WO2022009995A1 - 静電偏向収束型エネルギー分析器、結像型電子分光装置、反射結像型電子分光装置、およびスピンベクトル分布イメージング装置 - Google Patents
静電偏向収束型エネルギー分析器、結像型電子分光装置、反射結像型電子分光装置、およびスピンベクトル分布イメージング装置 Download PDFInfo
- Publication number
- WO2022009995A1 WO2022009995A1 PCT/JP2021/026052 JP2021026052W WO2022009995A1 WO 2022009995 A1 WO2022009995 A1 WO 2022009995A1 JP 2021026052 W JP2021026052 W JP 2021026052W WO 2022009995 A1 WO2022009995 A1 WO 2022009995A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrostatic
- hole
- energy analyzer
- incident
- electrons
- Prior art date
Links
- 238000009826 distribution Methods 0.000 title claims abstract description 71
- 238000003384 imaging method Methods 0.000 title claims abstract description 54
- 230000001133 acceleration Effects 0.000 claims abstract description 43
- 230000005684 electric field Effects 0.000 claims description 47
- 230000007423 decrease Effects 0.000 claims description 17
- 230000010287 polarization Effects 0.000 description 51
- 230000004075 alteration Effects 0.000 description 43
- 238000010586 diagram Methods 0.000 description 25
- 238000005259 measurement Methods 0.000 description 24
- 238000004458 analytical method Methods 0.000 description 20
- 238000013461 design Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 14
- 230000008859 change Effects 0.000 description 13
- 239000013078 crystal Substances 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 12
- 230000035945 sensitivity Effects 0.000 description 11
- 238000010894 electron beam technology Methods 0.000 description 10
- 230000009471 action Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 238000004141 dimensional analysis Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 238000004002 angle-resolved photoelectron spectroscopy Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 230000005686 electrostatic field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000001420 photoelectron spectroscopy Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000004402 ultra-violet photoelectron spectroscopy Methods 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001941 electron spectroscopy Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 230000005469 synchrotron radiation Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/22—Electrostatic deflection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/44—Energy spectrometers, e.g. alpha-, beta-spectrometers
- H01J49/46—Static spectrometers
- H01J49/48—Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/227—Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/05—Arrangements for energy or mass analysis
- H01J2237/053—Arrangements for energy or mass analysis electrostatic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/245—Detection characterised by the variable being measured
- H01J2237/24507—Intensity, dose or other characteristics of particle beams or electromagnetic radiation
- H01J2237/24557—Spin polarisation (particles)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/26—Electron or ion microscopes
- H01J2237/285—Emission microscopes
Definitions
- the present invention relates to a photoelectron spectroscope such as UPS (Ultraviolet Photoelectron Spectroscopy), XPS (X-ray Photoelectron Spectroscopy), ARPES (Angle Resolved Photoelectron Spectroscopy), an Auger electron spectroscope, a photoelectron diffractometer, a photoelectron microscope, and a spin polarization analyzer. It is about.
- UPS Ultraviolet Photoelectron Spectroscopy
- XPS X-ray Photoelectron Spectroscopy
- ARPES Angle Resolved Photoelectron Spectroscopy
- Auger electron spectroscope such as UPS (Ultraviolet Photoelectron Spectroscopy), XPS (X-ray Photoelectron Spectroscopy), ARPES (Angle Resolved Photoelectron Spectroscopy), an Auger electron spectroscope, a photoelec
- sensitivity is one of the most important performances along with energy resolution.
- SN ratio signal-to-noise ratio
- the electron spectroscope it is possible to measure the emission angle distribution in addition to the measurement of the energy distribution of the electrons emitted from the sample.
- the measurement of the energy distribution provides information on the composition of the elements
- the measurement of the emission angle distribution provides information on the composition in the depth direction and the electronic state. Further, since the momentum in the in-plane direction of the sample is preserved in the photoelectron emission process, information on the momentum of electrons in the substance can be obtained by measuring the kinetic energy of the photoelectrons and the emission angle.
- CHA electrostatic hemispherical energy analyzer
- CMA coaxial cylindrical energy analyzer
- Non-Patent Document 1 a two-dimensional spherical mirror analyzer with an uptake angle of ⁇ 60 ° has been developed (Non-Patent Document 1), and band dispersion structure measurement (Non-Patent Documents 2 and 3) and atomic arrangement structure for various samples have been carried out. (Non-Patent Documents 4 and 5) were measured. Although the energy resolution of this analyzer was gradually improved by the improvement, it could not achieve sufficient resolution for more detailed analysis such as structural analysis by decomposing chemical shifts.
- Non-Patent Documents 1 and 2 Non-Patent Documents 6 and 7
- an attempt was made to combine it with a CHA input lens Non-Patent Documents 1 and 2).
- the present inventors have proposed a spherical aberration correction lens that captures full-width ( ⁇ 90 °) (Patent Document 3).
- a photoelectron analyzer for full-width capture has already been developed using the technology of PEEM (photoemission electron microscope) (Non-Patent Documents 9 and 10).
- CHA has already become widespread, and devices of various designs have been developed so far, but it is characterized by a very small capture angle in the energy dispersion direction of the electrostatic hemisphere, and as a result.
- the angle of incidence on the electrostatic hemisphere should be about ⁇ 2 ° or less, and high spatial resolution and high angular resolution should be obtained in the measurement of a two-dimensional real space image and emission angle distribution. It is necessary to suppress the angle of incidence on the electrostatic hemisphere to about ⁇ 2 ° or ⁇ 1 ° or less.
- the capture angle of the electrostatic hemisphere is very small.
- the capture angle that can form a convergent beam is limited to about ⁇ 7 °.
- the convergent angle is set at a relatively low magnification. It can be about ⁇ 2 °.
- M magnification
- a the size of the observed object on the object surface (sample surface) of the input lens
- b the size of the image of the observed object on the image surface of the input lens.
- This value is roughly the ratio of the angle of incidence to the angle of convergence in the case of an Einzel-type lens in which the energy of electrons does not change at the entrance and exit of the lens.
- the magnification of the input lens is one of the important conditions for determining the sensitivity of CHA, and if this magnification is set high, the sensitivity will be significantly reduced depending on the size of the slit provided at the entrance of the electrostatic hemisphere. ..
- the magnification is usually set low.
- the magnification can be as low as about 3.5.
- Patent Documents 1, 2 and Non a spherical aberration correction lens in which the capture angle is widened to about ⁇ 50 ° has been developed.
- Patent Documents 6 and 7 and the inventors have proposed a full-angle ( ⁇ 90 °) capture focusing lens.
- a full-width condensing lens makes it possible to realize an analyzer that completely determines the energy and momentum of electrons.
- the magnification is much higher than that of a conventional input lens.
- the length of the lens system becomes considerably long. For example, when electrons are captured at a capture angle of ⁇ 50 ° or ⁇ 90 ° and converged at an opening angle of ⁇ 2 °, the irradiation spot on the sample is 25 times larger on the exit surface of the wide-angle capture focusing lens even when deceleration is not performed. Or it is magnified about 45 times. Further, when decelerating the electrons of energy E to energy E'in order to obtain high energy resolution, the magnification M can be expressed by the following mathematical formula from the law of invariant luminance.
- M 0 is a magnification determined by the incident angle and the emitted angle.
- the magnification when decelerating 1000 eV electrons to 50 eV in the above lens, the magnification is about 100 to 200 times.
- the magnification is increased in this way, the number of electrons blocked by the slit inserted at the entrance of the electrostatic hemisphere portion increases, and the slit width must be widened in order to obtain sufficient sensitivity.
- widening the slit width results in a decrease in energy resolution.
- the magnification of the input lens is about 5 times or less.
- the best way to solve this problem is to widen the intake angle of the energy analysis unit. Therefore, it may be considered to use a CMA having a large capture angle instead of the electrostatic hemisphere portion of the CHA.
- the CMA uses grids at the inlet and outlet of the inner cylinder through which the electrons pass, and the orbits of the electrons are disturbed by the action of scattering as they pass through the inlet and the outlet. Therefore, it is difficult to form a real space image or an angular distribution with high resolution by CMA.
- Non-Patent Document 11 a two-dimensional spin analyzer using an Ir (001) single crystal substrate has been developed.
- Non-Patent Document 11 a cylindrical electrostatic type 90 ° deflector
- VLEED detector a VLEED detector
- the electrons turn 90 ° in an arc under the condition that the central force and centrifugal force of the cylindrical electric field are balanced, but instead of the cylindrical electric field, a spherically symmetric electric field is used to deflect the electrons by 90 °.
- a spin polarization analyzer using a 90 ° deflector (hereinafter referred to as a 90 ° spherical deflector) of this method (Non-Patent Document 12).
- the convergence in the deflection plane is at 127 ° and 180 ° deflections, respectively, with 90 ° deflection. Does not converge. Therefore, by combining an improved 90 ° deflector (Non-Patent Document 13) that can deflect and converge the electron beam emitted from one point by 90 ° in the inward direction of the deflection plane, or by combining a lens with a 90 ° spherical deflector, in the inward direction of the deflection plane.
- an improved 90 ° deflector Non-Patent Document 13
- Non-Patent Document 14 A 90 ° deflection analyzer that enables 90 ° deflection convergence has also been proposed (Non-Patent Document 14).
- Non-Patent Document 14 A 90 ° deflection analyzer that enables 90 ° deflection convergence has also been proposed.
- Non-Patent Document 14 among the electrons incident at a constant opening angle, there is a problem that the electrons in the inward direction of the deflection plane can be converged, but the electrons in other directions cannot be converged at the same time, and the two-dimensional real space image. It is difficult to apply it to two-dimensional spin analysis that forms an image of the emission angle distribution.
- Non-Patent Document 10 Having a two-dimensional real-space image and imaging performance of the emission angle distribution is important for detailed analysis of spin polarization.
- the two-dimensional spin analyzer disclosed in Non-Patent Document 10 enables two-dimensional analysis of the spin polarization in the sample plane, the two-dimensional analysis of the spin polarization in the direction perpendicular to the sample plane is still realized. It has not been. It is speculated that detailed analysis of the spin polarization in the direction perpendicular to the sample surface will be indispensable for spintronics research in high-density magnetic storage devices and the like in the future.
- the electrostatic 90 ° deflector instead of the electrostatic 90 ° deflector, it is also possible to use a Wien filter type spin rotation device (see, for example, Patent Document 4 and Non-Patent Document 15) to perform three-dimensional measurement of spin polarization.
- a Wien filter type spin rotation device see, for example, Patent Document 4 and Non-Patent Document 15
- the multipole Viennese filter enables three-dimensional operation of the spin.
- the Wien filter is an energy analyzer that utilizes the fact that when electrons are incident on orthogonal electric and magnetic fields, only the electrons of a specific energy go straight in balance with the force received from the electric field and the force received from the magnetic field (Lorentz force). ..
- the incident electrons can be converged at a constant opening angle by adjusting the voltage applied to the electric field forming electrode and the voltage (or current) applied to the electromagnet, respectively.
- the Wien filter also has the function of rotating the spin of electrons, and by appropriately adjusting the applied voltage (or current), the spin in the optical axis direction can be rotated in the direction perpendicular to the optical axis.
- the condition for converging the electron beam emitted from one point and the condition for rotating the spin by 90 ° do not match, and if the Vienna filter is set for the latter condition, the electron beam cannot be converged at the exit. Therefore, although the Wien filter type spin rotation device is used for observing the real space image of the three-dimensional decomposition of the spin polarization of the parallel electron beam with a photoelectron microscope, the two-dimensional real space image and the emission angle are used. It is difficult to apply it to a two-dimensional analyzer that can form an image of any of the distributions.
- the direction of the electron is deflected by 90 °, and at the same time, not only in the direction in the deflection plane but also in the direction perpendicular to it. It is also necessary to have convergence and imaging effects.
- an object of the present invention to first provide an electrostatic deflection convergent energy analyzer capable of performing analysis with high energy resolution even if the capture angle is wider than that of the electrostatic hemisphere portion of CHA. do. Secondly, it is an object of the present invention to provide an imaging type electron spectroscopic apparatus capable of forming a two-dimensional real space image and an emission angle distribution with high energy resolution. Further, in the present invention, thirdly, in addition to the two-dimensional analysis of the spin polarization degree in the in-plane direction of the sample, the electron emitted from the sample is deflected by 90 ° by an electric field before being incident on the two-dimensional spin detector, and the sample is sampled.
- the electrostatic deflection convergence type energy analyzer of the present invention has the following features 1) to 7).
- 1) One or more outer electrodes and a plurality of inner electrodes are arranged along the shape of two rotating bodies formed on the inner side and the outer side with a common rotation axis.
- the outer rotating body includes the inner rotating body.
- An electron incident hole and an electron emitting hole are formed on the rotation axis of the electrodes at both ends of the outer electrode.
- It has a voltage applying means for applying a voltage for accelerating and decelerating electrons to the outer electrode and the inner electrode.
- a voltage for accelerating and decelerating electrons may be applied to the outer electrode and the inner electrode in proportion to the energy of the incident electrons.
- the shape of the inner surface of the outer electrode is such that the diameter becomes smaller toward the incident hole and the diameter becomes smaller toward the exit hole.
- the shape having a smaller diameter toward the incident hole in the inner surface shape of the outer electrode is preferably a tapered shape, a toroidal surface shape, or a ring shape, and has a smaller diameter toward the exit hole in the inner surface shape of the outer electrode.
- the shape is a tapered shape, a toroidal surface shape, or a ring shape.
- the outer surface shape of the inner electrode is a shape that decreases in diameter toward the incident hole, a rod shape that extends toward the incident hole, or a shape that expands in diameter at the end on the incident hole side, and faces the exit hole. It has a small diameter, a rod shape extending toward the exit hole, or a shape in which the diameter expands at the end on the exit hole side.
- the shape in which the diameter becomes smaller toward the incident hole in the outer surface shape of the inner electrode is preferably a tapered shape or a toroidal surface shape, or a step shape in which the diameter gradually decreases toward the incident hole.
- the shape that decreases in diameter toward the exit hole is a tapered shape, a toroidal surface shape, or a step shape that gradually decreases in diameter toward the exit hole.
- the inner surface shape of the outer electrode and the outer surface shape of the inner electrode are basically the same on the incident hole side and the outgoing hole side, but they do not necessarily have to be the same and may exhibit different shapes. For example, various combinations are possible, such as a tapered shape on the incident hole side and a ring shape on the outgoing hole side.
- the step shape in which the diameter is gradually reduced includes, for example, even when an electrode having a small diameter is arranged in the center, a step shape in which the diameter is reduced by only one step near the incident hole.
- the applied voltage of one or more inner electrodes excluding the electrodes at both ends of the inner electrode accelerates the energy of electrons with reference to the potential of the outer electrode in which the incident hole is formed.
- the voltage is twice or more, preferably 2 to 5 times or more the converted acceleration voltage converted into voltage.
- the converted acceleration voltage is defined as the voltage obtained by converting the energy of electrons into the acceleration voltage.
- the converted acceleration voltage of 1 eV is 1 V.
- a voltage of 2 to 5 times or more of the converted acceleration voltage is a voltage of 2E to 5EV or more, where EeV is the energy of electrons.
- the voltage applied to one or more inner electrodes excluding the electrodes at both ends of the inner electrode is converted by converting the electron energy into an acceleration voltage with reference to the potential of the outer electrode in which the incident hole is formed. It is preferable that a voltage 10 times or more the acceleration voltage is set. For example, a high voltage of 10 kV or more is set for 1000 eV of electron energy. This is because the angle of incidence on the energy analysis unit can be further widened, the magnification of the input lens for wide-angle capture can be further reduced, the sensitivity for wide-angle capture can be further increased, and the energy resolution can be further improved.
- the electrostatic deflection converging energy analyzer having the features 1) to 7) above, by optimizing the shape, arrangement, and applied voltage of each electrode, the electrostatic hemisphere of CHA can be used without using a grid. It enables energy analysis that captures electrons at a larger capture angle and deflects them to converge. That is, by using the electrostatic deflection convergence type energy analyzer of the present invention instead of the electrostatic hemisphere portion of CHA, the angle of incidence on the energy analysis portion can be widened by about 3 times, whereby wide-angle capture can be achieved. It is possible to reduce the magnification of the input lens to about 1/3, increase the sensitivity in wide-angle capture to about 9 times, and improve the energy resolution.
- the taper shape of the outer electrode and the outer surface shape of the inner electrode when the inner surface shape of the outer electrode and the outer surface shape of the inner electrode have a taper shape having a smaller diameter toward the incident hole and the exit hole, the taper shape is ,
- the taper angle measured from the axis of rotation may be the same on the incident hole side and the exit hole side.
- the inner surface shape of the outer electrode and the outer surface shape of the inner electrode may be symmetrical with the plane perpendicularly intersecting the straight line at the midpoint of the straight line connecting the incident hole and the exit hole as a symmetrical plane.
- a plurality of outer electrodes and a plurality of inner electrodes may be arranged.
- the voltage applied to one or more inner electrodes excluding the electrodes at both ends of the inner electrodes is a converted acceleration voltage obtained by converting electron energy into an acceleration voltage. It is 10 to 50 times that of.
- the voltage applied to one or more outer electrodes excluding the electrodes at both ends is preferably 10 times or less the converted acceleration voltage.
- the deflection angle is 90 °.
- the electrostatic deflection convergent energy analyzer of this aspect may be referred to as a "90 ° electrostatic deflection convergent energy analyzer" below.
- 90 ° electrostatic deflection convergent energy analyzer of this aspect 90 ° deflection by an electrostatic field, two-dimensional convergence and imaging can be realized.
- a two-dimensional convergence and image formation can be performed by bending the traveling direction by 90 ° without changing the spin direction, and a spin-decomposed two-dimensional real space image and emission angle distribution can be obtained. It can bring about the effect of being able to acquire it.
- the incident angle is not particularly limited, the incident angle may be 45 °, the emission angle may be 45 °, and the deflection angle may be 90 °.
- the electrostatic deflection convergent energy analyzer of the present invention may have any of the following deflection angles.
- Some examples are given below.
- -The predetermined incident angle is 22.5 ° and the deflection angle is 45 °.
- -The predetermined incident angle is 30 ° and the deflection angle is 60 °.
- -The predetermined incident angle is 60 ° and the deflection angle is 120 °.
- -The predetermined incident angle is 67.5 ° and the deflection angle is 135 °.
- -The predetermined incident angle is 75 ° and the deflection angle is 150 °.
- the incident angle is not particularly limited, and the incident angle and the exit angle are set so that the deflection angle is an angle of 45 to 180 ° such as 45 °, 60 °, 120 °,
- the inner electrode is divided into two parts so that electrons in the central orbit can pass across the axis of rotation, and the voltage conditions applied to the electrodes are changed. Therefore, it may be possible to control whether or not the central orbit crosses the rotation axis and switch the presence or absence of deflection of the electrons emitted from the exit hole.
- the characteristic of this analyzer is that the inner electrodes are separated into two parts (incident side and exit side), and the effect is that electrons pass across the rotation axis in the space created between the left and right inner electrodes. become able to.
- the electrostatic deflection convergence type energy analyzer of such an embodiment may be referred to as a "deflection switching electrostatic convergence type energy analyzer" below.
- the rotating body is a rotating body having a rotation angle of 90 ° to 180 °, and a compensation electrode for compensating the electric field may be provided on the cut surface.
- the electrostatic field is a 180 ° rotating body or a rotating body having an arbitrary rotation angle, even if it is not a 360 ° rotating body. It is possible to realize deflection by, two-dimensional convergence and imaging.
- the imaging type electron spectroscope of the present invention is an electron spectroscopic device using the above-mentioned electrostatic deflection convergence type energy analyzer of the present invention, in which an input lens is placed in front of the analyzer and a projection lens is placed in the rear stage of the analyzer.
- an input lens is placed in front of the analyzer and a projection lens is placed in the rear stage of the analyzer.
- the input lens has an incident hole of the energy analyzer on the lens axis, and the lens axis and the rotation axis of the energy analyzer are arranged so as to have a predetermined incident angle, and the electrons emitted from the sample are taken in and incident. It emits into the hole.
- the input lens preferably has a function of switching between an angle distribution and a real space image.
- the projection lens has an emission hole of the energy analyzer on the projection lens axis, and the projection lens axis and the rotation axis of the energy analyzer are arranged so as to have a predetermined emission angle, and the electrons deflected and converged by the energy analyzer. Is taken in from the emission hole.
- the detector two-dimensionally detects the electrons transmitted through the projection lens and measures a two-dimensional real space image or emission angle distribution. It is preferable to provide apertures or slits in the entrance hole (inlet) and the exit hole (outlet) of the energy analyzer.
- the reflection imaging type electron spectroscope of the present invention is an electron spectroscopic device using the above-mentioned electrostatic deflection convergence type energy analyzer (excluding those of a 180 ° rotating object) of the present invention, and is energy.
- the reflection imaging type electron spectroscope of the present invention is an electron spectroscopic device using the above-mentioned electrostatic deflection convergence type energy analyzer (excluding those of a 180 ° rotating object) of the present invention, and is energy.
- the input lens has an energy analyzer incident hole on the lens axis, and the lens axis and the rotation axis of the energy analyzer are arranged so as to have a predetermined incident angle, and the electrons emitted from the sample are taken in and emitted to the incident hole. It is something to do.
- the mirror is placed in the exit hole of the energy analyzer so that the direction of the perpendicular line coincides with the direction of the axis of rotation.
- a single crystal mirror can be used, and in particular, a spin analysis function can be obtained by using an Ir (001) single crystal mirror or the like.
- the projection lens has an incident hole on the projection lens axis, and the projection lens axis and the rotation axis of the energy analyzer are arranged so as to have a predetermined incident angle. Converging electrons are taken in from the incident hole.
- the detector two-dimensionally detects the electrons transmitted through the projection lens and measures a two-dimensional real space image or emission angle distribution. It is preferable to provide an aperture or a slit in the incident hole (also used as the inlet and the outlet) of the energy analyzer.
- the spin vector distribution imaging apparatus is a 90 ° electrostatic deflection convergent energy analyzer of the present invention having a deflection angle of 90 ° (a rotating body having a rotation angle of 90 ° to 180 °). , Including an energy analyzer provided with a compensating electrode for compensating the electric field at the cut surface), and further includes the following configurations 1a) to 1d).
- the spin vector distribution imaging apparatus comprises the above-mentioned 90 ° electrostatic deflection convergence type energy analyzer of the present invention, and further includes the following configurations 2a) to 2d).
- 2a) The incident hole of the energy analyzer is arranged on the lens axis, the lens axis and the rotation axis of the energy analyzer are arranged so as to have a predetermined incident angle, and the electrons emitted from the sample are taken in and emitted to the incident hole.
- Input lens 2b)
- a two-dimensional spin filter that is placed in the emission hole of the energy analyzer and whose rotation axis is a perpendicular line.
- the projection lens axis and the rotation axis are arranged so as to have a predetermined incident angle, the energy analyzer deflects and converges, and the reflection is reflected by the two-dimensional spin filter.
- a detector that detects electrons that have passed through a projection lens.
- the spin vector distribution imaging apparatus is the above-mentioned 90 ° electrostatic deflection convergence type energy analyzer of the present invention, and further comprises an energy analyzer capable of switching the deflection angle. It has the following configurations of 3a) to 3f). 3a) There is an incident hole of the energy analyzer on the lens axis, the lens axis and the rotation axis of the energy analyzer are arranged so as to have a predetermined incident angle, and an input that takes in the electrons emitted from the sample and emits them to the incident hole. lens.
- An electrostatic lens that takes in from a hole.
- the spin vector distribution imaging device is the 90 ° electrostatic deflection convergence type energy analyzer of the present invention described above in the spin vector distribution imaging device according to any one of the first to third aspects described above. Instead of using, a combination of a plurality of energy analyzers having a deflection angle in the range of 45 to 150 ° and having a deflection angle of 90 ° is used.
- the spin is rotated by 90 ° in a plane perpendicular to each lens axis, which is arranged inside or outside at least one of the input lens and the electrostatic lens. It may be provided with a spin rotator.
- spin rotators rotating spins by 90 ° in a plane perpendicular to the lens axis
- the combination of ON and OFF of the two spin rotators It is possible to determine which of the three spin polarization degrees, in-plane and in-perpendicular, should be analyzed. This enables a two-dimensional analyzer that analyzes the three-dimensional spin polarization degree with a two-dimensional real space image and an emission angle distribution.
- the electrostatic deflection convergence type energy analyzer of the present invention electrons are taken in at a larger uptake angle than the electrostatic hemisphere portion of CHA without using a grid, and the orbits of the electrons are deflected and converged to improve the energy resolution. It has the effect of being able to improve.
- the image-forming electron spectroscope of the present invention there is an effect that not only the real space image of the sample but also the two-dimensional emission angle distribution over a wide angle can be measured at once with high energy resolution.
- the spin vector distribution imaging apparatus of the present invention has an effect that the three-dimensional spin polarization degree can be analyzed by a two-dimensional real space image and an emission angle distribution.
- FIG. 1 Schematic diagram of the electrostatic deflection convergent energy analyzer of Example 1.
- Schematic diagram of the outer and inner electrodes of the electrostatic deflection convergent energy analyzer Explanatory drawing of the image formation type electron spectroscope of Example 2.
- Electrostatic hemispherical energy analyzer As shown in FIG. 20, CHA consists of an input lens, an inner sphere and an outer sphere that captures and converges electrons (or charged particles) emitted from the sample. It consists of an electrostatic hemisphere, a slit provided at the entrance of the electrostatic hemisphere, and a detector provided at the exit of the electrostatic hemisphere, and is an analyzer that utilizes the convergence action of a spherically symmetric electric field. Assuming that the distance from the center O of the sphere of the electrostatic hemisphere to the center axis (optical axis) of the input lens is R0 as shown in FIG.
- E pass is the path energy of the electrostatic hemisphere
- e is the elementary charge.
- the coefficient of the first term of the equation (1) is a coefficient determined from the condition of the balance between the centrifugal force and the central force in the central orbit.
- an image plane is formed at the entrance slit position.
- what is obtained in the direction perpendicular to the paper surface of the detector is a one-dimensional real space image.
- a diffraction surface is formed at the inlet slit position by switching the applied voltage of the input lens, a one-dimensional emission angle distribution is obtained in the direction perpendicular to the paper surface of the detector.
- the one-dimensional real-space image or angular distribution is selected by the inlet slit of the electrostatic hemisphere, and the one-dimensional real-space image or emission with energy dispersion is performed by the detector provided at the exit of the electrostatic hemisphere.
- the angular distribution can be obtained.
- the energy is matched to the sharp photoelectron peak from the inner shell level, the electrons incident on the electrostatic hemisphere become almost a single energy, so the inlet slit is widened to create a two-dimensional real space image or angular distribution. It is also possible to make the image incident and display the image on the screen of the detector.
- the characteristics of the electrostatic hemisphere will be specifically shown numerically.
- the voltage applied to the inner and outer spheres of the electrostatic hemisphere is shown. Since the inner and outer sphere radii R in and R out (see Fig. 20) and the center orbital radius R 0 are determined by the design of the analyzer, the pass energy E pass and the center orbital potential V 0 are measured. You can decide. When E pass and V 0 are determined, the voltage applied to the inner sphere and the outer sphere is obtained by the above equation (1).
- V 0 is set to the same potential as the outlet electrode of the input lens, and changes with a change in the reduction ratio of the input lens (that is, a change in E pass ) or a change in the energy to be analyzed.
- the voltage V in and V out applied to the inner sphere and the outer sphere, respectively the following equation (2), the equation (3).
- the E pass is 1000 eV and V 0 is taken as a reference
- the voltages applied to the inner sphere and the outer sphere are about 667 V and -400 V, respectively.
- the electron energy here, the path energy E pass
- the elementary charge e that is, converted to the acceleration voltage
- the converted acceleration voltage the voltage applied to the inner sphere and the outer sphere is applied.
- the absolute values of are about 0.67 times and 0.4 times the converted acceleration voltage, respectively.
- the electron orbit of the electrostatic hemisphere portion shown in FIG. 20 is an orbital when the incident angle ⁇ to the electrostatic hemisphere portion is limited to ⁇ 3 °.
- the left panel of FIG. 21 is the result of orbit calculation with the incident angle ⁇ expanded to ⁇ 8 °.
- the central orbital radius R 0 is set to 100 mm.
- the upper right graph of FIG. 21 shows the aperture aberration, and the lower right graph shows the relationship between the incident angle ⁇ and the exit angle ⁇ '. According to the theoretical calculation, the aperture aberration of the electrostatic hemisphere is given by the following equation (4).
- ⁇ 4 °
- R 0 100 mm.
- the incident angle is not sufficiently limited, a large aperture aberration occurs and it is difficult to obtain a two-dimensional real space image.
- the estimation of the energy resolution of the FWHM (full width at half maximum) of the electrostatic hemisphere is given by the following equation (5).
- ⁇ max is the maximum value of the angle of incidence on the electrostatic hemisphere
- w is the width of the inlet and outlet slits.
- the energy resolution defined by the above equation (5) represents the energy width of FWHM that can be separated when the electrons incident from the region of width w are cut out in the region of width w. If the strength of the electrons of the energy E pass incident on the electrostatic hemisphere is strong, the slit width can be reduced to suppress the contribution of the slit width to the energy resolution, but if not, the strength is reduced. It becomes an obstacle and the slit width cannot be made sufficiently small. Therefore, in many analyzers, the energy resolution is improved by increasing the central orbital radius R0. How small the slit width can be depends on the spot size or flux of the X-ray or electron beam irradiating the sample and the magnification of the input lens.
- the spot size of X-rays and electron beams on a sample can be about 10 to 100 ⁇ m, but here, it is set to 50 ⁇ m for a slightly larger sample.
- the magnification of the input lens is 5
- the magnification of the electrostatic hemisphere is 1, so it seems better to set the slit width to 0.25 mm.
- FIG. 22 assumes a point source of 5 ⁇ 5 (1 mm pitch) on the incident surface to the electrostatic hemisphere, and extends from each point over a solid angle range of an incident angle ⁇ max with the direction perpendicular to the plane as the center direction.
- This is a two-dimensional real-space image obtained at the exit of the electrostatic hemisphere when an electron of energy E pass is incident.
- ⁇ max is considered from ⁇ 1 ° to ⁇ 6 °.
- the aperture aberration increases and the spatial resolution in the x'direction significantly decreases.
- ⁇ max is about ⁇ 2 ° or less, a relatively good real space image is likely to be obtained, but if ⁇ max is about ⁇ 4 ° or more, two point sources 1 mm apart are connected in the real space image. It turns out that it cannot be disassembled.
- the incident angle is limited to about ⁇ 1 ° or less, there is a problem that the intensity of photoelectrons is significantly reduced.
- the CMA consists of a coaxial cylindrical portion consisting of an inner cylinder and an outer cylinder, and a slit and a detector provided in the rear stage of the coaxial cylindrical portion. It is an analyzer that utilizes the convergence effect of a symmetric electric field.
- the inlet and the outlet of the inner cylinder in which the electrons enter are formed into a cylindrical grid, which allows the electrons to pass through without breaking the cylindrical symmetric electric field.
- the potential at an arbitrary point (distance r from the central axis z) between the inner cylinder and the outer cylinder of the CMA is expressed by the following equation (6).
- E pass is the path energy of CMA
- R in is the radius of the inner cylinder
- e is the elementary charge
- the absolute value of the voltage applied to the outer cylinder is about 0.75 times the converted accelerated voltage.
- the voltage applied to the inner cylinder is 0 times the converted acceleration voltage.
- FIG. 24 shows the relationship between the incident angle ⁇ and the aperture aberration when the distance L between the origin on the sample and the point where the central orbit intersects the z-axis is 275 mm (when L is set to 275 mm, the origin reaches the slit position.
- the length of the central orbit is substantially the same as the length of the central orbit of the electrostatic hemisphere shown in FIG. 21).
- K may be selected to 1.31 to limit the incident angle.
- K it is better to set K to a value slightly larger than 1.31 (for example, about 1.33).
- the value of K can be easily changed by the voltage applied to the outer cylinder.
- the value of L when the value of K changes, the value of L also changes. That is, there is a problem that the optimum slit and detector positions change when the value of L changes.
- the cylindrical symmetric electric field used in the CMA has a stronger converging action than the spherical symmetric electric field used in the CHA. This is because the CMA has a third-order aperture aberration, whereas the CHA has a second-order aperture aberration.
- the CMA is expected to have high energy resolution, but the high energy resolution that can be obtained by CHA is not actually achieved by CMA.
- the reason for not being achieved is that in the CMA, two grid electrodes are used, and the electrons are scattered by the grid at the inlet and outlet of the cylindrical symmetric electric field and the convergence is reduced. As described above, it is difficult for the CMA to achieve the high energy resolution obtained by the CHA. In CMA, it is also difficult to obtain a high-resolution real-space image and emission angle distribution due to the scattering effect of the grid.
- Typical spin-polarity analyzers include a Mott detector and a SPLEED detector that utilize a spin-orbit interaction, and a VLEED detector that utilizes a spin-orbit interaction. Further, in recent years, a two-dimensional spin analyzer using an Ir (001) single crystal substrate has been developed (Non-Patent Document 10).
- FIG. 25 is a schematic diagram of the VLEED detector (Non-Patent Document 11).
- This spin polarization analyzer utilizes the fact that when low-energy electrons are incident on a target magnetized by a coil, the intensity of the reflected electrons changes depending on whether the spin of the electrons is parallel or antiparallel to the magnetization of the target. It is a detector. An iron thin film is used as the target.
- FIG. 26 is a schematic diagram of a spin polarization analyzer that combines CHA and VLEED.
- z and z'are the optical axes between the sample-electrostatic hemisphere and the electrostatic hemisphere-target, respectively.
- a coil is provided in the y'direction, and the spin polarization degree in the y direction in the sample plane can be measured.
- the sample may be rotated 90 ° in the in-plane direction, but when the sample is rotated, the measurement region is slightly displaced. Occurs. This can be a fatal problem in microregional analysis.
- it is effective to provide a spin rotator that rotates the spin by 90 ° in a plane perpendicular to the lens axis on the input lens or in the front stage of the spin analyzer.
- the spin in the in-plane direction of the sample can be rotated by 90 ° in-plane without rotating the sample.
- a coil for magnetizing the target is provided in two directions instead of the spin rotator, and the direction of magnetization is switched to change the spin polarization in the sample plane in the x and y directions. It is also possible to measure.
- none of the above methods can measure the spin polarization in the z direction. In order to measure the spin polarization in the z direction, it is effective to bend the orbit of the electron by 90 ° with an electric field before the electron enters the target.
- FIG. 27 is a schematic diagram of a spin polarization analyzer that performs spin analysis by such a method.
- the orbits of the electrons are bent by 90 ° in the z'y'plane, which makes it possible to measure the spin polarization in the direction perpendicular to the sample surface (z direction).
- a 1/4 cylindrical electrostatic 90 ° deflector (90 ° deflector) as shown in FIG. 27 is used.
- a spin rotator as shown in FIG. 27, between the input lens and the electrostatic hemisphere, and a 90 ° deflector and spin analyzer. Provide each between.
- the two spin rotators are both set to OFF, but when SR1 is set to OFF and SR2 is set to ON, the spin polarization degree in the x direction in the sample plane is set. It can be measured, and if both SR1 and SR2 are set to ON, the spin polarization degree in the y direction in the sample plane can be measured.
- a coil may be added in the x'direction instead of providing the second spin rotator SR2. The three-dimensional spin polarization can be measured by the above method.
- FIG. 28 is a schematic diagram of a spin polarization analyzer using a 90 ° spherical deflector.
- the 90 ° deflector and the 90 ° spherical deflector have a simple structure and are suitable for bending a parallel beam by 90 °. However, these deflectors cannot converge a beam with an angular spread emitted from one point.
- FIG. 29 is a schematic cross-sectional view of the improved 90 ° deflector.
- the electron beam emitted from one point can be deflected by 90 ° in the deflection plane and converged.
- the beam cannot be converged at the same time in two directions, the inward direction of the deflection plane and the direction perpendicular to it.
- a 90 ° spherical deflector as shown in FIG. 30, it is possible to narrow the spread beam by combining a lens at the outlet.
- the beam cannot be converged in two directions at the same time.
- the 90 ° deflection analyzer shown in FIGS. 27 to 30 can be used for three-dimensional measurement of spin polarization, but instead of using such a deflection analyzer, a Wien filter type spin rotation device is used. It is possible to perform a three-dimensional measurement of the spin polarization.
- the Wien filter type spin rotation device the spin in the direction perpendicular to the sample surface can be rotated by 90 ° and tilted in the in-plane direction without changing the direction of the beam, and as shown in FIG. 31, the multipolar child Wien The filter allows for three-dimensional manipulation of spin.
- this method it has not been realized that the beam having an angular spread is two-dimensionally converged at the same time as the 90 ° spin rotation.
- CHA electrostatic hemispherical energy analyzer
- CMA concentric cylindrical mirror analyzer
- spin-resolving electron spectroscope As described above, the conventional electrostatic hemispherical energy analyzer (CHA), concentric cylindrical mirror analyzer (CMA), and conventional spin-resolving electron spectroscope have been described, but the following describes some embodiments of the present invention. An example will be described in detail with reference to the drawings. The scope of the present invention is not limited to the following examples and illustrated examples, and many changes and modifications can be made.
- FIG. 1 (1) is a schematic view of an embodiment of the 90 ° electrostatic deflection convergent energy analyzer of the present invention.
- the 90 ° electrostatic deflection convergence type energy analyzer 1 has five outer electrodes EL1, EL2, EL3, EL4, EL5 along the shape of two rotating bodies formed on the inner side and the outer side with the rotation axis 13 in common.
- Three inner electrodes EL6, EL7, and EL8 are arranged, and electron incident holes 11 and emission holes 12 are formed on the rotation shafts 13 of the electrodes at both ends of the outer electrodes.
- the inner surface shape of the outer electrode has a tapered shape whose diameter becomes smaller toward the incident hole 11 and the exit hole 12, except for the central electrode (EL3), and the outer surface shape of the inner electrode is the central electrode (EL7). Except for this, it has a tapered shape whose diameter becomes smaller toward the incident hole 11 and the emitted hole 12.
- the energy analyzer 1 has two rotating bodies obtained by rotating the lower bases of two isosceles trapezoids (20a, 20b) having different heights on a rotating shaft 13.
- Five outer electrodes EL1, EL2, EL3, EL4, EL5 and three inner electrodes L6, EL7, EL8 are arranged along the three-dimensional surface shape.
- a voltage for accelerating and decelerating the electrons is applied to the outer electrode and the inner electrode in proportion to the energy of the incident electrons.
- the electron energy is converted into an acceleration voltage three times as much as the converted acceleration voltage based on the potential of the outer electrode on which the incident hole 11 is formed.
- the center orbit of the electron incident from the incident hole 11 has a predetermined emission angle with the rotation axis 13 so that the above voltage is set and the center orbit of the electron has a predetermined incident angle (45 ° in FIG. 1) with the rotation axis 13.
- the voltage applied to each electrode is adjusted so as to converge to the position of the emission hole 12. This makes it possible to take in electrons with a wide angle and deflect them by 90 ° to make them two-dimensionally convergent.
- FIG. 1 (1) shows an electron orbit and an isobaric line.
- a slit for energy sorting is arranged at the outlet position, and a detector is arranged in the subsequent stage.
- FIG. 2 (a) A graph showing the aperture aberration of the 90 ° electrostatic deflection convergent energy analyzer of FIG. 1 (1) is shown in FIG. 2 (a).
- the length L of the analyzer is set to 275 mm.
- the length of the central orbit substantially coincides with the length of the central orbit of the electrostatic hemisphere portion of CHA shown in FIG. 21.
- A, B, C shown in the graph of FIG. 2 (a).
- the range (capture angle) of the incident angle ⁇ of the energy analyzer is set to ⁇ 2 °, ⁇ 6 °, ⁇ 8 °, and ⁇ 10 ° so that the blurring of the image due to aperture aberration is reduced.
- the applied voltage can be optimized without changing the convergence position. Further, the blurring of the image due to the aperture aberration can be made to be the same as or less than that of CMA. What is important here is that the energy analyzer of the present invention does not use grid electrodes, unlike CMA. Since the orbit is disturbed when electrons pass through the grid electrode, it is desirable not to use the grid electrode in the energy analyzer having an imaging function.
- FIG. 2B shows the relationship between the incident angle and the emitted angle when the capture angle is ⁇ 10 °.
- the absolute values of the emission angles are almost the same, that is, the angles are preserved.
- the energy analyzer of the present invention is suitable for measuring the angle distribution.
- the values for other path energies are obtained by changing the values in Table 2 in proportion to E pass.
- Table 2 shows the voltage value when the electrode EL1 is set to the ground potential, but the EL1 may have a potential V1 ( ⁇ 0) other than the ground potential. In this case, a voltage obtained by adding V1 to the voltage shown in Table 2 is applied to the electrodes other than EL1.
- the electrodes EL1 and EL5 are set to the ground potential
- EL2, EL4, EL6, and EL8 are set to the same potential
- the voltages of only EL3 and EL7 are adjusted.
- the EL3 has a voltage of about 3 to 4 times the converted acceleration voltage
- the EL7 has a voltage of about 23 to 25 times the converted acceleration voltage.
- a voltage is applied. Comparing with the applied voltages of CHA and CMA described above, it can be seen that the voltages applied to EL3 and EL7 are one or two orders of magnitude higher.
- the optimum voltage applied to each electrode changes depending on the shape and arrangement of the electrodes. As a result, a voltage of about 0 to 10 times the converted acceleration voltage is applied to the EL3, and a voltage of about 10 to 50 times the converted acceleration voltage is applied to the EL7.
- the voltage applied to the EL 7 may be a voltage 3 to 5 times or more and 10 times or less the converted acceleration voltage.
- FIG. 22 shows the results of calculating a two-dimensional real space image in the 90 ° electrostatic deflection convergent energy analyzer of FIG. 1 (1) in the same manner as in FIG. 22.
- the maximum value (capture angle) of the incident angle ⁇ is taken into consideration from ⁇ 2 ° to ⁇ 8 °.
- the capture angle is set to about ⁇ 2 ° or less, a large aperture aberration occurs and a practical two-dimensional image cannot be obtained, but it is shown in FIG.
- the 90 ° electrostatic deflection convergence type energy analyzer can obtain a practical two-dimensional image even if the capture angle is widened to about ⁇ 5 ° to ⁇ 6 °. Further, from the comparison between Tables 1 and 3 above, it can be seen that the same level of energy resolution as CHA can be achieved at this capture angle.
- the 90 ° electrostatic deflection convergence type energy analyzer of the present invention having the same operation as the energy analyzer shown in FIG. 1 (1), although the shapes and arrangements of the electrodes are different.
- the shape of the electrode means the inner surface shape in the case of the outer electrode and the outer surface shape in the case of the inner electrode.
- FIG. 5A a plurality of outer electrodes and a plurality of inner electrodes are arranged along two rotating surfaces formed on the inner side and the outer side with a common rotation axis, and the outer electrode and the inner electrode have a toroidal surface shape.
- the energy analyzer of the present invention characterized by this is shown.
- the outer electrode and the inner electrode having the toroidal surface shape are characterized in that the diameter becomes smaller toward the incident hole and the exit hole, and the space formed between them becomes narrower as it is closer to both ends. Is.
- FIG. 5B a plurality of outer electrodes and a plurality of inner electrodes are arranged along two rotating surfaces formed on the inner side and the outer side with a common rotation axis, and some outer electrodes have round holes in the plate.
- the energy analyzer of the present invention which is a drilled ring-shaped electrode, wherein the inner electrode has a tapered shape whose diameter decreases toward an incident hole and an emitted hole.
- the ring-shaped electrode is set to have a small hole diameter near the incident hole and the exit hole so that the space formed between the outer electrode and the inner electrode becomes narrower around the incident hole and the exit hole. ..
- FIG. 5 (c) a plurality of outer electrodes and a plurality of inner electrodes are arranged along two rotating surfaces formed on the inner side and the outer side with a common rotation axis, and some outer electrodes are an incident hole and an exit.
- FIG. 5B It is a schematic diagram of the energy analyzer of the present invention characterized by being a ring-shaped electrode having a tapered shape whose diameter decreases toward a hole.
- the inner electrode has a tapered shape whose diameter decreases toward the incident hole and the exit hole, and the ring-shaped electrode is close to the incident hole and the exit hole. Is set to have a small hole diameter.
- FIG. 5D a plurality of outer electrodes and a plurality of inner electrodes are arranged along two rotating surfaces formed on the inner side and the outer side with a common rotation axis, and the inner electrodes are in the vicinity of the incident hole and the exit hole.
- the step shape is characterized in that the diameter becomes smaller in the vicinity of the incident hole and the exit hole.
- the outer electrode has a tapered shape in which the diameter decreases toward the incident hole and the exit hole, as in the embodiment of FIG. 1 (1), and the space formed between the outer electrode and the inner electrode is formed. It is narrowed around the entrance and exit holes.
- FIG. 5 (e) a plurality of outer electrodes and a plurality of inner electrodes are arranged along two rotating surfaces formed on the inner side and the outer side with a common rotation axis, and the inner electrodes extend to the vicinity of the incident hole and the exit hole.
- FIG. 5 (e) It is a schematic diagram of the energy analyzer of this invention characterized by having an extended rod shape.
- the plurality of electrodes having a rod shape may have different outer diameters.
- FIG. 5 (f) a plurality of outer electrodes and a plurality of inner electrodes are arranged along two rotating surfaces formed on the inner side and the outer side with a common rotation axis, and the inner electrodes are axisymmetric in diameter at the end.
- FIG. 5 (f) It is a schematic diagram of the energy analyzer of this invention characterized by having a shape.
- FIG. 5 (g) and 5 (h) are examples of the energy analyzer of the present invention in which the number of inner electrodes and the number of outer electrodes are set to two, respectively.
- a plurality of outer electrodes and a plurality of inner electrodes are arranged along two rotating surfaces formed on the inner and outer sides with a common rotation axis, and the outer electrodes are the same as those in FIG. 1 (1).
- the outer electrode is composed of an axisymmetric electrode extending to an incident hole and an exit hole, and an axisymmetric electrode arranged inside the axial symmetry electrode.
- the inner electrode has a tapered shape whose diameter decreases toward the incident hole and the emitted hole.
- the convergence performance is lowered and the capture angle is set smaller than that of other designs.
- the present invention comprises a total of four electrodes, two inner electrodes and two outer electrodes, by combining the inner electrode of FIG. 5 (g) and the outer electrode of FIG. 5 (h). Energy analyzers can be designed. In the type of FIG.
- the convergence performance in order to improve the convergence performance, it is effective to increase the degree of freedom in the shape of the inner electrode to optimize the shape and to design by increasing the number of bead-shaped electrodes. Further, in the type of FIG. 5 (h), the convergence performance can be improved by designing with an increased number of outer electrodes.
- a voltage for accelerating and decelerating electrons is applied to the outer electrode and the inner electrode in proportion to the energy of the incident electrons. ..
- the electron energy is converted into an acceleration voltage 3 to 5 times the converted acceleration voltage based on the potential of the outer electrode on which the incident hole is formed.
- the above voltage is set. However, in order to obtain high convergence performance, it is desirable to set the voltage to about 10 to 50 times the converted acceleration voltage with reference to the potential of the outer electrode on which the incident hole is formed.
- the number of electrodes is not limited to those shown in FIGS. 1 (1) and 5.
- the number of inner electrodes and outer electrodes may be two or more, but considering both performance and cost, it is preferable to provide about 3 to 5 inner electrodes and 3 to 7 outer electrodes. .. Further, it is desirable that the inner electrode and the outer electrode have a shape and arrangement in which the space formed between them is narrowed around the incident hole and the exit hole as shown in FIGS. 1 (1) and 5. .. As a result, the electric field applied to the incident hole and the emitted hole can be suppressed to a small size.
- the inner electrode and the outer electrode are plane-symmetrical with respect to a surface perpendicular to the straight line at the midpoint of the straight line connecting the incident hole and the exit hole.
- the electrons in the central orbit are incident at an incident angle of 45 ° and emitted at an emission angle of 45 °, but the incident angle and emission angle of the central orbit are not limited to this, and for example, the incident angle. It is also possible to design a 90 ° deflection electrostatic convergence type energy analyzer with 50 ° and an emission angle of 40 °.
- the inner electrode and the outer electrode have an asymmetric shape with respect to the surface perpendicular to the straight line at the midpoint of the straight line connecting the incident hole and the outgoing hole.
- various types of electrode shapes are shown in FIG. 5, various types of electrostatic deflection convergent energy analysis are not limited to those shown in FIG. 5 by freely combining these shape types. You can design a vessel. The combination of shape types can be freely changed not only on the outer electrode and the inner electrode but also on the incident hole side and the exit hole side.
- FIG. 6 (a) is a schematic view of an embodiment of the imaging type electron spectroscope of the present invention, in which an input lens is in the front stage and a rear stage is in the rear stage of the 90 ° electrostatic deflection convergence type energy analyzer of FIG. 1 (1).
- the configuration in which the projection lens is arranged is shown.
- High energy resolution can be achieved over a wide energy range by decelerating the electrons emitted from the sample with an input lens and incident on the energy analyzer.
- the 90 ° electrostatic deflection convergent energy analyzer can be expected to be very effective when combined with a wide-angle capture input lens.
- a spherical aberration correction lens with a capture angle of ⁇ 50 ° or a convergent lens for full-width ( ⁇ 90 °) capture electrons emitted from the sample are captured with an opening angle of ⁇ 50 ° or ⁇ 90 ° and ⁇ 2 °. If the lens is converged at an opening angle of less than a certain degree, the magnification becomes very high. Even when the input lens converges with the same energy as when incident (without decelerating), if electrons with an opening angle of ⁇ 50 ° or ⁇ 90 ° are converged with an opening angle of ⁇ 2 °, the magnification is about 25 times or 45 times. become. When decelerating, the magnification is even higher.
- the magnification becomes about 100 to 200 times according to the law of invariant luminance.
- the 90 ° electrostatic deflection convergent energy analyzer of the present invention is used instead of CHA, the angle of incidence on the energy analysis unit can be increased by about 3 times, and the sensitivity can be increased as compared with the case of using CHA. It is possible to increase it by about 9 times.
- the device of FIG. 6 (b) has the same basic configuration as the device of FIG. 6 (a), but the structure of the energy analyzer is slightly different.
- the energy analyzer has a structure of a 180 ° rotating body instead of a 360 ° rotating body.
- FIG. 7 shows a cross-sectional view of each of the energy analyzers of FIGS. 6 (a) and 6 (b) cut in the direction perpendicular to the paper surface.
- the inner electrode is fixed by a fixed leg.
- the fixed leg is installed in a place where the influence on the electric field is minimized, and the electrodes EL6 and EL8 are fixed to the electrodes EL2 and EL4 by the fixed leg, respectively.
- a compensating electrode as shown in FIG. 7B is provided in order to compensate the electric field at the cut surface.
- an energy analyzer having a rotation angle of 180 ° or less it is also possible to realize further space saving by using an energy analyzer having a rotation angle of 180 ° or less. In this case, it is desirable to set the rotation angle to 90 ° to 180 °.
- a compensating electrode for compensating the electric field at the cut surface is provided as in FIG. 7 (b).
- FIG. 8 shows an embodiment of the reflection imaging type electron spectroscope of the present invention.
- the 90 ° deflection-converged electrons are reflected by the single crystal mirror by the 90 ° electrostatic deflection convergence type energy analyzer of the first embodiment, and 90 ° deflection convergence is performed again. It is characterized by points.
- the electrons emitted from the sample are converged by the input lens and enter the energy analyzer from the aperture tilted by 45 °.
- the incident electrons converge by 90 ° deflection, are reflected by the single crystal mirror, return to the position of the incident aperture by 90 ° deflection convergence, and are emitted from there in the direction perpendicular to the incident.
- the emitted electrons are imaged as a two-dimensional real space image or emission angle distribution by the projection lens and are applied to the detector.
- the incident aperture also serves as an emission aperture that selects energy, and the energy resolution and sensitivity largely depend on the size of this aperture. Therefore, in order to adjust the energy resolution and sensitivity according to the measurement, the aperture section should be equipped with multiple apertures of different sizes and should be a mechanism to switch between them, or a mechanism such as an iris whose size can be freely changed. desirable.
- the energy analyzer in the reflection imaging type electron spectroscope shown in FIG. 8 has twice the energy dispersion as that of the energy analyzer shown in FIG. 6, higher energy resolution can be expected.
- noise may increase due to inelastic scattering in a single crystal mirror arranged in the emission hole of the energy analyzer, and the SN (Signal to Noise ratio) may decrease. Therefore, in order to reduce noise, it is effective to perform energy selection in two stages (two convergence positions). Sorting by the above aperture is the second stage, and the first stage uses a single crystal mirror for energy sorting as shown in FIG.
- the part corresponding to the aperture is a single crystal, and the other part is covered with an electron absorber.
- FIG. 9 shows an embodiment of the spin vector distribution imaging apparatus of the present invention using the 90 ° electrostatic deflection convergent energy analyzer of FIG. 1 (1).
- a two-dimensional spin filter 8 is provided as shown in the figure in order to measure a two-dimensional real space image or an emission angle distribution by spin decomposition.
- An electrostatic lens 19 is provided in front of the two-dimensional spin filter 8 so that electrons are incident on the two-dimensional spin filter 8 at an appropriate energy and angle, and adjustments thereof are made. After that, the electrons reflected by the two-dimensional spin filter 8 are projected onto the first detector 4a by the first projection lens 3a.
- the two-dimensional spin filter 8 can be retracted from the optical axis, and in the retracted state, the second projection lens 3b and the second detector 4b are used, and a normal (spin-integrated) two-dimensional real space image is used. Alternatively, a two-dimensional emission angle distribution can be obtained.
- the spin rotators 7a (SR1) and 7b (SR2) provided on the optical axes of the front and rear stages of the 90 ° deflection energy analyzer 1 are used for three-dimensional spin decomposition in the sample plane and in the plane.
- SR1 and SR2 are set to rotate the spin 90 ° in a plane perpendicular to the optical axis (hereinafter referred to as "ON") or not rotate (hereinafter referred to as "OFF").
- ON the optical axis
- OFF not rotate
- the first projection lens 3a and the first detector 4a are arranged on the same plane as the deflection plane, but the two-dimensional spin filter 8, the first projection lens 3a, and the first detector 4a are arranged. May be arranged so as to be rotated by 90 ° in the vertical direction of the paper surface about the intersection of the z'axis and the z'axis.
- both SR1 and SR2 should be ON, and to measure spin deviation in the y direction in the sample plane, only SR2 should be ON. Just do it.
- a spin vector distribution imaging device including a spin rotator is shown, but the spin rotator is not always necessary. Instead of providing a spin rotator, it is also possible to determine the direction of spin to be detected by rotating the sample and / or rotating a spin analyzer consisting of a two-dimensional spin filter, a projection lens, and a detector. Further, FIG. 9 shows a spin vector distribution imaging device using a 360 ° rotating body type energy analyzer, but a spin vector distribution imaging device using an energy analyzer having a rotation angle of 180 ° or less is configured. You can also.
- FIG. 10 is a schematic view of a simplified version of the spin vector distribution imaging apparatus using the reflection imaging type electron spectroscopic apparatus shown in FIG. Instead of the single crystal mirror, a two-dimensional spin filter 8 such as Au / Ir (001) is used. This gives the detector a spin-analyzed two-dimensional real-space image or emission angle distribution.
- the input lens 2 may or may not include a spin rotator 7, as in the spin vector distribution imaging apparatus shown in FIG. If a spin rotator is provided, the spin polarization degree in two directions in the sample plane can be measured.
- the spin polarization degree in the in-plane y direction (paper surface vertical direction) of the sample 10 can be measured, and when the spin rotator 7 is ON, the spin polarization degree in the x direction in the sample plane can be measured. Further, as described above, instead of providing the spin rotator, the spin polarization degree in two in-plane directions of the sample 10 can be measured by rotating the sample 10.
- FIG. 11 is a schematic diagram of an embodiment of the switchable electrostatic deflection convergent energy analyzer of the present invention.
- the switchable electrostatic deflection converging energy analyzer shown in FIG. 11 has seven outer electrodes EL1, EL2, ..., EL7 and six inner electrodes EL8, EL9, ..., EL13, and the outer electrode has an outer electrode.
- the inner surface shape is axisymmetric, and the outer surface shape of the inner electrode is axisymmetric, and they are arranged coaxially.
- the electrodes on the outlet side (EL6, EL7, EL13) have a tapered shape whose diameter narrows toward the outlet.
- the greatest feature of the switchable electrostatic deflection convergence type energy analyzer in FIG. 11 is that the inner electrodes are separated into two regions, and as an effect, the space created between the left and right inner electrodes is electron-generated. Will be able to pass.
- the electron orbits and lines of equipotential lines shown in FIG. 11 are the results in the case of 90 ° deflection.
- the orbit that is incident at an angle of 45 ° from the central axis z is the central orbit, and the orbit in the incident angle range of ⁇ 8 ° is shown.
- FIGS. 12 (a) and 12 (b) are the results of switching the deflection by changing the voltage condition in the switchable electrostatic deflection convergent energy analyzer of FIG.
- FIGS. 12 (a) and 12 (b) unlike the case of FIG. 11, electrons pass through an electric field formed between the left and right inner electrodes.
- the energy dispersive in FIG. 12 (a) is about the same as in the case of FIG. 11, but in the case of FIG. 12 (b), it is significantly reduced as compared with the case of FIG. 12 (a) due to the canceling action.
- the setting of FIG. 12A can be suitably used for energy analysis
- the setting of FIG. 12B can be suitably used for PEEM (photoemission electron microscope) measurement in which chromatic aberration is suppressed.
- FIG. 13 is a schematic diagram of a spin vector distribution imaging device using the switchable electrostatic deflection convergent energy analyzer shown in FIGS. 11 and 12. Three measurement modes are shown. 13 (a) is a spin decomposition mode, FIG. 13 (b) is a spin integration mode, and FIG. 13 (c) is a PEEM (photoemission electron microscope) mode.
- the deflection switching energy analyzer is set to 90 ° deflection conditions.
- the electrostatic lens 19 the second spin rotator 7b (SR2), the two-dimensional spin filter 8, the first projection lens 3a (provided in the direction perpendicular to the paper surface), and the first detector 4a It is provided and can measure the three-dimensional spin polarization degree by the same principle as the three-dimensional spin polarization degree analyzer of FIG.
- the spin polarization degree in the plane perpendicular direction of the sample 10 can be measured.
- a normal two-dimensional real space image or a two-dimensional emission angle distribution without spin decomposition can be measured by the second projection lens 3b and the second detector 4b provided for the electrons in the S-shaped orbit.
- the measurement of the two-dimensional real space image is performed using the sharp photoelectron spectral peak of the inner shell excitation.
- most of the photoelectrons emitted by irradiation with vacuum ultraviolet rays or X-rays are secondary electrons. Secondary electrons are electrons that have lost energy in various processes before emission, and have a wide range of energies.
- the PEEM mode of FIG. 13 (c) is a mode for measuring such a PEEM image.
- the setting of FIG. 12 (b) in which the energy dispersive is canceled is used. This makes it possible to obtain a clear PEEM image with suppressed chromatic aberration.
- the device of FIG. 13 is characterized by having this PEEM measurement function (compared to the device of FIG. 9) and being able to switch the measurement mode only by the voltage applied to each element.
- the electrostatic energy analyzer of this embodiment is composed of a combination of two or more electron optical systems.
- each electron optical system to be combined may be any of an electrostatic focusing mirror, an electrostatic deflector, and an electrostatic lens.
- the two electron optical systems used in the combination are schematically represented by A and B.
- A has a deflection angle ⁇ 1
- B has a deflection angle ⁇ 2 .
- the central orbit is not the central axis of the lens, but an orbit that is incident at a constant angle from the central axis and exits at a constant angle, and the deflection angle at this time is ⁇ .
