WO2012172989A1 - 燃料電池用微細多孔質層シート及びその製造方法 - Google Patents

燃料電池用微細多孔質層シート及びその製造方法 Download PDF

Info

Publication number
WO2012172989A1
WO2012172989A1 PCT/JP2012/064124 JP2012064124W WO2012172989A1 WO 2012172989 A1 WO2012172989 A1 WO 2012172989A1 JP 2012064124 W JP2012064124 W JP 2012064124W WO 2012172989 A1 WO2012172989 A1 WO 2012172989A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sheet
fuel cell
mpl
microporous layer
Prior art date
Application number
PCT/JP2012/064124
Other languages
English (en)
French (fr)
Inventor
茂昌 桑田
陽三 奥山
一史 児玉
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CA2839645A priority Critical patent/CA2839645C/en
Priority to US14/125,426 priority patent/US10361445B2/en
Priority to CN201280029526.1A priority patent/CN103608955B/zh
Priority to EP12800163.3A priority patent/EP2722918B1/en
Publication of WO2012172989A1 publication Critical patent/WO2012172989A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • H01M4/8642Gradient in composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a microporous layer sheet to be a microporous layer (MPL) constituting a gas diffusion layer (GDL) used in a polymer electrolyte fuel cell (PEFC) and a method for producing the same.
  • MPL microporous layer
  • GDL gas diffusion layer
  • PEFC polymer electrolyte fuel cell
  • a solid polymer fuel cell using a proton conductive solid polymer membrane operates at a lower temperature than other types of fuel cells such as a solid oxide fuel cell and a molten carbonate fuel cell. Therefore, it is also expected as a power source for moving bodies such as automobiles, and its practical use has already started.
  • a gas diffusion electrode used for a polymer electrolyte fuel cell is generally composed of an electrode catalyst layer and a gas diffusion layer.
  • the electrode catalyst layer contains catalyst-supporting carbon fine particles coated with an ion exchange resin (polymer electrolyte) that is the same or different from the polymer electrolyte membrane.
  • the gas diffusion layer has a role of supplying a reaction gas to the catalyst layer and collecting charges generated in the catalyst layer.
  • a membrane electrode assembly is formed by joining in the state which made the catalyst layer side of such a gas diffusion electrode face the polymer electrolyte membrane. A plurality of such membrane electrode assemblies are stacked via a separator having a gas flow path to form a solid polymer fuel cell.
  • a gas diffusion layer used in such a polymer electrolyte fuel cell is provided with a microporous layer mainly composed of a conductive material such as a carbon material as an intermediate layer on the catalyst layer side of the gas diffusion layer.
  • This intermediate layer is provided in order to reduce the electrical resistance between the gas diffusion layer and the catalyst layer and improve the gas flow.
  • a microporous layer comprises a gas diffusion layer with a gas diffusion layer base material. Therefore, as with the entire gas diffusion layer, not only excellent conductivity but also excellent gas permeability is required for the fine porous layer.
  • a hydrophobic binder is generally used for the fine porous layer in order to ensure drainage and strength in the fine porous layer.
  • a hydrophobic binder polytetrafluoroethylene (PTFE) is generally used.
  • PTFE polytetrafluoroethylene
  • Patent Document 1 discloses a diffusion layer containing unfired and fired PTFE and a conductive material.
  • the binder Since the binder is added to the fine porous layer as described above, the binder is unevenly distributed in the fine porous layer due to sagging due to its own weight. As a result of the pores in the fine porous layer being blocked in this way, there arises a problem that the gas permeation performance is remarkably deteriorated. On the other hand, if it is attempted to suppress uneven distribution by reducing the amount of binder added, there arises a problem that the strength of the fine porous layer is reduced or the drainage performance is not sufficient. For example, in the diffusion film described in Patent Document 1, no specific countermeasure is taken against such a problem. Therefore, in such a diffusion film, the binder is unevenly distributed due to sagging, and the gas permeability required for the gas diffusion layer cannot be sufficiently ensured.
  • the present invention can secure gas permeability and drainage performance without reducing strength, and can form a gas diffusion layer that contributes to improving the performance of a polymer electrolyte fuel cell. It aims at providing a fine porous layer sheet and its manufacturing method.
  • the fuel cell microporous layer sheet includes a microporous layer including at least two layers laminated on a gas diffusion layer base material and containing a carbon material and a binder. And the binder content in the fine porous layer of the 1st layer located in the gas diffusion layer base material side is less than the binder content in the remaining layer of the said 1st layer in a fine porous layer, It is characterized by the above-mentioned. .
  • the method for producing a microporous layer sheet for a fuel cell includes a step of forming a first microporous layer by applying a first ink containing a carbon material and a binder.
  • the method further comprises a step of applying at least one fine porous layer by applying an ink containing a carbon material and a binder, the binder concentration of which is higher than that of the first ink, on the first layer. Yes.
  • the gas diffusion layer for a fuel cell according to an aspect of the present invention is characterized in that the first layer side of the microporous layer sheet of the present invention is adhered to a gas diffusion layer substrate.
  • the membrane electrode assembly for a fuel cell according to an aspect of the present invention is characterized in that the gas diffusion layer for a fuel cell of the present invention is laminated on both surfaces of an electrolyte membrane via a catalyst layer.
  • FIG. 1 shows the shape of scaly graphite constituting a fine porous layer sheet for a fuel cell according to an embodiment of the present invention.
  • (A) is a top view
  • (b) is a side view.
  • FIG. 2 shows the shape of the granular graphite constituting the fine porous layer sheet for a fuel cell according to one embodiment of the present invention.
  • (A) is a top view
  • (b) is a side view.
  • FIG. 3 is a schematic cross-sectional view schematically showing an example using a carbon material composed of large-scale flake graphite and carbon black as an example of a cross-sectional structure of a microporous layer sheet for a fuel cell according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view schematically showing an example using a carbon material composed of large-diameter and small-diameter scaly graphite as an example of a cross-sectional structure.
  • FIG. 5 is a schematic cross-sectional view schematically showing an example using a carbon material composed of large-diameter scaly graphite, carbon black, and granular graphite as an example of a cross-sectional structure.
  • FIG. 6 is a schematic cross-sectional view schematically showing an example using a carbon material composed of large-diameter and small-diameter scaly graphite and granular graphite as an example of a cross-sectional structure.
  • FIG. 5 is a schematic cross-sectional view schematically showing an example using a carbon material composed of large-diameter and small-diameter scaly graphite and granular graphite as an example of a cross-sectional structure.
  • FIG. 7 is a schematic cross-sectional view showing a structural example of a membrane electrode structure for a fuel cell using the microporous layer sheet for a fuel cell of the present invention.
  • FIG. 8 is a cross-sectional view showing the structure of the microporous layer sheet for a fuel cell according to the present invention in comparison with the structure of a comparative example.
  • (A) shows an Example and (b) shows a comparative example.
  • FIG. 9 is a process diagram showing a procedure for producing a fuel cell microporous layer sheet according to an embodiment of the present invention and a procedure for producing a gas diffusion layer using the same.
  • FIG. 10 is a graph showing a comparison of gas permeability in the thickness direction of the microporous layer of Example 1 and Comparative Example 1.
  • FIG. 11 is a graph showing a comparison of gas permeability in the thickness direction of the microporous layers of Examples 2 to 4 and Comparative Example 2.
  • FIG. 12 is a graph showing a comparison of electrical resistance in the thickness direction of the microporous layer of Example 1 and Comparative Example 1.
  • FIG. 13 is a graph showing a comparison of the electrical resistance in the thickness direction of the microporous layers of Examples 2 to 4 and Comparative Example 2.
  • FIG. 14 is a graph showing a comparison of the power generation performance of cells having the microporous layer of Example 1 and Comparative Example 1.
  • FIG. 15 is a graph showing a comparison of the power generation performance of the cells including the microporous layers of Examples 2 to 4 and Comparative Example 2.
  • FIG. 16 is a graph comparing the binder contents on the upper and lower surfaces of the microporous layers of Examples 1, 4 to 7 and Comparative Example 2.
  • MPL sheet microporous layer sheet
  • GDL gas diffusion layer
  • MEA membrane electrode assembly
  • the MPL sheet according to one embodiment of the present invention includes at least two layers laminated on a gas diffusion layer base material, and includes a microporous layer containing a carbon material and a binder. And the binder content in the fine porous layer of the 1st layer located in the gas diffusion layer base material side is less than the binder content in the remaining layer of the said 1st layer in a fine porous layer, It is characterized by the above-mentioned. .
  • the thickness of the MPL sheet of this embodiment is desirably in the range of about 10 to 100 ⁇ m in total. Further, it is desirable that the thickness of the first layer is 5 to 60% of the entire MPL sheet.
  • a GDL equipped with an MPL generally has a laminated structure of a GDL base material and an MPL formed by wet coating thereon.
  • the MPL ink enters the GDL base material and the GDL base material is clogged, so that the gas permeability is deteriorated.
  • unevenness on the surface of the GDL substrate remains even after the MPL is formed by ink application, the effect of mitigating the aggressiveness of the GDL substrate fiber on the electrolyte membrane is small.
  • the MPL sheet according to the present embodiment has an independent sheet shape, and GDL is formed not by directly applying ink to the GDL base material but by bonding to the base material. Therefore, clogging of the substrate due to ink intrusion does not occur. Moreover, the unevenness
  • the MPL has a multilayer structure and the binder content in the first layer (lowermost layer) is low, so that the uneven distribution of the binder due to its own weight is alleviated. Furthermore, gas permeability and drainage performance under high humidity operating conditions are improved.
  • the MPL sheet according to this embodiment is a multilayer structure sheet including at least two fine porous layers including a carbon material and a binder, and forms a GDL by being bonded to a GDL base material.
  • the binder content in the MPL of the first layer is configured to be smaller than the binder content of the upper MPL other than the first layer.
  • scaly graphite As the carbon material constituting each layer of the MPL sheet according to the present embodiment, scaly graphite, carbon black, or granular graphite can be used. In particular, it is desirable to use at least scaly graphite.
  • the scaly graphite may have a particle size, that is, a large diameter having an average plane diameter D1 of 5 to 50 ⁇ m and a small diameter of less than 5 ⁇ m.
  • the scaly graphite has a high crystallinity and has a scaly shape with a high aspect ratio (average plane diameter D1 / thickness H1) as shown in the plan view of FIG. 1 (a) and the side view of FIG. 1 (b). It has a shape.
  • the scale-like graphite in this embodiment means that having a thickness H1 of 0.05 to 1 ⁇ m and an aspect ratio of about 10 to 1000.
  • the flaky graphite contributes to improvement in gas permeability in the thickness direction and the surface direction of the MPL. Moreover, it contributes to the reduction of the resistance in the plane direction, that is, the improvement of conductivity.
  • scaly graphite having an average plane diameter D1 of 5 to 50 ⁇ m is preferably used.
  • the scaly graphite in which the value of D1 falls within such a range is particularly referred to as large-diameter scaly graphite Gf.
  • the average plane diameter D1 is less than 5 ⁇ m, there is no effect in improving gas permeability, and if it exceeds 50 ⁇ m, the conductivity in the thickness direction tends to deteriorate.
  • the average plane diameter D1 of the scaly graphite Gf means an average diameter in a flat surface direction measured by a laser diffraction / scattering method.
  • the thickness H1 of the scaly graphite can be measured with a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • the granular graphite Gg is similarly high in crystallinity, and has an aspect ratio (average plane diameter D2 / thickness H2) of about 1 to 3 as shown in FIGS. 2 (a) and 2 (b). And it functions as a spacer material which improves the gas permeability of a thickness direction and a surface direction.
  • the spacer material is a material that increases the distance between the flaky graphite by interposing between the flaky graphite and improves the permeability of the reaction gas such as fuel gas and oxidant gas.
  • the average particle size of the granular graphite is preferably in the range of about 1 to 10 ⁇ m from the viewpoint of functioning as a spacer material.
  • the value of “average particle diameter” is a particle observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the “particle diameter” is a value between any two points on the contour line of a particle (observation surface) observed using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It means the maximum distance among the distances.
  • the particle diameters and average particle diameters of other components can be defined in the same manner.
  • the average plane diameter D2 and thickness H2 of granular graphite can be measured similarly to the case of the above scale-like graphite.
  • the average plane diameter D1 of scaly graphite is less than 5 ⁇ m, it is particularly referred to as small-diameter scaly graphite Gfs.
  • the small-diameter flake graphite Gfs functions as a conductive path material that reduces the electrical resistance in the thickness direction.
  • the conductive path material is a material that is interposed between the flaky graphite and improves the conductivity between the flaky graphite.
  • the small diameter scaly graphite Gfs reduces the thermal resistance, that is, improves the thermal conductivity. As a result, the conductivity in a low humidified state is improved.
  • the blending ratio in the MPL is desirably about 30 to 70% from the viewpoint of achieving both improvement in gas permeability and improvement in conductivity. That is, when the blending ratio of the small-scale flaky graphite Gfs is less than 30%, the contact area becomes low and the resistance cannot be lowered sufficiently. On the other hand, when the blending ratio is more than 70%, the amount of the binder is relatively reduced, and it becomes difficult to function as an MPL.
  • the particle size of the scaly graphite can be made as small as that of carbon black described later, it is preferable to make the blending ratio as small as the carbon black.
  • the average plane diameter D1 and thickness H1 of small-diameter flake graphite can also be measured similarly to the case of the flake graphite.
  • Carbon black is an example of a carbon material that functions as a conductive path material that reduces resistance in the thickness direction.
  • a carbon material that functions as a conductive path material that reduces resistance in the thickness direction.
  • oil furnace black, acetylene black, thermal black, channel black, and the like can be used.
  • the average particle size of such a conductive path material is preferably about 10 nm to 5 ⁇ m.
  • the content of acetylene black is 5 to 25% in MPL from the viewpoint of more surely improving gas permeability and conductivity. Is desirable.
  • the content of acetylene black is less than 5%, the contact area is lowered and the resistance is not sufficiently lowered.
  • the small particle size fills the pores, so that the gas permeability deteriorates.
  • the binder used in the MPL sheet of the present invention together with the carbon material described above has a function of binding the carbon materials together to ensure the strength of the MPL, and also has a function as a water repellent. It is desirable that Such a binder resin is not particularly limited, but polytetrafluoroethylene (PTFE) can be used. In addition, styrene-based elastomer resins such as polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), and SEBS can also be applied.
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • SEBS SEBS
  • FIGS. 3 to 6 are enlarged schematic views schematically showing structural examples of layers in the MPL sheet of the present embodiment configured by combining the various carbon materials described above.
  • FIG. 3 shows an example composed of flaky graphite, carbon black, and a binder (not shown).
  • the scaly graphite Gf having a thin shape is oriented substantially in parallel with the surface direction of the layer.
  • the MPL thickness and the gas permeability in the surface direction and the conductivity in the surface direction can be ensured.
  • the function of improving the conductivity in the thickness direction is achieved by interposing carbon black C as a conductive path material therebetween.
  • FIG. 4 shows an example in which scaly graphite having a large diameter and a small diameter are combined as a carbon material. Like the carbon black, the small-diameter flaky graphite Gfs intervenes between the large-diameter flaky graphite Gf, functions as a conductive path material, and improves the conductivity in the thickness direction.
  • FIG. 5 shows an example in which scaly graphite, carbon black, and granular graphite are combined as the carbon material. In addition to the scale-like graphite Gf and carbon black C functioning in the same manner as in the structural example of FIG. 3, the granular graphite Gg functions as a spacer material that improves the gas permeability in the thickness and plane direction. .
  • FIG. 6 shows a structural example composed of a combination of large-diameter flaky graphite Gf, small-diameter flaky graphite Gfs, and granular graphite Gg.
  • the large-diameter flake graphite Gf ensures gas permeability in the thickness direction, gas permeability and conductivity in the plane direction.
  • the small-diameter scaly graphite Gfs and the granular graphite Gg function as a conductive path material and a spacer material, respectively.
  • MPLs related to the combination of carbon materials shown in FIGS. 3 to 6 are merely representative examples.
  • small-diameter scaly graphite Gfs is added to the structure shown in FIG. 3, granular graphite Gg is further added, and various other combinations are conceivable.
  • seat which concerns on this form is provided with at least 2 layer of MPL of the above structures, each layer does not necessarily need to be the combination of the same carbon material. That is, for example, even if the layer structures as shown in FIGS. 3 to 6 are mixed, there is no problem.
  • the MPL sheet according to this embodiment includes a carbon material and a binder, and includes at least two layers of MPL having different binder contents.
  • a multilayer structure can be formed on the holding sheet.
  • the productivity and handling of the sheet can be improved. That is, the holding sheet holds the MPL sheet and improves the productivity and handling of the MPL sheet.
  • the holding sheet in this case is not particularly limited as long as it has heat resistance and chemical stability that can withstand baking at about 300 ° C.
  • a film made of polyimide, polypropylene, polyethylene, polysulfone, polytetrafluoroethylene, or the like can be used. Of these, a polyimide film can be preferably used.
  • a film having a thickness of about 10 to 100 ⁇ m is preferably used.
  • the MPL sheet according to the present embodiment can be manufactured, for example, by the process shown in FIG. That is, on the heat resistant holding sheet as described above, the first ink containing the carbon material and the binder is applied to form a first layer (lowermost layer) fine porous layer. Similarly, an ink containing a carbon material and a binder and having a binder concentration higher than that of the first ink is applied on the first layer, and at least one microporous layer is laminated.
  • the GDL for the fuel cell can be formed by bonding the first layer side of the MPL sheet of this embodiment to the GDL substrate.
  • this GDL base material a material formed of carbon fiber such as carbon paper, carbon cloth, nonwoven fabric, etc., impregnated with PTFE or the like as a water repellent is used.
  • the substrate may not be subjected to water repellent treatment or may be subjected to hydrophilic treatment.
  • the GDL substrate may be impregnated with graphite, carbon black, or a mixture thereof. Since the GDL according to the present embodiment employs the MPL according to the present embodiment, the gas permeability and drainage performance can be ensured without lowering the strength.
  • FIG. 7 shows an example of the structure of an MEA configured using GDL produced by the MPL sheet of this embodiment.
  • the MEA 1 is configured such that a catalyst layer 20 and a GDL 30 are arranged on both anode and cathode electrodes with the electrolyte membrane 10 as the center.
  • GDL30 is formed by sticking the MPL sheet of this form on the GDL base material 31, ie, the MPL sheet 40 of the 2 layer structure comprised from 1st MPL41 and 2nd MPL42. . Note that sticking does not mean that the material is formed simply by applying the material to the adhesive surface, but means that the independently molded material is joined to the adhesive surface.
  • the binder content in the first MPL 41 on the lower layer side is smaller than the binder content in the second MPL 42 on the upper layer side. Since the MEA of this embodiment uses the GDL of this embodiment, the gas permeability and drainage performance are ensured without lowering the strength, and the power generation performance can be secured even in wet conditions.
  • a hydrocarbon electrolyte membrane can be used in addition to a generally used perfluorosulfonic acid electrolyte membrane.
  • perfluorosulfonic acid electrolyte include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like. .
  • hydrocarbon electrolytes include hydrocarbon resins having a sulfonic acid group, those obtained by doping a hydrocarbon polymer compound with an inorganic acid such as phosphoric acid, and some of them are substituted with functional groups of a proton conductor.
  • a hydrocarbon polymer electrolyte having a sulfonic acid group is preferable.
  • hydrocarbon electrolyte examples include sulfonated polyarylethersulfone (S-PES), polybenzimidazole (PBI), polybenzoxazole (PBO), and sulfonated polyphenoxybenzoylphenylene (S).
  • S-PES polyarylethersulfone
  • PBI polybenzimidazole
  • PBO polybenzoxazole
  • S sulfonated polyphenoxybenzoylphenylene
  • -PPBP polyetheretherketone
  • S-PEEK polyetheretherketone
  • the catalyst layer 20 is formed by mixing platinum or a platinum alloy on carbon with a perfluorosulfonic acid electrolyte solution or a hydrocarbon electrolyte solution.
  • a perfluorosulfonic acid electrolyte solution or a hydrocarbon electrolyte solution As the carbon, carbon black such as oil furnace black, acetylene black, ketjen black, thermal black and channel black, graphite, activated carbon and the like can be used.
  • a water repellent and a pore-increasing agent can also be added as needed.
  • a GDL 30 configured by attaching an MPL sheet to a GDL base material is bonded to a catalyst layer transferred or directly applied to an electrolyte membrane by hot pressing.
  • a catalyst layer 20 previously applied to the MPL side of GDL is joined to an electrolyte membrane by hot pressing. Either of these may be adopted.
  • the application and joining conditions such as hot pressing are appropriately changed depending on whether perfluorosulfonic acid or hydrocarbon is used for the electrolyte in the electrolyte membrane and catalyst layer.
  • the GDL for a fuel cell of this embodiment can be manufactured by a process as shown in FIG. That is, first, an MPL ink containing scaly graphite and a binder, and optionally carbon black or granular graphite as a conductive path material or spacer material, a surfactant, and a thickener is prepared.
  • a sheet-like MPL (MPL sheet) is obtained by coating on a heat-resistant holding sheet, drying at 80 ° C., and baking at 330 ° C., for example.
  • the GDL can be obtained by sticking the MPL sheet peeled off from the holding sheet onto a GDL substrate composed of, for example, water-repellent carbon paper.
  • the sticking can be performed, for example, by hot pressing.
  • an MPL sheet prepared separately is attached to the GDL substrate, unlike the case obtained by directly applying the ink to the GDL substrate.
  • the base material is not clogged due to the ingress of ink, and the gas permeability of GDL is improved.
  • corrugation of the base-material surface is absorbed by sticking of a sheet
  • the aggressiveness to the electrolyte membrane by the GDL base fiber can be reduced, and the conductivity of the GDL is improved.
  • Example 1 As ink MPL sheet formation, mean plane diameter 15 [mu] m, a thickness of 0.1 [mu] m, and flake graphite with a specific surface area of 6 m 2 / g, primary particle diameter 40 nm, and acetylene black having a specific surface area of 37m 2 / g, PTFE as a binder was used. A first layer MPL ink containing the above flake graphite, acetylene black, and PTFE at a ratio of 83.1%, 11.9%, and 5%, respectively, was prepared.
  • the MPL ink for the 2nd layer which contains the said flake graphite, acetylene black, and PTFE in the ratio of 61.3%, 8.8%, and 30%, respectively was prepared.
  • the MPL ink for 1st layers was apply
  • the sheet composed of two layers of MPL is peeled off from the holding sheet, and hot pressed onto a GDL substrate composed of carbon paper having a thickness of 200 ⁇ m that has been subjected to 10% water repellent treatment with PTFE. Obtained. Hot pressing was performed under conditions of 80 ° C., 2 MPa, and 3 minutes. The above process is based on FIG. Then, a catalyst layer composed of platinum-supported carbon and perfluorosulfonic acid electrolytic solution formed on a 25 ⁇ m thick perfluorosulfonic acid electrolyte membrane is sandwiched between the GDLs obtained above, and the MEA Got. Incidentally, the amount of supported platinum-supported carbon, 0.05 mg / cm 2 on the anode side and the cathode side and 0.35 mg / cm 2.
  • Example 1 (Comparative Example 1)
  • the MPL ink prepared for the second layer was applied on a heat resistant holding sheet composed of a polyimide film having a thickness of 50 ⁇ m, and dried at 80 ° C. Thereafter, the same operation as described above was repeated except that baking was performed at 330 ° C. In this way, as shown in FIG. 8B, a single-layer MPL sheet 45 having a thickness of 60 ⁇ m was obtained on the holding sheet S. Next, the MPL sheet was peeled off from the holding sheet, and hot-pressed on the GDL substrate in the same manner to obtain GDL, and then MEA was obtained by the same operation.
  • Example 2 The MPL ink containing the above scale-like graphite, acetylene black, and PTFE at a ratio of 78.8%, 11.3%, and 10%, respectively, was used in the first layer, and these were respectively 52.5%, 7.5%, and 40%. An MPL ink containing 0.0% was used for the second layer. Otherwise, the same operation as in Example 1 was repeated to produce the MPL sheet of Example 2. Subsequently, it was set as GDL by hot-pressing on the same base material. An MEA was obtained in the same manner as in Example 1 except that a perfluorosulfonic acid electrolyte membrane having a thickness of 15 ⁇ m was used.
  • Example 3 As the MPL ink for the second layer, an ink containing the above flake graphite, acetylene black, and PTFE at a ratio of 60.0%, 10.0%, and 30%, respectively, was used. Otherwise, the same operation as in Example 2 was repeated to obtain the MPL sheet of Example 3. Thereafter, the same operation as in Example 2 was repeated to obtain GDL, and further MEA was obtained.
  • Example 4 As the MPL ink for the second layer, an ink containing 61.3%, 8.8%, and 30% of the above scale-like graphite, acetylene black, and PTFE was used. That is, it is the same as the second layer of Example 1. Otherwise, the same operations as in Examples 2 and 3 were repeated to obtain the MPL sheet of Example 4. Thereafter, the same operation as in Examples 2 and 3 was repeated to obtain GDL, and an MEA was further produced.
  • Comparative Example 2 A single-layer MPL sheet was obtained in the same manner as in Comparative Example 1 using an ink containing the scale-like graphite, acetylene black, and PTFE at a ratio of 43.8%, 6.3%, and 50%, respectively. Thereafter, the same operation as in Examples 2 to 4 was repeated to obtain GDL, and an MEA was manufactured by the same operation.
  • Table 1 summarizes the specifications of the MPL sheets of Examples and Comparative Examples produced as described above.
  • FIG. 10 shows the gas permeability measurement results in the thickness direction of the MPLs obtained in Example 1 and Comparative Example 1. It was confirmed that the gas permeability of Example 1 having a two-layer structure was improved compared to Comparative Example 1 having a single-layer structure. Further, FIG. 11 shows the gas permeability measurement results in the thickness direction of the MPLs obtained in Examples 2 to 4 and Comparative Example 2. It was confirmed that the gas permeability of Examples 2 to 4 having a two-layer structure was improved compared to Comparative Example 2 having a single-layer structure.
  • MEA was produced using GDL produced by the MPL sheet of Example 1 and Comparative Example 1. That is, the joined body in a state where a catalyst layer composed of platinum-supported carbon and a perfluorosulfonic acid electrolyte similar to the above electrolyte membrane is applied to both surfaces of an electrolyte membrane composed of a perfluorosulfonic acid electrolyte is the GDL. And MEA was obtained. Note that the active area of the MEA was 5 ⁇ 2 cm 2 .
  • FIG. 14 shows the results of power generation evaluation at 1.2 A / cm 2 when the relative humidity is 90% RH for both the anode and the cathode. It was recognized that the MEA according to Example 1 having a two-layer structure had higher performance under wet conditions than the MEA according to Comparative Example 1 having a single-layer MPL.
  • Example 5 As the MPL ink for the first layer, an ink containing the scaly graphite and acetylene black at a ratio of 87.5% and 12.5%, respectively, was used. Otherwise, the same operation as in Example 1 was repeated to obtain the MPL sheet of Example 5.
  • Example 6 As the MPL ink for the first layer, an ink containing the above flake graphite, acetylene black, and PTFE at a ratio of 86.6%, 12.4%, and 1%, respectively, was used. Otherwise, the same operation as in Example 1 was repeated to obtain the MPL sheet of Example 6.
  • Example 7 As the MPL ink for the first layer, an ink containing the above flake graphite, acetylene black, and PTFE at a ratio of 84.9%, 12.1%, and 3%, respectively, was used. Otherwise, the same operation as in Example 1 was repeated to obtain the MPL sheet of Example 7.
  • FIG. 16 shows the results of comparing the binder contents on the upper and lower surfaces of the fine porous layer in Examples 1, 4 to 7 and Comparative Example 2.
  • the fluorine concentration on the gas diffusion layer substrate side is higher than the fluorine concentration on the opposite side of the gas diffusion layer substrate, and the binder content on the gas diffusion layer substrate side is large. Recognize.
  • the fluorine concentration in the lowermost layer on the gas diffusion layer substrate side that is, the binder content, is higher than that of the layer excluding the lowermost layer. was also confirmed to be low.
  • an MPL sheet having a multilayer structure including at least two fine porous layers was constructed. Furthermore, such an MPL sheet is configured such that the binder content of the first layer located on the gas diffusion layer substrate side is less than the binder content of other layers. As a result, even if the binder sags due to its own weight, uneven distribution of the binder in the lowermost layer is reduced, and gas permeability and drainage can be ensured.
  • MEA Membrane electrode assembly
  • GDL Gas Diffusion Layer
  • GDL substrate Gas diffusion layer substrate
  • MPL sheet Fine porous layer sheet
  • First MPL first microporous layer
  • Second MPL Gf scaly graphite (large-diameter scaly graphite)
  • Gfs Small diameter flake graphite Gg Granular graphite C Carbon black S Holding sheet

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明の燃料電池用微細多孔質層シートは、ガス拡散層基材上に少なくとも2層が積層され、炭素材料及びバインダを含む微細多孔質層を備える。そして、ガス拡散層基材側に位置する第1層の微細多孔質層におけるバインダ含有量が、微細多孔質層における第1層の残部の層におけるバインダ含有量よりも少ないことを特徴とする。このような燃料電池用微細多孔質層シートは、強度が低下することなく、ガス透過性、排水性能を確保することができる。したがって、このような燃料電池用微細多孔質層シートをガス拡散層に適用することで、固体高分子形燃料電池の性能向上に寄与することができる。

Description

燃料電池用微細多孔質層シート及びその製造方法
 本発明は、固体高分子形燃料電池(PEFC)に用いられるガス拡散層(GDL)を構成する微細多孔質層(MPL)となる微細多孔質層シート及びその製造方法に関する。
 プロトン伝導性の固体高分子膜を用いた固体高分子形燃料電池は、例えば固体酸化物形燃料電池や溶融炭酸塩形燃料電池など、他のタイプの燃料電池と比較して低温で作動する。そのため、自動車など移動体用の動力源としても期待されており、その実用化も既に開始されている。
 固体高分子形燃料電池に使用されるガス拡散電極は、一般に、電極触媒層と、ガス拡散層から構成される。電極触媒層は、高分子電解質膜と同種あるいは異種のイオン交換樹脂(高分子電解質)で被覆された触媒担持カーボン微粒子を含有するものである。そして、ガス拡散層は、触媒層に反応ガスを供給すると共に触媒層に発生する電荷を集電する役割を持つ。そして、このようなガス拡散電極の触媒層の側を高分子電解質膜に対向させた状態で接合することにより、膜電極接合体(MEA)が形成される。このような膜電極接合体の複数個を、ガス流路を備えたセパレータを介して積層することにより固体高分子形の燃料電池が構成される。
 このような固体高分子形燃料電池に用いられるガス拡散層においては、ガス拡散層の触媒層側に、炭素材料などの導電性物質を主体とする微細多孔質層を中間層として備えたものが知られている。この中間層は、ガス拡散層と触媒層との間の電気抵抗を下げると共に、ガスの流れを良くするために設けられる。このように、微細多孔質層は、ガス拡散層基材と共に、ガス拡散層を構成するものである。したがって、ガス拡散層全体と同様、微細多孔質層についても、優れた導電性のみならず優れたガス透過性が要求される。
 微細多孔質層には、一般に、導電剤としてのカーボンに加えて、排水性、強度を微細多孔質層に担保させるために、疎水性のバインダが用いられる。疎水性のバインダとしては、一般的にはポリテトラフルオロエチレン(PTFE)が用いられている。例えば、特許文献1には、未焼成及び焼成PTFEと導電性物質を含む拡散層が開示されている。
特許第4215979号公報
 微細多孔質層には、上記のようにバインダが添加されているため、その自重による垂れ込みによって微細多孔質層内にバインダの偏在が生じる。このようにして微細多孔質層内の細孔が閉塞される結果、ガス透過性能を著しく悪化させるという問題が生ずる。一方で、バインダの添加量を少なくすることにより、偏在を抑制しようとすると、微細多孔質層の強度の低下を招いたり、排水性が十分ではなくなったりするといった問題が生ずる。例えば、上記特許文献1に記載の拡散膜においては、このような問題に対する具体的な対策は採られていない。したがって、このような拡散膜においては、垂れ込みによるバインダ偏在が生じ、ガス拡散層に求められるガス透過性を十分に確保することができない。
 そこで、本発明は、強度を低下させることなく、ガス透過性、排水性能を確保することができ、固体高分子形燃料電池の性能向上に寄与するガス拡散層を形成することができる燃料電池用微細多孔質層シート及びその製造方法を提供することを目的としている。
 本発明の態様に係る燃料電池用微細多孔質層シートは、ガス拡散層基材上に少なくとも2層が積層され、炭素材料及びバインダを含む微細多孔質層を備える。そして、ガス拡散層基材側に位置する第1層の微細多孔質層におけるバインダ含有量が、微細多孔質層における前記第1層の残部の層におけるバインダ含有量よりも少ないことを特徴としている。
 また、本発明の態様に係る燃料電池用微細多孔質層シートの製造方法は、炭素材料及びバインダを含む第1のインクを塗布して第1層の微細多孔質層を形成する工程を備える。さらに、炭素材料及びバインダを含み、バインダ濃度が第1のインクよりも高いインクを上記第1層の上に塗布して、少なくとも1層の微細多孔質層を積層する工程を備えることを特徴としている。
 さらに、本発明の態様に係る燃料電池用ガス拡散層は、本発明の微細多孔質層シートの第1層側をガス拡散層基材上に貼着して構成されることを特徴とする。そして、本発明の態様に係る燃料電池用膜電極接合体は、本発明の燃料電池用ガス拡散層が電解質膜の両面に触媒層を介して積層されて構成されることを特徴としている。
図1は、本発明の一実施形態に係る燃料電池用微細多孔質層シートを構成する鱗片状黒鉛の形状を示す。(a)が平面図であり、(b)が側面図である。 図2は、本発明の一実施形態に係る燃料電池用微細多孔質層シートを構成する粒状黒鉛の形状を示す。(a)が平面図であり、(b)が側面図である。 図3は、本発明の一実施形態に係る燃料電池用微細多孔質層シートの断面構造の一例として、大径鱗片状黒鉛とカーボンブラックから成る炭素材料を用いた例を模式的に示す概略断面図である。 図4は、断面構造の一例として大径及び小径鱗片状黒鉛から構成される炭素材料を用いた例を模式的に示す概略断面図である。 図5は、断面構造の一例として大径鱗片状黒鉛とカーボンブラックと粒状黒鉛から構成される炭素材料を用いた例を模式的に示す概略断面図である。 図6は、断面構造の一例として大径及び小径鱗片状黒鉛と粒状黒鉛から構成される炭素材料を用いた例を模式的に示す概略断面図である。 図7は、本発明の燃料電池用微細多孔質層シートを用いた燃料電池用膜電極構造体の構造例を示す概略断面図である。 図8は、本発明の燃料電池用微細多孔質層シートに係る実施例と、比較例の構造とを比較して示すそれぞれ断面図である。(a)が実施例を示し、(b)が比較例を示す。 図9は、本発明の一実施形態に係る燃料電池用微細多孔質層シートを作製する手順及びこれを用いてガス拡散層を作製する手順を示す工程図である。 図10は、実施例1及び比較例1の微細多孔質層の厚さ方向におけるガス透過性を比較して示すグラフである。 図11は、実施例2~4及び比較例2の微細多孔質層の厚さ方向におけるガス透過性を比較して示すグラフである。 図12は、実施例1及び比較例1の微細多孔質層の厚さ方向における電気抵抗を比較して示すグラフである。 図13は、実施例2~4及び比較例2の微細多孔質層の厚さ方向における電気抵抗を比較して示すグラフである。 図14は、実施例1及び比較例1の微細多孔質層を備えたセルの発電性能を比較して示すグラフである。 図15は、実施例2~4及び比較例2の微細多孔質層を備えたセルの発電性能を比較して示すグラフである。 図16は、実施例1,4~7及び比較例2の微細多孔質層の上面及び下面におけるバインダ含有量を比較して示すグラフである。
 以下、本発明の燃料電池用微細多孔質層シート(MPLシート)について、その製造方法や、これを用いて構成される燃料電池用ガス拡散層(GDL)、当該GDLを用いて構成される燃料電池用膜電極接合体(MEA)と共に、さらに具体的に説明する。なお、本発明のMPLシートにおいて、「第1層」の微細多孔質層は、製造上最初に形成され、シートの最も下側に位置する。したがって、説明の便宜上、「第1層」を指して「最下層」と称することがある。また、本明細書において、「%」は特記のない限り質量百分率を表すものとする。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。
 本発明の一実施形態に係るMPLシートは、上記したように、ガス拡散層基材上に少なくとも2層が積層され、炭素材料及びバインダを含む微細多孔質層を備える。そして、ガス拡散層基材側に位置する第1層の微細多孔質層におけるバインダ含有量が、微細多孔質層における前記第1層の残部の層におけるバインダ含有量よりも少ないことを特徴としている。なお、本形態のMPLシートの厚さとしては、合計で10~100μm程度の範囲内であることが望ましい。また、第1層の厚みがMPLシート全体の5~60%であることが望ましい。
 通常、MPLを備えたGDLは、GDL基材と、その上にウエット塗布して形成されるMPLとの積層構造が一般的である。しかし、このようなMPLの形成方法においては、GDL基材内にMPLインクが入り込み、GDL基材が目詰まりするため、ガス透過性が悪化する。また、GDL基材表面の凹凸がインク塗布によるMPL形成後も残るため、GDL基材繊維の電解質膜に対する攻撃性の緩和効果が小さい。
 これに対して、本形態に係るMPLシートは、独立したシート状をなしており、GDL基材にインクを直接塗布するのではなく、当該基材に貼り合わせることによってGDLを形成する。したがって、インク侵入による基材の目詰まりが生じることがない。また、シートの貼り付けによって、基材表面の凹凸が吸収される。このように、本形態に係るMPLシートにより、基材繊維による電解質膜への攻撃性に関する上記問題は解決される。
 なお、単層構造を採用した微細多孔質層シートの場合、バインダの自重による垂れ込みによって、MPL内におけるバインダの偏在が生じ、MPL細孔の閉塞を招き、ガス透過性能が著しく悪化する。これに対し、本発明においては、MPLを多層構造とし、第1層(最下層)におけるバインダ含有量を低いものとしたことによって、自重によるバインダの偏在が緩和される。さらに、高湿度運転条件におけるガス透過性、排水性が向上する。
 本形態に係るMPLシートは、上記したように、炭素材料とバインダを含む微細多孔質層を少なくとも2層備えた多層構造シートであり、GDL基材と貼り合わせることによってGDLを形成する。そして、自重によるバインダの偏在を抑制する観点から、第1層のMPLにおけるバインダ含有量が第1層以外の上層側MPLのバインダ含有量よりも少なくなるように構成されている。
 本形態に係るMPLシートの各層を構成する炭素材料としては、鱗片状黒鉛やカーボンブラック、粒状黒鉛を用いることができる。特に、少なくとも鱗片状黒鉛を用いて構成することが望ましい。なお、鱗片状黒鉛は、その粒径、すなわち、平均平面直径D1が5~50μmの大径のものと、5μm未満の小径のものとを併用することもできる。
 鱗片状黒鉛は、結晶性が高く、図1(a)の平面図、及び図1(b)の側面図に示すように、アスペクト比(平均平面直径D1/厚さH1)が高いうろこ状の形状をしている。本形態の鱗片状黒鉛は、厚さH1が0.05~1μm、上記アスペクト比が10~1000程度のものを意味する。鱗片状黒鉛は、MPLの厚さ方向及び面方向のガス透過性向上に寄与する。また、面方向の抵抗低減、すなわち、導電性向上に寄与する。このような観点から、平均平面直径D1が5~50μmの鱗片状黒鉛が好ましく用いられる。D1の値がこのような範囲となる鱗片状黒鉛を、特に、大径鱗片状黒鉛Gfと称する。平均平面直径D1が5μmよりも小さいとガス透過性向上に効果がなく、50μmよりも大きくなると厚さ方向の導電性が劣化する傾向がある。なお、鱗片状黒鉛Gfの平均平面直径D1は、レーザー回折・散乱法により測定された、偏平な面方向の平均直径を意味する。また、鱗片状黒鉛の厚さH1は、走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)で測定することができる。
