WO2012172791A1 - 画像復号方法、画像符号化方法、画像復号装置、画像符号化装置および画像符号化復号装置 - Google Patents

画像復号方法、画像符号化方法、画像復号装置、画像符号化装置および画像符号化復号装置 Download PDF

Info

Publication number
WO2012172791A1
WO2012172791A1 PCT/JP2012/003839 JP2012003839W WO2012172791A1 WO 2012172791 A1 WO2012172791 A1 WO 2012172791A1 JP 2012003839 W JP2012003839 W JP 2012003839W WO 2012172791 A1 WO2012172791 A1 WO 2012172791A1
Authority
WO
WIPO (PCT)
Prior art keywords
intra prediction
prediction mode
encoding
decoding
candidates
Prior art date
Application number
PCT/JP2012/003839
Other languages
English (en)
French (fr)
Inventor
寿郎 笹井
西 孝啓
陽司 柴原
敏康 杉尾
京子 谷川
徹 松延
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to ES12799908T priority Critical patent/ES2961495T3/es
Priority to AU2012270960A priority patent/AU2012270960B2/en
Priority to EP12799908.4A priority patent/EP2720461B1/en
Priority to RU2013154414A priority patent/RU2607246C2/ru
Priority to MX2013013909A priority patent/MX2013013909A/es
Priority to KR1020137032627A priority patent/KR101955051B1/ko
Priority to CN201280028186.0A priority patent/CN103609110B/zh
Priority to BR112013031624-1A priority patent/BR112013031624B1/pt
Priority to CA2838214A priority patent/CA2838214C/en
Priority to PL12799908.4T priority patent/PL2720461T3/pl
Priority to JP2013520433A priority patent/JP5386657B2/ja
Publication of WO2012172791A1 publication Critical patent/WO2012172791A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/16Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter for a given display mode, e.g. for interlaced or progressive display mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • H04N19/197Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters including determination of the initial value of an encoding parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • H04N19/463Embedding additional information in the video signal during the compression process by compressing encoding parameters before transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques

Definitions

  • the present invention relates to an image decoding method and an image encoding method for moving images.
  • the present invention relates to a decoding method and an encoding method of mode information including an intra prediction mode number used for generating a prediction pixel.
  • Non-Patent Document 1 In the HEVC (High Efficiency / Video / Coding) standard, which is a next-generation image encoding standard, various studies have been made to improve encoding efficiency (see Non-Patent Document 1).
  • inter-frame encoding that performs compression by inter-frame prediction that generates prediction images by referring to pixel information of the previous frame, or intra prediction that generates prediction images by referring to pixel information in the same screen
  • intra coding that performs compression.
  • intra coding in order to distinguish the direction for generating in-plane prediction pixels, etc., the number according to a predetermined size (for example, the value of log2TrafoSize or the type of Prediction Unit) of the block to be coded.
  • a predetermined size for example, the value of log2TrafoSize or the type of Prediction Unit
  • a mode of (intraPredModeNum) is prepared.
  • IntraPredModeNum value is 34
  • log2TrafoSize value 3 or more and 5 or less
  • Intra prediction mode number is a value representing the prediction direction.
  • Intra prediction modes include, for example, 34 modes and 17 modes.
  • intra prediction mode number or label
  • intra prediction mode number “0” is vertical (direction)
  • intra prediction mode number “1” is horizontal (direction)
  • intra prediction mode number “2” is non-directional called DC mode prediction.
  • the intra prediction mode number is a value of 3 or more (a value of 3 or more and 33 or less for a block of a predetermined size)
  • the direction of a predetermined angle associated with each is indicated.
  • an intra prediction mode number associated with an encoding target block is referred to as a “target mode number”.
  • encoding mode number a value indicated by a code string obtained by encoding the “target mode number” by a predetermined encoding method.
  • mode information that is “information for specifying which intra prediction mode to use among a plurality of intra prediction modes” is used.
  • the mode information is generated for each prediction unit (Prediction unit, hereinafter referred to as “PU” as appropriate).
  • the mode information includes the following three pieces of information.
  • (I3) “Encoding mode number” (rem_intra_luma_pred_mode) This is a code (value) associated with the “target mode number” when the intra prediction mode number of the adjacent PU decoded before is not used.
  • this “encoding mode number” is extracted from the code string included in the mode information by a predetermined variable length decoding method (arithmetic decoding method, etc.), (2) Using the extracted value, a “target mode number” (any one of the 34 modes from 0 to 33 described above) is derived (or information for deriving is derived).
  • JCT-VC Joint Collaborative Team on Video Coding
  • the conventional intra coding has a problem that the compression efficiency of mode information is not sufficient.
  • the present invention has been made to solve the above-described conventional problems, and is an image encoding method, an image encoding device, an image decoding method, an image decoding device, and an image decoding method capable of improving the compression efficiency of mode information.
  • An object is to provide an image encoding / decoding device.
  • an image decoding method for decoding image data included in an encoded stream for each block, and performs intra-screen prediction of a decoding target block.
  • a deriving step of always deriving two or more intra prediction mode candidates to be used, and an index for specifying one candidate from the derived intra prediction mode candidates The intra prediction using one of the candidates for the intra prediction mode derived based on the acquisition step acquired from the encoded stream and the acquired index in the intra prediction of the decoding target block And determining a mode.
  • an image encoding method for generating an encoded stream by encoding image data for each block, and the encoding target
  • One of the candidates is determined as an intra prediction mode to be used for intra prediction of the decoding target block, and the determined one candidate is identified from among the derived intra prediction mode candidates
  • an adding step of adding an index for encoding to the encoded stream is performed.
  • an image decoding apparatus is an image decoding apparatus that decodes image data included in an encoded stream for each block, and performs intra-screen prediction of a decoding target block.
  • An intra prediction mode candidate to be used, and a deriving unit that always derives two or more intra prediction mode candidates, and an index for identifying one candidate from the derived intra prediction mode candidates The intra prediction using one of the candidates for the intra prediction mode derived based on the acquisition unit acquired from the encoded stream and the acquired index in the intra prediction of the decoding target block And a determination unit that determines the mode.
  • an image encoding device is an image encoding device that generates an encoded stream by encoding image data for each block, and is an encoding target.
  • a candidate for an intra prediction mode that is used for intra prediction of a decoding target block corresponding to a block, and that always derives two or more intra prediction mode candidates; and
  • One of the candidates is determined as an intra prediction mode to be used for intra prediction of the decoding target block, and the determined one candidate is identified from among the derived intra prediction mode candidates
  • an adding unit for adding an index to the encoded stream is an image encoding device that generates an encoded stream by encoding image data for each block, and is an encoding target.
  • an image encoding / decoding device includes the image decoding device and the image encoding device.
  • FIG. 1 is a block diagram illustrating a configuration example of an image coding apparatus according to Embodiment 1.
  • FIG. 2 is a flowchart showing a mode information generation method in the image coding method according to the first embodiment.
  • FIG. 3 is a flowchart for explaining step S215 of FIG. 2 in detail.
  • FIG. 4 is a flowchart illustrating a prediction mode determination method according to the first embodiment.
  • FIG. 5 is a flowchart for explaining an example of an encoding mode number encoding method (step S217) by the CABAC method.
  • FIG. 6A is a conceptual diagram illustrating an example of a conventional syntax configuration.
  • FIG. 6B is a conceptual diagram illustrating an example of the syntax configuration in the first exemplary embodiment.
  • FIG. 6A is a conceptual diagram illustrating an example of a conventional syntax configuration.
  • FIG. 6B is a conceptual diagram illustrating an example of the syntax configuration in the first exemplary embodiment.
  • FIG. 7 is a flowchart illustrating a modification of the prediction mode determination method according to the first embodiment.
  • FIG. 8 is a flowchart for explaining an example of another encoding method (step S217) of the encoding mode number.
  • FIG. 9A is a table showing an example of an encoding table used in another encoding method (step S217) of the encoding mode number.
  • FIG. 9B is a table showing an example of an encoding table used in another encoding method (step S217) of the encoding mode number.
  • FIG. 10 is a block diagram illustrating a configuration of a decoding device according to the second embodiment.
  • FIG. 11 is a flowchart illustrating a decoding method according to the second embodiment.
  • FIG. 12A is a flowchart showing the processing procedure of the arithmetic decoding process when the bit string is the one output by CABAC.
  • FIG. 12B is a flowchart illustrating the processing procedure of the arithmetic decoding process when the bit string is output by CAVLC.
  • FIG. 13 is a flowchart for explaining in detail the first example of step S1117.
  • FIG. 14 is a flowchart for explaining step S1115 in detail.
  • FIG. 15 is a conceptual diagram illustrating an example of a decoded prediction mode.
  • FIG. 16 is an overall configuration diagram of a content supply system that realizes a content distribution service.
  • FIG. 17 is an overall configuration diagram of a digital broadcasting system.
  • FIG. 18 is a block diagram illustrating a configuration example of a television.
  • FIG. 19 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk.
  • FIG. 20 is a diagram illustrating a structure example of a recording medium that is an optical disk.
  • FIG. 21A is a diagram illustrating an example of a mobile phone.
  • FIG. 21B is a block diagram illustrating a configuration example of a mobile phone.
  • FIG. 22 is a diagram showing a structure of multiplexed data.
  • FIG. 23 is a diagram schematically showing how each stream is multiplexed in the multiplexed data.
  • FIG. 24 is a diagram showing in more detail how the video stream is stored in the PES packet sequence.
  • FIG. 25 is a diagram illustrating the structure of TS packets and source packets in multiplexed data.
  • FIG. 26 is a diagram illustrating a data structure of the PMT.
  • FIG. 27 is a diagram showing an internal configuration of multiplexed data information.
  • FIG. 28 shows the internal structure of stream attribute information.
  • FIG. 29 is a diagram illustrating steps for identifying video data.
  • FIG. 30 is a block diagram illustrating a configuration example of an integrated circuit that realizes the moving picture coding method and the moving picture decoding method according to each embodiment.
  • FIG. 31 is a diagram showing a configuration for switching the driving frequency.
  • FIG. 32 is a diagram illustrating steps for identifying video data and switching between driving frequencies.
  • FIG. 34A is a diagram illustrating an example of a configuration for sharing a module of a signal processing unit.
  • FIG. 34B is a diagram illustrating another example of a configuration for sharing a module of a signal processing unit.
  • an image decoding method for decoding image data included in an encoded stream for each block, and performs intra-screen prediction of a decoding target block.
  • a deriving step of always deriving two or more intra prediction mode candidates to be used, and an index for specifying one candidate from the derived intra prediction mode candidates The intra prediction using one of the candidates for the intra prediction mode derived based on the acquisition step acquired from the encoded stream and the acquired index in the intra prediction of the decoding target block And determining a mode.
  • the configuration of the conventional mode information the following three are conceivable.
  • the information included in the mode information is (I1) “prediction mode Use flag "and (I2)" Prediction mode candidate number ".
  • the information included in the mode information is only (I1) “prediction mode use flag”. This is because when the number of intra prediction mode candidates is one, the target mode number is uniquely identified, and (I2) “prediction mode candidate number” need not be included.
  • the “prediction mode candidate number” is not included.
  • the information included in the mode information is (I1) “prediction mode use flag” and (I3) “encoding mode number” obtained by encoding the target mode number. . Note that the amount of information of “encoding mode number” is much larger than (I2) “prediction mode candidate number” and the like.
  • the proportion of PUs that use intra prediction mode candidates increases. That is, since the ratio of mode information (M2) having a relatively small amount of information increases and the ratio of mode information (M3) having a large amount of information decreases, the amount of information can be reduced.
  • the amount of information corresponding to the conventional mode information (M1) also requires the same amount of information as that of the mode information (M2), so that the amount of information increases in the case of the conventional mode information (M1).
  • the amount of information in (I2) “prediction mode candidate number” is very small compared to the amount of information in (I3) “coding mode number”. The amount of reduction exceeds that of a large amount, and the amount of mode information can be reduced.
  • the number of 2 or more may be a fixed number.
  • the number of intra prediction mode candidates is determined. There is no need to do.
  • the process for determining the number of intra prediction mode candidates is, for example, a process for determining whether the number of intra prediction mode candidates indicated by the conditional expression 901 “if (NumMPMCand> 1)” in FIG. 6A is one. It is. In this process, for example, it is necessary to obtain an intra prediction mode number of a plurality of PUs to be referred to and obtain whether or not the intra prediction mode numbers in the plurality of PUs match.
  • the process of deriving the intra prediction mode numbers of a plurality of PUs to be referred to and the process of obtaining the intra prediction mode used in the decoding target block may be performed in parallel for speeding up.
  • (I1) “prediction mode use flag” indicates that an intra prediction mode candidate is used
  • intra of a plurality of PUs to be referred to Since it is necessary to obtain the result of the process for deriving the prediction mode number, the process for obtaining the intra prediction mode used in the decoding target block cannot proceed until the result of the process is obtained, and the speeding up is not sufficient.
  • the image decoding method having the above configuration since a fixed number of prediction mode candidates of 2 or more are always generated, there is no need to determine the number of intra prediction mode candidates, and the number depends on the number of prediction modes (number of candidates). Without this, it is possible to decrypt the parameters on the decryption side. Thereby, the process which calculates
  • the derivation step includes a first derivation step of deriving a first candidate of the intra prediction mode from an intra prediction mode used in intra prediction of each adjacent block adjacent to the decoding target block; A determination step of determining whether or not the number of the first candidates performed is smaller than the number of 2 or more, and when it is determined that the number of the first candidates is smaller than the number of 2 or more, A second derivation step of deriving a second candidate for the intra prediction mode.
  • the number of the adjacent blocks that acquire the intra prediction mode used in the intra prediction may be the same as the number of 2 or more.
  • the second candidate is derived so that the sum of the number of the first candidates and the number of the second candidates is always equal to or greater than the number 2. May be.
  • an intra prediction mode different from the intra prediction mode used in the intra prediction of each adjacent block adjacent to the decoding target block is derived as the second candidate. May be.
  • an intra prediction mode indicating that prediction is performed using an average value of pixel values of the decoding target block an intra prediction mode indicating planar prediction, and intra prediction indicating vertical prediction. You may comprise so that at least any one of mode may be derived
  • the derivation step selects an intra prediction mode other than the intra prediction mode used in the intra prediction of the adjacent block as a candidate for the intra prediction mode.
  • the intra prediction mode candidate may be derived based on a predetermined condition.
  • a candidate list is created using the intra prediction mode candidates, and the index may be a number for identifying the intra prediction mode candidates included in the candidate list. Good.
  • an image encoding method for generating an encoded stream by encoding image data for each block, and an encoding target A derivation step for deriving two or more intra prediction mode candidates, which are candidates for intra prediction modes used in intra prediction of a decoding target block corresponding to a block, and the derived intra prediction mode candidates; One of the candidates is determined as an intra prediction mode to be used for intra prediction of the decoding target block, and the determined one candidate is identified from among the derived intra prediction mode candidates And an adding step of adding an index for encoding to the encoded stream.
  • the number of 2 or more may be a fixed number.
  • an image decoding apparatus is an image decoding apparatus that decodes image data included in an encoded stream for each block, and performs intra-screen prediction of a decoding target block.
  • An intra prediction mode candidate to be used, and a deriving unit that always derives two or more intra prediction mode candidates, and an index for identifying one candidate from the derived intra prediction mode candidates The intra prediction using one of the candidates for the intra prediction mode derived based on the acquisition unit acquired from the encoded stream and the acquired index in the intra prediction of the decoding target block And a determination unit that determines the mode.
  • an image encoding device is an image encoding device that generates an encoded stream by encoding image data for each block, and is an encoding target.
  • a candidate for an intra prediction mode that is used for intra prediction of a decoding target block corresponding to a block, and that always derives two or more intra prediction mode candidates; and
  • One of the candidates is determined as an intra prediction mode to be used for intra prediction of the decoding target block, and the determined one candidate is identified from among the derived intra prediction mode candidates
  • an adding unit for adding an index to the encoded stream is an image encoding device that generates an encoded stream by encoding image data for each block, and is an encoding target.
  • an image encoding / decoding device includes the image decoding device and the image encoding device.
  • the system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on one chip, and specifically includes a microprocessor, a ROM, a RAM (Random Access Memory), and the like.
  • Computer system is an ultra-multifunctional LSI manufactured by integrating a plurality of components on one chip, and specifically includes a microprocessor, a ROM, a RAM (Random Access Memory), and the like.
  • Embodiment 1 An image encoding method according to Embodiment 1 of the present invention and an image encoding apparatus that executes the image encoding method will be described with reference to FIGS. 1 to 6B.
  • the image encoding device has a function of generating mode information indicating the intra prediction mode used in the intra prediction for each PU.
  • mode information indicating the intra prediction mode used in the intra prediction for each PU.
  • the number of intra prediction mode candidates is fixed to 2 in advance (always deriving a fixed number of intra prediction mode candidates equal to or greater than 2) will be described as an example. To do.
  • it is fixed to 3 or more, or when it is variably configured with a number of 2 or more, it can be realized by the same method.
  • FIG. 1 is a block diagram illustrating a configuration of the image encoding device 100.
  • the image encoding device 100 encodes the image signal, and converts the bit stream (bitStr) output from the variable length encoding unit 120 described later into an image decoding device (not shown in FIG. 1). Device).
  • the image encoding apparatus 100 includes a difference unit 101 that outputs a difference image between an image indicated by an image signal and a predicted image, DCT transform (Discrete Cosine Transform, discrete cosine transform), etc.
  • a transform unit 102 that performs quantization
  • a quantization unit 103 that performs quantization on a DCT-transformed difference image
  • an inverse quantization unit 104 that performs inverse quantization
  • an inverse transform unit 105 that performs inverse DCT transform
  • An addition unit 106 that combines the restored difference images from the conversion unit 105 and outputs the previous image
  • an inter-screen prediction unit 107 that generates a prediction image by inter-frame prediction
  • an intra-screen prediction that generates a prediction image by intra prediction 108
  • a switching unit 109 that selectively outputs a predicted image from the inter-screen prediction unit 107 and a predicted image from the intra-screen prediction unit 108.
  • Coding control unit 110 controls each function of the image encoding apparatus
  • the encoding control unit 110 determines the “target mode number” and “variable length encoding” to be applied to an encoding target block (PU or a block included in the PU, etc., which is the same hereinafter) determined based on a predetermined evaluation criterion. Method ".
  • the evaluation criterion is determined so that, for example, the number of bits of the code string output under the condition satisfying the predetermined prediction accuracy is reduced.
  • the intra-screen prediction unit 108 determines, based on the “target mode number” specified by the encoding control unit 110, prediction pixels existing in the direction specified by the intra prediction mode indicated by the target mode number for the current encoding target block. This is used to predict the pixel value of the current encoding target block. Also, the “target mode number” is encoded to generate the “encoding mode number”.
  • variable length coding unit 120 performs entropy coding such as arithmetic coding on the “coding mode number” generated by the intra prediction unit 108 according to the “variable length coding method” specified by the coding control unit 110. To output a bitstream (bitStr).
  • FIG. 2 is a flowchart showing a mode information generation method executed by the image encoding apparatus of FIG.
  • the encoding control unit 110 acquires the “target mode number” for the encoding target block for generating the mode information (step S201).
  • the encoding control unit 110 obtains a “prediction mode array” (candModeList) by obtaining intra prediction mode candidates for the encoding target block (step S203).
  • the number of intra prediction mode candidates is fixed at 2
  • the number of elements in the prediction mode array is 2.
  • the number of elements in the prediction mode array is the number of intra prediction mode candidates.
  • the number of intra prediction mode candidates is variably set, the number of elements in the prediction mode array is the maximum number of intra prediction mode candidates.
  • This prediction mode array is an array having “prediction mode candidate number” described later as an index value (starting from 0) of an element of the prediction mode array. Details of the method of deriving the intra prediction mode candidates in this step will be described later with reference to FIG.
  • step S205 it is determined whether or not the target mode number matches the value of any element of the prediction mode array.
  • step S205 ⁇ When the target mode number matches the value of any element in the prediction mode array>
  • the encoding control unit 110 uses the prediction mode.
  • the value of the flag is determined as “1” (step S207).
  • the encoding control unit 110 is designated with a prediction mode candidate number (index value of the prediction mode array) in order to identify which prediction mode is used among the intra prediction mode candidates acquired in step S203.
  • Variable length coding is performed by the method (step S209).
  • step S205 When the result of the determination in step S205 indicates that the target mode number does not match any prediction mode array value (the result in step S205 is NO), the encoding control unit 110 sets a “prediction mode use flag”. 0 is determined (step S213).
  • the encoding control unit 110 generates an “encoding mode number” (value of rem_intra_luma_pred_mode) based on the target mode number and the number of intra prediction mode candidates (step S215).
  • This step is a step of generating different coding mode numbers according to the number of intra prediction mode candidates even if the same target mode number is based on the target mode number. This step will be described later with reference to FIG.
  • the encoding control unit 110 encodes the encoding mode number using the designated variable length encoding method (step S217). This step will be described later with reference to FIG. 5 (CABAC method) and FIG. 8 (CAVLC method).
  • FIG. 3 is a flowchart showing an example of the processing procedure of the step of generating the encoding mode number in step S215. Note that the encoding mode number may be generated by other methods.
  • the encoding control unit 110 acquires the total number of intra prediction modes (the number of types of intra prediction modes, 34 in the present embodiment) and the number of intra prediction mode candidates (step S301).
  • the number of intra prediction mode candidates is a fixed number of two.
  • the encoding control unit 110 repeats the loop process shown in steps S302 to S307 as many times as specified by the number of intra prediction mode candidates.
  • step S303 since the number of intra prediction mode candidates is two, step S303 (and step S305 according to the determination in step S303) is performed twice when the value of index (i) becomes 1 and 0. ). If the number of prediction mode candidates is N, step S303 (and step S305 according to the determination in step S303) is executed N times.
  • step 302 i is set to 0.
  • step S303 it is determined whether or not the current target mode number value is larger than the element value of the prediction mode array specified by the index (i).
  • the current target mode number value is decremented by 1 (step S305).
  • step S305 the current target mode number after reflecting the result of decrement or the like in step S305 is determined as the “encoding mode number” (step S309).
  • step S215 for example, 34 values of the total number of intra prediction modes 0.33 are determined in association with “encoding mode numbers” from “target mode number” values that can take any of them. Is equivalent to
  • candModeList [0] indicates the first element of the prediction mode array
  • candModeList [1] indicates the second element of the prediction mode array.
  • the encoding mode number can be derived as follows according to the value of the target mode number. (1) When 0 ⁇ target mode number ⁇ the value of the first element of the prediction mode array (0 ⁇ target mode number ⁇ candModeList [0]), the target mode number and the encoding mode number match. (2) When the value of the first element of the prediction mode array ⁇ the target mode number ⁇ the value of the second element of the prediction mode array (candModeList [0] ⁇ target mode number ⁇ candModeList [1]) The mode number is one less than the target mode number. (3) When the value of the second element of the prediction mode array ⁇ target mode number (candModeList [1] ⁇ target mode number), the encoding mode number is a number that is two less than the target mode number.
  • the mode number is a number smaller by k ⁇ 1 than the target mode number.
  • FIG. 4 is a flowchart showing a detailed processing procedure of the prediction mode array acquisition step (step S203) shown in FIG.
  • the “prediction mode array” (candModeList) of the block to be encoded is determined when the number of intra prediction mode candidates is fixed to two.
  • the target mode number of an already-encoded adjacent block is used as an element of the “prediction mode array” (candModeList).
  • the target mode numbers of adjacent blocks match (a matching target mode number is a candidate for one intra prediction mode)
  • the number of target mode numbers of adjacent blocks that have already been encoded is the number of elements in the prediction mode array. If it is less than, candidates for intra prediction modes are selected from other intra prediction modes that are not the target mode numbers of adjacent blocks, such as DC prediction mode, planar prediction (intraplanar), and longitudinal prediction (intraangular). decide.
  • the encoding control unit 110 sets the target mode number of the already encoded left adjacent block adjacent to the left side of the encoding target block in intraPredModeLeft (step S401).
  • the target mode number used for the encoding (decoding) is set, and encoding is not performed by intra prediction.
  • an intra prediction mode number (for example, “2” indicating a DC prediction mode (indicated as DC prediction in FIG. 4)). )) Is set.
  • NotNoAvailable is set in intraPredModeLeft.
  • the encoding control unit 110 sets the target mode number of the already encoded upper adjacent block adjacent to the upper side of the encoding target block in intraPredModeAveve (step S402).
  • the method for setting intraPredModeAbove is the same as the process for the left adjacent block (step S401) except for the block position.
  • the target mode number of the left adjacent block and the upper adjacent block does not exist (determines whether both intraPredModeLeft and intraPredModeAbove are Not Available 403).
  • the encoding control unit 110 determines the first element of the “prediction mode array” (candModeList) of the encoding target block.
  • the list 0 (candModeList [0])
  • the intra prediction mode number “0” and in the second element, the list 1 (candModeList [1]), the intra prediction mode number indicating the DC prediction mode (for example, “2”). ”) Is set (step S404).
  • step S403 the encoding control unit 110 determines whether one of intraPredModeLeft and intraPredModeAbove is not present, or whether intraPredModeLeft and intraPredModeAbove match (step S405).
  • step S405 when the target mode numbers of both the left adjacent block and the upper adjacent block exist and both the target mode numbers do not match, the encoding control unit 110 selects “ The smaller target mode number of the target mode number of the left adjacent block and the target mode number of the upper adjacent block is set in the list 0 (candModeList [0]) of the “prediction mode array” (candModeList). Further, the larger target mode number of the target mode number of the left adjacent block and the target mode number of the upper adjacent block is set in list 1 (candModeList [1]) (step S406).
  • step S405 determines whether the matching or existing target mode number (hereinafter referred to as “adjacent mode number”) is an intra prediction mode number (for example, “2”) indicating the DC prediction mode. Is determined (step S407).
  • the encoding control unit 110 lists 0 (candModeList) of the “prediction mode array” (candModeList) of the encoding target block. [0]) is set to the smaller intra prediction mode number of the adjacent mode number (the matching or existing target mode number) and the intra prediction mode number indicating the DC prediction mode. Furthermore, the encoding control unit 110 includes, in list 1 (candModeList [1]), the larger intra prediction of the adjacent mode number (target mode number that matches or exists) and the intra prediction mode number indicating the DC prediction mode. A mode number is set (step S408).
  • step S407 when the adjacent mode number is not an intra prediction mode number indicating the DC prediction mode (for example, “2”), the coding control unit 110 determines whether the adjacent mode number is “0”. It is determined whether or not (step S409).
  • step S409 when the adjacent mode number is not “0”), the encoding control unit 110 adds intra to the list 0 (candModeList [0]) of the “prediction mode array” (candModeList) of the encoding target block.
  • the prediction mode number “0” is set, and the adjacent mode number is set in the list 1 (candModeList [1]) (step S410).
  • step S409 when the adjacent mode number is “0”), the adjacent mode number “0” is added to the list 0 (candModeList [0]) of the “prediction mode array” (candModeList) of the encoding target block.
  • ", And intra prediction mode number” 1 is set in list 1 (candModeList [1]) (step S411).
  • the DC prediction mode number and the intra prediction mode numbers “0” and “1” are preferentially arranged in each element of the prediction mode array as shown in Table 1 above. Since the size of the encoding mode number can be reduced, the encoding efficiency can be improved.
  • the priority example (DC prediction mode numbers, intra prediction mode numbers “0”, “1”) is an example, and if priority is given to a smaller number of intra prediction modes, the priority of the DC prediction mode is lowered. However, the encoding efficiency can be increased.
  • FIG. 5 is a flowchart showing an encoding method using the CABAC method.
  • the encoding control unit 110 acquires the encoding mode number by the method shown in FIG. 3 (steps S701 and S215), and the total number of intra prediction modes (maximum number of modes) for the acquired encoding mode number. Binarization processing is performed using the binarization method corresponding to (Step S702). This is because, for example, when the maximum number of modes changes according to the coding unit of the intra prediction mode (for example, 17 modes when the coding unit is 4 ⁇ 4 size, 34 modes when the size is 8 ⁇ 8 or larger, etc.) This means that binarization processing corresponding to the length is performed.
  • the encoding control unit 110 performs a binary arithmetic encoding process on the signal obtained by binarizing the encoding mode number (step S703). Thereby, the encoding mode number can be recorded in the stream.
  • FIG. 6A is a conceptual diagram illustrating an example of a syntax configuration indicating a data structure in which a target mode number extracted from Non-Patent Document 1 is recorded.
  • FIG. 6B is a conceptual diagram showing an example of the syntax configuration of the present embodiment.
  • the prediction mode use flag (prev_intra_luma_pred_flag) is encoded.
  • the prediction mode use flag is 1, it is determined whether the number of intra prediction mode candidates (NumMPMCand) is greater than 1 (901), and the number of intra prediction mode candidates (NumMPMCand) is greater than 1 (at 2 or more). If it exists, the prediction mode candidate number (mpm_idx) is encoded.
  • the prediction mode use flag is 0, the encoding mode number (rem_intra_luma_pred_mode) is encoded.
  • the conditional expression 901 “if (NumMPMCand> 1)” in FIG. 6A becomes unnecessary, and the bit stream having the syntax structure shown in FIG. 6B Is generated. That is, when the prediction mode use flag is 1, the prediction mode candidate number (mpm_idx) is always encoded. As a result, there are fewer conditional branches and it is possible to generate a bitstream that can reduce the amount of processing during decoding.
  • Step S207 in FIG. 2 a process for determining whether the target mode number of the left adjacent block and the target mode number of the upper adjacent block match is performed. Step S209 is executed.
  • Modification of Embodiment 1 (Modification 1: Modification of prediction mode determination method) Note that the prediction mode array determination method described in FIG. 4 may be modified as follows.
  • an intra prediction mode number with the highest probability of occurring for the encoding target block is selected as the most frequent mode number, and this re-frequency mode number Is replaced with any of “DC prediction mode 2”, “mode number 0”, and “mode number 1” shown in FIG.
  • the intra prediction mode number having the shortest code length may be selected from the context state used for the arithmetic code in step S703 of FIG.
  • the intra prediction mode number assigned to the shortest bit length by the variable length table used in step S502 and step S503 in FIG. 8 described later may be used as the most frequent mode number, or a completely different most frequent mode selection step (for example, Alternatively, it may be selected by a method statistically derived from the progress of the adjacent mode number and the cumulative target mode number. In this way, in the former two steps, the sharing of existing steps can improve the coding efficiency while suppressing an increase in the processing amount, and the processing amount slightly increases in the last step. However, significant improvement in coding efficiency can be expected.
  • FIG. 7 is a flowchart showing an example of the processing procedure of the prediction mode array determining step (step S203).
  • the processing procedure shown in the flowchart of FIG. 7 is a modification of the processing procedure shown in the flowchart of FIG. 4, and includes step S404 (step S804), step S409 (step S809), step S410 (step S810), and step S411 ( Steps other than Step S811 (Steps S401 to S403, Steps S405 to S408) are the same. Therefore, description of the overlapping steps is omitted as appropriate.
  • the encoding control unit 110 sets the target mode number of the left adjacent block that has already been encoded adjacent to the left side of the encoding target block in intraPredModeLeft (step S401), and sets the target mode number of the upper adjacent block adjacent to the upper side. Set to intraPredModeAbove (step S402).
  • the encoding control unit 110 sets intraPredModeLeft and intraPredModeAbove, the target mode numbers of the left adjacent block and the upper adjacent block do not exist (whether both intraPredModeLeft and intraPredModeAbove are Not Available step 403).
  • the encoding control unit 110 lists 0 (candModeList [0]) of the “prediction mode array” (candModeList) of the encoding target block.
  • the smaller intra prediction mode number is set among the most frequent mode number and the intra prediction mode number (for example, “2”) indicating the DC prediction mode.
  • the larger intra prediction mode number among the most frequent mode number and the intra prediction mode number (for example, “2”) indicating the DC prediction mode is set in list 1 (candModeList [1]) (step S804).
  • step S403 the encoding control unit 110 determines whether one of intraPredModeLeft and intraPredModeAbove is not present, or whether intraPredModeLeft and intraPredModeAbove match (step S405).
  • step S405 when the target mode numbers of both the left adjacent block and the upper adjacent block exist and both the target mode numbers do not match, the encoding control unit 110 selects “ The smaller target mode number of the target mode number of the left adjacent block and the target mode number of the upper adjacent block is set in the list 0 (candModeList [0]) of the “prediction mode array” (candModeList), and the list 1 (candModeList) In [1]), the larger target mode number of the target mode number of the left adjacent block and the target mode number of the upper adjacent block is set (step S406).
  • step S405 determines whether the target mode number (adjacent mode number) that matches or exists is an intra prediction mode number (for example, “2”) indicating the DC prediction mode (step S407).
  • the encoding control unit 110 lists 0 (candModeList) of the “prediction mode array” (candModeList) of the encoding target block. [0]) is set to the smaller intra prediction mode number of the adjacent mode number (the matching or existing target mode number) and the intra prediction mode number indicating the DC prediction mode. Furthermore, the encoding control unit 110 includes, in list 1 (candModeList [1]), the larger intra prediction of the adjacent mode number (target mode number that matches or exists) and the intra prediction mode number indicating the DC prediction mode. A mode number is set (step S408).
  • step S407 when the adjacent mode number is not an intra prediction mode number indicating the DC prediction mode (for example, “2”), the encoding control unit 110 indicates that the adjacent mode number is the most frequent mode number. Whether or not (step S809).
  • step S809 the encoding control unit 110 adds the list 0 (candModeList [0]) of the “prediction mode array” (candModeList) of the encoding target block.
  • the smaller one of the most frequent mode number and the adjacent mode number is set, and the larger one of the most frequent mode number and the adjacent mode number in the list 1 (candModeList [1]).
  • a number is set (step S810).
  • steps S809 to S811 as described above, the most frequent mode number and the DC prediction mode are preferentially arranged in each element of the prediction mode array, so that the adaptation rate to the intra prediction mode can be increased. . Further, as shown in Table 1 above, since the size of the encoding mode number can be reduced, the encoding efficiency can be improved.
