WO2012171205A1 - 相控阵天线对准方法和装置以及相控阵天线 - Google Patents

相控阵天线对准方法和装置以及相控阵天线 Download PDF

Info

Publication number
WO2012171205A1
WO2012171205A1 PCT/CN2011/075820 CN2011075820W WO2012171205A1 WO 2012171205 A1 WO2012171205 A1 WO 2012171205A1 CN 2011075820 W CN2011075820 W CN 2011075820W WO 2012171205 A1 WO2012171205 A1 WO 2012171205A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
rotating
unit
receiving beam
phased array
Prior art date
Application number
PCT/CN2011/075820
Other languages
English (en)
French (fr)
Inventor
陈一
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11860709.2A priority Critical patent/EP2722722A1/en
Priority to PCT/CN2011/075820 priority patent/WO2012171205A1/zh
Priority to CN201180000819.2A priority patent/CN102292870B/zh
Priority to US13/622,816 priority patent/US20130027250A1/en
Publication of WO2012171205A1 publication Critical patent/WO2012171205A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/56Conical-scan beam systems using signals indicative of the deviation of the direction of reception from the scan axis

Definitions

  • the present invention relates to the field of communications, and in particular, to a phased array antenna alignment method and apparatus, and a phased array antenna.
  • the method of antenna alignment in the prior art usually uses a conventional mechanical method to rotate the antenna, thereby adjusting the horizontal or tilt direction of the antenna, and simultaneously detecting the received signal strength of the antenna: when the intensity of the detected signal reaches a certain level The extent of the antenna is considered to be aligned.
  • the antenna pointing will change to some extent, resulting in a decrease in communication quality.
  • the antenna pointing will change to some extent, resulting in a decrease in communication quality.
  • For high-band high-gain antennas due to the narrow width of the main lobe of the antenna, in case of extreme winds, vibrations, etc. In the case of shaking the antenna, it may cause an instantaneous or unrecoverable service interruption. Therefore, it is necessary to manually or periodically maintain the antenna. Rotating the antenna using conventional mechanical methods, the antenna has large inertia, low accuracy, and low degree of automation and slow speed, which obviously cannot meet the needs of modern communication.
  • the technical problem to be solved by the embodiments of the present invention is to provide a phased array antenna alignment method and device, and a phased array antenna, which can accurately adjust the orientation of the phased array antenna, and has a high degree of automation, thereby greatly improving phase control.
  • the efficiency of the array antenna is to provide a phased array antenna alignment method and device, and a phased array antenna, which can accurately adjust the orientation of the phased array antenna, and has a high degree of automation, thereby greatly improving phase control.
  • the efficiency of the array antenna is to provide a phased array antenna alignment method and device, and a phased array antenna, which can accurately adjust the orientation of the phased array antenna, and has a high degree of automation, thereby greatly improving phase control.
  • a phased array antenna alignment method includes:
  • Phase-shifting signals from each of the antenna array sub-units combining the phase-shifted signals from each of the antenna array sub-units to obtain a first signal, the first signal pair
  • the receiving beam should be a rotating receiving beam
  • the rotating receiving beam has a transmitting/receiving beam as a rotating shaft, and rotates around the transmitting/receiving beam at a preset angular frequency;
  • the direction of the transmit/receive beam is adjusted so that the phased array antenna is aligned.
  • a phased array antenna alignment device includes:
  • a rotating receive beamforming unit for receiving signals from the respective antenna array subunits; phase shifting signals from the respective antenna array subunits, combining the phase shifted signals from the respective antenna array subunits, a first signal, where the receiving beam corresponding to the first signal is a rotating receiving beam;
  • the rotating receiving beam has a transmitting/receiving beam as a rotating shaft, and rotates around the transmitting/receiving beam at a preset angular frequency;
  • a received signal power calculation unit configured to calculate a power value of each of the first signals when the rotating receive beam rotates at different angles
  • a control unit configured to adjust a direction of the transmit/receive beam according to the power value, so that the phased array antenna is aligned.
  • a phased array antenna includes an antenna array unit, a transmit/receive beamforming unit, a duplexer, a digital signal processing unit, a radio frequency transmitting unit, and a radio frequency receiving unit, and the antenna array unit includes a plurality of antenna array subunits.
  • the transmit/receive beamforming unit is configured to transmit a signal to the antenna array unit and receive the signal received by the antenna array unit, and further includes a phased array antenna aligning device, where the phased array antenna aligning device comprises:
  • a rotating receive beamforming unit for receiving signals from the respective antenna array subunits; phase shifting signals from the respective antenna array subunits, combining the phase shifted signals from the respective antenna array subunits, a first signal, the first signal corresponding to Receiving beam is a rotating receiving beam; the rotating receiving beam is rotated by a transmitting/receiving beam, and is rotated around the transmitting/receiving beam at a preset angular frequency;
  • a received signal power calculation unit configured to calculate a power value of each of the first signals when the rotating receive beam rotates at different angles
  • control unit configured to adjust a direction of a transmit/receive beam in the transmit/receive beamforming unit according to the power value, so that the phased array antenna is aligned
  • the rotating receive beamforming unit is coupled to the transmit/receive beamforming unit, and the control unit is coupled to the transmit/receive beamforming unit.
  • a phased array antenna alignment method by receiving signals from respective antenna array subunits, and then phase shifting signals from the respective antenna array subunits, combining the phase-shifted antennas from the respective antennas
  • the signal of the array subunit obtains a first signal
  • the receiving beam corresponding to the first signal is a rotating receiving beam
  • the rotating receiving beam is a rotating axis of the transmitting/receiving beam, and rotates around the transmitting/receiving beam at a preset angular frequency.
  • FIG. 1 is a flow chart of a phased array antenna alignment method according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a phased array antenna alignment apparatus according to an embodiment of the present invention
  • 2 is a schematic structural diagram of a phased array antenna alignment device
  • FIG. 4 is a schematic diagram showing rotation of a rotating receiving beam according to an embodiment of the present invention
  • 5 is a second flowchart of a phased array antenna alignment method according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a phased array antenna according to an embodiment of the present invention
  • FIG. 7 is a second schematic structural diagram of a phased array antenna according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a rotating receiving beam forming unit according to an embodiment of the present invention. Description of the reference signs:
  • Rotating receive beamforming unit 1 1 rotating receive beam 12 , phase shifter 13 , power splitter 14 , beam pointing control module 2 , received signal power calculation unit 3 , control unit 4 , decision unit 5 , transmit / receive beam Forming unit 51, transmitting/receiving beam 6, antenna array subunit 7, duplexer 8, digital signal processing unit 9, radio frequency transmitting unit 10, radio frequency receiving unit
  • Embodiments of the present invention provide a phased array antenna alignment method and apparatus, and a phased array antenna, which can accurately adjust the orientation of the phased array antenna, and has a high degree of automation and achieve high precision alignment.
  • a phased array antenna is an antenna that electronically changes the phase of a radiating element in an array to scan the beam as required. It changes the shape of the pattern by controlling the feed phase of the radiating elements in the array antenna.
  • the control phase can change the direction of the maximum value of the antenna pattern to achieve the purpose of beam scanning.
  • the pattern shows the directional characteristics of the antenna's transmit (or receive) energy.
  • the characteristics of the antenna's transmitted energy are represented by the transmit pattern, and the characteristics of the received energy of the antenna are represented by the receive pattern.
  • the shape of the transmission pattern of one antenna and the shape of the reception pattern are coincident.
  • the phased array antenna beam has a high scanning speed, and the feeding phase is controlled by an electronic computer.
  • a conventional phased array antenna is mainly composed of an antenna array unit and a transmitting/receiving beam forming unit.
  • the transmit/receive beamforming unit includes a plurality of phase shifters, a power splitter, and a beam pointing control module.
  • the antenna array unit is composed of a plurality of antenna array sub-units arranged in a plane, and functions to transmit signals and receive signals transmitted from the opposite antennas; the phase shifter is configured to adjust the phase of signals transmitted/received by each antenna array sub-unit
  • the power splitter is used to distribute one signal to each phase shifter; the beam pointing control module is configured to configure the operating parameters of the phase shifter and the power splitter to form the antenna to form a uniform transmit/receive beam.
  • This embodiment provides a phased array antenna alignment method. As shown in FIG. 1, the method includes:
  • Step 101 Receive signals from respective antenna array subunits.
  • the plurality of antenna array subunits of the antenna array unit receive the signal transmitted from the opposite antenna.
  • the phased array antenna of the present embodiment adds a rotation receiving beam forming unit independent of the transmitting/receiving beam forming unit, and then the rotating receiving beam forming unit and the transmitting/receiving beam forming unit respectively receive the antenna from the antenna.
  • the signal of the array subunit where the signal is usually a radio frequency (RF) signal.
  • the rotating receiving beam forming unit of this embodiment includes: a plurality of phase shifters 12, a power splitter 13 and a beam pointing control module 14, wherein the power splitter 13 is configured to distribute one signal to each phase shifting The signals from the respective phase shifters are combined into one signal; the phase shifter 12 is used to adjust the phase of the signal transmitted/received by each antenna array subunit; the beam pointing control module 14 is used for the phase shifter 12 and the power
  • the operating parameters of the distributor 13 are configured such that the antenna forms a rotational receiving beam that is directed at a uniform.
  • Step 102 Perform phase shifting on signals from each of the antenna array subunits, and combine the phase-shifted signals from each of the antenna array subunits to obtain a first signal, where the receiving beam corresponding to the first signal is rotated. Receive beam. Aligning the antenna means that the transmitting/receiving beam direction of the opposite antenna coincides with the transmitting/receiving beam direction of the local phased array antenna.
  • the rotating receiving beamforming of this embodiment After receiving the signals from the respective antenna array sub-units, the unit first phase-shifts the signals from the respective antenna array sub-units through the phase shifter, and then combines the phase-shifted signals from the respective antenna array sub-units to obtain the first A signal, the receive beam corresponding to the first signal is a rotating receive beam, and the rotating receive beam is at an angle to the local transmit/receive beam.
  • Step 103 The rotating receiving beam rotates with a transmit/receive beam around a transmit/receive beam at a preset angular frequency.
  • the beam pointing control module 14 of the rotating receiving beam forming unit of the present embodiment is further configured to continuously change the direction of the rotating receiving beam formed by the rotating receiving beam forming unit by controlling the operation of the phase shifter 12, thereby generating a rotating receiving beam forming unit.
