WO2012172834A1 - 収穫時熟度推定装置、収穫時熟度推定方法及びプログラム - Google Patents

収穫時熟度推定装置、収穫時熟度推定方法及びプログラム Download PDF

Info

Publication number
WO2012172834A1
WO2012172834A1 PCT/JP2012/054872 JP2012054872W WO2012172834A1 WO 2012172834 A1 WO2012172834 A1 WO 2012172834A1 JP 2012054872 W JP2012054872 W JP 2012054872W WO 2012172834 A1 WO2012172834 A1 WO 2012172834A1
Authority
WO
WIPO (PCT)
Prior art keywords
harvest
time
vegetables
optical data
fruits
Prior art date
Application number
PCT/JP2012/054872
Other languages
English (en)
French (fr)
Inventor
展之 安川
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/126,261 priority Critical patent/US20140122044A1/en
Publication of WO2012172834A1 publication Critical patent/WO2012172834A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3155Measuring in two spectral ranges, e.g. UV and visible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Definitions

  • the present invention relates to a harvest-time ripeness estimation device, a harvest-time ripeness estimation method, and a program.
  • Patent Document 1 and Non-Patent Document 1 disclose a technique for measuring the quality of fruits and vegetables based on image data.
  • Patent Document 2 discloses a method for measuring the maturity of a crop when the crop is harvested.
  • Patent Document 3 discloses a technique for predicting future quality based on current quality.
  • Non-Patent Documents 2 and 3 disclose a method for predicting the deterioration rate of quality of fruits and vegetables based on photographed data.
  • the quality transition model showing the transition of quality with the passage of time relates not only to the current information but also to the maturity at the time of harvest. Therefore, in order to improve the prediction performance of future quality, information indicating the maturity at the time of harvest is required.
  • Patent Document 1 Non-Patent Document 1
  • Patent Document 2 can only measure the quality and maturity at the time of measurement. The information shown cannot be obtained.
  • patent document 3 discloses that the future quality is predicted based on the current quality, the point of obtaining information indicating the maturity at the time of harvest at a time later than the time of harvest is disclosed. Nothing is disclosed.
  • the present invention has been made in view of such circumstances, and an object thereof is to estimate information indicating the maturity at the time of harvest at a stage after the time of harvest.
  • the harvest-time maturity estimation apparatus provides a first optical obtained by irradiating light and a first wavelength to the fruit and vegetables at a first time point after the fruit and vegetables are harvested.
  • the first optical data acquisition unit for acquiring the target data, and the correspondence between the value of the first optical data and the maturity at the time of harvest of fruits and vegetables for the light of the first wavelength
  • Harvest-time ripeness for estimating the harvest-time ripeness of fruits and vegetables based on the harvest-time ripeness correspondence information storage unit that stores information, the acquired first optical data, and harvest-time ripeness correspondence information An estimation unit.
  • the computer irradiates light of the first wavelength to the fruits and vegetables at a first time point after the fruits and vegetables are harvested.
  • the harvest maturity correspondence information indicating the correspondence relationship between the value of the first optical data and the maturity at the time of harvest of fruits and vegetables for the light of the first wavelength, and Based on the first optical data, the maturity at the time of harvest of fruits and vegetables is estimated.
  • a program provides a first optical obtained by irradiating a computer with light having a first wavelength at a first time after harvesting the fruits and vegetables.
  • Harvesting maturity correspondence information indicating a correspondence relationship between the value of the first optical data and the maturity at the time of harvest of the fruits and vegetables with respect to the light of the first wavelength, And the function of estimating the maturity at the time of harvest of the fruits and vegetables based on the first optical data.
  • the “unit” does not simply mean a physical means, but includes a case where the function of the “unit” is realized by software. Also, even if the functions of one “unit” or device are realized by two or more physical means or devices, the functions of two or more “units” or devices are realized by one physical means or device. May be.
  • information indicating the maturity at the time of harvest can be estimated at a stage after the time of harvest.
  • FIG. 3 is a diagram showing a difference value from the reflectance of the previous wavelength in the reflectance shown in FIG. 2. It is a figure which shows an example of harvest time maturity correspondence information. It is a flowchart which shows an example of the process which estimates the maturity at the time of harvest. It is a figure which shows the structure of the harvest time ripeness estimation apparatus which is the 2nd Embodiment of this invention. It is a figure which shows an example of the quality transition model for every harvest maturity of an Irwin mango.
  • FIG. 8 is an example in which the current value of the total reflectance is plotted on the graph shown in FIG.
  • FIG. 8 is an example in which the current value of the total reflectance is plotted on the graph shown in FIG.
  • FIG. 8 is an example in which the current value of the total reflectance is plotted on the graph shown in FIG.
  • FIG. 8 is an example in which the current value of the total reflectance is plotted on the graph shown in FIG.
  • FIG. 8 is an example of the process which estimates the future quality of fruit and vegetables.
  • It is a figure which shows the structure of the harvest time ripeness estimation apparatus which is the 4th Embodiment of this invention.
  • It is a figure which shows an example of the reflectance of an Irwin mango and Keats mango.
  • It is a flowchart which shows an example of the quality prediction process in consideration of the kind of fruit and vegetables.
  • FIG. 1 is a diagram showing a configuration of a harvest-time ripeness estimation apparatus according to the first embodiment of the present invention.
  • the harvest time maturity estimation device 10 is a device for estimating the maturity at the time of harvest of fruits and vegetables, that is, the harvest time maturity.
  • a portable terminal such as a handy terminal, or an information processing device such as a personal computer or a server. It is realized by.
  • the harvest-time ripeness estimation apparatus 10 includes an optical data acquisition unit 20, a harvest-time ripeness correspondence information storage unit 22, and a harvest-time ripeness estimation unit 24.
  • each unit in the harvest-time ripeness estimation device 10 can be realized by using a storage area such as a memory or a storage device, or by executing a program stored in the storage area, for example. .
  • the optical data acquisition unit 20 acquires optical data obtained by irradiating fruits and vegetables with light of a specific wavelength.
  • the light of a specific wavelength is light having a wavelength with which the value of the optical data can be distinguished according to the ripeness at harvest, and may be light of one wavelength or light of a plurality of wavelengths. May be.
  • the optical data is data obtained by irradiating fruits and vegetables with light, for example, reflectance and transmittance.
  • image data obtained by imaging fruits and vegetables is obtained by irradiating the fruits and vegetables with light such as natural light, and is included in the optical data.
  • the optical data acquisition unit 20 can store the acquired optical data in a memory or the like for use in subsequent processing.
  • the optical data acquisition unit 20 includes an irradiation unit for irradiating light, a measurement unit for measuring the intensity of reflected light and transmitted light, and a data generation unit for generating optical data based on the measurement result. It may be configured.
  • the optical data acquisition unit 20 may acquire optical data generated outside the harvest-time ripeness estimation device 10 via a cable or a network. In the present embodiment, the description will be made mainly using the reflectance as the optical data, but it is possible to use optical data in any format as described above.
  • the harvest-time ripeness correspondence information storage unit 22 stores harvest-time ripeness correspondence information indicating the correspondence between the value of optical data obtained by irradiating fruits and vegetables with a specific wavelength and the harvest-time ripeness.
  • the specific wavelength used when estimating the harvest ripeness is determined based on a prior experiment or the like.
  • the reflectivity changes greatly depending on the ripeness at the time of harvest, but the reflectivity does not change substantially at the ripening stage after the harvest, that is, a wavelength band in which the ripeness at the time of harvest can be estimated is set as a specific wavelength. It is possible to select.
  • FIG. 2 is a diagram illustrating an example of the reflectivity for each harvest ripeness at a certain time after harvesting of Irwin mango.
  • FIG. 2 shows three types of maturity at harvest: immature, appropriate ripe, and fully ripe.
  • the “reflectance” on the vertical axis indicates the ratio to the reflectance when barium sulfate is used as the white standard material.
  • the horizontal axis of FIG. 2 represents the wavelength. Note that the reflectance of a wavelength band in which a substance serving as a quality index has a maximum absorption wavelength is inversely proportional to the abundance of the substance. In other words, a high reflectance means that the quality is deteriorated.
  • the reflectance at a wavelength of 600 to 700 nm is lower than the other two harvest ripenesses. Therefore, for example, if the reflectance average value at a wavelength of 600 to 700 nm is less than 0.3, it is possible to construct an estimation algorithm for estimating the harvest maturity as immature.
  • FIG. 3 shows the reflectance shown in FIG. 2 obtained by taking a difference from the reflectance of the previous wavelength.
  • the difference value is larger when the harvest ripeness is more suitable than when the harvest ripeness is ripe. Therefore, for example, if the sum of the reflectance differences at wavelengths of 685 to 715 nm is 0.1 or more, the harvesting maturity is estimated to be appropriate, and if it is less than 0.1, the estimation algorithm is assumed to complete the harvesting ripeness Can be built.
  • harvest-time ripeness correspondence information indicating a correspondence relationship between optical data values and harvest-time ripeness is generated and stored in the harvest-time ripeness correspondence information storage unit 22.
  • FIG. 4 shows an example of harvest-time ripeness correspondence information based on the constructed estimation algorithm.
  • the data format of the harvest-time ripeness correspondence information may be any format as long as it can indicate the correspondence between the optical data value and the harvest-time ripeness.
  • the harvest-time ripeness correspondence information may be information in a table format as shown in FIG. 4, or may be embedded in a program for estimating harvest-time ripeness.
  • the above-described estimation algorithm is an example, and any algorithm that can distinguish the maturity at the time of harvest according to the value of optical data can be adopted.
  • the flatness of the reflectance in the wavelength region of 600 to 700 nm it is conceivable to evaluate the flatness of the reflectance in the wavelength region of 600 to 700 nm.
  • the degree of change in reflectance in the wavelength region is calculated by obtaining a differential value or a difference value from the previous wavelength, and the flatness is evaluated from the degree of change. May be.
  • a secondary differential value before and after the wavelength range of 685 to 715 nm is calculated. Is also possible.
  • FIGS. 2 and 3 are examples of data obtained from a certain individual.
  • an estimation algorithm optical data of a large number of individuals is acquired, and optical data and output are input.
  • An estimation algorithm may be constructed by learning a discriminator such as SVM (Support Vector Machine) or GLVQ (Generalized Learning Vector Quantization) with the maturity at harvest.
  • the optical data acquisition unit 20 acquires optical data of a large number of individuals, constructs an estimation algorithm based on the optical data, and generates harvest-time ripeness correspondence information generation unit. May be provided in the harvest-time ripeness estimation apparatus 10.
  • the harvest time maturity estimation unit 24 includes the optical data acquired by the optical data acquisition unit 20 and the harvest time maturity correspondence information stored in the harvest maturity correspondence information storage unit 22. Based on the above, the harvest maturity is estimated.
  • the harvest-time ripeness estimation unit 24 can store information indicating the estimation result in a memory or the like for use in subsequent processing.
