WO2022009995A1 - 静電偏向収束型エネルギー分析器、結像型電子分光装置、反射結像型電子分光装置、およびスピンベクトル分布イメージング装置 - Google Patents

静電偏向収束型エネルギー分析器、結像型電子分光装置、反射結像型電子分光装置、およびスピンベクトル分布イメージング装置 Download PDF

Info

Publication number
WO2022009995A1
WO2022009995A1 PCT/JP2021/026052 JP2021026052W WO2022009995A1 WO 2022009995 A1 WO2022009995 A1 WO 2022009995A1 JP 2021026052 W JP2021026052 W JP 2021026052W WO 2022009995 A1 WO2022009995 A1 WO 2022009995A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrostatic
hole
energy analyzer
incident
electrons
Prior art date
Application number
PCT/JP2021/026052
Other languages
English (en)
French (fr)
Inventor
博之 松田
文彦 松井
Original Assignee
大学共同利用機関法人自然科学研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大学共同利用機関法人自然科学研究機構 filed Critical 大学共同利用機関法人自然科学研究機構
Priority to CN202180049046.0A priority Critical patent/CN115803844A/zh
Priority to JP2022535410A priority patent/JPWO2022009995A1/ja
Priority to EP21836935.3A priority patent/EP4170694A4/en
Priority to US18/015,057 priority patent/US20240047190A1/en
Publication of WO2022009995A1 publication Critical patent/WO2022009995A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/22Electrostatic deflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/44Energy spectrometers, e.g. alpha-, beta-spectrometers
    • H01J49/46Static spectrometers
    • H01J49/48Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/05Arrangements for energy or mass analysis
    • H01J2237/053Arrangements for energy or mass analysis electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24557Spin polarisation (particles)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/285Emission microscopes

Definitions

  • the present invention relates to a photoelectron spectroscope such as UPS (Ultraviolet Photoelectron Spectroscopy), XPS (X-ray Photoelectron Spectroscopy), ARPES (Angle Resolved Photoelectron Spectroscopy), an Auger electron spectroscope, a photoelectron diffractometer, a photoelectron microscope, and a spin polarization analyzer. It is about.
  • UPS Ultraviolet Photoelectron Spectroscopy
  • XPS X-ray Photoelectron Spectroscopy
  • ARPES Angle Resolved Photoelectron Spectroscopy
  • Auger electron spectroscope such as UPS (Ultraviolet Photoelectron Spectroscopy), XPS (X-ray Photoelectron Spectroscopy), ARPES (Angle Resolved Photoelectron Spectroscopy), an Auger electron spectroscope, a photoelec
  • sensitivity is one of the most important performances along with energy resolution.
  • SN ratio signal-to-noise ratio
  • the electron spectroscope it is possible to measure the emission angle distribution in addition to the measurement of the energy distribution of the electrons emitted from the sample.
  • the measurement of the energy distribution provides information on the composition of the elements
  • the measurement of the emission angle distribution provides information on the composition in the depth direction and the electronic state. Further, since the momentum in the in-plane direction of the sample is preserved in the photoelectron emission process, information on the momentum of electrons in the substance can be obtained by measuring the kinetic energy of the photoelectrons and the emission angle.
  • CHA electrostatic hemispherical energy analyzer
  • CMA coaxial cylindrical energy analyzer
  • Non-Patent Document 1 a two-dimensional spherical mirror analyzer with an uptake angle of ⁇ 60 ° has been developed (Non-Patent Document 1), and band dispersion structure measurement (Non-Patent Documents 2 and 3) and atomic arrangement structure for various samples have been carried out. (Non-Patent Documents 4 and 5) were measured. Although the energy resolution of this analyzer was gradually improved by the improvement, it could not achieve sufficient resolution for more detailed analysis such as structural analysis by decomposing chemical shifts.
  • Non-Patent Documents 1 and 2 Non-Patent Documents 6 and 7
  • an attempt was made to combine it with a CHA input lens Non-Patent Documents 1 and 2).
  • the present inventors have proposed a spherical aberration correction lens that captures full-width ( ⁇ 90 °) (Patent Document 3).
  • a photoelectron analyzer for full-width capture has already been developed using the technology of PEEM (photoemission electron microscope) (Non-Patent Documents 9 and 10).
  • CHA has already become widespread, and devices of various designs have been developed so far, but it is characterized by a very small capture angle in the energy dispersion direction of the electrostatic hemisphere, and as a result.
  • the angle of incidence on the electrostatic hemisphere should be about ⁇ 2 ° or less, and high spatial resolution and high angular resolution should be obtained in the measurement of a two-dimensional real space image and emission angle distribution. It is necessary to suppress the angle of incidence on the electrostatic hemisphere to about ⁇ 2 ° or ⁇ 1 ° or less.
  • the capture angle of the electrostatic hemisphere is very small.
  • the capture angle that can form a convergent beam is limited to about ⁇ 7 °.
  • the convergent angle is set at a relatively low magnification. It can be about ⁇ 2 °.
  • M magnification
  • a the size of the observed object on the object surface (sample surface) of the input lens
  • b the size of the image of the observed object on the image surface of the input lens.
  • This value is roughly the ratio of the angle of incidence to the angle of convergence in the case of an Einzel-type lens in which the energy of electrons does not change at the entrance and exit of the lens.
  • the magnification of the input lens is one of the important conditions for determining the sensitivity of CHA, and if this magnification is set high, the sensitivity will be significantly reduced depending on the size of the slit provided at the entrance of the electrostatic hemisphere. ..
  • the magnification is usually set low.
  • the magnification can be as low as about 3.5.
  • Patent Documents 1, 2 and Non a spherical aberration correction lens in which the capture angle is widened to about ⁇ 50 ° has been developed.
  • Patent Documents 6 and 7 and the inventors have proposed a full-angle ( ⁇ 90 °) capture focusing lens.
  • a full-width condensing lens makes it possible to realize an analyzer that completely determines the energy and momentum of electrons.
  • the magnification is much higher than that of a conventional input lens.
  • the length of the lens system becomes considerably long. For example, when electrons are captured at a capture angle of ⁇ 50 ° or ⁇ 90 ° and converged at an opening angle of ⁇ 2 °, the irradiation spot on the sample is 25 times larger on the exit surface of the wide-angle capture focusing lens even when deceleration is not performed. Or it is magnified about 45 times. Further, when decelerating the electrons of energy E to energy E'in order to obtain high energy resolution, the magnification M can be expressed by the following mathematical formula from the law of invariant luminance.
  • M 0 is a magnification determined by the incident angle and the emitted angle.
  • the magnification when decelerating 1000 eV electrons to 50 eV in the above lens, the magnification is about 100 to 200 times.
  • the magnification is increased in this way, the number of electrons blocked by the slit inserted at the entrance of the electrostatic hemisphere portion increases, and the slit width must be widened in order to obtain sufficient sensitivity.
  • widening the slit width results in a decrease in energy resolution.
  • the magnification of the input lens is about 5 times or less.
  • the best way to solve this problem is to widen the intake angle of the energy analysis unit. Therefore, it may be considered to use a CMA having a large capture angle instead of the electrostatic hemisphere portion of the CHA.
  • the CMA uses grids at the inlet and outlet of the inner cylinder through which the electrons pass, and the orbits of the electrons are disturbed by the action of scattering as they pass through the inlet and the outlet. Therefore, it is difficult to form a real space image or an angular distribution with high resolution by CMA.
  • Non-Patent Document 11 a two-dimensional spin analyzer using an Ir (001) single crystal substrate has been developed.
  • Non-Patent Document 11 a cylindrical electrostatic type 90 ° deflector
  • VLEED detector a VLEED detector
  • the electrons turn 90 ° in an arc under the condition that the central force and centrifugal force of the cylindrical electric field are balanced, but instead of the cylindrical electric field, a spherically symmetric electric field is used to deflect the electrons by 90 °.
  • a spin polarization analyzer using a 90 ° deflector (hereinafter referred to as a 90 ° spherical deflector) of this method (Non-Patent Document 12).
  • the convergence in the deflection plane is at 127 ° and 180 ° deflections, respectively, with 90 ° deflection. Does not converge. Therefore, by combining an improved 90 ° deflector (Non-Patent Document 13) that can deflect and converge the electron beam emitted from one point by 90 ° in the inward direction of the deflection plane, or by combining a lens with a 90 ° spherical deflector, in the inward direction of the deflection plane.
  • an improved 90 ° deflector Non-Patent Document 13
  • Non-Patent Document 14 A 90 ° deflection analyzer that enables 90 ° deflection convergence has also been proposed (Non-Patent Document 14).
  • Non-Patent Document 14 A 90 ° deflection analyzer that enables 90 ° deflection convergence has also been proposed.
  • Non-Patent Document 14 among the electrons incident at a constant opening angle, there is a problem that the electrons in the inward direction of the deflection plane can be converged, but the electrons in other directions cannot be converged at the same time, and the two-dimensional real space image. It is difficult to apply it to two-dimensional spin analysis that forms an image of the emission angle distribution.
  • Non-Patent Document 10 Having a two-dimensional real-space image and imaging performance of the emission angle distribution is important for detailed analysis of spin polarization.
  • the two-dimensional spin analyzer disclosed in Non-Patent Document 10 enables two-dimensional analysis of the spin polarization in the sample plane, the two-dimensional analysis of the spin polarization in the direction perpendicular to the sample plane is still realized. It has not been. It is speculated that detailed analysis of the spin polarization in the direction perpendicular to the sample surface will be indispensable for spintronics research in high-density magnetic storage devices and the like in the future.
  • the electrostatic 90 ° deflector instead of the electrostatic 90 ° deflector, it is also possible to use a Wien filter type spin rotation device (see, for example, Patent Document 4 and Non-Patent Document 15) to perform three-dimensional measurement of spin polarization.
  • a Wien filter type spin rotation device see, for example, Patent Document 4 and Non-Patent Document 15
  • the multipole Viennese filter enables three-dimensional operation of the spin.
  • the Wien filter is an energy analyzer that utilizes the fact that when electrons are incident on orthogonal electric and magnetic fields, only the electrons of a specific energy go straight in balance with the force received from the electric field and the force received from the magnetic field (Lorentz force). ..
  • the incident electrons can be converged at a constant opening angle by adjusting the voltage applied to the electric field forming electrode and the voltage (or current) applied to the electromagnet, respectively.
  • the Wien filter also has the function of rotating the spin of electrons, and by appropriately adjusting the applied voltage (or current), the spin in the optical axis direction can be rotated in the direction perpendicular to the optical axis.
  • the condition for converging the electron beam emitted from one point and the condition for rotating the spin by 90 ° do not match, and if the Vienna filter is set for the latter condition, the electron beam cannot be converged at the exit. Therefore, although the Wien filter type spin rotation device is used for observing the real space image of the three-dimensional decomposition of the spin polarization of the parallel electron beam with a photoelectron microscope, the two-dimensional real space image and the emission angle are used. It is difficult to apply it to a two-dimensional analyzer that can form an image of any of the distributions.
  • the direction of the electron is deflected by 90 °, and at the same time, not only in the direction in the deflection plane but also in the direction perpendicular to it. It is also necessary to have convergence and imaging effects.
  • an object of the present invention to first provide an electrostatic deflection convergent energy analyzer capable of performing analysis with high energy resolution even if the capture angle is wider than that of the electrostatic hemisphere portion of CHA. do. Secondly, it is an object of the present invention to provide an imaging type electron spectroscopic apparatus capable of forming a two-dimensional real space image and an emission angle distribution with high energy resolution. Further, in the present invention, thirdly, in addition to the two-dimensional analysis of the spin polarization degree in the in-plane direction of the sample, the electron emitted from the sample is deflected by 90 ° by an electric field before being incident on the two-dimensional spin detector, and the sample is sampled.
  • the electrostatic deflection convergence type energy analyzer of the present invention has the following features 1) to 7).
  • 1) One or more outer electrodes and a plurality of inner electrodes are arranged along the shape of two rotating bodies formed on the inner side and the outer side with a common rotation axis.
  • the outer rotating body includes the inner rotating body.
  • An electron incident hole and an electron emitting hole are formed on the rotation axis of the electrodes at both ends of the outer electrode.
  • It has a voltage applying means for applying a voltage for accelerating and decelerating electrons to the outer electrode and the inner electrode.
  • a voltage for accelerating and decelerating electrons may be applied to the outer electrode and the inner electrode in proportion to the energy of the incident electrons.
  • the shape of the inner surface of the outer electrode is such that the diameter becomes smaller toward the incident hole and the diameter becomes smaller toward the exit hole.
  • the shape having a smaller diameter toward the incident hole in the inner surface shape of the outer electrode is preferably a tapered shape, a toroidal surface shape, or a ring shape, and has a smaller diameter toward the exit hole in the inner surface shape of the outer electrode.
  • the shape is a tapered shape, a toroidal surface shape, or a ring shape.
  • the outer surface shape of the inner electrode is a shape that decreases in diameter toward the incident hole, a rod shape that extends toward the incident hole, or a shape that expands in diameter at the end on the incident hole side, and faces the exit hole. It has a small diameter, a rod shape extending toward the exit hole, or a shape in which the diameter expands at the end on the exit hole side.
  • the shape in which the diameter becomes smaller toward the incident hole in the outer surface shape of the inner electrode is preferably a tapered shape or a toroidal surface shape, or a step shape in which the diameter gradually decreases toward the incident hole.
  • the shape that decreases in diameter toward the exit hole is a tapered shape, a toroidal surface shape, or a step shape that gradually decreases in diameter toward the exit hole.
  • the inner surface shape of the outer electrode and the outer surface shape of the inner electrode are basically the same on the incident hole side and the outgoing hole side, but they do not necessarily have to be the same and may exhibit different shapes. For example, various combinations are possible, such as a tapered shape on the incident hole side and a ring shape on the outgoing hole side.
  • the step shape in which the diameter is gradually reduced includes, for example, even when an electrode having a small diameter is arranged in the center, a step shape in which the diameter is reduced by only one step near the incident hole.
  • the applied voltage of one or more inner electrodes excluding the electrodes at both ends of the inner electrode accelerates the energy of electrons with reference to the potential of the outer electrode in which the incident hole is formed.
  • the voltage is twice or more, preferably 2 to 5 times or more the converted acceleration voltage converted into voltage.
  • the converted acceleration voltage is defined as the voltage obtained by converting the energy of electrons into the acceleration voltage.
  • the converted acceleration voltage of 1 eV is 1 V.
  • a voltage of 2 to 5 times or more of the converted acceleration voltage is a voltage of 2E to 5EV or more, where EeV is the energy of electrons.
  • the voltage applied to one or more inner electrodes excluding the electrodes at both ends of the inner electrode is converted by converting the electron energy into an acceleration voltage with reference to the potential of the outer electrode in which the incident hole is formed. It is preferable that a voltage 10 times or more the acceleration voltage is set. For example, a high voltage of 10 kV or more is set for 1000 eV of electron energy. This is because the angle of incidence on the energy analysis unit can be further widened, the magnification of the input lens for wide-angle capture can be further reduced, the sensitivity for wide-angle capture can be further increased, and the energy resolution can be further improved.
  • the electrostatic deflection converging energy analyzer having the features 1) to 7) above, by optimizing the shape, arrangement, and applied voltage of each electrode, the electrostatic hemisphere of CHA can be used without using a grid. It enables energy analysis that captures electrons at a larger capture angle and deflects them to converge. That is, by using the electrostatic deflection convergence type energy analyzer of the present invention instead of the electrostatic hemisphere portion of CHA, the angle of incidence on the energy analysis portion can be widened by about 3 times, whereby wide-angle capture can be achieved. It is possible to reduce the magnification of the input lens to about 1/3, increase the sensitivity in wide-angle capture to about 9 times, and improve the energy resolution.
  • the taper shape of the outer electrode and the outer surface shape of the inner electrode when the inner surface shape of the outer electrode and the outer surface shape of the inner electrode have a taper shape having a smaller diameter toward the incident hole and the exit hole, the taper shape is ,
  • the taper angle measured from the axis of rotation may be the same on the incident hole side and the exit hole side.
  • the inner surface shape of the outer electrode and the outer surface shape of the inner electrode may be symmetrical with the plane perpendicularly intersecting the straight line at the midpoint of the straight line connecting the incident hole and the exit hole as a symmetrical plane.
  • a plurality of outer electrodes and a plurality of inner electrodes may be arranged.
  • the voltage applied to one or more inner electrodes excluding the electrodes at both ends of the inner electrodes is a converted acceleration voltage obtained by converting electron energy into an acceleration voltage. It is 10 to 50 times that of.
  • the voltage applied to one or more outer electrodes excluding the electrodes at both ends is preferably 10 times or less the converted acceleration voltage.
  • the deflection angle is 90 °.
  • the electrostatic deflection convergent energy analyzer of this aspect may be referred to as a "90 ° electrostatic deflection convergent energy analyzer" below.
  • 90 ° electrostatic deflection convergent energy analyzer of this aspect 90 ° deflection by an electrostatic field, two-dimensional convergence and imaging can be realized.
  • a two-dimensional convergence and image formation can be performed by bending the traveling direction by 90 ° without changing the spin direction, and a spin-decomposed two-dimensional real space image and emission angle distribution can be obtained. It can bring about the effect of being able to acquire it.
  • the incident angle is not particularly limited, the incident angle may be 45 °, the emission angle may be 45 °, and the deflection angle may be 90 °.
  • the electrostatic deflection convergent energy analyzer of the present invention may have any of the following deflection angles.
  • Some examples are given below.
  • -The predetermined incident angle is 22.5 ° and the deflection angle is 45 °.
  • -The predetermined incident angle is 30 ° and the deflection angle is 60 °.
  • -The predetermined incident angle is 60 ° and the deflection angle is 120 °.
  • -The predetermined incident angle is 67.5 ° and the deflection angle is 135 °.
  • -The predetermined incident angle is 75 ° and the deflection angle is 150 °.
  • the incident angle is not particularly limited, and the incident angle and the exit angle are set so that the deflection angle is an angle of 45 to 180 ° such as 45 °, 60 °, 120 °,
  • the inner electrode is divided into two parts so that electrons in the central orbit can pass across the axis of rotation, and the voltage conditions applied to the electrodes are changed. Therefore, it may be possible to control whether or not the central orbit crosses the rotation axis and switch the presence or absence of deflection of the electrons emitted from the exit hole.
  • the characteristic of this analyzer is that the inner electrodes are separated into two parts (incident side and exit side), and the effect is that electrons pass across the rotation axis in the space created between the left and right inner electrodes. become able to.
  • the electrostatic deflection convergence type energy analyzer of such an embodiment may be referred to as a "deflection switching electrostatic convergence type energy analyzer" below.
  • the rotating body is a rotating body having a rotation angle of 90 ° to 180 °, and a compensation electrode for compensating the electric field may be provided on the cut surface.
  • the electrostatic field is a 180 ° rotating body or a rotating body having an arbitrary rotation angle, even if it is not a 360 ° rotating body. It is possible to realize deflection by, two-dimensional convergence and imaging.
  • the imaging type electron spectroscope of the present invention is an electron spectroscopic device using the above-mentioned electrostatic deflection convergence type energy analyzer of the present invention, in which an input lens is placed in front of the analyzer and a projection lens is placed in the rear stage of the analyzer.
  • an input lens is placed in front of the analyzer and a projection lens is placed in the rear stage of the analyzer.
  • the input lens has an incident hole of the energy analyzer on the lens axis, and the lens axis and the rotation axis of the energy analyzer are arranged so as to have a predetermined incident angle, and the electrons emitted from the sample are taken in and incident. It emits into the hole.
  • the input lens preferably has a function of switching between an angle distribution and a real space image.
  • the projection lens has an emission hole of the energy analyzer on the projection lens axis, and the projection lens axis and the rotation axis of the energy analyzer are arranged so as to have a predetermined emission angle, and the electrons deflected and converged by the energy analyzer. Is taken in from the emission hole.
  • the detector two-dimensionally detects the electrons transmitted through the projection lens and measures a two-dimensional real space image or emission angle distribution. It is preferable to provide apertures or slits in the entrance hole (inlet) and the exit hole (outlet) of the energy analyzer.
  • the reflection imaging type electron spectroscope of the present invention is an electron spectroscopic device using the above-mentioned electrostatic deflection convergence type energy analyzer (excluding those of a 180 ° rotating object) of the present invention, and is energy.
  • the reflection imaging type electron spectroscope of the present invention is an electron spectroscopic device using the above-mentioned electrostatic deflection convergence type energy analyzer (excluding those of a 180 ° rotating object) of the present invention, and is energy.
  • the input lens has an energy analyzer incident hole on the lens axis, and the lens axis and the rotation axis of the energy analyzer are arranged so as to have a predetermined incident angle, and the electrons emitted from the sample are taken in and emitted to the incident hole. It is something to do.
  • the mirror is placed in the exit hole of the energy analyzer so that the direction of the perpendicular line coincides with the direction of the axis of rotation.
  • a single crystal mirror can be used, and in particular, a spin analysis function can be obtained by using an Ir (001) single crystal mirror or the like.
  • the projection lens has an incident hole on the projection lens axis, and the projection lens axis and the rotation axis of the energy analyzer are arranged so as to have a predetermined incident angle. Converging electrons are taken in from the incident hole.
  • the detector two-dimensionally detects the electrons transmitted through the projection lens and measures a two-dimensional real space image or emission angle distribution. It is preferable to provide an aperture or a slit in the incident hole (also used as the inlet and the outlet) of the energy analyzer.
  • the spin vector distribution imaging apparatus is a 90 ° electrostatic deflection convergent energy analyzer of the present invention having a deflection angle of 90 ° (a rotating body having a rotation angle of 90 ° to 180 °). , Including an energy analyzer provided with a compensating electrode for compensating the electric field at the cut surface), and further includes the following configurations 1a) to 1d).
  • the spin vector distribution imaging apparatus comprises the above-mentioned 90 ° electrostatic deflection convergence type energy analyzer of the present invention, and further includes the following configurations 2a) to 2d).
  • 2a) The incident hole of the energy analyzer is arranged on the lens axis, the lens axis and the rotation axis of the energy analyzer are arranged so as to have a predetermined incident angle, and the electrons emitted from the sample are taken in and emitted to the incident hole.
  • Input lens 2b)
  • a two-dimensional spin filter that is placed in the emission hole of the energy analyzer and whose rotation axis is a perpendicular line.
  • the projection lens axis and the rotation axis are arranged so as to have a predetermined incident angle, the energy analyzer deflects and converges, and the reflection is reflected by the two-dimensional spin filter.
  • a detector that detects electrons that have passed through a projection lens.
  • the spin vector distribution imaging apparatus is the above-mentioned 90 ° electrostatic deflection convergence type energy analyzer of the present invention, and further comprises an energy analyzer capable of switching the deflection angle. It has the following configurations of 3a) to 3f). 3a) There is an incident hole of the energy analyzer on the lens axis, the lens axis and the rotation axis of the energy analyzer are arranged so as to have a predetermined incident angle, and an input that takes in the electrons emitted from the sample and emits them to the incident hole. lens.
  • An electrostatic lens that takes in from a hole.
  • the spin vector distribution imaging device is the 90 ° electrostatic deflection convergence type energy analyzer of the present invention described above in the spin vector distribution imaging device according to any one of the first to third aspects described above. Instead of using, a combination of a plurality of energy analyzers having a deflection angle in the range of 45 to 150 ° and having a deflection angle of 90 ° is used.
  • the spin is rotated by 90 ° in a plane perpendicular to each lens axis, which is arranged inside or outside at least one of the input lens and the electrostatic lens. It may be provided with a spin rotator.
  • spin rotators rotating spins by 90 ° in a plane perpendicular to the lens axis
  • the combination of ON and OFF of the two spin rotators It is possible to determine which of the three spin polarization degrees, in-plane and in-perpendicular, should be analyzed. This enables a two-dimensional analyzer that analyzes the three-dimensional spin polarization degree with a two-dimensional real space image and an emission angle distribution.
  • the electrostatic deflection convergence type energy analyzer of the present invention electrons are taken in at a larger uptake angle than the electrostatic hemisphere portion of CHA without using a grid, and the orbits of the electrons are deflected and converged to improve the energy resolution. It has the effect of being able to improve.
  • the image-forming electron spectroscope of the present invention there is an effect that not only the real space image of the sample but also the two-dimensional emission angle distribution over a wide angle can be measured at once with high energy resolution.
  • the spin vector distribution imaging apparatus of the present invention has an effect that the three-dimensional spin polarization degree can be analyzed by a two-dimensional real space image and an emission angle distribution.
  • FIG. 1 Schematic diagram of the electrostatic deflection convergent energy analyzer of Example 1.
  • Schematic diagram of the outer and inner electrodes of the electrostatic deflection convergent energy analyzer Explanatory drawing of the image formation type electron spectroscope of Example 2.
  • Electrostatic hemispherical energy analyzer As shown in FIG. 20, CHA consists of an input lens, an inner sphere and an outer sphere that captures and converges electrons (or charged particles) emitted from the sample. It consists of an electrostatic hemisphere, a slit provided at the entrance of the electrostatic hemisphere, and a detector provided at the exit of the electrostatic hemisphere, and is an analyzer that utilizes the convergence action of a spherically symmetric electric field. Assuming that the distance from the center O of the sphere of the electrostatic hemisphere to the center axis (optical axis) of the input lens is R0 as shown in FIG.
  • E pass is the path energy of the electrostatic hemisphere
  • e is the elementary charge.
  • the coefficient of the first term of the equation (1) is a coefficient determined from the condition of the balance between the centrifugal force and the central force in the central orbit.
  • an image plane is formed at the entrance slit position.
  • what is obtained in the direction perpendicular to the paper surface of the detector is a one-dimensional real space image.
  • a diffraction surface is formed at the inlet slit position by switching the applied voltage of the input lens, a one-dimensional emission angle distribution is obtained in the direction perpendicular to the paper surface of the detector.
  • the one-dimensional real-space image or angular distribution is selected by the inlet slit of the electrostatic hemisphere, and the one-dimensional real-space image or emission with energy dispersion is performed by the detector provided at the exit of the electrostatic hemisphere.
  • the angular distribution can be obtained.
  • the energy is matched to the sharp photoelectron peak from the inner shell level, the electrons incident on the electrostatic hemisphere become almost a single energy, so the inlet slit is widened to create a two-dimensional real space image or angular distribution. It is also possible to make the image incident and display the image on the screen of the detector.
  • the characteristics of the electrostatic hemisphere will be specifically shown numerically.
  • the voltage applied to the inner and outer spheres of the electrostatic hemisphere is shown. Since the inner and outer sphere radii R in and R out (see Fig. 20) and the center orbital radius R 0 are determined by the design of the analyzer, the pass energy E pass and the center orbital potential V 0 are measured. You can decide. When E pass and V 0 are determined, the voltage applied to the inner sphere and the outer sphere is obtained by the above equation (1).
  • V 0 is set to the same potential as the outlet electrode of the input lens, and changes with a change in the reduction ratio of the input lens (that is, a change in E pass ) or a change in the energy to be analyzed.
  • the voltage V in and V out applied to the inner sphere and the outer sphere, respectively the following equation (2), the equation (3).
  • the E pass is 1000 eV and V 0 is taken as a reference
  • the voltages applied to the inner sphere and the outer sphere are about 667 V and -400 V, respectively.
  • the electron energy here, the path energy E pass
  • the elementary charge e that is, converted to the acceleration voltage
  • the converted acceleration voltage the voltage applied to the inner sphere and the outer sphere is applied.
  • the absolute values of are about 0.67 times and 0.4 times the converted acceleration voltage, respectively.
  • the electron orbit of the electrostatic hemisphere portion shown in FIG. 20 is an orbital when the incident angle ⁇ to the electrostatic hemisphere portion is limited to ⁇ 3 °.
  • the left panel of FIG. 21 is the result of orbit calculation with the incident angle ⁇ expanded to ⁇ 8 °.
  • the central orbital radius R 0 is set to 100 mm.
  • the upper right graph of FIG. 21 shows the aperture aberration, and the lower right graph shows the relationship between the incident angle ⁇ and the exit angle ⁇ '. According to the theoretical calculation, the aperture aberration of the electrostatic hemisphere is given by the following equation (4).
  • 4 °
  • R 0 100 mm.
  • the incident angle is not sufficiently limited, a large aperture aberration occurs and it is difficult to obtain a two-dimensional real space image.
  • the estimation of the energy resolution of the FWHM (full width at half maximum) of the electrostatic hemisphere is given by the following equation (5).
  • ⁇ max is the maximum value of the angle of incidence on the electrostatic hemisphere
  • w is the width of the inlet and outlet slits.
  • the energy resolution defined by the above equation (5) represents the energy width of FWHM that can be separated when the electrons incident from the region of width w are cut out in the region of width w. If the strength of the electrons of the energy E pass incident on the electrostatic hemisphere is strong, the slit width can be reduced to suppress the contribution of the slit width to the energy resolution, but if not, the strength is reduced. It becomes an obstacle and the slit width cannot be made sufficiently small. Therefore, in many analyzers, the energy resolution is improved by increasing the central orbital radius R0. How small the slit width can be depends on the spot size or flux of the X-ray or electron beam irradiating the sample and the magnification of the input lens.
  • the spot size of X-rays and electron beams on a sample can be about 10 to 100 ⁇ m, but here, it is set to 50 ⁇ m for a slightly larger sample.
  • the magnification of the input lens is 5
  • the magnification of the electrostatic hemisphere is 1, so it seems better to set the slit width to 0.25 mm.
  • FIG. 22 assumes a point source of 5 ⁇ 5 (1 mm pitch) on the incident surface to the electrostatic hemisphere, and extends from each point over a solid angle range of an incident angle ⁇ max with the direction perpendicular to the plane as the center direction.
  • This is a two-dimensional real-space image obtained at the exit of the electrostatic hemisphere when an electron of energy E pass is incident.
  • ⁇ max is considered from ⁇ 1 ° to ⁇ 6 °.
  • the aperture aberration increases and the spatial resolution in the x'direction significantly decreases.
  • ⁇ max is about ⁇ 2 ° or less, a relatively good real space image is likely to be obtained, but if ⁇ max is about ⁇ 4 ° or more, two point sources 1 mm apart are connected in the real space image. It turns out that it cannot be disassembled.
  • the incident angle is limited to about ⁇ 1 ° or less, there is a problem that the intensity of photoelectrons is significantly reduced.
  • the CMA consists of a coaxial cylindrical portion consisting of an inner cylinder and an outer cylinder, and a slit and a detector provided in the rear stage of the coaxial cylindrical portion. It is an analyzer that utilizes the convergence effect of a symmetric electric field.
  • the inlet and the outlet of the inner cylinder in which the electrons enter are formed into a cylindrical grid, which allows the electrons to pass through without breaking the cylindrical symmetric electric field.
  • the potential at an arbitrary point (distance r from the central axis z) between the inner cylinder and the outer cylinder of the CMA is expressed by the following equation (6).
  • E pass is the path energy of CMA
  • R in is the radius of the inner cylinder
  • e is the elementary charge
  • the absolute value of the voltage applied to the outer cylinder is about 0.75 times the converted accelerated voltage.
  • the voltage applied to the inner cylinder is 0 times the converted acceleration voltage.
  • FIG. 24 shows the relationship between the incident angle ⁇ and the aperture aberration when the distance L between the origin on the sample and the point where the central orbit intersects the z-axis is 275 mm (when L is set to 275 mm, the origin reaches the slit position.
  • the length of the central orbit is substantially the same as the length of the central orbit of the electrostatic hemisphere shown in FIG. 21).
  • K may be selected to 1.31 to limit the incident angle.
  • K it is better to set K to a value slightly larger than 1.31 (for example, about 1.33).
  • the value of K can be easily changed by the voltage applied to the outer cylinder.
  • the value of L when the value of K changes, the value of L also changes. That is, there is a problem that the optimum slit and detector positions change when the value of L changes.
  • the cylindrical symmetric electric field used in the CMA has a stronger converging action than the spherical symmetric electric field used in the CHA. This is because the CMA has a third-order aperture aberration, whereas the CHA has a second-order aperture aberration.
  • the CMA is expected to have high energy resolution, but the high energy resolution that can be obtained by CHA is not actually achieved by CMA.
  • the reason for not being achieved is that in the CMA, two grid electrodes are used, and the electrons are scattered by the grid at the inlet and outlet of the cylindrical symmetric electric field and the convergence is reduced. As described above, it is difficult for the CMA to achieve the high energy resolution obtained by the CHA. In CMA, it is also difficult to obtain a high-resolution real-space image and emission angle distribution due to the scattering effect of the grid.
  • Typical spin-polarity analyzers include a Mott detector and a SPLEED detector that utilize a spin-orbit interaction, and a VLEED detector that utilizes a spin-orbit interaction. Further, in recent years, a two-dimensional spin analyzer using an Ir (001) single crystal substrate has been developed (Non-Patent Document 10).
  • FIG. 25 is a schematic diagram of the VLEED detector (Non-Patent Document 11).
  • This spin polarization analyzer utilizes the fact that when low-energy electrons are incident on a target magnetized by a coil, the intensity of the reflected electrons changes depending on whether the spin of the electrons is parallel or antiparallel to the magnetization of the target. It is a detector. An iron thin film is used as the target.
  • FIG. 26 is a schematic diagram of a spin polarization analyzer that combines CHA and VLEED.
  • z and z'are the optical axes between the sample-electrostatic hemisphere and the electrostatic hemisphere-target, respectively.
  • a coil is provided in the y'direction, and the spin polarization degree in the y direction in the sample plane can be measured.
  • the sample may be rotated 90 ° in the in-plane direction, but when the sample is rotated, the measurement region is slightly displaced. Occurs. This can be a fatal problem in microregional analysis.
  • it is effective to provide a spin rotator that rotates the spin by 90 ° in a plane perpendicular to the lens axis on the input lens or in the front stage of the spin analyzer.
  • the spin in the in-plane direction of the sample can be rotated by 90 ° in-plane without rotating the sample.
  • a coil for magnetizing the target is provided in two directions instead of the spin rotator, and the direction of magnetization is switched to change the spin polarization in the sample plane in the x and y directions. It is also possible to measure.
  • none of the above methods can measure the spin polarization in the z direction. In order to measure the spin polarization in the z direction, it is effective to bend the orbit of the electron by 90 ° with an electric field before the electron enters the target.
  • FIG. 27 is a schematic diagram of a spin polarization analyzer that performs spin analysis by such a method.
  • the orbits of the electrons are bent by 90 ° in the z'y'plane, which makes it possible to measure the spin polarization in the direction perpendicular to the sample surface (z direction).
  • a 1/4 cylindrical electrostatic 90 ° deflector (90 ° deflector) as shown in FIG. 27 is used.
  • a spin rotator as shown in FIG. 27, between the input lens and the electrostatic hemisphere, and a 90 ° deflector and spin analyzer. Provide each between.
  • the two spin rotators are both set to OFF, but when SR1 is set to OFF and SR2 is set to ON, the spin polarization degree in the x direction in the sample plane is set. It can be measured, and if both SR1 and SR2 are set to ON, the spin polarization degree in the y direction in the sample plane can be measured.
  • a coil may be added in the x'direction instead of providing the second spin rotator SR2. The three-dimensional spin polarization can be measured by the above method.
  • FIG. 28 is a schematic diagram of a spin polarization analyzer using a 90 ° spherical deflector.
  • the 90 ° deflector and the 90 ° spherical deflector have a simple structure and are suitable for bending a parallel beam by 90 °. However, these deflectors cannot converge a beam with an angular spread emitted from one point.
  • FIG. 29 is a schematic cross-sectional view of the improved 90 ° deflector.
  • the electron beam emitted from one point can be deflected by 90 ° in the deflection plane and converged.
  • the beam cannot be converged at the same time in two directions, the inward direction of the deflection plane and the direction perpendicular to it.
  • a 90 ° spherical deflector as shown in FIG. 30, it is possible to narrow the spread beam by combining a lens at the outlet.
  • the beam cannot be converged in two directions at the same time.
  • the 90 ° deflection analyzer shown in FIGS. 27 to 30 can be used for three-dimensional measurement of spin polarization, but instead of using such a deflection analyzer, a Wien filter type spin rotation device is used. It is possible to perform a three-dimensional measurement of the spin polarization.
  • the Wien filter type spin rotation device the spin in the direction perpendicular to the sample surface can be rotated by 90 ° and tilted in the in-plane direction without changing the direction of the beam, and as shown in FIG. 31, the multipolar child Wien The filter allows for three-dimensional manipulation of spin.
  • this method it has not been realized that the beam having an angular spread is two-dimensionally converged at the same time as the 90 ° spin rotation.
  • CHA electrostatic hemispherical energy analyzer
  • CMA concentric cylindrical mirror analyzer
  • spin-resolving electron spectroscope As described above, the conventional electrostatic hemispherical energy analyzer (CHA), concentric cylindrical mirror analyzer (CMA), and conventional spin-resolving electron spectroscope have been described, but the following describes some embodiments of the present invention. An example will be described in detail with reference to the drawings. The scope of the present invention is not limited to the following examples and illustrated examples, and many changes and modifications can be made.
  • FIG. 1 (1) is a schematic view of an embodiment of the 90 ° electrostatic deflection convergent energy analyzer of the present invention.
  • the 90 ° electrostatic deflection convergence type energy analyzer 1 has five outer electrodes EL1, EL2, EL3, EL4, EL5 along the shape of two rotating bodies formed on the inner side and the outer side with the rotation axis 13 in common.
  • Three inner electrodes EL6, EL7, and EL8 are arranged, and electron incident holes 11 and emission holes 12 are formed on the rotation shafts 13 of the electrodes at both ends of the outer electrodes.
  • the inner surface shape of the outer electrode has a tapered shape whose diameter becomes smaller toward the incident hole 11 and the exit hole 12, except for the central electrode (EL3), and the outer surface shape of the inner electrode is the central electrode (EL7). Except for this, it has a tapered shape whose diameter becomes smaller toward the incident hole 11 and the emitted hole 12.
  • the energy analyzer 1 has two rotating bodies obtained by rotating the lower bases of two isosceles trapezoids (20a, 20b) having different heights on a rotating shaft 13.
  • Five outer electrodes EL1, EL2, EL3, EL4, EL5 and three inner electrodes L6, EL7, EL8 are arranged along the three-dimensional surface shape.
  • a voltage for accelerating and decelerating the electrons is applied to the outer electrode and the inner electrode in proportion to the energy of the incident electrons.
  • the electron energy is converted into an acceleration voltage three times as much as the converted acceleration voltage based on the potential of the outer electrode on which the incident hole 11 is formed.
  • the center orbit of the electron incident from the incident hole 11 has a predetermined emission angle with the rotation axis 13 so that the above voltage is set and the center orbit of the electron has a predetermined incident angle (45 ° in FIG. 1) with the rotation axis 13.
  • the voltage applied to each electrode is adjusted so as to converge to the position of the emission hole 12. This makes it possible to take in electrons with a wide angle and deflect them by 90 ° to make them two-dimensionally convergent.
  • FIG. 1 (1) shows an electron orbit and an isobaric line.
  • a slit for energy sorting is arranged at the outlet position, and a detector is arranged in the subsequent stage.
  • FIG. 2 (a) A graph showing the aperture aberration of the 90 ° electrostatic deflection convergent energy analyzer of FIG. 1 (1) is shown in FIG. 2 (a).
  • the length L of the analyzer is set to 275 mm.
  • the length of the central orbit substantially coincides with the length of the central orbit of the electrostatic hemisphere portion of CHA shown in FIG. 21.
  • A, B, C shown in the graph of FIG. 2 (a).
  • the range (capture angle) of the incident angle ⁇ of the energy analyzer is set to ⁇ 2 °, ⁇ 6 °, ⁇ 8 °, and ⁇ 10 ° so that the blurring of the image due to aperture aberration is reduced.
  • the applied voltage can be optimized without changing the convergence position. Further, the blurring of the image due to the aperture aberration can be made to be the same as or less than that of CMA. What is important here is that the energy analyzer of the present invention does not use grid electrodes, unlike CMA. Since the orbit is disturbed when electrons pass through the grid electrode, it is desirable not to use the grid electrode in the energy analyzer having an imaging function.
  • FIG. 2B shows the relationship between the incident angle and the emitted angle when the capture angle is ⁇ 10 °.
  • the absolute values of the emission angles are almost the same, that is, the angles are preserved.
  • the energy analyzer of the present invention is suitable for measuring the angle distribution.
  • the values for other path energies are obtained by changing the values in Table 2 in proportion to E pass.
  • Table 2 shows the voltage value when the electrode EL1 is set to the ground potential, but the EL1 may have a potential V1 ( ⁇ 0) other than the ground potential. In this case, a voltage obtained by adding V1 to the voltage shown in Table 2 is applied to the electrodes other than EL1.
  • the electrodes EL1 and EL5 are set to the ground potential
  • EL2, EL4, EL6, and EL8 are set to the same potential
  • the voltages of only EL3 and EL7 are adjusted.
  • the EL3 has a voltage of about 3 to 4 times the converted acceleration voltage
  • the EL7 has a voltage of about 23 to 25 times the converted acceleration voltage.
  • a voltage is applied. Comparing with the applied voltages of CHA and CMA described above, it can be seen that the voltages applied to EL3 and EL7 are one or two orders of magnitude higher.
  • the optimum voltage applied to each electrode changes depending on the shape and arrangement of the electrodes. As a result, a voltage of about 0 to 10 times the converted acceleration voltage is applied to the EL3, and a voltage of about 10 to 50 times the converted acceleration voltage is applied to the EL7.
  • the voltage applied to the EL 7 may be a voltage 3 to 5 times or more and 10 times or less the converted acceleration voltage.
  • FIG. 22 shows the results of calculating a two-dimensional real space image in the 90 ° electrostatic deflection convergent energy analyzer of FIG. 1 (1) in the same manner as in FIG. 22.
  • the maximum value (capture angle) of the incident angle ⁇ is taken into consideration from ⁇ 2 ° to ⁇ 8 °.
  • the capture angle is set to about ⁇ 2 ° or less, a large aperture aberration occurs and a practical two-dimensional image cannot be obtained, but it is shown in FIG.
  • the 90 ° electrostatic deflection convergence type energy analyzer can obtain a practical two-dimensional image even if the capture angle is widened to about ⁇ 5 ° to ⁇ 6 °. Further, from the comparison between Tables 1 and 3 above, it can be seen that the same level of energy resolution as CHA can be achieved at this capture angle.
  • the 90 ° electrostatic deflection convergence type energy analyzer of the present invention having the same operation as the energy analyzer shown in FIG. 1 (1), although the shapes and arrangements of the electrodes are different.
  • the shape of the electrode means the inner surface shape in the case of the outer electrode and the outer surface shape in the case of the inner electrode.
  • FIG. 5A a plurality of outer electrodes and a plurality of inner electrodes are arranged along two rotating surfaces formed on the inner side and the outer side with a common rotation axis, and the outer electrode and the inner electrode have a toroidal surface shape.
  • the energy analyzer of the present invention characterized by this is shown.
  • the outer electrode and the inner electrode having the toroidal surface shape are characterized in that the diameter becomes smaller toward the incident hole and the exit hole, and the space formed between them becomes narrower as it is closer to both ends. Is.
  • FIG. 5B a plurality of outer electrodes and a plurality of inner electrodes are arranged along two rotating surfaces formed on the inner side and the outer side with a common rotation axis, and some outer electrodes have round holes in the plate.
  • the energy analyzer of the present invention which is a drilled ring-shaped electrode, wherein the inner electrode has a tapered shape whose diameter decreases toward an incident hole and an emitted hole.
  • the ring-shaped electrode is set to have a small hole diameter near the incident hole and the exit hole so that the space formed between the outer electrode and the inner electrode becomes narrower around the incident hole and the exit hole. ..
  • FIG. 5 (c) a plurality of outer electrodes and a plurality of inner electrodes are arranged along two rotating surfaces formed on the inner side and the outer side with a common rotation axis, and some outer electrodes are an incident hole and an exit.
  • FIG. 5B It is a schematic diagram of the energy analyzer of the present invention characterized by being a ring-shaped electrode having a tapered shape whose diameter decreases toward a hole.
  • the inner electrode has a tapered shape whose diameter decreases toward the incident hole and the exit hole, and the ring-shaped electrode is close to the incident hole and the exit hole. Is set to have a small hole diameter.
  • FIG. 5D a plurality of outer electrodes and a plurality of inner electrodes are arranged along two rotating surfaces formed on the inner side and the outer side with a common rotation axis, and the inner electrodes are in the vicinity of the incident hole and the exit hole.
  • the step shape is characterized in that the diameter becomes smaller in the vicinity of the incident hole and the exit hole.
  • the outer electrode has a tapered shape in which the diameter decreases toward the incident hole and the exit hole, as in the embodiment of FIG. 1 (1), and the space formed between the outer electrode and the inner electrode is formed. It is narrowed around the entrance and exit holes.
  • FIG. 5 (e) a plurality of outer electrodes and a plurality of inner electrodes are arranged along two rotating surfaces formed on the inner side and the outer side with a common rotation axis, and the inner electrodes extend to the vicinity of the incident hole and the exit hole.
  • FIG. 5 (e) It is a schematic diagram of the energy analyzer of this invention characterized by having an extended rod shape.
  • the plurality of electrodes having a rod shape may have different outer diameters.
  • FIG. 5 (f) a plurality of outer electrodes and a plurality of inner electrodes are arranged along two rotating surfaces formed on the inner side and the outer side with a common rotation axis, and the inner electrodes are axisymmetric in diameter at the end.
  • FIG. 5 (f) It is a schematic diagram of the energy analyzer of this invention characterized by having a shape.
  • FIG. 5 (g) and 5 (h) are examples of the energy analyzer of the present invention in which the number of inner electrodes and the number of outer electrodes are set to two, respectively.
  • a plurality of outer electrodes and a plurality of inner electrodes are arranged along two rotating surfaces formed on the inner and outer sides with a common rotation axis, and the outer electrodes are the same as those in FIG. 1 (1).
  • the outer electrode is composed of an axisymmetric electrode extending to an incident hole and an exit hole, and an axisymmetric electrode arranged inside the axial symmetry electrode.
  • the inner electrode has a tapered shape whose diameter decreases toward the incident hole and the emitted hole.
  • the convergence performance is lowered and the capture angle is set smaller than that of other designs.
  • the present invention comprises a total of four electrodes, two inner electrodes and two outer electrodes, by combining the inner electrode of FIG. 5 (g) and the outer electrode of FIG. 5 (h). Energy analyzers can be designed. In the type of FIG.
  • the convergence performance in order to improve the convergence performance, it is effective to increase the degree of freedom in the shape of the inner electrode to optimize the shape and to design by increasing the number of bead-shaped electrodes. Further, in the type of FIG. 5 (h), the convergence performance can be improved by designing with an increased number of outer electrodes.
  • a voltage for accelerating and decelerating electrons is applied to the outer electrode and the inner electrode in proportion to the energy of the incident electrons. ..
  • the electron energy is converted into an acceleration voltage 3 to 5 times the converted acceleration voltage based on the potential of the outer electrode on which the incident hole is formed.
  • the above voltage is set. However, in order to obtain high convergence performance, it is desirable to set the voltage to about 10 to 50 times the converted acceleration voltage with reference to the potential of the outer electrode on which the incident hole is formed.
  • the number of electrodes is not limited to those shown in FIGS. 1 (1) and 5.
  • the number of inner electrodes and outer electrodes may be two or more, but considering both performance and cost, it is preferable to provide about 3 to 5 inner electrodes and 3 to 7 outer electrodes. .. Further, it is desirable that the inner electrode and the outer electrode have a shape and arrangement in which the space formed between them is narrowed around the incident hole and the exit hole as shown in FIGS. 1 (1) and 5. .. As a result, the electric field applied to the incident hole and the emitted hole can be suppressed to a small size.
  • the inner electrode and the outer electrode are plane-symmetrical with respect to a surface perpendicular to the straight line at the midpoint of the straight line connecting the incident hole and the exit hole.
  • the electrons in the central orbit are incident at an incident angle of 45 ° and emitted at an emission angle of 45 °, but the incident angle and emission angle of the central orbit are not limited to this, and for example, the incident angle. It is also possible to design a 90 ° deflection electrostatic convergence type energy analyzer with 50 ° and an emission angle of 40 °.
  • the inner electrode and the outer electrode have an asymmetric shape with respect to the surface perpendicular to the straight line at the midpoint of the straight line connecting the incident hole and the outgoing hole.
  • various types of electrode shapes are shown in FIG. 5, various types of electrostatic deflection convergent energy analysis are not limited to those shown in FIG. 5 by freely combining these shape types. You can design a vessel. The combination of shape types can be freely changed not only on the outer electrode and the inner electrode but also on the incident hole side and the exit hole side.
  • FIG. 6 (a) is a schematic view of an embodiment of the imaging type electron spectroscope of the present invention, in which an input lens is in the front stage and a rear stage is in the rear stage of the 90 ° electrostatic deflection convergence type energy analyzer of FIG. 1 (1).
  • the configuration in which the projection lens is arranged is shown.
  • High energy resolution can be achieved over a wide energy range by decelerating the electrons emitted from the sample with an input lens and incident on the energy analyzer.
  • the 90 ° electrostatic deflection convergent energy analyzer can be expected to be very effective when combined with a wide-angle capture input lens.
  • a spherical aberration correction lens with a capture angle of ⁇ 50 ° or a convergent lens for full-width ( ⁇ 90 °) capture electrons emitted from the sample are captured with an opening angle of ⁇ 50 ° or ⁇ 90 ° and ⁇ 2 °. If the lens is converged at an opening angle of less than a certain degree, the magnification becomes very high. Even when the input lens converges with the same energy as when incident (without decelerating), if electrons with an opening angle of ⁇ 50 ° or ⁇ 90 ° are converged with an opening angle of ⁇ 2 °, the magnification is about 25 times or 45 times. become. When decelerating, the magnification is even higher.
  • the magnification becomes about 100 to 200 times according to the law of invariant luminance.
  • the 90 ° electrostatic deflection convergent energy analyzer of the present invention is used instead of CHA, the angle of incidence on the energy analysis unit can be increased by about 3 times, and the sensitivity can be increased as compared with the case of using CHA. It is possible to increase it by about 9 times.
  • the device of FIG. 6 (b) has the same basic configuration as the device of FIG. 6 (a), but the structure of the energy analyzer is slightly different.
  • the energy analyzer has a structure of a 180 ° rotating body instead of a 360 ° rotating body.
  • FIG. 7 shows a cross-sectional view of each of the energy analyzers of FIGS. 6 (a) and 6 (b) cut in the direction perpendicular to the paper surface.
  • the inner electrode is fixed by a fixed leg.
  • the fixed leg is installed in a place where the influence on the electric field is minimized, and the electrodes EL6 and EL8 are fixed to the electrodes EL2 and EL4 by the fixed leg, respectively.
  • a compensating electrode as shown in FIG. 7B is provided in order to compensate the electric field at the cut surface.
  • an energy analyzer having a rotation angle of 180 ° or less it is also possible to realize further space saving by using an energy analyzer having a rotation angle of 180 ° or less. In this case, it is desirable to set the rotation angle to 90 ° to 180 °.
  • a compensating electrode for compensating the electric field at the cut surface is provided as in FIG. 7 (b).
  • FIG. 8 shows an embodiment of the reflection imaging type electron spectroscope of the present invention.
  • the 90 ° deflection-converged electrons are reflected by the single crystal mirror by the 90 ° electrostatic deflection convergence type energy analyzer of the first embodiment, and 90 ° deflection convergence is performed again. It is characterized by points.
  • the electrons emitted from the sample are converged by the input lens and enter the energy analyzer from the aperture tilted by 45 °.
  • the incident electrons converge by 90 ° deflection, are reflected by the single crystal mirror, return to the position of the incident aperture by 90 ° deflection convergence, and are emitted from there in the direction perpendicular to the incident.
  • the emitted electrons are imaged as a two-dimensional real space image or emission angle distribution by the projection lens and are applied to the detector.
  • the incident aperture also serves as an emission aperture that selects energy, and the energy resolution and sensitivity largely depend on the size of this aperture. Therefore, in order to adjust the energy resolution and sensitivity according to the measurement, the aperture section should be equipped with multiple apertures of different sizes and should be a mechanism to switch between them, or a mechanism such as an iris whose size can be freely changed. desirable.
  • the energy analyzer in the reflection imaging type electron spectroscope shown in FIG. 8 has twice the energy dispersion as that of the energy analyzer shown in FIG. 6, higher energy resolution can be expected.
  • noise may increase due to inelastic scattering in a single crystal mirror arranged in the emission hole of the energy analyzer, and the SN (Signal to Noise ratio) may decrease. Therefore, in order to reduce noise, it is effective to perform energy selection in two stages (two convergence positions). Sorting by the above aperture is the second stage, and the first stage uses a single crystal mirror for energy sorting as shown in FIG.
  • the part corresponding to the aperture is a single crystal, and the other part is covered with an electron absorber.
  • FIG. 9 shows an embodiment of the spin vector distribution imaging apparatus of the present invention using the 90 ° electrostatic deflection convergent energy analyzer of FIG. 1 (1).
  • a two-dimensional spin filter 8 is provided as shown in the figure in order to measure a two-dimensional real space image or an emission angle distribution by spin decomposition.
  • An electrostatic lens 19 is provided in front of the two-dimensional spin filter 8 so that electrons are incident on the two-dimensional spin filter 8 at an appropriate energy and angle, and adjustments thereof are made. After that, the electrons reflected by the two-dimensional spin filter 8 are projected onto the first detector 4a by the first projection lens 3a.
  • the two-dimensional spin filter 8 can be retracted from the optical axis, and in the retracted state, the second projection lens 3b and the second detector 4b are used, and a normal (spin-integrated) two-dimensional real space image is used. Alternatively, a two-dimensional emission angle distribution can be obtained.
  • the spin rotators 7a (SR1) and 7b (SR2) provided on the optical axes of the front and rear stages of the 90 ° deflection energy analyzer 1 are used for three-dimensional spin decomposition in the sample plane and in the plane.
  • SR1 and SR2 are set to rotate the spin 90 ° in a plane perpendicular to the optical axis (hereinafter referred to as "ON") or not rotate (hereinafter referred to as "OFF").
  • ON the optical axis
  • OFF not rotate
  • the first projection lens 3a and the first detector 4a are arranged on the same plane as the deflection plane, but the two-dimensional spin filter 8, the first projection lens 3a, and the first detector 4a are arranged. May be arranged so as to be rotated by 90 ° in the vertical direction of the paper surface about the intersection of the z'axis and the z'axis.
  • both SR1 and SR2 should be ON, and to measure spin deviation in the y direction in the sample plane, only SR2 should be ON. Just do it.
  • a spin vector distribution imaging device including a spin rotator is shown, but the spin rotator is not always necessary. Instead of providing a spin rotator, it is also possible to determine the direction of spin to be detected by rotating the sample and / or rotating a spin analyzer consisting of a two-dimensional spin filter, a projection lens, and a detector. Further, FIG. 9 shows a spin vector distribution imaging device using a 360 ° rotating body type energy analyzer, but a spin vector distribution imaging device using an energy analyzer having a rotation angle of 180 ° or less is configured. You can also.
  • FIG. 10 is a schematic view of a simplified version of the spin vector distribution imaging apparatus using the reflection imaging type electron spectroscopic apparatus shown in FIG. Instead of the single crystal mirror, a two-dimensional spin filter 8 such as Au / Ir (001) is used. This gives the detector a spin-analyzed two-dimensional real-space image or emission angle distribution.
  • the input lens 2 may or may not include a spin rotator 7, as in the spin vector distribution imaging apparatus shown in FIG. If a spin rotator is provided, the spin polarization degree in two directions in the sample plane can be measured.
  • the spin polarization degree in the in-plane y direction (paper surface vertical direction) of the sample 10 can be measured, and when the spin rotator 7 is ON, the spin polarization degree in the x direction in the sample plane can be measured. Further, as described above, instead of providing the spin rotator, the spin polarization degree in two in-plane directions of the sample 10 can be measured by rotating the sample 10.
  • FIG. 11 is a schematic diagram of an embodiment of the switchable electrostatic deflection convergent energy analyzer of the present invention.
  • the switchable electrostatic deflection converging energy analyzer shown in FIG. 11 has seven outer electrodes EL1, EL2, ..., EL7 and six inner electrodes EL8, EL9, ..., EL13, and the outer electrode has an outer electrode.
  • the inner surface shape is axisymmetric, and the outer surface shape of the inner electrode is axisymmetric, and they are arranged coaxially.
  • the electrodes on the outlet side (EL6, EL7, EL13) have a tapered shape whose diameter narrows toward the outlet.
  • the greatest feature of the switchable electrostatic deflection convergence type energy analyzer in FIG. 11 is that the inner electrodes are separated into two regions, and as an effect, the space created between the left and right inner electrodes is electron-generated. Will be able to pass.
  • the electron orbits and lines of equipotential lines shown in FIG. 11 are the results in the case of 90 ° deflection.
  • the orbit that is incident at an angle of 45 ° from the central axis z is the central orbit, and the orbit in the incident angle range of ⁇ 8 ° is shown.
  • FIGS. 12 (a) and 12 (b) are the results of switching the deflection by changing the voltage condition in the switchable electrostatic deflection convergent energy analyzer of FIG.
  • FIGS. 12 (a) and 12 (b) unlike the case of FIG. 11, electrons pass through an electric field formed between the left and right inner electrodes.
  • the energy dispersive in FIG. 12 (a) is about the same as in the case of FIG. 11, but in the case of FIG. 12 (b), it is significantly reduced as compared with the case of FIG. 12 (a) due to the canceling action.
  • the setting of FIG. 12A can be suitably used for energy analysis
  • the setting of FIG. 12B can be suitably used for PEEM (photoemission electron microscope) measurement in which chromatic aberration is suppressed.
  • FIG. 13 is a schematic diagram of a spin vector distribution imaging device using the switchable electrostatic deflection convergent energy analyzer shown in FIGS. 11 and 12. Three measurement modes are shown. 13 (a) is a spin decomposition mode, FIG. 13 (b) is a spin integration mode, and FIG. 13 (c) is a PEEM (photoemission electron microscope) mode.
  • the deflection switching energy analyzer is set to 90 ° deflection conditions.
  • the electrostatic lens 19 the second spin rotator 7b (SR2), the two-dimensional spin filter 8, the first projection lens 3a (provided in the direction perpendicular to the paper surface), and the first detector 4a It is provided and can measure the three-dimensional spin polarization degree by the same principle as the three-dimensional spin polarization degree analyzer of FIG.
  • the spin polarization degree in the plane perpendicular direction of the sample 10 can be measured.
  • a normal two-dimensional real space image or a two-dimensional emission angle distribution without spin decomposition can be measured by the second projection lens 3b and the second detector 4b provided for the electrons in the S-shaped orbit.
  • the measurement of the two-dimensional real space image is performed using the sharp photoelectron spectral peak of the inner shell excitation.
  • most of the photoelectrons emitted by irradiation with vacuum ultraviolet rays or X-rays are secondary electrons. Secondary electrons are electrons that have lost energy in various processes before emission, and have a wide range of energies.
  • the PEEM mode of FIG. 13 (c) is a mode for measuring such a PEEM image.
  • the setting of FIG. 12 (b) in which the energy dispersive is canceled is used. This makes it possible to obtain a clear PEEM image with suppressed chromatic aberration.
  • the device of FIG. 13 is characterized by having this PEEM measurement function (compared to the device of FIG. 9) and being able to switch the measurement mode only by the voltage applied to each element.
  • the electrostatic energy analyzer of this embodiment is composed of a combination of two or more electron optical systems.
  • each electron optical system to be combined may be any of an electrostatic focusing mirror, an electrostatic deflector, and an electrostatic lens.
  • the two electron optical systems used in the combination are schematically represented by A and B.
  • A has a deflection angle ⁇ 1
  • B has a deflection angle ⁇ 2 .
  • the central orbit is not the central axis of the lens, but an orbit that is incident at a constant angle from the central axis and exits at a constant angle, and the deflection angle at this time is ⁇ .
  • Let it be 1 or ⁇ 2. It is assumed that electrons in the central orbit are incident or emitted perpendicularly to both end faces of A and B. Both end faces of A and B are placed perpendicular to the xy plane, and the right end face of A and the left end face of B are placed facing each other. Assuming that the vector perpendicular to the left end face of A is the vector a and the vector perpendicular to the right end face of B is the vector b, they are given by the following equation (7) using ⁇ 1 and ⁇ 2.
  • Figure 16 (b) shows several beta 1 for 90 ° deflection of the condition in the case of ⁇ 2 ⁇ ⁇ 1.
  • FIGS. 17A and 17B show orbits in an incident angle range of ⁇ 8 ° as measured from the central orbit. The convergence of these orbits is lower than that of the 90 ° electrostatic deflection convergence type energy analyzer shown in FIG. 1 (1), but high convergence can be obtained by limiting the incident angle to about ⁇ 5 °.
  • FIG. 18 (a) shows a 90 ° electrostatic deflection convergent energy analyzer with this combination.
  • FIG. 18 (b) shows a 90 ° electrostatic deflection convergent energy analyzer with this combination.
  • 19 (a), (b), and (c) show a 120 ° electrostatic deflection convergent energy analyzer, a 135 ° electrostatic deflection convergent energy analyzer, and a 150 ° electrostatic deflection convergent energy analyzer, respectively.
  • the schematic diagram of the Example is shown.
  • the central orbits are orbits incident at angles of 60 °, 67.5 °, and 75 ° from the central axis, respectively.
  • 19 (a), (b), and (c) show the orbits in the incident angle range of ⁇ 8 ° measured from the central orbit. These orbitals have improved convergence as compared with the orbitals of FIGS. 17 (a) and 17 (b).
  • an energy analyzer having a deflection angle of 150 ° or more and 180 ° or less with the same electrode configuration as in FIG.
  • the deflection angle is about 160 ° or more
  • the convergence performance is significantly deteriorated.
  • 90 ° deflection can be achieved by using an analyzer having a large deflection angle as shown in FIGS. 19 (a) and 19 (b).
  • an energy analyzer having a rotation angle of 180 ° or less is used instead of the 360 ° rotating body type (see FIG. 7) as shown in FIG. 17 due to geometric restrictions.
  • An energy analyzer with a small deflection angle and an energy analyzer with a large deflection angle have advantages and disadvantages, respectively.
  • the energy resolution is improved, but when combined with an input lens or another energy analyzer, the energy analyzer is rotated by 180 °. Complex design such as body shape is required.
  • a high voltage of about 13 to 24 kV is applied to the inner electrode EL7 with respect to 1000 eV.
  • the voltage applied to at least one of the inner electrodes is , 1000 eV, it is desirable to set it in the range of about 10 to 50 kV.
  • the voltage applied to at least one of the inner electrodes may be about 2 to 5 kV or more and about 10 kV or less with respect to 1000 eV.
  • electrostatic deflection convergence type energy analyzer having a specific deflection angle
  • the electrostatic deflection convergence type energy analyzer of the present invention has an arbitrary deflection angle of 45 ° to 180 ° by the same design. It can also be provided as an energy analyzer with.
  • the ratio of the outer diameter of the inner electrode to the length L is about 0.27, and the ratio of the inner diameter of the outer electrode to the length L is about 0.76.
  • the blurring of the image due to the aperture aberration is the case of the configuration of the electrostatic deflection convergence type energy analyzer shown in FIG. 1 as shown in FIG. 32 (b). It increases about 13 times compared to.
  • the convergence performance is significantly deteriorated.
  • this deterioration in convergence performance can be significantly reduced by forming the inner electrode into an appropriate shape.
  • FIG. 33 (a) an example thereof is shown in FIG. 33 (a) in order to explain what kind of shape is appropriate as the inner electrode in the electrostatic deflection convergence type energy analyzer of the present invention.
  • the EL 7 is set to a voltage 10 times the converted acceleration voltage.
  • the EL6 and EL8 have a step shape characterized by two outer diameters D1 and D2 (D1 ⁇ D2), unlike the electrostatic deflection convergent energy analyzer shown in FIGS. 1 and 32 (a).
  • the ratio of D1 to the length L is 0.11
  • the ratio of D2 to the length L is 0.24.
  • the ratio of the inner diameter of the outer electrode to the length L is about 0.76.
  • the convergence performance of the electrostatic deflection convergence type energy analyzer shown in FIG. 32 (a) is inferior to that of the electrostatic deflection convergence type energy analyzer shown in FIG. It can be seen that there is a significant improvement compared to the case.
  • EL 6 and EL 8 have a tapered portion whose diameter decreases toward the inlet or the outlet, as in the case of the electrostatic deflection converging energy analyzer shown in FIGS. 1 and 32 (a).
  • a design without this taper is also effective, and the simplest shape is a coaxial two-stage cylindrical shape characterized by only two outer diameters D1 and D2 and two lengths in the z-axis direction. There may be.
  • FIG. 34 is an example of the electrostatic deflection convergent energy analyzer of the present invention when a lower voltage is applied to the inner electrode EL7.
  • 1.5 kV) is an example in the case of applying.
  • the inner electrodes EL6 and EL8 have a step shape having a tapered portion on the inlet or outlet side.
  • FIG. 34 is an example of the electrostatic deflection convergent energy analyzer of the present invention when a lower voltage is applied to the inner electrode EL7.
  • 1.5 kV is an example in the case of applying.
  • the inner electrodes EL6 and EL8 have a step shape having a tapered
  • a design without a tapered portion is also effective, and even if it is a coaxial two-stage cylindrical shape characterized by only two outer diameters D1, D2 and two lengths in the z-axis direction. good.
  • the outer surface of EL7 has a cylindrical shape having an outer diameter larger than D1 and D2.
  • the inner electrode has a coaxial three-stage cylindrical shape as a whole except for the tapered portion.
  • FIGS. 34 (a), (b), and (c) the three outer diameters, the lengths of the respective parts, and the applied voltage are adjusted so as to minimize the aperture aberration.
  • the ratio of the inner diameter of the outer electrode to the length L is about 0.76 in the case of the electrostatic deflection convergent energy analyzer shown in FIG. 34 (a), as shown in FIGS. 34 (b) and 34 (c). In the case of the electrostatic deflection convergence type energy analyzer shown, it is 0.87.
  • the aperture aberration in the case of the electrostatic deflection convergence type energy analyzer shown in FIGS. 34 (a), (b), and (c) is the case of the electrostatic deflection convergence type energy analyzer shown in FIGS. 1 and 33 (a). It is shown in FIG. 35, together with the aperture aberration of.
  • the aperture aberration increases as the voltage applied to the EL 7 is lowered. Therefore, for the purpose of reducing the aperture aberration, it is desirable to set the voltage applied to the EL 7 as high as possible.
  • Another point to note is that when the voltage applied to the EL7 is lowered from 2 times to 1.5 times the converted acceleration voltage, the aperture aberration increases sharply.
  • the voltage applied to the EL 7 is set to about twice or more the converted acceleration voltage.
  • the voltage applied to the EL 7 is set to be larger than that in the case of the electrostatic deflection convergence type energy analyzer shown in FIG. 1, it is possible to further reduce the aperture aberration.
  • the voltage applied to the EL7 cannot be set as high as possible, and there are restrictions on the design and manufacture of the inner diameter electrode.
  • FIG. 36 is an example of the electrostatic deflection convergent energy analyzer of the present invention when the voltage applied to the EL 7 is set to 50 times the converted acceleration voltage.
  • the outer diameter of EL7 is smaller than the outer diameters of EL6 and EL8.
  • the voltage applied to the EL7 is limited to about 50 times, and if it is attempted to be larger than this, there arises a problem that the outer diameter of the EL7 becomes too small and wiring and insulation become difficult.
  • the voltage applied to the EL 7 is the converted acceleration voltage from FIG. 35 and the above consideration. It is desirable to set it to about 10 to 50 times. Further, when both high convergence performance and ease of design / manufacturing are required, it is desirable to set the voltage applied to the EL 7 to about 20 to 30 times the converted acceleration voltage.
  • Table 8 shows the case of the electrostatic deflection convergent energy analyzer shown in FIGS. 32 (a), 33 (a), 34 (a), 34 (b), 34 (c), and 36. It is a table summarizing the applied voltage. From Table 8, it can be seen that the method of applying the voltage to EL1 to EL8 changes with respect to the case of the electrostatic deflection convergence type energy analyzer shown in FIG. 34 (b). When the voltage applied to EL7 is about twice or more of the converted acceleration voltage, 0 or positive voltage is applied to the other electrodes, and when the voltage applied to EL7 is about twice or less of the converted acceleration voltage. , 0 or negative voltage is applied to the other electrodes.
  • the outer electrodes EL1 to EL5 are all set to the same potential (0V), they are collectively designed as one electrode. You can also do it. Further, in the case of the electrostatic deflection convergence type energy analyzer shown in FIG. 34 (a), since the (adjacent) EL1, EL2 and EL4 and EL5 have the same potential (0V), the outer electrodes are as three electrodes in total. It can also be designed. As described above, the number of outer electrodes is not limited to 5 of EL1 to EL5 shown in the examples, and may be 3 or 1, and may be 2, 4, or 6 or more. Further, the number of inner electrodes is not limited to three of EL6 to EL8 shown in the examples, and may be four or more. Increasing the number of electrodes allows for finer adjustment of the electric field.
  • the shape and arrangement of the electrodes may be changed in various ways as long as they are set so as to be able to form an electric field similar to the electric field shown in the examples.
  • the electrons incident on the cylindrical electric field change their direction by deceleration, become parallel to the z-axis at the intermediate surface between the incident point and the exit point, and then change the direction while being accelerated. And reach the emission position.
  • the electrons in the central orbit draw a circular orbit by the balance between the central force and the centrifugal force due to the radial symmetric electric field, so that they are neither accelerated nor decelerated.
  • the electrostatic deflection convergent energy analyzer of the present invention is fundamentally different from the electric field used in CMA and CHA.
  • the present invention is useful for an energy analyzer, a photoelectron spectroscope, and a spin polarization analyzer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

取り込み角が広く、かつ、高い2次元収束性能を有し、2次元の実空間像や放出角度分布を結像でき、入射方向に対し90°偏向での2次元収束と結像が可能な静電偏向収束型エネルギー分析器を提供する。回転軸を共通として内側と外側に形成される2つの回転体の形状に沿って、1つ又は複数の外側電極と複数の内側電極が配置される。外側電極の内面形状が両端に向かって小径になるテーパー形状を有し、内側電極の外面形状が両端に向かって小径になるテーパー形状を有する。外側電極の両端の電極の回転軸上の其々に、電子の入射穴と出射穴が形成される。外側電極と内側電極には、電子を加速して減速する電圧が入射電子のエネルギーに比例して印加される。内側電極の両端の電極を除いた1つ又は複数の電極には、入射穴が形成された外側電極の電位を基準として電子のエネルギーを加速電圧に換算した換算加速電圧の2倍以上の電圧が印加される。

Description

静電偏向収束型エネルギー分析器、結像型電子分光装置、反射結像型電子分光装置、およびスピンベクトル分布イメージング装置
 本発明は、UPS(Ultraviolet Photoelectron Spectroscopy),XPS(X-ray Photoelectron Spectroscopy),ARPES (Angle Resolved Photoelectron Spectroscopy)などの光電子分光装置、オージェ電子分光装置、光電子回折装置、光電子顕微鏡、スピン偏極度分析装置に関するものである。
 電子分光装置において、感度はエネルギー分解能と共に最も重要な性能の一つである。光電子またはオージェ電子の測定において、シグナルが微弱でほとんどノイズに埋もれている場合、十分なSN比(Signal to Noise ratio)を得るには溜め込み時間を大幅に増やして測定する必要がある。しかしながら、これでは測定が効率的に行えないだけでなく、放射光施設の利用時間や励起光源の持続時間といった時間的制約により連続測定時間を制限せざるを得ないことも少なくない。また、有機材料などの放射線損傷を受けやすい試料や経時変化しやすい試料においては、長時間測定が阻まれ、多くの場合、微弱なシグナルが十分捉えられていないのが実状である。
 また、新しい半導体材料や超伝導材料の研究においては、高度なドーピング技術が用いられ、極微量のドーパントであっても材料に大きな変化をもたらし得ることが知られている。このようなドーパントからの微弱なシグナルを捉えることは、新しい材料の開発において極めて重要である。
 電子分光装置では、試料から放出された電子のエネルギー分布の測定に加えて、放出角度分布の測定が可能である。エネルギー分布の測定では元素の組成の情報が得られ、放出角度分布の測定では深さ方向の組成や電子状態の情報が得られる。
 また、光電子放出過程では試料面内方向の運動量が保存されるため、光電子の運動エネルギーと放出角度を測定することによって、物質中における電子の運動量の情報が得られる。紫外線やX線を試料に照射し、エネルギーを価電子帯に合わせて光電子の運動エネルギーと放出角度分布を測定することにより、物質のエネルギーバンド構造を評価し、物質の性質をほぼ決定することができる。
 さらに、内殻からの光電子放出では、運動エネルギーが数百eV以上になると、光電子放出原子とその周りにある散乱原子を結ぶ方向に、前方収束ピークと呼ばれる強いピークが現れる。このピークを広い角度範囲にわたって測定することによって、特定原子の周りの原子配列の様子を直接的に捉えることが可能になる。また、前方収束ピークの周りに形成される回折リングの直径から原子間距離を割り出すことも可能である。上記のように、電子分光装置による放出角度分布の測定は、他の分析手法では困難な原子レベルの詳細な情報を得ることを可能にし、新しい材料の開発や未知の物性発現機構の研究を行う上で非常に強力な手法となる。
 しかし、広く普及した静電半球型エネルギー分析器(以下、CHAとする)は、高いエネルギー分解能を有する反面、インプットレンズの取り込み角が小さく、放出角度分布を広い立体角にわたって取得する二次元光電子分光や原子構造解析に用いることが困難であった。また、オージェ電子分光を中心に広く用いられている同軸円筒鏡型エネルギー分析器(以下、CMAとする)は、取り込み立体角が大きい分析器として知られているが、上記分析を行うには、まだまだ取り込み角が足りなかった。
 そこで、取り込み角が±60°に及ぶ二次元球面鏡分析器の開発が行われ(非特許文献1)、様々な試料を対象にバンド分散構造の測定(非特許文献2、3)や原子配列構造の測定(非特許文献4、5)が行われた。この分析器は、改良によりエネルギー分解能が段階的に改善されたが、化学シフトを分解した構造解析など、より詳しい分析を行うのに十分な分解能は達成できなかった。そこで、取り込み角が±45°~±50°の球面収差補正レンズが発明され(特許文献1、2、非特許文献6、7)CHAのインプットレンズと組合せる試みが行われた(非特許文献8)。また、最近、全角(±90°)取り込みの球面収差補正レンズが本件発明者らにより提案された(特許文献3)。数十eV以下の紫外光領域においては、すでに、PEEM(光電子顕微鏡)の技術を用いて、全角取り込みの光電子分析器が開発されている(非特許文献9、10)。
 上述のCHAは、既に広く普及しており、これまでに様々な設計の装置が開発されてきたが、静電半球部のエネルギー分散方向の取り込み角が非常に小さいという特徴があり、その結果として、高いエネルギー分解能を得るには、静電半球部への入射角を±2°程度以下に、また、2次元の実空間像、放出角度分布の測定において高い空間分解能、高い角度分解能を得るには、静電半球部への入射角を±2°または±1°程度以下に抑える必要がある。そのため、CHAを用いた高性能の分析装置の開発では、静電半球部の取り込み角が非常に小さいことを前提にインプットレンズ系の設計を行う必要がある。球面収差が入射角とともに増加する通常の静電レンズを用いる従来のインプットレンズでは、収束ビームを形成できる取り込み角は±7°程度が限界であり、この場合、比較的低い倍率で、収束角を±2°程度にすることができる。
 ここで、倍率(M)は、インプットレンズの物面(試料面)での観察物のサイズをa、インプットレンズの像面での観察物の像のサイズをbとすると、M=b/aで定義され、この値は、レンズの入口と出口で電子のエネルギーが変わらないアインツェル型レンズの場合、概ね、入射角と収束角の比となる。インプットレンズの倍率は、CHAの感度を決定する重要な条件の1つであり、この倍率を高く設定すると、静電半球部の入口に設けられるスリットのサイズ次第では感度が著しく低下する結果になる。したがって、上述した従来のインプットレンズでは、通常、倍率は低く設定される。たとえば、アインツェル型のレンズで、±7°の開き角の電子を±2°の開き角にして収束させる場合、倍率は3.5程度の低い倍率で済む。
 一方、広い角度範囲の放出角度分布を効率的に測定する目的で、上述したように、取り込み角を±50°程度まで広げた球面収差補正レンズの開発が行われ(特許文献1、2、非特許文献6、7)、また、発明者らによって、全角(±90°)取り込み収束レンズが提案されている。全角取り込み収束レンズによって、電子のエネルギーと運動量を完全に決定する分析器の実現が可能になる。しかし、このような広角取り込み収束レンズを用いて広角で電子を取り込んで±2°程度以下の開き角で収束させるインプットレンズ系を設計する場合、従来のインプットレンズと比較して倍率が非常に高くなるのと、レンズ系の長さがかなり長くなることが問題点として挙げられる。例えば、電子を±50°または±90°の取り込み角で取り込んで、±2°の開き角で収束させる場合、減速しない場合でも試料上の照射スポットは、広角取り込み収束レンズの出口面において25倍または45倍程度に拡大される。さらに、高いエネルギー分解能を得るために、エネルギーEの電子をエネルギーE´に減速する場合、輝度不変の法則から、倍率Mは下記数式で表すことができる。ここで、Mは、入射角と出射角で決まる倍率である。
Figure JPOXMLDOC01-appb-M000001
 例えば、上記のレンズにおいて1000eVの電子を50eVまで減速する場合、倍率は100~200倍程度になる。このように倍率が高くなると、静電半球部の入口に挿入されるスリットによって阻止される電子の数が多くなり、十分な感度得るには、スリット幅を広げなければならなくなる。しかし、スリット幅を広げると、エネルギー分解能が低下する結果となる。なお、従来の多くのCHAにおいて、インプットレンズの倍率は5倍程度以下である。
 かかる問題を解決する最良の方法は、エネルギー分析部の取り込み角を広げることである。そこで、CHAの静電半球部の代わりに、取り込み角が大きいCMAを用いることを考えるかもしれない。しかし、CMAは、電子が通過する内円筒の入口と出口にそれぞれグリッドを用いており、電子はそれら入口と出口を通過する際に散乱の作用を受けて軌道が乱される。そのため、CMAで実空間像または角度分布を高い分解能で結像することは困難である。
 以上のように、実空間像または角度分布を結像する高性能の電子分光装置を実現するには、グリッドを用いることなく、取り込み角をCHAの静電半球部よりも広げたエネルギー分析器が必要になる。
 次に、電子のエネルギーと運動量の測定に加えて、物質、材料の性質を左右しうる電子スピンの測定について説明する。スピン偏極度分析装置としては、スピン軌道相互作用を利用したMott検出器やSPLEED検出器、スピン交換相互作用を利用したVLEED検出器(非特許文献11)などがある。また、近年、Ir(001)単結晶基板を用いた2次元スピン分析器が開発されている(非特許文献10)。
 また、従来から知られた静電型90°偏向器と磁場レンズ型スピン回転器(以下、スピンローテーターという)を組合せて、試料面内、面直の3つの方向のスピン偏極度の測定が可能である(特許文献5)。しかし、従来の静電型90°偏向器は、ビームを2次元収束させる結像性能が無く、実空間像と放出角度分布を詳しく調べる2次元スピン分析装置には応用できていないという問題がある。
 試料から放出された電子をスピン検出器に入射する前に、軌道を電場で90°曲げることにより試料面直方向のスピン偏極度の測定が可能になるが、この方法は、すでに、1/4円筒形状の静電型90°偏向器(以下、90°ディフレクターという。)(非特許文献11)とVLEED検出器の組み合わせにより実現されている。また、90°ディフレクターでは、電子は円筒電場による中心力と遠心力が釣り合う条件下で、円弧を描いて90°向きを変えるが、円筒電場の代わりに球対称電場を用いて90°偏向することもでき、この方法の90°偏向器(以下、90°球面ディフレクターという。)を用いたスピン偏極度分析装置も可能となっている(非特許文献12)。
 しかし、90°ディフレクターで用いられる円筒対称電場と90°球面ディフレクターで用いられる球対称電場では、偏向面内での収束は、それぞれ、127°偏向と180°偏向のところにあり、90°偏向では収束しない。そこで、1点から出た電子ビームを偏向面内方向で90°偏向収束できる改良型90°ディフレクター(非特許文献13)や、90°球面ディフレクターにレンズを組合せることにより、偏向面内方向で90°偏向収束を可能にする90°偏向分析器も提案されている(非特許文献14)。しかし、一定の開き角で入射した電子のうち、偏向面内方向の電子は収束させることができるが、同時に他の方向の電子を収束させることができないという問題があり、2次元の実空間像と放出角度分布を結像する2次元スピン分析に応用することが困難である。
 2次元の実空間像と放出角度分布の結像性能を有することは、スピン偏極度の詳しい分析を行う上で重要である。非特許文献10に開示された2次元スピン分析器によって、試料面内方向のスピン偏極度の2次元分析は可能になっているが、試料面直方向のスピン偏極度の2次元分析はまだ実現されていない。試料面直方向のスピン偏極度の詳しい分析は、今後、高密度磁気記憶デバイス等のスピントロニクス研究において不可欠なものになると推察する。試料面直方向のスピン偏極度の2次元分析を行うには、上述のとおり、試料から放出された電子を2次元スピン検出器に入射する前に電場で90°偏向するのが有効であるが、従来の静電型90°偏向器を用いると、収束が偏向面内方向のみで2次元の結像性能が無く、2次元の位置および角度情報が失われるという問題がある。
 一方、静電型90°偏向器の代わりに、ウィーンフィルター型のスピン回転装置を用いて(例えば、特許文献4、非特許文献15を参照)、スピン偏極度の3次元測定を行うことも可能である。特に、特許文献4に示されたスピン回転装置では、多極子ウィーンフィルターによって、スピンの3次元操作が可能になる。
 ウィーンフィルターは、直交する電場と磁場に電子を入射させたとき、特定エネルギーの電子のみ、電場から受ける力と磁場から受ける力(ローレンツ力)が釣り合って直進することを利用したエネルギー分析器である。この分析器では、電場形成電極に印加する電圧と電磁石に印加する電圧(または電流)をそれぞれ調整することにより、一定の開き角で入射した電子を収束させることができる。また、ウィーンフィルターには電子のスピンを回転する作用もあり、印加電圧(または電流)を適切に調整することにより、光軸方向のスピンを光軸と垂直の方向に回転することができる。
 しかし、1点から出た電子ビームを収束させる条件とスピンを90°回転する条件は一致せず、後者の条件にウィーンフィルターを設定すると、出口で電子ビームを収束させることができなくなる。そのため、ウィーンフィルター型のスピン回転装置は、光電子顕微鏡などで、平行電子ビームに対してスピン偏極度の3次元分解の実空間像観察に用いられているものの、2次元の実空間像と放出角度分布のいずれも結像できる2次元分析装置に応用することが困難である。このため、3次元スピン分解された2次元の実空間像と放出角度分布の両方を得るには、電子の方向を90°偏向させるのと同時に、偏向面内方向だけでなく、それと垂直の方向にも、収束、結像作用を持たせる必要がある。
特許第4802340号公報 特許第4900389号公報 特願2019-227788 国際公開パンフレットWO2012/173007 国際公開パンフレットWO2012/066024
H. Daimon,"New display-type analyzer forthe energy and the angular distribution of charged particles", Rev. Sci. Instrum. 59, 545 (1988). F. Matsui, et al., "Three-dimensional band mapping of graphite",Appl. Phys. Lett. 81, 2556 (2002). F. Matsui, et al., "Atomic-orbital analysis of the Cu Fermi surfaceby two-dimensional photoelectron spectroscopy", Phys. Rev. B 72, 195417 (2005). F. Matsui, T. Matsushita and H. Daimon, "Stereo atomscopeand diffraction spectroscopy-Atomic site specific property analysis", J.Electron Spectrosc. Relat.Phenom. 178-179, 221 (2010). F. Matsui, et al., "Selective detection ofangular-momentum-polarized Auger electrons by atomic stereography", Phys. Rev.Lett. 114, 015501 (2015). H. Matsuda, H. Daimon, M. Kato and M. Kudo, "Approach forsimultaneous measurement of two-dimensional angular distribution of chargedparticles: Spherical aberration correction using an ellipsoidal mesh", Phys.Rev. E 71, 066503 (2005). H. Matsuda and H. Daimon, "Approach for simultaneous measurement oftwo-dimensional angular distribution of charged particles. II. Deceleration andfocusing of wide-angle beams using a curved mesh lens", Phys. Rev. E 74, 036501(2006). H. Matsuda, et al., "Development of display-type ellipsoidal meshanalyzer: Computational evaluation and experimental validation", J. Electron Spectrosc. Relat. Phenom. 195(2014) 382. M. Kotsugi et al., "Microspectroscopictwo-dimensional Fermi surface mapping using a photoelectron emissionmicroscope", Rev. Sci. Instrum., 74, 2754 (2003). C. Tusche et al.,"Spin resolved bandstructure imaging with a high resolution momentummicroscope", Ultramicroscopy 159, 520 (2015). T. Okuda, et al., J. Electron Spectrosc. Relat. Phenom. 201, 23 (2015). E. Kisker, et al., Rev. Sci. Instrum. 50, 1598 (1979). L.Vattuone, M.Rocca,"Electrostatic electron analyzer with 90° deflection angle", Rev.Sci. Instrum.73 3861 (2002). A. W. Ross, et al., J. Electron Spectrosc.Relat. Phenom. 69, 189 (1994). T. Kohashi, et al., "A spin rotator usedfor detecting all three magnetization vector components in spin-polarizedelectron microscopy", J. Mag. Soc. Jpn. 18, 7 (1994).
 かかる状況に鑑みて、本発明は、第1に、CHAの静電半球部よりも取り込み角を広げても高いエネルギー分解能で分析ができる静電偏向収束型エネルギー分析器を提供することを目的とする。
 また、本発明は、第2に、高いエネルギー分解能で2次元の実空間像と放出角度分布の結像を可能にする結像型電子分光装置を提供することを目的とする。
 さらに、本発明は、第3に、試料面内方向のスピン偏極度の2次元分析に加え、試料から放出された電子を2次元スピン検出器に入射する前に電場で90°偏向して試料面直方向のスピン偏極度を測定でき、スピン偏極度の3次元測定が行えるスピン偏極度分析装置を提供することを目的とする。
 これらの課題が解決されれば、電子の3つの物理量(エネルギー、運動量、スピン)を詳しく解析する画期的な分析ツールを提供することができる。
 上記課題を解決すべく、本発明の静電偏向収束型エネルギー分析器は、下記1)~7)の特徴を備えるものである。
1)回転軸を共通として内側と外側に形成される2つの回転体の形状に沿って1つ又は複数の外側電極と複数の内側電極が配置される。ここで、回転軸を共通として内側と外側に形成される2つの回転体は、外側の回転体が内側の回転体を包含する形態となる。
2)外側電極の両端の電極の上記回転軸上に電子の入射穴と出射穴が形成される。
3)外側電極と内側電極に電子を加速して減速する電圧を印加する電圧印加手段を有する。
 ここで、外側電極と内側電極には、電子を加速して減速する電圧が入射する電子のエネルギーに比例して印加することでもよい。
4)外側電極の内面形状が、入射穴に向かって小径になる形状であり、かつ、出射穴に向かって小径になる形状である。
 ここで、外側電極の内面形状における入射穴に向かって小径になる形状は、望ましくは、テーパー形状、トロイダル面形状又はリング形状であり、かつ、外側電極の内面形状における出射穴に向かって小径になる形状は、テーパー形状、トロイダル面形状又はリング形状である。
5)内側電極の外面形状が、入射穴に向かって小径になる形状、入射穴に向かって延びるロッド形状、又は、入射穴側の端部で径が広がる形状であり、かつ、出射穴に向かって小径になる形状、出射穴に向かって延びるロッド形状、又は、出射穴側の端部で径が広がる形状である。
 ここで、内側電極の外面形状における入射穴に向かって小径になる形状は、望ましくは、テーパー形状もしくはトロイダル面形状、又は、入射穴に向かって段階的に小径になるステップ形状であり、かつ、出射穴に向かって小径になる形状は、テーパー形状もしくはトロイダル面形状、又は、出射穴に向かって段階的に小径になるステップ形状である。
 なお、外側電極の内面形状と内側電極の外面形状は、基本的には形状が入射穴側と出射穴側で同じになるが、必ずしも同じである必要はなく、異なる形状を呈してもよい。例えば、入射穴側がテーパー形状、出射穴側がリング形状など、様々な組み合わせが可能である。また、段階的に小径になるステップ形状とは、例えば、中央に径の小さい電極が配置された場合も、入射穴の近くで、1ステップだけでも小径になっているものも含まれる。
6)上記3)電圧印加手段は、内側電極の両端の電極を除いた1つ又は複数の内側電極の印加電圧が、入射穴が形成された外側電極の電位を基準として、電子のエネルギーを加速電圧に換算した換算加速電圧の2倍以上、好ましくは、2~5倍以上の電圧である。
 換算加速電圧とは、電子のエネルギーを加速電圧に換算した電圧と定義する。例えば、1eVの換算加速電圧は1Vである。換算加速電圧の2~5倍以上の電圧とは、電子のエネルギーをEeVとすると2E~5EV以上の電圧である。ここで、内側電極の両端の電極を除いた1つ又は複数の内側電極に印加される電圧は、入射穴が形成された外側電極の電位を基準として、電子のエネルギーを加速電圧に換算した換算加速電圧の10倍以上の電圧が設定されることが好ましい。例えば、電子のエネルギーを1000eVに対して10kV以上の高電圧が設定される。これは、エネルギー分析部への入射角をより広げることができ、広角取り込みのインプットレンズの倍率をより低減し、広角取り込みにおける感度をより増加させ、エネルギー分解能を更に向上できるからである。
7)中心軌道が上記回転軸と所定入射角度になるように、入射穴から入射した電子を、中心軌道が上記回転軸と所定出射角度で出射穴の位置に収束させるように調整された印加電圧を各電極に印加する。
 上記1)~7)の特徴を備える静電偏向収束型エネルギー分析器によれば、各電極の形状、配置、印加電圧を最適化することにより、グリッドを用いることなく、CHAの静電半球部よりも大きな取り込み角で電子を取り込み、偏向して収束させるエネルギー分析が可能になる。すなわち、本発明の静電偏向収束型エネルギー分析器を、CHAの静電半球部の代わりに用いることで、エネルギー分析部への入射角を3倍程度広げることができ、これにより、広角取り込みのインプットレンズの倍率を1/3程度まで下げ、広角取り込みにおける感度を9倍程度まで増加させ、エネルギー分解能を向上することが可能になる。
 上記の本発明の静電偏向収束型エネルギー分析器では、外側電極の内面形状と内側電極の外面形状とが、入射穴と出射穴に向かって小径になるテーパー形状を有する場合において、テーパー形状は、入射穴側と出射穴側とで、回転軸から測ったテーパー角が同一としてもよい。また、外側電極の内面形状と内側電極の外面形状は、それぞれ、入射穴と出射穴を結ぶ直線の中点で該直線と垂直に交差する面を対称面として対称であることでもよい。例えば、高さが異なり対称面が共通する2つの等脚台形の下底を、共通の回転軸として回転させることにより得られる2つの回転体の形状に沿って、かつ、上記対称面に対称に、複数の外側電極と複数の内側電極が配置されることでもよい。
 上記の本発明の静電偏向収束型エネルギー分析器において、内側電極の両端の電極を除いた1つ又は複数の内側電極に印加される電圧は、電子のエネルギーを加速電圧に換算した換算加速電圧の10~50倍である。
 また、外側電極が3つ以上の電極で構成される場合、両端の電極を除いた1つ又は複数の外側電極に印加される電圧は、換算加速電圧の10倍以下であることが好ましい。
 本発明の静電偏向収束型エネルギー分析器において、偏向角が90°であることが好ましい態様である。かかる態様の静電偏向収束型エネルギー分析器は、以下では、「90°静電偏向収束型エネルギー分析器」という場合がある。かかる態様の90°静電偏向収束型エネルギー分析器によれば、静電場による90°偏向と2次元の収束と結像を実現できる。後述するように、特にスピン分析において、スピンの向きを替えることがなく、進行方向を90°曲げて2次元の収束と結像ができ、スピン分解した2次元の実空間像と放出角度分布を取得できるといった効果をもたらすことができる。なお、入射角度は特に限定されないが、入射角度45°、出射角度45°で、偏向角が90°になるものでもよい。
 本発明の静電偏向収束型エネルギー分析器は、次の何れかの偏向角を有するものでもよい。なお、各電極の形状、配置、印加電圧を最適化することにより、45°~180°の範囲の任意の偏向角を有するエネルギー分析器をデザインすることができる。以下に幾つかの例示を行う。
・所定入射角度が22.5°で偏向角が45°である。
・所定入射角度が30°で偏向角が60°である。
・所定入射角度が60°で偏向角が120°である。
・所定入射角度が67.5°で偏向角が135°である。
・所定入射角度が75°で偏向角が150°である。
 なお、入射角度は特に限定されるものではなく、偏向角は、45°、60°、120°、135°、150°など、45~180°の角度となるように、入射角度と出射角度を調整すればよい。
 本発明の静電偏向収束型エネルギー分析器において、内側電極は、中心軌道の電子が回転軸を横切って通過できるように、2つの部分に分かれており、電極に印加される電圧条件を変えることにより、中心軌道が回転軸を横切るか否かを制御し、出射穴より出射する電子の偏向の有無を切替可能な態様としてもよい。
 内側電極が2つの部分(入射側と出射側)に分離されていることがこの分析器の特徴であり、その効果として、左右の内側電極間にできた空間を電子が回転軸を横切って通過できるようになる。電極に印加される電圧条件を変えることにより、左右の内側電極間の空間を電子が通過する場合と通過しない場合とを切替制御でき、それにより、出射する電子の偏向の有無を切替できる。
 かかる態様の静電偏向収束型エネルギー分析器は、以下では、「偏向切替静電収束型エネルギー分析器」という場合がある。
 本発明の静電偏向収束型エネルギー分析器において、回転体は90°~180°の回転角を有する回転体であり、切断面で電場を補償する補償電極が設けられる構成でもよい。後述するように、出射穴の位置にミラー等を配置して電子を反射させるものでなければ、360°回転体でなくとも、180°回転体または任意の回転角を有する回転体で、静電場による偏向と2次元の収束と結像を実現できる。
 次に、本発明の結像型電子分光装置について説明する。
 本発明の結像型電子分光装置は、上述の本発明の静電偏向収束型エネルギー分析器を用いた電子分光装置であって、分析器の前段にインプットレンズを、分析器の後段に投影レンズと検出器を設けることにより、試料の実空間像だけでなく、広角にわたる2次元放出角度分布を高いエネルギー分解能で一度に測定することができる。
 ここで、インプットレンズは、レンズ軸上にエネルギー分析器の入射穴があり、レンズ軸とエネルギー分析器の回転軸とが所定入射角度になるように配置され、試料から放出された電子を取り込み入射穴に出射するものである。なお、インプットレンズは、角度分布と実空間像を切り替えられる機能を備えるものが好ましい。
 また、投影レンズは、投影レンズ軸上にエネルギー分析器の出射穴があり、投影レンズ軸とエネルギー分析器の回転軸とが所定出射角度になるように配置され、エネルギー分析器によって偏向収束する電子を出射穴から取り込むものである。検出器は、投影レンズを透過した電子を2次元検出し、2次元の実空間像または放出角度分布を測定する。
 なお、エネルギー分析器の入射穴(入口)と出射穴(出口)には、アパチャーまたはスリットを設けることが好ましい。
 また、本発明の反射結像型電子分光装置は、上述の本発明の静電偏向収束型エネルギー分析器(但し、180°回転体のものを除く)を用いた電子分光装置であって、エネルギー分析器の出射穴に、電子の反射ミラーを設け、エネルギー分析器の入射穴に、前段のインプットレンズと、後段の投影レンズと検出器を設けることにより、試料の実空間像だけでなく、広角にわたる2次元放出角度分布を高いエネルギー分解能で一度に測定することができる反射タイプのエネルギー分析器である。
 インプットレンズは、レンズ軸上にエネルギー分析器の入射穴があり、レンズ軸とエネルギー分析器の回転軸とが所定入射角度になるように配置され、試料から放出された電子を取り込み入射穴に出射するものである。ミラーは、エネルギー分析器の出射穴に垂線の方向が回転軸の方向と一致するように配置される。ミラーとしては、単結晶ミラーを用いることができ、特に、Ir(001)単結晶ミラーなどを用いるとスピン分析機能が得られる。
 投影レンズは、投影レンズ軸上に入射穴があり、投影レンズ軸とエネルギー分析器の回転軸とが所定入射角度になるように配置され、エネルギー分析器によって偏向収束しミラーで反射した後に再び偏向収束する電子を入射穴から取り込むものである。検出器は、投影レンズを透過した電子を2次元検出し、2次元の実空間像または放出角度分布を測定する。
 なお、エネルギー分析器の入射穴(入口と出口を兼用)には、アパチャーまたはスリットを設けることが好ましい。
 次に、本発明のスピンベクトル分布イメージング装置について説明する。
 本発明の第1の観点のスピンベクトル分布イメージング装置は、偏向角が90°である本発明の90°静電偏向収束型エネルギー分析器(90°~180°の回転角を有する回転体であり、切断面で電場を補償する補償電極が設けられたエネルギー分析器も含む)を構成に備え、更に、以下の1a)~1d)の構成を備える。
1a)レンズ軸上にエネルギー分析器の入射穴があり、レンズ軸とエネルギー分析器の回転軸とが所定入射角度になるように配置され、試料から放出された電子を取り込み入射穴に出射するインプットレンズ。
1b)静電レンズ軸上にエネルギー分析器の出射穴があり、静電レンズ軸とエネルギー分析器の回転軸とが所定出射角度になるように配置され、エネルギー分析器によって偏向収束する電子を出射穴から取り込む静電レンズ。
1c)静電レンズの出射側で静電レンズ軸上に配置された2次元スピンフィルター。
1d)スピンフィルターにより反射される電子を取り込む投影レンズ及び投影レンズを透過した電子を検出する検出器。
 ここで、上記の構成に、以下の1e)、1f)の構成を更に加えることが好ましい。
1e)スピンフィルターを静電レンズ軸から退避させる駆動手段。
1f)駆動手段によってスピンフィルターが退避した状態で、静電レンズが出射する電子を取り込む第2投影レンズ及び第2投影レンズを透過した電子を検出する第2検出器。
 本発明の第2の観点のスピンベクトル分布イメージング装置は、上述の本発明の90°静電偏向収束型エネルギー分析器を構成に備え、更に、以下の2a)~2d)の構成を備える。
2a)レンズ軸上にエネルギー分析器の入射穴を配置し、レンズ軸とエネルギー分析器の回転軸とが所定入射角度になるように配置され、試料から放出された電子を取り込み入射穴に出射するインプットレンズ。
2b)エネルギー分析器の出射穴に配置され、回転軸を垂線とする2次元スピンフィルター。
2c)投影レンズ軸上にエネルギー分析器の入射穴を配置し、投影レンズ軸と回転軸とが所定入射角度になるように配置され、エネルギー分析器によって偏向収束し2次元スピンフィルターで反射した後に再び偏向収束する電子を入射穴から取り込む投影レンズ。
2d)投影レンズを透過した電子を検出する検出器。
 本発明の第3の観点のスピンベクトル分布イメージング装置は、上述の本発明の90°静電偏向収束型エネルギー分析器であって、偏向角の切替が行えるエネルギー分析器を構成に備え、更に、以下の3a)~3f)の構成を備える。
3a)レンズ軸上にエネルギー分析器の入射穴があり、レンズ軸とエネルギー分析器の回転軸とが所定入射角度になるように配置され、試料から放出された電子を取り込み入射穴に出射するインプットレンズ。
3b)静電レンズ軸上にエネルギー分析器の出射穴があり、静電レンズ軸とエネルギー分析器の回転軸とが所定出射角度になるように配置され、エネルギー分析器によって偏向収束する電子を出射穴から取り込む静電レンズ。
3c)静電レンズの出射側で静電レンズ軸上に配置された2次元スピンフィルター。
3d)2次元スピンフィルターにより反射される電子を取り込む第1投影レンズ及び第1投影レンズを透過した電子を検出する第1検出器。
3e)投影レンズ軸上にエネルギー分析器の出射穴があり、投影レンズ軸とエネルギー分析器の回転軸とが所定出射角度になるように配置され、エネルギー分析器によって偏向すること無く収束する電子を出射穴から取り込む第2投影レンズ。
3f)第2投影レンズを透過した電子を検出する第2検出器。
本発明の第4の観点のスピンベクトル分布イメージング装置は、上述の第1~第3の観点の何れかのスピンベクトル分布イメージング装置において、上述の本発明の90°静電偏向収束型エネルギー分析器を用いるのではなく、その代わりに、45~150°の範囲の偏向角を有するエネルギー分析器を複数組合せて偏向角を90°にしたものを用いる。
 本発明の第1乃至第4の観点のスピンベクトル分布イメージング装置において、インプットレンズと静電レンズの少なくとも一方のレンズ内部又は外部に配置され、各レンズ軸と垂直な面内でスピンを90°回転するスピンローテーターを備えることでもよい。
 90°静電偏向収束型エネルギー分析器の前段と後段にそれぞれ(レンズ軸と垂直な面内でスピンを90°回転する)スピンローテーターを設けることにより、2つのスピンローテーターのON、OFFの組合せによって、試料面内、面直の3つの方向のスピン偏極度のうちどの方向の偏極度を分析するかを決めることができる。これにより、3次元スピン偏極度を2次元の実空間像と放出角度分布で分析する2次元分析装置が可能になる。
 本発明の静電偏向収束型エネルギー分析器によれば、グリッドを用いることなく、CHAの静電半球部よりも大きな取り込み角で電子を取り込み、電子の軌道を偏向して収束させ、エネルギー分解能を向上できるといった効果がある。
 本発明の結像型電子分光装置によれば、試料の実空間像だけでなく、広角にわたる2次元放出角度分布を高いエネルギー分解能で一度に測定できるといった効果がある。
 本発明のスピンベクトル分布イメージング装置によれば、3次元スピン偏極度を2次元の実空間像と放出角度分布で分析できるといった効果がある。
実施例1の静電偏向収束型エネルギー分析器の概略図 実施例1の静電偏向収束型エネルギー分析器の開口収差を示すグラフと入射角と出射角の関係を示すグラフ 実施例1の静電偏向収束型エネルギー分析器におけるエネルギー分散の説明図 実施例1の静電偏向収束型エネルギー分析器の2次元実空間像 静電偏向収束型エネルギー分析器の外側電極と内側電極の形状説明図 実施例2の結像型電子分光装置の説明図 360°と180°回転体型の静電偏向収束型エネルギー分析器の断面図 実施例3の反射結像型電子分光装置の構成図 実施例4のスピンベクトル分布イメージング装置の構成図 実施例5のスピンベクトル分布イメージング装置の構成図 実施例6の切替式の静電偏向収束型エネルギー分析器の説明図 実施例6の切替式の静電偏向収束型エネルギー分析器の他の電圧条件での電子軌道の説明図 実施例7のスピンベクトル分布イメージング装置の説明図 偏向角βのエネルギー分析器と偏向角βのエネルギー分析器とを組合せた90°静電偏向収束型エネルギー分析器の説明図(実施例8) 90°静電偏向収束型エネルギー分析器を実現する組合せの説明図(β=βの場合) 90°静電偏向収束型エネルギー分析器を実現する組合せ条件の説明図、(a)β=βの場合,(b)β≠βの場合 45°と60°の偏向角を有する静電偏向収束型エネルギー分析器の説明図 2段組合せの静電偏向収束型エネルギー分析器の説明図、(a)2つの45°静電偏向収束型エネルギー分析器の組み合わせ、(b)2つの60°静電偏向収束型エネルギー分析器の組み合わせ 120°、135°、150°の偏向角を有する静電偏向収束型エネルギー分析器の説明図 従来技術である静電半球型エネルギー分析器(CHA)の概略図 CHAの開口収差を示すグラフ CHAの静電半球部の点源イメージ 従来技術である同心円筒鏡分析器(CMA)の概略図 CMAの開口収差を示すグラフ 従来技術であるVLEED検出器の概略図 従来技術であるスピン分解電子分光装置の概略図 従来技術である他のスピン分解電子分光装置の概略図 90°球面ディフレクターを用いたスピン偏極度分析装置の概略図 改良型90°ディフレクターの説明図 90°球面ディフレクターとレンズの組み合わせ 多極子ウィーンフィルターによるスピン回転の説明図 実施例9の静電偏向収束型エネルギー分析器の説明図 実施例10の静電偏向収束型エネルギー分析器の説明図 実施例11の静電偏向収束型エネルギー分析器の説明図 実施例11の静電偏向収束型エネルギー分析器の開口収差を示すグラフ 実施例12の静電偏向収束型エネルギー分析器の説明図
 まず、光電子分光やオージェ電子分光の標準的なエネルギー分析器である従来のCHAとCMAに関し、それらの基本構造および測定原理について説明し、その後で、それら分析器との対比で、本発明の静電偏向収束型エネルギー分析器について説明する。また、以下において、従来のスピン偏極度分析装置の構造についても説明し、本発明のスピンベクトル分布イメージング装置と対比させることで、本発明の特徴を明確にする。
(1)静電半球型エネルギー分析器(CHA)について
 CHAは、図20に示すように、試料から放出された電子(または荷電粒子)を取り込んで収束させるインプットレンズ、内球と外球からなる静電半球部、静電半球部の入口に設けられたスリット、静電半球部の出口に設けられた検出器からなり、球対称電場による収束作用を利用した分析器となっている。図20のように静電半球部の球の中心Oからインプットレンズの中心軸(光軸)までの距離をRとすると、理想的な球対称電場の場合、内球と外球間の任意の点(Oから距離r)での電位は下記の式(1)で与えられる。
 ここで、Epassは静電半球部のパスエネルギー、Vはr=Rでの電位、eは電気素量である。式(1)の第一項の係数は、中心軌道での遠心力と中心力の釣り合いの条件から決まる係数である。中心軌道は、インプットレンズの光軸から静電半球部に垂直に入射するエネルギーE=Epassの電子軌道を指す。遠心力が中心力より強い場合(つまり、E>Epassの場合)には、軌道が外側に逸れ、中心力の方が強い場合(つまり、E<Epassの場合)には、軌道が内側に逸れる。入口スリットを通過したE=Epassの電子ビームは、中心軌道が円軌道を描いて180°向きを変え、出口位置に収束して検出器により検出される。EがEpassよりわずかに高い電子は、中心Oから離れる方向に、EがEpassよりわずかに低い電子は、中心Oに近づく方向に収束点がシフトする。このように、静電半球部の出口に設けた検出器では、図20に示した方向にエネルギー分散が得られる。また、紙面垂直方向には、1次元の実空間像または放出角度分布が得られる。
 図20の概略図では、入口スリット位置に像面が形成されている。この場合、検出器の紙面垂直方向に得られるのは1次元の実空間像である。インプットレンズの印加電圧の切り替えにより入口スリット位置に回折面を形成した場合、検出器の紙面垂直方向に得られるのは1次元の放出角度分布となる。このように、静電半球部の入口スリットによって1次元の実空間像または角度分布を選択し、静電半球部の出口に設けた検出器によってエネルギー分散を伴った1次元の実空間像または放出角度分布を取得することができる。また、内殻準位からの鋭い光電子ピークにエネルギーを合わせると、静電半球部に入射する電子は、略単一のエネルギーとなるため、入口スリットを広げて2次元の実空間像または角度分布を入射させ、検出器のスクリーンにその像を表示させることも可能である。
Figure JPOXMLDOC01-appb-M000002
 以下、静電半球部の特性を数値によって具体的に示すこととする。まず、静電半球部の内球と外球に印加される電圧がどれくらいか示す。分析器の設計によって内球と外球の半径Rin、Rout(図20参照)と中心軌道半径Rは決まっているため、あとはパスエネルギーEpassと中心軌道電位Vを測定に応じて決めればよい。EpassとVが決まると、内球と外球に印加する電圧は、上記の式(1)で求められる。Vはインプットレンズの出口電極と同電位に設定され、インプットレンズの減速比の変更(つまり、Epassの変更)または分析するエネルギーの変更に伴って変化する。図20において、内球と外球の半径はRin=0.75R、Rout=1.25Rである。この場合、内球と外球に印加する電圧VinとVoutは、それぞれ、下記の式(2)、式(3)となる。簡単のためEpassを1000eVとし、Vを基準にとると、内球と外球に印加する電圧は、それぞれ、約667V,-400Vとなる。電子のエネルギー(ここでは、パスエネルギーEpass)を電気素量eで割ったもの(つまり、加速電圧に換算したもの)を換算加速電圧と呼ぶことにすると、内球と外球に印加する電圧の絶対値は、それぞれ、換算加速電圧の約0.67倍、0.4倍となる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 図20に示した静電半球部の電子軌道は、静電半球部への入射角αを±3°に制限した場合の軌道である。静電半球部の出口で高い収束を得るには、入射角αを小さく抑える必要がある。図21の左のパネルは、入射角αを±8°まで広げて軌道計算した結果である。ここで、中心軌道半径Rは100mmに設定している。図21の右上グラフは開口収差、右下グラフは入射角αと出射角α’の関係を示している。理論計算によると、静電半球部の開口収差は下記の式(4)で与えられる。
Figure JPOXMLDOC01-appb-M000005
 ここで、O(α4)はαの高次の項をまとめたものである。図21には、開口収差の計算結果(高次項含む)と共に上記の式(4)の右辺第一項のみで近似した収差曲線(破線)を示している。両者は入射角±7°(=0.12rad)程度まで良く一致しているのが分かる。式(4)のαの係数(-2R)は、開口収差係数(以下、Cで表す)で、図21の場合、C=-2R=-200となる。図21に示すように、静電半球部の開口収差はαの2乗で増加し、α=4°のとき、R=100mmに対して約1mmの収差が発生する。このように、入射角を十分制限しなければ大きな開口収差が発生し、2次元の実空間像を得ることが難しい。また、以下に示すように、高いエネルギー分解能を得るためにも、入射角を小さく制限して開口収差を抑える必要がある。
 静電半球部のFWHM(full width at half maximum)のエネルギー分解能の見積もりは下記の式(5)で与えられる。
Figure JPOXMLDOC01-appb-M000006
 ここで、αmaxは静電半球部への入射角の最大値であり、wは入口および出口スリットの幅である。上記の式(5)で定義されるエネルギー分解能は、幅wの領域から入射した電子を幅wの領域で切り取ったときに分離できるFWHMのエネルギー幅を表している。静電半球部に入射するエネルギーEpassの電子の強度が強い場合、スリット幅を小さくして、スリット幅のエネルギー分解能への寄与を小さく抑えることができるが、そうでない場合は、強度の低下が妨げになって、スリット幅を十分小さくすることができない。そのため、多くの分析器では、中心軌道半径Rを大きくすることによりエネルギー分解能の向上が図られている。スリット幅をどのくらいまで小さくできるかは、試料に照射するX線や電子線のスポットサイズまたはフラックスとインプットレンズの倍率に依存する。
 現状の光電子分光やオージェ電子分光において、X線や電子線の試料上のスポットサイズは10~100μm程度が可能になっているが、ここでは少し大きめにとって、50μmとする。インプットレンズの倍率を5とすると、静電半球部の倍率は1のため、スリット幅は0.25mmに設定するのが良さそうである。この場合、式(5)の右辺第2項の寄与は1/(8・R)となる。この寄与は、R=100mmのとき0.125×10-2に、R=200mmのとき0.0625×10-2になる。式(5)の右辺第1項は入射角αmaxを制限することで小さく抑えることができる。しかし、この場合、著しい強度の低下が避けられない。例えば、αmax=±3°を±1°にすると、強度は約1/9に低下する。
 下記表1は、αmax=±2°~±8°に設定した場合において、静電半球部のエネルギー分解能を式(5)の右辺第1項を用いて算出した値である。著しい強度の低下を避けつつ、高いエネルギー分解能を得るには、静電半球部への入射角αmaxを、±2(または±3°)程度に設定する必要があることがわかる。
Figure JPOXMLDOC01-appb-T000007
 図22は、静電半球部への入射面に、5×5(1mmピッチ)の点源を仮定し、その各点から、面直方向を中心方向とする入射角αmaxの立体角範囲にわたって、エネルギーEpassの電子を入射させたときに、静電半球部の出口で得られる2次元の実空間像である。αmaxは±1°から±6°まで考慮している。ここで、座標x’は図21に示した方向に、座標y’は紙面垂直方向にとっている。αmaxが大きくなるにつれて開口収差が増大し、x’方向の空間分解能が著しく低下する。αmaxが±2°程度以下であれば比較的良い実空間像が得られそうであるが、αmaxを±4°程度以上にすると、1mm離れた2つの点源が実空間像では繋がってしまい分解できないことが分かる。静電半球部の出口で高い空間分解能の2次元実空間像を得るには、静電半球部への入射角を、±1°または±2°程度以下に制限する必要があると思われる。しかし、入射角を±1°程度以下に制限すると、光電子の強度が著しく低下するという問題がある。
(2)同心円筒鏡分析器(CMA)について
 CMAは、図23に示すように、内円筒と外円筒からなる同軸円筒部、同軸円筒部の後段に設けられたスリットと検出器からなり、円筒対称電場による収束作用を利用した分析器となっている。ここで、電子が入る内円筒の入口と出ていく出口は円筒状のグリッドになっており、これにより、円筒対称電場を崩さずに電子が通過できるようになっている。
 理想的な円筒対称電場の場合、CMAの内円筒と外円筒の間の任意の点(中心軸zから距離r)での電位は下記の式(6)で表される。
Figure JPOXMLDOC01-appb-M000008
 ここで、EpassはCMAのパスエネルギー、Rinは内円筒半径、eは電荷素量である。Kは電場の強さを決めるパラメーターであり、図23においては、K=1.31に設定されている。内円筒は、通常、グラウンド電位に設定されるため、式(6)では
r=RinでV(r)=0としているが、内円筒に任意の電位を設定する場合は、その電位を式(6)に加算すればよい。図23において、外円筒と内円筒の半径の比は2.66である。この場合、外円筒に印加する電圧は、式(6)より、Epass=1000eVに対して約-746Vとなる。電子のエネルギーEpassを電気素量eで割ったものを換算加速電圧とすると、外円筒に印加する電圧の絶対値は、換算加速電圧の約0.75倍となる。内円筒に印加する電圧は、換算加速電圧の0倍である。中心軌道は、試料上の原点(中心軸zと試料面の交点)から、CMAの中心軸zとθ=42.3°の角度を成して円筒対称電場に入射するエネルギーE=Epassの電子軌道である。
 任意の軌道の円筒対称電場に入射する角度を中心軸zから測ってθ=42.3°+αで表し、以下、αを入射角とする。円筒対称電場に入射した電子は中心軸zに向かう力を受けて向きを変え、E=Epassの電子軌道の束は、中心軌道が中心軸zと42.3°の角度を成して出口グリッドを通過し、スリット位置に収束する。図示していないが、収束点は、E>Epassのとき右側に、E<Epassのとき左側に移動し、エネルギー分解能の分だけEがずれると電子はスリットを通過できなくなる。
 試料上の原点と中心軌道がz軸と交わる点との距離Lを275mmとした場合の入射角αと開口収差の関係を図24に示す(Lを275mmに設定すると、原点からスリット位置に至る中心軌道の長さが、図21に示した静電半球部の中心軌道の長さとほぼ一致する。)。図24には、K=1.31に加えて、K=1.33とK=1.35に対する結果も示している。ただし、K=1.33の場合、L=279mm、K=1.35の場合、L=283mmとなる。K=1.31に設定した場合、α=0°が停留点となり、その近傍で収差がほぼゼロとなる。したがって、収差をできるだけ小さくしたい場合は、Kを1.31に選んで、入射角を制限すればよい。逆に、収束を犠牲にしても、取り込み角を大きくしたい場合は、Kは1.31より少し大きい値(例えば1.33程度)に設定するのが良い。Kの値は外円筒に印加する電圧によって容易に変更できる。しかし、ここで注意すべきことは、上記の通り、Kの値が変化すると、Lの値も変化するということである。つまり、Lの値が変わると最適なスリットおよび検出器の位置が変わってしまうという問題がある。
 図21と図24に示した開口収差を比較すると分かるように、CMAに用いられる円筒対称電場は、CHAに用いられる球対称電場より強い収束作用を持っている。これは、CMAが3次の開口収差をもつのに対して、CHAが2次の開口収差をもつことによる。その結果、CMAには高いエネルギー分解能が期待されるが、実際にはCHAで得られるような高いエネルギー分解能はCMAでは達成されていない。達成されない理由としては、CMAでは、2枚のグリッド電極が用いられており、電子は円筒対称電場の入口と出口でグリッドによる散乱作用を受けて収束が低下するからである。このように、CMAでは、CHAで得られるような高いエネルギー分解能を達成することが困難である。また、CMAでは、グリッドによる散乱効果で高分解能の実空間像および放出角度分布を得ることも困難である。
(3)従来のスピン偏極度分析装置
 代表的なスピン偏極度分析装置としては、スピン軌道相互作用を利用したMott検出器やSPLEED検出器、スピン交換相互作用を利用したVLEED検出器などがある。また、近年、Ir(001)単結晶基板を用いた2次元スピン分析器が開発されている(非特許文献10)。図25はVLEED検出器の概略図である(非特許文献11)。このスピン偏極度分析装置は、コイルによって磁化されたターゲットに低エネルギーの電子を入射させたときに電子のスピンがターゲットの磁化と平行か反平行かによって反射される電子の強度が変わることを利用した検出器である。ターゲットには鉄薄膜が利用されている。
 図26は、CHAとVLEEDを組合せたスピン偏極度分析装置の概略図である。z,z’は、それぞれ、試料-静電半球部、静電半球部-ターゲット間の光軸である。
 y,y’は、静電半球部の中心と入口または出口を結ぶ方向にとった軸であり、x,x’は、それぞれ、z,yとz’,y’に垂直な軸である。CHAは電場のみで成り立っているため、電子がCHAを通過してもスピンの方向は変化しない。
 図26のスピン偏極度分析装置では、y’方向にコイルが設けられ、試料面内y方向のスピン偏極度の測定ができる。図26のスピン偏極度分析装置を用いて、x方向のスピン偏極度も測定したいときは、試料を面内方向に90°回転すればよいが、試料を回転するとわずかなりとも測定領域のずれが生じる。これは微小領域分析では致命的な問題になり得る。かかる問題を回避する方法としては、レンズ軸と垂直な面内でスピンを90°回転するスピンローテーターをインプットレンズに、またはスピン分析器の前段に設けることが有効である。
 これにより、試料を回転することなく、試料面内方向のスピンを90°面内回転することができる。また、VLEEDを用いたスピン偏極度分析装置の場合、スピンローテーターの代わりにターゲットを磁化させるコイルを2方向に設け、磁化の方向を切り替えることによって、試料面内x方向、y方向のスピン偏極度を測定することも可能である。しかし、上記の何れの方法でも、z方向のスピン偏極度を測定することができない。z方向のスピン偏極度を測定するには、電子がターゲットに入射する前に、電子の軌道を電場で90°曲げる方法が有効である。
 図27はそのような方法でスピン分析するスピン偏極度分析装置の概略図である。ここでは、z’y’面内で電子の軌道が90°曲げられており、これにより、試料面直方向(z方向)のスピン偏極度を測定することが可能になる。電子の軌道を90°曲げる方法として、図27に示すような、1/4円筒形状の静電型90°偏向器(90°ディフレクター)が用いられている。
 試料を回転することなくx方向とy方向のスピン偏極度を測定するには、スピンローテーターを、図27のように、インプットレンズと静電半球部の間、および、90°ディフレクターとスピン分析器の間にそれぞれ設ける。図27において、2つのスピンローテーター(SR1,SR2)は何れもOFFの設定になっているが、SR1をOFFの設定に、SR2をONの設定にすると、試料面内x方向のスピン偏極度が測定でき、SR1、SR2を何れもONの設定にすると試料面内y方向のスピン偏極度が測定できる。VLEEDを用いたスピン分析器の場合、2つ目のスピンローテーターSR2を設ける代わりに、x’方向にコイルを追加してもよい。上記のような方法により3次元のスピン偏極度を測定することができる。
 90°ディフレクターでは、電子は、円筒電場による中心力と遠心力が釣り合う条件のもと、円弧を描いて90°向きを変える。円筒電場の代わりに球対称電場を用いて90°偏向することもできる。図28は、90°球面ディフレクターを用いたスピン偏極度分析装置の概略図である。90°ディフレクターや90°球面ディフレクターは、構造がシンプルで、平行ビームを90°曲げるのに適している。しかし、これらのディフレクターでは、1点から出た角度広がりのあるビームを収束させることができない。円筒電場の場合、偏向面内には収束作用があるが、それと垂直の方向には収束作用がない。また、偏向面内の収束作用は、1点から出たビームを偏向角127°で収束させるものであり、偏向角を90°に設定したディフレクターでは十分な収束作用が得られない。球対称電場においては、偏向面内だけでなく、それと垂直の方向にも収束作用があるが、1点から出たビームが収束するのは、偏向角が180°のところであり、偏向角90°のところでは広がったビームとなる。
 図29は、改良型90°ディフレクターの概略断面図である。改良型90°ディフレクターによれば、1点から出た電子ビームを偏向面内で90°偏向して収束させることができる。しかしこの方法では、偏向面内方向とそれと垂直の方向の2方向で同時にビームを収束させることができない。90°球面ディフレクターの場合は、図30のように、出口にレンズを組合せることにより、広がったビームを絞ることが可能である。しかし、この方法でも、2方向同時にビームを収束させることができない。
 図27~図30に示した90°偏向分析器は、スピン偏極度の3次元測定に用いることができるが、このような偏向分析器を用いる代わりに、ウィーンフィルター型のスピン回転装置を用いてスピン偏極度の3次元測定を行うことが可能である。ウィーンフィルター型のスピン回転装置では、ビームの方向を変えずに、試料面直方向のスピンを90°回転して面内方向に倒すことができ、また、図31に示すように、多極子ウィーンフィルターによって、スピンの3次元操作が可能になる。しかし、この方法でも、90°スピン回転と同時に、角度広がりのあるビームを2次元収束させることは実現されていない。
 上述のとおり、従来の静電半球型エネルギー分析器(CHA)、同心円筒鏡分析器(CMA)、従来のスピン分解電子分光装置について説明したが、以下では、本発明のいくつかの実施形態の例を、図面を参照しながら詳細に説明していく。なお、本発明の範囲は、以下の実施例や図示例に限定されるものではなく、幾多の変更及び変形が可能である。
(90°静電偏向収束型エネルギー分析器)
 図1(1)は、本発明の90°静電偏向収束型エネルギー分析器の一実施形態の概略図である。90°静電偏向収束型エネルギー分析器1は、回転軸13を共通として内側と外側に形成される2つの回転体の形状に沿って、5つの外側電極EL1,EL2,EL3,EL4,EL5と3つの内側電極EL6,EL7,EL8が配置され、外側電極の両端の電極の回転軸13上の其々に、電子の入射穴11と出射穴12が形成されている。外側電極の内面形状が、中央の電極(EL3)を除いて、入射穴11及び出射穴12に向かって小径になるテーパー形状を有し、内側電極の外面形状が、中央の電極(EL7)を除いて、入射穴11及び出射穴12に向かって小径になるテーパー形状を有する。回転軸方向の位置をzで表し、エネルギー分析器1の入口をz=0、出口をz=Lとすると、外側電極と内側電極はz=L/2の中央面14に対して面対称となっている。
 図1(2)に示すように、エネルギー分析器1は、高さが異なる2つの等脚台形(20a,20b)の下底を、回転軸13で回転させることにより得られる2つの回転体の3次元表面形状に沿って、5つの外側電極EL1,EL2,EL3,EL4,EL5と3つの内側電極L6,EL7,EL8が配置される。そして、外側電極と内側電極には、電子を加速して減速する電圧が入射する電子のエネルギーに比例して印加される。特に、内側電極の両端の電極を除いた1つ又は複数の電極には、入射穴11が形成された外側電極の電位を基準として、電子のエネルギーを加速電圧に換算した換算加速電圧の3倍以上の電圧が設定され、電子の中心軌道が回転軸13と所定入射角度(図1では45°)になるように、入射穴11から入射した電子の中心軌道が、回転軸13と所定出射角度(45°)をもって、出射穴12の位置に収束するように、各電極に印加する電圧が調整される。これによって、角度広がりのある電子を取り込み、90°偏向して2次元収束させることが可能になる。
 図1(1)には電極の概略形状に加え、電子軌道と等電位線が示されている。z=0から出た電子は、最初は緩やかな電場で加速され、その後、強い電場で加速されながら方向を変えて、z=L/2の辺りで回転軸zと平行になり、その後、減速されながら方向を変えて出口位置に収束する。
 中心軌道の電子は、入射角度45°で入射して出射角度45°で収束点に到達している。このように中心軌道は、電場によって向きが90°変えられている。中心軌道から測った入射角をαとすると、図1(1)では、α=-8°から+8°まで1°間隔で電子軌道が示されている。試料は、図1(1)のように、z=0の面に置くか、後述するように、インプットレンズを導入して、その試料面に置くこともできる。試料をz=0の面に設置した場合、電子線または光は、内側電極または外側電極に開けられた穴(図示せず)から照射される。ここで、電子銃を内側電極の中に設置することも可能である。
 また、図1(1)には示されていないが、エネルギー選別用のスリットが出口位置に、その後段に検出器が配置される。試料をz=0の面に設置する場合、高いエネルギー分解能が得られるのは低エネルギー領域の分析に限られるが、軸対称性による大きな取り込み立体角とそれによる高い感度が見込まれる。
 図1(1)の90°静電偏向収束型エネルギー分析器の開口収差を示すグラフを図2(a)に示す。ここで分析器の長さLは275mmに設定している。(この場合、中心軌道の長さは、図21に示したCHAの静電半球部の中心軌道の長さとほぼ一致する。)図2(a)のグラフ中に示したA、B、C、Dは、それぞれ、エネルギー分析器の入射角αの範囲(取り込み角)を±2°、±6°、±8°、±10°に設定して、開口収差による像のボケが小さくなるように各電極(EL1~EL8)の印加電圧の調整を行った結果である。開口収差による像のボケが、図21に示したCHAの場合のものと比べて、大幅に小さくなることが分かる。CMAにおいても、図24のように、取り込み角に応じて印加電圧を調整することにより、開口収差による像のボケを最小にすることが可能であるが、この場合、収束位置が変化することが難点である。
 本発明のエネルギー分析器では、収束位置を変化させることなく、印加電圧を最適化することができる。また、開口収差による像のボケを、CMAと同程度、または、それ以下にすることができる。ここで重要なことは、本発明のエネルギー分析器は、CMAと違って、グリッド電極を用いないことである。電子がグリッド電極を通過すると軌道が乱れるため、結像機能をもったエネルギー分析器では、グリッド電極を用いないことが望ましい。
 図2(b)は取り込み角が±10°の場合の入射角と出射角の関係を示す。CHAでは、図21に示したように、入射角と出射角の絶対値のずれがα=±5°辺りから顕著になるが、本発明のエネルギー分析器では、取り込み角全体にわたって、入射角と出射角の絶対値がほぼ一致する、つまり、角度が保存される。このように本発明のエネルギー分析器は角度分布の測定に適している。A~Dについて、調整された電圧を下記表2に示す。ただし、ここで示した値は、パスエネルギーEpass=1000eVに対する電圧値である。その他のパスエネルギーに対する値は、表2の値をEpassに比例して変化させることにより得られる。また、表2には、電極EL1をグラウンド電位に設定した場合の電圧値を示したが、EL1はグラウンド電位以外の電位V1(≠0)であってもよい。この場合、EL1以外の電極には、表2に示した電圧にV1が加算された電圧が印加される。A~Dにおいて、電極EL1とEL5はグラウンド電位に、EL2、EL4、EL6、EL8は同電位に設定され、EL3とEL7のみの電圧が調整されている。
 電子のエネルギーEpassを電気素量eで割ったものを換算加速電圧とすると、EL3には換算加速電圧の3~4倍程度の電圧が、EL7には換算加速電圧の23~25倍程度の電圧が印加される。上述したCHAとCMAの印加電圧と比較すると、EL3とEL7に印加される電圧が1桁または2桁高いことが分かる。なお、各電極に印加する最適な電圧は、電極の形状や配置に依存して変化する。その結果、EL3には、おおむね、換算加速電圧の0~10倍の電圧が、EL7には、おおむね、換算加速電圧の10~50倍の電圧が印加される。ただし、高い収束性能が必要ないときは、EL7に印加される電圧は、換算加速電圧の3~5倍以上、10倍以下の電圧であってもよい。
Figure JPOXMLDOC01-appb-T000009
 図3(a)~(d)は、図1(1)の90°静電偏向収束型エネルギー分析器におけるエネルギー分散を計算した結果を示している。
 ΔE(=E-Epass)とパスエネルギーEpassとの比は、-0.05~+0.05の範囲でとっている。この分散からエネルギー分解能を見積もることができる。下記表3は、CHAの場合のエネルギー分解能を示す前述の式(5)の右辺第1項に対応する寄与を計算したものである。これは照射ビームのスポットサイズをゼロに近づけたときに可能になるエネルギー分解能の見積もりである。
 取り込み角を±6°以下にすると、この分解能はCHAの場合よりも良くなることが表1と表3の比較から分かる。しかし、(照射ビームのスポットサイズが効く)前述の式(5)の右辺第2項に対応する寄与は、CHAの場合と比べて5倍程度大きくなる。したがって、照射ビームのスポットサイズが大きい場合、図1(1)の90°静電偏向収束型エネルギー分析器は、CHAと比べてエネルギー分解能の点で不利になる。しかしながら、現時点においては、一般的にΦ10~100μm程度の高フラックスビームが利用できるようになっている。このような微小スポットビームを用いると、90°静電偏向収束型エネルギー分析器は、前述の式(5)の右辺第2項に対応する寄与が小さくなり、高いエネルギー分解能を達成することが可能になる。
Figure JPOXMLDOC01-appb-T000010
 図4(a)~(f)は、図1(1)の90°静電偏向収束型エネルギー分析器において、図22と同様に、2次元の実空間像を計算した結果を示している。ここでは、入射角αの最大値(取り込み角)を±2°~±8°まで考慮している。図22に示したとおり、CHAの静電半球部では、取り込み角を±2°程度以下に設定しないと大きな開口収差が発生して実用的な2次元像が得られないが、図4に示すように、90°静電偏向収束型エネルギー分析器では、取り込み角を±5°~±6°程度まで広げても、実用的な2次元像を得ることが可能であることがわかる。また、この取り込み角において、上記表1と表3の比較から、CHAと同程度のエネルギー分解能を達成できることがわかる。
 図5(a)~(h)は、図1(1)に示したエネルギー分析器と電極の形状、配置は異なるが同様の作用を有する本発明の90°静電偏向収束型エネルギー分析器の実施例の概略図である。何れの例においても、電子は、外側電極の一端に設けられた入射穴から入射し、他端に設けられた出射穴の位置に収束する。図5および以下の説明において、電極の形状は、外側電極の場合、内面形状を、内側電極の場合、外面形状を意味するものとする。
 図5(a)は、回転軸を共通として内側と外側に形成される2つの回転面に沿って複数の外側電極と複数の内側電極が配置され、外側電極と内側電極がトロイダル面形状を有することを特徴とする本発明のエネルギー分析器を示す。ここで、トロイダル面形状を有する外側電極と内側電極は、入射穴と出射穴に向かって径が小さくなるのと、それらの間に形成される空間が両端に近いほど狭くなっているのが特徴である。
 図5(b)は、回転軸を共通として内側と外側に形成される2つの回転面に沿って複数の外側電極と複数の内側電極が配置され、いくつかの外側電極はプレートに丸穴があけられたリング状電極であり、内側電極は、入射穴と出射穴に向かって径が小さくなるテーパー形状を有することを特徴とする本発明のエネルギー分析器の概略図である。ここで、外側電極と内側電極の間に形成される空間が入射穴と出射穴の周辺で狭くなるように、リング状電極は、入射穴と出射穴に近いものは穴径が小さく設定される。
 図5(c)は、回転軸を共通として内側と外側に形成される2つの回転面に沿って複数の外側電極と複数の内側電極が配置され、いくつかの外側電極は、入射穴と出射穴に向かって径が小さくなるテーパー形状を有するリング状電極であることを特徴とする本発明のエネルギー分析器の概略図である。ここで、図5(b)の場合と同じように、内側電極は、入射穴と出射穴に向かって径が小さくなるテーパー形状を有し、リング状電極は、入射穴と出射穴に近いものは穴径が小さく設定される。
 図5(d)は、回転軸を共通として内側と外側に形成される2つの回転面に沿って複数の外側電極と複数の内側電極が配置され、内側電極は、入射穴と出射穴の近傍まで延びたステップ形状を有することが特徴の本発明のエネルギー分析器の概略図である。ここで、ステップ形状は、入射穴と出射穴の近傍で径が小さくなるのが特徴である。外側電極は、図1(1)の実施例と同じように、入射穴と出射穴に向かって径が小さくなるテーパー形状を有しており、外側電極と内側電極の間に形成される空間が入射穴と出射穴の周辺で狭くなっている。
 図5(e)は、回転軸を共通として内側と外側に形成される2つの回転面に沿って複数の外側電極と複数の内側電極が配置され、内側電極は入射穴と出射穴の近傍まで延びたロッド形状を有することが特徴の本発明のエネルギー分析器の概略図である。ここで、ロッド形状を有する複数の電極はそれぞれ外径が異なっていてもよい。
 図5(f)は、回転軸を共通として内側と外側に形成される2つの回転面に沿って複数の外側電極と複数の内側電極が配置され、内側電極は端部で径が広がる軸対称形状を有することが特徴の本発明のエネルギー分析器の概略図である。
 図5(g)と図5(h)は、それぞれ、内側電極と外側電極の数が2つに設定された本発明のエネルギー分析器の実施例である。図5(g)は、回転軸を共通として内側と外側に形成される2つの回転面に沿って複数の外側電極と複数の内側電極が配置され、外側電極は図1(1)と同様の電極であり、内側電極は、入射穴と出射穴の近傍まで延びたロッド状電極または円筒状電極と、そのロッド状電極または円筒状電極を通すビーズ状電極からなることを特徴としている。
 図5(h)は、外側電極が入射穴と出射穴まで延びた軸対称電極とその内側に配置された軸対称電極からなることを特徴としている。内側電極は、入射穴と出射穴に向かって径が小さくなるテーパー形状を有する。図5(e)、図5(f)、図5(g)、図5(h)の設計では、収束性能が低下し、取り込み角は他の設計と比べて小さく設定される。取り込み角がさらに小さくてもよい場合は、図5(g)の内側電極と図5(h)の外側電極を組み合わせて、内側電極2つ、外側電極2つの合計4つの電極からなる本発明のエネルギー分析器を設計することができる。図5(g)のタイプにおいて、収束性能を向上するには、内側電極の形状の自由度を増やして形状最適化することやビーズ状電極の数を増やして設計することが有効である。また、図5(h)のタイプにおいては、外側電極の数を増やした設計により収束性能を向上することができる。
 図1(1)の場合と同様、図5(a)~(h)において、外側電極と内側電極には、電子を加速して減速する電圧が入射する電子のエネルギーに比例して印加される。内側電極の両端の電極を除いた1つ又は複数の内側電極には、入射穴が形成された外側電極の電位を基準として、電子のエネルギーを加速電圧に換算した換算加速電圧の3~5倍以上の電圧が設定される。ただし、高い収束性能を得るには、入射穴が形成された外側電極の電位を基準として、換算加速電圧の10~50倍程度の電圧に設定することが望ましい。
 本発明の静電偏向収束型エネルギー分析器において、電極数は、図1(1)や図5に示したものに限らない。内側電極と外側電極の数は、いずれも2つ以上であればよいが、性能とコストの両方を考慮すると、内側電極は3~5つ程度、外側電極は3~7つ程度設けるのが好ましい。また、内側電極と外側電極は、それらの間に形成される空間が、図1(1)と図5に示したように、入射穴と出射穴の周辺で狭まる形状や配置にすることが望ましい。これにより、入射穴と出射穴にかかる電場を小さく抑えることができる。また、内側電極と外側電極は、入射穴と出射穴を結ぶ直線の中点でその直線と垂直に交差する面に対して面対称であることが望ましい。ただし、実際の設計では、必ずしも面対称である必要はなく、分析装置の全体の設計に応じて面対称でない形状とすることも可能である。図1と図5の設計では、中心軌道の電子は、入射角度45°で入射して出射角度45°で出射するが、中心軌道の入射角度と出射角度はこれに限らず、例えば、入射角度50°、出射角度40°に設定して90°偏向静電収束型エネルギー分析器を設計することも可能である。この場合、内側電極と外側電極は、入射穴と出射穴を結ぶ直線の中点でその直線と垂直に交差する面に対して非対称な形状にするのが好ましい。
 なお、図5には様々なタイプの電極形状が示されているが、これらの形状タイプを自由に組み合わせて、図5に示したものに限らず、様々な形態の静電偏向収束型エネルギー分析器を設計することができる。形状タイプの組み合わせは、外側電極と内側電極においてのみならず、入射穴側と出射穴側においても自由に変えることができる。
(結像型電子分光装置)
 図6(a)は、本発明の結像型電子分光装置の一実施形態の概略図であり、図1(1)の90°静電偏向収束型エネルギー分析器の前段にインプットレンズ、後段に投影レンズを配置する構成を示している。試料から出た電子をインプットレンズで減速してエネルギー分析器に入射することにより、広いエネルギー範囲で高いエネルギー分解能を達成することができる。90°静電偏向収束型エネルギー分析器は、広角取り込みのインプットレンズと組合せる場合に大きな効果が期待できる。上述したように、CHAを用いて2次元の実空間像や放出角度分布を実用的な空間分解能または角度分解能で得るには静電半球部への入射角を±2°程度以下にする必要がある。
 しかし、取り込み角が±50°の球面収差補正レンズや全角(±90°)取り込みの収束レンズを用いて、試料から出た電子を±50°または±90°の開き角で取り込んで±2°程度以下の開き角で収束させると倍率が非常に高くなる。インプットレンズで(減速しないで)入射時と同じエネルギーで収束させる場合でも、±50°または±90°の開き角の電子を±2°の開き角で収束させると倍率は25倍または45倍程度になる。減速する場合はさらに倍率が高くなる。例えば、1000eVの電子を50eVまで減速すると、輝度不変の法則から、倍率は100~200倍程度になる。このように倍率が高くなると、図6(a)に示すように、エネルギー分析器の入射側と出射側において小さなアパチャーまたはスリットを挿入すると、大部分の電子がアパチャーまたはスリットを通過できなくなり、感度が著しく低下することになる。そこで、CHAの代わりに本発明の90°静電偏向収束型エネルギー分析器を用いると、エネルギー分析部への入射角を3倍程度広げることができ、CHAを用いる場合と比較して、感度を9倍程度増加させることが可能になる。
 図6(b)の装置は、基本的な構成は、図6(a)の装置と同じであるが、エネルギー分析器の構造が少し異なっている。図6(b)では、省スペースのため、エネルギー分析器は、360°回転体ではなく、180°回転体の構造となっている。図6(a)、(b)のそれぞれのエネルギー分析器において、紙面垂直方向に切った断面図を図7に示す。図7(a)に示す360°回転体型では、内側電極は固定脚によって固定される。固定脚は、電場への影響ができるだけ小さくなるところに設置され、電極EL6とEL8が固定脚により、それぞれ、電極EL2とEL4に固定される。180°回転体型では、切断面で電場を補償するために、図7(b)に示すような補償電極が設けられる。なお、180°回転型のエネルギー分析器を用いる代わりに、回転角が180°以下のエネルギー分析器を用いて、さらなる省スペース化を実現することもできる。この場合、回転角は90°~180°に設定するのが望ましい。回転角が180°以下のエネルギー分析器の場合も、図7(b)と同様、切断面で電場を補償する補償電極が設けられる。
(反射結像型電子分光装置)
 図8は、本発明の反射結像型電子分光装置の一実施形態を示している。本実施例の反射結像型電子分光装置は、実施例1の90°静電偏向収束型エネルギー分析器によって、90°偏向収束させた電子を単結晶ミラーで反射し、再び90°偏向収束させる点が特徴となっている。試料から放出された電子は、インプットレンズにより収束され、45°傾いたアパチャーからエネルギー分析器に入射する。入射した電子は、90°偏向収束し、単結晶ミラーで反射し、90°偏向収束によって、入射アパチャーの位置に戻ってきて、そこから入射時と垂直の方向に出射される。出射された電子は、投影レンズにより2次元の実空間像または放出角度分布として結像され検出器にかかる。
 入射アパチャーは、エネルギーの選別を行う出射アパチャーを兼ねており、エネルギー分解能と感度は、このアパチャーのサイズに大きく依存する。したがって、測定に応じてエネルギー分解能と感度を調整するには、アパチャー部は、サイズが異なるアパチャーを複数備え、それらを切り替える機構にするか、サイズを自由に変えられるアイリスなどの機構にすることが望ましい。
 図8に示す反射結像型電子分光装置におけるエネルギー分析器は、図6に示したエネルギー分析器と比べてエネルギー分散が2倍になるため、より高いエネルギー分解能が期待できる。しかし、エネルギー分析器の出射穴に配置した単結晶ミラーでの非弾性散乱などによりノイズが増加し、SN(Signal to Noise ratio)が低下するかもしれない。そこで、ノイズを低減するために、エネルギー選別を2段階(2つの収束位置)で行うことが有効である。上記のアパチャーによる選別が2段目で、1段目は、図8に示したようなエネルギー選別用の単結晶ミラーを用いる。エネルギー選別用の単結晶ミラーは、アパチャーに相当する部分が単結晶で、それ以外の部分は電子吸収材で覆われている。
(スピンベクトル分布イメージング装置)
 図9は、図1(1)の90°静電偏向収束型エネルギー分析器を用いた本発明のスピンベクトル分布イメージング装置の一実施形態を示している。図9に示すスピンベクトル分布イメージング装置では、2次元の実空間像または放出角度分布をスピン分解で測定するために、図のように2次元スピンフィルター8が設けられる。電子がこの2次元スピンフィルター8に適切なエネルギーと角度で入射するように、その前段には静電レンズ19が設けられ、それらの調整が行われる。その後、2次元スピンフィルター8により反射された電子は、第1投影レンズ3aによって第1検出器4aに投影される。2次元スピンフィルター8は光軸から退避できるようになっており、退避状態のときは、第2投影レンズ3bと第2検出器4bが用いられ、通常の(スピン積分の)2次元実空間像または2次元放出角度分布が得られる。
 90°偏向エネルギー分析器1の前段と後段の光軸上に設けられたスピンローテーター7a(SR1)と7b(SR2)は、試料面内と面直の3次元のスピン分解に用いられる。SR1とSR2は、スピンを光軸と垂直な面内で90°回転する(以下では「ON」という)または回転しない(以下では「OFF」という)に設定される。SR1とSR2がともにOFFの場合、試料面内y方向(紙面垂直方向)のスピン偏極度が測定できる。試料面内x方向のスピン偏極度を測定するには、SR1のみONに、試料面直方向(z方向)のスピン偏極度を測定するには、SR2のみONにすればよい。
 図9のスピンベクトル分布イメージング装置では、第1投影レンズ3aと第1検出器4aを偏向面と同じ面上に配置したが、2次元スピンフィルター8、第1投影レンズ3a、第1検出器4aをz’軸とz”軸の交点を中心に紙面垂直方向に90°回転した配置にしてもよい。この場合、SR1とSR2がともにOFFのときに試料面直方向(z方向)のスピン偏極度が測定できる。また、試料面内x方向のスピン偏極度を測定するには、SR1とSR2をともにONに、試料面内y方向のスピン偏極度を測定するには、SR2のみONにすればよい。
 図9および以下の実施例において、スピンローテーターを備えたスピンベクトル分布イメージング装置を示したが、スピンローテーターは必ずしも必要ない。スピンローテーターを設ける代わりに、試料の回転または/および2次元スピンフィルター、投影レンズ、検出器からなるスピン分析器の回転により、検出するスピンの方向を決めることも可能である。
 また、図9には、360°回転体型のエネルギー分析器を用いたスピンベクトル分布イメージング装置を示したが、回転角が180°以下のエネルギー分析器を用いたスピンベクトル分布イメージング装置を構成することもできる。
(スピンベクトル分布イメージング装置)
 図10は、図8に示す反射結像型電子分光装置を用いた簡易版のスピンベクトル分布イメージング装置の概略図である。単結晶ミラーの代わりに、Au/Ir(001)などの2次元スピンフィルター8が用いられる。これにより、スピン分析された2次元の実空間像または放出角度分布が検出器で得られる。インプットレンズ2は、図9に示すスピンベクトル分布イメージング装置と同じように、スピンローテーター7を備えてもよいし、備えなくてもよい。スピンローテーターを備えると、試料面内2方向のスピン偏極度が測定できるようになる。スピンローテーター7がOFFのとき、試料10の面内y方向(紙面垂直方向)のスピン偏極度が測定でき、スピンローテーター7がONのとき、試料面内x方向のスピン偏極度が測定できる。また、前述の通り、スピンローテーターを備える代わりに、試料10を回転することにより、試料10の面内2方向のスピン偏極度を測定することもできる。
(切替式の静電偏向収束型エネルギー分析器)
 図11は、本発明の切替式の静電偏向収束型エネルギー分析器の一実施形態の概略図である。図11に示す切替式の静電偏向収束型エネルギー分析器は、7つの外側電極EL1,EL2,・・・,EL7と6つの内側電極EL8,EL9,・・・,EL13をもち、外側電極は内面形状が軸対称、内側電極は外面形状が軸対称で、それらは同軸に配置されている。分析器の入口をz=0、出口をz=Lとすると、外側電極と内側電極は、z=L/2の面に対して対称となっている。また、外側電極と内側電極は、図1(1)の90°静電偏向収束型エネルギー分析器と同様、入口側の電極(EL1,EL2,EL8)は入口に向かって径が狭まるテーパー形状、出口側の電極(EL6,EL7,EL13)は出口に向かって径が狭まるテーパー形状を有している。
 図11の切替式の静電偏向収束型エネルギー分析器の最大の特徴は、内側電極が2つの領域に分離されていることであり、その効果として、左右の内側電極間にできた空間を電子が通過できるようになる。図11に示した電子軌道と等電位線は、90°偏向の場合の結果である。中心軸zから45°の角度で入射する軌道が中心軌道で、そこから±8°の入射角範囲の軌道が示されている。これら軌道は、図1(1)に示した軌道と比べて、z=Lでの収束が幾分低下している。下記表4は、図11の切替式の静電偏向収束型エネルギー分析器の各電極に印加する電圧をシミュレーションによって求めたもの(パスエネルギーEpass=1000eVに対する電圧値)である。1keVの電子に対して、EL10とEL11には、13kVの高電圧が与えられる。
Figure JPOXMLDOC01-appb-T000011
 図12(a)、(b)は、図11の切替式の静電偏向収束型エネルギー分析器において、電圧条件を変えて偏向を切り替えた結果である。それぞれの場合の電圧条件(パスエネルギーEpass=1000eVに対する電圧値)を下記表5及び表6に示す。図12(a)と図12(b)では、図11の場合と異なり、電子は左右の内側電極間に形成される電場を通過する。図12(a)の場合、軌道はz=L/2近辺でいったん収束した後、z=Lで再び収束する。これに対し、図12(b)の場合、途中にクロスオーバーを作らないでz=Lで収束する。ここで、何れの場合も、軌道はS字を描いてz=Lで元の方向を向いている。つまり、最終的に偏向角は0°となっている。
 一方、エネルギー分散は、図12(a)の場合、図11の場合と同程度になるが、図12(b)の場合は、打ち消し作用により、図12(a)の場合と比べて著しく減少する結果となる。その結果、図12(a)の設定は、エネルギー分析に好適に用いることができ、図12(b)の設定は、色収差を抑えたPEEM(光電子顕微鏡)測定に好適に用いることができる。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
(スピンベクトル分布イメージング装置)
 図13は、図11と図12に示した切替式の静電偏向収束型エネルギー分析器を用いたスピンベクトル分布イメージング装置の概略図である。3つの測定モードが示されている。図13(a)はスピン分解モード、図13(b)はスピン積分モード、図13(c)はPEEM(光電子顕微鏡)モードである。
 スピン分解モードでは、偏向切り替えエネルギー分析器は90°偏向の条件に設定される。90°偏向の電子に対して、静電レンズ19、第2スピンローテーター7b(SR2)、2次元スピンフィルター8、(紙面垂直方向に設けられた)第1投影レンズ3a、第1検出器4aが設けられ、図9の3次元スピン偏極度分析装置と同じ原理により、3次元のスピン偏極度の測定ができる。第2スピンローテーター7b(SR2)と(インプットレンズに設けられた)第1スピンローテーター7a(SR1)をともにOFFの設定にしたとき、試料10の面直方向のスピン偏極度が測定できる。
 スピン積分モードでは、S字軌道の電子に対して設けられた第2投影レンズ3bと第2検出器4bによって、スピン分解しない通常の2次元実空間像または2次元放出角度分布が測定できる。ここで、2次元実空間像の測定は内殻励起の鋭い光電子スペクトルピークを用いて行う。一方、真空紫外線やX線の照射により出てくる光電子の大部分は二次電子である。二次電子は、放出前の様々な過程でエネルギーを失った電子であり、幅広いエネルギーをもつ。
 PEEMでは、通常、この二次電子を用いて結像して、表面の仕事関数の違いによる明るいコントラストを得る。図13(c)のPEEMモードは、このようなPEEM像を測定するためのモードである。PEEMモードでは、エネルギー分散がキャンセルされる図12(b)の設定が用いられる。これにより色収差を抑えた明瞭なPEEM像を得ることが可能になる。図13の装置は、(図9の装置と比べて)このPEEM測定の機能が備わったことと、測定モードが各要素に印加する電圧のみで切り替えられるようになったことが特徴である。
(その他の90°静電偏向収束型エネルギー分析器)
 90°偏向収束を行う他の実施形態の静電型エネルギー分析器について、図14を参照して説明する。図14に示すように、本実施例の静電型エネルギー分析器は、2つ以上の電子光学系の組合せで構成される。ここで、組合せる各電子光学系は、静電収束ミラー、静電偏向器、静電レンズの何れであってもよい。
 図14において、組合せに用いる2つの電子光学系を模式的にAとBで表す。Aは偏向角β、Bは偏向角βをもつ。ただし、AまたはBに静電レンズを用いる場合、中心軌道は、レンズの中心軸ではなく、中心軸から一定の角度をもって入射し、一定の角度で出射する軌道とし、このときの偏向角をβまたはβとする。A、Bそれぞれの両端面に垂直に中心軌道の電子が入射または出射するものとする。A、Bの両端面は、xy平面に垂直に置かれ、Aの右側の端面とBの左側の端面は向かい合わせに置かれている。Aの左側の端面に垂直なベクトルをベクトルa,Bの右側の端面に垂直なベクトルをベクトルbとすると、それらはβとβを用いて下記の式(7)で与えられる。
Figure JPOXMLDOC01-appb-M000014
 Bをx軸の周りに角度γだけ回転すると、Bの右側の端面に垂直なベクトルは、下記の式(8)となる。ここで、ベクトルaとベクトルb’が垂直になる条件は、下記の式(9)で与えられるから、90°偏向のための回転角γの条件は、下記の式(10)となる。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 上記に基づき、偏向角が等しい2つの電子光学系(β=β)を用いて90°偏向を達成するいくつかの組合せを図15に示す。たとえば、β=β=60°の場合、γ=70.5°で組合せると90°偏向になる。図16(a)は、β=βの場合の90°偏向の条件を示す。この条件が成り立つのは、偏向角が45~135°の場合に限られる。この場合、図に示したγを選ぶことによって90°偏向が達成できる。図16(b)は、β≠βの場合のいくつかのβに対する90°偏向の条件を示す。γ=90°の点線とβ=90°の点線は、それぞれ、β=90°とβ=0°の場合のβとγの関係を表す。
図17(a),(b)は、それぞれ、45°静電偏向収束型エネルギー分析器、60°静電偏向収束型エネルギー分析器の実施例である。中心軌道は、45°静電偏向収束型エネルギー分析器の場合、中心軸から22.5°の角度で入射する軌道、60°静電偏向収束型エネルギー分析器の場合は、中心軸から30°の角度で入射する軌道となっている。図17(a),(b)には、中心軌道から測って、±8°の入射角範囲の軌道が示されている。これら軌道の収束性は、図1(1)の90°静電偏向収束型エネルギー分析器の場合と比べると低下しているが、入射角を±5°程度まで制限すると高い収束が得られる。
 図17(a)の45°静電偏向収束型エネルギー分析器の場合、図15(a)に示した場合と同様に、同じもの2つを回転角γ=0°で組合せることにより90°偏向を達成できる。図18(a)は、この組合せによる90°静電偏向収束型エネルギー分析器を示す。一方、60°静電偏向収束型エネルギー分析器の場合は、図15(b)のように、同じもの2つを回転角γ=70.5°で組合せることにより90°偏向を達成できる。図18(b)は、この組合せによる90°静電偏向収束型エネルギー分析器を示す。また、図17の45°静電偏向収束型エネルギー分析器と60°静電偏向収束型エネルギー分析器を組合せる場合は、上記の式(10)より、回転角γ=54.7°の設定で90°偏向を達成できる。
 図19(a),(b),(c)は、それぞれ、120°静電偏向収束型エネルギー分析器、135°静電偏向収束型エネルギー分析器、150°静電偏向収束型エネルギー分析器の実施例の概略図を示している。それぞれ、中心軌道は、中心軸から60°,67.5°,75°の角度で入射する軌道である。図19(a),(b),(c)には、中心軌道から測って±8°の入射角範囲の軌道が示されている。これら軌道は、図17(a),(b)の軌道と比べて収束が向上している。なお、図19と同様の電極構成で偏向角が150°以上、180°以下のエネルギー分析器を設計することもできる。ただし、偏向角が160°程度以上になると収束性能が著しく低下する。また、図16(b)または上記の式(10)によれば、図19(a),(b)のように偏向角が大きい分析器を用いて90°偏向を達成することもできる。しかし、偏向角が大きい場合は、幾何学的制約から、図17のような360°回転体型(図7参照)ではなく、180°以下の回転角を有するエネルギー分析器が用いられる。
 偏向角が小さいエネルギー分析器と偏向角が大きいエネルギー分析器には、それぞれ、メリットとデメリットがある。まず、偏向角が、図17(a),(b)のように小さいエネルギー分析器を用いる場合、インプットレンズとの組合せ設計が容易になるというメリットがある。しかし、偏向角が小さくなると、エネルギー分散が小さくなり、エネルギー分解能が低下するという問題がある。
 一方、図19(a),(b)のように偏向角が大きいエネルギー分析器の場合は、エネルギー分解能が向上するが、インプットレンズや他のエネルギー分析器と組合せる場合には、180°回転体型などの複雑な設計が必要になる。
 下記表7に、図1、図17、図19の各々の静電偏向収束型エネルギー分析器の印加電圧をまとめる。これらはパスエネルギーEpass=1000eVに対する電圧値である。これらのエネルギー分析器においては、内側電極EL7に、1000eVに対して13~24kV程度の高電圧が印加される。図1、図17、図19に示した静電偏向収束型エネルギー分析器に限らず、本発明の静電偏向収束型エネルギー分析器においては、内側電極の少なくとも1つの電極に印加される電圧は、1000eVに対して、おおむね10~50kVの範囲で設定することが望ましい。ただし、高い収束性能が必要ないときは、内側電極の少なくとも1つの電極に印加される電圧は、1000eVに対して2~5kV程度以上、10kV程度以下であってもよい。
Figure JPOXMLDOC01-appb-T000018
 なお、実施例として特定の偏向角の静電偏向収束型エネルギー分析器を示したが、本発明の静電偏向収束型エネルギー分析器は、同様の設計によって45°~180°の任意の偏向角をもつエネルギー分析器として提供することもできる。
 図32(a)に示す静電偏向収束型エネルギー分析器は、図1と同じ構成の静電偏向収束型エネルギー分析器において、EL7に印加する電圧を換算加速電圧の10倍(Epass=1keVの場合、10kV)に設定して、内側電極の外径と外側電極の内径およびEL3に印加する電圧を調整し、開口収差を最小化したものである。図1において、内側電極の外径と長さLとの比は約0.12、外側電極の内径と長さLとの比は約0.64であるのに対し、図32(a)においては、内側電極の外径と長さLとの比は約0.27、外側電極の内径と長さLとの比は約0.76となっている。図32(a)の静電偏向収束型エネルギー分析器では、開口収差による像のボケが、図32(b)に示すように、図1に示す静電偏向収束型エネルギー分析器の構成の場合と比較して約13倍にも増加する。このように、EL7に印加する電圧を換算加速電圧の10倍程度まで下げると、収束性能の低下が顕著になる。しかし、この収束性能の低下は、内側電極を適切な形状にすることより大幅に軽減することができる。
 ここで、本発明の静電偏向収束型エネルギー分析器における内側電極としては、どのような形状が適切かについて説明すべく、その一例を図33(a)に示す。EL7には、図32(a)の場合と同様、換算加速電圧の10倍の電圧を設定している。EL6とEL8は、図1や図32(a)に示す静電偏向収束型エネルギー分析器と違って、2つの外径D1、D2(D1<D2)で特徴づけられるステップ形状を有する。図33(a)において、D1と長さLとの比は0.11、D2と長さLとの比は0.24である。また、外側電極の内径と長さLとの比は約0.76である。収束性能は、図33(b)に示すように、図1に示す静電偏向収束型エネルギー分析器の場合と比べると劣るが、図32(a)に示す静電偏向収束型エネルギー分析器の場合と比較すると大幅に改善されているのが分かる。図33(a)において、EL6とEL8は、図1や図32(a)に示す静電偏向収束型エネルギー分析器の場合と同様、入口または出口に向かって径が小さくなるテーパー部を有しているが、このテーパー部を無くした設計も有効であり、最もシンプルな形状としては、2つの外径D1、D2とz軸方向の2つの長さのみで特徴づけられる同軸2段円筒形状であってもよい。
 図34は、内側電極EL7にさらに低い電圧を印加する場合の本発明の静電偏向収束型エネルギー分析器の実施例である。図34(a)、(b)、(c)は、それぞれ、内側電極EL7に換算加速電圧の5倍、2倍、1.5倍の電圧(Epass=1keVの場合、それぞれ、5kV、2kV、1.5kV)を印加する場合の実施例である。いずれの場合も、内側電極EL6とEL8は、入口または出口側にテーパー部を有するステップ形状となっている。ただし、図33の場合と同様、テーパー部を無くした設計も有効であり、2つの外径D1、D2とz軸方向の2つの長さのみで特徴づけられる同軸2段円筒形状であってもよい。EL7の外面は、外径がD1、D2より大きい円筒形状となる。このように、内側電極は、テーパー部を除くと、全体として同軸3段円筒形状となっている。図34(a)、(b)、(c)は、それぞれ、開口収差が最小になるように、3つの外径と各部の長さ、および印加電圧が調整された結果となっている。D1、D2、D3と長さLとの比は、図34(a)に示す静電偏向収束型エネルギー分析器の場合、D1/L=0.11、D2/L=0.26、D3/L=0.38、図34(b)に示す静電偏向収束型エネルギー分析器の場合、D1/L=0.13、D2/L=0.28、D3/L=0.52、図34(c)に示す静電偏向収束型エネルギー分析器の場合、D1/L=0.13、D2/L=0.28、D3/L=0.51である。また、外側電極の内径と長さLとの比は、図34(a)に示す静電偏向収束型エネルギー分析器の場合、約0.76、図34(b)と図34(c)に示す静電偏向収束型エネルギー分析器の場合、0.87である。
 図34(a)、(b)、(c)に示す静電偏向収束型エネルギー分析器の場合の開口収差は、図1、図33(a)に示す静電偏向収束型エネルギー分析器の場合の開口収差とともに、図35に示されている。ここで注目すべき点は、EL7に印加する電圧を下げていくにつれて開口収差が大きくなっていることである。したがって、開口収差を小さくする目的においては、EL7に印加する電圧はできるだけ高い設定にすることが望ましい。もう一つの注目点は、EL7に印加する電圧を換算加速電圧の2倍から1.5倍に下げたときに、開口収差が急激に増加していることである。したがって、EL7に印加する電圧は、換算加速電圧の2倍程度以上に設定することが望ましい。なお、EL7に印加する電圧を図1に示す静電偏向収束型エネルギー分析器の場合よりも大きく設定することにより、開口収差をさらに小さくすることが可能である。ただし、EL7に印加する電圧はいくらでも高く設定できるわけではなく内径電極の設計・製作上の制約をうける。
 図36は、EL7に印加する電圧を換算加速電圧の50倍に設定した場合の本発明の静電偏向収束型エネルギー分析器の一例である。最適化の結果、EL7の外径がEL6、EL8の外径よりも小さくなっているのが特徴である。この図が示唆するように、EL7に印加する電圧は50倍程度が限界であり、これより大きくしようとすると、EL7の外径が小さくなり過ぎて配線や絶縁が難しくなるという問題が生じる。
 本発明の静電偏向収束型エネルギー分析器をイメージング装置に用いる場合、開口収差を十分小さくする必要があるが、この場合、EL7に印加する電圧は、図35と上記考察から、換算加速電圧の10倍~50倍程度に設定することが望ましい。また、高い収束性能と設計・製作のしやすさの両方を求める場合、EL7に印加する電圧は、換算加速電圧の20倍~30倍程度に設定することが望ましい。
 下記表8は、図32(a)、図33(a)、図34(a)、図34(b)、図34(c)、図36に示す静電偏向収束型エネルギー分析器の場合の印加電圧をまとめた表である。表8より、EL1~EL8への電圧のかけ方が、図34(b)に示す静電偏向収束型エネルギー分析器の場合を境に変化しているのが分かる。EL7に印加する電圧が換算加速電圧の2倍程度以上の場合は、その他の電極には0またはプラスの電圧が印加され、EL7に印加する電圧が換算加速電圧の2倍程度以下の場合には、その他の電極には0またはマイナスの電圧が印加される。図34(b)に示す静電偏向収束型エネルギー分析器の場合を見ると、外側電極EL1~EL5はすべて同電位(0V)に設定されているため、それらをまとめて1つの電極として設計することもできる。また、図34(a)に示す静電偏向収束型エネルギー分析器の場合、外側電極は、(隣接する)EL1、EL2およびEL4、EL5が同電位(0V)のため、全部で3つの電極として設計することもできる。このように、外側電極の数は実施例に示したEL1~EL5の5個に限らず、3個または1個でもよく、さらには、2個、4個または6個以上であってもよい。また、内側電極の数は、実施例に示したEL6~EL8の3個に限らず、4個以上であってもよい。電極の数を増やすと電場をより細かく調整できるようになる。
Figure JPOXMLDOC01-appb-T000019
 電極の形状や配置についても、実施例に示した電場と同様の電場を形成できる設定となっていればよく、様々な変化が可能である。ここで、本発明の静電偏向収束型エネルギー分析器の電場の特徴について述べる。
1)電子は静電偏向収束型エネルギー分析器に入射すると電場によって加速されながら進行方向を少しずつ変える。
2)入射点と出射点の中間面(z=L/2)またはそれに近い位置で静電偏向収束型エネルギー分析器の軸(z軸)と平行になる
3)その後、減速されながら進行方向を少しずつ変え、出射位置に到達する。このとき、中心軌道の電子は所定の偏向角を得て出射する。
 一方、CMA(同軸円筒鏡分析器)の場合、円筒電場に入射した電子は、減速によって方向を変え、入射点と出射点の中間面でz軸と平行になり、その後加速されながら方向を変えて、出射位置に到達する。また、CHAでは、中心軌道の電子は、球対称電場による中心力と遠心力の釣り合いによって円軌道を描くため加速も減速もされない。このように、本発明の静電偏向収束型エネルギー分析器は、CMAやCHAで用いられている電場とは根本的に異なっている。
 本発明は、エネルギー分析器、光電子分光装置、スピン偏極度分析装置に有用である。
 1   90°静電偏向収束型エネルギー分析器
 2   インプットレンズ
 3,3a,3b   投影レンズ
 4,4a,4b   検出器
 5   単結晶ミラー
 6   アパチャー
 7,7a,7b   スピンローテーター
 8   2次元スピンフィルター
 9   光または電子ビーム
 10  試料
 11  入射穴
 12  出射穴
 13  回転軸
 14  中央面
 17  内側電極固定脚
 18  補償電極
 19  静電レンズ
 20a,20b  等脚台形

Claims (17)

  1.  回転軸を共通として内側と外側に形成される2つの回転体の形状に沿って配置される1つ又は複数の外側電極と複数の内側電極と、前記外側電極の両端の電極の前記回転軸上に形成される電子の入射穴と出射穴と、前記外側電極と前記内側電極に電子を加速して減速する電圧を印加する電圧印加手段を備え、
     前記外側電極の内面形状が、前記入射穴に向かって小径になる形状であり、かつ、前記出射穴に向かって小径になる形状であり、
     前記内側電極の外面形状が、前記入射穴に向かって小径になる形状、前記入射穴に向かって延びるロッド形状、又は、前記入射穴側の端部で径が広がる形状であり、かつ、前記出射穴に向かって小径になる形状、前記出射穴に向かって延びるロッド形状、又は、前記出射穴側の端部で径が広がる形状であり、
     前記電圧印加手段は、 前記内側電極の両端の電極を除いた内側電極の印加電圧が、前記入射穴が形成された前記外側電極の電位を基準として、電子のエネルギーを加速電圧に換算した換算加速電圧の2倍以上の電圧であり、
     中心軌道が前記回転軸と所定入射角度になるように、前記入射穴から入射した電子を、中心軌道が前記回転軸と所定出射角度で前記出射穴の位置に収束させる印加電圧を各電極に印加することを特徴とする静電偏向収束型エネルギー分析器。
  2.  外側電極の内面形状と内側電極の外面形状は、それぞれ、前記入射穴と出射穴を結ぶ直線の中点で該直線と垂直に交差する面を対称面として対称であることを特徴とする請求項1に記載の静電偏向収束型エネルギー分析器。
  3.  前記外側電極の内面形状における入射穴に向かって小径になる形状は、テーパー形状、トロイダル面形状又はリング形状であり、かつ、前記外側電極の内面形状における出射穴に向かって小径になる形状は、テーパー形状、トロイダル面形状又はリング形状であり、
     前記内側電極の外面形状における入射穴に向かって小径になる形状は、テーパー形状もしくはトロイダル面形状、又は、前記入射穴に向かって段階的に小径になるステップ形状であり、かつ、前記出射穴に向かって小径になる形状は、テーパー形状もしくはトロイダル面形状、又は、前記出射穴に向かって段階的に小径になるステップ形状であることを特徴とする請求項1又は2に記載の静電偏向収束型エネルギー分析器。
  4.  前記内側電極の両端の電極を除いた1つ又は複数の内側電極に印加される電圧は、電子のエネルギーを加速電圧に換算した換算加速電圧の10~50倍であることを特徴とする請求項1~3の何れかに記載の静電偏向収束型エネルギー分析器。
  5.  前記外側電極の両端の電極を除いた1つ又は複数の外側電極に印加される電圧は、前記換算加速電圧の10倍以下であることを特徴とする請求項4に記載の静電偏向収束型エネルギー分析器。
  6.  偏向角が90°であることを特徴とする請求項1~5の何れかに記載の静電偏向収束型エネルギー分析器。
  7.  偏向角が45°、60°、120°、135°、150°の何れかであることを特徴とする請求項1~5の何れかに記載の静電偏向収束型エネルギー分析器。
  8.  偏向角が、45°以上90°未満、又は、90°より大きく180°以下であることを特徴とする請求項1~5の何れかに記載の静電偏向収束型エネルギー分析器。
  9.  前記内側電極は、中心軌道の電子が前記回転軸を横切って通過できるように、2つの部分に分かれており、
     電極に印加される電圧条件を変えることにより、中心軌道が前記回転軸を横切るか否かを制御し、前記出射穴より出射する電子の偏向の有無を切替し得ることを特徴とする請求項1~8の何れかに記載の静電偏向収束型エネルギー分析器。
  10.  前記回転体は90°~180°の回転角を有する回転体であり、切断面で電場を補償する補償電極が設けられたことを特徴とする請求項1~8の何れかに記載の静電偏向収束型エネルギー分析器。
  11.  請求項1~10の何れかの静電偏向収束型エネルギー分析器を用いた電子分光装置であって、
     レンズ軸上に前記入射穴を配置し、前記レンズ軸と前記回転軸とが前記所定入射角度になるように配置され、試料から放出された電子を取り込み前記入射穴に出射するインプットレンズと、
     投影レンズ軸上に前記出射穴を配置し、前記投影レンズ軸と前記回転軸とが前記所定出射角度になるように配置され、前記静電偏向収束型エネルギー分析器によって偏向収束する電子を前記出射穴から取り込む投影レンズと、
     前記投影レンズを透過した電子を検出する検出器、
    を備えたことを特徴とする結像型電子分光装置。
  12.  請求項1~9の何れかの静電偏向収束型エネルギー分析器を用いた電子分光装置であって、
     レンズ軸上に前記入射穴を配置し、前記レンズ軸と前記回転軸とが前記所定入射角度になるように配置され、試料から放出された電子を取り込み前記入射穴に出射するインプットレンズと、
     前記エネルギー分析器の前記出射穴に配置され、前記回転軸を垂線とするミラーと、
     投影レンズ軸上に前記入射穴を配置し、前記投影レンズ軸と前記回転軸とが前記所定入射角度になるように配置され、前記静電偏向収束型エネルギー分析器によって偏向収束し前記ミラーで反射した後に再び偏向収束する電子を前記入射穴から取り込む投影レンズと、
     前記投影レンズを透過した電子を検出する検出器、
    を備えたことを特徴とする反射結像型電子分光装置。
  13.  請求項6の静電偏向収束型エネルギー分析器、又は、偏向角が90°である請求項9の静電偏向収束型エネルギー分析器と、
     レンズ軸上に前記入射穴を配置し、前記レンズ軸と前記回転軸とが前記所定入射角度になるように配置され、試料から放出された電子を取り込み前記入射穴に出射するインプットレンズと、
     静電レンズ軸上に前記出射穴を配置し、前記静電レンズ軸と前記回転軸とが前記所定出射角度になるように配置され、前記静電偏向収束型エネルギー分析器によって偏向収束する電子を前記出射穴から取り込む静電レンズと、
     前記静電レンズの出射側で静電レンズ軸上に配置された2次元スピンフィルターと、
     前記スピンフィルターにより反射される電子を取り込む投影レンズ及び投影レンズを透過した電子を検出する検出器と、
    を備えることを特徴とするスピンベクトル分布イメージング装置。
  14.  請求項6の静電偏向収束型エネルギー分析器と、
     レンズ軸上に前記入射穴を配置し、前記レンズ軸と前記回転軸とが前記所定入射角度になるように配置され、試料から放出された電子を取り込み前記入射穴に電子を出射するインプットレンズと、
     前記静電偏向収束型エネルギー分析器の前記出射穴に配置され、前記回転軸を垂線とする2次元スピンフィルターと、
     投影レンズ軸上に前記入射穴を配置し、前記投影レンズ軸と前記回転軸とが前記所定入射角度になるように配置され、前記静電偏向収束型エネルギー分析器によって偏向収束し前記2次元スピンフィルターで反射した後に再び偏向収束する電子を前記入射穴から取り込む投影レンズと、
     前記投影レンズを透過した電子を検出する検出器、
    を備えることを特徴とするスピンベクトル分布イメージング装置。
  15.  請求項9の静電偏向収束型エネルギー分析器であって、偏向角が90°である前記静電偏向収束型エネルギー分析器と、
     レンズ軸上に前記入射穴を配置し、前記レンズ軸と前記回転軸とが前記所定入射角度になるように配置され、試料から放出された電子を取り込み前記入射穴に電子を出射するインプットレンズと、
     静電レンズ軸上に前記出射穴を配置し、前記静電レンズ軸と前記回転軸とが前記所定出射角度になるように配置され、前記静電偏向収束型エネルギー分析器によって偏向収束する電子を前記出射穴から取り込む静電レンズと、
     前記静電レンズの出射側で静電レンズ軸上に配置された2次元スピンフィルターと、
     前記スピンフィルターにより反射される電子を取り込む第1投影レンズ及び第1投影レンズを透過した電子を検出する第1検出器と、
     投影レンズ軸上に前記出射穴を配置し、前記投影レンズ軸と前記回転軸とが前記所定出射角度になるように配置され、前記静電偏向収束型エネルギー分析器によって偏向すること無く収束する電子を前記出射穴から取り込む第2投影レンズと、
     前記第2投影レンズを透過した電子を検出する第2検出器、
    を備えることを特徴とするスピンベクトル分布イメージング装置。
  16.  請求項13~15の何れかのスピンベクトル分布イメージング装置において、偏向角が90°である前記静電偏向収束型エネルギー分析器を、請求項7の静電偏向収束型エネルギー分析器を複数組合せたものに替えた、又は、偏向角を45°~150°に設定した請求項1~5の何れかの静電偏向収束型エネルギー分析器を複数組合せたものに替えた、ことを特徴とするスピンベクトル分布イメージング装置。
  17.  前記インプットレンズと前記静電レンズの少なくとも一方のレンズ内部又は外部に配置され、各レンズ軸と垂直な面内でスピンを90°回転するスピンローテーターを備えたことを特徴とする請求項13~16の何れかに記載のスピンベクトル分布イメージング装置。
PCT/JP2021/026052 2020-07-09 2021-07-09 静電偏向収束型エネルギー分析器、結像型電子分光装置、反射結像型電子分光装置、およびスピンベクトル分布イメージング装置 WO2022009995A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180049046.0A CN115803844A (zh) 2020-07-09 2021-07-09 静电偏转会聚型能量分析仪、成像型电子光谱装置、反射成像型电子光谱装置以及自旋矢量分布成像装置
JP2022535410A JPWO2022009995A1 (ja) 2020-07-09 2021-07-09
EP21836935.3A EP4170694A4 (en) 2020-07-09 2021-07-09 ELECTROSTATIC DEVIATION CONVERGENCE TYPE ENERGY ANALYZER, IMAGING TYPE ELECTRON SPECTROSCOPY DEVICE, REFLECTIVE IMAGING TYPE ELECTRON SPECTROSCOPY DEVICE, AND SPIN VECTOR DISTRIBUTION IMAGING DEVICE
US18/015,057 US20240047190A1 (en) 2020-07-09 2021-07-09 Electrostatic deflection convergence-type energy analyzer, imaging-type electron spectroscopic device, reflecting imaging-type electron spectroscopic device, and spin vector distribution imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020118687 2020-07-09
JP2020-118687 2020-07-09

Publications (1)

Publication Number Publication Date
WO2022009995A1 true WO2022009995A1 (ja) 2022-01-13

Family

ID=79552580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026052 WO2022009995A1 (ja) 2020-07-09 2021-07-09 静電偏向収束型エネルギー分析器、結像型電子分光装置、反射結像型電子分光装置、およびスピンベクトル分布イメージング装置

Country Status (5)

Country Link
US (1) US20240047190A1 (ja)
EP (1) EP4170694A4 (ja)
JP (1) JPWO2022009995A1 (ja)
CN (1) CN115803844A (ja)
WO (1) WO2022009995A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4802340B2 (ja) 2004-07-15 2011-10-26 国立大学法人 奈良先端科学技術大学院大学 球面収差補正静電型レンズ、インプットレンズ、電子分光装置、光電子顕微鏡、および測定システム
JP4900389B2 (ja) 2006-07-26 2012-03-21 国立大学法人 奈良先端科学技術大学院大学 球面収差補正減速型レンズ、球面収差補正レンズシステム、電子分光装置および光電子顕微鏡
WO2012066024A1 (de) 2010-11-17 2012-05-24 Specs Surface Nano Analysis Gmbh Spindetektoranordnung zum messen der vektorkomponenten eines in einem teilchenstrahl vorherrschenden spinvektors
WO2012173007A1 (ja) 2011-06-17 2012-12-20 サンユー電子株式会社 スピン回転装置
WO2019216348A1 (ja) * 2018-05-09 2019-11-14 国立大学法人奈良先端科学技術大学院大学 減速比可変球面収差補正静電レンズ、広角エネルギーアナライザ、及び、二次元電子分光装置
WO2021125297A1 (ja) 2019-12-17 2021-06-24 大学共同利用機関法人自然科学研究機構 球面収差調整カソードレンズ、球面収差補正静電型レンズ、電子分光装置、及び光電子顕微鏡

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4802340B2 (ja) 2004-07-15 2011-10-26 国立大学法人 奈良先端科学技術大学院大学 球面収差補正静電型レンズ、インプットレンズ、電子分光装置、光電子顕微鏡、および測定システム
JP4900389B2 (ja) 2006-07-26 2012-03-21 国立大学法人 奈良先端科学技術大学院大学 球面収差補正減速型レンズ、球面収差補正レンズシステム、電子分光装置および光電子顕微鏡
WO2012066024A1 (de) 2010-11-17 2012-05-24 Specs Surface Nano Analysis Gmbh Spindetektoranordnung zum messen der vektorkomponenten eines in einem teilchenstrahl vorherrschenden spinvektors
WO2012173007A1 (ja) 2011-06-17 2012-12-20 サンユー電子株式会社 スピン回転装置
WO2019216348A1 (ja) * 2018-05-09 2019-11-14 国立大学法人奈良先端科学技術大学院大学 減速比可変球面収差補正静電レンズ、広角エネルギーアナライザ、及び、二次元電子分光装置
WO2021125297A1 (ja) 2019-12-17 2021-06-24 大学共同利用機関法人自然科学研究機構 球面収差調整カソードレンズ、球面収差補正静電型レンズ、電子分光装置、及び光電子顕微鏡

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
A. W. ROSS ET AL.: "J. Electron Spectrosc", RELAT. PHENOM, vol. 69, 1994, pages 189
C. TUSCHE ET AL.: "Spin resolved bandstructure imaging with a high resolution momentum microscope", ULTRAMICROSCOPY, vol. 159, 2015, pages 520, XP029346298, DOI: 10.1016/j.ultramic.2015.03.020
E. KISKER ET AL., REV. SCI. INSTRUM, vol. 50, 1979, pages 1598
EDWARDS DAVID: "The segmented cylindrical mirror analyzer (CMA)", JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, ELSEVIER SIENCE PUBLISHERS, AMSTERDAM, NL, vol. 209, 7 April 2016 (2016-04-07), NL , pages 46 - 52, XP029526302, ISSN: 0368-2048, DOI: 10.1016/j.elspec.2016.02.004 *
F. MATSUI ET AL.: "Atomic-orbital analysis of the Cu Fermi surface by two-dimensional photoelectron spectroscopy", PHYS. REV. B, vol. 72, 2005, pages 195417
F. MATSUI ET AL.: "Selective detection of angular-momentum-polarized Auger electrons by atomic stereography", PHYS. REV. LETT, vol. 114, 2015, pages 015501
F. MATSUI ET AL.: "Three-dimensional band mapping of graphite", APPL. PHYS. LETT., vol. 81, 2002, pages 2556, XP012032062, DOI: 10.1063/1.1511818
F. MATSUIT. MATSUSHITAH. DAIMON: "Stereo atomscope and diffraction spectroscopy-Atomic site specific property analysis", J. ELECTRON SPECTROSC. RELAT. PHENOM, vol. 178-179, 2010, pages 221
H. DAIMON: "New display-type analyzer for the energy and the angular distribution of charged particles", REV. SCI. INSTRUM., vol. 59, 1988, pages 545
H. MATSUDA ET AL.: "Development of display-type ellipsoidal mesh analyzer: Computational evalua tion and experimental validation", J. ELECTRON SPECTROSC. RELAT. PHENOM, vol. 195, 2014, pages 382
H. MATSUDAH. DAIMON: "Approach for simultaneous measurement of two-dimensional angular distribution of charged particles. II. Deceleration and focusing of wide-angle beams using a curved mesh lens", PHYS. REV. E, vol. 74, 2006, pages 036501
H. MATSUDAH. DAIMONM. KATOM. KUDO: "Approach for simultaneous measurement of two-dimensional angular distribution of charged particles: Spherical aberration correction using an ellipsoidal mesh", PHYS. REV. E, vol. 71, 2005, pages 066503
ISARI KOUJI, HIROAKI YOSHIDA, TATSUO GEJO, EIICHI KOBAYASHI, KAZUHIKO MASE, SHIN-ICHI NAGAOKA, KENICHIRO TANAKA: "Construction and Evaluation of Coaxially Symmetric Mirror Electron Energy Analyzer with High Sensitivity, and Its Application to Coincidence Spectroscopy", SHINKU / VACUUM SOCIETY OF JAPAN. JOURNAL., NIHON SHINKU KYOKAI, TOKYO, JP, vol. 46, no. 5, 20 May 2003 (2003-05-20), JP , pages 377 - 384, XP055885301, ISSN: 0559-8516, DOI: 10.3131/jvsj.46.377 *
L.VATTUONEM.ROCCA: "Electrostatic electron analyzer with 90° deflection angle", REV. SCI. INSTRUM., vol. 73, 2002, pages 3861, XP012039468, DOI: 10.1063/1.1510555
M. KOTSUGI ET AL.: "Microspectro-scopic two-dimensional Fermi surface mapping using a photoelectron emission microscope", REV. SCI. INSTRUM., vol. 74, 2003, pages 2754
See also references of EP4170694A4
T. KOHASHI ET AL.: "A spin rotator used for detecting all three magnetization vector components in spin-polarized electron microscopy", J. MAG. SOC. JPN, vol. 18, 1994, pages 7
T. OKUDA ET AL.: "J. Electron Spectrosc", RELAT. PHENOM, vol. 201, 2015, pages 23

Also Published As

Publication number Publication date
CN115803844A (zh) 2023-03-14
EP4170694A4 (en) 2024-07-10
US20240047190A1 (en) 2024-02-08
EP4170694A1 (en) 2023-04-26
JPWO2022009995A1 (ja) 2022-01-13

Similar Documents

Publication Publication Date Title
Spence High-resolution electron microscopy
Fink et al. SMART: a planned ultrahigh-resolution spectromicroscope for BESSY II
US9613779B2 (en) Scanning transmission electron microscope with variable axis objective lens and detective system
Rose Prospects for realizing a sub-Å sub-eV resolution EFTEM
US8729466B1 (en) Aberration-corrected and energy-filtered low energy electron microscope with monochromatic dual beam illumination
US11609193B2 (en) Spectroscopy and imaging system
US11328918B2 (en) Device and method for electron transfer from a sample to an energy analyzer and electron spectrometer device
US8334508B1 (en) Mirror energy filter for electron beam apparatus
US7655923B2 (en) Spherical aberration corrected electrostatic lens, input lens, electron spectrometer, photoemission electron microscope and measuring system
US7250599B2 (en) Energy filter image generator for electrically charged particles and the use thereof
WO2019216348A1 (ja) 減速比可変球面収差補正静電レンズ、広角エネルギーアナライザ、及び、二次元電子分光装置
WO2022009995A1 (ja) 静電偏向収束型エネルギー分析器、結像型電子分光装置、反射結像型電子分光装置、およびスピンベクトル分布イメージング装置
JP7505794B2 (ja) 球面収差調整カソードレンズ、球面収差補正静電型レンズ、電子分光装置、及び光電子顕微鏡
US7569816B1 (en) Electron spectrometer
JP4514720B2 (ja) 結像装置、帯電粒子装置、帯電粒子結像装置を動作する方法、及び帯電粒子装置を動作する方法
US7608838B1 (en) Electron optical component
JP2006278069A (ja) ウィーンフィルタ型エネルギーアナライザ及び放出電子顕微鏡
Matsuda et al. Compact 2D electron analyzer CoDELMA: Simultaneous wide reciprocal and real space analysis using wide-angle deceleration lens, CMA and projection lens
CN112305002B (zh) 光谱学和成像系统
Belov et al. Two-stage systems with intermediate beam retarding for energy and spatial analysis of photoelectrons
Lutsch et al. Initial resolution measurements of miniaturized electrostatic lenses for LVSEM
US11094498B2 (en) Monochromator and charged particle beam system
WO2022018782A1 (ja) エネルギーフィルタ、およびそれを備えたエネルギーアナライザおよび荷電粒子ビーム装置
JP2024103470A (ja) 単色化された荷電粒子源におけるゼロロスピークを狭めるための技術
Tsuno et al. Application of Wien filters to electrons

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21836935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535410

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18015057

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021836935

Country of ref document: EP

Effective date: 20230119

NENP Non-entry into the national phase

Ref country code: DE