 一方、粒状黒鉛Ggは、同様に結晶性が高く、図2(a)及び(b)に示すように、アスペクト比(平均平面直径D2/厚さH2)が1~3程度のものである。そして、厚さ方向及び面方向のガス透過性を向上させるスペーサー材として機能する。ここで、スペーサー材とは、鱗片状黒鉛の間に介在することで鱗片状黒鉛の間の距離を伸長させ、燃料ガス及び酸化剤ガスといった反応ガスの透過性を向上させる材料である。なお、粒状黒鉛の平均粒径については、スペーサー材として機能させる観点から、1~10μm程度の範囲内であることが望ましい。なお、本明細中において、「平均粒径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。ここで、「粒子径」とは、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用いて観察される粒子(観察面)の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。他の構成成分の粒子径や平均粒子径も同様に定義することができる。また、粒状黒鉛の平均平面直径D2及び厚さH2は、上記鱗片状黒鉛の場合と同様に測定することができる。
 なお、鱗片状黒鉛の平均平面直径D1が5μm未満である場合、特に小径鱗片状黒鉛Gfsと称する。小径鱗片状黒鉛Gfsは、厚さ方向の電気的抵抗を低減する導電パス材として機能する。ここで、導電パス材とは、鱗片状黒鉛の間に介在し、鱗片状黒鉛の間の導電性を向上させる材料である。さらに、小径鱗片状黒鉛Gfsによって、熱抵抗が低下、すなわち熱伝導性が向上する。その結果、低加湿状態での導電性が向上する。このような小径鱗片状黒鉛Gfsを用いる場合、ガス透過性向上と導電性向上を両立させる観点から、MPL中における配合比を30~70%程度とすることが望ましい。すなわち、小径鱗片状黒鉛Gfsの配合比が30%よりも少ないと接触面積が低くなり、十分に抵抗を下げられない。一方で、配合比が70%よりも多くなると、バインダの量が相対的に少なくなり、MPLとして機能するのが困難となる。ただし、鱗片状黒鉛の粒径を後述するカーボンブラック並みに小さくできる場合には、カーボンブラックと同様に少ない配合比とすることが好ましい。なお、小径の鱗片状黒鉛の平均平面直径D1及び厚さH1も、上記鱗片状黒鉛の場合と同様に測定することができる。
 厚さ方向の抵抗を低減する導電パス材として機能する炭素材料としては、カーボンブラックが挙げられる。具体的には、オイルファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック等を用いることができる。このような導電パス材の平均粒径としては、10nm~5μm程度であることが好ましい。
 上記導電パス材の中で、アセチレンブラックを使用する場合、アセチレンブラックの配合量については、ガス透過性向上と導電性向上をより確実に両立させる観点から、MPL中における含有量を5~25%とすることが望ましい。アセチレンブラックの含有量が5%よりも少ないと接触面積が低くなり、十分に抵抗が下がらない。一方で、25%よりも多くなると、小粒径が空孔を埋めてしまうため、ガス透過性が悪化する。また、比表面積が1000m/g以上のものを使用することも望ましく、これによって抵抗をさらに低減することができる。
 そして、上記した炭素材料と共に、本発明のMPLシートに用いられるバインダは、上記炭素材料同士を結着してMPLの強度を確保する機能を有するものであって、撥水剤としての機能を兼ね備えていることが望ましい。このようなバインダ樹脂として、特に制限はないが、ポリテトラフルオロエチレン(PTFE)を用いることができる。この他にも、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、SEBS等のスチレン系エラストマー樹脂等を適用することもできる。
 図3~6は、上記した各種炭素材料を組み合わせて構成される本形態のMPLシートにおける各層の構造例を模式的に示した拡大概略図である。図3は、鱗片状黒鉛と、カーボンブラックと、図示しないバインダとから構成される例を示すものである。この場合、薄い形状をなす鱗片状黒鉛Gfが層の面方向に沿った状態でほぼ平行に配向している。その結果、MPLの厚さ及び面方向のガス透過性と、面方向の導電性を確保することができる。一方で、カーボンブラックCが導電パス材としてその間に介在することによって、厚さ方向の導電性を向上させる機能を果たしている。
 図4は、炭素材料として、大径と小径の鱗片状黒鉛を組み合わせた例を示すものであってある。小径鱗片状黒鉛Gfsは、カーボンブラックと同様に、大径の鱗片状黒鉛Gfの間に介在して導電パス材として機能し、厚さ方向の導電性を向上させている。また、図5は、炭素材料として、鱗片状黒鉛とカーボンブラックと粒状黒鉛を組み合わせて構成される例である。鱗片状黒鉛Gf及びカーボンブラックCが、図3の構造例の場合と同様に機能することに加えて、粒状黒鉛Ggが厚さ及び面方向のガス透過性を向上させるスペーサー材として機能している。
 図6は、大径鱗片状黒鉛Gfと、小径鱗片状黒鉛Gfsと、粒状黒鉛Ggとの組み合わせから構成される構造例を示すものである。この場合においても、大径鱗片状黒鉛Gfが厚さ方向のガス透過性と、面方向のガス透過性及び導電性を確保している。そして、小径鱗片状黒鉛Gfs及び粒状黒鉛Ggが導電パス材及びスペーサー材としてそれぞれ機能する。
 なお、上記図3~6に示した炭素材料の組み合わせに係るMPLの構造例は、代表例に過ぎない。例えば、図3に示した構造に、小径鱗片状黒鉛Gfsを加えたり、さらに粒状黒鉛Ggを追加したり、この他にも種々の組み合わせが考えられる。また、本形態に係るMPLシートは、上記のような構造のMPLを少なくとも2層備えたものであるが、必ずしも各層が同じ炭素材料の組み合わせである必要はない。つまり、例えば、図3~6に示したような層構造が混在していたとしても何ら差し支えない。
 本形態に係るMPLシートは、上記したように、炭素材料とバインダを含み、バインダ含有量の異なる少なくとも2層のMPLを備えたものである。ここで、このような多層構造を保持シート上に形成することもできる。これによって当該シートの生産性や取り扱い性を向上させることができる。すなわち、保持シートとは、MPLシートを保持し、MPLシートの生産性や取り扱い性を向上させるものである。この場合の保持シートとしては、300℃程度における焼成処理に耐えうる耐熱性と化学的安定性を備えているものであれば特に限定されない。例えば、ポリイミド、ポリプロピレン、ポリエチレン、ポリスルホン、ポリテトラフルオロエチレン等からなるフィルムを用いることができる。なお、これらのうち、ポリイミドフィルムを好適に用いることができる。また、厚さ10~100μm程度のフィルムが好ましく用いられる。
 本形態に係るMPLシートは、例えば、図9に示す工程によって製造することができる。すなわち、上記のような耐熱性保持シート上に、炭素材料及びバインダを含む第1のインクを塗布して第1層(最下層)の微細多孔質層を形成する。そして、同様に炭素材料及びバインダを含み、バインダ濃度が上記第1のインクよりも高いインクを第1層の上に塗布して、少なくとも1層の微細多孔質層を積層する。
 また、本形態のMPLシートの第1層側をGDL基材に貼り合わせることによって、燃料電池用のGDLを形成することができる。このGDL基材としては、カーボンペーパー、カーボンクロス、不織布等の炭素繊維で形成された材料に、撥水剤としてPTFE等を含浸したものが用いられる。なお、このようなGDLを適用するMEAの排水特性やセパレータの表面性状によっては、基材の撥水処理を行わない場合もあるし、親水処理を行う場合もある。また、上記GDL基材にも、黒鉛、カーボンブラック、あるいはこれらの混合物を含浸させてもよい。このような本形態のGDLは、本形態のMPLを適用したため、強度が低下することなく、ガス透過性、排水性能を確保することができる。
 図7は、本形態のMPLシートによって作製したGDLを用いて構成されるMEAの構造例を示すものである。MEA1は、電解質膜10を中心とするアノード、カソード両極に、触媒層20、GDL30がそれぞれ配置されたものである。ここで、GDL30は、GDL基材31上に、本形態のMPLシート、すなわち第1のMPL41と第2のMPL42から構成される2層構造のMPLシート40を貼着することによって形成されている。なお、貼着とは、単に材料を接着面に塗布することによって形成するものではなく、独立して成型した材料を接着面に接合させることをいう。また、下層側の第1のMPL41におけるバインダ含有量は、上層側の第2のMPL42におけるバイダ含有量よりも少ないものとなっている。このような本形態のMEAは、本形態のGDLを適用したため、強度が低下することなく、ガス透過性、排水性能が確保され、湿潤条件においても発電性能を確保することができる。
 電解質膜10としては、一般的に使用されているパーフルオロスルホン酸系電解質膜の他、炭化水素系電解質膜を使用することもできる。パーフルオロスルホン酸系電解質としては、具体的には、ナフィオン(登録商標、デュポン社製)、アシプレツクス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等などが挙げられる。また、炭化水素系電解質としては、スルホン酸基を有する炭化水素系樹脂、リン酸などの無機酸を炭化水素系高分子化合物にドープさせたもの、一部がプロトン導電体の官能基で置換された有機/無機ハイブリッドポリマー、高分子マトリックスにリン酸溶液や硫酸溶液を含浸させたプロトン導電体などが挙げられる。ただし、耐酸化性、低ガス透過性、製造の容易さ及び低コストなどを考慮すると、スルホン酸基を有する炭化水素系高分子電解質が好ましい。本実施形態で使用される炭化水素系電解質としては、例えば、スルホン化ポリアリールエーテルスルホン(S-PES)、ポリベンズイミダゾール(PBI)、ポリベンズオキサゾール(PBO)、スルホン化ポリフェノキシベンゾイルフェニレン(S-PPBP)、ポリエーテルエーテルケトン(S-PEEK)などが好適な例として挙げられる。
 また、触媒層20としては、白金又は白金合金をカーボンに担持したものに、パーフルオロスルホン酸系電解質溶液や炭化水素系電解質溶液を混入して形成する。ここで、カーボンとしては、オイルファーネスブラック、アセチレンブラック、ケッチェンブラック、サーマルブラック、チャンネルブラック等のカーボンブラック、黒鉛、活性炭等を使用できる。なお、必要に応じて、撥水剤や増孔剤を添加することもできる。
 このようなMEAの作製方法としては、電解質膜に触媒層をホットプレスで転写又は直接塗布したものに、GDL基材にMPLシートを貼着して構成されるGDL30を接合する方法がある。また、GDLのMPL側に触媒層20を予め塗布したものを電解質膜にホットプレスで接合する方法がある。これらのどちらを採用しても構わない。このとき、電解質膜、触媒層内の電解質にパ-フルオロスルホン酸系を使うか炭化水素系のものを使うかによって、ホットプレス等の塗布、接合条件も適宜変更する。
 本形態の燃料電池用GDLは、図9に示すような工程によって製造することができる。すなわち、まず、鱗片状黒鉛とバインダ、必要に応じてさらに導電パス材やスペーサー材としてのカーボンブラックや粒状黒鉛や、界面活性剤、増粘剤を含むMPLインクを調製する。
 次に、攪拌、脱泡処理したのち、耐熱性保持シート上に塗布し、例えば80℃で乾燥、330℃で焼成を行うことによって、シート状のMPL(MPLシート)が得られる。
 そして、保持シートから剥がしたMPLシートを、例えば撥水処理したカーボンペーパーから構成されるGDL基材上に、貼着することによって、GDLを得ることができる。貼着は、例えば、ホットプレスすることにより行うことができる。このような方法により得られたGDLにおいては、GDL基材にインクを直接塗布して得られるようなものと異なり、別途用意したMPLシートがGDL基材に貼着されている。その結果、インク浸入による基材の目詰まりが生じず、GDLのガス透過性が向上する。また、シートの貼り付けによって、基材表面の凹凸が吸収される。その結果、GDL基材繊維による電解質膜への攻撃性を緩和することができ、GDLの導電性が向上する。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。
(実施例1)
 MPLシート形成用インクとして、平均平面直径15μm、厚さ0.1μm、比表面積6m/gの鱗片状黒鉛と、一次粒径40nm、比表面積37m/gのアセチレンブラックと、バインダとしてのPTFEを用いた。上記鱗片状黒鉛、アセチレンブラック及びPTFEを、それぞれ83.1%、11.9%、5%の割合で含む第1層用のMPLインクを用意した。さらに、上記鱗片状黒鉛、アセチレンブラック及びPTFEを、それぞれ61.3%、8.8%、30%の割合で含む第2層用のMPLインクを用意した。そして、厚さ50μmのポリイミドフィルムから構成される耐熱性保持シート上に、第1層用のMPLインク塗布して、自然乾燥させた。その後、その上に第2層用インクを塗布し、80℃で乾燥した後、330℃で焼成を行った。このようにして、図8(a)に示すように、保持シートSの上に、厚さ30μmのMPL41及び厚さ30μmのMPL42の2層を備えた合計厚さ60μmの2層構造のMPLシート40を得た。
 次に、保持シートから2層のMPLから構成されるシートを剥がし、PTFEで10%撥水処理した厚さ200μmのカーボンペーパーから構成されるGDL基材上にホットプレスして接合し、GDLを得た。ホットプレスは、80℃、2MPa、3分の条件で行った。なお、以上の工程は図9に基づいている。そして、厚さ25μmのパ-フルオロスルホン酸系電解質膜上に、白金担持カーボン、パ-フルオロスルホン酸系電解溶液から構成される触媒層を形成したものを上記により得られたGDLで挟み込み、MEAを得た。なお、白金担持カーボンの担持量は、アノード側で0.05mg/cm、カソード側で0.35mg/cmとした。
(比較例1)
 実施例1において、第2層用に調製したMPLインクを、厚さ50μmのポリイミドフィルムから構成される耐熱性保持シート上に塗布し、80℃で乾燥した。その後、330℃で焼成を行ったこと以外は、上記同様の操作を繰り返した。このようにして、図8(b)に示すように、保持シートSの上に、厚さ60μmの単層のMPLシート45を得た。次いで、保持シートからMPLシートを剥がし、GDL基材上に同様にホットプレスすることによってGDLとした後、同様の操作によってMEAを得た。
(実施例2)
 上記鱗片状黒鉛、アセチレンブラック、PTFEをそれぞれ78.8%、11.3%、10%の割合で含むMPLインクを第1層に用い、これらをそれぞれ52.5%、7.5%、40.0%の割合で含むMPLインクを第2層に用いた。その他は、実施例1と同様の操作を繰り返して、実施例2のMPLシートを作製した。次いで、同様の基材にホットプレスすることによって、GDLとした。そして、厚さ15μmのパ-フルオロスルホン酸系電解質膜を用いたこと以外は、実施例1と同様の操作によってMEAを得た。
(実施例3)
 第2層用のMPLインクとして、上記鱗片状黒鉛、アセチレンブラック、PTFEをそれぞれ60.0%、10.0%、30%の割合で含むインクを用いた。その他は、実施例2と同様の操作を繰り返して、実施例3のMPLシートを得た。そして、これ以降は、実施例2と同様の操作を繰り返すことによって、GDLとし、さらにMEAを得た。
(実施例4)
 第2層用のMPLインクとして、上記鱗片状黒鉛、アセチレンブラック、PTFEをそれぞれ61.3%、8.8%、30%の割合で含むインクを用いた。すなわち、実施例1の第2層と同じである。その他は、実施例2、3と同様の操作を繰り返して、実施例4のMPLシートを得た。そして、これ以降は、実施例2、3と同様の操作を繰り返すことによって、GDLとし、さらにMEAを作製した。
(比較例2)
 上記鱗片状黒鉛、アセチレンブラック、PTFEをそれぞれ43.8%、6.3%、50%の割合で含むインクを用いて、比較例1と同様の操作によって単層MPLのシートを得た。そして、これ以降は、実施例2~4と同様の操作を繰り返すことによって、GDLとし、さらに同様の操作によってMEAを作製した。
 以上によって、作製した実施例及び比較例のMPLシートの仕様を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
〔MPLの厚さ方向ガス透過性の測定〕
 MPLの厚さ方向のガス透過性を、ガーレー透気度計を用いて評価した。ガーレー透気度JIS P8117に規定されるガーレー透気度測定器を使用し、外径28.6mmの円孔を有する締め付け板に押さえられた試料を100cc(0.1dm)の空気が通過する時間(秒)を測定し、ガーレー透気度を測定した。その値を用い、厚さで標準化された透気度(Permeability、単位:m)を算出した。
 実施例1及び比較例1により得られたMPLの厚さ方向のガス透過性測定結果を図10に示す。単層構造である比較例1に対し、2層構造である実施例1のガス透過性が向上していることが確認された。また、実施例2~4及び比較例2により得られたMPLの厚さ方向のガス透過性測定価結果を図11に示す。単層構造である比較例2に対し、2層構造である実施例2~4のガス透過性が向上していることが確認された。
〔MPLの厚さ方向電気抵抗の測定〕
 実施例1及び比較例1により得られたMPLにおける厚さ方向の電気抵抗の測定結果を図12に示す。なお、これらはMPLのみの電気抵抗を示すものである。単層構造である比較例1の電気抵抗の方が若干小さいものの、2層構造である実施例1の電気抵抗も十分に小さく、遜色ないものといえる。なお、測定に当たっては、面積0.95cmのMPLの両面を金箔で挟み、荷重をかけた状態で通電して測定した。電流値は1Aで、5MPaまでを1サイクルとし、2サイクル目の1MPaにおける値を比較した。
 また、実施例2~4及び比較例2により得られたMPLにおける厚さ方向の電気抵抗の測定結果を図13に示す。ただし、これらはMPLとカーボンペーパー全体としての電気抵抗を示すものである。単層構造である比較例2に対し、2層構造である実施例2~4の電気抵抗が同程度であることが確認された。
〔セル発電評価結果1〕
 実施例1及び比較例1のMPLシートにより作製されたGDLを用い、MEAを作製した。すなわち、パーフルオロスルホン酸系電解質から構成される電解質膜の両面に、白金担持カーボンと上記電解質膜と同様のパーフルオロスルホン酸系電解質から構成される触媒層を塗布した状態の接合体を上記GDLでそれぞれ挟み込み、MEAを得た。なお、MEAのアクティブエリアを5×2cmとした。
 次に、上記により得られたMEAから構成される小型単セルを用いて、H/Air、80℃、200kPa_aの条件で発電評価を行った。そして、湿潤条件の例として、アノード及びカソード共に相対湿度が90%RHの場合における、1.2A/cmでの発電評価結果を図14に示す。MPLが単層構造である比較例1によるMEAに対し、2層構造である実施例1によるMEAの方が湿潤条件での性能が高いことが認められた。
〔セル発電評価結果2〕
 実施例2~4及び比較例2のMPLシートにより作製されたGDLを用い、MEAを上記同様に作製した。そして、同様の湿潤条件における2A/cmでの発電を評価した。その結果を図15に示す。MPLが単層構造である比較例2によるMEAに対し、2層構造のMPLを備えた実施例2~4によるMEAの方が湿潤条件での性能が高いことが確認された。
〔バインダ含有量〕
 実施例1、4に、新たに以下に示す実施例5~7を加え、これらにより得られたMPLの上面層及び下面層におけるバインダ成分(PTFE)由来のフッ素含有量をSEMEDXにより測定し、単層構造をなす比較例2の場合と比較調査した。なお、MPLの下面層は、ガス拡散層基材側に位置し、実施例においては第1層をさす。また、MPLの上面層は、上記第1層とガス拡散層基材の接合面の反対側で第1層と接合しており、実施例においては第2層をさす。
(実施例5)
 第1層用のMPLインクとして、上記鱗片状黒鉛、アセチレンブラックをそれぞれ87.5%、12.5%の割合で含むインクを用いた。その他は、実施例1と同様の操作を繰り返して、実施例5のMPLシートを得た。
(実施例6)
 第1層用のMPLインクとして、上記鱗片状黒鉛、アセチレンブラック、PTFEをそれぞれ86.6%、12.4%、1%の割合で含むインクを用いた。その他は、実施例1と同様の操作を繰り返して、実施例6のMPLシートを得た。
(実施例7)
 第1層用のMPLインクとして、上記鱗片状黒鉛、アセチレンブラック、PTFEをそれぞれ84.9%、12.1%、3%の割合で含むインクを用いた。その他は、実施例1と同様の操作を繰り返して、実施例7のMPLシートを得た。
 実施例1、4~7及び比較例2について微細多孔質層の上面及び下面におけるバインダ含有量を比較した結果を図16に示す。単層構造である比較例2のMPLでは、ガス拡散層基材側のフッ素濃度がガス拡散層基材の反対側のフッ素濃度より高く、ガス拡散層基材側のバインダ含有量が多いことがわかる。これに対して、2層構造である実施例1や、実施例4~7によるMPLでは、ガス拡散層基材側における最下層のフッ素濃度、すなわちバインダ含有量が、上記最下層を除く層よりも低いことが確認された。
 日本国特許出願特願2011-135078号(出願日:2011年6月17日)及び日本国特許出願特願2012-095527号(出願日:2012年4月19日)の全内容は、ここに引用される。
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 本発明によれば、微細多孔質層を少なくとも2層備えた多層構造としたMPLシートを構成した。さらに、このようなMPLシートは、ガス拡散層基材側に位置する第1層のバインダ含有量が、これ以外の層のバインダ含有量よりも少なくなるように構成されている。これにより、自重によるバインダの垂れ込みが生じたとしても、最下層におけるバインダの偏在が軽減されることになり、ガス透過性、排水性を確保することができる。
  1 膜電極接合体(MEA)
  10 電解質膜
  20 触媒層
  30 ガス拡散層(GDL)
  31 ガス拡散層基材(GDL基材)
  40 微細多孔質層シート(MPLシート)
  41 第1のMPL(第1層の微細多孔質層)
  42 第2のMPL
  Gf 鱗片状黒鉛(大径鱗片状黒鉛)
  Gfs 小径鱗片状黒鉛
  Gg 粒状黒鉛
  C カーボンブラック
  S 保持シート

Claims (9)

  1.  ガス拡散層基材上に少なくとも2層が積層され、炭素材料及びバインダを含む微細多孔質層を備え、
     前記ガス拡散層基材側に位置する第1層の微細多孔質層におけるバインダ含有量が、前記微細多孔質層における前記第1層の残部の層におけるバインダ含有量よりも少ないことを特徴とする燃料電池用微細多孔質層シート。
  2.  前記炭素材料が、5~50μmの平均平面直径を有する大径鱗片状黒鉛と、5μm未満の平均平面直径を有する小径鱗片状黒鉛を含むことを特徴とする請求項1に記載の燃料電池用微細多孔質層シート。
  3.  前記炭素材料が、鱗片状黒鉛と、カーボンブラック及び粒状黒鉛の少なくとも一方と、を含むことを特徴とする請求項1に記載の燃料電池用微細多孔質層シート。
  4.  前記鱗片状黒鉛が、5~50μmの平均平面直径を有する大径鱗片状黒鉛と、5μm未満の平均平面直径を有する小径鱗片状黒鉛と、から構成されることを特徴とする請求項3に記載の燃料電池用微細多孔質層シート。
  5.  保持シート上に形成されていることを特徴とする請求項1~4のいずれか1つの項に記載の燃料電池用微細多孔質層シート。
  6.  炭素材料及びバインダを含む第1のインクを塗布して第1層の微細多孔質層を形成する工程と、
     炭素材料及びバインダを含み、バインダ濃度が第1のインクよりも高いインクを上記第1層の上に塗布して、少なくとも1層の微細多孔質層を積層する工程と、
     を備えることを特徴とする燃料電池用微細多孔質層シートの製造方法。
  7.  保持シート上に、第1層の微細多孔質層を形成することを特徴とする請求項6に記載の燃料電池用微細多孔質層シートの製造方法。
  8.  請求項1~5のいずれか1つの項に記載の燃料電池用微細多孔質層シートにおける第1層側をガス拡散層基材に貼着して構成されることを特徴とする燃料電池用ガス拡散層。
  9.  請求項8に記載の燃料電池用ガス拡散層が、触媒層を介して、電解質膜の両面に積層されて構成されることを特徴とする燃料電池用膜電極接合体。
PCT/JP2012/064124 2011-06-17 2012-05-31 燃料電池用微細多孔質層シート及びその製造方法 WO2012172989A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2839645A CA2839645C (en) 2011-06-17 2012-05-31 Microporous layer sheet for fuel cell and method for producing the same
US14/125,426 US10361445B2 (en) 2011-06-17 2012-05-31 Microporous layer sheet for fuel cell and method for producing the same
CN201280029526.1A CN103608955B (zh) 2011-06-17 2012-05-31 燃料电池用微细多孔质层片材及其制造方法
EP12800163.3A EP2722918B1 (en) 2011-06-17 2012-05-31 Microporous layer sheet for fuel cells and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011135078 2011-06-17
JP2011-135078 2011-06-17
JP2012095527A JP5987440B2 (ja) 2011-06-17 2012-04-19 燃料電池用微細多孔質層シート及びその製造方法
JP2012-095527 2012-04-19

Publications (1)

Publication Number Publication Date
WO2012172989A1 true WO2012172989A1 (ja) 2012-12-20

Family

ID=47356980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064124 WO2012172989A1 (ja) 2011-06-17 2012-05-31 燃料電池用微細多孔質層シート及びその製造方法

Country Status (6)

Country Link
US (1) US10361445B2 (ja)
EP (1) EP2722918B1 (ja)
JP (1) JP5987440B2 (ja)
CN (1) CN103608955B (ja)
CA (1) CA2839645C (ja)
WO (1) WO2012172989A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108519A1 (en) * 2014-01-16 2015-07-23 Audi Ag Fuel cell microporous layer having multiple densities
CN104981929A (zh) * 2013-02-13 2015-10-14 东丽株式会社 燃料电池用气体扩散层、及其制造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013207900A1 (de) * 2013-04-30 2014-10-30 Volkswagen Ag Membran-Elektroden-Einheit und Brennstoffzelle mit einer solchen
CN106030879B (zh) 2014-02-24 2019-06-04 东丽株式会社 气体扩散电极基材
US20170309942A1 (en) * 2014-10-20 2017-10-26 Panasonic Corporation Electrode, fuel cell and water treatment device
CA3001532A1 (en) * 2015-12-24 2017-06-29 Toray Industries, Inc. Gas diffusion electrode and fuel cell
CN106960972B (zh) * 2017-04-20 2020-01-14 牡丹江师范学院 二甲醚燃料电池阳极微孔层的制备方法
JP7052418B2 (ja) * 2018-03-01 2022-04-12 トヨタ自動車株式会社 ガス拡散層
CN112970138B (zh) 2018-11-12 2024-01-30 东丽株式会社 气体扩散电极、气体扩散电极的制造方法、膜电极接合体、燃料电池
KR20220096257A (ko) * 2020-12-30 2022-07-07 주식회사 제이앤티지 두께 방향의 관통 경로 및/또는 발수성 수지의 농도 기울기를 갖는 미세다공성층을 포함하는 기체확산층 및 이를 포함하는 연료전지
DE102021209217A1 (de) * 2021-08-23 2023-02-23 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung einer Gasdiffusionsschicht
CN114068974A (zh) * 2021-10-25 2022-02-18 上海远瞩新能源科技有限公司 一种含有功能结构的燃料电池气体扩散层及其制备方法
KR102544711B1 (ko) * 2022-12-08 2023-06-21 주식회사 에프씨엠티 상이한 형상을 갖는 2종의 카본을 활용한 연료전지용 전극 및 이를 포함하는 막전극접합체

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004879A (ja) * 2004-06-21 2006-01-05 Nissan Motor Co Ltd ガス拡散電極及び固体高分子電解質型燃料電池
JP2007214112A (ja) * 2006-01-10 2007-08-23 Toray Ind Inc 膜電極複合体
JP2008059917A (ja) * 2006-08-31 2008-03-13 Aisin Seiki Co Ltd 燃料電池用ガス拡散層の製造方法、燃料電池用塗料組成物および燃料電池用ガス拡散層
JP2008243732A (ja) * 2007-03-28 2008-10-09 Toshiba Corp 直接メタノール型燃料電池
JP4215979B2 (ja) 2001-12-17 2009-01-28 日本バルカー工業株式会社 拡散膜、該拡散膜を有する電極および拡散膜の製造方法
JP2009289552A (ja) * 2008-05-28 2009-12-10 Toho Tenax Co Ltd 炭素繊維シート及びその製造方法
JP2011076739A (ja) * 2009-09-29 2011-04-14 Gs Yuasa Corp 固体高分子形燃料電池用ガス拡散層およびその製造方法
JP2011135078A (ja) 2009-12-23 2011-07-07 Asml Netherlands Bv リソグラフィ装置および方法
JP2012095527A (ja) 1999-07-20 2012-05-17 Sri Internatl 電極及び光変調デバイス

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057215A (ja) * 1999-08-18 2001-02-27 Toshiba Corp 固体高分子膜型燃料電池およびそのガス拡散層形成方法
JP2006529054A (ja) * 2003-05-09 2006-12-28 フォーメックス エル ピー 炭素粒子混合物を有するガス拡散層
US20060105159A1 (en) * 2004-11-12 2006-05-18 O'hara Jeanette E Gas diffusion medium with microporous bilayer
KR100696621B1 (ko) 2005-05-11 2007-03-19 삼성에스디아이 주식회사 연료전지용 전극기재, 이의 제조방법 및 이를 포함하는막-전극 어셈블리
GB0601943D0 (en) * 2006-02-01 2006-03-15 Johnson Matthey Plc Microporous layer
US20100028750A1 (en) * 2008-08-04 2010-02-04 Gm Global Technology Operations, Inc. Gas diffusion layer with lower gas diffusivity
CN101662032B (zh) * 2009-09-22 2012-06-06 中国科学院上海微系统与信息技术研究所 直接醇类燃料电池的膜电极集合体的阴极结构和制作方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012095527A (ja) 1999-07-20 2012-05-17 Sri Internatl 電極及び光変調デバイス
JP4215979B2 (ja) 2001-12-17 2009-01-28 日本バルカー工業株式会社 拡散膜、該拡散膜を有する電極および拡散膜の製造方法
JP2006004879A (ja) * 2004-06-21 2006-01-05 Nissan Motor Co Ltd ガス拡散電極及び固体高分子電解質型燃料電池
JP2007214112A (ja) * 2006-01-10 2007-08-23 Toray Ind Inc 膜電極複合体
JP2008059917A (ja) * 2006-08-31 2008-03-13 Aisin Seiki Co Ltd 燃料電池用ガス拡散層の製造方法、燃料電池用塗料組成物および燃料電池用ガス拡散層
JP2008243732A (ja) * 2007-03-28 2008-10-09 Toshiba Corp 直接メタノール型燃料電池
JP2009289552A (ja) * 2008-05-28 2009-12-10 Toho Tenax Co Ltd 炭素繊維シート及びその製造方法
JP2011076739A (ja) * 2009-09-29 2011-04-14 Gs Yuasa Corp 固体高分子形燃料電池用ガス拡散層およびその製造方法
JP2011135078A (ja) 2009-12-23 2011-07-07 Asml Netherlands Bv リソグラフィ装置および方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104981929A (zh) * 2013-02-13 2015-10-14 东丽株式会社 燃料电池用气体扩散层、及其制造方法
WO2015108519A1 (en) * 2014-01-16 2015-07-23 Audi Ag Fuel cell microporous layer having multiple densities
CN105917506A (zh) * 2014-01-16 2016-08-31 奥迪股份公司 具有多种密度的燃料电池微孔层
CN105917506B (zh) * 2014-01-16 2018-10-09 奥迪股份公司 具有多种密度的燃料电池微孔层

Also Published As

Publication number Publication date
EP2722918A4 (en) 2014-12-17
US10361445B2 (en) 2019-07-23
JP2013020940A (ja) 2013-01-31
CN103608955A (zh) 2014-02-26
US20140127606A1 (en) 2014-05-08
EP2722918A1 (en) 2014-04-23
CN103608955B (zh) 2016-10-12
EP2722918B1 (en) 2018-07-11
CA2839645A1 (en) 2012-12-20
JP5987440B2 (ja) 2016-09-07
CA2839645C (en) 2016-11-29

Similar Documents

Publication Publication Date Title
WO2012172989A1 (ja) 燃料電池用微細多孔質層シート及びその製造方法
JP5924530B2 (ja) 燃料電池用ガス拡散層
WO2012172993A1 (ja) 燃料電池用ガス拡散層及びその製造方法
CA2866706C (en) Electrolyte film-electrode assembly
WO2010150870A1 (ja) 燃料電池用親水性多孔質層、ガス拡散電極およびその製造方法、ならびに膜電極接合体
JP2007141588A (ja) 燃料電池用膜電極接合体およびこれを用いた固体高分子形燃料電池
JP2008204664A (ja) 燃料電池用膜電極接合体、およびこれを用いた燃料電池
JP2010073586A (ja) 電解質膜−電極接合体
JP5885007B2 (ja) 燃料電池用電極シートの製造方法
JP6572665B2 (ja) 膜電極接合体およびそれを含む燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800163

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14125426

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2839645

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE