WO2012173007A1 - スピン回転装置 - Google Patents
スピン回転装置 Download PDFInfo
- Publication number
- WO2012173007A1 WO2012173007A1 PCT/JP2012/064362 JP2012064362W WO2012173007A1 WO 2012173007 A1 WO2012173007 A1 WO 2012173007A1 JP 2012064362 W JP2012064362 W JP 2012064362W WO 2012173007 A1 WO2012173007 A1 WO 2012173007A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spin
- electron beam
- pole
- rotator
- multipole
- Prior art date
Links
- 230000005684 electric field Effects 0.000 claims abstract description 43
- 238000010894 electron beam technology Methods 0.000 claims abstract description 34
- 230000005405 multipole Effects 0.000 claims abstract description 20
- 201000009310 astigmatism Diseases 0.000 claims description 7
- 239000012212 insulator Substances 0.000 claims description 4
- 238000005192 partition Methods 0.000 claims description 3
- 238000010276 construction Methods 0.000 abstract 1
- 230000010287 polarization Effects 0.000 abstract 1
- 230000005855 radiation Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000000696 magnetic material Substances 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000001340 low-energy electron microscopy Methods 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/50—Magnetic means for controlling the discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J3/00—Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
- H01J3/14—Arrangements for focusing or reflecting ray or beam
- H01J3/20—Magnetic lenses
- H01J3/22—Magnetic lenses using electromagnetic means only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/10—Lenses
- H01J37/145—Combinations of electrostatic and magnetic lenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/04—Means for controlling the discharge
- H01J2237/041—Beam polarising means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/15—Means for deflecting or directing discharge
- H01J2237/1505—Rotating beam around optical axis
Definitions
- the present invention provides a Mott detector for electrons emitted from an electron gun that emits spin-polarized electrons, reflected spin-electrons from a magnetic sample, spin-polarized electrons emitted from the surface of a topological insulator, and the like.
- the present invention relates to a spin rotator used to input the spin direction in accordance with the spin direction of the magnetic material or to adjust the spin direction of electrons to the magnetization direction of the magnetic material for observing the magnetic domain structure of the magnetic material.
- a spin rotator has two types of mechanisms: a mechanism for rotating in a plane including the Z axis and a mechanism for rotating in an XY plane perpendicular to the Z axis when the electron traveling direction is the Z axis. is necessary.
- a mechanism for mechanically rotating the sample or the detector may be provided.
- FIG. 12 shows a cross-sectional view of such a spin rotator in which the magnetic potential distribution is written, and the trajectory of the electron beam incident thereon is shown together with the condenser lens systems (CL2, CL3) in the subsequent stage.
- FIG. 13A shows a 90 ° deflection type spin rotation mechanism based on a similar principle together with the front and rear round lens systems.
- the spin rotates with the rotation of the electrons as shown in FIG. 13C, and therefore the direction of the spin and the traveling direction of the electrons are the same after the 90 ° deflection. If a 90 ° rotation is realized by simultaneously applying an electric field and a magnetic field, the spin direction can be set to an intermediate value between 0 ° and 90 °.
- Non-Patent Document 2 a method using a Wien filter as disclosed in Non-Patent Document 2 is known.
- Fig. 14 shows an example of a Wien filter type spin rotator and the electron trajectory when the Wien filter electric field / magnetic field is turned off and the spin is rotated by 90 °. A simulated example is shown.
- the Wien filter is in principle the same as a 90 ° deflection type spin rotator, and it also adds an electric field and a magnetic field superimposed, but the direction of deflection of electrons by the electric field is opposite to that by the magnetic field. The difference is that the direction of voltage and current is set. In the 90 ° deflection type, both deflections are set in the same direction.
- the direction of deflection by the electric field and the magnetic field is opposite, and at the same time, the magnitude of the electric field and the magnetic field is set so that the magnitude of the deflection by the electric field and the magnitude of the deflection by the magnetic field are always the same.
- the beam goes straight.
- El, B1, and v are the uniform electric field, the magnitude of the uniform magnetic field, and the velocity of the electrons, respectively.
- Uo 20,000 V
- R 5 mm
- L 80 mm
- the magnetic field is obtained from the Wien condition shown above.
- the Wien filter when used, the magnitudes of the electric field and the magnetic field must always be in a relationship satisfying the Wien condition so that the electron beam travels straight. For this reason, in order to adjust to various spin rotation angles, it is impossible to make the electric field and magnetic field the same value as in a 90 ° deflector.
- the spin rotation angle is determined by adjusting the value of the magnetic field. Therefore, as shown in FIG. 14, the lens conditions in the previous stage of the Wien filter are set so that the beam is focused on the center of the Wien filter. In this way, as shown in the lower diagram of FIG. 13, even after the spin is rotated by applying an electric field / magnetic field, the lens condition of the rear lens does not greatly change, so the readjustment of the condenser lens system is minimized.
- the spin rotation requires two types of rotation, that is, the rotation in the plane including the traveling direction Z of the electron beam and the rotation in the XY plane perpendicular to this.
- the rotation in the plane including the traveling direction Z of the electron beam
- the rotation in the XY plane perpendicular to this.
- four types of optical elements are required: round lens + in-plane rotator including Z axis + round lens + XY in-plane rotator.
- FIG. 15 shows a case in which a Wien filter type rotator is included
- FIG. 16 shows a spin rotation type having a 90 ° deflection spin rotator and an in-plane rotator with a magnetic field type lens.
- the present invention provides a spin rotating device that rotates a spin-polarized electron beam emitted or reflected from an electron gun or a sample in an arbitrary direction.
- the first condenser lens that focuses the reflected spin-polarized electron beam
- a multipole element that is capable of generating an electric field and a magnetic field at the center of the lens where the electron beam is focused by the first condenser lens.
- a second condenser lens for focusing an electron beam whose spin is rotated by a spin rotator. Unishi to have.
- V1 (n) V1Cos ( ⁇ 0 + n ⁇ + ⁇ )
- N1 (n) N1Sin ( ⁇ 0 + n ⁇ + ⁇ )
- n is the pole number
- V1 (n) and N1 (n) are the voltage and current of the nth pole
- V1 and N1 are uniform field voltages and currents that satisfy the Wien condition
- ⁇ 0 is the first pole. Is an angle determined by the number of multipole elements, 360 ° / number of poles
- ⁇ represents the direction of spin.
- the multipole is set to be an integer multiple of 4.
- one or more of a quadrupole electric field and a magnetic field for correcting astigmatism is supplied to the multipole element.
- the magnetic poles that make up the multipole are separated into the inner side and the outer side, and a vacuum-proof partition is provided between them to wind the coil around the outer poles.
- the length of the pole inside the vacuum barrier is made to be at least four times the diameter of the center circle through which the electron beam passes, and the difference in Vienna conditions due to the difference in shape between the electrode and the magnetic pole I try to reduce it.
- the spin direction of the electron beam is deflected to the XY plane perpendicular to the traveling direction Z of the electron beam, and is deflected in an arbitrary direction within the XY plane.
- the sample is a magnetic sample or topological insulator.
- the present invention comprises a first condenser lens, a spin rotator having a multipole capable of generating an electric field and a magnetic field, a Wien condition generating means, and a second condenser lens, and directs the direction of an electron beam and designates spin.
- a spin rotator having a multipole capable of generating an electric field and a magnetic field
- a Wien condition generating means and a second condenser lens
- the Wien filter has been used for a long time with a conventional type in which an electrode is inserted between unillustrated electromagnets. In that case, the distribution of the electric field and magnetic field in the fringe portion is the same. Therefore, even if the voltage and current are adjusted so that the Wien condition is satisfied in the central part, the fringe part inevitably deviates from the Wien condition, so the Wien filter can make the distribution of both fields the same.
- a multipole Wien filter using an 8-pole or 12-pole using a conductive magnetic material was proposed in 1986 (Non-patent Document 3).
- an electrode that creates an electric field and a magnetic pole that creates a magnetic field are the same 8 to 12 poles in the X-axis direction, and the pole in the Y-axis direction is used as the magnetic pole. And the distribution of the fringe field of the magnetic field is almost the same.
- the diagonal field is used for both electrodes and magnetic poles.
- FIG. 1 shows an example of the Wien filter of the present invention.
- Fig. 1 (a) shows the entire 12-pole Wien filter. Twelve wedges in the center are 12-pole poles (electrodes and magnetic poles) 1, a vacuum vessel 2 is placed on the outside, and the outside is magnetically connected between the magnetic pole 3 for magnetic field and the magnetic poles. And a yoke 4 connected to each other. A coil (not shown) is wound around each of the twelve magnetic poles 3.
- Fig. 1 (b) shows an octupole Wien filter.
- coils (not shown) are wound around the poles 1 inside the vacuum. At this time, it may be cut near the wedge-shaped outer periphery of each pole 1 to increase the space for winding the coil.
- the direction of spin fall is the X axis direction used as an electric field.
- the electron beam that deflects the spin travels straight in the direction perpendicular to the plane of the paper (Z axis).
- the illustrated vacuum vessel 2 may be a yoke (yoke of a plurality of poles 1), and the yoke 2 may be housed in a vacuum vessel not shown.
- FIG. 2 shows a spin rotation explanatory diagram of the present invention.
- the spin rotator shown in FIG. 1 is a 12-pole fin filter having the configuration shown in FIG. 1.
- XY When a spin directed in the Z-axis direction (electron beam traveling direction) incident from the left exits the Wien filter, XY is shown.
- Fig. 2 (a) When adjusting (adjusting the magnetic field and electric field) so that one is upward (see Fig. 2 (a)) and the other is sideways (see Fig. 2 (b)) within the plane (plane perpendicular to the Z axis)
- the state of spin rotation in the Wien filter is schematically shown.
- the electrodes for generating the electric field are 4 and 5 on the left side and 1 and 8 on the right side.
- 5 and 6 are used instead of 4 and 5
- 1 and 8 If 1 and 2 poles are used as electrodes and 3 and 4 are used as magnetic poles instead of 2 and 3, and 7 and 8 are used instead of 6 and 7, the direction rotated 45 ° counterclockwise compared to the first is X If the spin is rotated using this Wien filter, the direction in which the spin falls is 45 ° in the plane. The same thing can be done in the direction rotated 45 ° further by using the next pole, and as a result, the spin can be brought down in the 90 ° direction.
- ⁇ 0 is 22.5 ° in the case of an octupole as shown in FIG. 1B, ⁇ is 45 °, and n is 1-8.
- ⁇ is an angle to be rotated.
- ⁇ 0 takes a non-zero value.
- ⁇ 0 0.
- FIG. 3 shows a spin rotation explanatory diagram (part 2) of the present invention.
- FIG. 4 shows a spin rotation explanatory diagram (part 3) of the present invention.
- the X direction that is, 0 ° direction by the Sin, Cos method (sine cosine method), and 45 ° rotation from the X direction, and the X direction, the Y direction, and both directions are added by the vector composition method described above.
- a value obtained by dividing the value by ⁇ 2 and a case where the direction is 45 ° are shown.
- the Sin, Cos method the case of 0 ° and 45 ° is only shifted by one step, but in the case of the vector method, the value obtained by adding both is divided by ⁇ 2, and the value in the X direction is shifted by one step. You can see that they match. If the ratio of X and Y is changed, the angle can be changed from 45 ° to another angle.
- Such a method of changing the direction of a uniform field by vector sum has been used for making a deflection field for a long time.
- the spin rotation direction can be set by either the sine cosine method or the vector sum method.
- FIG. 5 shows a spin rotation explanatory diagram (No. 4) of the present invention.
- FIG. 5 shows an example of the direction of the electric field and the magnetic field of the present invention, and shows the case where the directions of the electric field and the magnetic field are rotated in order to perform 0 °, 20 °, and 40 ° spin rotation in the case of a 12-pole element. .
- rotation with an angle smaller than the interval between the poles can be performed without any problem.
- the multipole Wien filter if the direction of the electric field and magnetic field to be applied is rotated, the direction in which the spin is tilted can be rotated by an angle equal to the rotation angle of the electric field, and can be straightened as described later.
- the rotational motion due to the magnetic field is merely reflected back by the electric field, so it can be estimated by the relationship between the deflection angle due to the magnetic field and the focusing condition of the beam. It is known that the rotation angle required for focusing of the magnetic field deflector under the condition of unidirectional focusing with only focusing in the X direction and no focusing in the Y direction is 180 °. Therefore, it can be seen that if the ampere turn is adjusted so that the beam is incident on the Wien filter in parallel and focused at the exit of the filter, this is the condition that the spin can be rotated by 90 °.
- the shape after exiting the filter is an ellipse.
- V (n) Vl (n) + V2 (n) and Ni (n) respectively represent the voltage applied to the nth pole and the number of coil turns applied to the current.
- E2 -El / 4R (1)
- E2 ⁇ 2U0 / L2 (4)
- Vl rE1 (5)
- V2 r2E2 (6)
- V (n) V1 (n) + V2 (n) (7)
- V1 (n) V1Cos ( ⁇ + ⁇ ) (8)
- V2 (n) V2Cos (2 ( ⁇ + ⁇ )) (9)
- E2 2 (1 + 1 / (2) 1/2) ⁇ U0 / L (10)
- Bl El / v (11)
- NT C1B1s / ( ⁇ ).
- FIG. 9 shows electron trajectories of the ZX plane and the ZY plane.
- V (n) Vl (n) + CV2 (n)
- C 0.875. The reason why the value of the quadrupole field to be added is smaller than the calculated value lies in the action of the fringe field.
- FIG. 10 is an explanatory view (part 9) of the spine rotation of the present invention.
- This FIG. 10 shows an entrance lens (a lens focused on the center of the rotator (lens center)) and a condenser lens (the center of the rotator (lens center)) of the Wien-type omnidirectional spin rotator.
- 2 shows an irradiation lens system including a lens focused on an irradiated surface.
- a single stage condenser lens is shown, but if another stage is added, an irradiation lens system capable of controlling a wide irradiation area can be obtained.
- FIG. 11 shows a spin rotation explanatory diagram (No. 10) of the present invention.
- FIG. 11 shows an example of the Wien filter of the present invention. Since a Wien filter used as a spin rotator is often used in an ultrahigh vacuum, it is required to take out a coil for generating a magnetic field out of the vacuum as described with reference to FIG.
- each pole is divided into two, and a pipe (nonmagnetic) as the vacuum vessel 2 is inserted between the inner and outer poles.
- a pipe nonmagnetic
- the disadvantage of this structure is that since the vacuum vessel is made of metal, the multipole electric field is configured only inside the vacuum vessel, whereas the magnetic field coil is wound around the pole 3 outside the vacuum pipe.
- the pole magnetic field extends to the outside of the vacuum vessel, and the length of each pole constituting the electric field and the magnetic field is different.
- the vacuum vessel takes more than four times the diameter of the space / gap where the electric field and magnetic field are created, the difference in length between the electrode and the magnetic pole is not a problem in practice.
- FIGS. 6 (a) and 9 (a) are diagrams showing electron trajectories on the XZ plane. If the Wien condition no longer holds due to the difference in the shape of the electrodes and magnetic poles, this trajectory is in the middle. It turns out that it does not constitute a straight optical axis, but as shown here, since the optical axis remains straight, it has been found that the problem of the difference in length between the electrode and the magnetic pole has been overcome.
- the emission of spin-polarized electrons in a vacuum is not limited to such a case, and a beam directed in a specific direction in the XY plane may be emitted.
- a beam directed in a specific direction in the XY plane may be emitted.
- the value of the angle of the XY plane may be any value.
- the spin is oriented in the XY plane and the spin is desired to rotate in the XY plane in a direction different from the initial spin direction.
- it is set to rotate the value of the electric field / magnetic field of the 90 ° rotation of the spin described above, that is, a 180 ° spin.
- the electric field / magnetic field of each octupole is set so that the angle of the spin in the XY plane corresponds to the case where the angle is finally aimed.
- the spin rotates 90 ° in the first half and faces in the Z direction.
- the other half spins from the Z direction described above into the ZY plane again, but the angle in the XY plane at this time points in the specified angle direction.
- FIG. 6 is an explanatory view (No. 5) of spin rotation according to the present invention. It is spin rotation explanatory drawing (the 6) of this invention. It is spin rotation explanatory drawing (the 7) of this invention. It is spin rotation explanatory drawing (the 8) of this invention. It is spin rotation explanatory drawing (the 9) of this invention. It is spin rotation explanatory drawing (the 10) of this invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Electron Tubes For Measurement (AREA)
Abstract
Description
ラーモア歳差運動の周波数 ω=eB/m
回転角度 α=Lω/v=LeB1/mv L:フィルタ長
ここで、ウィーン条件 E1=vB1 と速度の2乗 v2=3eUo/mを代入すると、
α=LE1/2Uoで表される。
V1=E1R R:中心の丸穴の半径
α=π/2(90°)、Uo=20,000V、 R=5mm、 L=80mmとして、
V1=2x20,000x5π/2x80=3926.69V
と求まる。磁場は先に示したウィーン条件から求められる。
T.Duden, E.Bauer, A compact electron-sipin-polarization manipulater, Rev. Sci. Instrum 66(4) 1995, 2861-2864. T. Kohashi, M. Konoto, K. Kike J-Electorn Microscopy 59(1)(2010)43-52. T.T.tang, Optik 74(1986) 51-56.
N1(n)=N1Sin(θ0+nθ+α)
ここで、nは極の番号、V1(n)とN1(n)はn番目の極の電圧と電流、V1とN1はウィーン条件を満たす一様場の電圧と電流、θ0は1番目の極の水平方向からの角度、θは多極子の数によって決まる角度であって360°/極数、αはスピンの向きをそれぞれ表す。
次に、説明を簡単にするために、図1の(b)の8極のウィーンフィルタを用いた場合について以下説明する。電場を発生させる電極となるのは図1(b)において左側が4と5、右側が1と8であるが、今仮に4と5の代わりに5と6を用い、1と8の代わりに1と2極を電極として用い、磁極として2と3の代わりに3と4、6と7の代わりに7と8を用いたとすれば最初と比べて45°反時計回りに回転した方向がX軸即ち電場方向となり、このウィーンフィルタを使ってスピンを回転させれば、スピンの倒れる方向は面内で45°の方向となる。同じことは次の極を使えばさらに45°回転した方向に倒すことができ、結果として90°方向にスピンを倒すことができる。
V1(n)=V1Cos(θ0+nθ+α)
N1(n)=N1Sin(θ0+nθ+α)
ここで、θ0は図1(b)のような8極子の場合は、22.5°で、θは45°、nは1~8となる。αは、回転させたい角度である。電極1を図1(b)のように水平方向から外して置いた場合は、θ0が零でない値をとるが、電極1を水平に置いた場合は、θ0=0なる。αが零の時に回転のない普通の場合の電庄配置になる。
これまでは一様電場Elと一様磁場Blによるウィーンフィルタを使った場合を示した。この場合の電子軌道をXZ面とYZ面について描いてみるとそれぞれ図6(a)、(b)のようになる。ウィーンフィルタがオフのときには、ウィーンフィルタの中心面上でフォーカスするように外部のレンズ系によってコントロールされているものとする。ここで、XZ面ではウィーンフィルタのレンズ作用により、フォーカス位置はフィルタ中心から左に移動しているが、図6(b)に示すZY面ではY方向(磁場方向)にレンズ作用がないためフィルタをオフにしたときと同じ軌道を示している。つまり、X方向とY方向とでレンズ条件が異なることになる。図6で見る限りこの影響はそれほど深刻には見えないかもしれないが、図7に示すビーム形状を見るとフォーカスの違いは深刻であることがわかる。図7(a)はフィルタを出た後のZ=80mmと、図7(b)はフィルタの中心Z=0mmでのビーム形状を示している。フィルタを出た後の形は楕円形であり、Z=0では、フィルタがない場合はY方向では0になるようにビームを入射させているので、そのままほとんど0になっている。このように強い非点を有するビームとなってしまっては、試料に照射するための照射光学系としては使いにくくなってしまうので後の光学系でこの非点を取り除かなければならない。
R=L/(2)1/2π (2)
El=(2)3/2 πU0/L (3)
E2=π2U0/L2 (4)
Vl=rE1 (5)
V2=r2E2 (6)
V(n)=V1(n)+V2(n) (7)
V1(n)=V1Cos(θ+α) (8)
V2(n)=V2Cos(2(θ+α)) (9)
E2=2(1+l/(2)1/2 )πU0/L (10)
Bl=El/v (11)
NT=C1B1s/(μπ). (12)
NT(n)=NTSin(θ+α) (13)
このようにして4極子電場を重畳することによって、Y方向にフォーカスを作り、スピン回転器を出るビームの非点を取り去ることができる。図8(a)にZ=80mmと図8(b)にZ=0でのビーム形状を示す。また、図9には、ZX面とZY面の電子軌道を示す。ただし、この場合、実際には
V(n)=Vl(n)+CV2(n)
として、係数Cを掛けた値を入れてある。図8の場合、C=0.875であった。なぜ、計算値より加える4極場の値が少なくてよいかという理由は、フリンジ場の作用にある。
図11は、本発明のスピン回転説明図(その10)を示す。この図11は、本発明のウィーンフィルタの例である。スピン回転器として使用するウィーンフィルタは超高真空中で使われることが多いため、図1で説明したように、磁場発生のためのコイルを真空の外に出すことが求められる。図11に示した例では各極を2つに分割し、内側と外側の極の間に真空容器2としてのパイプ(非磁性)を入れる構造としている。もちろん、内側の各極1と真空パイプの間には絶縁体を置いて、内側の各極1が電気的には絶縁されている必要がある。ただ、この構造の欠点は、真空容器が金属製となるため、多極子電場は真空容器より内側だけの構成となるのに対し、磁場コイルは真空パイプの外の極3に巻かれるので、多極子磁場は真空容器の外にまで伸びており、電場と磁場を構成する各極の長さが異なることである。しかし、真空容器が電場・磁場を作る空間・ギャップの直径の4倍以上を取ればこの電極と磁極の長さの違いは実用的には問題とならないことを見出した。
今まではスピンの向きが電子ビームの進行方向Zに対して平行なビームを90°偏向し、その時にビーム進行方向に垂直なXY面内のどの方向にスピンを倒すかを自由に選ぶことのできる装置について述べてきた。
2:真空容器(ヨーク)
3:磁極
4:ヨーク
Claims (7)
- 電子銃あるいは試料から、放出あるいは反射あるいは透過されたスピン偏極した電子線を任意の方向に回転させるスピン回転装置において、
前記電子銃から放出、あるいは試料から放出または反射されたスピン偏極した電子線をフォーカスさせる第1のコンデンサレンズと、
前記第1のコンデンサレンズで前記電子線がフォーカスされた点がレンズ中心あるいはレンズ中心付近であって、かつ電場および磁場を発生可能な多極子を有するスピン回転器と、
前記スピン回転器を構成する多極子に、指定された角度だけ前記電子線のスピンを回転させかつ電子線を直進させるウィーン条件を満たす下式で表される電圧および電流を印加するウィーン条件発生手段と、
前記スピン回転器でスピンの回転された電子線をフォーカスする第2のコンデンサレンズと
を備えたことを特徴とするスピン回転装置。
V1(n)=V1Cos(θ0+nθ+α)
N1(n)=N1Sin(θ0+nθ+α)
ここで、nは極の番号、V1(n)とN1(n)はn番目の極の電圧と電流、V1とN1はウィーン条件を満たす一様場の電圧と電流、θ0は1番目の極の水平方向からの角度、θは多極子の数によって決まる角度であって360°/極数、αはスピンの向きをそれぞれ表す。 - 前記多極子が4の整数倍としたことを特徴とする請求項1記載のスピン回転装置。
- 前記多極子に、非点を補正する4極子の電場および磁場のうちの1つ以上を供給したことを特徴とする請求項1あるいは請求項2記載のスピン回転装置。
- 前記多極子を構成する磁場の極を、内側と外側に分離してその間に耐真空用の隔壁を設けて外側の極にコイルを巻いたことを特徴とする請求項1から請求項3のいずれかに記載のスピン回転装置。
- 請求項4において、前記耐真空用の隔壁の内側の極の長さを、電子線が通過する中心部の円の直径の4倍以上の長さにして、電極と磁極との形状違いによるウィーン条件の違いを低減したことを特徴とする請求項1から請求項4のいずれかに記載のスピン回転装置。
- 前記電子線のスピンの向きを、当該電子線の進行方向Zと直角方向のXY面に偏向、およびXY面内で任意の向きに偏向することを特徴する請求項1から請求項5のいずれかに記載のスピン回転装置。
- 前記試料を、磁性体試料あるいはトポロジカル絶縁体としたことを特徴とする請求項1から請求項6のいずれかに記載のスピン回転装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/127,111 US9466454B2 (en) | 2011-06-17 | 2012-06-04 | Spin rotation device |
CN201280025669.5A CN103597570B (zh) | 2011-06-17 | 2012-06-04 | 自旋旋转装置 |
DE112012001937.7T DE112012001937B4 (de) | 2011-06-17 | 2012-06-04 | Spin-Drehvorrichtung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-135054 | 2011-06-17 | ||
JP2011135054A JP5826529B2 (ja) | 2011-06-17 | 2011-06-17 | スピン回転装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012173007A1 true WO2012173007A1 (ja) | 2012-12-20 |
Family
ID=47356997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/064362 WO2012173007A1 (ja) | 2011-06-17 | 2012-06-04 | スピン回転装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9466454B2 (ja) |
JP (1) | JP5826529B2 (ja) |
CN (1) | CN103597570B (ja) |
DE (1) | DE112012001937B4 (ja) |
WO (1) | WO2012173007A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016207961A1 (ja) * | 2015-06-23 | 2016-12-29 | 株式会社日立製作所 | 荷電粒子装置、荷電粒子の照射方法、および分析装置 |
WO2022009995A1 (ja) | 2020-07-09 | 2022-01-13 | 大学共同利用機関法人自然科学研究機構 | 静電偏向収束型エネルギー分析器、結像型電子分光装置、反射結像型電子分光装置、およびスピンベクトル分布イメージング装置 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10354836B2 (en) * | 2014-03-09 | 2019-07-16 | Ib Labs, Inc. | Methods, apparatuses, systems and software for treatment of a specimen by ion-milling |
JP6276101B2 (ja) * | 2014-04-17 | 2018-02-07 | 日本電子株式会社 | 多極子レンズ、収差補正装置、および電子顕微鏡 |
EP3046133A1 (en) * | 2015-01-13 | 2016-07-20 | Fei Company | Multipole magnetic lens for manipulating a beam of charged particles |
CN106762464B (zh) * | 2016-12-30 | 2019-01-25 | 北京金风科创风电设备有限公司 | 抑制围护结构横向振动及保护摆动部件的装置、控制方法 |
CN109243945B (zh) * | 2018-08-24 | 2020-04-03 | 中国科学院西安光学精密机械研究所 | 一种瓣状电极及制造方法、产生均匀电场的方法、变像管 |
SE543634C2 (en) * | 2019-01-31 | 2021-04-27 | Mb Scient | Spin manipulator for use in electron spectroscopy |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58193500A (ja) * | 1982-05-07 | 1983-11-11 | 株式会社日立製作所 | 荷電粒子スピン回転装置 |
JP2007149495A (ja) * | 2005-11-28 | 2007-06-14 | Jeol Ltd | 収差補正装置及び電子顕微鏡 |
JP2007299604A (ja) * | 2006-04-28 | 2007-11-15 | Jeol Ltd | 透過型電子顕微鏡 |
JP2009043533A (ja) * | 2007-08-08 | 2009-02-26 | Hitachi High-Technologies Corp | 収差補正器およびそれを用いた荷電粒子線装置 |
JP2010003450A (ja) * | 2008-06-18 | 2010-01-07 | Hitachi Ltd | 走査電子顕微鏡 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3235068A1 (de) | 1982-09-22 | 1984-03-22 | Siemens AG, 1000 Berlin und 8000 München | Varioformstrahl-ablenkobjektiv fuer neutralteilchen und verfahren zu seinem betrieb |
DE3841715A1 (de) | 1988-12-10 | 1990-06-13 | Zeiss Carl Fa | Abbildender korrektor vom wien-typ fuer elektronenmikroskope |
US5444243A (en) * | 1993-09-01 | 1995-08-22 | Hitachi, Ltd. | Wien filter apparatus with hyperbolic surfaces |
US7746421B2 (en) * | 2003-10-23 | 2010-06-29 | Nitto Denko Corporation | Optical element, light condensation backlight system, and liquid crystal display |
US7421973B2 (en) * | 2003-11-06 | 2008-09-09 | Axcelis Technologies, Inc. | System and method for performing SIMOX implants using an ion shower |
US7742167B2 (en) * | 2005-06-17 | 2010-06-22 | Perkinelmer Health Sciences, Inc. | Optical emission device with boost device |
KR101359562B1 (ko) * | 2005-07-08 | 2014-02-07 | 넥스젠 세미 홀딩 인코포레이티드 | 제어 입자 빔 제조를 위한 장치 및 방법 |
US7641151B2 (en) * | 2006-03-02 | 2010-01-05 | Pekka Janhunen | Electric sail for producing spacecraft propulsion |
-
2011
- 2011-06-17 JP JP2011135054A patent/JP5826529B2/ja active Active
-
2012
- 2012-06-04 DE DE112012001937.7T patent/DE112012001937B4/de not_active Expired - Fee Related
- 2012-06-04 US US14/127,111 patent/US9466454B2/en active Active
- 2012-06-04 CN CN201280025669.5A patent/CN103597570B/zh active Active
- 2012-06-04 WO PCT/JP2012/064362 patent/WO2012173007A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58193500A (ja) * | 1982-05-07 | 1983-11-11 | 株式会社日立製作所 | 荷電粒子スピン回転装置 |
JP2007149495A (ja) * | 2005-11-28 | 2007-06-14 | Jeol Ltd | 収差補正装置及び電子顕微鏡 |
JP2007299604A (ja) * | 2006-04-28 | 2007-11-15 | Jeol Ltd | 透過型電子顕微鏡 |
JP2009043533A (ja) * | 2007-08-08 | 2009-02-26 | Hitachi High-Technologies Corp | 収差補正器およびそれを用いた荷電粒子線装置 |
JP2010003450A (ja) * | 2008-06-18 | 2010-01-07 | Hitachi Ltd | 走査電子顕微鏡 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016207961A1 (ja) * | 2015-06-23 | 2016-12-29 | 株式会社日立製作所 | 荷電粒子装置、荷電粒子の照射方法、および分析装置 |
JPWO2016207961A1 (ja) * | 2015-06-23 | 2018-02-15 | 株式会社日立製作所 | 荷電粒子装置、荷電粒子の照射方法、および分析装置 |
US10395885B2 (en) | 2015-06-23 | 2019-08-27 | Hitachi, Ltd. | Charged particle device, charged particle irradiation method, and analysis device |
WO2022009995A1 (ja) | 2020-07-09 | 2022-01-13 | 大学共同利用機関法人自然科学研究機構 | 静電偏向収束型エネルギー分析器、結像型電子分光装置、反射結像型電子分光装置、およびスピンベクトル分布イメージング装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2013004342A (ja) | 2013-01-07 |
CN103597570B (zh) | 2016-02-17 |
DE112012001937B4 (de) | 2018-08-02 |
CN103597570A (zh) | 2014-02-19 |
DE112012001937T5 (de) | 2014-04-24 |
US9466454B2 (en) | 2016-10-11 |
US20140197734A1 (en) | 2014-07-17 |
JP5826529B2 (ja) | 2015-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5826529B2 (ja) | スピン回転装置 | |
JP4256902B2 (ja) | 荷電粒子用モノクロメータ | |
JP6490772B2 (ja) | 荷電粒子ビーム装置 | |
US7947964B2 (en) | Charged particle beam orbit corrector and charged particle beam apparatus | |
JP5794990B2 (ja) | 分散イオン源加速カラム | |
JP2009054581A (ja) | 荷電粒子ビーム用軌道補正器、及び、荷電粒子ビーム装置 | |
JP2010114068A (ja) | 荷電粒子線装置の色収差補正装置及びその補正方法 | |
JP4074185B2 (ja) | エネルギーフィルタ及び電子顕微鏡 | |
US7075075B2 (en) | Charged particle deflecting system | |
CN108807119A (zh) | 紧凑型致偏磁体 | |
JP4242101B2 (ja) | ウィーンフィルタ | |
JP2007280966A (ja) | 電子光学レンズ装置 | |
JPH11233062A (ja) | ウィーンフィルタ及び直接写像型反射電子顕微鏡 | |
WO2012090464A1 (ja) | 回折収差補正器を適用した荷電粒子ビーム顕微鏡 | |
JP4642966B2 (ja) | 粒子線装置 | |
JPS5978432A (ja) | 多種形状粒子ビ−ム形成用の偏向対物系を備える装置 | |
JP4705812B2 (ja) | 収差補正装置を備えた荷電粒子ビーム装置 | |
JP5645386B2 (ja) | 電磁場印加装置 | |
JP2006147520A (ja) | 収差補正装置及び電子顕微鏡 | |
Martı́nez et al. | Design of Wien filters with high resolution | |
JP2008135336A (ja) | ウィーンフィルタ | |
Tsuno et al. | Application of Wien filters to electrons | |
JPH05275058A (ja) | ウィーンフィルタ | |
Egerton et al. | Electron Optics | |
Reimer et al. | Particle optics of electrons |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280025669.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12800594 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112012001937 Country of ref document: DE Ref document number: 1120120019377 Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14127111 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12800594 Country of ref document: EP Kind code of ref document: A1 |