- ⁇ Let it be 1 or ⁇ 2. It is assumed that electrons in the central orbit are incident or emitted perpendicularly to both end faces of A and B. Both end faces of A and B are placed perpendicular to the xy plane, and the right end face of A and the left end face of B are placed facing each other. Assuming that the vector perpendicular to the left end face of A is the vector a and the vector perpendicular to the right end face of B is the vector b, they are given by the following equation (7) using ⁇ 1 and ⁇ 2.
- Figure 16 (b) shows several beta 1 for 90 ° deflection of the condition in the case of ⁇ 2 ⁇ ⁇ 1.
- FIGS. 17A and 17B show orbits in an incident angle range of ⁇ 8 ° as measured from the central orbit. The convergence of these orbits is lower than that of the 90 ° electrostatic deflection convergence type energy analyzer shown in FIG. 1 (1), but high convergence can be obtained by limiting the incident angle to about ⁇ 5 °.
- FIG. 18 (a) shows a 90 ° electrostatic deflection convergent energy analyzer with this combination.
- FIG. 18 (b) shows a 90 ° electrostatic deflection convergent energy analyzer with this combination.
- 19 (a), (b), and (c) show a 120 ° electrostatic deflection convergent energy analyzer, a 135 ° electrostatic deflection convergent energy analyzer, and a 150 ° electrostatic deflection convergent energy analyzer, respectively.
- the schematic diagram of the Example is shown.
- the central orbits are orbits incident at angles of 60 °, 67.5 °, and 75 ° from the central axis, respectively.
- 19 (a), (b), and (c) show the orbits in the incident angle range of ⁇ 8 ° measured from the central orbit. These orbitals have improved convergence as compared with the orbitals of FIGS. 17 (a) and 17 (b).
- an energy analyzer having a deflection angle of 150 ° or more and 180 ° or less with the same electrode configuration as in FIG.
- the deflection angle is about 160 ° or more
- the convergence performance is significantly deteriorated.
- 90 ° deflection can be achieved by using an analyzer having a large deflection angle as shown in FIGS. 19 (a) and 19 (b).
- an energy analyzer having a rotation angle of 180 ° or less is used instead of the 360 ° rotating body type (see FIG. 7) as shown in FIG. 17 due to geometric restrictions.
- An energy analyzer with a small deflection angle and an energy analyzer with a large deflection angle have advantages and disadvantages, respectively.
- the energy resolution is improved, but when combined with an input lens or another energy analyzer, the energy analyzer is rotated by 180 °. Complex design such as body shape is required.
- a high voltage of about 13 to 24 kV is applied to the inner electrode EL7 with respect to 1000 eV.
- the voltage applied to at least one of the inner electrodes is , 1000 eV, it is desirable to set it in the range of about 10 to 50 kV.
- the voltage applied to at least one of the inner electrodes may be about 2 to 5 kV or more and about 10 kV or less with respect to 1000 eV.
- electrostatic deflection convergence type energy analyzer having a specific deflection angle
- the electrostatic deflection convergence type energy analyzer of the present invention has an arbitrary deflection angle of 45 ° to 180 ° by the same design. It can also be provided as an energy analyzer with.
- the ratio of the outer diameter of the inner electrode to the length L is about 0.27, and the ratio of the inner diameter of the outer electrode to the length L is about 0.76.
- the blurring of the image due to the aperture aberration is the case of the configuration of the electrostatic deflection convergence type energy analyzer shown in FIG. 1 as shown in FIG. 32 (b). It increases about 13 times compared to.
- the convergence performance is significantly deteriorated.
- this deterioration in convergence performance can be significantly reduced by forming the inner electrode into an appropriate shape.
- FIG. 33 (a) an example thereof is shown in FIG. 33 (a) in order to explain what kind of shape is appropriate as the inner electrode in the electrostatic deflection convergence type energy analyzer of the present invention.
- the EL 7 is set to a voltage 10 times the converted acceleration voltage.
- the EL6 and EL8 have a step shape characterized by two outer diameters D1 and D2 (D1 ⁇ D2), unlike the electrostatic deflection convergent energy analyzer shown in FIGS. 1 and 32 (a).
- the ratio of D1 to the length L is 0.11
- the ratio of D2 to the length L is 0.24.
- the ratio of the inner diameter of the outer electrode to the length L is about 0.76.
- the convergence performance of the electrostatic deflection convergence type energy analyzer shown in FIG. 32 (a) is inferior to that of the electrostatic deflection convergence type energy analyzer shown in FIG. It can be seen that there is a significant improvement compared to the case.
- EL 6 and EL 8 have a tapered portion whose diameter decreases toward the inlet or the outlet, as in the case of the electrostatic deflection converging energy analyzer shown in FIGS. 1 and 32 (a).
- a design without this taper is also effective, and the simplest shape is a coaxial two-stage cylindrical shape characterized by only two outer diameters D1 and D2 and two lengths in the z-axis direction. There may be.
- FIG. 34 is an example of the electrostatic deflection convergent energy analyzer of the present invention when a lower voltage is applied to the inner electrode EL7.
- 1.5 kV) is an example in the case of applying.
- the inner electrodes EL6 and EL8 have a step shape having a tapered portion on the inlet or outlet side.
- FIG. 34 is an example of the electrostatic deflection convergent energy analyzer of the present invention when a lower voltage is applied to the inner electrode EL7.
- 1.5 kV is an example in the case of applying.
- the inner electrodes EL6 and EL8 have a step shape having a tapered
- a design without a tapered portion is also effective, and even if it is a coaxial two-stage cylindrical shape characterized by only two outer diameters D1, D2 and two lengths in the z-axis direction. good.
- the outer surface of EL7 has a cylindrical shape having an outer diameter larger than D1 and D2.
- the inner electrode has a coaxial three-stage cylindrical shape as a whole except for the tapered portion.
- FIGS. 34 (a), (b), and (c) the three outer diameters, the lengths of the respective parts, and the applied voltage are adjusted so as to minimize the aperture aberration.
- the ratio of the inner diameter of the outer electrode to the length L is about 0.76 in the case of the electrostatic deflection convergent energy analyzer shown in FIG. 34 (a), as shown in FIGS. 34 (b) and 34 (c). In the case of the electrostatic deflection convergence type energy analyzer shown, it is 0.87.
- the aperture aberration in the case of the electrostatic deflection convergence type energy analyzer shown in FIGS. 34 (a), (b), and (c) is the case of the electrostatic deflection convergence type energy analyzer shown in FIGS. 1 and 33 (a). It is shown in FIG. 35, together with the aperture aberration of.
- the aperture aberration increases as the voltage applied to the EL 7 is lowered. Therefore, for the purpose of reducing the aperture aberration, it is desirable to set the voltage applied to the EL 7 as high as possible.
- Another point to note is that when the voltage applied to the EL7 is lowered from 2 times to 1.5 times the converted acceleration voltage, the aperture aberration increases sharply.
- the voltage applied to the EL 7 is set to about twice or more the converted acceleration voltage.
- the voltage applied to the EL 7 is set to be larger than that in the case of the electrostatic deflection convergence type energy analyzer shown in FIG. 1, it is possible to further reduce the aperture aberration.
- the voltage applied to the EL7 cannot be set as high as possible, and there are restrictions on the design and manufacture of the inner diameter electrode.
- FIG. 36 is an example of the electrostatic deflection convergent energy analyzer of the present invention when the voltage applied to the EL 7 is set to 50 times the converted acceleration voltage.
- the outer diameter of EL7 is smaller than the outer diameters of EL6 and EL8.
- the voltage applied to the EL7 is limited to about 50 times, and if it is attempted to be larger than this, there arises a problem that the outer diameter of the EL7 becomes too small and wiring and insulation become difficult.
- the voltage applied to the EL 7 is the converted acceleration voltage from FIG. 35 and the above consideration. It is desirable to set it to about 10 to 50 times. Further, when both high convergence performance and ease of design / manufacturing are required, it is desirable to set the voltage applied to the EL 7 to about 20 to 30 times the converted acceleration voltage.
- Table 8 shows the case of the electrostatic deflection convergent energy analyzer shown in FIGS. 32 (a), 33 (a), 34 (a), 34 (b), 34 (c), and 36. It is a table summarizing the applied voltage. From Table 8, it can be seen that the method of applying the voltage to EL1 to EL8 changes with respect to the case of the electrostatic deflection convergence type energy analyzer shown in FIG. 34 (b). When the voltage applied to EL7 is about twice or more of the converted acceleration voltage, 0 or positive voltage is applied to the other electrodes, and when the voltage applied to EL7 is about twice or less of the converted acceleration voltage. , 0 or negative voltage is applied to the other electrodes.
- the outer electrodes EL1 to EL5 are all set to the same potential (0V), they are collectively designed as one electrode. You can also do it. Further, in the case of the electrostatic deflection convergence type energy analyzer shown in FIG. 34 (a), since the (adjacent) EL1, EL2 and EL4 and EL5 have the same potential (0V), the outer electrodes are as three electrodes in total. It can also be designed. As described above, the number of outer electrodes is not limited to 5 of EL1 to EL5 shown in the examples, and may be 3 or 1, and may be 2, 4, or 6 or more. Further, the number of inner electrodes is not limited to three of EL6 to EL8 shown in the examples, and may be four or more. Increasing the number of electrodes allows for finer adjustment of the electric field.
- the shape and arrangement of the electrodes may be changed in various ways as long as they are set so as to be able to form an electric field similar to the electric field shown in the examples.
- the electrons incident on the cylindrical electric field change their direction by deceleration, become parallel to the z-axis at the intermediate surface between the incident point and the exit point, and then change the direction while being accelerated. And reach the emission position.
- the electrons in the central orbit draw a circular orbit by the balance between the central force and the centrifugal force due to the radial symmetric electric field, so that they are neither accelerated nor decelerated.
- the electrostatic deflection convergent energy analyzer of the present invention is fundamentally different from the electric field used in CMA and CHA.
- the present invention is useful for an energy analyzer, a photoelectron spectroscope, and a spin polarization analyzer.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
また、新しい半導体材料や超伝導材料の研究においては、高度なドーピング技術が用いられ、極微量のドーパントであっても材料に大きな変化をもたらし得ることが知られている。このようなドーパントからの微弱なシグナルを捉えることは、新しい材料の開発において極めて重要である。
また、光電子放出過程では試料面内方向の運動量が保存されるため、光電子の運動エネルギーと放出角度を測定することによって、物質中における電子の運動量の情報が得られる。紫外線やX線を試料に照射し、エネルギーを価電子帯に合わせて光電子の運動エネルギーと放出角度分布を測定することにより、物質のエネルギーバンド構造を評価し、物質の性質をほぼ決定することができる。
ここで、倍率(M)は、インプットレンズの物面(試料面)での観察物のサイズをa、インプットレンズの像面での観察物の像のサイズをbとすると、M=b/aで定義され、この値は、レンズの入口と出口で電子のエネルギーが変わらないアインツェル型レンズの場合、概ね、入射角と収束角の比となる。インプットレンズの倍率は、CHAの感度を決定する重要な条件の1つであり、この倍率を高く設定すると、静電半球部の入口に設けられるスリットのサイズ次第では感度が著しく低下する結果になる。したがって、上述した従来のインプットレンズでは、通常、倍率は低く設定される。たとえば、アインツェル型のレンズで、±7°の開き角の電子を±2°の開き角にして収束させる場合、倍率は3.5程度の低い倍率で済む。
以上のように、実空間像または角度分布を結像する高性能の電子分光装置を実現するには、グリッドを用いることなく、取り込み角をCHAの静電半球部よりも広げたエネルギー分析器が必要になる。
また、従来から知られた静電型90°偏向器と磁場レンズ型スピン回転器(以下、スピンローテーターという)を組合せて、試料面内、面直の3つの方向のスピン偏極度の測定が可能である(特許文献5)。しかし、従来の静電型90°偏向器は、ビームを2次元収束させる結像性能が無く、実空間像と放出角度分布を詳しく調べる2次元スピン分析装置には応用できていないという問題がある。
ウィーンフィルターは、直交する電場と磁場に電子を入射させたとき、特定エネルギーの電子のみ、電場から受ける力と磁場から受ける力(ローレンツ力)が釣り合って直進することを利用したエネルギー分析器である。この分析器では、電場形成電極に印加する電圧と電磁石に印加する電圧(または電流)をそれぞれ調整することにより、一定の開き角で入射した電子を収束させることができる。また、ウィーンフィルターには電子のスピンを回転する作用もあり、印加電圧(または電流)を適切に調整することにより、光軸方向のスピンを光軸と垂直の方向に回転することができる。
また、本発明は、第2に、高いエネルギー分解能で2次元の実空間像と放出角度分布の結像を可能にする結像型電子分光装置を提供することを目的とする。
さらに、本発明は、第3に、試料面内方向のスピン偏極度の2次元分析に加え、試料から放出された電子を2次元スピン検出器に入射する前に電場で90°偏向して試料面直方向のスピン偏極度を測定でき、スピン偏極度の3次元測定が行えるスピン偏極度分析装置を提供することを目的とする。
これらの課題が解決されれば、電子の3つの物理量(エネルギー、運動量、スピン)を詳しく解析する画期的な分析ツールを提供することができる。
1)回転軸を共通として内側と外側に形成される2つの回転体の形状に沿って1つ又は複数の外側電極と複数の内側電極が配置される。ここで、回転軸を共通として内側と外側に形成される2つの回転体は、外側の回転体が内側の回転体を包含する形態となる。
2)外側電極の両端の電極の上記回転軸上に電子の入射穴と出射穴が形成される。
3)外側電極と内側電極に電子を加速して減速する電圧を印加する電圧印加手段を有する。
ここで、外側電極と内側電極には、電子を加速して減速する電圧が入射する電子のエネルギーに比例して印加することでもよい。
4)外側電極の内面形状が、入射穴に向かって小径になる形状であり、かつ、出射穴に向かって小径になる形状である。
ここで、外側電極の内面形状における入射穴に向かって小径になる形状は、望ましくは、テーパー形状、トロイダル面形状又はリング形状であり、かつ、外側電極の内面形状における出射穴に向かって小径になる形状は、テーパー形状、トロイダル面形状又はリング形状である。
5)内側電極の外面形状が、入射穴に向かって小径になる形状、入射穴に向かって延びるロッド形状、又は、入射穴側の端部で径が広がる形状であり、かつ、出射穴に向かって小径になる形状、出射穴に向かって延びるロッド形状、又は、出射穴側の端部で径が広がる形状である。
ここで、内側電極の外面形状における入射穴に向かって小径になる形状は、望ましくは、テーパー形状もしくはトロイダル面形状、又は、入射穴に向かって段階的に小径になるステップ形状であり、かつ、出射穴に向かって小径になる形状は、テーパー形状もしくはトロイダル面形状、又は、出射穴に向かって段階的に小径になるステップ形状である。
なお、外側電極の内面形状と内側電極の外面形状は、基本的には形状が入射穴側と出射穴側で同じになるが、必ずしも同じである必要はなく、異なる形状を呈してもよい。例えば、入射穴側がテーパー形状、出射穴側がリング形状など、様々な組み合わせが可能である。また、段階的に小径になるステップ形状とは、例えば、中央に径の小さい電極が配置された場合も、入射穴の近くで、1ステップだけでも小径になっているものも含まれる。
換算加速電圧とは、電子のエネルギーを加速電圧に換算した電圧と定義する。例えば、1eVの換算加速電圧は1Vである。換算加速電圧の2~5倍以上の電圧とは、電子のエネルギーをEeVとすると2E~5EV以上の電圧である。ここで、内側電極の両端の電極を除いた1つ又は複数の内側電極に印加される電圧は、入射穴が形成された外側電極の電位を基準として、電子のエネルギーを加速電圧に換算した換算加速電圧の10倍以上の電圧が設定されることが好ましい。例えば、電子のエネルギーを1000eVに対して10kV以上の高電圧が設定される。これは、エネルギー分析部への入射角をより広げることができ、広角取り込みのインプットレンズの倍率をより低減し、広角取り込みにおける感度をより増加させ、エネルギー分解能を更に向上できるからである。
7)中心軌道が上記回転軸と所定入射角度になるように、入射穴から入射した電子を、中心軌道が上記回転軸と所定出射角度で出射穴の位置に収束させるように調整された印加電圧を各電極に印加する。
また、外側電極が3つ以上の電極で構成される場合、両端の電極を除いた1つ又は複数の外側電極に印加される電圧は、換算加速電圧の10倍以下であることが好ましい。
・所定入射角度が22.5°で偏向角が45°である。
・所定入射角度が30°で偏向角が60°である。
・所定入射角度が60°で偏向角が120°である。
・所定入射角度が67.5°で偏向角が135°である。
・所定入射角度が75°で偏向角が150°である。
なお、入射角度は特に限定されるものではなく、偏向角は、45°、60°、120°、135°、150°など、45~180°の角度となるように、入射角度と出射角度を調整すればよい。
内側電極が2つの部分(入射側と出射側)に分離されていることがこの分析器の特徴であり、その効果として、左右の内側電極間にできた空間を電子が回転軸を横切って通過できるようになる。電極に印加される電圧条件を変えることにより、左右の内側電極間の空間を電子が通過する場合と通過しない場合とを切替制御でき、それにより、出射する電子の偏向の有無を切替できる。
かかる態様の静電偏向収束型エネルギー分析器は、以下では、「偏向切替静電収束型エネルギー分析器」という場合がある。
本発明の結像型電子分光装置は、上述の本発明の静電偏向収束型エネルギー分析器を用いた電子分光装置であって、分析器の前段にインプットレンズを、分析器の後段に投影レンズと検出器を設けることにより、試料の実空間像だけでなく、広角にわたる2次元放出角度分布を高いエネルギー分解能で一度に測定することができる。
ここで、インプットレンズは、レンズ軸上にエネルギー分析器の入射穴があり、レンズ軸とエネルギー分析器の回転軸とが所定入射角度になるように配置され、試料から放出された電子を取り込み入射穴に出射するものである。なお、インプットレンズは、角度分布と実空間像を切り替えられる機能を備えるものが好ましい。
また、投影レンズは、投影レンズ軸上にエネルギー分析器の出射穴があり、投影レンズ軸とエネルギー分析器の回転軸とが所定出射角度になるように配置され、エネルギー分析器によって偏向収束する電子を出射穴から取り込むものである。検出器は、投影レンズを透過した電子を2次元検出し、2次元の実空間像または放出角度分布を測定する。
なお、エネルギー分析器の入射穴(入口)と出射穴(出口)には、アパチャーまたはスリットを設けることが好ましい。
インプットレンズは、レンズ軸上にエネルギー分析器の入射穴があり、レンズ軸とエネルギー分析器の回転軸とが所定入射角度になるように配置され、試料から放出された電子を取り込み入射穴に出射するものである。ミラーは、エネルギー分析器の出射穴に垂線の方向が回転軸の方向と一致するように配置される。ミラーとしては、単結晶ミラーを用いることができ、特に、Ir(001)単結晶ミラーなどを用いるとスピン分析機能が得られる。
投影レンズは、投影レンズ軸上に入射穴があり、投影レンズ軸とエネルギー分析器の回転軸とが所定入射角度になるように配置され、エネルギー分析器によって偏向収束しミラーで反射した後に再び偏向収束する電子を入射穴から取り込むものである。検出器は、投影レンズを透過した電子を2次元検出し、2次元の実空間像または放出角度分布を測定する。
なお、エネルギー分析器の入射穴(入口と出口を兼用)には、アパチャーまたはスリットを設けることが好ましい。
本発明の第1の観点のスピンベクトル分布イメージング装置は、偏向角が90°である本発明の90°静電偏向収束型エネルギー分析器(90°~180°の回転角を有する回転体であり、切断面で電場を補償する補償電極が設けられたエネルギー分析器も含む)を構成に備え、更に、以下の1a)~1d)の構成を備える。
1a)レンズ軸上にエネルギー分析器の入射穴があり、レンズ軸とエネルギー分析器の回転軸とが所定入射角度になるように配置され、試料から放出された電子を取り込み入射穴に出射するインプットレンズ。
1b)静電レンズ軸上にエネルギー分析器の出射穴があり、静電レンズ軸とエネルギー分析器の回転軸とが所定出射角度になるように配置され、エネルギー分析器によって偏向収束する電子を出射穴から取り込む静電レンズ。
1c)静電レンズの出射側で静電レンズ軸上に配置された2次元スピンフィルター。
1d)スピンフィルターにより反射される電子を取り込む投影レンズ及び投影レンズを透過した電子を検出する検出器。
1e)スピンフィルターを静電レンズ軸から退避させる駆動手段。
1f)駆動手段によってスピンフィルターが退避した状態で、静電レンズが出射する電子を取り込む第2投影レンズ及び第2投影レンズを透過した電子を検出する第2検出器。
2a)レンズ軸上にエネルギー分析器の入射穴を配置し、レンズ軸とエネルギー分析器の回転軸とが所定入射角度になるように配置され、試料から放出された電子を取り込み入射穴に出射するインプットレンズ。
2b)エネルギー分析器の出射穴に配置され、回転軸を垂線とする2次元スピンフィルター。
2c)投影レンズ軸上にエネルギー分析器の入射穴を配置し、投影レンズ軸と回転軸とが所定入射角度になるように配置され、エネルギー分析器によって偏向収束し2次元スピンフィルターで反射した後に再び偏向収束する電子を入射穴から取り込む投影レンズ。
2d)投影レンズを透過した電子を検出する検出器。
3a)レンズ軸上にエネルギー分析器の入射穴があり、レンズ軸とエネルギー分析器の回転軸とが所定入射角度になるように配置され、試料から放出された電子を取り込み入射穴に出射するインプットレンズ。
3b)静電レンズ軸上にエネルギー分析器の出射穴があり、静電レンズ軸とエネルギー分析器の回転軸とが所定出射角度になるように配置され、エネルギー分析器によって偏向収束する電子を出射穴から取り込む静電レンズ。
3c)静電レンズの出射側で静電レンズ軸上に配置された2次元スピンフィルター。
3d)2次元スピンフィルターにより反射される電子を取り込む第1投影レンズ及び第1投影レンズを透過した電子を検出する第1検出器。
3e)投影レンズ軸上にエネルギー分析器の出射穴があり、投影レンズ軸とエネルギー分析器の回転軸とが所定出射角度になるように配置され、エネルギー分析器によって偏向すること無く収束する電子を出射穴から取り込む第2投影レンズ。
3f)第2投影レンズを透過した電子を検出する第2検出器。
90°静電偏向収束型エネルギー分析器の前段と後段にそれぞれ(レンズ軸と垂直な面内でスピンを90°回転する)スピンローテーターを設けることにより、2つのスピンローテーターのON、OFFの組合せによって、試料面内、面直の3つの方向のスピン偏極度のうちどの方向の偏極度を分析するかを決めることができる。これにより、3次元スピン偏極度を2次元の実空間像と放出角度分布で分析する2次元分析装置が可能になる。
本発明の結像型電子分光装置によれば、試料の実空間像だけでなく、広角にわたる2次元放出角度分布を高いエネルギー分解能で一度に測定できるといった効果がある。
本発明のスピンベクトル分布イメージング装置によれば、3次元スピン偏極度を2次元の実空間像と放出角度分布で分析できるといった効果がある。
CHAは、図20に示すように、試料から放出された電子(または荷電粒子)を取り込んで収束させるインプットレンズ、内球と外球からなる静電半球部、静電半球部の入口に設けられたスリット、静電半球部の出口に設けられた検出器からなり、球対称電場による収束作用を利用した分析器となっている。図20のように静電半球部の球の中心Oからインプットレンズの中心軸(光軸)までの距離をR0とすると、理想的な球対称電場の場合、内球と外球間の任意の点(Oから距離r)での電位は下記の式(1)で与えられる。
ここで、Epassは静電半球部のパスエネルギー、V0はr=R0での電位、eは電気素量である。式(1)の第一項の係数は、中心軌道での遠心力と中心力の釣り合いの条件から決まる係数である。中心軌道は、インプットレンズの光軸から静電半球部に垂直に入射するエネルギーEk=Epassの電子軌道を指す。遠心力が中心力より強い場合(つまり、Ek>Epassの場合)には、軌道が外側に逸れ、中心力の方が強い場合(つまり、Ek<Epassの場合)には、軌道が内側に逸れる。入口スリットを通過したEk=Epassの電子ビームは、中心軌道が円軌道を描いて180°向きを変え、出口位置に収束して検出器により検出される。EkがEpassよりわずかに高い電子は、中心Oから離れる方向に、EkがEpassよりわずかに低い電子は、中心Oに近づく方向に収束点がシフトする。このように、静電半球部の出口に設けた検出器では、図20に示した方向にエネルギー分散が得られる。また、紙面垂直方向には、1次元の実空間像または放出角度分布が得られる。
静電半球部のFWHM(full width at half maximum)のエネルギー分解能の見積もりは下記の式(5)で与えられる。
CMAは、図23に示すように、内円筒と外円筒からなる同軸円筒部、同軸円筒部の後段に設けられたスリットと検出器からなり、円筒対称電場による収束作用を利用した分析器となっている。ここで、電子が入る内円筒の入口と出ていく出口は円筒状のグリッドになっており、これにより、円筒対称電場を崩さずに電子が通過できるようになっている。
理想的な円筒対称電場の場合、CMAの内円筒と外円筒の間の任意の点(中心軸zから距離r)での電位は下記の式(6)で表される。
r=RinでV(r)=0としているが、内円筒に任意の電位を設定する場合は、その電位を式(6)に加算すればよい。図23において、外円筒と内円筒の半径の比は2.66である。この場合、外円筒に印加する電圧は、式(6)より、Epass=1000eVに対して約-746Vとなる。電子のエネルギーEpassを電気素量eで割ったものを換算加速電圧とすると、外円筒に印加する電圧の絶対値は、換算加速電圧の約0.75倍となる。内円筒に印加する電圧は、換算加速電圧の0倍である。中心軌道は、試料上の原点(中心軸zと試料面の交点)から、CMAの中心軸zとθ=42.3°の角度を成して円筒対称電場に入射するエネルギーEk=Epassの電子軌道である。
任意の軌道の円筒対称電場に入射する角度を中心軸zから測ってθ=42.3°+αで表し、以下、αを入射角とする。円筒対称電場に入射した電子は中心軸zに向かう力を受けて向きを変え、Ek=Epassの電子軌道の束は、中心軌道が中心軸zと42.3°の角度を成して出口グリッドを通過し、スリット位置に収束する。図示していないが、収束点は、Ek>Epassのとき右側に、Ek<Epassのとき左側に移動し、エネルギー分解能の分だけEkがずれると電子はスリットを通過できなくなる。
代表的なスピン偏極度分析装置としては、スピン軌道相互作用を利用したMott検出器やSPLEED検出器、スピン交換相互作用を利用したVLEED検出器などがある。また、近年、Ir(001)単結晶基板を用いた2次元スピン分析器が開発されている(非特許文献10)。図25はVLEED検出器の概略図である(非特許文献11)。このスピン偏極度分析装置は、コイルによって磁化されたターゲットに低エネルギーの電子を入射させたときに電子のスピンがターゲットの磁化と平行か反平行かによって反射される電子の強度が変わることを利用した検出器である。ターゲットには鉄薄膜が利用されている。
y,y’は、静電半球部の中心と入口または出口を結ぶ方向にとった軸であり、x,x’は、それぞれ、z,yとz’,y’に垂直な軸である。CHAは電場のみで成り立っているため、電子がCHAを通過してもスピンの方向は変化しない。
これにより、試料を回転することなく、試料面内方向のスピンを90°面内回転することができる。また、VLEEDを用いたスピン偏極度分析装置の場合、スピンローテーターの代わりにターゲットを磁化させるコイルを2方向に設け、磁化の方向を切り替えることによって、試料面内x方向、y方向のスピン偏極度を測定することも可能である。しかし、上記の何れの方法でも、z方向のスピン偏極度を測定することができない。z方向のスピン偏極度を測定するには、電子がターゲットに入射する前に、電子の軌道を電場で90°曲げる方法が有効である。
試料を回転することなくx方向とy方向のスピン偏極度を測定するには、スピンローテーターを、図27のように、インプットレンズと静電半球部の間、および、90°ディフレクターとスピン分析器の間にそれぞれ設ける。図27において、2つのスピンローテーター(SR1,SR2)は何れもOFFの設定になっているが、SR1をOFFの設定に、SR2をONの設定にすると、試料面内x方向のスピン偏極度が測定でき、SR1、SR2を何れもONの設定にすると試料面内y方向のスピン偏極度が測定できる。VLEEDを用いたスピン分析器の場合、2つ目のスピンローテーターSR2を設ける代わりに、x’方向にコイルを追加してもよい。上記のような方法により3次元のスピン偏極度を測定することができる。
図1(1)は、本発明の90°静電偏向収束型エネルギー分析器の一実施形態の概略図である。90°静電偏向収束型エネルギー分析器1は、回転軸13を共通として内側と外側に形成される2つの回転体の形状に沿って、5つの外側電極EL1,EL2,EL3,EL4,EL5と3つの内側電極EL6,EL7,EL8が配置され、外側電極の両端の電極の回転軸13上の其々に、電子の入射穴11と出射穴12が形成されている。外側電極の内面形状が、中央の電極(EL3)を除いて、入射穴11及び出射穴12に向かって小径になるテーパー形状を有し、内側電極の外面形状が、中央の電極(EL7)を除いて、入射穴11及び出射穴12に向かって小径になるテーパー形状を有する。回転軸方向の位置をz0で表し、エネルギー分析器1の入口をz0=0、出口をz0=Lとすると、外側電極と内側電極はz0=L/2の中央面14に対して面対称となっている。
図1(1)には電極の概略形状に加え、電子軌道と等電位線が示されている。z0=0から出た電子は、最初は緩やかな電場で加速され、その後、強い電場で加速されながら方向を変えて、z0=L/2の辺りで回転軸z0と平行になり、その後、減速されながら方向を変えて出口位置に収束する。
また、図1(1)には示されていないが、エネルギー選別用のスリットが出口位置に、その後段に検出器が配置される。試料をz0=0の面に設置する場合、高いエネルギー分解能が得られるのは低エネルギー領域の分析に限られるが、軸対称性による大きな取り込み立体角とそれによる高い感度が見込まれる。
電子のエネルギーEpassを電気素量eで割ったものを換算加速電圧とすると、EL3には換算加速電圧の3~4倍程度の電圧が、EL7には換算加速電圧の23~25倍程度の電圧が印加される。上述したCHAとCMAの印加電圧と比較すると、EL3とEL7に印加される電圧が1桁または2桁高いことが分かる。なお、各電極に印加する最適な電圧は、電極の形状や配置に依存して変化する。その結果、EL3には、おおむね、換算加速電圧の0~10倍の電圧が、EL7には、おおむね、換算加速電圧の10~50倍の電圧が印加される。ただし、高い収束性能が必要ないときは、EL7に印加される電圧は、換算加速電圧の3~5倍以上、10倍以下の電圧であってもよい。
ΔE(=E-Epass)とパスエネルギーEpassとの比は、-0.05~+0.05の範囲でとっている。この分散からエネルギー分解能を見積もることができる。下記表3は、CHAの場合のエネルギー分解能を示す前述の式(5)の右辺第1項に対応する寄与を計算したものである。これは照射ビームのスポットサイズをゼロに近づけたときに可能になるエネルギー分解能の見積もりである。
図5(h)は、外側電極が入射穴と出射穴まで延びた軸対称電極とその内側に配置された軸対称電極からなることを特徴としている。内側電極は、入射穴と出射穴に向かって径が小さくなるテーパー形状を有する。図5(e)、図5(f)、図5(g)、図5(h)の設計では、収束性能が低下し、取り込み角は他の設計と比べて小さく設定される。取り込み角がさらに小さくてもよい場合は、図5(g)の内側電極と図5(h)の外側電極を組み合わせて、内側電極2つ、外側電極2つの合計4つの電極からなる本発明のエネルギー分析器を設計することができる。図5(g)のタイプにおいて、収束性能を向上するには、内側電極の形状の自由度を増やして形状最適化することやビーズ状電極の数を増やして設計することが有効である。また、図5(h)のタイプにおいては、外側電極の数を増やした設計により収束性能を向上することができる。
なお、図5には様々なタイプの電極形状が示されているが、これらの形状タイプを自由に組み合わせて、図5に示したものに限らず、様々な形態の静電偏向収束型エネルギー分析器を設計することができる。形状タイプの組み合わせは、外側電極と内側電極においてのみならず、入射穴側と出射穴側においても自由に変えることができる。
図6(a)は、本発明の結像型電子分光装置の一実施形態の概略図であり、図1(1)の90°静電偏向収束型エネルギー分析器の前段にインプットレンズ、後段に投影レンズを配置する構成を示している。試料から出た電子をインプットレンズで減速してエネルギー分析器に入射することにより、広いエネルギー範囲で高いエネルギー分解能を達成することができる。90°静電偏向収束型エネルギー分析器は、広角取り込みのインプットレンズと組合せる場合に大きな効果が期待できる。上述したように、CHAを用いて2次元の実空間像や放出角度分布を実用的な空間分解能または角度分解能で得るには静電半球部への入射角を±2°程度以下にする必要がある。
図8は、本発明の反射結像型電子分光装置の一実施形態を示している。本実施例の反射結像型電子分光装置は、実施例1の90°静電偏向収束型エネルギー分析器によって、90°偏向収束させた電子を単結晶ミラーで反射し、再び90°偏向収束させる点が特徴となっている。試料から放出された電子は、インプットレンズにより収束され、45°傾いたアパチャーからエネルギー分析器に入射する。入射した電子は、90°偏向収束し、単結晶ミラーで反射し、90°偏向収束によって、入射アパチャーの位置に戻ってきて、そこから入射時と垂直の方向に出射される。出射された電子は、投影レンズにより2次元の実空間像または放出角度分布として結像され検出器にかかる。
入射アパチャーは、エネルギーの選別を行う出射アパチャーを兼ねており、エネルギー分解能と感度は、このアパチャーのサイズに大きく依存する。したがって、測定に応じてエネルギー分解能と感度を調整するには、アパチャー部は、サイズが異なるアパチャーを複数備え、それらを切り替える機構にするか、サイズを自由に変えられるアイリスなどの機構にすることが望ましい。
図9は、図1(1)の90°静電偏向収束型エネルギー分析器を用いた本発明のスピンベクトル分布イメージング装置の一実施形態を示している。図9に示すスピンベクトル分布イメージング装置では、2次元の実空間像または放出角度分布をスピン分解で測定するために、図のように2次元スピンフィルター8が設けられる。電子がこの2次元スピンフィルター8に適切なエネルギーと角度で入射するように、その前段には静電レンズ19が設けられ、それらの調整が行われる。その後、2次元スピンフィルター8により反射された電子は、第1投影レンズ3aによって第1検出器4aに投影される。2次元スピンフィルター8は光軸から退避できるようになっており、退避状態のときは、第2投影レンズ3bと第2検出器4bが用いられ、通常の(スピン積分の)2次元実空間像または2次元放出角度分布が得られる。
また、図9には、360°回転体型のエネルギー分析器を用いたスピンベクトル分布イメージング装置を示したが、回転角が180°以下のエネルギー分析器を用いたスピンベクトル分布イメージング装置を構成することもできる。
図10は、図8に示す反射結像型電子分光装置を用いた簡易版のスピンベクトル分布イメージング装置の概略図である。単結晶ミラーの代わりに、Au/Ir(001)などの2次元スピンフィルター8が用いられる。これにより、スピン分析された2次元の実空間像または放出角度分布が検出器で得られる。インプットレンズ2は、図9に示すスピンベクトル分布イメージング装置と同じように、スピンローテーター7を備えてもよいし、備えなくてもよい。スピンローテーターを備えると、試料面内2方向のスピン偏極度が測定できるようになる。スピンローテーター7がOFFのとき、試料10の面内y方向(紙面垂直方向)のスピン偏極度が測定でき、スピンローテーター7がONのとき、試料面内x方向のスピン偏極度が測定できる。また、前述の通り、スピンローテーターを備える代わりに、試料10を回転することにより、試料10の面内2方向のスピン偏極度を測定することもできる。
図11は、本発明の切替式の静電偏向収束型エネルギー分析器の一実施形態の概略図である。図11に示す切替式の静電偏向収束型エネルギー分析器は、7つの外側電極EL1,EL2,・・・,EL7と6つの内側電極EL8,EL9,・・・,EL13をもち、外側電極は内面形状が軸対称、内側電極は外面形状が軸対称で、それらは同軸に配置されている。分析器の入口をz0=0、出口をz0=Lとすると、外側電極と内側電極は、z0=L/2の面に対して対称となっている。また、外側電極と内側電極は、図1(1)の90°静電偏向収束型エネルギー分析器と同様、入口側の電極(EL1,EL2,EL8)は入口に向かって径が狭まるテーパー形状、出口側の電極(EL6,EL7,EL13)は出口に向かって径が狭まるテーパー形状を有している。
一方、エネルギー分散は、図12(a)の場合、図11の場合と同程度になるが、図12(b)の場合は、打ち消し作用により、図12(a)の場合と比べて著しく減少する結果となる。その結果、図12(a)の設定は、エネルギー分析に好適に用いることができ、図12(b)の設定は、色収差を抑えたPEEM(光電子顕微鏡)測定に好適に用いることができる。
図13は、図11と図12に示した切替式の静電偏向収束型エネルギー分析器を用いたスピンベクトル分布イメージング装置の概略図である。3つの測定モードが示されている。図13(a)はスピン分解モード、図13(b)はスピン積分モード、図13(c)はPEEM(光電子顕微鏡)モードである。
90°偏向収束を行う他の実施形態の静電型エネルギー分析器について、図14を参照して説明する。図14に示すように、本実施例の静電型エネルギー分析器は、2つ以上の電子光学系の組合せで構成される。ここで、組合せる各電子光学系は、静電収束ミラー、静電偏向器、静電レンズの何れであってもよい。
図14において、組合せに用いる2つの電子光学系を模式的にAとBで表す。Aは偏向角β1、Bは偏向角β2をもつ。ただし、AまたはBに静電レンズを用いる場合、中心軌道は、レンズの中心軸ではなく、中心軸から一定の角度をもって入射し、一定の角度で出射する軌道とし、このときの偏向角をβ1またはβ2とする。A、Bそれぞれの両端面に垂直に中心軌道の電子が入射または出射するものとする。A、Bの両端面は、xy平面に垂直に置かれ、Aの右側の端面とBの左側の端面は向かい合わせに置かれている。Aの左側の端面に垂直なベクトルをベクトルa,Bの右側の端面に垂直なベクトルをベクトルbとすると、それらはβ1とβ2を用いて下記の式(7)で与えられる。
一方、図19(a),(b)のように偏向角が大きいエネルギー分析器の場合は、エネルギー分解能が向上するが、インプットレンズや他のエネルギー分析器と組合せる場合には、180°回転体型などの複雑な設計が必要になる。
1)電子は静電偏向収束型エネルギー分析器に入射すると電場によって加速されながら進行方向を少しずつ変える。
2)入射点と出射点の中間面(z=L/2)またはそれに近い位置で静電偏向収束型エネルギー分析器の軸(z軸)と平行になる
3)その後、減速されながら進行方向を少しずつ変え、出射位置に到達する。このとき、中心軌道の電子は所定の偏向角を得て出射する。
2 インプットレンズ
3,3a,3b 投影レンズ
4,4a,4b 検出器
5 単結晶ミラー
6 アパチャー
7,7a,7b スピンローテーター
8 2次元スピンフィルター
9 光または電子ビーム
10 試料
11 入射穴
12 出射穴
13 回転軸
14 中央面
17 内側電極固定脚
18 補償電極
19 静電レンズ
20a,20b 等脚台形
Claims (17)
- 回転軸を共通として内側と外側に形成される2つの回転体の形状に沿って配置される1つ又は複数の外側電極と複数の内側電極と、前記外側電極の両端の電極の前記回転軸上に形成される電子の入射穴と出射穴と、前記外側電極と前記内側電極に電子を加速して減速する電圧を印加する電圧印加手段を備え、
前記外側電極の内面形状が、前記入射穴に向かって小径になる形状であり、かつ、前記出射穴に向かって小径になる形状であり、
前記内側電極の外面形状が、前記入射穴に向かって小径になる形状、前記入射穴に向かって延びるロッド形状、又は、前記入射穴側の端部で径が広がる形状であり、かつ、前記出射穴に向かって小径になる形状、前記出射穴に向かって延びるロッド形状、又は、前記出射穴側の端部で径が広がる形状であり、
前記電圧印加手段は、 前記内側電極の両端の電極を除いた内側電極の印加電圧が、前記入射穴が形成された前記外側電極の電位を基準として、電子のエネルギーを加速電圧に換算した換算加速電圧の2倍以上の電圧であり、
中心軌道が前記回転軸と所定入射角度になるように、前記入射穴から入射した電子を、中心軌道が前記回転軸と所定出射角度で前記出射穴の位置に収束させる印加電圧を各電極に印加することを特徴とする静電偏向収束型エネルギー分析器。 - 外側電極の内面形状と内側電極の外面形状は、それぞれ、前記入射穴と出射穴を結ぶ直線の中点で該直線と垂直に交差する面を対称面として対称であることを特徴とする請求項1に記載の静電偏向収束型エネルギー分析器。
- 前記外側電極の内面形状における入射穴に向かって小径になる形状は、テーパー形状、トロイダル面形状又はリング形状であり、かつ、前記外側電極の内面形状における出射穴に向かって小径になる形状は、テーパー形状、トロイダル面形状又はリング形状であり、
前記内側電極の外面形状における入射穴に向かって小径になる形状は、テーパー形状もしくはトロイダル面形状、又は、前記入射穴に向かって段階的に小径になるステップ形状であり、かつ、前記出射穴に向かって小径になる形状は、テーパー形状もしくはトロイダル面形状、又は、前記出射穴に向かって段階的に小径になるステップ形状であることを特徴とする請求項1又は2に記載の静電偏向収束型エネルギー分析器。 - 前記内側電極の両端の電極を除いた1つ又は複数の内側電極に印加される電圧は、電子のエネルギーを加速電圧に換算した換算加速電圧の10~50倍であることを特徴とする請求項1~3の何れかに記載の静電偏向収束型エネルギー分析器。
- 前記外側電極の両端の電極を除いた1つ又は複数の外側電極に印加される電圧は、前記換算加速電圧の10倍以下であることを特徴とする請求項4に記載の静電偏向収束型エネルギー分析器。
- 偏向角が90°であることを特徴とする請求項1~5の何れかに記載の静電偏向収束型エネルギー分析器。
- 偏向角が45°、60°、120°、135°、150°の何れかであることを特徴とする請求項1~5の何れかに記載の静電偏向収束型エネルギー分析器。
- 偏向角が、45°以上90°未満、又は、90°より大きく180°以下であることを特徴とする請求項1~5の何れかに記載の静電偏向収束型エネルギー分析器。
- 前記内側電極は、中心軌道の電子が前記回転軸を横切って通過できるように、2つの部分に分かれており、
電極に印加される電圧条件を変えることにより、中心軌道が前記回転軸を横切るか否かを制御し、前記出射穴より出射する電子の偏向の有無を切替し得ることを特徴とする請求項1~8の何れかに記載の静電偏向収束型エネルギー分析器。 - 前記回転体は90°~180°の回転角を有する回転体であり、切断面で電場を補償する補償電極が設けられたことを特徴とする請求項1~8の何れかに記載の静電偏向収束型エネルギー分析器。
- 請求項1~10の何れかの静電偏向収束型エネルギー分析器を用いた電子分光装置であって、
レンズ軸上に前記入射穴を配置し、前記レンズ軸と前記回転軸とが前記所定入射角度になるように配置され、試料から放出された電子を取り込み前記入射穴に出射するインプットレンズと、
投影レンズ軸上に前記出射穴を配置し、前記投影レンズ軸と前記回転軸とが前記所定出射角度になるように配置され、前記静電偏向収束型エネルギー分析器によって偏向収束する電子を前記出射穴から取り込む投影レンズと、
前記投影レンズを透過した電子を検出する検出器、
を備えたことを特徴とする結像型電子分光装置。 - 請求項1~9の何れかの静電偏向収束型エネルギー分析器を用いた電子分光装置であって、
レンズ軸上に前記入射穴を配置し、前記レンズ軸と前記回転軸とが前記所定入射角度になるように配置され、試料から放出された電子を取り込み前記入射穴に出射するインプットレンズと、
前記エネルギー分析器の前記出射穴に配置され、前記回転軸を垂線とするミラーと、
投影レンズ軸上に前記入射穴を配置し、前記投影レンズ軸と前記回転軸とが前記所定入射角度になるように配置され、前記静電偏向収束型エネルギー分析器によって偏向収束し前記ミラーで反射した後に再び偏向収束する電子を前記入射穴から取り込む投影レンズと、
前記投影レンズを透過した電子を検出する検出器、
を備えたことを特徴とする反射結像型電子分光装置。 - 請求項6の静電偏向収束型エネルギー分析器、又は、偏向角が90°である請求項9の静電偏向収束型エネルギー分析器と、
レンズ軸上に前記入射穴を配置し、前記レンズ軸と前記回転軸とが前記所定入射角度になるように配置され、試料から放出された電子を取り込み前記入射穴に出射するインプットレンズと、
静電レンズ軸上に前記出射穴を配置し、前記静電レンズ軸と前記回転軸とが前記所定出射角度になるように配置され、前記静電偏向収束型エネルギー分析器によって偏向収束する電子を前記出射穴から取り込む静電レンズと、
前記静電レンズの出射側で静電レンズ軸上に配置された2次元スピンフィルターと、
前記スピンフィルターにより反射される電子を取り込む投影レンズ及び投影レンズを透過した電子を検出する検出器と、
を備えることを特徴とするスピンベクトル分布イメージング装置。 - 請求項6の静電偏向収束型エネルギー分析器と、
レンズ軸上に前記入射穴を配置し、前記レンズ軸と前記回転軸とが前記所定入射角度になるように配置され、試料から放出された電子を取り込み前記入射穴に電子を出射するインプットレンズと、
前記静電偏向収束型エネルギー分析器の前記出射穴に配置され、前記回転軸を垂線とする2次元スピンフィルターと、
投影レンズ軸上に前記入射穴を配置し、前記投影レンズ軸と前記回転軸とが前記所定入射角度になるように配置され、前記静電偏向収束型エネルギー分析器によって偏向収束し前記2次元スピンフィルターで反射した後に再び偏向収束する電子を前記入射穴から取り込む投影レンズと、
前記投影レンズを透過した電子を検出する検出器、
を備えることを特徴とするスピンベクトル分布イメージング装置。 - 請求項9の静電偏向収束型エネルギー分析器であって、偏向角が90°である前記静電偏向収束型エネルギー分析器と、
レンズ軸上に前記入射穴を配置し、前記レンズ軸と前記回転軸とが前記所定入射角度になるように配置され、試料から放出された電子を取り込み前記入射穴に電子を出射するインプットレンズと、
静電レンズ軸上に前記出射穴を配置し、前記静電レンズ軸と前記回転軸とが前記所定出射角度になるように配置され、前記静電偏向収束型エネルギー分析器によって偏向収束する電子を前記出射穴から取り込む静電レンズと、
前記静電レンズの出射側で静電レンズ軸上に配置された2次元スピンフィルターと、
前記スピンフィルターにより反射される電子を取り込む第1投影レンズ及び第1投影レンズを透過した電子を検出する第1検出器と、
投影レンズ軸上に前記出射穴を配置し、前記投影レンズ軸と前記回転軸とが前記所定出射角度になるように配置され、前記静電偏向収束型エネルギー分析器によって偏向すること無く収束する電子を前記出射穴から取り込む第2投影レンズと、
前記第2投影レンズを透過した電子を検出する第2検出器、
を備えることを特徴とするスピンベクトル分布イメージング装置。 - 請求項13~15の何れかのスピンベクトル分布イメージング装置において、偏向角が90°である前記静電偏向収束型エネルギー分析器を、請求項7の静電偏向収束型エネルギー分析器を複数組合せたものに替えた、又は、偏向角を45°~150°に設定した請求項1~5の何れかの静電偏向収束型エネルギー分析器を複数組合せたものに替えた、ことを特徴とするスピンベクトル分布イメージング装置。
- 前記インプットレンズと前記静電レンズの少なくとも一方のレンズ内部又は外部に配置され、各レンズ軸と垂直な面内でスピンを90°回転するスピンローテーターを備えたことを特徴とする請求項13~16の何れかに記載のスピンベクトル分布イメージング装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180049046.0A CN115803844A (zh) | 2020-07-09 | 2021-07-09 | 静电偏转会聚型能量分析仪、成像型电子光谱装置、反射成像型电子光谱装置以及自旋矢量分布成像装置 |
JP2022535410A JPWO2022009995A1 (ja) | 2020-07-09 | 2021-07-09 | |
EP21836935.3A EP4170694A4 (en) | 2020-07-09 | 2021-07-09 | ELECTROSTATIC DEVIATION CONVERGENCE TYPE ENERGY ANALYZER, IMAGING TYPE ELECTRON SPECTROSCOPY DEVICE, REFLECTIVE IMAGING TYPE ELECTRON SPECTROSCOPY DEVICE, AND SPIN VECTOR DISTRIBUTION IMAGING DEVICE |
US18/015,057 US20240047190A1 (en) | 2020-07-09 | 2021-07-09 | Electrostatic deflection convergence-type energy analyzer, imaging-type electron spectroscopic device, reflecting imaging-type electron spectroscopic device, and spin vector distribution imaging device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020118687 | 2020-07-09 | ||
JP2020-118687 | 2020-07-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022009995A1 true WO2022009995A1 (ja) | 2022-01-13 |
Family
ID=79552580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/026052 WO2022009995A1 (ja) | 2020-07-09 | 2021-07-09 | 静電偏向収束型エネルギー分析器、結像型電子分光装置、反射結像型電子分光装置、およびスピンベクトル分布イメージング装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240047190A1 (ja) |
EP (1) | EP4170694A4 (ja) |
JP (1) | JPWO2022009995A1 (ja) |
CN (1) | CN115803844A (ja) |
WO (1) | WO2022009995A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4802340B2 (ja) | 2004-07-15 | 2011-10-26 | 国立大学法人 奈良先端科学技術大学院大学 | 球面収差補正静電型レンズ、インプットレンズ、電子分光装置、光電子顕微鏡、および測定システム |
JP4900389B2 (ja) | 2006-07-26 | 2012-03-21 | 国立大学法人 奈良先端科学技術大学院大学 | 球面収差補正減速型レンズ、球面収差補正レンズシステム、電子分光装置および光電子顕微鏡 |
WO2012066024A1 (de) | 2010-11-17 | 2012-05-24 | Specs Surface Nano Analysis Gmbh | Spindetektoranordnung zum messen der vektorkomponenten eines in einem teilchenstrahl vorherrschenden spinvektors |
WO2012173007A1 (ja) | 2011-06-17 | 2012-12-20 | サンユー電子株式会社 | スピン回転装置 |
WO2019216348A1 (ja) * | 2018-05-09 | 2019-11-14 | 国立大学法人奈良先端科学技術大学院大学 | 減速比可変球面収差補正静電レンズ、広角エネルギーアナライザ、及び、二次元電子分光装置 |
WO2021125297A1 (ja) | 2019-12-17 | 2021-06-24 | 大学共同利用機関法人自然科学研究機構 | 球面収差調整カソードレンズ、球面収差補正静電型レンズ、電子分光装置、及び光電子顕微鏡 |
-
2021
- 2021-07-09 WO PCT/JP2021/026052 patent/WO2022009995A1/ja active Application Filing
- 2021-07-09 US US18/015,057 patent/US20240047190A1/en active Pending
- 2021-07-09 CN CN202180049046.0A patent/CN115803844A/zh active Pending
- 2021-07-09 EP EP21836935.3A patent/EP4170694A4/en active Pending
- 2021-07-09 JP JP2022535410A patent/JPWO2022009995A1/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4802340B2 (ja) | 2004-07-15 | 2011-10-26 | 国立大学法人 奈良先端科学技術大学院大学 | 球面収差補正静電型レンズ、インプットレンズ、電子分光装置、光電子顕微鏡、および測定システム |
JP4900389B2 (ja) | 2006-07-26 | 2012-03-21 | 国立大学法人 奈良先端科学技術大学院大学 | 球面収差補正減速型レンズ、球面収差補正レンズシステム、電子分光装置および光電子顕微鏡 |
WO2012066024A1 (de) | 2010-11-17 | 2012-05-24 | Specs Surface Nano Analysis Gmbh | Spindetektoranordnung zum messen der vektorkomponenten eines in einem teilchenstrahl vorherrschenden spinvektors |
WO2012173007A1 (ja) | 2011-06-17 | 2012-12-20 | サンユー電子株式会社 | スピン回転装置 |
WO2019216348A1 (ja) * | 2018-05-09 | 2019-11-14 | 国立大学法人奈良先端科学技術大学院大学 | 減速比可変球面収差補正静電レンズ、広角エネルギーアナライザ、及び、二次元電子分光装置 |
WO2021125297A1 (ja) | 2019-12-17 | 2021-06-24 | 大学共同利用機関法人自然科学研究機構 | 球面収差調整カソードレンズ、球面収差補正静電型レンズ、電子分光装置、及び光電子顕微鏡 |
Non-Patent Citations (18)
Title |
---|
A. W. ROSS ET AL.: "J. Electron Spectrosc", RELAT. PHENOM, vol. 69, 1994, pages 189 |
C. TUSCHE ET AL.: "Spin resolved bandstructure imaging with a high resolution momentum microscope", ULTRAMICROSCOPY, vol. 159, 2015, pages 520, XP029346298, DOI: 10.1016/j.ultramic.2015.03.020 |
E. KISKER ET AL., REV. SCI. INSTRUM, vol. 50, 1979, pages 1598 |
EDWARDS DAVID: "The segmented cylindrical mirror analyzer (CMA)", JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, ELSEVIER SIENCE PUBLISHERS, AMSTERDAM, NL, vol. 209, 7 April 2016 (2016-04-07), NL , pages 46 - 52, XP029526302, ISSN: 0368-2048, DOI: 10.1016/j.elspec.2016.02.004 * |
F. MATSUI ET AL.: "Atomic-orbital analysis of the Cu Fermi surface by two-dimensional photoelectron spectroscopy", PHYS. REV. B, vol. 72, 2005, pages 195417 |
F. MATSUI ET AL.: "Selective detection of angular-momentum-polarized Auger electrons by atomic stereography", PHYS. REV. LETT, vol. 114, 2015, pages 015501 |
F. MATSUI ET AL.: "Three-dimensional band mapping of graphite", APPL. PHYS. LETT., vol. 81, 2002, pages 2556, XP012032062, DOI: 10.1063/1.1511818 |
F. MATSUIT. MATSUSHITAH. DAIMON: "Stereo atomscope and diffraction spectroscopy-Atomic site specific property analysis", J. ELECTRON SPECTROSC. RELAT. PHENOM, vol. 178-179, 2010, pages 221 |
H. DAIMON: "New display-type analyzer for the energy and the angular distribution of charged particles", REV. SCI. INSTRUM., vol. 59, 1988, pages 545 |
H. MATSUDA ET AL.: "Development of display-type ellipsoidal mesh analyzer: Computational evalua tion and experimental validation", J. ELECTRON SPECTROSC. RELAT. PHENOM, vol. 195, 2014, pages 382 |
H. MATSUDAH. DAIMON: "Approach for simultaneous measurement of two-dimensional angular distribution of charged particles. II. Deceleration and focusing of wide-angle beams using a curved mesh lens", PHYS. REV. E, vol. 74, 2006, pages 036501 |
H. MATSUDAH. DAIMONM. KATOM. KUDO: "Approach for simultaneous measurement of two-dimensional angular distribution of charged particles: Spherical aberration correction using an ellipsoidal mesh", PHYS. REV. E, vol. 71, 2005, pages 066503 |
ISARI KOUJI, HIROAKI YOSHIDA, TATSUO GEJO, EIICHI KOBAYASHI, KAZUHIKO MASE, SHIN-ICHI NAGAOKA, KENICHIRO TANAKA: "Construction and Evaluation of Coaxially Symmetric Mirror Electron Energy Analyzer with High Sensitivity, and Its Application to Coincidence Spectroscopy", SHINKU / VACUUM SOCIETY OF JAPAN. JOURNAL., NIHON SHINKU KYOKAI, TOKYO, JP, vol. 46, no. 5, 20 May 2003 (2003-05-20), JP , pages 377 - 384, XP055885301, ISSN: 0559-8516, DOI: 10.3131/jvsj.46.377 * |
L.VATTUONEM.ROCCA: "Electrostatic electron analyzer with 90° deflection angle", REV. SCI. INSTRUM., vol. 73, 2002, pages 3861, XP012039468, DOI: 10.1063/1.1510555 |
M. KOTSUGI ET AL.: "Microspectro-scopic two-dimensional Fermi surface mapping using a photoelectron emission microscope", REV. SCI. INSTRUM., vol. 74, 2003, pages 2754 |
See also references of EP4170694A4 |
T. KOHASHI ET AL.: "A spin rotator used for detecting all three magnetization vector components in spin-polarized electron microscopy", J. MAG. SOC. JPN, vol. 18, 1994, pages 7 |
T. OKUDA ET AL.: "J. Electron Spectrosc", RELAT. PHENOM, vol. 201, 2015, pages 23 |
Also Published As
Publication number | Publication date |
---|---|
CN115803844A (zh) | 2023-03-14 |
EP4170694A4 (en) | 2024-07-10 |
US20240047190A1 (en) | 2024-02-08 |
EP4170694A1 (en) | 2023-04-26 |
JPWO2022009995A1 (ja) | 2022-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Spence | High-resolution electron microscopy | |
Fink et al. | SMART: a planned ultrahigh-resolution spectromicroscope for BESSY II | |
US9613779B2 (en) | Scanning transmission electron microscope with variable axis objective lens and detective system | |
Rose | Prospects for realizing a sub-Å sub-eV resolution EFTEM | |
US8729466B1 (en) | Aberration-corrected and energy-filtered low energy electron microscope with monochromatic dual beam illumination | |
US11609193B2 (en) | Spectroscopy and imaging system | |
US11328918B2 (en) | Device and method for electron transfer from a sample to an energy analyzer and electron spectrometer device | |
US8334508B1 (en) | Mirror energy filter for electron beam apparatus | |
US7655923B2 (en) | Spherical aberration corrected electrostatic lens, input lens, electron spectrometer, photoemission electron microscope and measuring system | |
US7250599B2 (en) | Energy filter image generator for electrically charged particles and the use thereof | |
WO2019216348A1 (ja) | 減速比可変球面収差補正静電レンズ、広角エネルギーアナライザ、及び、二次元電子分光装置 | |
WO2022009995A1 (ja) | 静電偏向収束型エネルギー分析器、結像型電子分光装置、反射結像型電子分光装置、およびスピンベクトル分布イメージング装置 | |
JP7505794B2 (ja) | 球面収差調整カソードレンズ、球面収差補正静電型レンズ、電子分光装置、及び光電子顕微鏡 | |
US7569816B1 (en) | Electron spectrometer | |
JP4514720B2 (ja) | 結像装置、帯電粒子装置、帯電粒子結像装置を動作する方法、及び帯電粒子装置を動作する方法 | |
US7608838B1 (en) | Electron optical component | |
JP2006278069A (ja) | ウィーンフィルタ型エネルギーアナライザ及び放出電子顕微鏡 | |
Matsuda et al. | Compact 2D electron analyzer CoDELMA: Simultaneous wide reciprocal and real space analysis using wide-angle deceleration lens, CMA and projection lens | |
CN112305002B (zh) | 光谱学和成像系统 | |
Belov et al. | Two-stage systems with intermediate beam retarding for energy and spatial analysis of photoelectrons | |
Lutsch et al. | Initial resolution measurements of miniaturized electrostatic lenses for LVSEM | |
US11094498B2 (en) | Monochromator and charged particle beam system | |
WO2022018782A1 (ja) | エネルギーフィルタ、およびそれを備えたエネルギーアナライザおよび荷電粒子ビーム装置 | |
JP2024103470A (ja) | 単色化された荷電粒子源におけるゼロロスピークを狭めるための技術 | |
Tsuno et al. | Application of Wien filters to electrons |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21836935 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022535410 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18015057 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2021836935 Country of ref document: EP Effective date: 20230119 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |