えばよい。
 また、脂肪酸を鹸化して脂肪酸の金属塩とはせずに、脂肪酸を用いて炭酸カルシウムの表面を処理することもできる。例えば、炭酸カルシウムを、脂肪酸の融点以上の温度に加温しながら攪拌し、これに脂肪酸を添加して攪拌することにより、脂肪酸で炭酸カルシウムの表面を処理することができる。同様にして、脂肪酸のエステルの融点以上に炭酸カルシウムを加温しながら攪拌し、これに脂肪酸のエステルを添加することにより、脂肪酸のエステルで炭酸カルシウムの表面を処理することができる。
 表面処理炭酸カルシウムのBET比表面積は、通常10m/g~100m/g程度であり、10m/g~60m/g程度であることが好ましく、15m/g~40m/g程度であることがより好ましい。
 また、表面処理炭酸カルシウムの平均粒子径は、通常20nm~200nm程度であり、20nm~150nm程度であることが好ましく、30nm~100nm程度であることがより好ましい。なお、本発明において、表面処理炭酸カルシウムの平均粒子径は、透過型電子顕微鏡による画像解析により測定した値である。
 (含浸処理)
 表面処理炭酸カルシウムに常温で液体の有機化合物を含浸処理する方法は、特に限定されない。例えば、表面処理炭酸カルシウムと、常温で液体の有機化合物とを混合することにより、含浸処理炭酸カルシウムが得られる。含浸処理の具体例としては、乾燥した表面処理炭酸カルシウムに常温で液体の有機化合物を噴霧し、撹拌する方法が挙げられる。撹拌する方法は、特に限定されず、例えばミキサー、スーパーミキサーなどによって撹拌すればよい。
 また、表面処理炭酸カルシウムと、常温で液体の有機化合物とを混合する温度は特に限定されない。例えば、室温(25℃)下で混合すればよい。混合時間は、通常0.1秒間~10分間程度とすればよい。
 (ポリマー組成物)
 ポリマー組成物は、ポリマーと含浸処理炭酸カルシウムとを含む。ポリマー組成物としては、例えば、樹脂組成物、ゴム組成物などが挙げられる。ポリマー組成物に含まれるポリマーは、特に限定されない。ポリマーとしては、例えば樹脂、ゴムなどが挙げられる。
 [樹脂組成物]
 樹脂組成物に含まれる樹脂は、特に限定されない。樹脂としては、ポリ塩化ビニル樹脂、ポリウレタン樹脂、変成シリコーン樹脂、ポリサルファイド樹脂、アクリル樹脂、シリコーン樹脂、ポリプロピレングリコール類などの公知の樹脂が挙げられる。
 樹脂組成物は、必要に応じて、さらに樹脂可塑剤、充填剤、架橋剤、その他の添加剤を含んでいてもよい。樹脂可塑剤、充填剤、架橋剤及びその他の添加剤は、1種類のみから構成されていてもよいし、複数種類から構成されていてもよい。
 樹脂可塑剤としては、例えばフタル酸ジメチル(DMP)、フタル酸ジエチル(DEP)、フタル酸ジ-n-ブチル(DBP)、フタル酸ジヘプチル(DHP)、フタル酸ジオクチル(DOP)、フタル酸ジイソノニル(DINP)、フタル酸ジイソデシル(DIDP)、フタル酸ジトリデシル(DTDP)、フタル酸ブチルベンジル(BBP)、フタル酸ジシクロヘキシル(DCHP)、テトラヒドロフタル酸エステル、アジピン酸ジオクチル(DOA)、アジピン酸ジイソノニル(DINA)、アジピン酸ジイソデシル(DIDA)、アジピン酸ジn-アルキル、ジブチルジグリコールアジペート(BXA)、アゼライン酸ビス(2-エチルヘキシル)(DOZ)、セバシン酸ジブチル(DBS)、セバシン酸ジオクチル(DOS)、マレイン酸ジブチル(DBM)、マレイン酸ジ-2-エチルヘキシル(DOM)、フマル酸ジブチル(DBF)、リン酸トリクレシル(TCP)、トリエチルホスフェート(TEP)、トリブチルホスフェート(TBP)、トリス・(2-エチルヘキシル)ホスフェート(TOP)、トリ(クロロエチル)ホスフェート(TCEP)、トリスジクロロプロピルホスフェート(CRP)、トリブトキシエチルホスフェート(TBXP)、トリス(β-クロロプロピル)ホスフェート(TMCPP)、トリフェニルホスフェート(TPP)、オクチルジフェニルホスフェート(CDP)、クエン酸アセチルトリエチル、アセチルクエン酸トリブチル、トリメリット酸系可塑剤、ポリエステル系可塑剤、塩素化パラフィン、ステアリン酸系可塑剤、ジメチルポリシロキサンなどが挙げられる。
 充填剤(増粘材を含む)としては、無機系の充填剤と、有機系の充填剤が挙げられる。無機系の充填剤としては、例えば、本発明の含浸処理炭酸カルシウムに使用される炭酸カルシウム以外の炭酸カルシウム(天然品、合成品)、カルシウム・マグネシウム炭酸塩(天然品、合成品)、塩基性炭酸マグネシウム、石英粉、珪石粉、微粉珪酸(乾式品、湿式品、ゲル法品)、微粉末珪酸カルシウム、微粉珪酸アルミニウム、カオリンクレー、パイオフィライトクレー、タルク、セリサイト、雲母、ベントナイト、ネフェリンサイナイト、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、カーボンブラック(ファーネス、サーマル、アセチレン)、グラファイト、セピオライト、ワラストナイト、ゾノトライト、チタン酸カリウム、カーボン繊維、ミネラル繊維、ガラス繊維、シラスバルン、フライアッシュバルン、ガラスバルン、シリカビーズ、アルミナビーズ、ガラスビーズなどが挙げられる。有機系の充填剤としては、例えば木粉、クルミ粉、コルク粉、小麦粉、澱粉、エボナイト粉末、ゴム粉末、リグニン、フェノール樹脂、ハイスチレン樹脂、ポリエチレン樹脂、シリコン樹脂、尿素樹脂などの粉末状またはビーズ状のもの、セルロース粉末、パルプ粉末、合成繊維粉末、アマイドワックス、カストル油ワックスなどが挙げられる。
 樹脂組成物は、樹脂と、含浸処理炭酸カルシウムと、必要に応じて樹脂可塑剤、充填剤、架橋剤、その他の添加剤とを混合することにより得られる。樹脂と含浸処理炭酸カルシウムとを混合する方法としては、例えば、万能混合撹拌機によって混合する方法が挙げられる。
 [ゴム組成物]
 ゴム組成物に含まれるゴムは、特に限定されない。ゴムとしては、天然ゴム及び合成ゴムが挙げられる。
 天然ゴムは、天然植物から得られるゴム状高分子物質である。天然ゴムは、シス-1,4-ポリイソプレン構造を有するものであれば、形状、色調などは特に限定されない。
 合成ゴムとしては、例えばイソプレンゴム、スチレンブタジエンゴム、ブタジエンゴム、クロロプレンゴム、アクリロニトリルブタジエンゴム、ブチルゴム、ハロゲン化ブチルゴム、エチレンプロピレンゴム、ウレタンゴム、シリコーンゴム、フッ素ゴム、クロロスルホン化ポリエチレン、エピクロロヒドリンゴム、多硫化ゴムなどが挙げられる。また、ゴムは、ゴムを主体とするラテクッスであってもよい。
 ゴム組成物には、通常使用される各種ゴム用配合剤が含まれていてもよい。ゴム用配合剤としては、例えばカーボンブラック、シリカ、クレー、他の炭酸カルシウムなどの充填剤、シランカップリング剤、加硫促進助剤、活性剤、オイル、亜鉛華、ステアリン酸、軟化剤、老化防止剤、リターダーなどの添加剤、硫黄加硫促進剤などの加硫剤などが挙げられる。
 加硫促進剤としては、例えばジ-2-ベンゾチアゾリルジスルフィド(DM)、2-メルカプトベンゾチアゾール(M)などのチアゾール系、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CZ)、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(NS)、N,N-ジシクロヘキシル-2-ベンゾチアゾールスルフェンアミド(DZ)などのスルフェンアミド系、テトラメチルチウラムモノスルフィド(TS)、テトラメチルチウラムジスルフィド(TT)などのチウラム系、ジメチルチオカルバミン酸亜鉛(PZ)などのチオカルバミン酸系、イソプロピルキサントゲン酸亜鉛(ZIX)などのキサントゲン酸塩系の加硫促進剤が挙げられる。
 ゴム組成物は、ゴムと含浸処理炭酸カルシウムとを混合することにより製造することができる。ゴムと含浸処理炭酸カルシウムとを混合する方法としては、バンバリーミキサーや加圧ニーダー、インターミックスなどの密閉式混練機、オープンロールなどでゴムを混練しながら含浸処理炭酸カルシウムを混合する方法などが挙げられる。
 ポリマー組成物中の含浸処理炭酸カルシウムの含有量は、ポリマー組成物100重量部に対して、通常10重量部~400重量部程度であり、10重量部~300重量部程度であることが好ましい。
 (ポリマー前駆体組成物)
 ポリマー前駆体組成物は、ポリマーの前駆体と含浸処理炭酸カルシウムとを含む。ポリマーの前駆体組成物としては、上記の樹脂の前駆体を含む組成物、上記のゴムの前駆体を含む組成物などが挙げられる。ポリマーの前駆体組成物は、必要に応じて、上記と同様の樹脂可塑剤、充填剤、架橋剤、その他の添加剤、各種ゴム用配合剤などをさらに含んでいてもよい。ポリマー前駆体組成物中の含浸処理炭酸カルシウムの含有量は、ポリマー前駆体組成物100重量部に対して、通常10重量部~400重量部程度であり、10重量部~300重量部程度であることが好ましい。
 本発明の含浸処理炭酸カルシウムは、ポリマー組成物及びポリマー前駆体組成物に対する分散性に優れているため、インキ、塗料、シーリング材、PVCゾル、アクリルゾル、樹脂、ゴムなどの配合剤として好適に使用できる。また、本発明の樹脂組成物及び樹脂の前駆体組成物は、含浸処理炭酸カルシウムが均一に分散しているため、シーラント材、PVCゾル、アクリルゾル、接着剤などとして好適に使用できる。本発明のゴム組成物及びゴムの前駆体組成物は、含浸処理炭酸カルシウムが均一に分散しているため、防振ゴム、パッキン、ウェザーストリップ、ホース、ガスケット、Oリングなどとして好適に使用できる。
 ところで、従来、樹脂、ゴムなどのポリマー組成物の強度などの特性を改善することを目的として、例えばBET比表面積の値が10~40m/g程度、平均粒子径は数十nm~数百nm程度の微細な炭酸カルシウムを配合することが行われている。
 しかしながら、粒子径の小さい炭酸カルシウムは、飛散しやすく、取り扱いが困難である。よって、このような微細な炭酸カルシウムを取り扱うためには、何らかの対策が必要となる。
 本発明の含浸処理炭酸カルシウムには、表面処理炭酸カルシウム100重量部に対して3~22重量部の常温で液体の有機化合物が含浸されている。これにより、表面処理炭酸カルシウムの平均粒子径が例えば20nm~200nm程度と非常に微細であっても、飛散しにくく、取り扱いが容易である。
 また、驚くべきことに、本発明の含浸処理炭酸カルシウムは、樹脂、ゴムなどのポリマー組成物及びポリマー前駆体組成物への分散性の点でも非常に優れている。特に、本発明の含浸処理炭酸カルシウムは、樹脂、ゴムなどのポリマーや、ポリマーの前駆体などと混合したときに、均一になるまでの時間が非常に短い。さらに、本発明の含浸処理炭酸カルシウムは、樹脂可塑剤などと混合された場合にも、非常に早く均一に分散される。よって、本発明の含浸処理炭酸カルシウムは、ポリマーやポリマーの前駆体と容易に混合されて、ポリマー組成物やポリマー前駆体組成物とすることができる。
 本発明のポリマー組成物は、含浸処理炭酸カルシウムが均一に分散されている。よって、本発明のポリマー組成物は、種々の用途に好適に使用できる。
 なお、本発明における含浸処理炭酸カルシウムと同様に、酸化カルシウムや水酸化カルシウムなどの無機粒子を常温で液体の有機化合物を含浸処理して含浸処理無機粒子としてもよい。このような含浸処理無機粒子も、ポリマー組成物及びポリマー前駆体組成物に対する分散性に優れている。また、含浸処理無機粒子は、平均粒子径が例えば20nm~200nm程度と非常に微細であっても、飛散しにくく、取り扱いが容易である。
 以下、本発明を具体例により説明する。本発明は以下の具体例に限定されない。
 (実施例1)
 BET比表面積が20m/gである合成炭酸カルシウム2kgに、固形分が10重量%となるように温水を加え、撹拌型分散機を用いて炭酸カルシウムスラリー液を調製した。このスラリー液を分散機で撹拌しながら、ステアリン酸ナトリウム60gを加え、さらに5分間撹拌した。次に、得られたスラリーをフィルタープレスによって脱水した後、箱型乾燥機によって乾燥して、粉末化することによりステアリン酸ナトリウムで表面が処理された表面処理炭酸カルシウム約2kgを得た。
 次に、得られた表面処理炭酸カルシウム200gをミキサー(株式会社カワタ製の流動混合機SMP-2)に投入して撹拌した。次に、ミキサー内にナフテン系鉱物油である出光興産株式会社製のダイアナプロセスオイルNP-24(商品名)10gを噴霧し、撹拌して含浸処理炭酸カルシウムを得た。ダイアナプロセスオイルNP-24の処理量は、表面処理炭酸カルシウム100重量部に対して5重量部となるように調整した。
 次に、実施例1で得られた含浸処理炭酸カルシウムの飛散性(分散度)を以下のようにして評価した。
 [飛散性評価]
 飛散性評価には、ホソカワミクロン株式会社製のパウダーテスターPT-D型を用いた。図1に示すように、パウダーテスター1を用いて、ガラス円筒2(半径5cm、長さ35cm)の下部に、円形のウォッチグラス4(半径5cm)を設け、円形のサンプル台3(半径2.5cm)からサンプル5(含浸処理炭酸カルシウム)10gを自然落下させた。サンプル台3の下部からガラス円筒の上部までの距離は、16cm、ガラス円筒2の下部からウォッチグラス4までの距離は、11cmとした。飛散性(分散度)は、以下の式で得られた値により評価した。結果を下記表1に示す。
 飛散性(分散度)=(1-(ウォッチグラス上のサンプル量/サンプル台から落下させたサンプル量))×100
この評価方法により、含浸処理炭酸カルシウムの飛散性、すなわち、飛散のしやすさを数値化した。数値が大きいほど粉末が舞いやすい。
 [樹脂ペーストの作製]
 次に、下記表2に示す配合に従い、樹脂としてポリ塩化ビニル(第一塩ビ株式会社製のPVCペーストレジンZEST P21)150重量部と、樹脂可塑剤としてフタル酸ジイソノニル(新日本理化株式会社製のフタル酸系エステルサンソサイザーDINP)95重量部と、充填剤として重質炭酸カルシウム(備北粉化工株式会社製の重質炭酸カルシウムBF300)75重量部とを混練機に加え、混合して樹脂ペーストとした。得られた樹脂ペーストに上記含浸処理炭酸カルシウム105重量部を加え、さらに混練した。樹脂ペーストへの含浸処理炭酸カルシウムの分散性を以下のようにして評価した。
 [分散性評価]
 樹脂ペーストと含浸処理炭酸カルシウムとを混練中に経時でサンプルを採取した。採取したサンプルを、黒色紙に適量載せ、500μmアプリケーターで塗布した。下記表3の分散性評価基準のとおり、塗布したサンプルの塗膜中に存在する、粒の数とそのサイズとによって、A~Eの5段階に分けて分散性を評価した。結果を下記表4に示す。また、分散性と混練時間との関係を表したグラフを図2に示す。分散度Aに至るまでの時間を示したグラフを図3に示す。
 (実施例2)
 ダイアナプロセスオイルNP-24(商品名)の量を表面処理炭酸カルシウム100重量部に対して10重量部としたこと以外は、実施例1と同様にして含浸処理炭酸カルシウムを得た。次に、実施例1と同様にして、実施例2で得られた含浸処理炭酸カルシウムの飛散性(分散度)を評価した。結果を下記表1に示す。次に、実施例1と同様にして、実施例2で得られた含浸処理炭酸カルシウムと樹脂とを混合して樹脂ペーストを調製し、得られた樹脂ペーストへの含浸処理炭酸カルシウムの分散性を評価した。含浸処理炭酸カルシウムを加えた樹脂ペーストに含まれる各成分の配合量の比を表2に示す。分散性の評価結果を表4、図2及び図3に示す。
 (実施例3)
 ダイアナプロセスオイルNP-24(商品名)の量を表面処理炭酸カルシウム100重量部に対して14重量部としたこと以外は、実施例1と同様にして含浸処理炭酸カルシウムを得た。次に、実施例1と同様にして、実施例3で得られた含浸処理炭酸カルシウムの飛散性(分散度)を評価した。結果を下記表1に示す。次に、実施例1と同様にして、実施例3で得られた含浸処理炭酸カルシウムと樹脂とを混合して樹脂ペーストを調製し、樹脂ペーストへの含浸処理炭酸カルシウムの分散性を評価した。含浸処理炭酸カルシウムを加えた樹脂ペーストに含まれる各成分の配合量の比を表2に示す。分散性の評価結果を表4、図2及び図3に示す。
 (実施例4)
 ダイアナプロセスオイルNP-24(商品名)の量を表面処理炭酸カルシウム100重量部に対して20重量部としたこと以外は、実施例1と同様にして含浸処理炭酸カルシウムを得た。次に、実施例1と同様にして、実施例4で得られた含浸処理炭酸カルシウムの飛散性(分散度)を評価した。結果を下記表1に示す。次に、実施例1と同様にして、実施例4で得られた含浸処理炭酸カルシウムと樹脂とを混合して樹脂ペーストを調製し、樹脂ペーストへの含浸処理炭酸カルシウムの分散性を評価した。含浸処理炭酸カルシウムを加えた樹脂ペーストに含まれる各成分の配合量の比を表2に示す。分散性の評価結果を表4、図2及び図3に示す。
 (比較例1)
 実施例1と同様にして、ステアリン酸ナトリウムで表面が処理された表面処理炭酸カルシウムを得た。次に、含浸処理は行わず、比較例1で得られたステアリン酸ナトリウムで表面が処理された表面処理炭酸カルシウムの飛散性(分散度)について実施例1と同様にして評価した。結果を下記表1に示す。
 次に、実施例1と同様にして、樹脂ペーストを作製し、さらに樹脂ペーストにダイアナプロセスオイルNP-24(商品名)を添加し、撹拌して樹脂ペーストを得た。ダイアナプロセスオイルNP-24(商品名)の添加量は、樹脂に加える表面処理炭酸カルシウム100重量部に対して10重量部とした。得られた樹脂ペーストに、比較例1で得られた表面処理炭酸カルシウムを加え、実施例1と同様にして、表面処理炭酸カルシウムの樹脂ペーストへの分散性を評価した。表面処理炭酸カルシウムを加えた樹脂ペーストに含まれる各成分の配合量の比を表2に示す。分散性の評価結果を表4、図2及び図3に示す。
 (比較例2)
 ダイアナプロセスオイルNP-24(商品名)の量を表面処理炭酸カルシウム100重量部に対して2重量部としたこと以外は、実施例1と同様にして含浸処理炭酸カルシウムを得た。次に、実施例1と同様にして、比較例2で得られた含浸処理炭酸カルシウムの飛散性(分散度)を評価した。結果を下記表1に示す。次に、実施例1と同様にして、比較例2で得られた含浸処理炭酸カルシウムと樹脂とを混合して樹脂ペーストを調製し、含浸処理炭酸カルシウムの分散性を評価した。含浸処理炭酸カルシウムを加えた樹脂ペーストに含まれる各成分の配合量の比を表2に示す。分散性の評価結果を表4、図2及び図3に示す。
 (比較例3)
 ダイアナプロセスオイルNP-24(商品名)の量を表面処理炭酸カルシウム100重量部に対して25重量部としたこと以外は、実施例1と同様にして含浸処理炭酸カルシウムを得た。次に、実施例1と同様にして、比較例3で得られた含浸処理炭酸カルシウムの飛散性(分散度)を評価した。結果を下記表1に示す。実施例1と同様にして、比較例3で得られた含浸処理炭酸カルシウムと樹脂とを混合して樹脂ペーストを調製し、樹脂ペーストへの含浸処理炭酸カルシウムの分散性を評価した。含浸処理炭酸カルシウムを加えた樹脂ペーストに含まれる各成分の配合量の比を表2に示す。分散性の評価結果を表4、図2及び図3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例2及び比較例1のいずれの樹脂組成物も、ダイアナプロセスオイルNP-24(商品名)を表面処理炭酸カルシウム100重量部に対して10重量部使用して得られている。図2と図3に示す結果からも明らかなとおり、脂肪酸処理された表面処理炭酸カルシウムに予めダイアナプロセスオイルNP-24を含浸した実施例2については、含浸処理炭酸カルシウムが樹脂に均一分散するまでの時間(A点に達するまでの時間)は360秒と短かった。ところが、樹脂とダイアナプロセスオイルNP-24とを混合した後に、表面処理炭酸カルシウムを加えた比較例1では、均一分散するまでの時間が900秒と長くなった。この結果から、単に常温で液体の有機化合物を樹脂に添加するだけでは表面処理炭酸カルシウムの分散性は向上せず、表面処理炭酸カルシウムを常温で液体の有機化合物で含浸処理してから樹脂に添加することで、優れた分散性が奏されることが分かる。脂肪酸などで表面処理された表面処理炭酸カルシウムであっても、粒子径が小さくなると、表面処理炭酸カルシウム同士の親和性の方が樹脂との親和性よりも高く、室温で液体の有機化合物を樹脂にそのまま加えても、分散性は向上しないものと考えられる。一方、本発明の含浸処理炭酸カルシウムは、表面処理炭酸カルシウム粒子が常温で液体の有機化合物で覆われており、表面処理炭酸カルシウム同士の親和性が常温で液体の有機化合物により弱められており、結果として、樹脂への分散性に優れるものと考えられる。
 さらに、ダイアナプロセスオイルNP-24を25重量部と多く使用した比較例3については、含浸処理炭酸カルシウムが樹脂に均一に分散するまでに、比較例1よりもさらに長い1500秒が必要であった。この結果から、常温で液体の有機化合物を多く含浸すれば表面処理炭酸カルシウムの樹脂への分散性が向上するという訳ではなく、常温で液体の有機化合物の含浸量を特定の範囲内に設定することが重要であることが分かる。常温で液体の有機化合物の含浸量が多くなりすぎると、表面処理炭酸カルシウムが多くの常温で液体の有機化合物によって覆われることになり、逆に樹脂などへの分散が妨げられるものと考えられる。
 (実施例5)
 ダイアナプロセスオイルNP-24(商品名)の代わりにフタル酸ジイソノニル(DINP)を用いたこと以外は、実施例2と同様にして含浸処理炭酸カルシウムを得た。次に、実施例1と同様にして、実施例5で得られた含浸処理炭酸カルシウムの飛散性(分散度)を評価した。結果を下記表5に示す。次に、実施例1と同様にして、実施例5で得られた含浸処理炭酸カルシウムと樹脂とを混合して樹脂ペーストを調製し、樹脂ペーストへの含浸処理炭酸カルシウムの分散性を評価した。含浸処理炭酸カルシウムを加えた樹脂ペーストに含まれる各成分の配合量の比を表6に示す。分散性の評価結果を表7、図4及び図5に示す。
 (実施例6)
 ダイアナプロセスオイルNP-24(商品名)の代わりにポリプロピレングリコール(日油株式会社製のユニオールD-250)を用いたこと以外は、実施例2と同様にして含浸処理炭酸カルシウムを得た。次に、実施例1と同様にして、実施例6で得られた含浸処理炭酸カルシウムの飛散性(分散度)を評価した。結果を下記表5に示す。次に、実施例1と同様にして、実施例6で得られた含浸処理炭酸カルシウムと樹脂とを混合して樹脂ペーストを調製し、樹脂ペーストへの含浸処理炭酸カルシウムの分散性を評価した。含浸処理炭酸カルシウムを加えた樹脂ペーストに含まれる各成分の配合量の比を表6に示す。分散性の評価結果を表7、図4及び図5に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 (実施例7)
 下記表8に示す配合に従い、樹脂の前駆体としてポリプロピレングリコール(旭硝子株式会社製のEXCENOL3020)92重量部と、実施例6で作製した含浸処理炭酸カルシウム88重量部を加え、混練してペーストを得た。得られたペーストの分散性評価を実施例1と同様にして行った。結果を表9及び図6に示す。
 (比較例4)
 下記表8に示す配合に従い、樹脂の前駆体としてポリプロピレングリコール(旭硝子株式会社製のEXCENOL3020)100重量部と、比較例1で得られた表面処理炭酸カルシウム80重量部を加え、混練してペーストを得た。得られたペーストの分散性評価を実施例1と同様にして行った。結果を表9及び図6に示す。
 (実施例8)
 下記表8に示す配合に従い、樹脂の前駆体として変成シリコーンポリマー(株式会社カネカ製MSポリマーS203)94重量部と、実施例6で作製した含浸処理炭酸カルシウム66重量部を加え、混練してペーストを得た。得られたペーストの分散性評価を実施例1と同様にして行った。結果を表9及び図7に示す。
 (比較例5)
 下記表8に示す配合に従い、樹脂の前駆体として変成シリコーンポリマー(株式会社カネカ製MSポリマーS203)100重量部と、比較例1で得られた表面処理炭酸カルシウム60重量部を加え、混練してペーストを得た。得られたペーストの分散性評価を実施例1と同様にして行った。結果を表9及び図7に示す。
 (実施例9)
 下記表8に示す配合に従い、樹脂の前駆体としてフタル酸ジイソノニル(新日本理化株式会社製サンソザイザーDINP)90重量部と、実施例6で作製した含浸処理炭酸カルシウム110重量部を加え、混練してペーストを得た。得られたペーストの分散性評価を実施例1と同様にして行った。結果を表9及び図8に示す。
 (比較例6)
 下記表8に示す配合に従い、樹脂の前駆体としてフタル酸ジイソノニル(新日本理化株式会社製サンソザイザーDINP)100重量部と、比較例1で得られた表面処理炭酸カルシウム100重量部を加え、混練してペーストを得た。得られたペーストの分散性評価を実施例1と同様にして行った。結果を表9及び図8に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
1…パウダーテスター
2…ガラス円筒
3…サンプル台
4…ウォッチグラス
5…サンプル

Claims (10)

  1.  脂肪酸、樹脂酸及びこれらの誘導体の少なくとも1種で炭酸カルシウムを表面処理してなる表面処理炭酸カルシウムに、常温で液体の有機化合物を、前記表面処理炭酸カルシウム100重量部に対して3~22重量部含浸してなる含浸処理炭酸カルシウム。
  2.  前記有機化合物は、可塑剤、油剤及びポリプロピレングリコール類の少なくとも1種である、請求項1に記載の含浸処理炭酸カルシウム。
  3.  前記油剤は、鉱物油である、請求項1または2に記載の含浸処理炭酸カルシウム。
  4.  前記炭酸カルシウムは、合成炭酸カルシウムである、請求項1~3のいずれか一項に記載の含浸処理炭酸カルシウム。
  5.  前記表面処理炭酸カルシウムの平均粒子径は、20nm~200nmである、請求項1~4のいずれか一項に記載の含浸処理炭酸カルシウム。
  6.  前記表面処理炭酸カルシウムのBET比表面積は、10m/g~100m/gである、請求項1~5のいずれか一項に記載の含浸処理炭酸カルシウム。
  7.  前記炭酸カルシウムに対する脂肪酸、樹脂酸及びこれらの誘導体の少なくとも1種の処理量は、前記炭酸カルシウム100重量部に対して、2重量部~15重量部である、請求項1~6のいずれか一項に記載の含浸処理炭酸カルシウム。
  8.  請求項1~7のいずれか一項に記載の含浸処理炭酸カルシウムを含むポリマー組成物。
  9.  請求項1~7のいずれか一項に記載の含浸処理炭酸カルシウムを含むポリマー前駆体組成物。
  10.  脂肪酸、樹脂酸及びこれらの誘導体の少なくとも1種で炭酸カルシウムを表面処理して、表面処理炭酸カルシウムを得る工程、及び
     常温で液体の有機化合物を、前記表面処理炭酸カルシウム100重量部に対して3~22重量部含浸する工程
    を備える、含浸処理炭酸カルシウムの製造方法。
PCT/JP2012/065009 2011-06-13 2012-06-12 含浸処理炭酸カルシウム、その製造方法、ポリマー組成物及びポリマー前駆体組成物 WO2012173114A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013520556A JP5312714B2 (ja) 2011-06-13 2012-06-12 含浸処理炭酸カルシウム、その製造方法、ポリマー組成物及びポリマー前駆体組成物
CN201280028883.6A CN103608292B (zh) 2011-06-13 2012-06-12 含浸处理碳酸钙、其制造方法、聚合物组合物和聚合物前体组合物
EP12799794.8A EP2719665A4 (en) 2011-06-13 2012-06-12 IMPREGNATED CALCIUM CARBONATE, METHOD OF MANUFACTURING THEREOF, POLYMER COMPOSITION AND POLYMER PREPARATION COMPOSITION
KR20137032884A KR20140033114A (ko) 2011-06-13 2012-06-12 함침 처리 탄산칼슘, 그 제조 방법, 폴리머 조성물 및 폴리머 전구체 조성물
US14/126,144 US9085668B2 (en) 2011-06-13 2012-06-12 Impregnated calcium carbonate, method for producing same, polymer composition, and polymer precursor composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011131113 2011-06-13
JP2011-131113 2011-06-13

Publications (1)

Publication Number Publication Date
WO2012173114A1 true WO2012173114A1 (ja) 2012-12-20

Family

ID=47357101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065009 WO2012173114A1 (ja) 2011-06-13 2012-06-12 含浸処理炭酸カルシウム、その製造方法、ポリマー組成物及びポリマー前駆体組成物

Country Status (6)

Country Link
US (1) US9085668B2 (ja)
EP (1) EP2719665A4 (ja)
JP (1) JP5312714B2 (ja)
KR (1) KR20140033114A (ja)
CN (1) CN103608292B (ja)
WO (1) WO2012173114A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103819935A (zh) * 2014-01-31 2014-05-28 许营春 复合湿法表面改性处理制备氢氧化镁阻燃剂的方法
US20160168431A1 (en) * 2014-12-12 2016-06-16 Illinois Tool Works Inc. High performance sealant composition for tire repair

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9921509B2 (en) 2014-11-18 2018-03-20 Esprix Technologies, Lp Process for preparing novel composite charge control agents and novel composite charge control agents prepared by the process
CN116715906A (zh) * 2015-01-16 2023-09-08 伊利诺斯工具制品有限公司 用于轮胎修复的高性能密封剂组合物
US9963620B2 (en) 2015-04-01 2018-05-08 Illinois Tool Works Inc. High performance environmentally friendly sealant composition for tire repair
US9862156B2 (en) 2015-04-23 2018-01-09 Illinois Tool Works, Inc. Environmentally friendly aerosolized latex tire sealant
CN111742002A (zh) * 2017-10-11 2020-10-02 英默里斯美国公司 用于弹性体制品的反应性碳酸盐
CN108359274A (zh) * 2018-02-07 2018-08-03 广西大学 松香衍生物螯合钙改性纳米或轻质CaCO3粉体制备方法
CN109694499B (zh) * 2018-12-04 2020-11-20 彤程化学(中国)有限公司 补强填料功能添加剂及其在白炭黑填充ssbr胶料中的应用
CN113817226B (zh) * 2021-10-12 2022-05-10 南京工业大学 一种高分子复合材料添加剂及其应用
WO2024029811A1 (ko) * 2022-08-02 2024-02-08 에스케이티비엠지오스톤 주식회사 생분해성 수지 조성물의 제조 방법, 이에 의해 제조된 생분해성 수지 조성물, 이를 포함하는 생분해성 성형품

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431318A (ja) * 1990-05-23 1992-02-03 Mitsubishi Materials Corp 炭酸カルシウムの二層表面処理方法
JP2001072890A (ja) * 1999-09-06 2001-03-21 Maruo Calcium Co Ltd 表面処理炭酸カルシウム、及び多孔性フィルム用樹脂組成物、並びに多孔性フィルムの製造方法
JP2002235015A (ja) * 2000-12-04 2002-08-23 Shiraishi Kogyo Kaisha Ltd 表面被覆炭酸カルシウム粒子、その製造方法及び接着剤
JP2007520599A (ja) * 2004-01-23 2007-07-26 ソルヴェイ 表面処理された炭酸カルシウム粒子
JP2010228976A (ja) 2009-03-27 2010-10-14 Shiraishi Kogyo Kaisha Ltd 表面処理炭酸カルシウム及びそれを含むペースト状樹脂組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5135967A (en) * 1988-01-21 1992-08-04 Deutsche Solvay-Werke Gmbh Underseal composition, and process for the production thereof
US6686044B2 (en) 2000-12-04 2004-02-03 Shiraishi Kogyo Kaisha, Ltd. Surface-coated calcium carbonate particles, method for manufacturing same, and adhesive
US7776232B2 (en) 2004-09-01 2010-08-17 Shiraishi Kogyo Kaisha, Ltd. Powdery white vulcanization promoter composition and rubber compositions
CN1807519A (zh) 2006-01-27 2006-07-26 华南理工大学 改性纳米碳酸钙及其制备方法与应用
JP5179740B2 (ja) 2006-09-28 2013-04-10 白石工業株式会社 加硫活性成分処理炭酸カルシウム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431318A (ja) * 1990-05-23 1992-02-03 Mitsubishi Materials Corp 炭酸カルシウムの二層表面処理方法
JP2001072890A (ja) * 1999-09-06 2001-03-21 Maruo Calcium Co Ltd 表面処理炭酸カルシウム、及び多孔性フィルム用樹脂組成物、並びに多孔性フィルムの製造方法
JP2002235015A (ja) * 2000-12-04 2002-08-23 Shiraishi Kogyo Kaisha Ltd 表面被覆炭酸カルシウム粒子、その製造方法及び接着剤
JP2007520599A (ja) * 2004-01-23 2007-07-26 ソルヴェイ 表面処理された炭酸カルシウム粒子
JP2010228976A (ja) 2009-03-27 2010-10-14 Shiraishi Kogyo Kaisha Ltd 表面処理炭酸カルシウム及びそれを含むペースト状樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2719665A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103819935A (zh) * 2014-01-31 2014-05-28 许营春 复合湿法表面改性处理制备氢氧化镁阻燃剂的方法
US20160168431A1 (en) * 2014-12-12 2016-06-16 Illinois Tool Works Inc. High performance sealant composition for tire repair
US10208231B2 (en) * 2014-12-12 2019-02-19 Illinois Tool Works, Inc. High performance sealant composition for tire repair

Also Published As

Publication number Publication date
EP2719665A4 (en) 2015-03-04
EP2719665A1 (en) 2014-04-16
JPWO2012173114A1 (ja) 2015-02-23
KR20140033114A (ko) 2014-03-17
JP5312714B2 (ja) 2013-10-09
CN103608292B (zh) 2015-12-09
CN103608292A (zh) 2014-02-26
US9085668B2 (en) 2015-07-21
US20140128529A1 (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP5312714B2 (ja) 含浸処理炭酸カルシウム、その製造方法、ポリマー組成物及びポリマー前駆体組成物
US6686044B2 (en) Surface-coated calcium carbonate particles, method for manufacturing same, and adhesive
JP4759761B1 (ja) 表面処理炭酸カルシウム及びそれを含むペースト状樹脂組成物
AU758546B2 (en) Novel rheology regulators such as ground natural calcium carbonates optionally treated with a fatty acid or salt and their use
CA2927899C (en) Process for improving the particle size distribution of a calcium carbonate-containing material
JP6100765B2 (ja) 表面処理炭酸カルシウム填料、及び該填料を含有する硬化型樹脂組成物
RU2646432C1 (ru) Способ изготовления крошки , включающей в свой состав карбонат кальция
TWI424959B (zh) Calcium carbonate treated with sulfurized active ingredients
JP5728333B2 (ja) 変成シリコーン樹脂組成物の製造方法
JP5601695B2 (ja) 表面処理炭酸カルシウム及びゴム組成物
JP2005042128A (ja) シラン末端ウレタン含有樹脂組成物
JP2000345068A (ja) 充填用炭酸カルシウム
JP7109759B2 (ja) ポリウレタン系樹脂組成物及びその製造方法
JP2007277421A (ja) シラン末端ウレタン含有樹脂組成物
JP5728616B2 (ja) 変成シリコーン樹脂組成物
JP2004346279A (ja) 変成シリコーン樹脂組成物及びポリウレタン樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12799794

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013520556

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137032884

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14126144

Country of ref document: US