  • the example of the priority order here (the DC prediction mode number, the most frequent mode number, and the priority order of the intra prediction mode number “0”) is an example, and the priority order is switched based on statistical information. Also good. Further, the intra prediction mode number “0” is, for example, planar prediction (intraplaner) or vertical direction prediction (intra angular).
  • FIG. 8 is a flowchart showing an encoding method using the CAVLC method.
  • FIG. 9A is a table showing an encoding table when the maximum number of modes (total number of intra prediction modes) is 17, and
  • FIG. 9B is a table showing an example of an encoding table when the maximum number of modes is 34. .
  • the encoding control unit 110 acquires the encoding mode number by the method shown in FIG. 3 (step S501), and selects a variable length table (not shown) corresponding to the maximum number of modes (step S502). This is because, for example, when the maximum number of modes varies depending on the size of the coding unit (for example, 17 modes when the coding unit is 4 ⁇ 4 size, 34 modes when the size is 8 ⁇ 8 or larger, etc.) This means that a variable length table corresponding to the size is selected.
  • variable length table since one type of variable length table may be used for the encoding unit, the number of memories required for the encoding apparatus can be reduced.
  • the encoding control unit 110 derives an encoding index number from the encoding mode number using the selected variable length table (step S503).
  • This variable length table is updated in block units, large block units, or slice units so that the encoding index becomes smaller as the frequency of the encoding mode number increases. For this reason, the variable length encoding process mentioned later is performed so that it may become short code length, so that an encoding index number is small.
  • the derived encoding index number is encoded using a predetermined encoding table (step S504).
  • the setting of the prediction mode use flag (step S207) and the encoding of the encoding mode number (step S209) are not performed separately.
  • An example will be described in which the encoding mode number is encoded including.
  • a code string is shown.
  • all mode information can be encoded by the same mechanism, and the required number of memories can be reduced.
  • the prediction mode use flag and the encoding mode number may be encoded separately.
  • the vlc table shared by the prediction mode use flag (prev_intra_luma_pred_flag), the prediction mode candidate number (mpm_idx), and the encoding mode number (rem_intra_luma_pred_mode) may be referred to.
  • Embodiment 2 An image decoding method according to Embodiment 2 of the present invention and an image decoding apparatus that executes the image decoding method will be described with reference to FIGS.
  • the image decoding method performs decoding using only the result of arithmetic decoding processing on the bit stream of the decoding target block during arithmetic decoding.
  • the arithmetic decoding process since the information amount of 1 to several bits may be restored, it is difficult to secure the buffer amount or to perform real-time processing.
  • other decoding is possible. Since the information of the target block is not used, the amount of internal memory required for the arithmetic processing can be reduced and the processing time can be shortened.
  • FIG. 10 is a block diagram illustrating a configuration of the image decoding apparatus 200.
  • the image decoding apparatus 200 is an apparatus that outputs an image signal when a bit stream (bitStr) is input.
  • bit stream bitStr
  • bitStr a bit stream generated by the image coding method according to the first embodiment will be described as an example of an input bit stream.
  • the bit stream in which the code string shown in FIG. 9A or 9B is written is converted into the right variable-length decoding process (step by step) according to the definition of Prediction Unit Syntax from left to right in FIG. 9A or 9B in terms of the data structure.
  • step S1117 “encoding mode number” (rem_intra_luma_pred_mode) ⁇ is acquired (step S1115) to reproduce the “target mode number”.
  • the image decoding apparatus 200 includes a variable length decoding unit 220, an inverse quantization unit 201, an inverse transform unit 202, an addition unit 203 that synthesizes a previous predicted image and a difference image, and an inter-screen prediction that generates a predicted image.
  • a prediction unit 204; an intra-screen prediction unit 205 that generates a prediction image by intra prediction; a switching unit 206 that selectively outputs a prediction image from the inter-screen prediction unit 204 and a prediction image from the intra-screen prediction unit 205; 210 etc. are included.
  • the variable length decoding unit 220 performs the reverse operation of the variable length encoding unit 120. That is, when a bitstream is input, “encoding mode number” and the like are acquired from the bitstream according to the number of intra prediction mode candidates (NumMPMCand). Further, a process of obtaining the “target mode number” from the “encoding mode number” is performed.
  • the operation of the intra prediction unit 205 is almost the same as that of the intra prediction unit 108 of FIG.
  • the prediction pixel existing in the direction specified by the intra prediction mode corresponding to the target mode number is used, and the pixel value of the current decoding target block is set. Predict.
  • the control unit 210 gives the variable length decoding unit 220 information necessary for acquiring the target mode number.
  • the necessary information may be “information for reproducing the“ target mode number ”from the bitstream output by the encoding of the first embodiment”.
  • a prediction mode array (candModeList) (or an initial value of this list) for the decoding target block is given.
  • an entropy decoding mode (a bit string output by the CAVLC method, a bit string output by using CABAC, or the like) is given for each predetermined unit associated with the current decoding target block.
  • FIG. 11 is a flowchart showing a decoding method of “target mode numbers” (34 intra prediction modes shown in FIG. 15) executed by the image decoding apparatus of FIG.
  • each step is described as an example executed by the variable length decoding unit 220, but may be executed by the control unit 210.
  • a corresponding part is extracted from the mode information of the block to be decoded from the bitstream (bitStr) obtained by encoding with the encoding method of the first embodiment.
  • the corresponding parts are (1) “prediction mode use flag” (prev_intra_luma_pred_flag) and (2) “prediction mode candidate number” (structured according to the syntax (Prediction unit syntax) described with reference to FIG. 6A and FIG. 6B).
  • mpm_idx) or (3) “encoding mode number” (rem_intra_luma_pred_mode) is a bit string obtained by entropy encoding.
  • variable length decoding unit 220 acquires the bit string, it decodes it according to the syntax described in FIGS. 6A and 6B, and acquires the “target mode number” (steps S1103 to S1115).
  • variable length decoding unit 220 first restores the value of the “prediction mode use flag” (prev_intra_luma_pred_flag) by a predetermined entropy decoding method (step S1103).
  • prev_intra_luma_pred_flag a predetermined entropy decoding method
  • variable length decoding unit 220 determines whether or not the decoded prediction mode use flag is 1 (step S1105).
  • step S1105 when the value of the “prediction mode use flag” is 1), the variable length decoding unit 220 decodes the “prediction mode candidate number” (mpm_idx) (step S1109).
  • variable length decoding unit 220 generates a prediction mode array (candModeList), and calculates the element value (candModeList [mpm_idx]) of the element number (mpm_idx) of the prediction mode array (candModeList) as “target mode number”. "(Step S1111). Note that the method described with reference to FIG. 4 or FIG. 7 of the first embodiment can be used as the method for generating the prediction mode array. The same prediction mode array generation method is used for the encoding device and the decoding device.
  • step S1105 the variable length decoding unit 220 entropy decodes the encoding mode number. Specifically, first, an encoding mode number is obtained from a bit string in accordance with the total number of intra prediction modes (maximum number of modes) (step S1117). This acquisition process is the reverse of step S217 in FIG. Different processing is performed depending on whether the corresponding bit string is an entropy encoding method (1) output by CABAC (FIG. 5) or (2) output by CAVLC (FIG. 8). .
  • the determination of the entropy coding method is distinguished by, for example, a value indicated by a predetermined unit entropy coding mode flag corresponding to a prediction unit (PU) associated with a decoding target block. Note that this flag may be specified in higher order sequence units.
  • FIG. 12A is a flowchart showing a flow of processing at the time of arithmetic decoding corresponding to step S1117 of FIG.
  • the variable length decoding unit 220 first performs arithmetic decoding processing on the acquired bitstream (the reverse of steps S1401 and S703).
  • the variable length decoding unit 220 performs multi-value processing on the binary information acquired by the arithmetic decoding processing, and restores the encoding mode number (step S1402).
  • FIG. 13 is a flowchart showing the “encoding mode number” acquisition method in step S1117 in the case where (2) indicates that the bit string is output by CAVLC.
  • the variable length decoding unit 220 acquires an encoding index number from the bit string using information (context) necessary for decoding the “encoding mode number” of the block to be decoded (PU) (step S1201). .
  • This decoding process corresponds to performing the reverse process of the encoding process of step S504 in FIG. More specifically, according to the maximum number of modes (for example, corresponding to the number of 17 modes or 34 modes depending on the transmission unit of the prediction information described in the first embodiment), the variable length coding (see FIG. 9A or 9B) ( Variable length decoding) table is selected. A bit string corresponding to the input bit stream (the bit string shown on the right side of FIG. 9A or 9B) is searched from the bit string of the selected variable-length coding table, and the encoding index number (FIG. 9A) associated with the bit string is retrieved. Or corresponding to the numbers shown on the left side of FIG. 9B.
  • variable length decoding unit 220 selects a separate variable length table for each maximum mode number (same as step S1202 and step S502, not shown) as described above, and acquires using the selected variable length table.
  • the encoding mode number associated with the encoded index number is derived (the reverse process of steps S1203 and S503).
  • This variable length table is updated in block units, large block units, and slice units so that the higher the frequency of the encoding mode number, the smaller the encoded index number. Since this update is updated by a method determined in advance on the encoding device side and the decoding device side, a variable length table used for encoding corresponding to the target encoding target block and decoding for the decoding target block Are designed to be the same. With this process, the encoding mode number is restored.
  • FIG. 14 is a flowchart showing a processing procedure for restoring the target mode number from the encoding mode number.
  • variable length decoding unit 220 acquires the “target mode number” from the “encoding mode number” acquired in step S1117.
  • Each step in FIG. 14 is equivalent to performing the step of obtaining the “encoding mode number” from the “target mode number” in FIG. 3 in reverse.
  • the variable length decoding unit 220 first acquires the number of intra prediction mode candidates (NumMPMCand) (step S1301).
  • the number of intra prediction mode candidates is a fixed number of two.
  • variable length decoding unit 220 repeats the loop processing shown in steps S1302 to S1307 as many times as specified by the number of intra prediction mode candidates (NumMPMCand).
  • step S1303 since the number of intra prediction mode candidates (NumMPMCand) is 2, step S1303 (and step S1305) is executed twice, with index values of 0 and 1. If the number of prediction mode candidates is N, step S1303 (and step S1305 according to the determination in step S1303) is executed N times.
  • step S1302 the candidate index candIdx (corresponding to Index in FIG. 14) is set to zero.
  • step S1303 the current encoding mode number is compared with the value of the element (candModeList [candIdx]) specified by the value of the candidate index candIdx of the prediction mode array (CandModeList).
  • Index 0, the encoding mode number is the encoding mode number at the time acquired in step S1117.
  • step S1303 If YES in step S1303 (encoding mode number ⁇ candModeList [candIdx]), the encoding mode number is incremented by 1 (step S1305). Note that the current encoding mode number and the prediction mode array candModeList [candIdx] are also incremented by 1 when the values are the same. While the candidate index number candIdx is incremented by 1, the loop from step S1302 to step S1307 is repeated until the comparison for all candidate indexes is completed.
  • This process restores the encoding mode number to the target mode number according to the number of intra prediction mode candidates. Note that the restoration of the “target mode number” from the “coding mode number” according to the number of intra prediction mode candidates is equivalent to reading the processing in Table 1 from the lower row toward the upper row. is there.
  • the correspondence between the encoding mode number and the target mode number is as shown in Table 2.
  • the value of the element of the first prediction mode array (index is 0) is “i”
  • the value of the element of the second prediction mode array (index is 1) is “j”.
  • CodeNum and “Encoding mode” are used in the CAVLD scheme according to the number of intra prediction mode candidates (or based on the number of intra prediction mode candidates).
  • the correspondence method of “coding number” is switched from the binary array in the CABAC system (step S1117). Further, the correspondence between the encoding mode number and the target mode number is switched according to the number of intra prediction mode candidates (step S1115).
  • the original “target mode number” is generated from the bitstream of the first embodiment generated by increasing the encoding efficiency by switching the encoding of the target mode number according to the number of intra prediction mode candidates. Can be reproduced.
  • the number of intra prediction mode candidates is fixed to 2 or more. Therefore, whether or not the number of intra prediction mode candidates is 1 in the arithmetic decoding process. It is possible to perform processing without conditional branching.
  • FIG. 12B is a conceptual diagram illustrating an example of a processing procedure of arithmetic decoding processing in the image decoding device.
  • the arithmetic decoding is indefinite because the information amount of the decoded signal (decoding parameter) with respect to the bit length to be acquired is determined arithmetically, and in order to realize real-time processing, it is fast. An operation is necessary. Therefore, as shown in FIG. 12B, in the decoding process, the bit stream to be acquired is arithmetically decoded by a predetermined method (CABAC or CAVLC) (step S1411), the decoding parameter is acquired (step S1412), and entropy decoding is performed.
  • CABAC or CAVLC CABAC or CAVLC
  • step S1413 a decoding process step in which a prediction image is generated based on a decoding parameter and a decoded image signal is acquired.
  • the decoding information necessary for the arithmetic decoding step S1411 is acquired by feedback from step S1413.
  • the prediction mode use flag is 1 (the signal decoded in the entropy decoding step) (YES in step S1105), the prediction mode candidate number is always set. Therefore, there is no need to wait for the process of the decoding process step (step S1413) during this period.
  • the decoding apparatus can be speeded up.
  • the coding control unit 110 in FIG. 1 and the control unit 210 in FIG. 10 are shown only for input / output with a processing unit necessary for explanation, but each processing unit is connected to a signal line (not shown). Necessary information may be input / output.
  • the encoding control unit or the control unit may be considered as a controller that controls the processing of each processing unit.
  • the encoding mode number (rem_intra_luma_pred_mode) can be expressed by n bits or n + 1 bits.
  • the syntax structure shown in FIGS. 6A and 6B can be correctly decoded.
  • the decoding process is simply performed. There is no need to acquire and compare numbers, the amount of memory is small, and decoding processing can be executed correctly at high speed.
  • the storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
  • the system has an image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method.
  • image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method.
  • Other configurations in the system can be appropriately changed according to circumstances.
  • FIG. 16 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service.
  • a communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
  • This content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
  • PDA Personal Digital Assistant
  • each device may be directly connected to the telephone network ex104 without going from the base station ex106, which is a fixed wireless station, to ex110.
  • the devices may be directly connected to each other via short-range wireless or the like.
  • the camera ex113 is a device that can shoot moving images such as a digital video camera
  • the camera ex116 is a device that can shoot still images and movies such as a digital camera.
  • the mobile phone ex114 is a GSM (registered trademark) (Global System for Mobile Communications) system, a CDMA (Code Division Multiple Access) system, a W-CDMA (Wideband-Code Division Multiple Access) system, or an LTE (Long Term Evolution). It is possible to use any of the above-mentioned systems, HSPA (High Speed Packet Access) mobile phone, PHS (Personal Handyphone System), or the like.
  • the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like.
  • live distribution content that is shot by a user using the camera ex113 (for example, music live video) is encoded as described in each of the above embodiments (that is, in one aspect of the present invention).
  • the streaming server ex103 stream-distributes the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, and a game machine ex115 that can decode the encoded data.
  • Each device that receives the distributed data decodes the received data and reproduces it (that is, functions as an image decoding device according to one embodiment of the present invention).
  • the captured data may be encoded by the camera ex113, the streaming server ex103 that performs data transmission processing, or may be shared with each other.
  • the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in common with each other.
  • still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111.
  • the encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
  • these encoding / decoding processes are generally performed in the computer ex111 and the LSI ex500 included in each device.
  • the LSI ex500 may be configured as a single chip or a plurality of chips.
  • moving image encoding / decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111, etc., and encoding / decoding processing is performed using the software. May be.
  • moving image data acquired by the camera may be transmitted.
  • the moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
  • the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
  • the encoded data can be received and reproduced by the client.
  • the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and personal broadcasting can be realized even for a user who does not have special rights or facilities.
  • the digital broadcast system ex200 also includes at least the video encoding device (video encoding device) or video decoding according to each of the above embodiments. Any of the devices (image decoding devices) can be incorporated.
  • video encoding device video encoding device
  • image decoding devices any of the devices (image decoding devices) can be incorporated.
  • the broadcast station ex201 multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves.
  • This video data is data encoded by the moving image encoding method described in each of the above embodiments (that is, data encoded by the image encoding apparatus according to one aspect of the present invention).
  • the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting.
  • the received multiplexed data is decoded and reproduced by an apparatus such as the television (receiver) ex300 or the set top box (STB) ex217 (that is, functions as an image decoding apparatus according to one embodiment of the present invention).
  • a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded.
  • a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television.
  • the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
  • FIG. 18 is a diagram illustrating a television (receiver) ex300 that uses the video decoding method and the video encoding method described in each of the above embodiments.
  • the television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data.
  • the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / demultiplexing unit ex303.
  • the television ex300 also decodes the audio data and the video data, or encodes the information, the audio signal processing unit ex304, the video signal processing unit ex305 (the image encoding device or the image according to one embodiment of the present invention) A signal processing unit ex306 that functions as a decoding device), a speaker ex307 that outputs the decoded audio signal, and an output unit ex309 that includes a display unit ex308 such as a display that displays the decoded video signal. Furthermore, the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation. Furthermore, the television ex300 includes a control unit ex310 that performs overall control of each unit, and a power supply circuit unit ex311 that supplies power to each unit.
  • the interface unit ex317 includes a bridge unit ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording unit such as a hard disk.
  • a driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included.
  • the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored.
  • Each part of the television ex300 is connected to each other via a synchronous bus.
  • the television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in each of the above embodiments.
  • the decoded audio signal and video signal are output from the output unit ex309 to the outside. At the time of output, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or to a recording medium will be described.
  • the television ex300 receives a user operation from the remote controller ex220 and the like, encodes an audio signal with the audio signal processing unit ex304, and converts the video signal with the video signal processing unit ex305 based on the control of the control unit ex310. Encoding is performed using the encoding method described in (1).
  • the encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320, ex321, etc. so that the audio signal and the video signal are synchronized.
  • a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
  • the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good.
  • the television ex300 has been described as a configuration capable of the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
  • the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218,
  • the reader / recorder ex218 may share with each other.
  • FIG. 19 shows a configuration of an information reproducing / recording unit ex400 when data is read from or written to an optical disk.
  • the information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below.
  • the optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disk to write information, and detects reflected light from the recording surface of the recording medium ex215 to read the information.
  • the modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data.
  • the reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary To play back information.
  • the buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215.
  • the disk motor ex405 rotates the recording medium ex215.
  • the servo controller ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process.
  • the system control unit ex407 controls the entire information reproduction / recording unit ex400.
  • the system control unit ex407 uses various kinds of information held in the buffer ex404, and generates and adds new information as necessary, and the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner.
  • the system control unit ex407 is composed of, for example, a microprocessor, and executes these processes by executing a read / write program.
  • the optical head ex401 has been described as irradiating a laser spot.
  • a configuration in which higher-density recording is performed using near-field light may be used.
  • FIG. 20 shows a schematic diagram of a recording medium ex215 that is an optical disk.
  • Guide grooves grooves
  • address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove.
  • This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus.
  • the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234.
  • the area used for recording user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used.
  • the information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
  • an optical disk such as a single-layer DVD or BD has been described as an example.
  • the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used.
  • an optical disc with a multi-dimensional recording / reproducing structure such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
  • the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has.
  • the configuration of the car navigation ex211 may be, for example, a configuration in which a GPS receiving unit is added in the configuration illustrated in FIG. 18, and the same may be considered for the computer ex111, the mobile phone ex114, and the like.
  • FIG. 21A is a diagram showing the mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment.
  • the mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of capturing video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data.
  • the mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, a captured video,
  • an audio input unit ex356 such as a microphone for inputting audio
  • a captured video In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data
  • a slot ex364 is provided.
  • the mobile phone ex114 has a power supply circuit part ex361, an operation input control part ex362, and a video signal processing part ex355 with respect to a main control part ex360 that comprehensively controls each part of the main body including the display part ex358 and the operation key part ex366.
  • a camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
  • the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
  • the cellular phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. Then, this is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing are performed by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the mobile phone ex114 also amplifies the received data received via the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing by the modulation / demodulation unit ex352, and performs voice signal processing unit After being converted into an analog audio signal by ex354, this is output from the audio output unit ex357.
  • the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362.
  • the main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350.
  • almost the reverse process is performed on the received data and output to the display unit ex358.
  • the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments. Encode (that is, function as an image encoding device according to an aspect of the present invention), and send the encoded video data to the multiplexing / demultiplexing unit ex353.
  • the audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, etc., and sends the encoded audio data to the multiplexing / separating unit ex353. To do.
  • the multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result.
  • the multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370.
  • the encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355.
  • the video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method described in each of the above embodiments (that is, an image according to an aspect of the present invention).
  • video and still images included in the moving image file linked to the home page are displayed from the display unit ex358 via the LCD control unit ex359.
  • the audio signal processing unit ex354 decodes the audio signal, and the audio is output from the audio output unit ex357.
  • the terminal such as the mobile phone ex114 is referred to as a transmission terminal having only an encoder and a receiving terminal having only a decoder.
  • a transmission terminal having only an encoder
  • a receiving terminal having only a decoder.
  • multiplexed data in which music data or the like is multiplexed with video data is received and transmitted, but data in which character data or the like related to video is multiplexed in addition to audio data It may be video data itself instead of multiplexed data.
  • the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
  • Embodiment 4 The moving picture coding method or apparatus shown in the above embodiments and the moving picture coding method or apparatus compliant with different standards such as MPEG-2, MPEG4-AVC, and VC-1 are appropriately switched as necessary. Thus, it is also possible to generate video data.
  • multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to.
  • identification information indicating which standard the video data conforms to.
  • FIG. 22 is a diagram showing a structure of multiplexed data.
  • the multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream.
  • the video stream indicates the main video and sub-video of the movie
  • the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio
  • the presentation graphics stream indicates the subtitles of the movie.
  • the main video indicates a normal video displayed on the screen
  • the sub-video is a video displayed on a small screen in the main video.
  • the interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen.
  • the video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing.
  • the audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
  • Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
  • FIG. 23 is a diagram schematically showing how multiplexed data is multiplexed.
  • a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240.
  • the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246.
  • the multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
  • FIG. 24 shows in more detail how the video stream is stored in the PES packet sequence.
  • the first row in FIG. 24 shows a video frame sequence of the video stream.
  • the second level shows a PES packet sequence.
  • a plurality of Video Presentation Units in the video stream are divided into pictures, B pictures, and P pictures, and are stored in the payload of the PES packet.
  • Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
  • PTS Presentation Time-Stamp
  • DTS Decoding Time-Stamp
  • FIG. 25 shows the format of the TS packet that is finally written in the multiplexed data.
  • the TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data.
  • the PES packet is divided and stored in the TS payload.
  • a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data.
  • TP_Extra_Header information such as ATS (Arrival_Time_Stamp) is described.
  • ATS indicates the transfer start time of the TS packet to the PID filter of the decoder.
  • source packets are arranged in the multiplexed data, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
  • TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption.
  • PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0.
  • the PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data.
  • the descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data.
  • the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
  • FIG. 26 is a diagram for explaining the data structure of the PMT in detail.
  • a PMT header describing the length of data included in the PMT is arranged at the head of the PMT.
  • a plurality of descriptors related to multiplexed data are arranged.
  • the copy control information and the like are described as descriptors.
  • a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged.
  • the stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream.
  • the multiplexed data is recorded together with the multiplexed data information file.
  • the multiplexed data information file is management information of multiplexed data, has a one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
  • the multiplexed data information is composed of a system rate, a reproduction start time, and a reproduction end time.
  • the system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later.
  • the ATS interval included in the multiplexed data is set to be equal to or less than the system rate.
  • the playback start time is the PTS of the first video frame of the multiplexed data
  • the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
  • attribute information about each stream included in the multiplexed data is registered for each PID.
  • the attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream.
  • the video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is.
  • the audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
  • the stream type included in the PMT is used.
  • video stream attribute information included in the multiplexed data information is used.
  • the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT.
  • FIG. 29 shows steps of the moving picture decoding method according to the present embodiment.
  • step exS100 the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data.
  • step exS101 it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do.
  • step exS102 the above embodiments are performed. Decoding is performed by the moving picture decoding method shown in the form.
  • the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
  • FIG. 30 shows the configuration of an LSI ex500 that is made into one chip.
  • the LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510.
  • the power supply circuit unit ex505 is activated to an operable state by supplying power to each unit when the power supply is on.
  • the LSI ex500 when performing the encoding process, performs the microphone ex117 and the camera ex113 by the AV I / O ex509 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like.
  • the AV signal is input from the above.
  • the input AV signal is temporarily stored in an external memory ex511 such as SDRAM.
  • the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed.
  • the encoding process of the video signal is the encoding process described in the above embodiments.
  • the signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside.
  • the output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
  • the memory ex511 is described as an external configuration of the LSI ex500.
  • a configuration included in the LSI ex500 may be used.
  • the number of buffers ex508 is not limited to one, and a plurality of buffers may be provided.
  • the LSI ex500 may be made into one chip or a plurality of chips.
  • control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration.
  • the signal processing unit ex507 may further include a CPU.
  • the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507.
  • the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
  • LSI LSI
  • IC system LSI
  • super LSI ultra LSI depending on the degree of integration
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • FIG. 31 shows a configuration ex800 in the present embodiment.
  • the drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments.
  • the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data.
  • the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
  • the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 in FIG.
  • the decoding processing unit ex801 that executes the moving picture decoding method shown in each of the above embodiments and the decoding processing unit ex802 that complies with the conventional standard correspond to the signal processing unit ex507 in FIG.
  • the CPU ex502 identifies which standard the video data conforms to. Then, based on the signal from the CPU ex502, the drive frequency control unit ex512 sets the drive frequency. Further, based on the signal from the CPU ex502, the signal processing unit ex507 decodes the video data.
  • the identification information described in the fourth embodiment may be used.
  • the identification information is not limited to that described in the fourth embodiment, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal.
  • the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a lookup table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to the look-up table.
  • FIG. 32 shows steps for executing the method of the present embodiment.
  • the signal processing unit ex507 acquires identification information from the multiplexed data.
  • the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information.
  • the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency.
  • step exS203 the CPU ex502 drives the signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
  • the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency. For example, when the drive frequency is set low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
  • the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method.
  • the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
  • the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered.
  • the voltage applied to the LSIex500 or the apparatus including the LSIex500 is set high.
  • the driving of the CPU ex502 is stopped.
  • the CPU ex502 is temporarily stopped because there is room in processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is a margin for processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
  • a plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone.
  • the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input.
  • the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
  • a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1
  • the processing unit is partly shared.
  • An example of this configuration is shown as ex900 in FIG. 34A.
  • the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common.
  • the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for other processing contents specific to one aspect of the present invention that do not correspond to the MPEG4-AVC standard, a dedicated decoding processing unit A configuration using ex901 is conceivable.
  • the decoding processing unit for executing the moving picture decoding method described in each of the above embodiments is shared, and the processing content specific to the MPEG4-AVC standard As for, a configuration using a dedicated decoding processing unit may be used.
  • ex1000 in FIG. 34B shows another example in which processing is partially shared.
  • a dedicated decoding processing unit ex1001 corresponding to the processing content specific to one aspect of the present invention
  • a dedicated decoding processing unit ex1002 corresponding to the processing content specific to another conventional standard
  • a common decoding processing unit ex1003 corresponding to the processing contents common to the moving image decoding method according to the above and other conventional moving image decoding methods.
  • the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in one aspect of the present invention or processing content specific to other conventional standards, and can execute other general-purpose processing. Also good.
  • the configuration of the present embodiment can be implemented by LSI ex500.
  • the processing content common to the moving picture decoding method according to one aspect of the present invention and the moving picture decoding method of the conventional standard reduces the circuit scale of the LSI by sharing the decoding processing unit, In addition, the cost can be reduced.
  • the present invention relates to a mode number encoding / decoding method for distinguishing between generation methods of in-plane prediction pixels in intra-screen encoding.

Abstract

符号化ストリームに含まれる画像データをブロック毎に復号する画像復号方法であって、復号対象ブロックの画面内予測で用いるイントラ予測モードの候補であって、常に2以上の数のイントラ予測モードの候補を導出する導出ステップと、導出された前記イントラ予測モードの候補の中から1つの候補を特定するためのインデクスを前記符号化ストリームから取得する取得ステップと、取得された前記インデクスに基づいて、導出された前記イントラ予測モードの候補のうちの1つの候補を、前記復号対象ブロックの画面内予測で用いる前記イントラ予測モードとして決定する決定ステップと、を含む。

Description

画像復号方法、画像符号化方法、画像復号装置、画像符号化装置および画像符号化復号装置
 本発明は、動画像の画像復号方法および画像符号化方法等に関する。特に、予測画素の生成で用いるイントラ予測モード番号を含むモード情報の復号方法および符号化方法等に関する。
 次世代画像符号化標準規格であるHEVC(High Efficiency Video Coding)規格では、符号化効率を向上させるために様々な検討がされている(非特許文献1参照)。
 符号化には、前のフレームの画素情報を参照して予測画像を生成するフレーム間予測により圧縮を行うフレーム間符号化や、同画面内の画素情報を参照して予測画像を生成するイントラ予測により圧縮を行うイントラ符号化がある。
 イントラ符号化では、面内予測画素の生成のための方向等を区別するために、符号化を行う符号化対象ブロックの所定のサイズ(例えば、log2TrafoSizeの値やPrediction Unitの種別)に応じた数(intraPredModeNum)のモードが用意される。
 例えば、サイズlog2TrafoSizeの値が3以上5以下の符号化対象ブロックには、34個(intraPredModeNumの値が34)のモードを用意することが検討されている(図15)。
 このモードはイントラ予測モード(IntraPredMode)と呼ばれる。イントラ予測モードの値(イントラ予測モード番号)は、予測の方向を代表する値である。イントラ予測モードとしては、例えば、34個のモードや、17個のモードがある。例えば、イントラ予測モード番号(あるいはラベル)「0」は、垂直(方向)を、イントラ予測モード番号「1」は水平(方向)を、イントラ予測モード番号「2」はDCモード予測と呼ばれる無方向を、イントラ予測モード番号が3以上の値(所定のサイズのブロックについて3以上33以下の値)である場合については、各々対応付けられた所定の角度の方向を示す。
 以下、明細書では、符号化対象ブロックに対応付けられるイントラ予測モード番号を「対象モード番号」と呼ぶ。この「対象モード番号」と区別する上で、「対象モード番号」を所定の符号化方式により符号化した符号列で示される値のことを「符号化モード番号」と呼ぶ。
 復号対象ブロック(例として、輝度ブロック)の復号では、「複数のイントラ予測モードのうちいずれのイントラ予測モードを使うかを特定するための情報」であるモード情報を用いる。モード情報は、予測単位(Prediction unit、以下適宜「PU」と称する)別に生成される。
 現在、モード情報には以下の3つの情報が含まれることが検討されている。
(I1)「予測モード使用フラグ」(prev_intra_luma_pred_flag)以前に復号された隣接するPUのイントラ予測モードの値を使用するか否かを決定するフラグ。
(I2)「予測モード候補番号」(mpm_idx)2以上のイントラ予測モードの候補がある場合に、どのイントラ予測モードの候補を使用するかを示すインデクス。例えば、デフォルトでは、イントラ予測モードの候補の1つ目を示すインデクスを値「0」とする。
(I3)「符号化モード番号」(rem_intra_luma_pred_mode)以前に復号された隣接するPUのイントラ予測モード番号を使用しない場合において、「対象モード番号」に対応付けられた符号(値)である。復号過程においては、(1)まず、モード情報に含まれる符号列からこの「符号化モード番号」を所定の可変長復号方式等(算術復号化方法等)により抽出し、(2)次に、抽出された値を用いて「対象モード番号」(前述の0以上33以下の34個のモードの何れか等)を導出(あるいは導出するための情報を導出)する。
Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 5th Meeting: Geneva, CH,-6-23 March, 2011 JCTVC-E603 Title:WD3: Working Draft 3 of High-Efficiency Video Coding ver.5 http://phenix.int-evry.fr/jct/doc_end_user/documents/5_Geneva/wg11/JCTVC-E603-v5.zip
 しかしながら、従来のイントラ符号化では、モード情報の圧縮効率が十分でないという問題がある。
 そこで、本発明は、上記従来の課題を解決するためになされたものであって、モード情報の圧縮効率の向上が可能な画像符号化方法、画像符号化装置、画像復号方法、画像復号装置および画像符号化復号装置を提供することを目的とする。
 上記の課題を解決するために、本発明の一態様に係る画像復号方法は、符号化ストリームに含まれる画像データをブロック毎に復号する画像復号方法であって、復号対象ブロックの画面内予測で用いるイントラ予測モードの候補であって、常に2以上の数のイントラ予測モードの候補を導出する導出ステップと、導出された前記イントラ予測モードの候補の中から1つの候補を特定するためのインデクスを前記符号化ストリームから取得する取得ステップと、取得された前記インデクスに基づいて、導出された前記イントラ予測モードの候補のうちの1つの候補を、前記復号対象ブロックの画面内予測で用いる前記イントラ予測モードとして決定する決定ステップと、を含む。
 上記の課題を解決するために、本発明の一態様に係る画像符号化方法は、画像データをブロック毎に符号化することで符号化ストリームを生成する画像符号化方法であって、符号化対象ブロックに対応する復号対象ブロックの画面内予測で用いるイントラ予測モードの候補であって、常に2以上の数のイントラ予測モードの候補を導出する導出ステップと、導出された前記イントラ予測モードの候補のうちの1つの候補を、前記復号対象ブロックの画面内予測で用いるイントラ予測モードとして決定する決定ステップと、導出された前記イントラ予測モードの候補の中から、決定された前記1つの候補を特定するためのインデクスを前記符号化ストリームに付加する付加ステップとを含む。
 上記の課題を解決するために、本発明の一態様に係る画像復号装置は、符号化ストリームに含まれる画像データをブロック毎に復号する画像復号装置であって、復号対象ブロックの画面内予測で用いるイントラ予測モードの候補であって、常に2以上の数のイントラ予測モードの候補を導出する導出部と、導出された前記イントラ予測モードの候補の中から1つの候補を特定するためのインデクスを前記符号化ストリームから取得する取得部と、取得された前記インデクスに基づいて、導出された前記イントラ予測モードの候補のうちの1つの候補を、前記復号対象ブロックの画面内予測で用いる前記イントラ予測モードとして決定する決定部と、を備える。
 上記の課題を解決するために、本発明の一態様に係る画像符号化装置は、画像データをブロック毎に符号化することで符号化ストリームを生成する画像符号化装置であって、符号化対象ブロックに対応する復号対象ブロックの画面内予測で用いるイントラ予測モードの候補であって、常に2以上の数のイントラ予測モードの候補を導出する導出部と、導出された前記イントラ予測モードの候補のうちの1つの候補を、前記復号対象ブロックの画面内予測で用いるイントラ予測モードとして決定する決定部と、導出された前記イントラ予測モードの候補の中から、決定された前記1つの候補を特定するためのインデクスを前記符号化ストリームに付加する付加部とを備える。
 上記の課題を解決するために、本発明の一態様に係る画像符号化復号装置は、上記画像復号装置と、上記画像符号化装置とを備える。
 なお、これらの全般的または具体的な態様は、システム、方法、集積回路、またはコンピュータプログラムまたは記録媒体で実現されてもよく、システム、方法、集積回路、およびコンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本発明によれば、符号化効率を維持しつつ、処理量の削減を実現することができる。
図1は、実施の形態1に係る画像符号化装置の構成例を示すブロック図である。 図2は、実施の形態1に係る画像符号化方法におけるモード情報の生成方法を示すフローチャートである。 図3は、図2のステップS215を詳細に説明するフローチャートである。 図4は、第1の実施形態における予測モード決定方法を示すフローチャートである。 図5は、CABAC方式による符号化モード番号の符号化方法(ステップS217)の一例を説明するフローチャートである。 図6Aは、従来のシンタックス構成の一例を示す概念図である。 図6Bは、実施の形態1におけるシンタックス構成の一例を示す概念図である。 図7は、第1の実施形態における予測モード決定方法の変形例を示すフローチャートである。 図8は、符号化モード番号の他の符号化方法(ステップS217)の例を説明するフローチャートである。 図9Aは、符号化モード番号の他の符号化方法(ステップS217)で用いる符号化テーブルの一例を示す表である。 図9Bは、符号化モード番号の他の符号化方法(ステップS217)で用いる符号化テーブルの一例を示す表である。 図10は、第2の実施形態における復号化装置の構成を示すブロック図である。 図11は、第2の実施形態における復号化方法を示すフローチャートである。 図12Aは、ビット列がCABACにより出力された物である場合の算術復号処理の処理手順を示すフローチャートである。 図12Bは、ビット列がCAVLCにより出力された物である場合の算術復号処理の処理手順を示すフローチャートである。 図13は、ステップS1117の第1の例を詳細に説明するフローチャートである。 図14は、ステップS1115を詳細に説明するフローチャートである。 図15は、復号予測モードの一例を示す概念図である。 図16は、コンテンツ配信サービスを実現するコンテンツ供給システムの全体構成図である。 図17は、デジタル放送用システムの全体構成図である。 図18は、テレビの構成例を示すブロック図である。 図19は、光ディスクである記録メディアに情報の読み書きを行う情報再生/記録部の構成例を示すブロック図である。 図20は、光ディスクである記録メディアの構造例を示す図である。 図21Aは、携帯電話の一例を示す図である。 図21Bは、携帯電話の構成例を示すブロック図である。 図22は、多重化データの構成を示す図である。 図23は、各ストリームが多重化データにおいてどのように多重化されているかを模式的に示す図である。 図24は、PESパケット列に、ビデオストリームがどのように格納されるかを更に詳しく示した図である。 図25は、多重化データにおけるTSパケットとソースパケットの構造を示す図である。 図26は、PMTのデータ構成を示す図である。 図27は、多重化データ情報の内部構成を示す図である。 図28は、ストリーム属性情報の内部構成を示す図である。 図29は、映像データを識別するステップを示す図である。 図30は、各実施の形態の動画像符号化方法および動画像復号化方法を実現する集積回路の構成例を示すブロック図である。 図31は、駆動周波数を切り替える構成を示す図である。 図32は、映像データを識別し、駆動周波数を切り替えるステップを示す図である。 図33は、映像データの規格と駆動周波数を対応づけたルックアップテーブルの一例を示す図である。 図34Aは、信号処理部のモジュールを共有化する構成の一例を示す図である。 図34Bは、信号処理部のモジュールを共有化する構成の他の一例を示す図である。
 上述した問題を解決するために、本発明の一態様に係る画像復号方法は、符号化ストリームに含まれる画像データをブロック毎に復号する画像復号方法であって、復号対象ブロックの画面内予測で用いるイントラ予測モードの候補であって、常に2以上の数のイントラ予測モードの候補を導出する導出ステップと、導出された前記イントラ予測モードの候補の中から1つの候補を特定するためのインデクスを前記符号化ストリームから取得する取得ステップと、取得された前記インデクスに基づいて、導出された前記イントラ予測モードの候補のうちの1つの候補を、前記復号対象ブロックの画面内予測で用いる前記イントラ予測モードとして決定する決定ステップと、を含む。
 ここで、従来のモード情報の構成としては、以下の3つが考えられる。
(M1)イントラ予測モードの候補の何れか1つを使用し、かつ、イントラ予測モードの候補数(NumMPMCandの値)が複数である場合、モード情報に含まれる情報は、(I1)「予測モード使用フラグ」および(I2)「予測モード候補番号」となる。
(M2)イントラ予測モードの候補を使用し、かつ、イントラ予測モードの候補が1つの場合、モード情報に含まれる情報は、(I1)「予測モード使用フラグ」のみとなる。これは、イントラ予測モードの候補が1つの場合、対象モード番号は一意に特定されるため、(I2)「予測モード候補番号」を含める必要がないためである。従来、モード情報の情報量の削減のため、イントラ予測モードの候補が1つの場合は、「予測モード候補番号」を含めない構成としている。
(M3)イントラ予測モードの候補を使用しない場合は、モード情報に含まれる情報は、(I1)「予測モード使用フラグ」および(I3)対象モード番号を符号化した「符号化モード番号」となる。なお、「符号化モード番号」の情報量は、(I2)「予測モード候補番号」等に比べて非常に多い。
 上記構成の画像復号方法では、常に2以上の数の候補を導出するため、イントラ予測モードの候補を利用するPUの割合が高くなる。すなわち、情報量の比較的少ないモード情報(M2)の割合が増加し、情報量の多いモード情報(M3)の割合が減少するため、情報量を低減可能である。なお、従来のモード情報(M1)に相当する場合も、モード情報(M2)と同じ情報量が必要となるため、従来のモード情報(M1)に相当する場合については情報量が増大する。しかし、(I2)「予測モード候補番号」の情報量は、(I3)「符号化モード番号」の情報量と比較して非常に少ないため、フレーム全体あるいは符号化対象ブロック全体では、情報の増大量より削減量が上回ることとなり、モード情報の情報量の削減を図ることができる。
 また、例えば、前記2以上の数は、固定された数としてもよい。
 上記構成の画像復号方法によれば、導出するイントラ予測モードの候補の数を2以上の数に固定するため、イントラ予測モードの候補を使用する場合、イントラ予測モードの候補の数を判定する処理を行う必要がなくなる。
 イントラ予測モードの候補の数を判定する処理は、例えば、図6Aの条件式901「if(NumMPMCand>1)」で示すイントラ予測モードの候補の数が1つであるか否かを判定する処理である。当該処理では、例えば、参照する複数のPUのイントラ予測モード番号を求め、複数のPUにおけるイントラ予測モード番号が一致するか否かを求める処理が必要となる。
 ここで、参照する複数のPUのイントラ予測モード番号を導出する処理と、復号対象ブロックで用いるイントラ予測モードを求める処理は、高速化のために、並列演算される場合がある。従来は、(I1)「予測モード使用フラグ」がイントラ予測モードの候補を使用することを示す場合、符号化ストリームにインデクスが含まれるか否かを判定するために、参照する複数のPUのイントラ予測モード番号を導出する処理の結果を得る必要があることから、当該処理の結果がでるまで、復号対象ブロックで用いるイントラ予測モードを求める処理を進めることができず、高速化が十分ではない。
 一方、上記構成の画像復号方法では、常に2以上の固定数の予測モードの候補を生成するため、イントラ予測モードの候補の数を判定する処理が必要なくなり、予測モード数(候補数)に依存せず、復号側でパラメタを復号することを可能とする。これにより、参照する複数のPUのイントラ予測モード番号を導出する処理の結果を待つことなく、復号対象ブロックで用いるイントラ予測モードを求める処理を進めることができる。これにより、上記画像復号方法を実行する装置の高速化を図ることができる。
 また、例えば、前記導出ステップは、前記復号対象ブロックに隣接する各隣接ブロックの画面内予測で用いられたイントラ予測モードから、前記イントラ予測モードの第1候補を導出する第1導出ステップと、導出された前記第1候補の数が、前記2以上の数より小さいか否かを判定する判定ステップと、前記第1候補の数が前記2以上の数より小さいと判定された場合に、さらに、前記イントラ予測モードの第2候補を導出する第2導出ステップとを含むように構成してもよい。
 また、例えば、前記第1導出ステップでは、画面内予測で用いられたイントラ予測モードを取得する前記隣接ブロックの数は、前記2以上の数と同じ数としてもよい。
 また、例えば、前記第2導出ステップでは、前記第1候補の数と前記第2候補の数の合計が、常に前記2以上の数になるように、前記第2候補を導出するように構成してもよい。
 また、例えば、前記第2導出ステップでは、前記復号対象ブロックに隣接する各隣接ブロックの画面内予測で用いられたイントラ予測モードとは異なるイントラ予測モードを、前記第2候補として導出するように構成してもよい。
 また、例えば、前記第2導出ステップでは、前記復号対象ブロックの画素値の平均値を用いて予測することを示すイントラ予測モードと、平面予測を示すイントラ予測モードと、縦方向予測を示すイントラ予測モードとのうちの少なくとも何れか1つを前記第2候補として導出するように構成してもよい。
 また、例えば、前記導出ステップは、前記復号対象ブロックに隣接する隣接ブロックがある場合は、前記隣接ブロックの画面内予測で用いられたイントラ予測モード以外のイントラ予測モードを、前記イントラ予測モードの候補として導出し、前記復号対象ブロックに隣接する隣接ブロックがない場合は、予め定められた条件に基づいて、前記イントラ予測モードの候補を導出するように構成してもよい。
 また、例えば、前記導出ステップでは、さらに、前記イントラ予測モードの候補を用いて候補リストを作成し、前記インデクスは、前記候補リストに含まれる前記イントラ予測モードの候補を識別するための番号としてもよい。
 上述した問題を解決するために、本発明の一態様に係る画像符号化方法は、画像データをブロック毎に符号化することで符号化ストリームを生成する画像符号化方法であって、符号化対象ブロックに対応する復号対象ブロックの画面内予測で用いるイントラ予測モードの候補であって、常に2以上の数のイントラ予測モードの候補を導出する導出ステップと、導出された前記イントラ予測モードの候補のうちの1つの候補を、前記復号対象ブロックの画面内予測で用いるイントラ予測モードとして決定する決定ステップと、導出された前記イントラ予測モードの候補の中から、決定された前記1つの候補を特定するためのインデクスを前記符号化ストリームに付加する付加ステップとを含む。
 また、例えば、前記2以上の数は、固定された数としてもよい。
 上述した問題を解決するために、本発明の一態様に係る画像復号装置は、符号化ストリームに含まれる画像データをブロック毎に復号する画像復号装置であって、復号対象ブロックの画面内予測で用いるイントラ予測モードの候補であって、常に2以上の数のイントラ予測モードの候補を導出する導出部と、導出された前記イントラ予測モードの候補の中から1つの候補を特定するためのインデクスを前記符号化ストリームから取得する取得部と、取得された前記インデクスに基づいて、導出された前記イントラ予測モードの候補のうちの1つの候補を、前記復号対象ブロックの画面内予測で用いる前記イントラ予測モードとして決定する決定部と、を備える。
 上述した問題を解決するために、本発明の一態様に係る画像符号化装置は、画像データをブロック毎に符号化することで符号化ストリームを生成する画像符号化装置であって、符号化対象ブロックに対応する復号対象ブロックの画面内予測で用いるイントラ予測モードの候補であって、常に2以上の数のイントラ予測モードの候補を導出する導出部と、導出された前記イントラ予測モードの候補のうちの1つの候補を、前記復号対象ブロックの画面内予測で用いるイントラ予測モードとして決定する決定部と、導出された前記イントラ予測モードの候補の中から、決定された前記1つの候補を特定するためのインデクスを前記符号化ストリームに付加する付加部とを備える。
 上述した問題を解決するために、本発明の一態様に係る画像符号化復号装置は、上記画像復号装置と、上記画像符号化装置とを備える。
 また、上記の画像符号化装置および画像復号装置を構成する構成要素の一部または全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されていてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROMおよびRAM(Random Access Memory)などを含んで構成されるコンピュータシステムである。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも本発明の望ましい一具体例を示すものである。以下の実施の形態で示される構成要素、構成要素の配置位置および接続形態、処理、処理の順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、より望ましい形態を構成する任意の構成要素として説明される。
 (実施の形態1)
 本発明の実施の形態1に係る画像符号化方法、および、当該画像符号化方法を実行する画像符号化装置について、図1~図6Bを基に説明する。
 画像符号化装置は、各PUについて、イントラ予測で用いたイントラ予測モードを示すモード情報の生成を行う機能を備えている。なお、本実施の形態では、説明のため、イントラ予測モードの候補の数が、予め2に固定されている(常に2以上の固定数のイントラ予測モードの候補を導出する)場合を例に説明する。なお、3以上に固定されている場合や、2以上の数で可変に構成されている場合でも、同様の方法で実現可能である。
 [1-1.画像符号化装置の構成]
 本実施の形態に係る画像符号化装置の構成について、図1を基に説明する。図1は、画像符号化装置100の構成を示すブロック図である。
 画像符号化装置100は、画像信号が入力されると、画像信号に対する符号化を行い、後述する可変長符号化部120から出力されるビットストリーム(bitStr)を、画像復号装置(図1では不図示)に出力する装置である。
 画像符号化装置100は、図1に示すように、画像信号が示す画像と予測画像との差分画像を出力する差分部101、差分画像に対してDCT変換(Discrete Cosine Transform、離散コサイン変換)等を行う変換部102、DCT変換された差分画像に対する量子化を行う量子化部103、逆量子化を行う逆量子化部104、逆DCT変換等を行う逆変換部105、前回の予測画像と逆変換部105からの復元された差分画像を合成して前回の画像を出力する加算部106、フレーム間予測により予測画像を生成する画面間予測部107、イントラ予測により予測画像を生成する画面内予測部108、画面間予測部107からの予測画像と画面内予測部108からの予測画像とを選択的に出力する切替部109、画像符号化装置100の各機能を制御する符号化制御部110、および、量子化部103からのデータを可変長符号化する可変長符号化部120等を含む。
 符号化制御部110は、所定の評価基準により決定された、符号化対象ブロック(PU、あるいは、PUに含まれるブロック等、以下同じ)に適用するべき「対象モード番号」と「可変長符号化方式」とを保持する。評価基準は、例えば、所定の予測精度を満たす条件で出力される符号列のビット数が削減させるように決定されている。
 画面内予測部108は、符号化制御部110の指定する「対象モード番号」に従い、現在の符号化対象ブロックに対して、対象モード番号が示すイントラ予測モードの指定する方向に存在する予測画素を利用し、現在の符号化対象ブロックの画素値を予測する。また、「対象モード番号」を符号化して「符号化モード番号」を生成する。
 可変長符号化部120は、画面内予測部108において生成された「符号化モード番号」を、符号化制御部110の指定する「可変長符号化方式」に従い、算術符号化等のエントロピー符号化を行いビットストリーム(bitStr)を出力する。
 [1-2.画像符号化方法の処理手順]
 本実施の形態に係る画像符号化方法の処理手順について、図2を基に説明する。図2は、図1の画像符号化装置で実行されるモード情報の生成方法を示すフローチャートである。
 まず、符号化制御部110は、モード情報を生成する符号化対象ブロックについての「対象モード番号」を取得する(ステップS201)。
 次に、符号化制御部110は、符号化対象ブロックについてのイントラ予測モードの候補を求めることにより、「予測モード配列」(candModeList)を取得する(ステップS203)。本実施の形態では、イントラ予測モードの候補の数が2に固定されているため、予測モード配列の要素数は2となる。イントラ予測モードの候補の数が3以上に固定されている場合は、予測モード配列の要素数は、イントラ予測モードの候補の数とする。なお、イントラ予測モードの候補の数が可変に設定されている場合は、予測モード配列の要素数は、イントラ予測モードの候補の数の最大値とする。
 この予測モード配列は、後述する「予測モード候補番号」を予測モード配列の要素のインデクス値(0始まり)とする配列である。このステップにおけるイントラ予測モードの候補の導出方法の詳細については、図4を用いて後述する。
 次に、対象モード番号が、予測モード配列の何れかの要素の値と一致するか否かを判定する(ステップS205)。
 <対象モード番号が予測モード配列の何れかの要素の値と一致する場合>
 符号化制御部110は、ステップS205の判定の結果が、「対象モード番号が何れかの予測モード配列の要素の値と一致する」ことを示す場合(ステップS205の結果がYES)、予測モード使用フラグの値を「1」と決定する(ステップS207)。
 符号化制御部110は、ステップS203で取得したイントラ予測モードの候補のうち、いずれの予測モードを使用したかを特定するために、予測モード候補番号(予測モード配列のインデクス値)を指定された方式で可変長符号化する(ステップS209)。
 <対象モード番号が予測モード配列のいずれの要素の値とも一致しない場合>
 符号化制御部110は、ステップS205の判定の結果が「対象モード番号がいずれの予測モード配列の値と一致しない」ことを示す場合(ステップS205の結果がNO)、「予測モード使用フラグ」を0と決定する(ステップS213)。
 次に、符号化制御部110は、対象モード番号とイントラ予測モードの候補の数とに基づいて「符号化モード番号」(rem_intra_luma_pred_modeの値)を生成する(ステップS215)。このステップは、対象モード番号を基にして、同じ対象モード番号であっても、イントラ予測モードの候補の数に応じて、異なる符号化モード番号を生成するステップである。このステップについては、図3を用いて後述する。
 最後に、符号化制御部110は、符号化モード番号を指定された可変長符号化方法で符号化する(ステップS217)。このステップについては、図5(CABAC方式)、図8(CAVLC方式)を用いて後述する。
   [1-2-1.符号化モード番号の生成の一例]
 ステップS215の符号化モード番号を生成するステップの一例について説明する。図3は、ステップS215の符号化モード番号を生成するステップの処理手順の一例を示すフローチャートである。なお、符号化モード番号は、他の方法で生成しても良い。
 まず、符号化制御部110は、イントラ予測モードの総数(イントラ予測モードの種類数、本実施の形態では34)と、イントラ予測モードの候補の数とを取得する(ステップS301)。本実施の形態では、上述したように、イントラ予測モードの候補の数は、2の固定数である。
 符号化制御部110は、ステップS302からステップS307で示されるループの処理を、イントラ予測モードの候補の数で指定される回数繰り返すものである。本実施の形態では、イントラ予測モードの候補の数が2であることから、インデクス(i)の値が1と0となる2回、ステップS303(および、ステップS303の判定に応じて、ステップS305)を実行する。なお、予測モードの候補の数がNである場合は、ステップS303(および、ステップS303の判定に応じてステップS305)をN回実行する。
 ステップ302では、iを0に設定する。
 ステップS303では、現時点の対象モード番号の値が、インデクス(i)で指定される予測モード配列の要素の値より大きいか否かを判定する。判定の結果が、現時点の対象モード番号の値が予測モード配列の要素の値より大きいことを示す場合、現時点の対象モード番号の値を1デクリメントする(ステップS305)。
 これを前述のイントラ予測モードの候補の数の値の回数繰り返し、最後にステップS305のデクリメント等の結果を反映した後の現在の対象モード番号を「符号化モード番号」と決定する(ステップS309)。
 このステップS215の処理は、例えば、イントラ予測モードの総数0..33の34個の値を何れかを取りうる「対象モード番号」の値から「符号化モード番号」に対応付けて決定することと等価である。
 表1は、「予測モードの候補の数」が2である(インデクス0と1とが存在する)場合における(a)対象モード番号と(b)「符号化モード番号」との対応を示す表である。(c)は、i=0のときのステップS305の処理(現在の対象モード番号からの変更値)を、(d)は、i=1のときのステップS305の処理(現在の対象モード番号からの変更値)をそれぞれ示している。表1において、candModeList[0]は予測モード配列の第1番目の要素を、candModeList[1]は予測モード配列の第2番目の要素を、それぞれ示している。
Figure JPOXMLDOC01-appb-T000001
 表1より、符号化モード番号は、対象モード番号の値に応じて以下のように導出することができる。
(1)0≦対象モード番号<予測モード配列の第1番目の要素の値(0≦対象モード番号<candModeList[0])の場合、対象モード番号と符号化モード番号とは一致する。
(2)予測モード配列の第1番目の要素の値<対象モード番号<予測モード配列の第2番目の要素の値(candModeList[0]<対象モード番号<candModeList[1])の場合、符号化モード番号は対象モード番号より1少ない数となる。
(3)予測モード配列の第2番目の要素の値<対象モード番号(candModeList[1]<対象モード番号)の場合、符号化モード番号は対象モード番号から要素数の2少ない数となる。
 つまり、予測モード配列にk個の要素が存在する場合(イントラ予測モードの候補の数がk個である場合)には、予測モード配列の値によりソートし、対象モード番号が、予測モード配列の第何番目までの値より大きいかを比較することで、以下のように一般化することができる。
 (k)予測モード配列の第k-1番目の要素の値<対象モード番号<第k番目の要素の値(candModeList[k-1]<対象モード番号<candModeList[k])の場合、符号化モード番号は、対象モード番号よりk-1少ない数となる。
   [1-2-2.予測モード配列の生成方法]
 「予測モード配列」(candModeList)を決定する方法について図4を用いて説明する。図4は、図2に示す予測モード配列取得ステップ(ステップS203)の詳細な処理手順を示すフローチャートである。ここでは、イントラ予測モードの候補の数が2に固定されている場合の、符号化対象ブロックの「予測モード配列」(candModeList)を決定する場合について説明する。
 なお、本実施の形態では、「予測モード配列」(candModeList)の要素として、既に符号化済みの隣接ブロックの対象モード番号を使用する。隣接ブロックの対象モード番号が一致する場合(一致する対象モード番号は1つのイントラ予測モードの候補とする)など、既に符号化済みの隣接ブロックの対象モード番号の数が、予測モード配列の要素数に満たない場合は、DC予測モードや、平面予測(イントラプラーナー)、縦方向予測(イントラアンギュラー)など、隣接ブロックの対象モード番号ではない他のイントラ予測モードから、イントラ予測モードの候補を決定する。
 符号化制御部110は、符号化対象ブロックの左側に隣接する既に符号化済みの左側隣接ブロックの対象モード番号をintraPredModeLeftにセットする(ステップS401)。
 より詳細には、intraPredModeLeftには、例えば、左側隣接ブロックがイントラ予測で符号化されている場合には、その符号化(復号化)に用いられる対象モード番号をセットし、イントラ予測では無い符号化方法で符号化されている場合(例えば、フレーム間符号化を用いて符号化されている場合)には、DC予測モード(図4ではDC予測と表記)を示すイントラ予測モード番号(例えば「2」)をセットする。また、左側隣接ブロックが存在しないと判定される場合(例えば、スライス境界、画面端の場合等)、intraPredModeLeftにNot Availableをセットする。
 同様に、符号化制御部110は、符号化対象ブロックの上側に隣接する既に符号化済みの上側隣接ブロックの対象モード番号をintraPredModeAboveにセットする(ステップS402)。intraPredModeAboveのセット方法としては、ブロック位置以外は、左側隣接ブロックに対する処理(ステップS401)と同じである。
 符号化制御部110は、intraPredModeLeftおよびintraPredModeAboveをセットすると、左側隣接ブロックおよび上側隣接ブロックの対象モード番号が存在しない(intraPredModeLeftおよびintraPredModeAboveの両方がNot Available)か否かを判断する(ステップS403)。
 ここで、ステップS403でYESの場合(左側隣接ブロックと上側隣接ブロックが共に存在しない場合)、符号化制御部110は、符号化対象ブロックの「予測モード配列」(candModeList)の第1番目の要素であるリスト0(candModeList[0])に、イントラ予測モード番号“0”、第2番目の要素であるリスト1(candModeList[1])に、DC予測モードを示すイントラ予測モード番号(例えば“2”)をセットする(ステップS404)。
 一方、ステップS403でNOの場合、符号化制御部110は、intraPredModeLeftおよびintraPredModeAboveの一方がない、または、intraPredModeLeftおよびintraPredModeAboveが一致するか否かを判定する(ステップS405)。
 ステップS405でNOの場合(左側隣接ブロックおよび上側隣接ブロックの両方の対象モード番号が存在し、かつ、両方の対象モード番号が一致しない場合)、符号化制御部110は、符号化対象ブロックの「予測モード配列」(candModeList)のリスト0(candModeList[0])に、左側隣接ブロックの対象モード番号および上側隣接ブロックの対象モード番号のうち、小さい方の対象モード番号をセットする。更に、リスト1(candModeList[1])に、左側隣接ブロックの対象モード番号および上側隣接ブロックの対象モード番号のうち、大きい方の対象モード番号をセットする(ステップS406)。
 一方、ステップS405でYESの場合(左側隣接ブロックおよび上側隣接ブロックのどちらか一方の対象モード番号だけが存在する場合、もしくは、左側隣接ブロックの対象モード番号および上側隣接ブロックの対象モード番号が一致する場合)、符号化制御部110は、一致するもしくは存在する対象モード番号(以下、「隣接モード番号」と称する)が、DC予測モードを示すイントラ予測モード番号(例えば”2“)であるか否かを判定する(ステップS407)。
 ステップS407でYESの場合(隣接モード番号がDC予測モードを示すイントラ予測モード番号である場合)、符号化制御部110は、符号化対象ブロックの「予測モード配列」(candModeList)のリスト0(candModeList[0])に、隣接モード番号(一致するもしくは存在する対象モード番号)およびDC予測モードを示すイントラ予測モード番号のうち、小さい方のイントラ予測モード番号をセットする。さらに、符号化制御部110は、リスト1(candModeList[1])に、隣接モード番号(一致するもしくは存在する対象モード番号)およびDC予測モードを示すイントラ予測モード番号のうち、大きい方のイントラ予測モード番号をセットする(ステップS408)。
 一方、ステップS407でNOの場合(隣接モード番号がDC予測モードを示すイントラ予測モード番号(例えば”2“)ではない場合)、符号化制御部110は、隣接モード番号が“0”であるか否かを判定する(ステップS409)。
 ステップS409でNOの場合(隣接モード番号が“0”でない場合)、符号化制御部110は、符号化対象ブロックの「予測モード配列」(candModeList)のリスト0(candModeList[0])に、イントラ予測モード番号“0”をセットし、リスト1(candModeList[1])に、隣接モード番号をセットする(ステップS410)。
 一方、ステップS409でYESの場合(隣接モード番号が“0”である場合)、符号化対象ブロックの「予測モード配列」(candModeList)のリスト0(candModeList[0])に、隣接モード番号“0”をセットし、リスト1(candModeList[1])に、イントラ予測モード番号“1”をセットする(ステップS411)。
 ステップS408~ステップS411では、予測モード配列の各要素に、DC予測モードの番号およびイントラ予測モード番号“0”、“1”を優先的に配置することにより、前述の表1で示したように、符号化モード番号の大きさを小さくすることができるため、符号化効率を向上させることができる。
 なお、ここでの優先例(DC予測モードの番号、イントラ予測モード番号“0”、“1”)は一例であり、小さい番号のイントラ予測モードを優先すれば、DC予測モードの優先度を下げても符号化効率を上げることができる。
   [1-2-3.符号化モード番号の符号化]
 ステップS217の符号化モード番号を符号化するステップの一例について、図5を基に説明する。ここでの符号化は、指定された可変長符号化であり、以下では、CABAC方式の場合を例に説明する。図5は、CABAC方式での符号化方法を示すフローチャートである。
 符号化制御部110は、例えば、図3に示す方法により、符号化モード番号を取得し(ステップS701、ステップS215)、取得した符号化モード番号に対し、イントラ予測モードの総数(最大モード数)に対応する二値化方法で二値化処理を行う(ステップS702)。これは、例えばイントラ予測モードの符号化単位に応じて、最大モード数が変わる場合(例えば、符号化単位が4x4サイズの場合は17モード、8x8以上のサイズの場合には34モード等)、その長さに対応する二値化処理を行うことを意味している。
 符号化制御部110は、符号化モード番号を二値化した信号に対して、二値算術符号化処理を行う(ステップS703)。これにより、符号化モード番号をストリームに記録することができる。
 具体的なデータ構造を示すシンタックスの例を図6Aおよび図6Bを用いて説明する。図6Aは、非特許文献1より抜粋した対象モード番号を記録したデータ構造を示すシンタックス構成の一例を示す概念図である。また、図6Bは、本実施の形態のシンタックス構成の一例を示す概念図である。
 ここで、特に説明しない部分については、非特許文献1に記載の通りに動作するものとする。従来のシンタックス構成では、まず予測モード使用フラグ(prev_intra_luma_pred_flag)を符号化する。
 予測モード使用フラグが1である場合、イントラ予測モードの候補の数(NumMPMCand)が1より大きいかを判定し(901)、イントラ予測モードの候補の数(NumMPMCand)が1より大きい(2以上である)場合は、予測モード候補番号(mpm_idx)の符号化を行う。
 一方、予測モード使用フラグが0である場合、符号化モード番号(rem_intra_luma_pred_mode)を符号化する。
 本発明の構成では、イントラ予測モードの候補の数を少なくとも2以上に固定するため、図6Aの条件式901「if(NumMPMCand>1)」が不要となり、図6Bに示すシンタックス構造のビットストリームを生成する。すなわち、予測モード使用フラグが1である場合には、必ず、予測モード候補番号(mpm_idx)の符号化を行う。これにより、条件分岐が少なくなり、復号時の処理量を削減可能なビットストリームの生成を可能とする。なお、従来は、図示しないが、図2のステップS207の後に、左側隣接ブロックの対象モード番号および上側隣接ブロックの対象モード番号が一致するか否かを判定する処理が行われ、一致する場合に、ステップS209が実行される。
 (実施の形態1の変形例)
 (変形例1:予測モード決定方法の変形例)
 なお、図4で説明した、予測モード配列の決定方法は、次のように変形してもよい。
 この変形例では、隣接ブロックで使用された対象モード番号とは別に、符号化対象ブロックに対して最も発生する確率の高いイントラ予測モード番号を選出して最頻度モード番号とし、この再頻度モード番号を、図4で挙げた”DC予測モード2”、”モード番号0”、”モード番号1”の何れかと入れ替える。
 最頻度モード番号の選出方法としては、例えば、図5のステップS703の算術符号に用いられるコンテキストの状態から、最も符号長の短くなるイントラ予測モード番号を選出してもよい。また、例えば、後述する図8のステップS502、ステップS503で用いる可変長テーブルにより最短ビット長に割り当てられるイントラ予測モード番号を最頻度モード番号としてもよいし、全く別の最頻度モード選出ステップ(例えば、統計的に隣接モード番号と累積的な対象モード番号の経過より導出する方法)により選出してもよい。このようにすることにより、前者2つのステップでは、既にあるステップの共用化により、処理量の増加を抑制しつつ、符号化効率を向上することができ、最後のステップでは、処理量は若干増加するものの、大幅な符号化効率の向上が期待できる。
 この最頻度モード番号を用いて予測モード配列を決定する方法について、図7を用いて説明する。図7は、予測モード配列の決定ステップ(ステップS203)の処理手順の一例を示すフローチャートである。なお、図7のフローチャートに示す処理手順は、図4のフローチャートに示す処理手順の変形例であり、ステップS404(ステップS804)、ステップS409(ステップS809)、ステップS410(ステップS810)、ステップS411(ステップS811)以外のステップ(ステップS401~ステップS403、ステップS405~ステップS408)は同じである。そのため、重複するステップについては、適宜説明を省略する。
 ここでは、イントラ予測モードの候補の数が2に固定されている場合の、符号化対象ブロックの「予測モード配列」(candModeList)を決定する場合について説明する。
 符号化制御部110は、符号化対象ブロックの左側に隣接する既に符号化済みの左側隣接ブロックの対象モード番号をintraPredModeLeftにセットし(ステップS401)、上側に隣接する上側隣接ブロックの対象モード番号をintraPredModeAboveにセットする(ステップS402)。
 符号化制御部110は、intraPredModeLeftおよびintraPredModeAboveをセットすると、左側隣接ブロックおよび上側隣接ブロックの対象モード番号が存在しない(intraPredModeLeftおよびintraPredModeAboveの両方がNot Available)か否かを判定する(ステップS403)。
 ステップS403でYESの場合(左側隣接ブロックと上側隣接ブロックが共に存在しない場合)、符号化制御部110は、符号化対象ブロックの「予測モード配列」(candModeList)のリスト0(candModeList[0])に、最頻度モード番号およびDC予測モードを示すイントラ予測モード番号(例えば“2”)のうち、小さい方のイントラ予測モード番号をセットする。さらに、リスト1(candModeList[1])に、最頻度モード番号およびDC予測モードを示すイントラ予測モード番号(例えば“2”)のうち、大きい方のイントラ予測モード番号をセットする(ステップS804)。
 一方、ステップS403でNOの場合、符号化制御部110は、intraPredModeLeftおよびintraPredModeAboveの一方がない、または、intraPredModeLeftおよびintraPredModeAboveが一致するか否かを判定する(ステップS405)。
 ステップS405でNOの場合(左側隣接ブロックおよび上側隣接ブロックの両方の対象モード番号が存在し、かつ、両方の対象モード番号が一致しない場合)、符号化制御部110は、符号化対象ブロックの「予測モード配列」(candModeList)のリスト0(candModeList[0])に、左側隣接ブロックの対象モード番号および上側隣接ブロックの対象モード番号のうち、小さい方の対象モード番号をセットし、リスト1(candModeList[1])に、左側隣接ブロックの対象モード番号および上側隣接ブロックの対象モード番号のうち、大きい方の対象モード番号をセットする(ステップS406)。
 一方、ステップS405でYESの場合(左側隣接ブロックおよび上側隣接ブロックのどちらか一方の対象モード番号だけが存在する場合、もしくは、左側隣接ブロックおよび上側隣接ブロックの対象モード番号が一致する場合)、符号化制御部110は、一致するもしくは存在する対象モード番号(隣接モード番号)がDC予測モードを示すイントラ予測モード番号(例えば”2“)であるか否かを判定する(ステップS407)。
 ステップS407でYESの場合(隣接モード番号がDC予測モードを示すイントラ予測モード番号である場合)、符号化制御部110は、符号化対象ブロックの「予測モード配列」(candModeList)のリスト0(candModeList[0])に、隣接モード番号(一致するもしくは存在する対象モード番号)およびDC予測モードを示すイントラ予測モード番号のうち、小さい方のイントラ予測モード番号をセットする。さらに、符号化制御部110は、リスト1(candModeList[1])に、隣接モード番号(一致するもしくは存在する対象モード番号)およびDC予測モードを示すイントラ予測モード番号のうち、大きい方のイントラ予測モード番号をセットする(ステップS408)。
 一方、ステップS407でNOの場合(隣接モード番号がDC予測モードを示すイントラ予測モード番号(例えば”2“)ではない場合)、符号化制御部110は、隣接モード番号が最頻度モード番号であるか否かを判定する(ステップS809)。
 ステップS809でNOの場合(隣接モード番号が最頻度モード番号ではない場合)、符号化制御部110は、符号化対象ブロックの「予測モード配列」(candModeList)のリスト0(candModeList[0])に、最頻度モード番号および隣接モード番号のうち、小さい方のイントラ予測モード番号をセットし、リスト1(candModeList[1])に、最頻度モード番号および隣接モード番号のうち、大きい方のイントラ予測モード番号をセットする(ステップS810)。
 一方、ステップS809でYESの場合(隣接モード番号が最頻度モード番号である場合)、符号化制御部110は、符号化対象ブロックの「予測モード配列」(candModeList)のリスト0(candModeList[0])に、隣接モード番号(=最頻度モード番号)およびDC予測モードを示すイントラ予測モード番号のうち、小さい方のイントラ予測モード番号をセットし、リスト1(candModeList[1])に、隣接モード番号(=最頻度モード番号)およびDC予測モードを示すイントラ予測モード番号のうち、大きい方の番号をセットする(ステップS811)。
 ステップS809~ステップS811では、上述したように、予測モード配列の各要素に、最頻度モード番号とDC予測モードとを優先的に配置することにより、イントラ予測モードへの適合率を上げることができる。また、前述の表1で示したように、符号化モード番号の大きさを小さくすることができるため、符号化効率を向上させることができる。
 なお、ここでの優先順の例(DC予測モード番号、最頻度モード番号、および、イントラ予測モード番号“0”の優先順)は一例であり、統計的な情報に基づき、優先順番を切り替えてもよい。また、イントラ予測モード番号“0”は、例えば、平面予測(イントラプラーナー)や縦方向予測(イントラアンギュラー)などである。
 (変形例2:符号化モード番号の符号化の変形例)
 なお、符号化モード番号の符号化は、上述したCABAC方式に限られず、CAVLC方式を用いても良い。以下、CAVLC方式での符号化方法について、図8、図9Aおよび図9Bを用いて説明する。図8は、CAVLC方式での符号化方法を示すフローチャートである。図9Aは、最大モード数(イントラ予測モードの総数)が17の場合の符号化テーブルを示す表であり、図9Bは、最大モード数が34の場合の符号化テーブルの一例を示す表である。
 符号化制御部110は、例えば、図3に示す方法により、符号化モード番号を取得し(ステップS501)、最大モード数に対応する可変長テーブル(不図示)を選択する(ステップS502)。これは、例えば、符号化単位のサイズ別に、最大モード数が変わる場合(例えば、符号化単位が4x4サイズの場合は17モード、8x8以上のサイズの場合には34モード等)、符号化単位のサイズに対応する可変長テーブルを選択することを意味している。
 なお、本実施の形態によれば、符号化単位に対して1種類の可変長テーブルを利用すればよいため、符号化装置に必要なメモリ数を削減することができる。
 符号化制御部110は、選択した可変長テーブルを用いて、符号化モード番号から、符号化インデクス番号を導出する(ステップS503)。なお、この可変長テーブルは、符号化モード番号の頻度が高いほど、符号化インデクスが小さくなるようにブロック単位または、大ブロック単位、スライス単位で更新される。このため、符号化インデクス番号が小さいほど、短い符号長となるように、後述する可変長符号化処理が行われる。
 最後に、導出した符号化インデクス番号に対して、予め決められた符号化テーブルを用いて符号化する(ステップS504)。
 ここで、CAVLC方式では、図2の説明のように、予測モード使用フラグ(ステップS207)の設定と、符号化モード番号の符号化(ステップS209)とを別にするのではなく、予測モード使用フラグを含めて符号化モード番号を符号化する場合を例に説明する。
 図9Aおよび図9Bにおいて、MPM1は、予測モード使用フラグ=1で、予測モード候補番号0の場合を示し、その場合の符号は“10”である。MPM2は、予測モード使用フラグ=1で、予測モード候補番号0の場合を示し、その場合の符号は“11”である。以降の左側の番号0~14(イントラ予測モードの候補の数=2の場合の例のため、17モードから2モードを除いた15モードに対応)、もしくは、0~31(イントラ予測モードの候補の数=2の場合の例のため、34モードから2モードを除いた32モードに対応)が、(ステップS503)で導出された符号化モード番号を示し、右側の符号がビットストリームに書き出される符号列を示す。
 この方法では、モード情報を全て同じ仕組みで符号化することができ、必要とするメモリ数を削減することができる。
 なお、図2で示したフローと同様に、予測モード使用フラグと符号化モード番号とを別々に符号化してもよい。その場合には、MPM1にあたる符号を1とし、予測モード使用フラグ=1として扱い、予測モ-ド番号は1ビットのインデクスを符号化すればよい。
 なお、CAVCL方式の符号化の場合には、予測モード使用フラグ(prev_intra_luma_pred_flag)と、予測モード候補番号(mpm_idx)と、符号化モード番号(rem_intra_luma_pred_mode)で共有化したvlcテーブルを参照してもよい。
 (実施の形態2)
 本発明の実施の形態2に係る画像復号方法、および、当該画像復号方法を実行する画像復号装置について、図10~図15を基に説明する。
 本実施の形態の画像復号方法は、算術復号時に、復号対象ブロックのビットストリームに対して算術復号処理した結果のみを用いて復号化を実施する。なお、算術復号処理では、1ビットから数ビットの情報量を復元することがあるため、バッファ量の確保やリアルタイム処理が困難とされるが、本実施の形態の画像復号方法では、他の復号対象ブロックの情報を利用しないため、演算処理に必要な内部メモリ量を削減し、処理時間を短縮することができる。
 [2-1.画像複合装置の構成]
 本実施の形態に係る画像復号装置の構成について、図10を基に説明する。図10は、画像復号装置200の構成を示すブロック図である。
 画像復号装置200は、ビットストリーム(bitStr)が入力されると、画像信号を出力する装置である。本発明においては、特に、入力されるビットストリームとして、実施の形態1の画像符号化方法により生成されたビットストリーム(bitStr)を例に説明する。図9Aまたは図9Bに示す符号列が書き込まれたビットストリームを、データ構造の意味では図9Aまたは図9Bの左から右に沿ったPrediction Unit Syntaxの定義に従いつつ、右の可変長復号処理(ステップS1117)、「符号化モード番号」(rem_intra_luma_pred_mode) の取得(ステップS1115)を実行し「対象モード番号」を再生する。
 画像復号装置200は、可変長復号化部220、逆量子化部201、逆変換部202、前回の予測画像と差分画像とを合成する加算部203、フレーム間予測により予測画像を生成する画面間予測部204、イントラ予測により予測画像を生成する画面内予測部205、画面間予測部204からの予測画像と画面内予測部205からの予測画像とを選択的に出力する切替部206、制御部210等を含む。
 可変長復号化部220は、可変長符号化部120と逆の動作を行う。すなわち、ビットストリームが入力されると、イントラ予測モードの候補の数(NumMPMCand)に応じて、ビットストリームから「符号化モード番号」等を取得する。さらに、「符号化モード番号」から「対象モード番号」を得る処理を行う。
 画面内予測部205は、図1の画面内予測部108と動作はほぼ同じである。得られた「対象モード番号」に従い、現在の復号対象ブロックに対して、対象モード番号に対応するイントラ予測モードの指定する方向に存在する予測画素を利用し、現在の復号対象ブロックの画素値を予測する。
 制御部210は、可変長復号化部220に、対象モード番号を取得する上で必要な情報を与える。本発明の復号化方法における、必要な情報とは「実施例1の符号化により出力されたビットストリームから「対象モード番号」を再生するための情報」であればよい。たとえば、可変長復号化部220が保持していない場合には、復号対象ブロックについての予測モード配列(candModeList)(あるいは、このリストの初期値)を与える。また、この現在の復号対象ブロックに対応付けられた所定の単位毎に、エントロピー復号化モード(CAVLC方式で出力されたビット列か、CABACを用いて出力されたビット列等)を与える。
 [2-2.画像復号方法の処理手順]
 本実施の形態に係る画像復号方法の処理手順について、図11を基に説明する。図11は、図10の画像復号装置で実行される「対象モード番号」(図15に示す34個のイントラ予測モード)の復号方法を示すフローチャートである。なお、本実施の形態では、各ステップは、可変長復号化部220で実行される場合を例に説明するが、制御部210で実行するなどしてもよい。
 まず、実施の形態1の符号化方法で符号化して得られたビットストリーム(bitStr)から、復号対象ブロックのモード情報に対応部分を抽出する。対応部分とは、図6Aおよび図6Bを用いて説明したシンタクス(Prediction unit syntax)に従って構造化された、(1)「予測モード使用フラグ」(prev_intra_luma_pred_flag)、(2)「予測モード候補番号」(mpm_idx)または(3)「符号化モード番号」(rem_intra_luma_pred_mode)をエントロピー符号化して得られたビット列である。
 可変長復号化部220は、ビット列を取得すると、図6Aおよび図6Bに説明したシンタクスに従い復号して、「対象モード番号」を取得する(ステップS1103~ステップS1115)。
 可変長復号化部220は、まず、「予測モード使用フラグ」(prev_intra_luma_pred_flag)の値を所定のエントロピー復号化方法により復元する(ステップS1103)。以下、特に説明がない場合、以下の説明および図中の語、並びに値の意味は、実施の形態1の符号化方法、並びに、図6Aおよび図6Bのシンタクスについての説明で説明した意味と同じである。
 可変長復号化部220は、復号した予測モード使用フラグが1であるか否かを判定する(ステップS1105)。
 ステップS1105でYESの場合(「予測モード使用フラグ」の値が1の場合)は、可変長復号化部220は、「予測モード候補番号」(mpm_idx)を復号する(ステップS1109)。
 詳細には、可変長復号化部220は、予測モード配列(candModeList)を生成し、予測モード配列(candModeList)の要素番号(mpm_idx)の要素の値(candModeList [mpm_idx])を、「対象モード番号」として決定する(ステップS1111)。なお、ここでの予測モード配列の生成方法は、実施の形態1の図4もしくは図7で説明した方法を用いることができる。予測モード配列の生成方法は、符号化装置と復号装置で同じものを用いることとする。
 ステップS1105でNOの場合(「予測モード使用フラグ」の値が1ではない場合)、可変長復号化部220は、符号化モード番号をエントロピー復号する。詳細には、まず、イントラ予測モードの総数(最大モード数)に応じて、符号化モード番号をビット列から取得する(ステップS1117)。この取得処理は、図2のステップS217と逆の処理である。対応するビット列が、エントロピー符号化方式として(1)CABACにより出力されたものであるか(図5)、(2)CAVLCにより出力されたものであるか(図8)に応じて異なる処理を行う。エントロピー符号化方式の判定は、例えば、復号対象ブロックに対応付けられる予測単位(PU)に対応する所定単位のエントロピー符号化モードフラグの示す値)によって区別する。なお、このフラグはさらに上位のシーケンス単位で指定されてもよい。
 まず、ビット列が(1)CABACにより出力されたものである場合について、図12Aを基に説明する。図12Aは、図11のステップS1117に対応する算術復号時の処理の流れを示すフローチャートである。
 可変長復号化部220は、まず、取得したビットストリームを算術復号処理する(ステップS1401、ステップS703の逆)。可変長復号化部220は、算術復号処理により取得した二値情報に対して多値化処理を行い、符号化モード番号を復元する(ステップS1402)。
 次に、ビット列が(2)CAVLCにより出力されたものであることを示す場合について図13を用いて説明する。図13は、ビット列が(2)CAVLCにより出力されたものであることを示す場合におけるステップS1117の「符号化モード番号」の取得方法を示すフローチャートである。
 可変長復号化部220は、まず、ビット列から、復号対象ブロック(PU)の「符号化モード番号」の復号に必要な情報(コンテキスト)を用いて、符号化インデクス番号を取得する(ステップS1201)。この復号処理は、図8のステップS504の符号化処理と逆の処理を行うことに対応する。より具体的には、最大モード数(例えば実施例1で説明した予測情報の伝送単位により、17モードや34モード数に対応)に応じて、図9Aまたは図9Bで示した可変長符号化(可変長復号化)テーブルを選択する。選択した可変長符号化テーブルのビット列から、入力されたビットストリーム(図9Aまたは図9Bの右側に示すビット列)に対応するビット列を検索し、当該ビット列に対応づけられた符号化インデクス番号(図9Aまたは図9Bの左側に示す番号に対応)を取得する。
 可変長復号化部220は、次に、前述と同様に最大モード数毎に別々の可変長テーブルを選択し(ステップS1202、ステップS502と同じ、不図示)、選択した可変長テーブルを用い、取得した符号化インデクス番号に対応づけられた符号化モード番号を導出する(ステップS1203、ステップS503の逆の処理)。なお、この可変長テーブルは、符号化モード番号の頻度が高いほど、符号化インデクス番号が小さくなるようにブロック単位または、大ブロック単位、スライス単位で更新される。この更新は、符号化装置側と復号化装置側で予め決められた方法で更新されるため、対象とする符号化対象ブロックに対応する符号化、および、復号対象ブロックに対する復号で用いる可変長テーブルは同じものとなるように設計されている。この処理により、符号化モード番号を復元する。
 次に、符号化モード番号から対象モード番号を復元する(ステップS1115、図2のステップ215とは逆の処理)。図14は、符号化モード番号からの対象モード番号の復元の処理手順を示すフローチャートである。
 図14に示すように、可変長復号化部220は、ステップS1117で取得された「符号化モード番号」から「対象モード番号」を取得する。図14の各ステップは、図3の「対象モード番号」から「符号化モード番号」を得るステップを逆に実行することに等しい。
 可変長復号化部220は、まず、イントラ予測モードの候補の数(NumMPMCand)を取得する(ステップS1301)。本実施の形態では、実施の形態1と同様に、イントラ予測モードの候補の数は、2の固定数である。
 可変長復号化部220は、次に、ステップS1302からステップS1307で示されるループの処理を、イントラ予測モードの候補の数(NumMPMCand)で指定される回数繰り返す。本実施の形態では、イントラ予測モードの候補の数(NumMPMCand)が2であることから、インデクスの値が0と1との2回、ステップS1303(および、ステップS1305)を実行する。なお、予測モードの候補の数がNである場合は、ステップS1303(および、ステップS1303の判定に応じてステップS1305)をN回実行する。
 ステップS1302では、候補インデクスcandIdx(図14ではIndexに対応)を0に設定する。
 ステップS1303では、現時点の符号化モード番号と、予測モード配列(CandModeList)の候補インデクスcandIdxの値で指定される要素の値(candModeList[candIdx]の値)との大小を比較する。なお、Index=0のときは、符号化モード番号は、ステップS1117で取得された時点の符号化モード番号となる。
 ステップS1303でYESの場合(符号化モード番号≧candModeList[candIdx]の値の場合)、符号化モード番号を1インクリメントする(ステップS1305)。なお、現時点の符号化モード番号と予測モード配列candModeList[candIdx]の値が、同じ値である場合にも1インクリメントする。候補インデクス番号candIdxを1インクリメントしつつ、全ての候補インデクスについての比較が終了するまでステップS1302からステップS1307のループを繰り返す。
 この処理により、イントラ予測モードの候補の数に応じて、符号化モード番号が対象モード番号に復元される。なお、このイントラ予測モードの候補の数に応じた「符号化モード番号」からの「対象モード番号」の復元は、表1の処理を下の行から上の行に向かって読むことと等価である。
 例えば、イントラ予測モードの候補の数(NumMPMCandの値)が2の場合、符号化モード番号と対象モード番号の対応は、表2の通りとなる。この表の例では、1番目の(インデクスが0の)予測モード配列の要素の値を「i」とし、2番目の(インデクスが1の)予測モード配列の要素の値を「j」である場合で説明している。
Figure JPOXMLDOC01-appb-T000002
 このように、本実施の形態の復号装置および復号方法によれば、イントラ予測モードの候補の数に応じて(あるいはイントラ予測モードの候補の数に基づいて)CAVLD方式ではCodeNumと「符号化モード番号」の対応を、CABAC方式では2値配列から「符号化モード番号」の対応方法を切り替える(ステップS1117)。さらに、イントラ予測モードの候補の数に応じて符号化モード番号と対象モード番号との対応を切り替える(ステップS1115)。
 上記構成により、対象モード番号の符号化を、イントラ予測モードの候補の数に応じて切り替えることにより符号化効率を高めて生成された実施の形態1のビットストリームから、元の「対象モード番号」を再現することが可能となる。
 上述したように、本発明の画像復号装置および画像復号方法では、イントラ予測モードの候補の数を2以上に固定するため、算術復号処理において、イントラ予測モードの候補の数が1であるか否かを判定する条件分岐無しで処理することが可能である。
 なお、図12Bは、画像復号装置内での算術復号処理の処理手順の一例を示す概念図である。前述したとおり、算術復号には、取得するビット長に対する復号された信号(復号パラメタ)の情報量が算術的に決定されるため、不定であり、実時間処理を実現するためには、高速な演算が必要である。そこで、図12Bに示すように、復号処理としては、取得するビットストリームを予め決められた方法(CABACまたはCAVLC)により算術復号し(ステップS1411)、復号パラメタを取得する(ステップS1412)、エントロピー復号ステップS1410と、復号パラメタに基づいて予測画像を生成し、復号画像信号を取得する復号処理ステップ(ステップS1413)とは別のステップとして分けて並列演算を可能とする場合が多い。ここで、算術復号ステップS1411に必要な復号情報は、ステップS1413からのフィードバックにより取得する。
 この際、エントロピー復号ステップS1410は、復号処理ステップS1413の処理結果を待つ必要があり、高速演算することができないため、このフィードバックを減らすことが高速化に対しては特に重要になる。
 このため、本実施の形態の画像復号装置では、図11に示すように、予測モード使用フラグが1(エントロピー復号ステップで復号した信号)(ステップS1105でYES)となれば、必ず予測モード候補番号の復号ステップ(ステップS1109)を呼ぶため、この間に復号処理ステップ(ステップS1413)の処理を待つ必要がない。
 一方、図6Aで示した従来のシンタックス構成では、予測モード数(NumMPMCand)を判定する必要があり、この判定には、前述したとおり、上側隣接ブロック、左側隣接ブロックの対象モード番号を利用する必要があるため、復号処理ステップS1413の処理を待つ必要がある。よって、本発明の構成によれば、復号装置の高速化を実現することができる。
 (実施の形態1および実施の形態2の変形例)
 (1)なお、図1の符号化制御部110、図10の制御部210については、説明のために必要な処理部との入出力のみを図示したが、図示しない信号線により各処理部に必要な情報の入出力を行うことができるとしてよい。符号化制御部、あるいは、制御部は、各処理部の処理の制御を行うコントローラであると考えてよい。
 (2)また、図15に示された33の方向と1つの無方向の34個のモードを例に34個の対象モード番号の符号化について説明したが、モードの数は、図15に示すレベル(L0~L3)の深さに応じて可変であったとしても、本発明の効果は損なわれない。
 例えば、イントラ予測モードの候補の数が、2のn乗+k個である場合には、符号化モード番号(rem_intra_luma_pred_mode)はnビット、または、n+1ビットで表現可能である。
 上記の復号化装置の構成をとることにより、図6Aおよび図6Bで示したシンタックス構造を正しく復号することができる。また、図12Bで示したように、算術復号時には、単純に復号処理を実行するだけで、従来のようにイントラ予測モードの候補の数が1である場合を判定するために、隣接の対象モード番号を取得、比較する必要がなく、メモリ量が小さく、高速に正しく復号処理を実行できる。
 (実施の形態3)
 上記各実施の形態で示した動画像符号化方法(画像符号化方法)または動画像復号化方法(画像復号方法)の構成を実現するためのプログラムを記憶メディアに記録することにより、上記各実施の形態で示した処理を独立したコンピュータシステムにおいて簡単に実施することが可能となる。記憶メディアは、磁気ディスク、光ディスク、光磁気ディスク、ICカード、半導体メモリ等、プログラムを記録できるものであればよい。
 さらにここで、上記各実施の形態で示した動画像符号化方法(画像符号化方法)や動画像復号化方法(画像復号方法)の応用例とそれを用いたシステムを説明する。当該システムは、画像符号化方法を用いた画像符号化装置、及び画像復号方法を用いた画像復号装置からなる画像符号化復号装置を有することを特徴とする。システムにおける他の構成について、場合に応じて適切に変更することができる。
 図16は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。
 このコンテンツ供給システムex100は、インターネットex101にインターネットサービスプロバイダex102および電話網ex104、および基地局ex106からex110を介して、コンピュータex111、PDA(Personal Digital Assistant)ex112、カメラex113、携帯電話ex114、ゲーム機ex115などの各機器が接続される。
 しかし、コンテンツ供給システムex100は図16のような構成に限定されず、いずれかの要素を組合せて接続するようにしてもよい。また、固定無線局である基地局ex106からex110を介さずに、各機器が電話網ex104に直接接続されてもよい。また、各機器が近距離無線等を介して直接相互に接続されていてもよい。
 カメラex113はデジタルビデオカメラ等の動画撮影が可能な機器であり、カメラex116はデジタルカメラ等の静止画撮影、動画撮影が可能な機器である。また、携帯電話ex114は、GSM(登録商標)(Global System for Mobile Communications)方式、CDMA(Code Division Multiple Access)方式、W-CDMA(Wideband-Code Division Multiple Access)方式、若しくはLTE(Long Term Evolution)方式、HSPA(High Speed Packet Access)の携帯電話機、またはPHS(Personal Handyphone System)等であり、いずれでも構わない。
 コンテンツ供給システムex100では、カメラex113等が基地局ex109、電話網ex104を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、ユーザがカメラex113を用いて撮影するコンテンツ(例えば、音楽ライブの映像等)に対して上記各実施の形態で説明したように符号化処理を行い(即ち、本発明の一態様に係る画像符号化装置として機能する)、ストリーミングサーバex103に送信する。一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントとしては、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、PDAex112、カメラex113、携帯電話ex114、ゲーム機ex115等がある。配信されたデータを受信した各機器では、受信したデータを復号化処理して再生する(即ち、本発明の一態様に係る画像復号装置として機能する)。
 なお、撮影したデータの符号化処理はカメラex113で行っても、データの送信処理をするストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。同様に配信されたデータの復号化処理はクライアントで行っても、ストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。また、カメラex113に限らず、カメラex116で撮影した静止画像および/または動画像データを、コンピュータex111を介してストリーミングサーバex103に送信してもよい。この場合の符号化処理はカメラex116、コンピュータex111、ストリーミングサーバex103のいずれで行ってもよいし、互いに分担して行ってもよい。
 また、これら符号化・復号化処理は、一般的にコンピュータex111や各機器が有するLSIex500において処理する。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化・復号化用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、ハードディスクなど)に組み込み、そのソフトウェアを用いて符号化・復号化処理を行ってもよい。さらに、携帯電話ex114がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データは携帯電話ex114が有するLSIex500で符号化処理されたデータである。
 また、ストリーミングサーバex103は複数のサーバや複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。
 以上のようにして、コンテンツ供給システムex100では、符号化されたデータをクライアントが受信して再生することができる。このようにコンテンツ供給システムex100では、ユーザが送信した情報をリアルタイムでクライアントが受信して復号化し、再生することができ、特別な権利や設備を有さないユーザでも個人放送を実現できる。
 なお、コンテンツ供給システムex100の例に限らず、図17に示すように、デジタル放送用システムex200にも、上記各実施の形態の少なくとも動画像符号化装置(画像符号化装置)または動画像復号化装置(画像復号装置)のいずれかを組み込むことができる。具体的には、放送局ex201では映像データに音楽データなどが多重化された多重化データが電波を介して通信または衛星ex202に伝送される。この映像データは上記各実施の形態で説明した動画像符号化方法により符号化されたデータである(即ち、本発明の一態様に係る画像符号化装置によって符号化されたデータである)。これを受けた放送衛星ex202は、放送用の電波を発信し、この電波を衛星放送の受信が可能な家庭のアンテナex204が受信する。受信した多重化データを、テレビ(受信機)ex300またはセットトップボックス(STB)ex217等の装置が復号化して再生する(即ち、本発明の一態様に係る画像復号装置として機能する)。
 また、DVD、BD等の記録メディアex215に記録した多重化データを読み取り復号化する、または記録メディアex215に映像信号を符号化し、さらに場合によっては音楽信号と多重化して書き込むリーダ/レコーダex218にも上記各実施の形態で示した動画像復号化装置または動画像符号化装置を実装することが可能である。この場合、再生された映像信号はモニタex219に表示され、多重化データが記録された記録メディアex215により他の装置やシステムにおいて映像信号を再生することができる。また、ケーブルテレビ用のケーブルex203または衛星/地上波放送のアンテナex204に接続されたセットトップボックスex217内に動画像復号化装置を実装し、これをテレビのモニタex219で表示してもよい。このときセットトップボックスではなく、テレビ内に動画像復号化装置を組み込んでもよい。
 図18は、上記各実施の形態で説明した動画像復号化方法および動画像符号化方法を用いたテレビ(受信機)ex300を示す図である。テレビex300は、上記放送を受信するアンテナex204またはケーブルex203等を介して映像データに音声データが多重化された多重化データを取得、または出力するチューナex301と、受信した多重化データを復調する、または外部に送信する多重化データに変調する変調/復調部ex302と、復調した多重化データを映像データと、音声データとに分離する、または信号処理部ex306で符号化された映像データ、音声データを多重化する多重/分離部ex303を備える。
 また、テレビex300は、音声データ、映像データそれぞれを復号化する、またはそれぞれの情報を符号化する音声信号処理部ex304、映像信号処理部ex305(本発明の一態様に係る画像符号化装置または画像復号装置として機能する)を有する信号処理部ex306と、復号化した音声信号を出力するスピーカex307、復号化した映像信号を表示するディスプレイ等の表示部ex308を有する出力部ex309とを有する。さらに、テレビex300は、ユーザ操作の入力を受け付ける操作入力部ex312等を有するインタフェース部ex317を有する。さらに、テレビex300は、各部を統括的に制御する制御部ex310、各部に電力を供給する電源回路部ex311を有する。インタフェース部ex317は、操作入力部ex312以外に、リーダ/レコーダex218等の外部機器と接続されるブリッジex313、SDカード等の記録メディアex216を装着可能とするためのスロット部ex314、ハードディスク等の外部記録メディアと接続するためのドライバex315、電話網と接続するモデムex316等を有していてもよい。なお記録メディアex216は、格納する不揮発性/揮発性の半導体メモリ素子により電気的に情報の記録を可能としたものである。テレビex300の各部は同期バスを介して互いに接続されている。
 まず、テレビex300がアンテナex204等により外部から取得した多重化データを復号化し、再生する構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、CPU等を有する制御部ex310の制御に基づいて、変調/復調部ex302で復調した多重化データを多重/分離部ex303で分離する。さらにテレビex300は、分離した音声データを音声信号処理部ex304で復号化し、分離した映像データを映像信号処理部ex305で上記各実施の形態で説明した復号化方法を用いて復号化する。復号化した音声信号、映像信号は、それぞれ出力部ex309から外部に向けて出力される。出力する際には、音声信号と映像信号が同期して再生するよう、バッファex318、ex319等に一旦これらの信号を蓄積するとよい。また、テレビex300は、放送等からではなく、磁気/光ディスク、SDカード等の記録メディアex215、ex216から多重化データを読み出してもよい。次に、テレビex300が音声信号や映像信号を符号化し、外部に送信または記録メディア等に書き込む構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、制御部ex310の制御に基づいて、音声信号処理部ex304で音声信号を符号化し、映像信号処理部ex305で映像信号を上記各実施の形態で説明した符号化方法を用いて符号化する。符号化した音声信号、映像信号は多重/分離部ex303で多重化され外部に出力される。多重化する際には、音声信号と映像信号が同期するように、バッファex320、ex321等に一旦これらの信号を蓄積するとよい。なお、バッファex318、ex319、ex320、ex321は図示しているように複数備えていてもよいし、1つ以上のバッファを共有する構成であってもよい。さらに、図示している以外に、例えば変調/復調部ex302や多重/分離部ex303の間等でもシステムのオーバフロー、アンダーフローを避ける緩衝材としてバッファにデータを蓄積することとしてもよい。
 また、テレビex300は、放送等や記録メディア等から音声データ、映像データを取得する以外に、マイクやカメラのAV入力を受け付ける構成を備え、それらから取得したデータに対して符号化処理を行ってもよい。なお、ここではテレビex300は上記の符号化処理、多重化、および外部出力ができる構成として説明したが、これらの処理を行うことはできず、上記受信、復号化処理、外部出力のみが可能な構成であってもよい。
 また、リーダ/レコーダex218で記録メディアから多重化データを読み出す、または書き込む場合には、上記復号化処理または符号化処理はテレビex300、リーダ/レコーダex218のいずれで行ってもよいし、テレビex300とリーダ/レコーダex218が互いに分担して行ってもよい。
 一例として、光ディスクからデータの読み込みまたは書き込みをする場合の情報再生/記録部ex400の構成を図19に示す。情報再生/記録部ex400は、以下に説明する要素ex401、ex402、ex403、ex404、ex405、ex406、ex407を備える。光ヘッドex401は、光ディスクである記録メディアex215の記録面にレーザスポットを照射して情報を書き込み、記録メディアex215の記録面からの反射光を検出して情報を読み込む。変調記録部ex402は、光ヘッドex401に内蔵された半導体レーザを電気的に駆動し記録データに応じてレーザ光の変調を行う。再生復調部ex403は、光ヘッドex401に内蔵されたフォトディテクタにより記録面からの反射光を電気的に検出した再生信号を増幅し、記録メディアex215に記録された信号成分を分離して復調し、必要な情報を再生する。バッファex404は、記録メディアex215に記録するための情報および記録メディアex215から再生した情報を一時的に保持する。ディスクモータex405は記録メディアex215を回転させる。サーボ制御部ex406は、ディスクモータex405の回転駆動を制御しながら光ヘッドex401を所定の情報トラックに移動させ、レーザスポットの追従処理を行う。システム制御部ex407は、情報再生/記録部ex400全体の制御を行う。上記の読み出しや書き込みの処理はシステム制御部ex407が、バッファex404に保持された各種情報を利用し、また必要に応じて新たな情報の生成・追加を行うと共に、変調記録部ex402、再生復調部ex403、サーボ制御部ex406を協調動作させながら、光ヘッドex401を通して、情報の記録再生を行うことにより実現される。システム制御部ex407は例えばマイクロプロセッサで構成され、読み出し書き込みのプログラムを実行することでそれらの処理を実行する。
 以上では、光ヘッドex401はレーザスポットを照射するとして説明したが、近接場光を用いてより高密度な記録を行う構成であってもよい。
 図20に光ディスクである記録メディアex215の模式図を示す。記録メディアex215の記録面には案内溝(グルーブ)がスパイラル状に形成され、情報トラックex230には、予めグルーブの形状の変化によってディスク上の絶対位置を示す番地情報が記録されている。この番地情報はデータを記録する単位である記録ブロックex231の位置を特定するための情報を含み、記録や再生を行う装置において情報トラックex230を再生し番地情報を読み取ることで記録ブロックを特定することができる。また、記録メディアex215は、データ記録領域ex233、内周領域ex232、外周領域ex234を含んでいる。ユーザデータを記録するために用いる領域がデータ記録領域ex233であり、データ記録領域ex233より内周または外周に配置されている内周領域ex232と外周領域ex234は、ユーザデータの記録以外の特定用途に用いられる。情報再生/記録部ex400は、このような記録メディアex215のデータ記録領域ex233に対して、符号化された音声データ、映像データまたはそれらのデータを多重化した多重化データの読み書きを行う。
 以上では、1層のDVD、BD等の光ディスクを例に挙げ説明したが、これらに限ったものではなく、多層構造であって表面以外にも記録可能な光ディスクであってもよい。また、ディスクの同じ場所にさまざまな異なる波長の色の光を用いて情報を記録したり、さまざまな角度から異なる情報の層を記録したりなど、多次元的な記録/再生を行う構造の光ディスクであってもよい。
 また、デジタル放送用システムex200において、アンテナex205を有する車ex210で衛星ex202等からデータを受信し、車ex210が有するカーナビゲーションex211等の表示装置に動画を再生することも可能である。なお、カーナビゲーションex211の構成は例えば図18に示す構成のうち、GPS受信部を加えた構成が考えられ、同様なことがコンピュータex111や携帯電話ex114等でも考えられる。
 図21Aは、上記実施の形態で説明した動画像復号化方法および動画像符号化方法を用いた携帯電話ex114を示す図である。携帯電話ex114は、基地局ex110との間で電波を送受信するためのアンテナex350、映像、静止画を撮ることが可能なカメラ部ex365、カメラ部ex365で撮像した映像、アンテナex350で受信した映像等が復号化されたデータを表示する液晶ディスプレイ等の表示部ex358を備える。携帯電話ex114は、さらに、操作キー部ex366を有する本体部、音声を出力するためのスピーカ等である音声出力部ex357、音声を入力するためのマイク等である音声入力部ex356、撮影した映像、静止画、録音した音声、または受信した映像、静止画、メール等の符号化されたデータもしくは復号化されたデータを保存するメモリ部ex367、又は同様にデータを保存する記録メディアとのインタフェース部であるスロット部ex364を備える。
 さらに、携帯電話ex114の構成例について、図21Bを用いて説明する。携帯電話ex114は、表示部ex358及び操作キー部ex366を備えた本体部の各部を統括的に制御する主制御部ex360に対して、電源回路部ex361、操作入力制御部ex362、映像信号処理部ex355、カメラインタフェース部ex363、LCD(Liquid Crystal Display)制御部ex359、変調/復調部ex352、多重/分離部ex353、音声信号処理部ex354、スロット部ex364、メモリ部ex367がバスex370を介して互いに接続されている。
 電源回路部ex361は、ユーザの操作により終話及び電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することにより携帯電話ex114を動作可能な状態に起動する。
 携帯電話ex114は、CPU、ROM、RAM等を有する主制御部ex360の制御に基づいて、音声通話モード時に音声入力部ex356で収音した音声信号を音声信号処理部ex354でデジタル音声信号に変換し、これを変調/復調部ex352でスペクトラム拡散処理し、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して送信する。また携帯電話ex114は、音声通話モード時にアンテナex350を介して受信した受信データを増幅して周波数変換処理およびアナログデジタル変換処理を施し、変調/復調部ex352でスペクトラム逆拡散処理し、音声信号処理部ex354でアナログ音声信号に変換した後、これを音声出力部ex357から出力する。
 さらにデータ通信モード時に電子メールを送信する場合、本体部の操作キー部ex366等の操作によって入力された電子メールのテキストデータは操作入力制御部ex362を介して主制御部ex360に送出される。主制御部ex360は、テキストデータを変調/復調部ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して基地局ex110へ送信する。電子メールを受信する場合は、受信したデータに対してこのほぼ逆の処理が行われ、表示部ex358に出力される。
 データ通信モード時に映像、静止画、または映像と音声を送信する場合、映像信号処理部ex355は、カメラ部ex365から供給された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し(即ち、本発明の一態様に係る画像符号化装置として機能する)、符号化された映像データを多重/分離部ex353に送出する。また、音声信号処理部ex354は、映像、静止画等をカメラ部ex365で撮像中に音声入力部ex356で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex353に送出する。
 多重/分離部ex353は、映像信号処理部ex355から供給された符号化された映像データと音声信号処理部ex354から供給された符号化された音声データを所定の方式で多重化し、その結果得られる多重化データを変調/復調部(変調/復調回路部)ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex350を介して送信する。
 データ通信モード時にホームページ等にリンクされた動画像ファイルのデータを受信する場合、または映像およびもしくは音声が添付された電子メールを受信する場合、アンテナex350を介して受信された多重化データを復号化するために、多重/分離部ex353は、多重化データを分離することにより映像データのビットストリームと音声データのビットストリームとに分け、同期バスex370を介して符号化された映像データを映像信号処理部ex355に供給するとともに、符号化された音声データを音声信号処理部ex354に供給する。映像信号処理部ex355は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号化方法によって復号化することにより映像信号を復号し(即ち、本発明の一態様に係る画像復号装置として機能する)、LCD制御部ex359を介して表示部ex358から、例えばホームページにリンクされた動画像ファイルに含まれる映像、静止画が表示される。また音声信号処理部ex354は、音声信号を復号し、音声出力部ex357から音声が出力される。
 また、上記携帯電話ex114等の端末は、テレビex300と同様に、符号化器・復号化器を両方持つ送受信型端末の他に、符号化器のみの送信端末、復号化器のみの受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムex200において、映像データに音楽データなどが多重化された多重化データを受信、送信するとして説明したが、音声データ以外に映像に関連する文字データなどが多重化されたデータであってもよいし、多重化データではなく映像データ自体であってもよい。
 このように、上記各実施の形態で示した動画像符号化方法あるいは動画像復号化方法を上述したいずれの機器・システムに用いることは可能であり、そうすることで、上記各実施の形態で説明した効果を得ることができる。
 また、本発明はかかる上記実施の形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形または修正が可能である。
 (実施の形態4)
 上記各実施の形態で示した動画像符号化方法または装置と、MPEG-2、MPEG4-AVC、VC-1など異なる規格に準拠した動画像符号化方法または装置とを、必要に応じて適宜切替えることにより、映像データを生成することも可能である。
 ここで、それぞれ異なる規格に準拠する複数の映像データを生成した場合、復号する際に、それぞれの規格に対応した復号方法を選択する必要がある。しかしながら、復号する映像データが、どの規格に準拠するものであるか識別できないため、適切な復号方法を選択することができないという課題を生じる。
 この課題を解決するために、映像データに音声データなどを多重化した多重化データは、映像データがどの規格に準拠するものであるかを示す識別情報を含む構成とする。上記各実施の形態で示す動画像符号化方法または装置によって生成された映像データを含む多重化データの具体的な構成を以下説明する。多重化データは、MPEG-2トランスポートストリーム形式のデジタルストリームである。
 図22は、多重化データの構成を示す図である。図22に示すように多重化データは、ビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム(PG)、インタラクティブグラフィックスストリームのうち、1つ以上を多重化することで得られる。ビデオストリームは映画の主映像および副映像を、オーディオストリーム(IG)は映画の主音声部分とその主音声とミキシングする副音声を、プレゼンテーショングラフィックスストリームは、映画の字幕をそれぞれ示している。ここで主映像とは画面に表示される通常の映像を示し、副映像とは主映像の中に小さな画面で表示する映像のことである。また、インタラクティブグラフィックスストリームは、画面上にGUI部品を配置することにより作成される対話画面を示している。ビデオストリームは、上記各実施の形態で示した動画像符号化方法または装置、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠した動画像符号化方法または装置によって符号化されている。オーディオストリームは、ドルビーAC-3、Dolby Digital Plus、MLP、DTS、DTS-HD、または、リニアPCMのなどの方式で符号化されている。
 多重化データに含まれる各ストリームはPIDによって識別される。例えば、映画の映像に利用するビデオストリームには0x1011が、オーディオストリームには0x1100から0x111Fまでが、プレゼンテーショングラフィックスには0x1200から0x121Fまでが、インタラクティブグラフィックスストリームには0x1400から0x141Fまでが、映画の副映像に利用するビデオストリームには0x1B00から0x1B1Fまで、主音声とミキシングする副音声に利用するオーディオストリームには0x1A00から0x1A1Fが、それぞれ割り当てられている。
 図23は、多重化データがどのように多重化されるかを模式的に示す図である。まず、複数のビデオフレームからなるビデオストリームex235、複数のオーディオフレームからなるオーディオストリームex238を、それぞれPESパケット列ex236およびex239に変換し、TSパケットex237およびex240に変換する。同じくプレゼンテーショングラフィックスストリームex241およびインタラクティブグラフィックスex244のデータをそれぞれPESパケット列ex242およびex245に変換し、さらにTSパケットex243およびex246に変換する。多重化データex247はこれらのTSパケットを1本のストリームに多重化することで構成される。
 図24は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示している。図24における第1段目はビデオストリームのビデオフレーム列を示す。第2段目は、PESパケット列を示す。図24の矢印yy1,yy2,yy3,yy4に示すように、ビデオストリームにおける複数のVideo Presentation UnitであるIピクチャ、Bピクチャ、Pピクチャは、ピクチャ毎に分割され、PESパケットのペイロードに格納される。各PESパケットはPESヘッダを持ち、PESヘッダには、ピクチャの表示時刻であるPTS(Presentation Time-Stamp)やピクチャの復号時刻であるDTS(Decoding Time-Stamp)が格納される。
 図25は、多重化データに最終的に書き込まれるTSパケットの形式を示している。TSパケットは、ストリームを識別するPIDなどの情報を持つ4ByteのTSヘッダとデータを格納する184ByteのTSペイロードから構成される188Byte固定長のパケットであり、上記PESパケットは分割されTSペイロードに格納される。BD-ROMの場合、TSパケットには、4ByteのTP_Extra_Headerが付与され、192Byteのソースパケットを構成し、多重化データに書き込まれる。TP_Extra_HeaderにはATS(Arrival_Time_Stamp)などの情報が記載される。ATSは当該TSパケットのデコーダのPIDフィルタへの転送開始時刻を示す。多重化データには図25下段に示すようにソースパケットが並ぶこととなり、多重化データの先頭からインクリメントする番号はSPN(ソースパケットナンバー)と呼ばれる。
 また、多重化データに含まれるTSパケットには、映像・音声・字幕などの各ストリーム以外にもPAT(Program Association Table)、PMT(Program Map Table)、PCR(Program Clock Reference)などがある。PATは多重化データ中に利用されるPMTのPIDが何であるかを示し、PAT自身のPIDは0で登録される。PMTは、多重化データ中に含まれる映像・音声・字幕などの各ストリームのPIDと各PIDに対応するストリームの属性情報を持ち、また多重化データに関する各種ディスクリプタを持つ。ディスクリプタには多重化データのコピーを許可・不許可を指示するコピーコントロール情報などがある。PCRは、ATSの時間軸であるATC(Arrival Time Clock)とPTS・DTSの時間軸であるSTC(System Time Clock)の同期を取るために、そのPCRパケットがデコーダに転送されるATSに対応するSTC時間の情報を持つ。
 図26はPMTのデータ構造を詳しく説明する図である。PMTの先頭には、そのPMTに含まれるデータの長さなどを記したPMTヘッダが配置される。その後ろには、多重化データに関するディスクリプタが複数配置される。上記コピーコントロール情報などが、ディスクリプタとして記載される。ディスクリプタの後には、多重化データに含まれる各ストリームに関するストリーム情報が複数配置される。ストリーム情報は、ストリームの圧縮コーデックなどを識別するためストリームタイプ、ストリームのPID、ストリームの属性情報(フレームレート、アスペクト比など)が記載されたストリームディスクリプタから構成される。ストリームディスクリプタは多重化データに存在するストリームの数だけ存在する。
 記録媒体などに記録する場合には、上記多重化データは、多重化データ情報ファイルと共に記録される。
 多重化データ情報ファイルは、図27に示すように多重化データの管理情報であり、多重化データと1対1に対応し、多重化データ情報、ストリーム属性情報とエントリマップから構成される。
 多重化データ情報は図27に示すようにシステムレート、再生開始時刻、再生終了時刻から構成されている。システムレートは多重化データの、後述するシステムターゲットデコーダのPIDフィルタへの最大転送レートを示す。多重化データ中に含まれるATSの間隔はシステムレート以下になるように設定されている。再生開始時刻は多重化データの先頭のビデオフレームのPTSであり、再生終了時刻は多重化データの終端のビデオフレームのPTSに1フレーム分の再生間隔を足したものが設定される。
 ストリーム属性情報は図28に示すように、多重化データに含まれる各ストリームについての属性情報が、PID毎に登録される。属性情報はビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム、インタラクティブグラフィックスストリーム毎に異なる情報を持つ。ビデオストリーム属性情報は、そのビデオストリームがどのような圧縮コーデックで圧縮されたか、ビデオストリームを構成する個々のピクチャデータの解像度がどれだけであるか、アスペクト比はどれだけであるか、フレームレートはどれだけであるかなどの情報を持つ。オーディオストリーム属性情報は、そのオーディオストリームがどのような圧縮コーデックで圧縮されたか、そのオーディオストリームに含まれるチャンネル数は何であるか、何の言語に対応するか、サンプリング周波数がどれだけであるかなどの情報を持つ。これらの情報は、プレーヤが再生する前のデコーダの初期化などに利用される。
 本実施の形態においては、上記多重化データのうち、PMTに含まれるストリームタイプを利用する。また、記録媒体に多重化データが記録されている場合には、多重化データ情報に含まれる、ビデオストリーム属性情報を利用する。具体的には、上記各実施の形態で示した動画像符号化方法または装置において、PMTに含まれるストリームタイプ、または、ビデオストリーム属性情報に対し、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示す固有の情報を設定するステップまたは手段を設ける。この構成により、上記各実施の形態で示した動画像符号化方法または装置によって生成した映像データと、他の規格に準拠する映像データとを識別することが可能になる。
 また、本実施の形態における動画像復号化方法のステップを図29に示す。ステップexS100において、多重化データからPMTに含まれるストリームタイプ、または、多重化データ情報に含まれるビデオストリーム属性情報を取得する。次に、ステップexS101において、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成された多重化データであることを示しているか否かを判断する。そして、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成されたものであると判断された場合には、ステップexS102において、上記各実施の形態で示した動画像復号方法により復号を行う。また、ストリームタイプ、または、ビデオストリーム属性情報が、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠するものであることを示している場合には、ステップexS103において、従来の規格に準拠した動画像復号方法により復号を行う。
 このように、ストリームタイプ、または、ビデオストリーム属性情報に新たな固有値を設定することにより、復号する際に、上記各実施の形態で示した動画像復号化方法または装置で復号可能であるかを判断することができる。従って、異なる規格に準拠する多重化データが入力された場合であっても、適切な復号化方法または装置を選択することができるため、エラーを生じることなく復号することが可能となる。また、本実施の形態で示した動画像符号化方法または装置、または、動画像復号方法または装置を、上述したいずれの機器・システムに用いることも可能である。
 (実施の形態5)
 上記各実施の形態で示した動画像符号化方法および装置、動画像復号化方法および装置は、典型的には集積回路であるLSIで実現される。一例として、図30に1チップ化されたLSIex500の構成を示す。LSIex500は、以下に説明する要素ex501、ex502、ex503、ex504、ex505、ex506、ex507、ex508、ex509を備え、各要素はバスex510を介して接続している。電源回路部ex505は電源がオン状態の場合に各部に対して電力を供給することで動作可能な状態に起動する。
 例えば符号化処理を行う場合には、LSIex500は、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有する制御部ex501の制御に基づいて、AV I/Oex509によりマイクex117やカメラex113等からAV信号を入力する。入力されたAV信号は、一旦SDRAM等の外部のメモリex511に蓄積される。制御部ex501の制御に基づいて、蓄積したデータは処理量や処理速度に応じて適宜複数回に分けるなどされ信号処理部ex507に送られ、信号処理部ex507において音声信号の符号化および/または映像信号の符号化が行われる。ここで映像信号の符号化処理は上記各実施の形態で説明した符号化処理である。信号処理部ex507ではさらに、場合により符号化された音声データと符号化された映像データを多重化するなどの処理を行い、ストリームI/Oex506から外部に出力する。この出力された多重化データは、基地局ex107に向けて送信されたり、または記録メディアex215に書き込まれたりする。なお、多重化する際には同期するよう、一旦バッファex508にデータを蓄積するとよい。
 なお、上記では、メモリex511がLSIex500の外部の構成として説明したが、LSIex500の内部に含まれる構成であってもよい。バッファex508も1つに限ったものではなく、複数のバッファを備えていてもよい。また、LSIex500は1チップ化されてもよいし、複数チップ化されてもよい。
 また、上記では、制御部ex501が、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有するとしているが、制御部ex501の構成は、この構成に限らない。例えば、信号処理部ex507がさらにCPUを備える構成であってもよい。信号処理部ex507の内部にもCPUを設けることにより、処理速度をより向上させることが可能になる。また、他の例として、CPUex502が信号処理部ex507、または信号処理部ex507の一部である例えば音声信号処理部を備える構成であってもよい。このような場合には、制御部ex501は、信号処理部ex507、またはその一部を有するCPUex502を備える構成となる。
 なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。
 (実施の形態6)
 上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データを復号する場合、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データを復号する場合に比べ、処理量が増加することが考えられる。そのため、LSIex500において、従来の規格に準拠する映像データを復号する際のCPUex502の駆動周波数よりも高い駆動周波数に設定する必要がある。しかし、駆動周波数を高くすると、消費電力が高くなるという課題が生じる。
 この課題を解決するために、テレビex300、LSIex500などの動画像復号化装置は、映像データがどの規格に準拠するものであるかを識別し、規格に応じて駆動周波数を切替える構成とする。図31は、本実施の形態における構成ex800を示している。駆動周波数切替え部ex803は、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合には、駆動周波数を高く設定する。そして、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801に対し、映像データを復号するよう指示する。一方、映像データが、従来の規格に準拠する映像データである場合には、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合に比べ、駆動周波数を低く設定する。そして、従来の規格に準拠する復号処理部ex802に対し、映像データを復号するよう指示する。
 より具体的には、駆動周波数切替え部ex803は、図30のCPUex502と駆動周波数制御部ex512から構成される。また、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801、および、従来の規格に準拠する復号処理部ex802は、図30の信号処理部ex507に該当する。CPUex502は、映像データがどの規格に準拠するものであるかを識別する。そして、CPUex502からの信号に基づいて、駆動周波数制御部ex512は、駆動周波数を設定する。また、CPUex502からの信号に基づいて、信号処理部ex507は、映像データの復号を行う。ここで、映像データの識別には、例えば、実施の形態4で記載した識別情報を利用することが考えられる。識別情報に関しては、実施の形態4で記載したものに限られず、映像データがどの規格に準拠するか識別できる情報であればよい。例えば、映像データがテレビに利用されるものであるか、ディスクに利用されるものであるかなどを識別する外部信号に基づいて、映像データがどの規格に準拠するものであるか識別可能である場合には、このような外部信号に基づいて識別してもよい。また、CPUex502における駆動周波数の選択は、例えば、図33のような映像データの規格と、駆動周波数とを対応付けたルックアップテーブルに基づいて行うことが考えられる。ルックアップテーブルを、バッファex508や、LSIの内部メモリに格納しておき、CPUex502がこのルックアップテーブルを参照することにより、駆動周波数を選択することが可能である。
 図32は、本実施の形態の方法を実施するステップを示している。まず、ステップexS200では、信号処理部ex507において、多重化データから識別情報を取得する。次に、ステップexS201では、CPUex502において、識別情報に基づいて映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものであるか否かを識別する。映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合には、ステップexS202において、駆動周波数を高く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、高い駆動周波数に設定される。一方、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、ステップexS203において、駆動周波数を低く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合に比べ、低い駆動周波数に設定される。
 さらに、駆動周波数の切替えに連動して、LSIex500またはLSIex500を含む装置に与える電圧を変更することにより、省電力効果をより高めることが可能である。例えば、駆動周波数を低く設定する場合には、これに伴い、駆動周波数を高く設定している場合に比べ、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することが考えられる。
 また、駆動周波数の設定方法は、復号する際の処理量が大きい場合に、駆動周波数を高く設定し、復号する際の処理量が小さい場合に、駆動周波数を低く設定すればよく、上述した設定方法に限らない。例えば、MPEG4-AVC規格に準拠する映像データを復号する処理量の方が、上記各実施の形態で示した動画像符号化方法または装置により生成された映像データを復号する処理量よりも大きい場合には、駆動周波数の設定を上述した場合の逆にすることが考えられる。
 さらに、駆動周波数の設定方法は、駆動周波数を低くする構成に限らない。例えば、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を高く設定し、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することも考えられる。また、他の例としては、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、CPUex502の駆動を停止させることなく、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、処理に余裕があるため、CPUex502の駆動を一時停止させることも考えられる。識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合であっても、処理に余裕があれば、CPUex502の駆動を一時停止させることも考えられる。この場合は、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合に比べて、停止時間を短く設定することが考えられる。
 このように、映像データが準拠する規格に応じて、駆動周波数を切替えることにより、省電力化を図ることが可能になる。また、電池を用いてLSIex500またはLSIex500を含む装置を駆動している場合には、省電力化に伴い、電池の寿命を長くすることが可能である。
 (実施の形態7)
 テレビや、携帯電話など、上述した機器・システムには、異なる規格に準拠する複数の映像データが入力される場合がある。このように、異なる規格に準拠する複数の映像データが入力された場合にも復号できるようにするために、LSIex500の信号処理部ex507が複数の規格に対応している必要がある。しかし、それぞれの規格に対応する信号処理部ex507を個別に用いると、LSIex500の回路規模が大きくなり、また、コストが増加するという課題が生じる。
 この課題を解決するために、上記各実施の形態で示した動画像復号方法を実行するための復号処理部と、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する復号処理部とを一部共有化する構成とする。この構成例を図34Aのex900に示す。例えば、上記各実施の形態で示した動画像復号方法と、MPEG4-AVC規格に準拠する動画像復号方法とは、エントロピー符号化、逆量子化、デブロッキング・フィルタ、動き補償などの処理において処理内容が一部共通する。共通する処理内容については、MPEG4-AVC規格に対応する復号処理部ex902を共有し、MPEG4-AVC規格に対応しない、本発明の一態様に特有の他の処理内容については、専用の復号処理部ex901を用いるという構成が考えられる。復号処理部の共有化に関しては、共通する処理内容については、上記各実施の形態で示した動画像復号化方法を実行するための復号処理部を共有し、MPEG4-AVC規格に特有の処理内容については、専用の復号処理部を用いる構成であってもよい。
 また、処理を一部共有化する他の例を図34Bのex1000に示す。この例では、本発明の一態様に特有の処理内容に対応した専用の復号処理部ex1001と、他の従来規格に特有の処理内容に対応した専用の復号処理部ex1002と、本発明の一態様に係る動画像復号方法と他の従来規格の動画像復号方法とに共通する処理内容に対応した共用の復号処理部ex1003とを用いる構成としている。ここで、専用の復号処理部ex1001、ex1002は、必ずしも本発明の一態様、または、他の従来規格に特有の処理内容に特化したものではなく、他の汎用処理を実行できるものであってもよい。また、本実施の形態の構成を、LSIex500で実装することも可能である。
 このように、本発明の一態様に係る動画像復号方法と、従来の規格の動画像復号方法とで共通する処理内容について、復号処理部を共有することにより、LSIの回路規模を小さくし、かつ、コストを低減することが可能である。
 動画像の符号化方法・復号化方法に関する。画面内符号化における面内予測画素の生成方法を区別するモード番号の符号化・復号化方法に関する。
 100 画像符号化装置
 101 差分部
 102 変換部
 103 量子化部
 104 逆量子化部
 105 逆変換部
 106 加算部
 107 画面間予測部
 108 画面内予測部
 109 切替部
 110 符号化制御部
 120 可変長符号化部
 200 画像復号装置
 201 逆量子化部
 202 逆変換部
 203 加算部
 204 画面間予測部
 205 画面内予測部
 206 切替部
 210 制御部
 220 可変長復号化部

Claims (16)

  1.  符号化ストリームに含まれる画像データをブロック毎に復号する画像復号方法であって、
     復号対象ブロックの画面内予測で用いるイントラ予測モードの候補であって、常に2以上の数のイントラ予測モードの候補を導出する導出ステップと、
     導出された前記イントラ予測モードの候補の中から1つの候補を特定するためのインデクスを前記符号化ストリームから取得する取得ステップと、
     取得された前記インデクスに基づいて、導出された前記イントラ予測モードの候補のうちの1つの候補を、前記復号対象ブロックの画面内予測で用いる前記イントラ予測モードとして決定する決定ステップと、を含む
     画像復号方法。
  2.  前記2以上の数は、固定された数である
     請求項1に記載の画像復号方法。
  3.  前記導出ステップは、
     前記復号対象ブロックに隣接する各隣接ブロックの画面内予測で用いられたイントラ予測モードから、前記イントラ予測モードの第1候補を導出する第1導出ステップと、
     導出された前記第1候補の数が、前記2以上の数より小さいか否かを判定する判定ステップと、
     前記第1候補の数が前記2以上の数より小さいと判定された場合に、さらに、前記イントラ予測モードの第2候補を導出する第2導出ステップとを含む
     請求項1または2に記載の画像復号方法。
  4.  前記第1導出ステップでは、画面内予測で用いられたイントラ予測モードを取得する前記隣接ブロックの数は、前記2以上の数と同じ数である
     請求項3に記載の画像復号方法。
  5.  前記第2導出ステップでは、
     前記第1候補の数と前記第2候補の数の合計が、常に前記2以上の数になるように、前記第2候補を導出する
     請求項3または4に記載の画像復号方法。
  6.  前記第2導出ステップでは、
     前記復号対象ブロックに隣接する各隣接ブロックの画面内予測で用いられたイントラ予測モードとは異なるイントラ予測モードを、前記第2候補として導出する
     請求項3~5の何れか1項に記載の画像復号方法。
  7.  前記第2導出ステップでは、
     前記復号対象ブロックの画素値の平均値を用いて予測することを示すイントラ予測モードと、平面予測を示すイントラ予測モードと、縦方向予測を示すイントラ予測モードとのうちの少なくとも何れか1つを前記第2候補として導出する
     請求項3~6の何れか1項に記載の画像復号方法。
  8.  前記取得ステップでは、前記符号化ストリームから、前記復号対象ブロックの画面内予測で用いるイントラ予測モードを示すモード番号を取得し、
     前記決定ステップでは、取得された前記モード番号に基づいて、前記復号対象ブロックの画面内予測で用いる前記イントラ予測モードを決定する
     請求項1~7の何れか1項に記載の画像復号方法。
  9.  前記導出ステップは、
     前記復号対象ブロックに隣接する隣接ブロックがある場合は、前記隣接ブロックの画面内予測で用いられたイントラ予測モード以外のイントラ予測モードを、前記イントラ予測モードの候補として導出し、
     前記復号対象ブロックに隣接する隣接ブロックがない場合は、予め定められた条件に基づいて、前記イントラ予測モードの候補を導出する
     請求項1または2に記載の画像復号方法。
  10.  前記導出ステップでは、さらに、前記イントラ予測モードの候補を用いて候補リストを作成し、
     前記インデクスは、前記候補リストに含まれる前記イントラ予測モードの候補を識別するための番号である
     請求項1~9の何れか1項に記載の画像復号方法。
  11.  画像データをブロック毎に符号化することで符号化ストリームを生成する画像符号化方法であって、
     符号化対象ブロックに対応する復号対象ブロックの画面内予測で用いるイントラ予測モードの候補であって、常に2以上の数のイントラ予測モードの候補を導出する導出ステップと、
     導出された前記イントラ予測モードの候補のうちの1つの候補を、前記復号対象ブロックの画面内予測で用いるイントラ予測モードとして決定する決定ステップと、
     導出された前記イントラ予測モードの候補の中から、決定された前記1つの候補を特定するためのインデクスを前記符号化ストリームに付加する付加ステップとを含む
     画像符号化方法。
  12.  前記2以上の数は、固定された数である
     請求項11に記載の画像符号化方法。
  13.  前記決定ステップでは、
     導出された前記イントラ予測モードの候補のうち、前記符号化対象ブロックの画面内予測で用いられたイントラ予測モードと一致する候補を、前記1つの候補として決定する
     請求項11または12に記載の画像符号化方法。
  14.  符号化ストリームに含まれる画像データをブロック毎に復号する画像復号装置であって、
     復号対象ブロックの画面内予測で用いるイントラ予測モードの候補であって、常に2以上の数のイントラ予測モードの候補を導出する導出部と、
     導出された前記イントラ予測モードの候補の中から1つの候補を特定するためのインデクスを前記符号化ストリームから取得する取得部と、
     取得された前記インデクスに基づいて、導出された前記イントラ予測モードの候補のうちの1つの候補を、前記復号対象ブロックの画面内予測で用いる前記イントラ予測モードとして決定する決定部と、を備える
     画像復号装置。
  15.  画像データをブロック毎に符号化することで符号化ストリームを生成する画像符号化装置であって、
     符号化対象ブロックに対応する復号対象ブロックの画面内予測で用いるイントラ予測モードの候補であって、常に2以上の数のイントラ予測モードの候補を導出する導出部と、
     導出された前記イントラ予測モードの候補のうちの1つの候補を、前記復号対象ブロックの画面内予測で用いるイントラ予測モードとして決定する決定部と、
     導出された前記イントラ予測モードの候補の中から、決定された前記1つの候補を特定するためのインデクスを前記符号化ストリームに付加する付加部とを備える
     画像符号化装置。
  16.  請求項14に記載の画像復号装置と、
     請求項15に記載の画像符号化装置とを備える
     画像符号化復号装置。
PCT/JP2012/003839 2011-06-13 2012-06-13 画像復号方法、画像符号化方法、画像復号装置、画像符号化装置および画像符号化復号装置 WO2012172791A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
ES12799908T ES2961495T3 (es) 2011-06-13 2012-06-13 Procedimiento de decodificación de imágenes y procedimiento de codificación de imágenes
AU2012270960A AU2012270960B2 (en) 2011-06-13 2012-06-13 Image decoding method, image coding method, image decoding apparatus, image coding apparatus, and image coding and decoding apparatus
EP12799908.4A EP2720461B1 (en) 2011-06-13 2012-06-13 Image decoding method and image encoding method
RU2013154414A RU2607246C2 (ru) 2011-06-13 2012-06-13 Способ декодирования изображений, способ кодирования изображений, устройство декодирования изображений, устройство кодирования изображений и устройство кодирования и декодирования изображений
MX2013013909A MX2013013909A (es) 2011-06-13 2012-06-13 Metodo de decodificacion de imagenes, metodo de codificacion de imagenes, aparato de decodificacion de imagenes, aparato de codificacion de imagenes y aparato de codificacion y decodificacion de imágenes.
KR1020137032627A KR101955051B1 (ko) 2011-06-13 2012-06-13 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치
CN201280028186.0A CN103609110B (zh) 2011-06-13 2012-06-13 图像解码方法、图像编码方法、图像解码装置、图像编码装置及图像编码解码装置
BR112013031624-1A BR112013031624B1 (pt) 2011-06-13 2012-06-13 Método de decodificação de imagem, método de codificação de imagem, dispositivo de decodificação de imagem, dispositivo de codificação de imagem, e dispositivo de codificação/decodificação de imagem
CA2838214A CA2838214C (en) 2011-06-13 2012-06-13 Image decoding method, image coding method, image decoding apparatus, image coding apparatus, and image coding and decoding apparatus
PL12799908.4T PL2720461T3 (pl) 2011-06-13 2012-06-13 Sposób dekodowania obrazów, sposób kodowania obrazów, urządzenie do dekodowania obrazów, urządzenie do kodowania obrazów, oraz urządzenie do kodowania i dekodowania obrazów
JP2013520433A JP5386657B2 (ja) 2011-06-13 2012-06-13 画像復号方法および画像復号装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161496237P 2011-06-13 2011-06-13
US61/496,237 2011-06-13

Publications (1)

Publication Number Publication Date
WO2012172791A1 true WO2012172791A1 (ja) 2012-12-20

Family

ID=47356797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003839 WO2012172791A1 (ja) 2011-06-13 2012-06-13 画像復号方法、画像符号化方法、画像復号装置、画像符号化装置および画像符号化復号装置

Country Status (15)

Country Link
US (7) US9860539B2 (ja)
EP (1) EP2720461B1 (ja)
JP (3) JP5386657B2 (ja)
KR (1) KR101955051B1 (ja)
CN (1) CN103609110B (ja)
AU (1) AU2012270960B2 (ja)
BR (1) BR112013031624B1 (ja)
CA (1) CA2838214C (ja)
ES (1) ES2961495T3 (ja)
MX (1) MX2013013909A (ja)
MY (1) MY165837A (ja)
PL (1) PL2720461T3 (ja)
RU (1) RU2607246C2 (ja)
TW (2) TWI556628B (ja)
WO (1) WO2012172791A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099913A (ja) * 2012-01-20 2014-05-29 Sony Corp Hevcビデオ符号化における論理的イントラモードネーミング
JP2014523697A (ja) * 2011-06-28 2014-09-11 サムスン エレクトロニクス カンパニー リミテッド イントラ予測を伴うビデオ符号化方法及びその装置、ビデオ復号化方法及びその装置
JP2014527361A (ja) * 2012-01-19 2014-10-09 華為技術有限公司 エンコーディングおよびデコーディングの方法および装置
JP2014528670A (ja) * 2011-10-07 2014-10-27 パンテック カンパニー リミテッド 候補画面内予測モードを利用した画面内予測モードの符号化/復号化方法及び装置
JP2014535225A (ja) * 2011-11-04 2014-12-25 クゥアルコム・インコーポレイテッドQualcomm Incorporated イントラモードビデオコーディング
JP2019537344A (ja) * 2016-10-21 2019-12-19 オランジュ 画像パラメータをコーディング及びデコーディングする方法、画像パラメータをコーディング及びデコーディングする装置、並びに、これらに対応するコンピュータプログラム
JP2020074565A (ja) * 2011-11-04 2020-05-14 イノティヴ リミテッド 量子化ブロック逆量子化方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2607246C2 (ru) * 2011-06-13 2017-01-10 Сан Пэтент Траст Способ декодирования изображений, способ кодирования изображений, устройство декодирования изображений, устройство кодирования изображений и устройство кодирования и декодирования изображений
EP2723077B1 (en) * 2011-06-17 2021-07-21 JVC KENWOOD Corporation Image encoding device, image encoding method and image encoding program, as well as image decoding device, image decoding method and image decoding program
MX2013013523A (es) * 2011-06-17 2014-02-27 Mediatek Inc Metodo y aparato para codificacion de modo de intra predicion.
WO2013000324A1 (en) 2011-06-28 2013-01-03 Mediatek Singapore Pte. Ltd. Method and apparatus of intra mode coding
US8811760B2 (en) * 2011-10-25 2014-08-19 Mitsubishi Electric Research Laboratories, Inc. Coding images using intra prediction modes
CN104104950B (zh) * 2013-04-12 2018-03-02 浙江大学 一种模式信息的编解码方法及装置
JP6171627B2 (ja) * 2013-06-28 2017-08-02 株式会社Jvcケンウッド 画像符号化装置、画像符号化方法、画像符号化プログラム、画像復号装置、画像復号方法および画像復号プログラム
FR3051309A1 (fr) * 2016-05-10 2017-11-17 Bcom Procedes et dispositifs de codage et de decodage d'un flux de donnees representatif d'au moins une image
JP6669622B2 (ja) * 2016-09-21 2020-03-18 Kddi株式会社 動画像復号装置、動画像復号方法、動画像符号化装置、動画像符号化方法及びコンピュータ可読記録媒体
CN109792521A (zh) * 2016-10-04 2019-05-21 韩国电子通信研究院 用于对图像进行编码/解码的方法和设备以及存储比特流的记录介质
US10393702B2 (en) * 2016-11-02 2019-08-27 Weatherford Technology Holdings, Llc Defect penetration estimate using magnetic flux image enhancement
US10785479B2 (en) * 2018-03-30 2020-09-22 Hulu, LLC Intra prediction mode signaling for video coding
BR112020024566A2 (pt) * 2018-06-14 2021-03-09 Panasonic Intellectual Property Corporation Of America Método de codificação de dados tridimensionais, método de decodificação de dados tridimensionais, dispositivo de codificação de dados tridimensionais e dispositivo de decodificação de dados tridimensionais
WO2020009514A1 (ko) * 2018-07-06 2020-01-09 한국전자통신연구원 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
CN112567771A (zh) * 2018-08-09 2021-03-26 华为技术有限公司 基于历史的帧内模式编解码方法和装置
MX2021003467A (es) * 2018-09-28 2021-06-18 Jvckenwood Corp Dispositivo de decodificacion de imagenes, metodo de decodificacion de imagenes y programa de decodificacion de imagenes.
CN112514378A (zh) * 2018-09-28 2021-03-16 Jvc建伍株式会社 图像解码装置、图像解码方法以及图像解码程序

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003520531A (ja) * 2000-01-21 2003-07-02 ノキア コーポレイション イメージをコード化する方法およびイメージコーダ

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7236524B2 (en) 2002-05-28 2007-06-26 Sharp Laboratories Of America, Inc. Methods and systems for image intra-prediction mode communication
US7386048B2 (en) 2002-05-28 2008-06-10 Sharp Laboratories Of America, Inc. Methods and systems for image intra-prediction mode organization
DE60313454T2 (de) * 2002-05-28 2008-01-03 Sharp K.K. Verfahren und systeme zur bildintraprädiktionsmodusschätzung,kommunikation und organisation
US7289672B2 (en) 2002-05-28 2007-10-30 Sharp Laboratories Of America, Inc. Methods and systems for image intra-prediction mode estimation
TWI330976B (en) 2003-12-05 2010-09-21 Trident Microsystems Far East Method and apparatus for encoding/decoding dynamic graphic content
JP2005184042A (ja) * 2003-12-15 2005-07-07 Sony Corp 画像復号装置及び画像復号方法並びに画像復号プログラム
KR100608050B1 (ko) 2004-01-14 2006-08-02 삼성전자주식회사 사용자의 요구에 의해 활성화되는 인터랙티브 그래픽스트림을 저장한 저장 매체, 재생 장치 및 그 재생 방법
US8175444B2 (en) 2004-01-14 2012-05-08 Samsung Electronics Co., Ltd. Method of reproducing from storage medium storing interactive graphics stream activated in response to user's command
US20060120461A1 (en) 2004-12-06 2006-06-08 Roy Knight Two processor architecture supporting decoupling of outer loop and inner loop in video decoder
JP4495580B2 (ja) * 2004-12-13 2010-07-07 パナソニック株式会社 面内予測装置および面内予測方法
US8509551B2 (en) * 2005-07-22 2013-08-13 Mitsubishi Electric Corporation Image encoder and image decoder, image encoding method and image decoding method, image encoding program and image decoding program, and computer readable recording medium recording with image encoding program and computer readable recording medium recorded with image decoding program
JP2007116351A (ja) * 2005-10-19 2007-05-10 Ntt Docomo Inc 画像予測符号化装置、画像予測復号装置、画像予測符号化方法、画像予測復号方法、画像予測符号化プログラム、及び画像予測復号プログラム
JP2009060153A (ja) * 2005-12-21 2009-03-19 Panasonic Corp 面内予測モード決定方法及び装置及びプログラム
JP4635016B2 (ja) * 2007-02-16 2011-02-16 株式会社東芝 情報処理装置およびインター予測モード判定方法
JP5188875B2 (ja) * 2007-06-04 2013-04-24 株式会社エヌ・ティ・ティ・ドコモ 画像予測符号化装置、画像予測復号装置、画像予測符号化方法、画像予測復号方法、画像予測符号化プログラム、及び画像予測復号プログラム
US8145002B2 (en) * 2007-06-28 2012-03-27 Mitsubishi Electric Corporation Image encoding device and image encoding method
WO2009035144A1 (ja) * 2007-09-12 2009-03-19 Sony Corporation 画像処理装置及び画像処理方法
US20100290532A1 (en) * 2007-12-28 2010-11-18 Tomoyuki Yamamoto Moving image encoder and moving image decoder
KR101306834B1 (ko) * 2008-09-22 2013-09-10 에스케이텔레콤 주식회사 인트라 예측 모드의 예측 가능성을 이용한 영상 부호화/복호화 장치 및 방법
EP2393296A1 (en) * 2009-01-29 2011-12-07 Panasonic Corporation Image coding method and image decoding method
KR101702553B1 (ko) * 2009-07-04 2017-02-03 에스케이 텔레콤주식회사 영상 부호화/복호화 방법 및 장치
WO2011031332A1 (en) * 2009-09-14 2011-03-17 Thomson Licensing Methods and apparatus for efficient video encoding and decoding of intra prediction mode
JP6342116B2 (ja) * 2010-07-15 2018-06-13 シャープ株式会社 イントラ予測モード推定装置
KR101373814B1 (ko) * 2010-07-31 2014-03-18 엠앤케이홀딩스 주식회사 예측 블록 생성 장치
EP3493543B1 (en) * 2010-12-17 2020-12-23 Mitsubishi Electric Corporation Moving image encoding device, moving image decoding device, moving image encoding method and moving image decoding method
AU2011345535B2 (en) 2010-12-23 2015-08-20 Samsung Electronics Co., Ltd. Method and device for encoding intra prediction mode for image prediction unit, and method and device for decoding intra prediction mode for image prediction unit
JP5781313B2 (ja) * 2011-01-12 2015-09-16 株式会社Nttドコモ 画像予測符号化方法、画像予測符号化装置、画像予測符号化プログラム、画像予測復号方法、画像予測復号装置及び画像予測復号プログラム
JP5482735B2 (ja) 2011-05-30 2014-05-07 株式会社Jvcケンウッド 画像復号装置、画像復号方法及び画像復号プログラム、並びに、受信装置、受信方法、及び受信プログラム
MX2013012209A (es) * 2011-05-31 2013-11-01 Panasonic Corp Metodo de codificacion de video, aparato de codificacion de video, metodo de decodificacion de video, aparato de decodificacion de video y aparato de codificacion/decodificacion de video.
US9532058B2 (en) * 2011-06-03 2016-12-27 Qualcomm Incorporated Intra prediction mode coding with directional partitions
US9654785B2 (en) * 2011-06-09 2017-05-16 Qualcomm Incorporated Enhanced intra-prediction mode signaling for video coding using neighboring mode
RU2607246C2 (ru) * 2011-06-13 2017-01-10 Сан Пэтент Траст Способ декодирования изображений, способ кодирования изображений, устройство декодирования изображений, устройство кодирования изображений и устройство кодирования и декодирования изображений
US10531084B2 (en) * 2015-06-15 2020-01-07 Lg Electronics Inc. Intra prediction mode based image processing method, and apparatus therefor
US10587873B2 (en) * 2015-10-13 2020-03-10 Lg Electronics Inc. Method and apparatus for encoding and decoding video signal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003520531A (ja) * 2000-01-21 2003-07-02 ノキア コーポレイション イメージをコード化する方法およびイメージコーダ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 5th Meeting", JCTVC-E603 TITLE:WD3: WORKING DRAFT 3 OF HIGH-EFFICIENCY VIDEO CODING VER.5, March 2011 (2011-03-01), Retrieved from the Internet <URL:http://phenix.int-evry.fr/jct/doc_end_user/documents/5_Geneva/wg 11/JCTVC-E603-v5.zip>
JIANLE CHEN: "BoG report on intra mode coding with fixed number of MPM candidates", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11 6TH MEETING, 14 July 2011 (2011-07-14), TORINO, XP030009788 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143573A (ja) * 2011-06-28 2017-08-17 サムスン エレクトロニクス カンパニー リミテッド ビデオ復号化方法及びその装置
JP2014523697A (ja) * 2011-06-28 2014-09-11 サムスン エレクトロニクス カンパニー リミテッド イントラ予測を伴うビデオ符号化方法及びその装置、ビデオ復号化方法及びその装置
JP2016149814A (ja) * 2011-06-28 2016-08-18 サムスン エレクトロニクス カンパニー リミテッド ビデオ復号化方法及びその装置
JP2018191332A (ja) * 2011-06-28 2018-11-29 サムスン エレクトロニクス カンパニー リミテッド ビデオ復号化方法及びその装置
JP2014528670A (ja) * 2011-10-07 2014-10-27 パンテック カンパニー リミテッド 候補画面内予測モードを利用した画面内予測モードの符号化/復号化方法及び装置
JP7192044B2 (ja) 2011-11-04 2022-12-19 ゲンスクエア エルエルシー イントラ予測における予測ブロックを生成する方法
JP7192045B2 (ja) 2011-11-04 2022-12-19 ゲンスクエア エルエルシー イントラ予測における予測ブロックを生成する方法
JP2021177634A (ja) * 2011-11-04 2021-11-11 イノティヴ リミテッド イントラ予測における予測ブロックを生成する方法
JP2014535225A (ja) * 2011-11-04 2014-12-25 クゥアルコム・インコーポレイテッドQualcomm Incorporated イントラモードビデオコーディング
JP2021177635A (ja) * 2011-11-04 2021-11-11 イノティヴ リミテッド イントラ予測における予測ブロックを生成する方法、記録媒体
JP2020074565A (ja) * 2011-11-04 2020-05-14 イノティヴ リミテッド 量子化ブロック逆量子化方法
US10104380B2 (en) 2012-01-19 2018-10-16 Huawei Technologies Co., Ltd. Encoding and decoding methods and apparatuses
JP2016197894A (ja) * 2012-01-19 2016-11-24 華為技術有限公司Huawei Technologies Co.,Ltd. エンコーディングおよびデコーディングの方法および装置
US9769474B2 (en) 2012-01-19 2017-09-19 Huawei Technologies Co., Ltd. Encoding and decoding methods and apparatuses
JP2014527361A (ja) * 2012-01-19 2014-10-09 華為技術有限公司 エンコーディングおよびデコーディングの方法および装置
JP2018061263A (ja) * 2012-01-19 2018-04-12 華為技術有限公司Huawei Technologies Co.,Ltd. エンコーディングおよびデコーディングの方法および装置
US10511841B2 (en) 2012-01-19 2019-12-17 Huawei Technologies Co., Ltd. Encoding and decoding methods and apparatuses
US10567795B2 (en) 2012-01-20 2020-02-18 Sony Corporation Logical intra mode naming in HEVC video coding
US11012712B2 (en) 2012-01-20 2021-05-18 Sony Corporation Logical intra mode naming in HEVC video coding
JP2019071652A (ja) * 2012-01-20 2019-05-09 ソニー株式会社 Hevcビデオ符号化における論理的イントラモードネーミング
JP2014099913A (ja) * 2012-01-20 2014-05-29 Sony Corp Hevcビデオ符号化における論理的イントラモードネーミング
JP2014099912A (ja) * 2012-01-20 2014-05-29 Sony Corp Hevcビデオ符号化における論理的イントラモードネーミング
JP2017011765A (ja) * 2012-01-20 2017-01-12 ソニー株式会社 Hevcビデオ符号化における論理的イントラモードネーミング
US10623772B2 (en) 2012-01-20 2020-04-14 Sony Corporation Logical intra mode naming in HEVC video coding
US20160127744A1 (en) 2012-01-20 2016-05-05 Sony Corporation Logical intra mode naming in hevc video coding
JP2020102870A (ja) * 2012-01-20 2020-07-02 ソニー株式会社 Hevcビデオ符号化における論理的イントラモードネーミング
US10148980B2 (en) 2012-01-20 2018-12-04 Sony Corporation Logical intra mode naming in HEVC video coding
JP2021078149A (ja) * 2012-01-20 2021-05-20 ソニーグループ株式会社 Hevcビデオ符号化における論理的イントラモードネーミング
JP2016027765A (ja) * 2012-01-20 2016-02-18 ソニー株式会社 Hevcビデオ符号化における論理的イントラモードネーミング
JP2018026870A (ja) * 2012-01-20 2018-02-15 ソニー株式会社 Hevcビデオ符号化における論理的イントラモードネーミング
JP7024897B2 (ja) 2012-01-20 2022-02-24 ソニーグループ株式会社 Hevcビデオ符号化における論理的イントラモードネーミング
US11412255B2 (en) 2012-01-20 2022-08-09 Sony Corporation Logical intra mode naming in HEVC video coding
JP2014099911A (ja) * 2012-01-20 2014-05-29 Sony Corp Hevcビデオ符号化における論理的イントラモードネーミング
JP2019537344A (ja) * 2016-10-21 2019-12-19 オランジュ 画像パラメータをコーディング及びデコーディングする方法、画像パラメータをコーディング及びデコーディングする装置、並びに、これらに対応するコンピュータプログラム
JP7233363B2 (ja) 2016-10-21 2023-03-06 オランジュ 画像パラメータをコーディング及びデコーディングする方法、画像パラメータをコーディング及びデコーディングする装置、並びに、これらに対応するコンピュータプログラム

Also Published As

Publication number Publication date
US9860539B2 (en) 2018-01-02
BR112013031624B1 (pt) 2022-07-19
US20210084310A1 (en) 2021-03-18
MX2013013909A (es) 2014-01-24
US10887606B2 (en) 2021-01-05
US20200045320A1 (en) 2020-02-06
TWI556628B (zh) 2016-11-01
CN103609110A (zh) 2014-02-26
JP2013258759A (ja) 2013-12-26
BR112013031624A8 (pt) 2017-07-04
EP2720461A1 (en) 2014-04-16
PL2720461T3 (pl) 2024-02-05
EP2720461B1 (en) 2023-08-02
JP6103408B2 (ja) 2017-03-29
AU2012270960B2 (en) 2017-02-16
EP2720461A4 (en) 2014-09-03
US10484692B2 (en) 2019-11-19
US20180098075A1 (en) 2018-04-05
CA2838214A1 (en) 2012-12-20
TW201701662A (zh) 2017-01-01
JP5932733B2 (ja) 2016-06-08
TWI602421B (zh) 2017-10-11
BR112013031624A2 (pt) 2017-06-13
KR101955051B1 (ko) 2019-03-06
AU2012270960A1 (en) 2014-01-09
JP5386657B2 (ja) 2014-01-15
KR20140033102A (ko) 2014-03-17
AU2012270960A2 (en) 2014-01-23
US11758155B2 (en) 2023-09-12
MY165837A (en) 2018-05-17
US20120328009A1 (en) 2012-12-27
ES2961495T3 (es) 2024-03-12
TW201306595A (zh) 2013-02-01
US10250887B2 (en) 2019-04-02
CN103609110B (zh) 2017-08-08
CA2838214C (en) 2019-02-12
US11431989B2 (en) 2022-08-30
RU2013154414A (ru) 2015-07-20
US20190182492A1 (en) 2019-06-13
US20230370619A1 (en) 2023-11-16
US20220353515A1 (en) 2022-11-03
RU2607246C2 (ru) 2017-01-10
JPWO2012172791A1 (ja) 2015-02-23
JP2016136789A (ja) 2016-07-28

Similar Documents

Publication Publication Date Title
JP6103408B2 (ja) 画像符号化装置および画像符号化方法
JP6172485B2 (ja) 画像符号化方法及び画像符号化装置
JP6604561B2 (ja) 画像符号化方法および画像符号化装置
JP6222589B2 (ja) 復号方法及び復号装置
JP6394966B2 (ja) 時間動きベクトル予測を用いた、符号化方法、復号方法、符号化装置、及び、復号装置
WO2013042329A1 (ja) 画像符号化方法、画像復号方法、画像符号化装置、画像復号装置及び画像符号化復号装置
WO2013057884A1 (ja) 画像符号化方法、画像復号方法、画像符号化装置、画像復号装置及び画像符号化復号装置
JP6327435B2 (ja) 画像符号化方法、画像復号方法、画像符号化装置、及び、画像復号装置
WO2012023281A1 (ja) 動画像復号方法、動画像符号化方法、動画像復号装置、及び、動画像符号化装置
WO2012120863A1 (ja) 動画像符号化方法および動画像復号方法
JP6078927B2 (ja) 動画像符号化方法、動画像符号化装置、動画像復号方法、及び、動画像復号装置
WO2013164903A1 (ja) 画像符号化方法、画像復号方法、画像符号化装置、画像復号装置及び画像符号化復号装置
JP5680812B1 (ja) 画像符号化方法、画像復号方法、画像符号化装置および画像復号装置
JP6391018B2 (ja) 画像符号化方法、及び、画像符号化装置
WO2013073154A1 (ja) 符号化方法および復号方法
WO2012096157A1 (ja) 画像符号化方法、画像復号方法、画像符号化装置および画像復号装置
WO2013153808A1 (ja) 画像復号方法および画像復号装置
WO2012077349A1 (ja) 画像符号化方法および画像復号化方法
WO2012086166A1 (ja) 画像符号化方法及び画像復号化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12799908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013520433

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/013909

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2838214

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20137032627

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012270960

Country of ref document: AU

Date of ref document: 20120613

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013154414

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013031624

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013031624

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131209