  • the harvest-time ripeness estimation unit 24 may display information indicating the estimation result on the monitor of the harvest-time ripeness estimation device 10, output it to another information processing device, or print it from a printer. Good.
  • FIG. 5 is a flowchart showing an example of a process for estimating the harvest ripeness.
  • the optical data acquisition unit 20 irradiates fruits and vegetables with light of a plurality of wavelengths in a wavelength region of 600 to 700 nm, for example, acquires the reflectance for the light of each wavelength, and stores it in a memory or the like (S501).
  • the harvest-time ripeness estimation unit 24 calculates an average value of the reflectance in the wavelength region of 600 to 700 nm acquired by the optical data acquisition unit 20, and refers to the harvest-time ripeness correspondence information storage unit 22 for calculation. It is determined whether or not the average value obtained is 0.3 or more which is a reference value for determining whether or not it is immature (S502). If the calculated average value is less than 0.3 (S502: N), the harvest-time ripeness estimation unit 24 estimates the harvest-time ripeness as immature (S503).
  • the harvest-time ripeness estimation unit 24 determines the difference value of the reflectance in the wavelength range of 685 to 715 nm acquired by the optical data acquisition unit 20. And the harvest-time ripeness correspondence information storage unit 22 is referred to, and it is determined whether or not the calculated sum is equal to or greater than 0.1, which is a reference value for determining whether it is appropriate or complete. (S504).
  • the harvest-time ripeness estimation unit 24 estimates that the harvest-time ripeness is appropriate when the calculated sum is 0.1 or more (S504: Y) (S505), and if less than 0.1 ( S504: N) The maturity at harvest is estimated to be complete (S506).
  • the harvest ripeness is one of the three types of immature, suitable ripeness, and complete ripeness has been described. However, in the case where the harvest ripeness is intermediate between them. It is also possible to make a more fuzzy system by fusing algorithms for estimating immaturity, suitable maturity, and ripeness. For example, it is also possible to represent the degree of belonging to three of immature, appropriate maturity, and complete ripeness with the likelihood index from the index based on the reflectance described above.
  • the ripeness at harvest may be estimated assuming that the likelihood of ripeness is 0.6 and the likelihood of ripeness is 0.4. Good.
  • the numerical value shown here is an example and it is possible to arbitrarily set the calculation standard of likelihood.
  • the harvest maturity estimation apparatus 10 of the first embodiment has been described above. According to the harvest-time ripeness estimating apparatus 10 described above, it is possible to estimate the harvest-time ripeness of fruits and vegetables at a stage after the harvest time. This makes it possible to determine the quality transition model and predict the quality based on the estimated harvest maturity, as will be described later. In addition, for example, by using the estimated harvest maturity, it becomes possible to perform selection and branding of fruits and vegetables in the distribution stage.
  • FIG. 6 is a diagram illustrating a configuration of a harvest-time ripeness estimation apparatus according to the second embodiment of the present invention.
  • the harvest-time ripeness estimation apparatus 10A includes a quality transition model correspondence information storage unit 26 and a quality transition model determination unit 28 in addition to the configuration included in the harvest-time ripeness estimation apparatus 10 of the first embodiment. It is comprised including.
  • each unit in the harvest-time ripeness estimation apparatus 10A can be realized, for example, by using a storage area such as a memory or a storage device, or by executing a program stored in the storage area. .
  • symbol is provided and description is abbreviate
  • the quality transition model correspondence information storage unit 26 stores quality transition model correspondence information indicating the correspondence relationship between the harvest degree of fruits and vegetables and the quality transition model.
  • the quality transition model indicates the transition of quality with the passage of time from the harvest of fruits and vegetables.
  • FIG. 7 shows an example of a quality transition model for each harvest degree of Irwin mango.
  • the “reflectance” on the vertical axis is the sum of the reflectances at wavelengths of 675 nm to 685 nm shown in FIG.
  • the horizontal axis of FIG. 7 is the number of days since harvesting.
  • the quality transition model can be constructed for each harvest maturity based on the previous experimental results, similarly to the harvest maturity correspondence information.
  • chlorophyll which is one indicator of plant quality
  • chlorophyll is an enzyme that plays an important role in plant photosynthesis, and has a maximum absorption wavelength at 680 nm.
  • the amount of chlorophyll decreases after plants are harvested, which is related to plant quality.
  • the total reflectance of 675 nm to 685 nm around the maximum absorption wavelength of chlorophyll has a positive correlation with the decrease in the amount of chlorophyll. That is, in the graph of FIG. 7, the reflectance shown on the vertical axis is an index that is inversely proportional to the amount of chlorophyll.
  • the final elapsed days differ depending on the ripeness at the time of harvest. This is because the number of days that are generally eaten is shown as the final day, and the optical data is aggregated beyond this number of days. For example, a longer-term quality transition model can be constructed.
  • the reflectance total of wavelengths of 675 nm to 685 nm is shown, but the index indicating quality is not limited to this, and any index can be used.
  • ripening citrus fruits such as mango and apple secrete wax during the ripening process
  • the amount of wax can be used as an indicator of how much ripening has progressed. Therefore, for example, a reflectance sum of wavelengths of 800 nm to 900 nm indicating the amount of wax secretion characteristic of ripening citrus fruits may be used.
  • a quality index P that is a combination of a plurality of quality indices may be used.
  • the quality index indicated by the quality transition model is not limited to that based on optical data, but may be any index indicating quality transition of fruits and vegetables.
  • the quality transition model correspondence information storage unit 26 stores the quality transition model correspondence information indicating the correspondence between the quality transition model constructed as described above and the harvest ripeness.
  • the data format of the quality transition model correspondence information may be any format as long as the correspondence relationship between the quality transition model and the ripeness at harvest can be shown.
  • the quality transition model correspondence information can be information in which the value of the graph shown in FIG. 7 is associated with the harvest ripeness.
  • the quality transition model determination unit 28 uses the harvest time maturity estimated by the harvest time maturity estimation unit 24 and the quality transition model correspondence information stored in the quality transition model correspondence information storage unit 26. Based on this, a quality transition model indicating the quality transition of the fruits and vegetables is determined.
  • the quality transition model determination unit 28 can store information indicating the determined quality transition model in a memory or the like for use in subsequent processing. Further, the quality transition model determination unit 28 displays information indicating the determined quality transition model on the monitor of the harvest-time ripeness estimation apparatus 10A, outputs it to another information processing apparatus, or prints it from a printer. It is good.
  • FIG. 8 is a flowchart showing an example of processing for determining a quality transition model.
  • the quality transition model determination unit 28 determines a quality transition model corresponding to the estimated harvest ripeness by referring to the quality transition model correspondence information storage unit 26 (S802).
  • the quality transition model determined in FIG. when the intermediate harvest time maturity of immature, appropriate ripe, and complete ripe is estimated by using the likelihood, the quality transition model determined in FIG. Also, a plurality of quality transition models can be merged. For example, when the immature likelihood is ⁇ and the appropriate maturity likelihood is 1- ⁇ , the quality transition model determination unit 28 determines the ratio between ⁇ and 1- ⁇ as an immature quality transition model and an appropriate ripe quality transition model. It is possible to generate a quality transition model fused with
  • the harvest maturity estimation apparatus 10A of the second embodiment has been described above. According to such harvest time ripeness estimation apparatus 10A, it is possible to determine a quality transition model based on the estimated harvest ripeness at a stage after harvest time. As a result, as will be described later, it is possible to predict future quality based on the determined quality transition model, and to select and brand fruits and vegetables in the distribution stage by using the determined quality transition model. Become.
  • FIG. 9 is a diagram illustrating a configuration of a harvest-time ripeness estimation apparatus according to the third embodiment of the present invention.
  • the harvest-time ripeness estimation apparatus 10 ⁇ / b> B includes a quality prediction unit 30 in addition to the configuration included in the harvest-time ripeness estimation apparatus 10 ⁇ / b> A of the second embodiment.
  • each unit in the harvest-time ripeness estimation apparatus 10B can be realized, for example, by using a storage area such as a memory or a storage device, or by executing a program stored in the storage area. .
  • symbol is provided and description is abbreviate
  • the quality prediction unit 30 predicts the future quality of fruits and vegetables based on the optical data acquired by the optical data acquisition unit 20 and the quality transition model determined by the quality transition model determination unit 28.
  • the quality here may be any of, for example, the amount of chlorophyll as described in the second embodiment, the maximum reflection wavelength of a substance suggesting sugar content, or a combination of a plurality of quality indexes.
  • the quality prediction unit 30 determines the optical data acquired by the optical data acquisition unit 20 and the quality transition model determination. Based on the quality transition model determined by the unit 28, the number of days until the quality falls below a predetermined reference level, that is, the lifespan of the fruits and vegetables can be predicted.
  • the quality prediction unit 30 includes the optical data acquired by the optical data acquisition unit 20 and the quality transition. Based on the quality transition model determined by the model determination unit 28, it is possible to predict the number of days until the quality exceeds a predetermined reference level, that is, the number of days until the fruits and vegetables are ready to eat.
  • the quality prediction unit 30 can store information indicating the predicted quality in a memory or the like for use in subsequent processing.
  • the quality prediction unit 30 may display information indicating the predicted quality on the monitor of the harvest-time ripeness estimation apparatus 10B, output the information to another information processing apparatus, or print it from a printer.
  • FIG. 10 is an example in which the values of the total reflectance of the fruits and vegetables at wavelengths of 675 nm to 685 nm are plotted on the graph shown in FIG.
  • the present value of the total reflectance of the fruits and vegetables at wavelengths of 675 nm to 685 nm is 0.4.
  • the number of days until the life varies depending on the quality transition model, that is, the harvest maturity.
  • the ripeness at harvest is estimated to be immature, and a quality transition model corresponding to this ripeness at harvest is determined.
  • the quality predicting unit 30 can predict that the lifespan of the fruits and vegetables is another 2 days.
  • the wavelength region is not limited to this.
  • the optical data that is the basis for the quality index in quality prediction and the optical data that is the basis for estimating the harvest ripeness may be in the same wavelength band or different wavelength bands. It may be.
  • the timing at which the optical data used for quality prediction is acquired may be the same as or different from the timing at which the optical data used for estimation of harvest ripeness is acquired. Also good.
  • FIG. 11 is a flowchart showing an example of processing for predicting the future quality of fruits and vegetables.
  • the harvest maturity is estimated by the process shown in FIG. 5 (S1101)
  • the quality transition model is determined by the process shown in FIG. 8 (S1102).
  • the quality prediction unit 30 acquires the reflectance of light having a wavelength corresponding to the quality transition model determined by the quality transition model determination unit 28 from the reflectances acquired by the optical data acquisition unit 20 (S1103). . Then, the quality prediction unit 30 predicts future quality such as the number of days until the lifetime based on the acquired reflectance and the determined quality transition model (S1104).
  • the quality prediction unit 30 can also predict future quality using a quality transition model that considers likelihood.
  • the harvest maturity estimation device 10B of the third embodiment has been described above. According to such a harvest-time ripeness estimation apparatus 10B, the harvest-time ripeness is estimated at a later stage than the harvest time, and the future quality of the fruits and vegetables is predicted using a quality transition model corresponding to the harvest-time ripeness. It becomes possible to do. Further, as shown in the present embodiment, it is easy to determine the usage of an individual to be evaluated by predicting the number of days until the quality index becomes a reference value, not the value of the quality index in the future.
  • FIG. 12 is a diagram showing a configuration of a harvest-time ripeness estimation apparatus that is the fourth embodiment of the present invention.
  • the harvest-time ripeness estimation apparatus 10C is configured to include a product type correspondence information storage unit 32 and a product type estimation unit 34 in addition to the configuration provided in the harvest-time ripeness estimation device 10B of the third embodiment.
  • the harvest-time ripeness estimation apparatus 10C includes a harvest-time ripeness correspondence information storage unit 22, a harvest-time ripeness estimation unit 24, and a quality transition model correspondence information storage unit in the harvest-time ripeness estimation apparatus 10B of the third embodiment.
  • each unit in the harvest-time ripeness estimation apparatus 10C can be realized, for example, by using a storage area such as a memory or a storage device, or by executing a program stored in the storage area. .
  • a storage area such as a memory or a storage device
  • a program stored in the storage area or by executing a program stored in the storage area.
  • symbol is provided and description is abbreviate
  • the product type correspondence information storage unit 32 stores product type correspondence information indicating the correspondence between the optical data values acquired by the optical data acquisition unit 20 and the types of fruits and vegetables.
  • FIG. 13 shows an example of the reflectance at a certain point after harvesting of Irwin mango and Keats mango. As shown in FIG. 13, in a specific wavelength band, the reflectance characteristics vary depending on the type of mango. Therefore, based on such measurement results, as in the case of harvest ripeness correspondence information, variety correspondence information indicating the correspondence between optical data values and fruit and vegetable varieties is generated, and the variety correspondence information storage unit 32 can be stored.
  • the optical data used here does not need to indicate the quality of fruits and vegetables, and may be image data obtained by imaging fruits and vegetables, for example.
  • the variety estimation unit 34 can estimate the variety of fruits and vegetables based on the optical data acquired by the optical data acquisition unit 20 and the product type correspondence information stored in the product type correspondence information storage unit 32. For example, the variety estimation unit 34 can estimate the variety of fruits and vegetables based on the reflectance of light in a specific wavelength band, or can estimate the variety of fruits and vegetables based on the shape and color.
  • optical data that is the basis of the variety estimation and the optical data that is the basis of the estimation of harvest ripeness and future quality prediction may be in the same wavelength band. However, they may be of different wavelength bands.
  • the timing at which the optical data used in the estimation of the variety is acquired may be the same as the timing at which the optical data used in the estimation of harvest ripeness and future quality prediction is acquired. And may be different.
  • the harvest-time ripeness correspondence information storage unit 22A stores harvest-time ripeness correspondence information in association with varieties. Then, the harvest-time ripeness estimation unit 24A acquires the harvest-time ripeness correspondence information corresponding to the varieties estimated by the quality estimation unit 34 from the harvest-time ripeness correspondence information storage unit 22A, and harvest time in other embodiments. As in the case of the maturity estimation unit 24, the harvest maturity can be estimated.
  • the quality transition model correspondence information storage unit 26A stores quality transition model correspondence information in association with the product type. Then, the quality transition model determination unit 28A acquires the quality transition model correspondence information corresponding to the product type estimated by the quality estimation unit 34 from the quality transition model correspondence information storage unit 26A, and the quality transition model determination unit in other embodiments. As in the case of 28, the quality transition model can be determined.
  • FIG. 14 is a flowchart showing an example of a quality prediction process that takes into consideration the variety of fruits and vegetables.
  • the product type estimation unit 34 acquires the reflectance of light having a wavelength corresponding to the product type correspondence information stored in the product type correspondence information storage unit 32 from the reflectances acquired by the optical data acquisition unit 20. (S1401).
  • the kind estimation part 34 estimates the kind of fruit and vegetables based on the acquired reflectance and kind corresponding
  • the harvest-time maturity estimation unit 24A estimates the harvest-time maturity by a process equivalent to the process shown in FIG. 5 in consideration of the estimated variety (S1403). Further, the quality transition model determination unit 28A determines a quality transition model by a process equivalent to the process shown in FIG. 8 in consideration of the estimated product type (S1404). Then, the quality prediction unit 30 predicts the future quality of the fruits and vegetables by a process equivalent to the process shown in FIG. 11 (S1405).
  • the harvest maturity estimation device 10C of the fourth embodiment has been described above. According to such a harvest-time ripeness estimation apparatus 10C, it is possible to estimate the harvest-time ripeness in consideration of the varieties of fruits and vegetables at a stage after harvesting. In addition, it is possible to determine a quality transition model in consideration of the variety and to predict future quality.
  • this embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention.
  • the present invention can be changed / improved without departing from the spirit thereof, and the present invention includes equivalents thereof.
  • the evaluation object has been described as fruits and vegetables.
  • the present invention is not limited to fruits and vegetables, but can be applied to objects whose quality information has an important meaning as value, such as fresh fish, meat, and processed foods. it can.
  • the 1st optical data which acquires the 1st optical data obtained by irradiating the light of the 1st wavelength with respect to this fruit and vegetables in the 1st time after the harvest time of fruit and vegetables
  • Harvest maturity correspondence storing harvesting maturity correspondence information indicating a correspondence relationship between the acquisition unit and the value of the first optical data and the maturity of the fruits and vegetables with respect to the light of the first wavelength
  • An information storage unit and a harvest-time maturity estimation unit that estimates the maturity at the time of harvest of the fruits and vegetables based on the acquired first optical data and the harvest-time ripeness correspondence information.
  • Additional remark 2 It is a harvest time ripeness estimation apparatus of Additional remark 1, Comprising: Quality transition model corresponding information which memorize
  • a harvest time ripeness estimation apparatus of Additional remark 2, Comprising: It obtains by irradiating the light of 2nd wavelength with respect to this fruit and vegetables in the 2nd time point after the time of the said fruit and vegetables harvesting.
  • a second optical data acquisition unit that acquires second optical data indicating the quality of the fruits and vegetables, the determined quality transition model indicating a transition of the second optical data, and the acquired
  • a harvest-time ripeness estimation apparatus further comprising: a quality prediction unit that predicts the quality of the fruits and vegetables at a time point after the second time point based on the second optical data.
  • the said quality transition model shows the transition of the quality which deteriorates with progress of time
  • the said quality prediction part is said acquisition
  • a harvest-time ripeness estimation device that predicts the number of days until the quality of the harvested product becomes a reference level or less based on the second optical data thus determined and the determined quality transition model.
  • the said quality transition model shows the transition of the quality which improves with progress of time
  • the said quality prediction part is said acquisition
  • a harvest-time ripeness estimation apparatus that predicts the number of days until the quality of the harvested product is equal to or higher than a reference level based on the determined second optical data and the determined quality transition model.
  • the harvest-time ripeness estimation apparatus according to any one of supplementary notes 1 to 5, wherein the first optical data acquisition unit is configured to perform the first optical processing on the light having the first wavelength.
  • a plurality of optical data for light of a plurality of wavelengths is acquired as the target data, and the harvest-time ripeness estimation unit corresponds to the value of the optical data for the light of the plurality of wavelengths and the ripeness at the time of harvest
  • a harvest-time ripeness estimation device that estimates a harvest-time ripeness of the fruits and vegetables based on the harvest-time ripeness correspondence information indicating the relationship and the plurality of acquired optical data.
  • a third optical data acquisition unit for acquiring third optical data obtained by irradiating light, a value of the third optical data for the light of the third wavelength, and a variety of the fruits and vegetables
  • a product type correspondence information storage unit for storing product type correspondence information indicating the correspondence relationship between the product type, a product type estimation unit for estimating the product type of the fruits and vegetables based on the acquired third optical data and the product type correspondence information;
  • the harvest-time ripeness information storage unit stores the harvest-time ripeness information in association with the varieties of the fruits and vegetables, and the harvest-time ripeness estimation unit stores the acquired first optical Data, the estimated varieties, and the harvest maturity information. Zui and estimates the maturity at harvest of the fruits or vegetables, at harvest ripeness estimator.
  • the harvest-time ripeness estimation apparatus according to any one of supplementary notes 1 to 7, wherein the optical data is data indicating reflectance or transmittance of light irradiated to the fruits and vegetables.
  • a harvest time maturity estimation device (Supplementary note 9) The computer acquires first optical data obtained by irradiating light of a first wavelength to the fruits and vegetables at a first time point after harvesting the fruits and vegetables, The harvest-time ripeness correspondence information indicating the correspondence between the value of the first optical data for the light of one wavelength and the ripeness at the time of harvest of the fruits and vegetables, and the acquired first optical data.
  • a harvest-time maturity estimation method for estimating a harvest-time maturity of the fruits and vegetables based on the harvest.
  • the harvest-time maturity estimation method according to any one of supplementary notes 9 to 14, wherein the computer performs a third evaluation on the fruits and vegetables at a third time point after the fruits and vegetables are harvested.
  • 3rd optical data obtained by irradiating with the light of 3 wavelength is acquired, 3rd optical data of the acquired 3rd optical data and the light of the 3rd wavelength is obtained.
  • the variety correspondence information indicating the correspondence between the value and the variety of the fruits and vegetables is estimated, the maturity information at harvest time associated with the variety of the fruits and vegetables, and the acquired A harvest-time ripeness estimation method for estimating a harvest-time ripeness of the fruits and vegetables based on first optical data and the estimated variety.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 収穫時の熟度を示す情報を収穫時より後の段階において推定する。収穫時熟度推定装置は、青果物の収穫時より後の第1の時点において、該青果物に対して第1の波長の光を照射することにより得られる第1の光学的データを取得する第1の光学的データ取得部と、第1の波長の光に対する、第1の光学的データの値と青果物の収穫時の熟度との対応関係を示す収穫時熟度対応情報を記憶する収穫時熟度対応情報記憶部と、取得された第1の光学的データと、収穫時熟度対応情報とに基づいて、青果物の収穫時の熟度を推定する収穫時熟度推定部と、を備える。

Description

収穫時熟度推定装置、収穫時熟度推定方法及びプログラム
 本発明は、収穫時熟度推定装置、収穫時熟度推定方法及びプログラムに関する。
 近年、青果物などの食物の品質を非破壊で測定する種々の技術が提案されている。例えば、特許文献1や非特許文献1には、撮影データに基づいて青果物等の品質を測定する手法が開示されている。また、特許文献2には、農作物の収穫時に農作物の熟度を測定する手法が開示されている。また、特許文献3には、現在の品質に基づいて将来の品質を予測する手法が開示されている。また、非特許文献2、3には、撮影データに基づいて青果物等の品質の劣化速度を予測する手法が開示されている。
特開2009-294144号公報 特開2006-055744号公報 特開2004-215890号公報
"HSC撮影事例",[online],エバ・ジャパン株式会社,[平成23年6月7日検索],インターネット<URL:http://www.ebajapan.jp/hsc1701/case/food.html> 牧野義雄,高坂有美,川越義則,大下誠一,「ハイパースペクトルカメラを利用したブロッコリー花蕾部の退色速度予測」,平成22年度社団法人日本分光学会年次講演会要旨集,社団法人日本分光学会,平成22年11月20日,p.82 牧野義雄,高坂有美,川越義則,大下誠一,「収穫後におけるブロッコリーの品質変化が二次元分光反射スペクトルの経時変化に及ぼす影響」,農業機械学会関東支部第46回年次報告,農業機械学会関東支部,平成22年8月5日,p.54-55
 ところで、時間の経過に伴う品質の遷移を示す品質遷移モデルには、現在の情報だけではなく、収穫時の熟度も関係する。そのため、将来の品質の予測性能を向上させるためには、収穫時の熟度を示す情報が必要となる。
 しかしながら、特許文献1や非特許文献1、特許文献2に開示されている手法では、測定時における品質や熟度を測定できるのみであり、収穫時より後の段階において、収穫時の熟度を示す情報を得ることはできない。また、特許文献3には、現在の品質に基づいて将来の品質を予測することが開示されてはいるものの、収穫時より後の時点において、収穫時の熟度を示す情報を得る点については何ら開示されていない。
 本発明はこのような事情に鑑みてなされたものであり、収穫時の熟度を示す情報を収穫時より後の段階において推定することを目的とする。
 本発明の一側面に係る収穫時熟度推定装置は、青果物の収穫時より後の第1の時点において、該青果物に対して第1の波長の光を照射することにより得られる第1の光学的データを取得する第1の光学的データ取得部と、第1の波長の光に対する、第1の光学的データの値と青果物の収穫時の熟度との対応関係を示す収穫時熟度対応情報を記憶する収穫時熟度対応情報記憶部と、取得された第1の光学的データと、収穫時熟度対応情報とに基づいて、青果物の収穫時の熟度を推定する収穫時熟度推定部と、を備える。
 また、本発明の一側面に係る収穫時熟度推定方法では、コンピュータが、青果物の収穫時より後の第1の時点において、該青果物に対して第1の波長の光を照射することにより得られる第1の光学的データを取得し、第1の波長の光に対する、第1の光学的データの値と青果物の収穫時の熟度との対応関係を示す収穫時熟度対応情報と、取得された第1の光学的データとに基づいて、青果物の収穫時の熟度を推定する。
 また、本発明の一側面に係るプログラムは、コンピュータに、青果物の収穫時より後の第1の時点において、該青果物に対して第1の波長の光を照射することにより得られる第1の光学的データを取得する機能と、前記第1の波長の光に対する、第1の光学的データの値と前記青果物の収穫時の熟度との対応関係を示す収穫時熟度対応情報と、前記取得された第1の光学的データとに基づいて、前記青果物の収穫時の熟度を推定する機能と、を実現させるためのものである。
 なお、本発明において、「部」とは、単に物理的手段を意味するものではなく、その「部」が有する機能をソフトウェアによって実現する場合も含む。また、1つの「部」や装置が有する機能が2つ以上の物理的手段や装置により実現されても、2つ以上の「部」や装置の機能が1つの物理的手段や装置により実現されてもよい。
 本発明によれば、収穫時の熟度を示す情報を収穫時より後の段階において推定することが可能となる。
本発明の第1の実施形態である収穫時熟度推定装置の構成を示す図である。 アーウィンマンゴーの収穫時熟度ごとの反射率の一例を示す図である。 図2に示した反射率において、1つ前の波長の反射率との差分値を示す図である。 収穫時熟度対応情報の一例を示す図である。 収穫時熟度を推定する処理の一例を示すフローチャートである。 本発明の第2の実施形態である収穫時熟度推定装置の構成を示す図である。 アーウィンマンゴーの収穫時熟度ごとの品質遷移モデルの一例を示す図である。 品質遷移モデルを決定する処理の一例を示すフローチャートである。 本発明の第3の実施形態である収穫時熟度推定装置の構成を示す図である。 図7に示したグラフに、現在における反射率総和の値をプロットした例である。 青果物の将来の品質を予測する処理の一例を示すフローチャートである。 本発明の第4の実施形態である収穫時熟度推定装置の構成を示す図である。 アーウィンマンゴー及びキーツマンゴーの反射率の一例を示す図である。 青果物の品種を考慮した品質予測処理の一例を示すフローチャートである。
 以下、図面を参照して本発明の一実施形態について説明する。
 ==第1の実施形態==
 図1は、本発明の第1の実施形態である収穫時熟度推定装置の構成を示す図である。収穫時熟度推定装置10は、青果物の収穫時における熟度、すなわち収穫時熟度を推定するための装置であり、例えば、ハンディターミナル等の携帯端末や、パーソナルコンピュータ、サーバなどの情報処理装置により実現される。図1に示すように、収穫時熟度推定装置10は、光学的データ取得部20、収穫時熟度対応情報記憶部22、及び収穫時熟度推定部24を含んで構成される。ここで、収穫時熟度推定装置10における各部は、例えば、メモリや記憶装置等の記憶領域を用いたり、記憶領域に格納されているプログラムをプロセッサが実行したりすることにより実現することができる。
 光学的データ取得部20は、青果物に対して特定の波長の光を照射することにより得られる光学的データを取得する。ここで、特定の波長の光とは、収穫時熟度によって光学的データの値を区別可能な波長の光であり、1つの波長の光であってもよいし、複数の波長の光であってもよい。また、光学的データは、青果物に光を照射して得られるデータであり、例えば、反射率や透過率などである。また、青果物を撮像して得られる画像データも、青果物に対して自然光などの光を照射して得られるものであり、光学的データに含まれる。光学的データ取得部20は、取得した光学的データを後続の処理で用いるためにメモリ等に格納しておくことができる。また、光学的データ取得部20は、光を照射するための照射部や、反射光や透過光の強度を測定する測定部、測定結果に基づいて光学的データを生成するデータ生成部を含んで構成されることとしてもよい。また、光学的データ取得部20は、収穫時熟度推定装置10の外部で生成された光学的データをケーブルやネットワーク経由で取得することとしてもよい。なお、本実施形態では、光学的データとして主に反射率を用いて説明するが、上述したような任意の形式の光学的データを用いることが可能である。
 収穫時熟度対応情報記憶部22には、青果物に対して特定の波長を照射することにより得られる光学的データの値と収穫時熟度との対応関係を示す収穫時熟度対応情報が格納されている。ここで、収穫時熟度を推定する際に用いられる特定の波長は、事前の実験等に基づいて決定される。例えば、収穫時の熟度によって反射率が大きく変化するが、収穫後の追熟段階では反射率はほぼ変化しない、つまり収穫時の熟度を推定可能であるような波長帯を特定の波長として選択することが可能である。
 収穫時熟度による反射率の違いの一例について説明する。図2は、アーウィンマンゴーの収穫後のある時点における、収穫時熟度ごとの反射率の一例を示す図である。図2では、収穫時熟度として、未熟・適熟・完熟の3種類が示されている。図2において、縦軸の「反射率」は、白色標準資料として硫酸バリウムを用いた場合の反射率との比を示している。また、図2の横軸は波長となっている。なお、品質の指標となる物質が極大吸収波長をもつ波長帯の反射率は、該物質の存在量と反比例する。つまり、反射率が高くなることは、品質が劣化することを意味している。
 図2のグラフにおいて、収穫時熟度が未熟の場合、例えば、波長600~700nmの反射率が他の2つの収穫時熟度と比較して低くなっている。そのため、例えば、波長600~700nmの反射率平均値が0.3未満であれば収穫時熟度を未熟と推定するという推定アルゴリズムを構築することができる。
 また、図3には、図2に示した反射率において、1つ前の波長の反射率との差分を取ったものが示されている。図3のグラフでは、例えば、波長685~715nmの領域において、収穫時熟度が適熟の方が、収穫時熟度が完熟の場合よりも、差分値が大きくなっている。そのため、例えば、波長685~715nmにおける反射率差分の総和が0.1以上であれば収穫時熟度を適熟と推定し、0.1未満であれば収穫時熟度を完熟とする推定アルゴリズムを構築することができる。
 このようにして構築される推定アルゴリズムに基づいて、光学的データの値と収穫時熟度との対応関係を示す収穫時熟度対応情報が生成され、収穫時熟度対応情報記憶部22に格納されている。図4には、構築された推定アルゴリズムに基づく収穫時熟度対応情報の一例が示されている。なお、収穫時熟度対応情報のデータ形式は、光学的データの値と収穫時熟度との対応関係を示すことが可能な形式であれば任意の形式でよい。例えば、収穫時熟度対応情報は、図4に示すようなテーブル形式の情報とすることも可能であるし、収穫時熟度を推定するためのプログラムに埋め込まれたものであってもよい。
 また、上述した推定アルゴリズムは一例であり、光学的データの値によって収穫時熟度を区別可能な任意のアルゴリズムを採用することが可能である。例えば、収穫時熟度が未熟か否かの判定には、波長600~700nmの領域での反射率の平坦性を評価することが考えられる。具体的には、該波長領域での反射率の変化の度合いを微分値や1つ前の波長との差分値を求めることによって算出し、その変化の度合いから平坦性を評価するようになっていてもよい。また、例えば、適熟と完熟の判定では、波長685~715nmの領域前後での二次微分値を算出し、微分値の変化の度合いが大きければ適熟、そうでなければ完熟と判定することも考えられる。
 また、図2及び図3は、ある個体から得られたデータの一例であり、推定アルゴリズムを構築する際には、多数の個体の光学的データを取得しておき、入力を光学的データ、出力を収穫時熟度としてSVM(Support Vector Machine)やGLVQ(Generalized Learning Vector Quantization)などの識別器を学習させることにより、推定アルゴリズムが構築されることとしてもよい。また、光学的データ取得部20によって多数の個体の光学的データが取得され、この光学的データに基づいて推定アルゴリズムを構築して収穫時熟度対応情報を生成する収穫時熟度対応情報生成部が収穫時熟度推定装置10に設けられることとしてもよい。
 図1に戻り、収穫時熟度推定部24は、光学的データ取得部20により取得された光学的データと、収穫時熟度対応情報記憶部22に格納されている収穫時熟度対応情報とに基づいて、収穫時熟度を推定する。収穫時熟度推定部24は、推定結果を示す情報を後続の処理で用いるためにメモリ等に格納しておくことができる。また、収穫時熟度推定部24は、推定結果を示す情報を収穫時熟度推定装置10のモニタに表示したり、他の情報処理装置に出力したり、プリンタから印字したりすることとしてもよい。
 図5は、収穫時熟度を推定する処理の一例を示すフローチャートである。まず、光学的データ取得部20は、例えば波長600~700nmの領域における複数の波長の光を青果物に照射し、各波長の光に対する反射率を取得してメモリ等に記憶する(S501)。
 収穫時熟度推定部24は、光学的データ取得部20によって取得された波長600~700nmの領域における反射率の平均値を算出するとともに、収穫時熟度対応情報記憶部22を参照し、算出された平均値が、未熟かどうかを判定する際の基準値である0.3以上であるかどうか判定する(S502)。そして、収穫時熟度推定部24は、算出された平均値が0.3未満であれば(S502:N)、収穫時熟度を未熟と推定する(S503)。
 算出された平均値が0.3以上である場合(S502:Y)、収穫時熟度推定部24は、光学的データ取得部20によって取得された波長685~715nmの領域における反射率の差分値の総和を算出するとともに、収穫時熟度対応情報記憶部22を参照し、算出された総和が、適熟または完熟かを判定する際の基準値である0.1以上であるかどうか判定する(S504)。そして、収穫時熟度推定部24は、算出された総和が0.1以上であれば(S504:Y)収穫時熟度を適熟と推定し(S505)、0.1未満であれば(S504:N)収穫時熟度を完熟と推定する(S506)。
 なお、図5に示した処理では、収穫時熟度が未熟・適熟・完熟の3種類のいずれかである場合について説明したが、収穫時熟度がそれらの中間であるような場合には、未熟・適熟・完熟を推定するためのアルゴリズムを融合するなど、さらにファジイなシステムとすることも可能である。例えば、上述の反射率による指標から未熟・適熟・完熟の3つに帰属する度合いを尤度指標で表すことも可能である。具体的には、例えば、波長685~715nmの領域における反射率の差分値の総和が0.08である場合、図5に示した処理では、収穫時熟度が完熟であると推定されたが、基準値である0.1との差分に応じて、例えば、完熟の尤度が0.6、適熟の尤度が0.4であるとして、収穫時熟度が推定されることとしてもよい。なお、ここで示した数値は一例であり、尤度の算出基準は任意に設定することが可能である。
 以上、第1の実施形態の収穫時熟度推定装置10について説明した。このような収穫時熟度推定装置10によれば、収穫時より後の段階において青果物の収穫時熟度を推定することが可能となる。これにより、後述するように、推定された収穫時熟度に基づいて品質遷移モデルの決定や品質の予測が可能になる。また、例えば、推定された収穫時熟度を用いることにより、流通段階において青果物の選別やブランディングを行うことが可能となる。
 ==第2の実施形態==
 図6は、本発明の第2の実施形態である収穫時熟度推定装置の構成を示す図である。図6に示すように、収穫時熟度推定装置10Aは、第1の実施形態の収穫時熟度推定装置10が備える構成に加え、品質遷移モデル対応情報記憶部26及び品質遷移モデル決定部28を含んで構成される。ここで、収穫時熟度推定装置10Aにおける各部は、例えば、メモリや記憶装置等の記憶領域を用いたり、記憶領域に格納されているプログラムをプロセッサが実行したりすることにより実現することができる。なお、第1の実施形態の収穫時熟度推定装置10と同一の構成については、同一の符号を付与して説明を省略する。
 品質遷移モデル対応情報記憶部26には、青果物の収穫時熟度と品質遷移モデルとの対応関係を示す品質遷移モデル対応情報が格納されている。ここで、品質遷移モデルとは、青果物の収穫からの時間の経過に伴う品質の遷移を示すものである。図7には、アーウィンマンゴーの収穫時熟度ごとの品質遷移モデルの一例が示されている。図7において、縦軸の「反射率」は、図2に示した波長675nm~685nmの反射率総和となっている。また、図7の横軸は収穫からの日数となっている。なお、品質遷移モデルは、収穫時熟度対応情報と同様に、事前の実験結果に基づいて収穫時熟度ごとに構築することができる。
 ここで、植物の品質を示す一つの指標であるクロロフィルは、植物の光合成において重要な役割を担う酵素であり、その極大吸収波長は680nmに存在する。また、植物が収穫された後はクロロフィル量が減っていくことが知られており、植物の品質と関わりがある。クロロフィルの極大吸収波長周辺である675nm~685nmの反射率総和はクロロフィル量の減少と正の相関をもっている。つまり、図7のグラフにおいて、縦軸に示す反射率は、クロロフィル量と反比例する指標となっている。よって、例えば、収穫時熟度が未熟と適熟の場合を比較すると、収穫時におけるクロロフィル量の初期値が同程度であっても、その後の減少度合いが異なる、つまり品質劣化の過程が収穫時熟度によって異なるということが確認できる。
 なお、図7では、収穫時熟度によって最終経過日数が異なるが、これは一般的な食べごろである日数が最終日として示されているためであり、この日数を越えて光学的データを集計すれば、より長期にわたる品質遷移モデルを構築可能である。
 また、図7では、品質の例として、波長675nm~685nmの反射率総和を示したが、品質を示す指標はこれに限られず、任意の指標を用いることが可能である。
 例えば、マンゴーやリンゴなどの追熟型柑橘系果実は、追熟の過程でワックスを分泌するため、ワックスの量は追熟がどれくらい進んでいるかの指標として用いることが可能である。そこで、例えば、追熟型柑橘系果実に特徴的なワックス分泌の量を示す波長800nm~900nmの反射率総和を用いることとしてもよい。
 また、次式(1)に示すように、複数の品質指標を組み合わせた品質指標Pを用いることとしてもよい。
 P=α×C1+β×C2+γ×C3  ・・・ (1)
 なお、C1、C2、C3はそれぞれ異なる品質指標、α、β、γは、各品質指標の重みづけを示す係数を示している。
 また、品質遷移モデルによって示される品質指標は、光学的データに基づくものに限られず、青果物の品質遷移を示すものであればよい。例えば、Brix糖度のような追熟の過程で上昇していく品質指標の上昇モデルを予め構築しておき、収穫時熟度に合わせた糖度上昇モデルを品質遷移モデルとして用いることも可能である。
 品質遷移モデル対応情報記憶部26には、上述のように構築された品質遷移モデルと収穫時熟度との対応関係を示す品質遷移モデル対応情報が記憶される。なお、品質遷移モデル対応情報のデータ形式は、品質遷移モデルと収穫時熟度との対応関係を示すことが可能な形式であれば任意の形式でよい。例えば、品質遷移モデル対応情報は、図7に示すグラフの値を収穫時熟度と対応づけた情報とすることができる。
 図6に戻り、品質遷移モデル決定部28は、収穫時熟度推定部24により推定された収穫時熟度と、品質遷移モデル対応情報記憶部26に格納されている品質遷移モデル対応情報とに基づいて、青果物の品質遷移を示す品質遷移モデルを決定する。品質遷移モデル決定部28は、決定した品質遷移モデルを示す情報を後続の処理で用いるためにメモリ等に格納しておくことができる。また、品質遷移モデル決定部28は、決定した品質遷移モデルを示す情報を収穫時熟度推定装置10Aのモニタに表示したり、他の情報処理装置に出力したり、プリンタから印字したりすることとしてもよい。
 図8は、品質遷移モデルを決定する処理の一例を示すフローチャートである。ここでは、図5に示した処理により収穫時熟度が推定されていることとする(S801)。品質遷移モデル決定部28は、推定された収穫時熟度に対応する品質遷移モデルを、品質遷移モデル対応情報記憶部26を参照することにより決定する(S802)。
 なお、第1の実施形態において述べたように、尤度を用いることにより未熟・適熟・完熟の中間の収穫時熟度が推定される場合においては、図8において決定される品質遷移モデルについても、複数の品質遷移モデルを融合したものとすることができる。例えば、未熟の尤度がα、適熟の尤度が1-αの場合は、品質遷移モデル決定部28は、未熟の品質遷移モデルと適熟の品質遷移モデルをαと1-αの割合で融合させた品質遷移モデルを生成することが可能である。
 以上、第2の実施形態の収穫時熟度推定装置10Aについて説明した。このような収穫時熟度推定装置10Aによれば、収穫時より後の段階において、推定された収穫時熟度に基づいて品質遷移モデルを決定することが可能になる。これにより、後述するように、決定された品質遷移モデルに基づいて将来の品質を予測したり、決定された品質遷移モデルを用いることにより、流通段階において青果物の選別やブランディングを行うことが可能となる。
 ==第3の実施形態==
 図9は、本発明の第3の実施形態である収穫時熟度推定装置の構成を示す図である。図9に示すように、収穫時熟度推定装置10Bは、第2の実施形態の収穫時熟度推定装置10Aが備える構成に加え、品質予測部30を含んで構成される。ここで、収穫時熟度推定装置10Bにおける各部は、例えば、メモリや記憶装置等の記憶領域を用いたり、記憶領域に格納されているプログラムをプロセッサが実行したりすることにより実現することができる。なお、第2の実施形態の収穫時熟度推定装置10Aと同一の構成については、同一の符号を付与して説明を省略する。
 品質予測部30は、光学的データ取得部20により取得された光学的データと、品質遷移モデル決定部28により決定された品質遷移モデルとに基づいて、青果物の将来の品質を予測する。ここでの品質は、例えば、第2の実施形態で述べたようなクロロフィル量や、その他糖度を示唆する物質の極大反射波長、複数の品質指標の組み合わせ等のいずれであってもよい。
 例えば、品質遷移モデルが、時間の経過に連れて劣化する品質の遷移を示すものである場合、品質予測部30は、光学的データ取得部20により取得された光学的データと、品質遷移モデル決定部28により決定された品質遷移モデルとに基づいて、品質が予め定められた基準レベル以下となるまでの日数、すなわち青果物の寿命を予測することができる。
 また、例えば、品質遷移モデルが、時間の経過に連れて向上する品質の遷移を示すものである場合、品質予測部30は、光学的データ取得部20により取得された光学的データと、品質遷移モデル決定部28により決定された品質遷移モデルとに基づいて、品質が予め定められた基準レベル以上となるまでの日数、すなわち青果物が食べごろとなるまでの日数を予測することができる。
 品質予測部30は、予測した品質を示す情報を後続の処理で用いるためにメモリ等に格納しておくことができる。また、品質予測部30は、予測した品質を示す情報を収穫時熟度推定装置10Bのモニタに表示したり、他の情報処理装置に出力したり、プリンタから印字したりすることとしてもよい。
 図10は、図7に示したグラフに、青果物の現在における波長675nm~685nmの反射率総和の値をプロットした例である。図10に示すように、青果物の現在における波長675nm~685nmの反射率総和の値が0.4であるとする。このとき、品質遷移モデルによって、すなわち収穫時熟度によって寿命までの日数が異なる。例えば、収穫時熟度が未熟であると推定され、この収穫時熟度に応じた品質遷移モデルが決定されているとする。この場合、図10に示す品質遷移モデルから、現時点における収穫からの経過日数はおおよそ7日である。そして、収穫時熟度が未熟の場合の寿命が収穫から9日であるとすると、品質予測部30は、青果物の寿命があと2日であると予測することができる。
 なお、ここでは品質予測における品質指標として、波長675nm~685nmの反射率総和の値を用いる例を示したが、波長の領域はこれに限られない。また、品質予測における品質指標のもととなる光学的データと、収穫時熟度を推定する際のもととなる光学的データとは、同じ波長帯のものであってもよいし異なる波長帯のものであってもよい。また、品質予測の際に用いられる光学的データが取得されるタイミングは、収穫時熟度の推定の際に用いられる光学的データが取得されるタイミングと同じであってもよいし、異なっていてもよい。
 図11は、青果物の将来の品質を予測する処理の一例を示すフローチャートである。ここでは、図5に示した処理により収穫時熟度が推定され(S1101)、図8に示した処理により品質遷移モデルが決定されている(S1102)こととする。品質予測部30は、光学的データ取得部20により取得された反射率の中から、品質遷移モデル決定部28により決定された品質遷移モデルに対応する波長の光の反射率を取得する(S1103)。そして、品質予測部30は、取得した反射率と、決定された品質遷移モデルとに基づいて、寿命までの日数等、将来における品質を予測する(S1104)。
 なお、第2の実施形態において述べたように、品質予測部30は、尤度を考慮した品質遷移モデルを用いて将来の品質を予測することも可能である。
 以上、第3の実施形態の収穫時熟度推定装置10Bについて説明した。このような収穫時熟度推定装置10Bによれば、収穫時より後の段階において収穫時熟度を推定し、収穫時熟度に応じた品質遷移モデルを用いて、青果物の将来の品質を予測することが可能となる。また、本実施形態において示したように、将来における品質指標の値そのものではなく、品質指標が基準値となるまでの日数を予測することにより、評価対象の個体の用途決定が容易になる。例えば、明日で最低品質基準まで劣化すると考えられる個体は、そのまま流通させるのではなく、何らかの加工、例えば、フリーズドライやジュースに加工することにより、流通過程で腐食して廃棄されるのを防ぐなどの対応策を取ることが可能になる。また、青果物が消費者に届いた時点においても、各消費者が個体の寿命を知っておくことで、寿命より前に消費することが可能となり、品質劣化によるロスを防ぐことができる。また、寿命が正確に予測できる青果物は消費者にとって安心で安全であるため、ブランディングも可能となる。
 ==第4の実施形態==
 図12は、本発明の第4の実施形態である収穫時熟度推定装置の構成を示す図である。図12に示すように、収穫時熟度推定装置10Cは、第3の実施形態の収穫時熟度推定装置10Bが備える構成に加え、品種対応情報記憶部32及び品種推定部34含んで構成される。なお、収穫時熟度推定装置10Cは、第3の実施形態の収穫時熟度推定装置10Bにおける収穫時熟度対応情報記憶部22、収穫時熟度推定部24、品質遷移モデル対応情報記憶部26、品質遷移モデル決定部28に品種を考慮する機能を加えた、収穫時熟度対応情報記憶部22A、収穫時熟度推定部24A、品質遷移モデル対応情報記憶部26A、品質遷移モデル決定部28Aを含んでいる。ここで、収穫時熟度推定装置10Cにおける各部は、例えば、メモリや記憶装置等の記憶領域を用いたり、記憶領域に格納されているプログラムをプロセッサが実行したりすることにより実現することができる。なお、第3の実施形態の収穫時熟度推定装置10Bと同一の構成については、同一の符号を付与して説明を省略する。
 品種対応情報記憶部32には、光学的データ取得部20により取得される光学的データの値と青果物の品種との対応関係を示す品種対応情報が格納されている。図13には、アーウィンマンゴー及びキーツマンゴーの収穫後のある時点における反射率の一例が示されている。図13に示すように、特定の波長帯においては、マンゴーの品種によって反射率の特性が異なっている。したがって、このような測定結果に基づいて、収穫時熟度対応情報の場合と同様に、光学的データの値と青果物の品種との対応関係を示す品種対応情報を生成し、品種対応情報記憶部32に格納しておくことが可能である。なお、ここで用いられる光学的データは、青果物の品質を示すものである必要はなく、例えば、青果物を撮像して得られる画像データなどであってもよい。
 品種推定部34は、光学的データ取得部20により取得された光学的データと、品種対応情報記憶部32に格納されている品種対応情報とに基づいて、青果物の品種を推定することができる。例えば、品種推定部34は、特定の波長帯の光の反射率に基づいて青果物の品種を推定したり、形状や色に基づいて青果物の品種を推定したりすることが可能である。
 なお、品種推定の際のもととなる光学的データと、収穫時熟度の推定や将来の品質予測の際のもととなる光学的データとは、同じ波長帯のものであってもよいし異なる波長帯のものであってもよい。また、品種推定の際に用いられる光学的データが取得されるタイミングは、収穫時熟度の推定や将来の品質予測の際に用いられる光学的データが取得されるタイミングと同じであってもよいし、異なっていてもよい。
 収穫時熟度対応情報記憶部22Aには、収穫時熟度対応情報が品種と対応づけて格納されている。そして、収穫時熟度推定部24Aは、品質推定部34によって推定された品種に応じた収穫時熟度対応情報を収穫時熟度対応情報記憶部22Aから取得し、他の実施形態における収穫時熟度推定部24の場合と同様に収穫時熟度を推定することができる。
 品質遷移モデル対応情報記憶部26Aには、品質遷移モデル対応情報が品種と対応づけて格納されている。そして、品質遷移モデル決定部28Aは、品質推定部34によって推定された品種に応じた品質遷移モデル対応情報を品質遷移モデル対応情報記憶部26Aから取得し、他の実施形態における品質遷移モデル決定部28の場合と同様に品質遷移モデルを決定することができる。
 図14は、青果物の品種を考慮した品質予測処理の一例を示すフローチャートである。まず、品種推定部34は、光学的データ取得部20により取得された反射率の中から、品種対応情報記憶部32に格納されている品種対応情報に対応する波長の光の反射率を取得する(S1401)。そして、品種推定部34は、取得された反射率と品種対応情報とに基づいて、青果物の品種を推定する(S1402)。
 収穫時熟度推定部24Aは、推定された品種を考慮したうえで、図5に示した処理と同等の処理により収穫時熟度を推定する(S1403)。また、品質遷移モデル決定部28Aは、推定された品種を考慮したうえで、図8に示した処理と同等の処理により品質遷移モデルを決定する(S1404)。そして、品質予測部30は、図11に示した処理と同等の処理により、青果物の将来の品質を予測する(S1405)。
 以上、第4の実施形態の収穫時熟度推定装置10Cについて説明した。このような収穫時熟度推定装置10Cによれば、収穫時より後の段階において、青果物の品種を考慮したうえで収穫時熟度を推定することができる。また、品種を考慮したうえで品質遷移モデルを決定したり、将来の品質を予測したりすることができる。
 なお、本実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。
 例えば、本実施形態では、評価対象を青果物として説明したが、青果物に限らず、鮮魚や肉、加工食品など、品質情報が価値として重要な意味を持つ対象に対して本発明を適用することができる。
 この出願は、2011年6月17日に出願された日本出願特願2011-135385を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 本実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)青果物の収穫時より後の第1の時点において、該青果物に対して第1の波長の光を照射することにより得られる第1の光学的データを取得する第1の光学的データ取得部と、前記第1の波長の光に対する、第1の光学的データの値と前記青果物の収穫時の熟度との対応関係を示す収穫時熟度対応情報を記憶する収穫時熟度対応情報記憶部と、前記取得された第1の光学的データと、前記収穫時熟度対応情報とに基づいて、前記青果物の収穫時の熟度を推定する収穫時熟度推定部と、を備える収穫時熟度推定装置。
(付記2)付記1に記載の収穫時熟度推定装置であって、前記青果物の収穫時の熟度と品質遷移モデルとの対応関係を示す品質遷移モデル対応情報を記憶する品質遷移モデル対応情報記憶部と、前記推定された収穫時の熟度と、前記品質遷移モデル対応情報とに基づいて、前記青果物の品質遷移を示す品質遷移モデルを決定する品質遷移モデル決定部と、をさらに備える収穫時熟度推定装置。
(付記3)付記2に記載の収穫時熟度推定装置であって、前記青果物の収穫時より後の第2の時点において、該青果物に対して第2の波長の光を照射することにより得られる、該青果物の品質を示す第2の光学的データを取得する第2の光学的データ取得部と、第2の光学的データの遷移を示す前記決定された品質遷移モデルと、前記取得された第2の光学的データとに基づいて、前記第2の時点より後の時点における前記青果物の品質を予測する品質予測部と、をさらに備える収穫時熟度推定装置。
(付記4)付記3に記載の収穫時熟度推定装置であって、前記品質遷移モデルは、時間の経過に連れて劣化する品質の遷移を示すものであり、前記品質予測部は、前記取得された第2の光学的データと、前記決定された品質遷移モデルとに基づいて、前記収穫物の品質が基準レベル以下となるまでの日数を予測する、収穫時熟度推定装置。
(付記5)付記3に記載の収穫時熟度推定装置であって、前記品質遷移モデルは、時間の経過に連れて向上する品質の遷移を示すものであり、前記品質予測部は、前記取得された第2の光学的データと、前記決定された品質遷移モデルとに基づいて、前記収穫物の品質が基準レベル以上となるまでの日数を予測する、収穫時熟度推定装置。
(付記6)付記1~5の何れか一項に記載の収穫時熟度推定装置であって、前記第1の光学的データ取得部は、前記第1の波長の光に対する前記第1の光学的データとして、複数の波長の光に対する複数の光学的データを取得し、前記収穫時熟度推定部は、前記複数の波長の光に対する光学的データの値と前記収穫時の熟度との対応関係を示す前記収穫時熟度対応情報と、前記取得された複数の光学的データとに基づいて、前記青果物の収穫時の熟度を推定する、収穫時熟度推定装置。
(付記7)付記1~6の何れか一項に記載の収穫時熟度推定装置であって、前記青果物の収穫時より後の第3の時点において、該青果物に対して第3の波長の光を照射することにより得られる第3の光学的データを取得する第3の光学的データ取得部と、前記第3の波長の光に対する、第3の光学的データの値と前記青果物の品種との対応関係を示す品種対応情報を記憶する品種対応情報記憶部と、前記取得された第3の光学的データと、前記品種対応情報とに基づいて、前記青果物の品種を推定する品種推定部と、をさらに備え、前記収穫時熟度情報記憶部は、前記収穫時熟度情報を前記青果物の品種と対応づけて記憶し、前記収穫時熟度推定部は、前記取得された第1の光学的データと、前記推定された品種と、前記収穫時熟度情報とに基づいて、前記青果物の収穫時の熟度を推定する、収穫時熟度推定装置。
(付記8)付記1~7の何れか一項に記載の収穫時熟度推定装置であって、前記光学的データは、前記青果物に対して照射された光の反射率または透過率を示すデータである、収穫時熟度推定装置。
(付記9)コンピュータが、青果物の収穫時より後の第1の時点において、該青果物に対して第1の波長の光を照射することにより得られる第1の光学的データを取得し、前記第1の波長の光に対する、第1の光学的データの値と前記青果物の収穫時の熟度との対応関係を示す収穫時熟度対応情報と、前記取得された第1の光学的データとに基づいて、前記青果物の収穫時の熟度を推定する、収穫時熟度推定方法。
(付記10)付記9に記載の収穫時熟度推定方法であって、前記コンピュータが、前記青果物の収穫時の熟度と品質遷移モデルとの対応関係を示す品質遷移モデル対応情報と、前記推定された収穫時の熟度とに基づいて、前記青果物の品質遷移を示す品質遷移モデルを決定する、収穫時熟度推定方法。
(付記11)付記10に記載の収穫時熟度推定方法であって、前記コンピュータが、前記青果物の収穫時より後の第2の時点において、該青果物に対して第2の波長の光を照射することにより得られる、該青果物の品質を示す第2の光学的データを取得し、第2の光学的データの遷移を示す前記決定された品質遷移モデルと、前記取得された第2の光学的データとに基づいて、前記第2の時点より後の時点における前記青果物の品質を予測する、収穫時熟度推定方法。
(付記12)付記11に記載の収穫時熟度推定方法であって、前記コンピュータが、時間の経過に連れて劣化する品質の遷移を示す前記決定された品質遷移モデルと、前記取得された第2の光学的データとに基づいて、前記収穫物の品質が基準レベル以下となるまでの日数を予測する、収穫時熟度推定方法。
(付記13)付記11に記載の収穫時熟度推定方法であって、前記コンピュータが、時間の経過に連れて向上する品質の遷移を示す前記決定された品質遷移モデルと、前記取得された第2の光学的データとに基づいて、前記収穫物の品質が基準レベル以上となるまでの日数を予測する、収穫時熟度推定方法。
(付記14)付記9~13の何れか一項に記載の収穫時熟度推定方法であって、前記コンピュータが、前記第1の波長の光に対する前記第1の光学的データとして、複数の波長の光に対する複数の光学的データを取得し、前記複数の波長の光に対する光学的データの値と前記収穫時の熟度との対応関係を示す前記収穫時熟度対応情報と、前記取得された複数の光学的データとに基づいて、前記青果物の収穫時の熟度を推定する、収穫時熟度推定方法。
(付記15)付記9~14の何れか一項に記載の収穫時熟度推定方法であって、前記コンピュータが、前記青果物の収穫時より後の第3の時点において、該青果物に対して第3の波長の光を照射することにより得られる第3の光学的データを取得し、前記取得された第3の光学的データと、前記第3の波長の光に対する、第3の光学的データの値と前記青果物の品種との対応関係を示す品種対応情報とに基づいて、前記青果物の品種を推定し、前記青果物の品種と対応づけらている前記収穫時熟度情報と、前記取得された第1の光学的データと、前記推定された品種とに基づいて、前記青果物の収穫時の熟度を推定する、収穫時熟度推定方法。
(付記16)付記9~15の何れか一項に記載の収穫時熟度推定方法であって、前記光学的データは、前記青果物に対して照射された光の反射率または透過率を示すデータである、収穫時熟度推定方法。
(付記17)コンピュータに、青果物の収穫時より後の第1の時点において、該青果物に対して第1の波長の光を照射することにより得られる第1の光学的データを取得する機能と、前記第1の波長の光に対する、第1の光学的データの値と前記青果物の収穫時の熟度との対応関係を示す収穫時熟度対応情報と、前記取得された第1の光学的データとに基づいて、前記青果物の収穫時の熟度を推定する機能と、を実現させるためのプログラム。
(付記18)付記17に記載のプログラムであって、前記コンピュータに、前記推定された収穫時の熟度と、前記青果物の収穫時の熟度と品質遷移モデルとの対応関係を示す品質遷移モデル対応情報とに基づいて、前記青果物の品質遷移を示す品質遷移モデルを決定する機能を実現させるためのプログラム。
(付記19)付記18に記載のプログラムであって、前記コンピュータに、前記青果物の収穫時より後の第2の時点において、該青果物に対して第2の波長の光を照射することにより得られる、該青果物の品質を示す第2の光学的データを取得する機能と、第2の光学的データの遷移を示す前記決定された品質遷移モデルと、前記取得された第2の光学的データとに基づいて、前記第2の時点より後の時点における前記青果物の品質を予測する機能と、を実現させるためのプログラム。
(付記20)付記19に記載のプログラムであって、前記コンピュータに、時間の経過に連れて劣化する品質の遷移を示す前記決定された品質遷移モデルと、前記取得された第2の光学的データとに基づいて、前記収穫物の品質が基準レベル以下となるまでの日数を予測する機能を実現させるためのプログラム。
(付記21)付記19に記載のプログラムであって、前記コンピュータに、時間の経過に連れて向上する品質の遷移を示す前記決定された品質遷移モデルと、前記取得された第2の光学的データとに基づいて、前記収穫物の品質が基準レベル以上となるまでの日数を予測する機能を実現させるためのプログラム。
(付記22)付記17~21の何れか一項に記載のプログラムであって、前記コンピュータに、前記第1の波長の光に対する前記第1の光学的データとして、複数の波長の光に対する複数の光学的データを取得する機能と、前記複数の波長の光に対する光学的データの値と前記収穫時の熟度との対応関係を示す前記収穫時熟度対応情報と、前記取得された複数の光学的データとに基づいて、前記青果物の収穫時の熟度を推定する機能と、を実現させるためのプログラム。
(付記23)付記17~22の何れか一項に記載のプログラムであって、前記コンピュータに、前記青果物の収穫時より後の第3の時点において、該青果物に対して第3の波長の光を照射することにより得られる第3の光学的データを取得する機能と、前記取得された第3の光学的データと、前記第3の波長の光に対する、第3の光学的データの値と前記青果物の品種との対応関係を示す品種対応情報とに基づいて、前記青果物の品種を推定する機能と、前記青果物の品種と対応づけらている前記収穫時熟度情報と、前記取得された第1の光学的データと、前記推定された品種とに基づいて、前記青果物の収穫時の熟度を推定する機能と、を実現させるためのプログラム。
(付記24)付記17~23の何れか一項に記載のプログラムであって、前記光学的データは、前記青果物に対して照射された光の反射率または透過率を示すデータである、プログラム。
 10 収穫時熟度推定装置
 20 光学的データ取得部
 22 収穫時熟度対応情報記憶部
 24 収穫時熟度推定部
 26 品質遷移モデル対応情報記憶部
 28 品質遷移モデル決定部
 30 品質予測部
 32 品種対応情報記憶部
 34 品種推定部

Claims (24)

  1.  青果物の収穫時より後の第1の時点において、該青果物に対して第1の波長の光を照射することにより得られる第1の光学的データを取得する第1の光学的データ取得部と、
     前記第1の波長の光に対する、第1の光学的データの値と前記青果物の収穫時の熟度との対応関係を示す収穫時熟度対応情報を記憶する収穫時熟度対応情報記憶部と、
     前記取得された第1の光学的データと、前記収穫時熟度対応情報とに基づいて、前記青果物の収穫時の熟度を推定する収穫時熟度推定部と、
     を備える収穫時熟度推定装置。
  2.  請求項1に記載の収穫時熟度推定装置であって、
     前記青果物の収穫時の熟度と品質遷移モデルとの対応関係を示す品質遷移モデル対応情報を記憶する品質遷移モデル対応情報記憶部と、
     前記推定された収穫時の熟度と、前記品質遷移モデル対応情報とに基づいて、前記青果物の品質遷移を示す品質遷移モデルを決定する品質遷移モデル決定部と、
     をさらに備える収穫時熟度推定装置。
  3.  請求項2に記載の収穫時熟度推定装置であって、
     前記青果物の収穫時より後の第2の時点において、該青果物に対して第2の波長の光を照射することにより得られる、該青果物の品質を示す第2の光学的データを取得する第2の光学的データ取得部と、
     第2の光学的データの遷移を示す前記決定された品質遷移モデルと、前記取得された第2の光学的データとに基づいて、前記第2の時点より後の時点における前記青果物の品質を予測する品質予測部と、
     をさらに備える収穫時熟度推定装置。
  4.  請求項3に記載の収穫時熟度推定装置であって、
     前記品質遷移モデルは、時間の経過に連れて劣化する品質の遷移を示すものであり、
     前記品質予測部は、前記取得された第2の光学的データと、前記決定された品質遷移モデルとに基づいて、前記収穫物の品質が基準レベル以下となるまでの日数を予測する、
     収穫時熟度推定装置。
  5.  請求項3に記載の収穫時熟度推定装置であって、
     前記品質遷移モデルは、時間の経過に連れて向上する品質の遷移を示すものであり、
     前記品質予測部は、前記取得された第2の光学的データと、前記決定された品質遷移モデルとに基づいて、前記収穫物の品質が基準レベル以上となるまでの日数を予測する、
     収穫時熟度推定装置。
  6.  請求項1~5の何れか一項に記載の収穫時熟度推定装置であって、
     前記第1の光学的データ取得部は、前記第1の波長の光に対する前記第1の光学的データとして、複数の波長の光に対する複数の光学的データを取得し、
     前記収穫時熟度推定部は、前記複数の波長の光に対する光学的データの値と前記収穫時の熟度との対応関係を示す前記収穫時熟度対応情報と、前記取得された複数の光学的データとに基づいて、前記青果物の収穫時の熟度を推定する、
     収穫時熟度推定装置。
  7.  請求項1~6の何れか一項に記載の収穫時熟度推定装置であって、
     前記青果物の収穫時より後の第3の時点において、該青果物に対して第3の波長の光を照射することにより得られる第3の光学的データを取得する第3の光学的データ取得部と、
     前記第3の波長の光に対する、第3の光学的データの値と前記青果物の品種との対応関係を示す品種対応情報を記憶する品種対応情報記憶部と、
     前記取得された第3の光学的データと、前記品種対応情報とに基づいて、前記青果物の品種を推定する品種推定部と、
     をさらに備え、
     前記収穫時熟度情報記憶部は、前記収穫時熟度情報を前記青果物の品種と対応づけて記憶し、
     前記収穫時熟度推定部は、前記取得された第1の光学的データと、前記推定された品種と、前記収穫時熟度情報とに基づいて、前記青果物の収穫時の熟度を推定する、
     収穫時熟度推定装置。
  8.  請求項1~7の何れか一項に記載の収穫時熟度推定装置であって、
     前記光学的データは、前記青果物に対して照射された光の反射率または透過率を示すデータである、
     収穫時熟度推定装置。
  9.  コンピュータが、
     青果物の収穫時より後の第1の時点において、該青果物に対して第1の波長の光を照射することにより得られる第1の光学的データを取得し、
     前記第1の波長の光に対する、第1の光学的データの値と前記青果物の収穫時の熟度との対応関係を示す収穫時熟度対応情報と、前記取得された第1の光学的データとに基づいて、前記青果物の収穫時の熟度を推定する、
     収穫時熟度推定方法。
  10.  請求項9に記載の収穫時熟度推定方法であって、
     前記コンピュータが、
     前記青果物の収穫時の熟度と品質遷移モデルとの対応関係を示す品質遷移モデル対応情報と、前記推定された収穫時の熟度とに基づいて、前記青果物の品質遷移を示す品質遷移モデルを決定する、
     収穫時熟度推定方法。
  11.  請求項10に記載の収穫時熟度推定方法であって、
     前記コンピュータが、
     前記青果物の収穫時より後の第2の時点において、該青果物に対して第2の波長の光を照射することにより得られる、該青果物の品質を示す第2の光学的データを取得し、
     第2の光学的データの遷移を示す前記決定された品質遷移モデルと、前記取得された第2の光学的データとに基づいて、前記第2の時点より後の時点における前記青果物の品質を予測する、
     収穫時熟度推定方法。
  12.  請求項11に記載の収穫時熟度推定方法であって、
     前記コンピュータが、
     時間の経過に連れて劣化する品質の遷移を示す前記決定された品質遷移モデルと、前記取得された第2の光学的データとに基づいて、前記収穫物の品質が基準レベル以下となるまでの日数を予測する、
     収穫時熟度推定方法。
  13.  請求項11に記載の収穫時熟度推定方法であって、
     前記コンピュータが、
     時間の経過に連れて向上する品質の遷移を示す前記決定された品質遷移モデルと、前記取得された第2の光学的データとに基づいて、前記収穫物の品質が基準レベル以上となるまでの日数を予測する、
     収穫時熟度推定方法。
  14.  請求項9~13の何れか一項に記載の収穫時熟度推定方法であって、
     前記コンピュータが、
     前記第1の波長の光に対する前記第1の光学的データとして、複数の波長の光に対する複数の光学的データを取得し、
     前記複数の波長の光に対する光学的データの値と前記収穫時の熟度との対応関係を示す前記収穫時熟度対応情報と、前記取得された複数の光学的データとに基づいて、前記青果物の収穫時の熟度を推定する、
     収穫時熟度推定方法。
  15.  請求項9~14の何れか一項に記載の収穫時熟度推定方法であって、
     前記コンピュータが、
     前記青果物の収穫時より後の第3の時点において、該青果物に対して第3の波長の光を照射することにより得られる第3の光学的データを取得し、
     前記取得された第3の光学的データと、前記第3の波長の光に対する、第3の光学的データの値と前記青果物の品種との対応関係を示す品種対応情報とに基づいて、前記青果物の品種を推定し、
     前記青果物の品種と対応づけらている前記収穫時熟度情報と、前記取得された第1の光学的データと、前記推定された品種とに基づいて、前記青果物の収穫時の熟度を推定する、
     収穫時熟度推定方法。
  16.  請求項9~15の何れか一項に記載の収穫時熟度推定方法であって、
     前記光学的データは、前記青果物に対して照射された光の反射率または透過率を示すデータである、
     収穫時熟度推定方法。
  17.  コンピュータに、
     青果物の収穫時より後の第1の時点において、該青果物に対して第1の波長の光を照射することにより得られる第1の光学的データを取得する機能と、
     前記第1の波長の光に対する、第1の光学的データの値と前記青果物の収穫時の熟度との対応関係を示す収穫時熟度対応情報と、前記取得された第1の光学的データとに基づいて、前記青果物の収穫時の熟度を推定する機能と、
     を実現させるためのプログラム。
  18.  請求項17に記載のプログラムであって、
     前記コンピュータに、
     前記推定された収穫時の熟度と、前記青果物の収穫時の熟度と品質遷移モデルとの対応関係を示す品質遷移モデル対応情報とに基づいて、前記青果物の品質遷移を示す品質遷移モデルを決定する機能を実現させるためのプログラム。
  19.  請求項18に記載のプログラムであって、
     前記コンピュータに、
     前記青果物の収穫時より後の第2の時点において、該青果物に対して第2の波長の光を照射することにより得られる、該青果物の品質を示す第2の光学的データを取得する機能と、
     第2の光学的データの遷移を示す前記決定された品質遷移モデルと、前記取得された第2の光学的データとに基づいて、前記第2の時点より後の時点における前記青果物の品質を予測する機能と、
     を実現させるためのプログラム。
  20.  請求項19に記載のプログラムであって、
     前記コンピュータに、
     時間の経過に連れて劣化する品質の遷移を示す前記決定された品質遷移モデルと、前記取得された第2の光学的データとに基づいて、前記収穫物の品質が基準レベル以下となるまでの日数を予測する機能を実現させるためのプログラム。
  21.  請求項19に記載のプログラムであって、
     前記コンピュータに、
     時間の経過に連れて向上する品質の遷移を示す前記決定された品質遷移モデルと、前記取得された第2の光学的データとに基づいて、前記収穫物の品質が基準レベル以上となるまでの日数を予測する機能を実現させるためのプログラム。
  22.  請求項17~21の何れか一項に記載のプログラムであって、
     前記コンピュータに、
     前記第1の波長の光に対する前記第1の光学的データとして、複数の波長の光に対する複数の光学的データを取得する機能と、
     前記複数の波長の光に対する光学的データの値と前記収穫時の熟度との対応関係を示す前記収穫時熟度対応情報と、前記取得された複数の光学的データとに基づいて、前記青果物の収穫時の熟度を推定する機能と、
     を実現させるためのプログラム。
  23.  請求項17~22の何れか一項に記載のプログラムであって、
     前記コンピュータに、
     前記青果物の収穫時より後の第3の時点において、該青果物に対して第3の波長の光を照射することにより得られる第3の光学的データを取得する機能と、
     前記取得された第3の光学的データと、前記第3の波長の光に対する、第3の光学的データの値と前記青果物の品種との対応関係を示す品種対応情報とに基づいて、前記青果物の品種を推定する機能と、
     前記青果物の品種と対応づけらている前記収穫時熟度情報と、前記取得された第1の光学的データと、前記推定された品種とに基づいて、前記青果物の収穫時の熟度を推定する機能と、
     を実現させるためのプログラム。
  24.  請求項17~23の何れか一項に記載のプログラムであって、
     前記光学的データは、前記青果物に対して照射された光の反射率または透過率を示すデータである、
     プログラム。
PCT/JP2012/054872 2011-06-17 2012-02-28 収穫時熟度推定装置、収穫時熟度推定方法及びプログラム WO2012172834A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/126,261 US20140122044A1 (en) 2011-06-17 2012-02-28 Harvest-time ripeness estimation device, harvest-time ripeness estimation method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011135385 2011-06-17
JP2011-135385 2011-06-17

Publications (1)

Publication Number Publication Date
WO2012172834A1 true WO2012172834A1 (ja) 2012-12-20

Family

ID=47356833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054872 WO2012172834A1 (ja) 2011-06-17 2012-02-28 収穫時熟度推定装置、収穫時熟度推定方法及びプログラム

Country Status (3)

Country Link
US (1) US20140122044A1 (ja)
JP (1) JPWO2012172834A1 (ja)
WO (1) WO2012172834A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015219651A (ja) * 2014-05-15 2015-12-07 株式会社Jsol 農作物の収穫予測装置、収穫予測システム及び収穫予測方法
JP2017003495A (ja) * 2015-06-12 2017-01-05 株式会社リコー 情報処理装置、情報処理プログラム、および情報処理システム
JP2017527781A (ja) * 2014-06-26 2017-09-21 チェジュ ナショナル ユニバーシティー インダストリー−アカデミック コーポレーション ファウンデーション Ft−irスペクトルデータの多変量統計分析を用いた果実の糖度及び酸度の予測方法
WO2018003506A1 (ja) * 2016-06-30 2018-01-04 サトーホールディングス株式会社 食べ頃算出方法、食べ頃算出システム、食べ頃算出プログラム及び記録媒体
JP2021014991A (ja) * 2019-07-10 2021-02-12 国立研究開発法人農業・食品産業技術総合研究機構 クロロフィル含有量の測定方法及び果実の熟度判定方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004645A (ja) * 2016-07-05 2018-01-11 シャープ株式会社 熟度判定装置および熟度判定方法
EP3723471A4 (en) 2017-12-15 2021-08-25 Vineland Research and Innovation Centre PROCESSES AND SYSTEMS ASSOCIATED WITH DETERMINING THE MATURITY OF A MUSHROOM
CA3114928A1 (en) * 2018-10-05 2020-04-09 Simbe Robotics, Inc. Method for tracking and characterizing perishable goods in a store
CN109902411B (zh) * 2019-03-07 2020-08-11 三峡大学 土壤重金属含量检测建模方法及装置、检测方法及装置
CN111640451B (zh) * 2020-05-07 2023-01-31 Oppo广东移动通信有限公司 一种成熟度评估方法及装置、存储介质
ES2886976A1 (es) * 2020-06-18 2021-12-21 Univ Huelva Sistema y procedimiento para la monitorizacion del estado fisiologico de cultivos y del desarrollo del fruto
CN112231349A (zh) * 2020-09-10 2021-01-15 广州众成医疗器械产业发展有限公司 产品技术成熟度曲线的处理方法、系统和存储介质
US11995842B2 (en) 2021-07-22 2024-05-28 X Development Llc Segmentation to improve chemical analysis
CN117475240A (zh) * 2023-12-26 2024-01-30 创思(广州)电子科技有限公司 基于图像识别的蔬菜核对方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128226A (ja) * 1993-10-29 1995-05-19 Hitachi Ltd バナナ果実熟成検査装置
JPH0886747A (ja) * 1994-09-20 1996-04-02 Kubota Corp 青果物の品質判定装置
JPH08101124A (ja) * 1994-09-30 1996-04-16 Sumitomo Metal Mining Co Ltd 果実の熟度の非破壊測定方法
JP2004294108A (ja) * 2003-03-25 2004-10-21 Mitsui Mining & Smelting Co Ltd 糖度計測装置
JP2006055744A (ja) * 2004-08-19 2006-03-02 Tokai Univ 農作物成熟度測定装置および農作物成熟度測定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMO20050211A1 (it) * 2005-08-10 2007-02-11 Univ Bologna Alma Mater Metodo ed apparato per determinare la qualita' di prodotti ortofrutticoli

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128226A (ja) * 1993-10-29 1995-05-19 Hitachi Ltd バナナ果実熟成検査装置
JPH0886747A (ja) * 1994-09-20 1996-04-02 Kubota Corp 青果物の品質判定装置
JPH08101124A (ja) * 1994-09-30 1996-04-16 Sumitomo Metal Mining Co Ltd 果実の熟度の非破壊測定方法
JP2004294108A (ja) * 2003-03-25 2004-10-21 Mitsui Mining & Smelting Co Ltd 糖度計測装置
JP2006055744A (ja) * 2004-08-19 2006-03-02 Tokai Univ 農作物成熟度測定装置および農作物成熟度測定方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015219651A (ja) * 2014-05-15 2015-12-07 株式会社Jsol 農作物の収穫予測装置、収穫予測システム及び収穫予測方法
JP2017527781A (ja) * 2014-06-26 2017-09-21 チェジュ ナショナル ユニバーシティー インダストリー−アカデミック コーポレーション ファウンデーション Ft−irスペクトルデータの多変量統計分析を用いた果実の糖度及び酸度の予測方法
JP2017003495A (ja) * 2015-06-12 2017-01-05 株式会社リコー 情報処理装置、情報処理プログラム、および情報処理システム
WO2018003506A1 (ja) * 2016-06-30 2018-01-04 サトーホールディングス株式会社 食べ頃算出方法、食べ頃算出システム、食べ頃算出プログラム及び記録媒体
JPWO2018003506A1 (ja) * 2016-06-30 2019-04-18 サトーホールディングス株式会社 食べ頃算出方法、食べ頃算出システム、食べ頃算出プログラム及び記録媒体
JP2021014991A (ja) * 2019-07-10 2021-02-12 国立研究開発法人農業・食品産業技術総合研究機構 クロロフィル含有量の測定方法及び果実の熟度判定方法
JP7360649B2 (ja) 2019-07-10 2023-10-13 国立研究開発法人農業・食品産業技術総合研究機構 クロロフィル含有量の測定方法及び果実の熟度判定方法

Also Published As

Publication number Publication date
US20140122044A1 (en) 2014-05-01
JPWO2012172834A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
WO2012172834A1 (ja) 収穫時熟度推定装置、収穫時熟度推定方法及びプログラム
US10408748B2 (en) System and method for evaluating fruits and vegetables
Zhang et al. The optimal local model selection for robust and fast evaluation of soluble solid content in melon with thick peel and large size by Vis-NIR spectroscopy
Jha et al. Physico-chemical quality parameters and overall quality index of apple during storage
US9858530B2 (en) Generating novel work products using computational creativity
CA3034626A1 (en) A system and method for characterization of cannabaceae plants
Shephard et al. Size-selective fishing drives species composition in the Celtic Sea
Riera et al. Deep multiview image fusion for soybean yield estimation in breeding applications
Woodworth-Jefcoats et al. Relative impacts of simultaneous stressors on a pelagic marine ecosystem
JP2018004645A (ja) 熟度判定装置および熟度判定方法
US20140309968A1 (en) Systems and methods for processing food assessment data
Riccioli et al. Optimizing spatial data reduction in hyperspectral imaging for the prediction of quality parameters in intact oranges
Eyarkai Nambi et al. Comparison of various RGB image features for nondestructive prediction of ripening quality of “Alphonso” mangoes for easy adoptability in machine vision applications: a multivariate approach
Hadimani et al. Development of a computer vision system to estimate the colour indices of Kinnow mandarins
Pădureț et al. Evaluation of strawberry texture in close relation with their anisotropy
US20220137019A1 (en) Hyperspectral computer vision aided time series forecasting for every day best flavor
Howell et al. Balanced harvesting in a variable and uncertain world: a case study from the Barents Sea
JP2021136026A (ja) 生鮮食品現状情報記録更新装置、生鮮食品現状情報記録更新システム、生鮮食品現状情報記録更新方法、及び生鮮食品現状情報記録更新プログラム
JP6362570B2 (ja) 農作物判定システム
Lee et al. Development of a novel time–temperature integrator/indicator (TTI) based on the maillard reaction for visual monitoring of melon (Cucumis melo L.) maturity during cultivation
Alavi et al. Prediction of chilling injury risk in ‘Zesy002’kiwifruit from softening early in storage
Martínez Vega et al. A sampling approach for predicting the eating quality of apples using visible–near infrared spectroscopy
US20240159659A1 (en) Determination device, learning device, determination system, determination method, learning method, and program
Al Riza et al. Mandarin orange (Citrus reticulata Blanco cv. Batu 55) ripeness parameters prediction using combined reflectance-fluorescence images and deep convolutional neural network (DCNN) regression model
KR20180055718A (ko) 작물의 수확 시기 예측 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013520446

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14126261

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800359

Country of ref document: EP

Kind code of ref document: A1