  • the technical effect of being able to receive signals in different directions that is, rotating the receiving beam with the transmitting/receiving beam as a rotating axis, rotating around the transmitting/receiving beam at a preset angular frequency.
  • the transmit/receive beam in this embodiment generally refers to a shape formed by a transmit/receive beamforming unit when receiving a signal; and the rotational receive beam refers to a direction formed by a rotating receive beamforming unit when receiving a signal.
  • Figure shape Unless otherwise specified, the transmit/receive beam refers to the local transmit/receive beam.
  • Step 104 Calculate a power value of each of the first signals when the rotating receiving beam rotates at different angles.
  • Each of the first signals when the rotating receiving beam is rotated at different angles refers to a signal from various directions received by the rotating receiving beamforming unit when the phase adjusted by the phase shifter is continuously changed. The power values of the signals from all directions are then calculated.
  • Step 105 Adjust the orientation of the transmit/receive beam according to the power value, so that the phased array antenna is aligned. Since the power of the signal sent by the opposite antenna is approximately equal in the cross section perpendicular to the transmit/receive beam direction of the opposite antenna, when the opposite antenna and the local phased array antenna are aligned, in this embodiment The calculated first signal power values are equal when the calculated rotations are different angles. When the opposite antenna and the local phased array antenna are misaligned, the first signal power values are not equal when the obtained rotation is different angles, and are constantly changed according to a certain rule.
  • the direction of the transmit/receive beam deviation of the phased array antenna may be further calculated according to the calculated power value, for example, The calculated power values are compared.
  • the direction with the smallest power value is usually the direction in which the transmit/receive beam deviates.
  • the direction of the transmit/receive beam directed to the power value needs to be adjusted.
  • the local phase of the transmit/receive beam is then adjusted by controlling the beam pointing control module of the transmit/receive beamforming unit to control the phase shifter and power splitter to align the local phased array antenna with the opposite antenna.
  • the receiving beam corresponding to the first signal is rotated and received.
  • Beam rotating the receiving beam with the transmitting/receiving beam as a rotating axis, rotating around the transmitting/receiving beam at a preset angular frequency; and calculating a power value of each of the first signals when the rotating receiving beam is rotated at different angles; Adjusting the pointing of the phased array antenna according to the power value can accurately adjust the pointing of the phased array antenna, and the degree of automation is high, thereby greatly improving the working efficiency of the phased array antenna.
  • Embodiment 2 Embodiment 2
  • This embodiment provides a phased array antenna alignment method. As shown in FIG. 4 and FIG. 5, the method includes:
  • Step 201 Initialize the direction of the transmit/receive beam to be the normal direction of the plane where the phased array antenna is located.
  • the direction of the transmit/receive beam 51 here is the direction of the phased array antenna.
  • is greater than 0°, and the preferred range is 0 ⁇ ⁇ ⁇ 90.
  • represents the total angle of rotation of the receiving beam 11 from the initial state so far
  • ⁇ * ⁇
  • t represents the total time of rotation of the receiving beam 11.
  • the angle between the receiving beam and the local transmitting/receiving beam is a certain value
  • the amplitude of the collected data will be relatively small, so to avoid false positives
  • usually sets a relatively large value.
  • usually sets a relatively small value.
  • the value of ⁇ needs to be adapted to the main lobe width of the antenna.
  • the rotation receiving beam 1 1 is rotated for several cycles as one cycle, and the embodiment sets the rotation for one cycle as one cycle.
  • Step 203 The rotating receive beamforming unit receives signals from the respective antenna array subunits. Phase-shifting signals from each of the antenna array sub-units, combining phase-shifted signals from each of the antenna array sub-units to obtain a first signal, while rotating the receive beam to rotate around the transmit/receive beam at an angular frequency ⁇ .
  • the rotating receive beamforming unit only receives signals in the embodiment of the invention and does not transmit signals.
  • the rotating receiving beam is formed by the rotating receiving beam forming unit in the process of receiving the signal
  • the rotating receiving beam forming unit comprises: a plurality of phase shifters, a power splitter and a beam pointing control module, wherein the power splitter is used to transmit a signal Assigning to each phase shifter or combining the signals from the respective phase shifters into one signal to obtain a first signal; the phase shifter is for adjusting the phase of the signal transmitted/received by each antenna array subunit; the beam pointing control module is used for The operating parameters of the phase shifter and power splitter are configured such that the antenna forms a rotating receive beam that is directed at a uniform.
  • the beam pointing control module in this embodiment is further configured to continuously change the direction of the rotating receiving beam formed by the rotating receiving beam forming unit by controlling the operation of the phase shifter, thereby generating that the rotating receiving beam forming unit can receive signals in different directions.
  • Step 205 Determine whether the phased array antenna is aligned according to the received power G (n) sequence. Since the power of the signal transmitted by the opposite antenna is approximately equal in the cross section perpendicular to the direction of the transmitting/receiving beam 51 of the opposite antenna, when the opposite antenna and the local phased array antenna are aligned, this embodiment The respective values of the power value sequence G (n) sequence of each first signal are substantially equal when the rotation is calculated at different angles, that is, the fluctuation amplitude of each power value of the G (n) sequence is less than or equal to the set threshold. When the opposite end antenna and the local phased array antenna are misaligned, the obtained power values of the first signal power value sequence G (n) sequence fluctuate more than the set threshold value, and according to a certain angle The laws are constantly changing.
  • Step 206 If the values of the G(n) sequence are equal, it is determined that the phased array antenna is aligned, and the rotating receiving beam 11 continues to rotate at an angle ⁇ between the preset and the transmitting/receiving beam 51 and the angular frequency ⁇ .
  • the present embodiment can also be set. After determining that the phased array antenna is aligned, the rotating receiving beam 11 is suspended after a period of operation. The transmit/receive beam 51 rotates.
  • Step 207 If the values of the G(n) sequence are not equal, determine that the phased array antenna is misaligned, and adjust the direction of the transmit/receive beam 51. After determining that the phased array antenna is misaligned, the embodiment may further calculate the direction in which the transmit/receive beam 51 of the phased array antenna deviates, and then control the shift by controlling the beam pointing control module of the transmit/receive beamforming unit. The phaser and power splitter adjust the orientation of the local transmit/receive beam 51 to align the local phased array antenna with the opposite antenna.
  • Step 208 Adjust a rotating shaft of the rotating receiving beam 1 1 so that the rotating receiving beam 1 1 rotates around the adjusted transmitting/receiving beam 51.
  • step 203 is repeated. Until the phased array antenna is aligned.
  • the receiving beam corresponding to the first signal is rotated and received.
  • Beam rotating the receiving beam with the transmitting/receiving beam as a rotating axis, rotating around the transmitting/receiving beam at a preset angular frequency; and calculating a power value of each of the first signals when the rotating receiving beam is rotated at different angles; Adjusting the orientation of the phased array antenna according to the power value, the orientation of the phased array antenna can be precisely adjusted, and the degree of automation is high, and the antenna is realized by a rotation receiving beam forming unit independent of the transmitting/receiving beam forming unit.
  • the alignment does not affect the normal operation of the transmit/receive beamforming unit, which greatly improves the efficiency of the phased array antenna.
  • the embodiment provides a phased array antenna alignment device.
  • the device includes: a rotating receiving beam forming unit 1, a received signal power calculating unit 2, and a control unit 3, wherein:
  • Rotating receive beamforming unit 1 for receiving signals from respective antenna array sub-units; phase shifting signals from each of said antenna array sub-units, combining phase-shifted a first signal is obtained from a signal of each of the antenna array subunits, and a receiving beam corresponding to the first signal is a rotating receiving beam;
  • the rotating receive beam is rotated with a transmit/receive beam around the transmit/receive beam at a predetermined angular frequency.
  • the rotating receiving beam forming unit of this embodiment includes: a plurality of phase shifters 12, a power splitter 13 and a beam pointing control module 14, wherein the power splitter 13 is configured to distribute one signal to each shift
  • the phaser 12 combines the signals from the respective phase shifters 12 into one signal to obtain a first signal; the phase shifter 12 is used to adjust the phase of the signal transmitted/received by each antenna array subunit; the beam pointing control module 14
  • the operational parameters of phase shifter 12 and power splitter 13 are configured to form an antenna that is directed to a uniform rotating receive beam.
  • the beam pointing control module in this embodiment is further configured to continuously change the direction of the rotating receiving beam formed by the rotating receiving beam forming unit by controlling the operation of the phase shifter, thereby generating that the rotating receiving beam forming unit can receive signals in different directions.
  • the antenna array subunit receives the signal transmitted by the opposite antenna, and then the transmit/receive beamforming unit receives the signals from the respective antenna array subunits.
  • the rotating receiving beam forming unit 1 of the present embodiment continuously changes the direction of the rotating receiving beam formed by the rotating receiving beam forming unit after receiving the signals from the respective antenna array subunits.
  • the receiving beam has an angle with the transmitting/receiving beam at an angle.
  • the angle of an angle is greater than 0°, and the preferred range is 0° ⁇ ⁇ ⁇ 90°.
  • the received signal power calculation unit 2 is configured to calculate a power value of each of the first signals when the rotating receiving beam is rotated at different angles.
  • the control unit 3 is configured to adjust the orientation of the transmit/receive beam according to the above power value.
  • the direction of the transmit/receive beam here is the direction of the phased array antenna.
  • the power of the signal sent by the opposite antenna is approximately equal in the cross section perpendicular to the transmit/receive beam direction of the opposite antenna, when the opposite antenna and the local phased array antenna are aligned, in this embodiment
  • the respective power values of the signals received from the respective antenna array subunits received by the received signal power calculation unit 2 when rotated at different angles are substantially equal.
  • the fluctuation amplitude of each power value is less than Or equal to the set threshold, the antenna is aligned.
  • the fluctuation amplitude of each power value of the signals received from the respective antenna array subunits received by the received signal power calculation unit 2 when the different angles of rotation are calculated is greater than a set threshold. And constantly changing according to certain rules.
  • the main lobe width of the antenna refers to the angle between the two half power level points on the main lobe of the pattern, and the two half power level points, that is, the point where the field strength drops from the maximum value to 0.707 times the maximum value, reflects The degree to which the antenna radiates energy.
  • the main lobe widths of the different antennas are also different. When the angle between the receiving beam and the local transmitting/receiving beam is a certain value, if the main lobe width of the antenna is relatively wide, the amplitude of the acquired data will be relatively small.
  • the antenna When the width of the main lobe is large, the angle between the rotating receiving beam and the local transmitting/receiving beam is usually set to a relatively large value. Similarly, when the main lobe width of the antenna is small, the rotating receiving beam and the local transmitting are rotated. The angle at which the receive beam is received is usually set to a relatively small value. In summary, the angle between the receive beam formed by the rotational reception and the local transmit/receive beam needs to be adapted to the main lobe width of the antenna.
  • the phased array antenna aligning apparatus of this embodiment further includes: a determining unit 4, configured to determine, according to the power value, whether the transmit/receive beam is aligned, and if received from different antenna array subunits when rotating at different angles If the fluctuation range of the power value is less than or equal to the set threshold, it is determined that the transmit/receive beam is aligned; if the fluctuation of the power value of the received signal from each antenna array subunit when the different angles are rotated is greater than the set threshold, Judge Broken transmit/receive beam misalignment.
  • the power value calculated by the received signal power calculation unit 2 is calculated, and the decision unit 4 determines whether the phased array antenna is aligned.
  • the received signal power calculation unit 2 can further calculate the obtained power value. Further calculating the direction of the transmit/receive beam deviation of the phased array antenna, and then the control unit 3 controls the phase shifter and the power splitter by controlling the beam pointing control module of the transmit/receive beamforming unit to adjust the local transmit/receive The beam is pointed so that the local phased array antenna is aligned with the opposite antenna.
  • the phased array antenna alignment apparatus of this embodiment receives signals from respective antenna array subunits by a rotation receiving beamforming unit independent of the transmitting/receiving beamforming unit, and then performs signals from the respective antenna array subunits.
  • Phase shifting combining the phase-shifted signals from each of the antenna array sub-units to obtain a first signal, the receiving beam corresponding to the first signal is a rotating receiving beam, and the rotating receiving beam is a transmitting/receiving beam as a rotating axis, surrounding Transmitting/receiving the beam at a preset angular frequency; calculating a power value of each of the first signals when the rotating receiving beam is rotated at different angles; and finally adjusting a pointing of the phased array antenna according to the power value
  • the position of the phased array antenna can be precisely adjusted, and the degree of automation is high. During the alignment of the antenna, the normal operation of the transmitting/receiving beam forming unit is not affected, and the accuracy is high, and the operation of the phased array antenna
  • This embodiment provides a phased array antenna, as shown in FIG. 6 and FIG. 7, including an antenna array unit, a transmit/receive beamforming unit 5, a duplexer 7, a digital signal processing unit 8, a radio frequency transmitting unit 9, and a radio frequency.
  • the receiving unit 10 wherein the antenna array unit comprises a plurality of antenna array sub-units 6, and the transmitting/receiving beam forming unit 5 is configured to transmit signals to the antenna array unit and receive signals received by the antenna array unit.
  • the transmit/receive beamforming unit 5 includes a plurality of phase shifters, a power splitter, and a beam pointing control module.
  • the antenna array unit is composed of a plurality of antennas arranged in a plane
  • the array subunit 6 is composed of a signal for transmitting and receiving signals sent by the opposite antenna; a phase shifter for adjusting a phase of a signal transmitted/received by each antenna array subunit 6; and a power divider for distributing one signal to Each phase shifter combines the signals from the respective phase shifters into one signal;
  • the beam pointing control module is configured to configure the operating parameters of the phase shifter and the power splitter to form the antenna to form a uniform transmit/receive beam.
  • the duplexer 7 functions to isolate the transmitted signal from the received signal to ensure that both the receiving and transmitting of the signal can work normally at the same time;
  • the function of the RF transmitting unit 9 is to filter, amplify, and upconvert the signal. (Up conversion) and the like;
  • the function of the RF receiving unit 10 is to filter, amplify, downconvert, etc. the signal;
  • the function of the digital signal processing unit 8 is to further process the signal, such as modulation, demodulation, and the like.
  • up-conversion refers to a process of converting an input signal having a certain frequency into an output signal having a higher frequency (generally without changing the information content and modulation mode of the signal); down-conversion refers to an input signal having a certain frequency, The process of changing to an output signal with a lower frequency (usually without changing the information content and modulation of the signal).
  • the phased array antenna of this embodiment further includes a phased array antenna alignment device, and the phased array antenna alignment device includes: a rotating receiving beam forming unit 1, a received signal power calculating unit 2, and a control unit 3, wherein
  • Rotating receive beamforming unit 1 for receiving signals from respective antenna array sub-units 6; phase-shifting signals from each of said antenna array sub-units 6, combining phase-shifted from each of said antenna array sub-units 6 Signaling, obtaining a first signal, the receiving beam corresponding to the first signal is a rotating receiving beam; the rotating receiving beam is rotated by a transmitting/receiving beam, and rotating around the transmitting/receiving beam at a preset angular frequency;
  • the received signal power calculation unit 2 is configured to calculate a power value of each of the first signals when the rotation receiving beam rotates at different angles;
  • the control unit 3 is configured to adjust the transmit/receive beam 51 in the transmit/receive beamforming unit 5 according to the power value.
  • the rotating receive beamforming unit 1 of the present embodiment includes: a plurality of phase shifters 12, a power splitter 13 and a beam pointing control module 14, wherein the power splitter 13 is configured to distribute one signal to each
  • the phase shifter 12 combines the signals from the respective phase shifters 12 into one signal to obtain a first signal; the phase shifter 12 is used to adjust the phase of the signal transmitted/received by each antenna array subunit; the beam pointing control module 14 It is used to configure the operating parameters of the phase shifter 12 and the power splitter 13 to form an antenna that is directed to a uniform rotating receive beam.
  • the rotating receiving beam forming unit 1 and the transmitting/receiving beam forming unit 5 are respectively connected to the antenna array unit, and the duplexer 7 and the transmitting/receiving beam forming unit 5 are connected. Connected.
  • the radio frequency transmitting unit 9 and the radio frequency receiving unit 10 are connected to the duplexer 7 and the digital signal processing unit 8, respectively.
  • the signals received by the antenna array unit respectively enter the rotating receiving beam forming unit 1 and the transmitting/receiving beam forming unit 5, and therefore, in the present embodiment, the rotating receiving beam forming unit 1 is not only used to rotate the signals received by the receiving antenna array unit, It also has the function of signal analog to digital conversion.
  • the antenna array unit is connected to the duplexer 7, and the duplexer 7 is respectively connected to the radio frequency transmitting unit 9 and the radio frequency receiving unit 10, and the rotating receiving beam is formed.
  • the unit 1 is connected to the radio frequency receiving unit 10.
  • the radio frequency transmitting unit 9 and the radio frequency receiving unit 10 are connected to the transmitting/receiving beam forming unit 5, and the transmitting/receiving beam forming unit 5 is connected to the digital signal processing unit 8.
  • the signal received by the antenna array unit is processed by the filtering, amplification, etc. of the radio frequency receiving unit 10, and then enters the rotating receiving beam forming unit 1.
  • the rotating receive beamforming unit 1 receives signals from the respective antenna array subunits 6; phase shifts the signals from the respective antenna array subunits 6, and combines the phase shifted signals from the respective antenna array subunits 6 to obtain a first signal.
  • the receiving beam corresponding to the first signal is a rotating receiving beam; rotating the receiving beam with a transmitting/receiving beam as a rotating axis, rotating around the transmitting/receiving beam at a preset angular frequency, and receiving the signal shape by the rotating receiving beam forming unit 1
  • the resulting rotating receive beam is at an angle to the transmit/receive beam.
  • the angle of the angle is greater than 0°, and the preferred range is 0° ⁇ ⁇ ⁇ 90°.
  • the power of the signal sent by the opposite antenna is approximately equal in the cross section perpendicular to the transmit/receive beam direction of the opposite antenna, when the opposite antenna and the local phased array antenna are aligned, in this embodiment
  • the fluctuation amplitude of each power value of the signals received from the respective antenna array sub-units 6 when the different signals are rotated by the received signal power calculation unit 2 is less than or equal to the set threshold.
  • the fluctuation amplitude of each power value of the signals received from the respective antenna array subunits 6 when the received signal power calculation unit 2 calculates the different rotation angles is greater than the set value. Threshold, and constantly changing according to certain rules.
  • the received signal power calculation unit 2 of the present embodiment further calculates the direction of the transmit/receive beam deviation of the phased array antenna, and then the control unit 3 controls the phase shifter and the power by controlling the beam pointing control module of the transmit/receive beamforming unit.
  • the splitter adjusts the orientation of the local transmit/receive beam to align the local phased array antenna with the opposite antenna.
  • phased array antenna aligning device of this embodiment is similar to those of the second embodiment and the third embodiment, and are not described herein again.
  • the phased array antenna of the present embodiment receives signals from the respective antenna array subunits through rotation receiving beamforming units independent of the transmitting/receiving beam forming unit, and then phase shifts signals from the respective antenna array subunits, And combining the phase-shifted signals from each of the antenna array sub-units to obtain a first signal, where the receiving beam corresponding to the first signal is a rotating receiving beam, and the rotating receiving beam is a transmitting/receiving beam as a rotating axis, and the transmitting /the receiving beam rotates at a preset angular frequency; and further calculates a power value of each of the first signals when the rotating receiving beam rotates at different angles; and finally adjusts the pointing of the phased array antenna according to the power value, which can be accurate Adjusting the orientation of the phased array antenna, and the degree of automation is high.
  • the normal operation of the transmitting/receiving beam forming unit is not affected, and the accuracy is high.
  • the working efficiency of the phased array antenna is greatly
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, by hardware, but in many cases, the former is a better implementation. .
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk or the like includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.

Abstract

一种相控阵天线对准方法和装置以及相控阵天线,涉及通信领域,能够精确调节相控阵天线的指向,且自动化程度高。本发明实施例的相控阵天线对准方法,包括:接收来自各个天线阵列子单元的信号;对来自各个所述天线阵列子单元的信号进行移相,合并移相后的来自各个所述天线阵列子单元的信号,得到第一信号,所述第一信号对应的接收波束为旋转接收波束;所述旋转接收波束以发射/接收波束为转轴,围绕所述发射/接收波束以预设的角频率旋转;计算旋转接收波束旋转不同角度时各个所述第一信号的功率值;根据所述功率值,调整发射/接收波束的指向,使得相控阵天线对准。

Description

相控阵天线对准方法和装置以及相控阵天线 技术领域
本发明涉及通信领域, 尤其涉及一种相控阵天线对准方法和装置 以及相控阵天线。
背景技术
目前, 现有技术中天线对准的方法, 通常是人工使用传统的机械 方法转动天线, 进而对天线进行水平或俯仰方向的调整, 并同时检测天 线接收信号强度: 当检测到信号的强度到达一定的范围时,便认为天线 已经对准。
由于天线的紧固件老化, 热胀冷缩等因素, 天线指向会发生一定的 变化, 导致通信质量下降; 对于高频段高增益天线, 由于天线主瓣宽度 很窄, 如遇大风、 震动等极端情况, 使天线产生晃动, 可能造成瞬时或 不可恢复的业务中断。 因此需要人工定期或及时对天线进行维护。 使用 传统的机械方法旋转天线, 天线的惯性大, 精确度低, 并且自动化程度 低、 速度慢, 显然已经不能满足现代通信的需要。
发明内容
本发明的实施例所要解决的技术问题在于提供一种相控阵天线对准 方法和装置以及相控阵天线, 能够精确调节相控阵天线的指向,且自动 化程度高, 从而大大提高了相控阵天线的工作效率。
为解决上述技术问题, 本发明的实施例采用如下技术方案: 一种相控阵天线对准方法, 包括:
接收来自各个天线阵列子单元的信号;
对来自各个所述天线阵列子单元的信号进行移相, 合并移相后的 来自各个所述天线阵列子单元的信号, 得到第一信号, 所述第一信号对 应的接收波束为旋转接收波束;
所述旋转接收波束以发射 /接收波束为转轴, 围绕所述发射 /接收波 束以预设的角频率旋转;
计算所述旋转接收波束旋转不同角度时各个所述第一信号的功率 值;
根据所述功率值, 调整发射 /接收波束的指向, 使得相控阵天线对 准。
一种相控阵天线对准装置, 包括:
旋转接收波束形成单元, 用于接收来自各个天线阵列子单元的信 号; 对来自各个所述天线阵列子单元的信号进行移相, 合并移相后的来 自各个所述天线阵列子单元的信号, 得到第一信号, 所述第一信号对应 的接收波束为旋转接收波束;
所述旋转接收波束以发射 /接收波束为转轴, 围绕所述发射 /接收波 束以预设的角频率旋转;
接收信号功率计算单元, 用于计算所述旋转接收波束旋转不同角 度时各个所述第一信号的功率值;
控制单元, 用于根据所述功率值, 调整发射 /接收波束的指向, 使 得相控阵天线对准。
一种相控阵天线, 包括天线阵列单元、 发射 /接收波束形成单元、 双工器、 数字信号处理单元、 射频发射单元和射频接收单元, 所述天线 阵列单元包括多个天线阵列子单元,所述发射 /接收波束形成单元用于向 天线阵列单元发射信号和接收天线阵列单元接收的信号, 其特征在于, 还包括相控阵天线对准装置, 所述相控阵天线对准装置包括:
旋转接收波束形成单元, 用于接收来自各个天线阵列子单元的信 号; 对来自各个所述天线阵列子单元的信号进行移相, 合并移相后的来 自各个所述天线阵列子单元的信号, 得到第一信号, 所述第一信号对应 的接收波束为旋转接收波束; 所述旋转接收波束以发射 /接收波束为转 轴, 围绕所述发射 /接收波束以预设的角频率旋转;
接收信号功率计算单元, 用于计算所述旋转接收波束旋转不同角 度时各个所述第一信号的功率值;
控制单元, 用于根据所述功率值, 调整发射 /接收波束形成单元中 发射 /接收波束的指向, 使得相控阵天线对准,
所述旋转接收波束形成单元和所述发射 /接收波束形成单元相连接,所述 控制单元和所述发射 /接收波束形成单元相连接。
本发明实施例的相控阵天线对准方法,通过接收来自各个天线阵列 子单元的信号, 然后对来自各个所述天线阵列子单元的信号进行移相, 合并移相后的来自各个所述天线阵列子单元的信号, 得到第一信号, 所 述第一信号对应的接收波束为旋转接收波束,旋转接收波束以发射 /接收 波束为转轴, 围绕所述发射 /接收波束以预设的角频率旋转; 再计算所述 旋转接收波束旋转不同角度时各个所述第一信号的功率值; 最后根据所 述功率值, 来调整相控阵天线的指向, 能够精确调节相控阵天线的指向, 且自动化程度高, 从而大大提高了相控阵天线的工作效率。
附图说明 实施例描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出 创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例中相控阵天线对准方法的流程图之一; 图 2为本发明实施例中相控阵天线对准装置的结构示意图之一; 图 3为本发明实施例中相控阵天线对准装置的结构示意图之二; 图 4为本发明实施例中旋转接收波束的旋转示意图; 图 5为本发明实施例中相控阵天线对准方法的流程图之二; 图 6为本发明实施例中相控阵天线的结构示意图之一;
图 7为本发明实施例中相控阵天线的结构示意图之二
图 8为本发明实施例中旋转接收波束形成单元的结构示意图。 附图标记说明:
1、 旋转接收波束形成单元 1 1、 旋转接收波束 12、 移相器 13、 功率分配器 14、 波束指向控制模块 2、 接收信号功率计算 单元 3、 控制单元 4、 判决单元 5、 发射 /接收波束形成单元 51、 发射 /接收波束 6、 天线阵列子单元 7、 双工器 8、 数 字信号处理单元 9、 射频发射单元 10、 射频接收单元
具体实施方式
本发明实施例提供一种相控阵天线对准方法和装置以及相控阵天 线, 能够精确调节相控阵天线的指向, 且自动化程度高, 实现了高精确 度的对准。
下面结合附图对本发明实施例做详细描述。
实施例一
相控阵天线 ( Phased array antenna )是一种用电控方法改变阵列中 辐射单元相位, 使波束按要求对空间扫描的天线。 它通过控制阵列天线 中辐射单元的馈电相位来改变方向图形状, 控制相位可以改变天线方向 图最大值的指向, 以达到波束扫描的目的。 方向图展示了天线发射 (或 接收) 能量的方向特性。 天线发射能量的特性用发射方向图表示, 天线 接收能量的特性用接收方向图表示。 一般来说, 一个天线的发射方向图 和接收方向图的形状是重合的。 相控阵天线波束的扫描速度高, 馈电相 位用电子计算机控制, 相位变化速度快(毫秒量级), 即天线方向图最大 普通的相控阵天线主要由天线阵列单元和发射 /接收波束形成单元 组成。发射 /接收波束形成单元包括多个移相器、 功率分配器以及波束指 向控制模块。 天线阵列单元由多个在平面上排列的天线阵列子单元组 成, 其作用是发射信号和接收对端天线发送过来的信号; 移相器用于调 节每个天线阵列子单元发射 /接收的信号的相位;功率分配器用于将一路 信号分配到各个移相器; 波束指向控制模块用于对移相器和功率分配器 的工作参数进行配置, 使天线形成指向一致的发射 /接收波束。
本实施例提供一种相控阵天线对准方法, 如图 1 所示, 该方法包 括:
步骤 101、 接收来自各个天线阵列子单元的信号。
在相控阵天线的工作过程中, 天线阵列单元的多个天线阵列子单 元接收对端天线发送过来的信号。 与现有技术不同的是, 本实施例的相 控阵天线增加了独立于发射 /接收波束形成单元的旋转接收波束形成单 元, 然后旋转接收波束形成单元和发射 /接收波束形成单元分别接收来 自天线阵列子单元的信号, 这里的信号通常是射频 ( Radio Frequency, 简称 RF ) 信号。
如图 8 所示, 本实施例旋转接收波束形成单元包括: 多个移相器 12、 功率分配器 13 以及波束指向控制模块 14 , 其中, 功率分配器 13 用于将一路信号分配到各个移相器或将来自各个移相器的信号合并为 一路信号; 移相器 12用于调节每个天线阵列子单元发射 /接收的信号的 相位; 波束指向控制模块 14用于对移相器 12和功率分配器 13的工作 参数进行配置, 使天线形成指向一致的旋转接收波束。
步骤 102、 对来自各个所述天线阵列子单元的信号进行移相, 合并 移相后的来自各个所述天线阵列子单元的信号,得到第一信号, 所述第 一信号对应的接收波束为旋转接收波束。 对准天线是指对端天线的发射 /接收波束方向与本地的相控阵天线 的发射 /接收波束方向相重合, 为使相控阵天线对准对端天线, 本实施 例的旋转接收波束形成单元在接收来自各个天线阵列子单元的信号后, 首先通过移相器对来自各个所述天线阵列子单元的信号进行移相,然后 合并移相后的来自各个天线阵列子单元的信号,得到第一信号, 第一信 号对应的接收波束为旋转接收波束, 且旋转接收波束与本地的发射 /接 收波束呈一定角度的夹角。
步骤 103、 所述旋转接收波束以发射 /接收波束为转轴, 围绕所述 发射 /接收波束以预设的角频率旋转。
本实施例旋转接收波束形成单元的的波束指向控制模块 14还用于 通过控制移相器 12的工作, 连续改变旋转接收波束形成单元所形成的 旋转接收波束的指向,进而产生旋转接收波束形成单元能够接收不同方 向的信号的技术效果,也就是使旋转接收波束以发射 /接收波束为转轴, 围绕所述发射 /接收波束以预设的角频率旋转。
需要说明的是, 本实施例中的发射 /接收波束一般是指发射 /接收波 束形成单元在接收信号时形成的方向图形状;旋转接收波束是指旋转接 收波束形成单元在接收信号时形成的方向图形状。若无特殊说明,发射 /接收波束是指本地的发射 /接收波束。
步骤 104、计算旋转接收波束旋转不同角度时各个所述第一信号的 功率值。
旋转接收波束旋转不同角度时各个所述第一信号是指连续改变移 相器所调节的相位时旋转接收波束形成单元接收到的来自各个方向的 信号。 然后计算来自各个方向的信号的功率值。
步骤 105、 根据所述功率值, 调整发射 /接收波束的指向, 使得相 控阵天线对准。 由于对端天线发送过来的信号的功率在垂直于对端天线的发射 /接 收波束方向的截面上是近似相等的, 因此, 当对端天线和本地的相控阵 天线对准时, 本实施例中计算的旋转不同角度时各个第一信号功率值是 相等的。 当对端天线和本地的相控阵天线未对准, 得到的旋转不同角度 时各个第一信号功率值也是不相等的, 并按照一定的规律不断变化。
本实施例根据计算得到的功率值, 判断相控阵天线是否对准, 当 判断未对准时, 还可根据计算得到的功率值, 进一步计算相控阵天线的 发射 /接收波束偏离的方向, 例如, 将计算得到的功率值进行比对, 功率 值最小的指向通常是发射 /接收波束偏离的方向, 在调整时需要将发射 / 接收波束的指向往功率值大的指向调整。然后通过控制发射 /接收波束形 成单元的波束指向控制模块, 进而控制移相器和功率分配器, 调整本地 的发射 /接收波束的指向, 以使本地的相控阵天线与对端天线对准。
本实施例的相控阵天线对准方法, 通过接收来自各个天线阵列子 单元的信号, 然后对来自各个所述天线阵列子单元的信号进行移相, 合 第一信号对应的接收波束为旋转接收波束,旋转接收波束以发射 /接收波 束为转轴, 围绕所述发射 /接收波束以预设的角频率旋转; 再计算所述旋 转接收波束旋转不同角度时各个所述第一信号的功率值; 最后根据所述 功率值, 来调整相控阵天线的指向, 能够精确调节相控阵天线的指向, 且自动化程度高, 大大提高了相控阵天线的工作效率。 实施例二
本实施例提供一种相控阵天线对准方法, 如图 4和图 5所示, 该 方法包括:
步骤 201、 初始化发射 /接收波束的指向为相控阵天线所在平面的 法线方向。 这里的发射 /接收波束 51的指向即为相控阵天线的指向。 步骤 202、 初始化旋转接收波束 1 1方向为 ( θ , φ ) , 其中, Θ表示旋转接收波束 1 1与发射 /接收波束 5 1之间的夹角, 即相对 于发射 /接收波束 51 的偏转角度, 本实施例中 Θ大于 0° , 优选取值范 围为 0 < Θ < 90。 ; φ表示旋转接收波束 1 1从初始状态到目前为止旋转 过的总角度, Φ = ω *ΐ, t表示旋转接收波束 1 1旋转的总时间。
由于当接收波束与本地的发射 /接收波束所呈夹角 Θ为某一确定值 时,若天线的主瓣宽度比较宽,那么采集到数据的波动幅度会相对较小, 因此, 为避免误判, 天线的主瓣宽度较大时, Θ通常设定一个相对较大 的值; 同理, 天线的主瓣宽度较小时, Θ通常设定一个相对较小的值。 综上, Θ的取值需要与天线的主瓣宽度相适应。
此外, 本实施例设旋转接收波束 1 1旋转若干周为一个周期, 本实 施例设定旋转 1周为一个周期。
步骤 203、旋转接收波束形成单元接收来自各个天线阵列子单元的 信号。 对来自各个所述天线阵列子单元的信号进行移相, 合并移相后的 来自各个所述天线阵列子单元的信号, 得到第一信号, 同时旋转接收波 束以角频率 ω围绕发射 /接收波束旋转。
旋转接收波束形成单元在本发明实施例中只接收信号不发送信 号。
旋转接收波束是由旋转接收波束形成单元在接受信号的过程中形 成的, 旋转接收波束形成单元包括: 多个移相器、 功率分配器以及波束 指向控制模块, 其中, 功率分配器用于将一路信号分配到各个移相器或 将来自各个移相器的信号合并为一路信号,得到第一信号; 移相器用于 调节每个天线阵列子单元发射 /接收的信号的相位; 波束指向控制模块 用于对移相器和功率分配器的工作参数进行配置,使天线形成指向一致 的旋转接收波束。 本实施例中的波束指向控制模块还用于通过控制移相器的工作, 连续改变旋转接收波束形成单元所形成的旋转接收波束的指向, 进而产 生旋转接收波束形成单元能够接收不同方向的信号的技术效果。
步骤 204、计算旋转接收波束在一个周期内每转动△ α时各个第一 信号的功率值, 得到各个第一信号的功率值序列 G (η)序列, η为正整 数, 其中, △ α表示旋转接收波束 11 每两个相邻位置的夹角。 由于△ α = ω * ( t-t' ) , t,表示旋转完上一个△ α的时间点, 因此, G (n)序歹' J 实际上是一个与时间相关的数列。
步骤 205、 根据接收功率 G (n) 序列判断相控阵天线是否对准。 由于对端天线发送过来的信号的功率在垂直于对端天线的发射 /接 收波束 51 方向的截面上是近似相等的, 因此, 当对端天线和本地的相 控阵天线对准时, 本实施例中计算的旋转不同角度时各个第一信号的功 率值序列 G (n) 序列的各个值是基本相等的, 即 G (n) 序列的各个功 率值的波动幅度小于或者等于设定的阈值。 当对端天线和本地的相控阵 天线未对准, 得到的旋转不同角度时各个第一信号的功率值序列 G (n) 序列的各个功率值的波动幅度大于设定的阈值, 并按照一定的规律不断 变化。
步骤 206、 若 G (n) 序列的值相等, 则判断相控阵天线已对准, 旋转接收波束 11 以预设的与发射 /接收波束 51之间的夹角 Θ、角频率 ω 继续旋转。
此外, 为节约电能、 延长旋转接收波束形成单元的使用寿命, 本 实施例中也可以设定, 在判断相控阵天线已对准后, 旋转接收波束 11 在中止工作一段时间后再围绕调整后的发射 /接收波束 51旋转。
步骤 207、 若 G (n)序列的值不相等, 则判断相控阵天线未对准, 调整发射 /接收波束 51的指向。 在判断相控阵天线未对准后, 本实施例还可进一步计算相控阵天 线的发射 /接收波束 51偏离的方向, 然后通过控制发射 /接收波束形成单 元的波束指向控制模块, 进而控制移相器和功率分配器, 调整本地的发 射 /接收波束 51的指向, 以使本地的相控阵天线与对端天线对准。
步骤 208、 调整旋转接收波束 1 1的转轴, 使旋转接收波束 1 1围绕 调整后的发射 /接收波束 51旋转。
在调整发射 /接收波束 51的指向后,由于不能确定调整后的相控阵 天线是否已经对准, 因此, 旋转接收波束 1 1 还要继续围绕调整后的发 射 /接收波束 51旋转, 重复步骤 203 , 直至相控阵天线对准。
本实施例的相控阵天线对准方法, 通过接收来自各个天线阵列子 单元的信号, 然后对来自各个所述天线阵列子单元的信号进行移相, 合 第一信号对应的接收波束为旋转接收波束,旋转接收波束以发射 /接收波 束为转轴, 围绕所述发射 /接收波束以预设的角频率旋转; 再计算所述旋 转接收波束旋转不同角度时各个所述第一信号的功率值; 最后根据所述 功率值, 来调整相控阵天线的指向, 能够精确调节相控阵天线的指向, 且自动化程度高, 此外, 通过独立于发射 /接收波束形成单元的旋转接收 波束形成单元来实现天线的对准,不影响发射 /接收波束形成单元的正常 工作, 大大提高了相控阵天线的工作效率。 实施例三
本实施例提供一种相控阵天线对准装置, 如图 2和图 3所示, 该 装置包括: 旋转接收波束形成单元 1、 接收信号功率计算单元 2和控制 单元 3 , 其中:
旋转接收波束形成单元 1 用于接收来自各个天线阵列子单元的信 号; 对来自各个所述天线阵列子单元的信号进行移相, 合并移相后的来 自各个所述天线阵列子单元的信号, 得到第一信号, 所述第一信号对应 的接收波束为旋转接收波束;
所述旋转接收波束以发射 /接收波束为转轴, 围绕所述发射 /接收波 束以预设的角频率旋转。
如图 8 所示, 本实施例的旋转接收波束形成单元包括: 多个移相 器 12、 功率分配器 13 以及波束指向控制模块 14 , 其中, 功率分配器 13用于将一路信号分配到各个移相器 12或将来自各个移相器 12的信 号合并为一路信号, 得到第一信号; 移相器 12用于调节每个天线阵列 子单元发射 /接收的信号的相位; 波束指向控制模块 14 用于对移相器 12和功率分配器 13的工作参数进行配置, 使天线形成指向一致的旋转 接收波束。
本实施例中的波束指向控制模块还用于通过控制移相器的工作, 连续改变旋转接收波束形成单元所形成的旋转接收波束的指向, 进而产 生旋转接收波束形成单元能够接收不同方向的信号的技术效果。
在相控阵天线的工作过程中, 天线阵列子单元接收对端天线发送 过来的信号, 然后发射 /接收波束形成单元接收来自各个天线阵列子单 元的信号。 为使相控阵天线对准对端天线, 本实施例的旋转接收波束形 成单元 1在接收到来自各个天线阵列子单元的信号后,连续改变旋转接 收波束形成单元所形成的旋转接收波束的指向,使所述旋转接收波束以 发射 /接收波束为转轴, 围绕所述发射 /接收波束以预设的角频率旋转, 旋转接收来自各个天线阵列子单元的信号, 旋转接收波束形成单元 1 形成的旋转接收波束与发射 /接收波束具有一定角度的夹角。 这里的一 定角度的夹角大于 0° , 优选范围为 0° < Θ < 90° 。
接收信号功率计算单元 2 用于计算旋转接收波束旋转不同角度时 各个第一信号的功率值。 控制单元 3用于根据上述功率值, 调整发射 /接收波束的指向。 这 里的发射 /接收波束的指向即为相控阵天线的指向。
由于对端天线发送过来的信号的功率在垂直于对端天线的发射 /接 收波束方向的截面上是近似相等的, 因此, 当对端天线和本地的相控阵 天线对准时,本实施例中接收信号功率计算单元 2计算的旋转不同角度 时接收的来自各个天线阵列子单元的信号的各个功率值是基本相等的, 考虑到实际测量中必然会存在误差,我们认为各个功率值的波动幅度小 于或者等于设定的阈值时, 天线已对准。 当对端天线和本地的相控阵天 线未对准,接收信号功率计算单元 2计算得到的旋转不同角度时接收的 来自各个天线阵列子单元的信号的各个功率值的波动幅度大于设定的 阈值, 并按照一定的规律不断变化。
天线的主瓣宽度是指方向图主瓣上的两个半功率电平点之间的夹 角, 两个半功率电平点即场强从最大值降到 0.707倍最大值处的点, 反 映了天线辐射能量集中的程度。 不同天线的主瓣宽度也不同。 当接收波 束与本地的发射 /接收波束所呈夹角为某一确定值时, 若天线的主瓣宽 度比较宽,那么采集到数据的波动幅度会相对较小, 因此,为避免误判, 天线的主瓣宽度较大时, 旋转接收波束与本地的发射 /接收波束所呈夹 角通常设定一个相对较大的值; 同理, 天线的主瓣宽度较小时, 旋转接 收波束与本地的发射 /接收波束所呈夹角通常设定一个相对较小的值。 综上, 旋转接收形成的接收波束与本地的发射 /接收波束所呈夹角需要 与天线的主瓣宽度相适应。
本实施例的相控阵天线对准装置还包括: 判决单元 4 , 用于根据上 述功率值, 判断发射 /接收波束是否对准, 若旋转不同角度时接收的来 自各个天线阵列子单元的信号的功率值的波动幅度小于或者等于设定 的阈值, 则判断发射 /接收波束已对准; 若旋转不同角度时接收的来自 各个天线阵列子单元的信号的功率值的波动幅度大于设定的阈值,则判 断发射 /接收波束未对准。
本实施例根据接收信号功率计算单元 2计算得到的功率值, 并由 判决单元 4判断相控阵天线是否对准, 当判断未对准时, 接收信号功率 计算单元 2还可根据计算得到的功率值, 进一步计算相控阵天线的发射 /接收波束偏离的方向, 然后控制单元 3通过控制发射 /接收波束形成单 元的波束指向控制模块, 进而控制移相器和功率分配器, 调整本地的发 射 /接收波束的指向, 以使本地的相控阵天线与对端天线对准。
本实施例的相控阵天线对准装置, 通过独立于发射 /接收波束形成 单元的旋转接收波束形成单元接收来自各个天线阵列子单元的信号, 然 后对来自各个所述天线阵列子单元的信号进行移相, 合并移相后的来自 各个所述天线阵列子单元的信号, 得到第一信号, 所述第一信号对应的 接收波束为旋转接收波束, 旋转接收波束以发射 /接收波束为转轴, 围绕 所述发射 /接收波束以预设的角频率旋转;再计算所述旋转接收波束旋转 不同角度时各个所述第一信号的功率值; 最后根据所述功率值, 来调整 相控阵天线的指向,能够精确调节相控阵天线的指向,且自动化程度高, 在天线对准的过程中, 不影响发射 /接收波束形成单元的正常工作, 且精 确度高, 大大提高了相控阵天线的工作效率。 实施例四
本实施例提供一种相控阵天线, 如图 6和图 7所示, 包括天线阵 列单元、 发射 /接收波束形成单元 5、 双工器 7、 数字信号处理单元 8、 射频发射单元 9和射频接收单元 10 , 其中, 天线阵列单元包括多个天线 阵列子单元 6 , 发射 /接收波束形成单元 5用于向天线阵列单元发射信号 和接收天线阵列单元接收的信号。
一般情况下, 发射 /接收波束形成单元 5包括多个移相器、 功率分 配器以及波束指向控制模块。 天线阵列单元由多个在平面上排列的天线 阵列子单元 6组成,其作用是发射信号和接收对端天线发送过来的信号; 移相器用于调节每个天线阵列子单元 6发射 /接收的信号的相位;功率分 配器用于将一路信号分配到各个移相器或者将来自各个移相器的信号 合并为一路信号; 波束指向控制模块用于对移相器和功率分配器的工作 参数进行配置, 使天线形成指向一致的发射 /接收波束。
相控阵天线中, 双工器 7的作用是将发射信号和接收信号相隔离, 保证信号的接收和发射都能同时正常工作; 射频发射单元 9的作用是对 信号进行滤波、 放大、 上变频 (Up conversion ) 等; 射频接收单元 10 的作用是对信号进行滤波、 放大、 下变频 ( Down conversion ) 等; 数字 信号处理单元 8的作用是对信号做进一步处理, 如调制、解调等。 其中, 上变频是指将具有一定频率的输入信号, 变换成具有更高频率的输出信 号 (通常不改变信号的信息内容和调制方式)的过程; 下变频是指将具有 一定频率的输入信号,改换成具有更低频率的输出信号 (通常不改变信号 的信息内容和调制方式)的过程。
本实施例的相控阵天线还包括相控阵天线对准装置, 相控阵天线 对准装置包括: 旋转接收波束形成单元 1、 接收信号功率计算单元 2和 控制单元 3 , 其中,
旋转接收波束形成单元 1用于接收来自各个天线阵列子单元 6的 信号; 对来自各个所述天线阵列子单元 6的信号进行移相, 合并移相后 的来自各个所述天线阵列子单元 6的信号, 得到第一信号, 所述第一信 号对应的接收波束为旋转接收波束;所述旋转接收波束以发射 /接收波束 为转轴, 围绕所述发射 /接收波束以预设的角频率旋转; ; 接收信号功率 计算单元 2用于计算旋转接收波束旋转不同角度时各个所述第一信号的 功率值; 控制单元 3用于根据上述功率值, 调整发射 /接收波束形成单元 5中发射 /接收波束 51的指向, 旋转接收波束形成单元 1和发射 /接收波 束形成单元 5相连接, 控制单元 3和发射 /接收波束形成单元 5相连接。 如图 8所示, 本实施例的旋转接收波束形成单元 1 包括: 多个移 相器 12、 功率分配器 13以及波束指向控制模块 14 , 其中, 功率分配器 13用于将一路信号分配到各个移相器 12或将来自各个移相器 12的信号 合并为一路信号, 得到第一信号; 移相器 12 用于调节每个天线阵列子 单元发射 /接收的信号的相位; 波束指向控制模块 14 用于对移相器 12 和功率分配器 13 的工作参数进行配置, 使天线形成指向一致的旋转接 收波束。
作为本实施例的一种实现方式, 如图 6所示, 旋转接收波束形成单 元 1和发射 /接收波束形成单元 5分别与天线阵列单元相连接, 双工器 7 与发射 /接收波束形成单元 5相连接。 射频发射单元 9和射频接收单元 10分别与双工器 7以及数字信号处理单元 8相连接。天线阵列单元接收 到的信号分别进入旋转接收波束形成单元 1 和发射 /接收波束形成单元 5 , 因此, 本实施方式中, 旋转接收波束形成单元 1 不仅用于旋转接收 天线阵列单元接收到的信号, 还具有信号模数转换的功能。
作为本实施例的另一种实现方式, 如图 7所示, 天线阵列单元与双 工器 7相连接, 双工器 7分别与射频发射单元 9和射频接收单元 10相 连接, 旋转接收波束形成单元 1 与射频接收单元 10相连接。 射频发射 单元 9和射频接收单元 10相连接与发射 /接收波束形成单元 5 , 发射 /接 收波束形成单元 5与数字信号处理单元 8相连接。 天线阵列单元接收到 的信号经过射频接收单元 10 的滤波、 放大等处理后进入旋转接收波束 形成单元 1。
旋转接收波束形成单元 1接收来自各个天线阵列子单元 6的信号; 对来自各个天线阵列子单元 6的信号进行移相, 合并移相后的来自各个 天线阵列子单元 6的信号, 得到第一信号, 所述第一信号对应的接收波 束为旋转接收波束; 旋转接收波束以发射 /接收波束为转轴, 围绕所述发 射 /接收波束以预设的角频率旋转,旋转接收波束形成单元 1接收信号形 成的旋转接收波束与发射 /接收波束呈一定角度的夹角。这里的一定角度 的夹角大于 0° , 优选范围为 0° < Θ < 90° 。
由于对端天线发送过来的信号的功率在垂直于对端天线的发射 /接 收波束方向的截面上是近似相等的, 因此, 当对端天线和本地的相控阵 天线对准时, 本实施例中接收信号功率计算单元 2计算的旋转不同角度 时接收的来自各个天线阵列子单元 6的信号的各个功率值的波动幅度小 于或者等于设定的阈值。 当对端天线和本地的相控阵天线未对准, 接收 信号功率计算单元 2计算得到的旋转不同角度时接收的来自各个天线阵 列子单元 6的信号的各个功率值的波动幅度大于设定的阈值, 并按照一 定的规律不断变化。
本实施例的接收信号功率计算单元 2 进一步计算相控阵天线的发 射 /接收波束偏离的方向, 然后控制单元 3 通过控制发射 /接收波束形成 单元的波束指向控制模块, 进而控制移相器和功率分配器, 调整本地的 发射 /接收波束的指向, 以使本地的相控阵天线与对端天线对准。
本实施例的相控阵天线对准装置的结构和工作过程类似于实施例 二和实施例三, 在此不再贅述。
本实施例的相控阵天线, 通过独立于发射 /接收波束形成单元的旋 转接收波束形成单元接收来自各个天线阵列子单元的信号, 然后对来自 各个所述天线阵列子单元的信号进行移相, 合并移相后的来自各个所述 天线阵列子单元的信号, 得到第一信号, 所述第一信号对应的接收波束 为旋转接收波束, 旋转接收波束以发射 /接收波束为转轴, 围绕所述发射 /接收波束以预设的角频率旋转;再计算所述旋转接收波束旋转不同角度 时各个所述第一信号的功率值; 最后根据所述功率值, 来调整相控阵天 线的指向, 能够精确调节相控阵天线的指向, 且自动化程度高, 在天线 对准的过程中,不影响发射 /接收波束形成单元的正常工作,且精确度高 , 大大提高了相控阵天线的工作效率。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本 发明可借助软件加必需的通用硬件的方式来实现, 当然也可以通过硬件, 但 很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术方案本 质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来, 该 计算机软件产品存储在可读取的存储介质中, 如计算机的软盘, 硬盘或光盘 等, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述的方法。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不 局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围 内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应所述以权利要求的保护范围为准。

Claims

权利 要求 书
1、 一种相控阵天线对准方法, 其特征在于, 包括:
接收来自各个天线阵列子单元的信号;
对来自各个所述天线阵列子单元的信号进行移相, 合并移相后的来 自各个所述天线阵列子单元的信号, 得到第一信号, 所述第一信号对应的 接收波束为旋转接收波束;
所述旋转接收波束以发射 /接收波束为转轴, 围绕所述发射 /接收波束 以预设的角频率旋转;
计算所述旋转接收波束旋转不同角度时各个所述第一信号的功率 值;
根据所述功率值,调整发射 /接收波束的指向,使得相控阵天线对准。
2、 根据权利要求 1所述的相控阵天线对准方法, 其特征在于, 在所 述计算旋转接收波束旋转不同角度时各个所述第一信号的功率值之后, 所 述根据所述功率值, 调整发射 /接收波束的指向之前, 还包括:
根据所述功率值, 判断发射 /接收波束是否对准,
若所述旋转接收波束旋转不同角度时各个所述第一信号的功率值的 波动幅度小于或者等于设定的阈值, 则判断发射 /接收波束已对准;
若所述旋转接收波束旋转不同角度时各个所述第一信号的功率值的 波动幅度大于设定的阈值, 则判断发射 /接收波束未对准。
3、 根据权利要求 1所述的相控阵天线对准方法, 其特征在于, 所述 旋转接收波束与所述发射 /接收波束具有一定角度的夹角。
4、 根据权利要求 3所述的相控阵天线对准方法, 其特征在于, 所述 一定角度的夹角大于 0° 。
5、 根据权利要求 1所述的相控阵天线对准方法, 其特征在于, 所述 发射 /接收波束的指向为相控阵天线的指向。
6、 根据权利要求 1所述的相控阵天线对准方法, 其特征在于, 在所 述接收来自各个天线阵列子单元的信号之前, 还包括:
初始化所述发射 /接收波束的指向为相控阵天线所在平面的法线方 向;
初始化所述旋转接收波束与所述发射 /接收波束之间的夹角。
7、 一种相控阵天线对准装置, 其特征在于, 包括:
旋转接收波束形成单元, 用于接收来自各个天线阵列子单元的信号; 对来自各个所述天线阵列子单元的信号进行移相, 合并移相后的来自各个 所述天线阵列子单元的信号, 得到第一信号, 所述第一信号对应的接收波 束为旋转接收波束;
所述旋转接收波束以发射 /接收波束为转轴, 围绕所述发射 /接收波束 以预设的角频率旋转;
接收信号功率计算单元, 用于计算所述旋转接收波束旋转不同角度 时各个所述第一信号的功率值;
控制单元, 用于根据所述功率值, 调整发射 /接收波束的指向, 使得 相控阵天线对准。
8、 根据权利要求 7所述的相控阵天线对准装置, 其特征在于, 还包 括:
判决单元, 用于根据所述功率值, 判断发射 /接收波束是否对准, 若所述旋转接收波束旋转不同角度时各个所述第一信号的功率值的 波动幅度小于或者等于设定的阈值, 则判断发射 /接收波束已对准;
若所述旋转接收波束旋转不同角度时各个所述第一信号的功率值的 波动幅度大于设定的阈值, 则判断发射 /接收波束未对准。
9、 根据权利要求 7所述的相控阵天线对准装置, 其特征在于, 所述 旋转接收波束与所述发射 /接收波束具有一定角度的夹角。
10、 根据权利要求 9所述的相控阵天线对准装置, 其特征在于, 所 述一定角度的夹角大于 0° 。
1 1、 根据权利要求 7 所述的相控阵天线对准装置, 其特征在于, 所 述发射 /接收波束的指向为相控阵天线的指向。
12、 根据权利要求 7 所述的相控阵天线对准装置, 其特征在于, 所 述旋转接收波束形成单元包括: 多个移相器、 功率分配器以及波束指向控 制模块。
13、 一种相控阵天线, 包括天线阵列单元、 发射 /接收波束形成单元、 双工器、 数字信号处理单元、 射频发射单元和射频接收单元, 所述天线阵 列单元包括多个天线阵列子单元,所述发射 /接收波束形成单元用于向天线 阵列单元发射信号和接收天线阵列单元接收的信号, 其特征在于, 还包括 相控阵天线对准装置, 所述相控阵天线对准装置包括:
旋转接收波束形成单元, 用于接收来自各个天线阵列子单元的信号; 对来自各个所述天线阵列子单元的信号进行移相, 合并移相后的来自各个 所述天线阵列子单元的信号, 得到第一信号, 所述第一信号对应的接收波 束为旋转接收波束; 所述旋转接收波束以发射 /接收波束为转轴, 围绕所述 发射 /接收波束以预设的角频率旋转;
接收信号功率计算单元, 用于计算所述旋转接收波束旋转不同角度 时各个所述第一信号的功率值;
控制单元, 用于根据所述功率值, 调整发射 /接收波束形成单元中发 射 /接收波束的指向, 使得相控阵天线对准,
所述旋转接收波束形成单元和所述发射 /接收波束形成单元相连接, 所述控制单元和所述发射 /接收波束形成单元相连接。
14、 根据权利要求 13所述的相控阵天线, 其特征在于, 所述旋转接 收波束形成单元和发射 /接收波束形成单元分别与所述天线阵列单元相连 接, 所述双工器与所述发射 /接收波束形成单元相连接。
15、 根据权利要求 13所述的相控阵天线, 其特征在于, 所述天线阵 列单元与所述双工器相连接, 所述双工器分别与射频发射单元和射频接收 单元相连接, 所述旋转接收波束形成单元与射频接收单元相连接。
PCT/CN2011/075820 2011-06-16 2011-06-16 相控阵天线对准方法和装置以及相控阵天线 WO2012171205A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11860709.2A EP2722722A1 (en) 2011-06-16 2011-06-16 Phased-array antenna aiming method and device and phased-array antenna
PCT/CN2011/075820 WO2012171205A1 (zh) 2011-06-16 2011-06-16 相控阵天线对准方法和装置以及相控阵天线
CN201180000819.2A CN102292870B (zh) 2011-06-16 2011-06-16 相控阵天线对准方法和装置以及相控阵天线
US13/622,816 US20130027250A1 (en) 2011-06-16 2012-09-19 Method and apparatus for aligning phased array antenna, and phased array antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/075820 WO2012171205A1 (zh) 2011-06-16 2011-06-16 相控阵天线对准方法和装置以及相控阵天线

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/622,816 Continuation US20130027250A1 (en) 2011-06-16 2012-09-19 Method and apparatus for aligning phased array antenna, and phased array antenna

Publications (1)

Publication Number Publication Date
WO2012171205A1 true WO2012171205A1 (zh) 2012-12-20

Family

ID=45337997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075820 WO2012171205A1 (zh) 2011-06-16 2011-06-16 相控阵天线对准方法和装置以及相控阵天线

Country Status (4)

Country Link
US (1) US20130027250A1 (zh)
EP (1) EP2722722A1 (zh)
CN (1) CN102292870B (zh)
WO (1) WO2012171205A1 (zh)

Cited By (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10129057B2 (en) 2015-07-14 2018-11-13 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on a cable
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10439290B2 (en) 2015-07-14 2019-10-08 At&T Intellectual Property I, L.P. Apparatus and methods for wireless communications
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10511346B2 (en) 2015-07-14 2019-12-17 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on an uninsulated conductor
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10790593B2 (en) 2015-07-14 2020-09-29 At&T Intellectual Property I, L.P. Method and apparatus including an antenna comprising a lens and a body coupled to a feedline having a structure that reduces reflections of electromagnetic waves
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
WO2022057676A1 (zh) * 2020-09-21 2022-03-24 华为技术有限公司 一种通信的方法,装置以及系统

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8817678B2 (en) 2011-10-17 2014-08-26 Golba Llc Method and system for centralized or distributed resource management in a distributed transceiver network
US9197982B2 (en) 2012-08-08 2015-11-24 Golba Llc Method and system for distributed transceivers for distributed access points connectivity
US9397740B2 (en) * 2012-12-10 2016-07-19 Intel Corporation Modular antenna array with RF and baseband beamforming
US9768501B2 (en) 2013-01-21 2017-09-19 Intel Corporation Apparatus, system and method of steering an antenna array
CN104253658B (zh) * 2013-06-28 2016-11-23 华为技术有限公司 一种天线对准方法及系统
US9578644B2 (en) * 2014-09-26 2017-02-21 Mediatek Inc. Beam misalignment detection for wireless communication system with beamforming
US9673916B2 (en) * 2015-04-17 2017-06-06 Apple Inc. Electronic device with over-the-air wireless self-testing capabilities
CN107615585A (zh) * 2015-05-19 2018-01-19 华为技术有限公司 一种相控阵芯片、相控阵波束扫描方法和装置
WO2016187797A1 (zh) * 2015-05-26 2016-12-01 华为技术有限公司 一种波束信号跟踪方法、设备及系统
CN106450757B (zh) * 2015-08-07 2019-11-22 神讯电脑(昆山)有限公司 具有自动调整指向天线结构的天线系统及方法
US9577723B1 (en) * 2015-08-10 2017-02-21 The Boeing Company Systems and methods of analog beamforming for direct radiating phased array antennas
CN106469853B (zh) * 2015-08-19 2019-06-25 中国移动通信集团公司 一种移动地面站及移动地面站跟踪卫星波束的方法
EP3343701B1 (en) * 2015-09-29 2020-02-19 Huawei Technologies Co., Ltd. Array antenna and beam alignment method for array antenna
US9948512B2 (en) 2016-01-14 2018-04-17 Veniam, Inc. Systems and methods for remote configuration update and distribution in a network of moving things
US9788282B2 (en) * 2015-11-30 2017-10-10 Veniam, Inc. Systems and methods for improving fixed access point coverage in a network of moving things
CN105428823B (zh) * 2015-12-25 2019-03-29 成都安智杰科技有限公司 应用于车载雷达的收发复用天线结构的实现方法
US9929587B2 (en) * 2016-02-26 2018-03-27 The Boeing Company Radio frequency energy harvesting system
CN106209196B (zh) * 2016-06-30 2019-11-12 广州海格通信集团股份有限公司 一种基于多阵元信道选择的相位补偿方法及系统
CN107991657B (zh) * 2016-10-27 2021-04-09 北京遥感设备研究所 一种用于双波束天馈的波束对准系统
US10277269B2 (en) * 2016-12-09 2019-04-30 The Boeing Company Phased array beam tracking using beam gain coding
JP2018098654A (ja) * 2016-12-13 2018-06-21 富士通株式会社 通信制御装置及び位相調整方法
CN106532984B (zh) * 2016-12-28 2019-07-02 王策 一种锁定移动目标的电磁波无线充电或供电的方法和装置
CN106597399B (zh) * 2017-01-10 2023-10-03 四川九洲电器集团有限责任公司 一种相控阵系统的测评系统及性能测试方法
CN106772345B (zh) * 2017-03-16 2023-09-26 重庆大学 一种远距离即插即用型位移雷达目标反射器
US10321332B2 (en) 2017-05-30 2019-06-11 Movandi Corporation Non-line-of-sight (NLOS) coverage for millimeter wave communication
US10484078B2 (en) 2017-07-11 2019-11-19 Movandi Corporation Reconfigurable and modular active repeater device
US10348371B2 (en) 2017-12-07 2019-07-09 Movandi Corporation Optimized multi-beam antenna array network with an extended radio frequency range
US10862559B2 (en) 2017-12-08 2020-12-08 Movandi Corporation Signal cancellation in radio frequency (RF) device network
US11088457B2 (en) 2018-02-26 2021-08-10 Silicon Valley Bank Waveguide antenna element based beam forming phased array antenna system for millimeter wave communication
US10637159B2 (en) 2018-02-26 2020-04-28 Movandi Corporation Waveguide antenna element-based beam forming phased array antenna system for millimeter wave communication
GB201807538D0 (en) * 2018-05-09 2018-06-20 Phasor Solutions Ltd Improvements in or relating to beam alignment for electronically steered antennae systems
CN109188343B (zh) * 2018-08-15 2023-12-12 京东方科技集团股份有限公司 一种搜索信号源的方法、装置及计算机存储介质
US11169240B1 (en) 2018-11-30 2021-11-09 Ball Aerospace & Technologies Corp. Systems and methods for determining an angle of arrival of a signal at a planar array antenna
CN111327351B (zh) * 2018-12-14 2021-10-29 杭州海康威视数字技术股份有限公司 射频收发电路、无线通信设备及无线通信方法
CN109818666B (zh) * 2018-12-18 2022-07-29 中国电子科技集团公司电子科学研究院 一种卫星波束覆盖增强方法和系统
US11327142B2 (en) 2019-03-29 2022-05-10 Ball Aerospace & Technologies Corp. Systems and methods for locating and tracking radio frequency transmitters
CN110351680A (zh) * 2019-06-27 2019-10-18 广东电网有限责任公司信息中心 一种基于无线传感器网络的智能电网信息管理系统及方法
CN110366242B (zh) * 2019-07-11 2021-03-23 华为技术有限公司 一种户外网络设备的调整方法和户外网络设备
CN110361732B (zh) * 2019-07-22 2021-07-27 芜湖文青机械设备设计有限公司 一种用于物体内部结构检测的雷达探测装置
CN111175712B (zh) * 2020-01-14 2022-01-28 中国人民解放军陆军工程大学 相控阵雷达损伤评估与修复的验证系统
CN111277293B (zh) * 2020-01-21 2021-08-06 Oppo广东移动通信有限公司 客户前置设备、天线控制方法和计算机可读存储介质
CN111277294B (zh) 2020-01-21 2021-08-31 Oppo广东移动通信有限公司 天线选择方法及相关产品
US11909477B2 (en) * 2020-05-27 2024-02-20 Nokia Technologies Oy Uplink beam reconfiguration
CN111668606B (zh) * 2020-06-10 2021-12-24 维沃移动通信有限公司 天线配置信息的处理方法、装置和电子设备
CN112864624B (zh) * 2020-12-30 2022-12-13 上海擎昆信息科技有限公司 一种接收波束调整控制方法、装置及终端天线系统
CN113690614A (zh) * 2021-08-23 2021-11-23 湖南中车时代通信信号有限公司 车载相控阵天线波束调节方法、装置、设备及存储介质
CN114361797B (zh) * 2022-01-21 2023-05-12 北京华镁钛科技有限公司 相控阵天线快速自动校准方法、装置及系统
CN114447635B (zh) * 2022-04-11 2022-08-26 西安星通通信科技有限公司 一种提高共形相控阵天线eirp的方法与系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1596488A (zh) * 2001-09-28 2005-03-16 阿雷伊通讯有限公司 使用窄带信道的宽带无线电系统的频率相关校准
CN101834348A (zh) * 2010-04-14 2010-09-15 上海微小卫星工程中心 一种相控阵天线中的波束控制器
CN101916120A (zh) * 2010-08-04 2010-12-15 中国人民解放军第二炮兵工程学院 动中通双波束伪单脉冲跟踪系统及跟踪方法
CN201773322U (zh) * 2010-08-04 2011-03-23 中国人民解放军第二炮兵工程学院 动中通双波束伪单脉冲跟踪系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5086302A (en) * 1991-04-10 1992-02-04 Allied-Signal Inc. Fault isolation in a Butler matrix fed circular phased array antenna
GB9401987D0 (en) * 1994-02-02 1994-03-30 Imperial College Modified nucleic acid
US6448938B1 (en) * 2001-06-12 2002-09-10 Tantivy Communications, Inc. Method and apparatus for frequency selective beam forming
CN1545165A (zh) * 2003-11-11 2004-11-10 中国人民解放军总参谋部第六十三研究 跟踪天线的机电双重波束控制方法
CN2729932Y (zh) * 2004-08-27 2005-09-28 北京华夏宇通通信技术有限责任公司 一种混合相控阵卫星接收天线
US8509205B2 (en) * 2008-06-05 2013-08-13 The Boeing Company Multicode aperture transmitter/receiver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1596488A (zh) * 2001-09-28 2005-03-16 阿雷伊通讯有限公司 使用窄带信道的宽带无线电系统的频率相关校准
CN101834348A (zh) * 2010-04-14 2010-09-15 上海微小卫星工程中心 一种相控阵天线中的波束控制器
CN101916120A (zh) * 2010-08-04 2010-12-15 中国人民解放军第二炮兵工程学院 动中通双波束伪单脉冲跟踪系统及跟踪方法
CN201773322U (zh) * 2010-08-04 2011-03-23 中国人民解放军第二炮兵工程学院 动中通双波束伪单脉冲跟踪系统

Cited By (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9960808B2 (en) 2014-10-21 2018-05-01 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9876587B2 (en) 2014-10-21 2018-01-23 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9749083B2 (en) 2014-11-20 2017-08-29 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9831912B2 (en) 2015-04-24 2017-11-28 At&T Intellectual Property I, Lp Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9967002B2 (en) 2015-06-03 2018-05-08 At&T Intellectual I, Lp Network termination and methods for use therewith
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9935703B2 (en) 2015-06-03 2018-04-03 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10050697B2 (en) 2015-06-03 2018-08-14 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10566696B2 (en) 2015-07-14 2020-02-18 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10790593B2 (en) 2015-07-14 2020-09-29 At&T Intellectual Property I, L.P. Method and apparatus including an antenna comprising a lens and a body coupled to a feedline having a structure that reduces reflections of electromagnetic waves
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10305545B2 (en) 2015-07-14 2019-05-28 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US11658422B2 (en) 2015-07-14 2023-05-23 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10382072B2 (en) 2015-07-14 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10439290B2 (en) 2015-07-14 2019-10-08 At&T Intellectual Property I, L.P. Apparatus and methods for wireless communications
US11177981B2 (en) 2015-07-14 2021-11-16 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10469107B2 (en) 2015-07-14 2019-11-05 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10741923B2 (en) 2015-07-14 2020-08-11 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10819542B2 (en) 2015-07-14 2020-10-27 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on a cable
US10511346B2 (en) 2015-07-14 2019-12-17 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on an uninsulated conductor
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US11212138B2 (en) 2015-07-14 2021-12-28 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10587048B2 (en) 2015-07-14 2020-03-10 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10594597B2 (en) 2015-07-14 2020-03-17 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US11189930B2 (en) 2015-07-14 2021-11-30 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10594039B2 (en) 2015-07-14 2020-03-17 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10129057B2 (en) 2015-07-14 2018-11-13 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on a cable
US10686496B2 (en) 2015-07-14 2020-06-16 At&T Intellecutal Property I, L.P. Method and apparatus for coupling an antenna to a device
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9806818B2 (en) 2015-07-23 2017-10-31 At&T Intellectual Property I, Lp Node device, repeater and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
WO2022057676A1 (zh) * 2020-09-21 2022-03-24 华为技术有限公司 一种通信的方法,装置以及系统

Also Published As

Publication number Publication date
CN102292870A (zh) 2011-12-21
US20130027250A1 (en) 2013-01-31
EP2722722A4 (en) 2014-04-23
CN102292870B (zh) 2013-09-11
EP2722722A1 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
WO2012171205A1 (zh) 相控阵天线对准方法和装置以及相控阵天线
US20200314833A1 (en) Electronic alignment using signature emissions for backhaul radios
US6549164B2 (en) Distributed adaptive combining system for multiple aperture antennas including phased arrays
US20060097940A1 (en) Antenna unit
JP2016521939A (ja) 無線通信リンクのための安定化プラットフォーム
JP5151030B2 (ja) フェーズドアレイレーダ装置
CN101005154A (zh) 无线通信用的方向可变天线系统
US20120086602A1 (en) Hybrid beam forming apparatus in wideband wireless communication system
WO2015160556A1 (en) Method of forming broad radiation patterns for small-cell base station antennas
US11569575B2 (en) Low-complexity beam steering in array apertures
WO2021004485A1 (zh) 一种户外网络设备的调整方法和户外网络设备
TWI773229B (zh) 訊號接收裝置與訊號接收方法
JP5327059B2 (ja) 無線電力伝送システム及びレクテナ基地局
US11177579B2 (en) Reflector antenna and antenna alignment method
JP2010210647A (ja) アレーアンテナ測定方法
WO2020255522A1 (ja) フェーズドアレイアンテナ装置とプログラム
US9548798B2 (en) Near field measurement of active antenna systems
JP5735863B2 (ja) 無線通信装置、送信方法、及びプログラム
JP2023550183A (ja) アンテナシステム
CN113765574A (zh) 一种高通量卫星多频点同步寻星方法
JP2015179950A (ja) アンテナ装置
JP2010239520A (ja) 受波装置用支持具
CN107210524A (zh) 天线波束图案的降低增益
TW202044788A (zh) 波束成型裝置、用於其之校正方法及校正系統
JP2003101339A (ja) アレイアンテナ、及びこれを用いた受信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000819.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011860709

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE