WO2020255522A1 - フェーズドアレイアンテナ装置とプログラム - Google Patents

フェーズドアレイアンテナ装置とプログラム Download PDF

Info

Publication number
WO2020255522A1
WO2020255522A1 PCT/JP2020/013723 JP2020013723W WO2020255522A1 WO 2020255522 A1 WO2020255522 A1 WO 2020255522A1 JP 2020013723 W JP2020013723 W JP 2020013723W WO 2020255522 A1 WO2020255522 A1 WO 2020255522A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shift
satellite
signal
phase
shift value
Prior art date
Application number
PCT/JP2020/013723
Other languages
English (en)
French (fr)
Inventor
智宏 高橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021527383A priority Critical patent/JP7213975B2/ja
Priority to US17/605,231 priority patent/US11901632B2/en
Publication of WO2020255522A1 publication Critical patent/WO2020255522A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/38Systems for determining direction or deviation from predetermined direction using adjustment of real or effective orientation of directivity characteristic of an antenna or an antenna system to give a desired condition of signal derived from that antenna or antenna system, e.g. to give a maximum or minimum signal
    • G01S3/42Systems for determining direction or deviation from predetermined direction using adjustment of real or effective orientation of directivity characteristic of an antenna or an antenna system to give a desired condition of signal derived from that antenna or antenna system, e.g. to give a maximum or minimum signal the desired condition being maintained automatically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • This disclosure relates to a phased array antenna device and a program.
  • Elliptical reflectors, horn array antennas, etc. have been used for mobile satellite communications in aircraft, ships, automobiles, etc. for the purpose of reducing height.
  • the evolution of semiconductor technology has made it possible to integrate amplifiers, phase shifters, etc. in a small size and at low cost. By using such an integrated circuit, a low-cost, low-profile, high-performance phased array antenna can be realized, and it can be applied to mobile satellite communication.
  • phased array antenna When applying a phased array antenna to mobile satellite communication, it is required to track the satellite with high accuracy and stability in order to obtain stable communication.
  • beam scanning is performed based on various sensor information of the moving object, information of the satellite to be communicated, and the antenna is directed toward the satellite.
  • a pointing method is used.
  • the power of the received signal is reduced due to the error of the sensor information, the directivity error of the antenna, and the like.
  • the antenna size becomes large and the beam width becomes narrow, so that the amount of power reduction of the received signal due to these errors becomes large.
  • Patent Document 1 describes a technique of constructing a feedback system for each antenna in a tracking antenna device that directs a plurality of antennas in the direction of a satellite, compensating for a phase shift between the antennas by using a feedback signal, and suppressing a power drop. Is disclosed.
  • Patent Document 2 aims at a process of controlling the direction of an antenna by tracking the peak of the C / N ratio (carrier to noise ratio) of a control channel in a CS (Communication Satellite) communication system.
  • a method of directing the antenna in the direction of the satellite is disclosed by repeating the process until the radio wave from the satellite is well received.
  • Patent Document 1 describes a phased array antenna device that tracks a satellite by scanning a beam and directing the antenna toward the satellite based on various sensor information of a moving body, information of a satellite to be communicated, and the like.
  • hardware for generating a feedback signal is required. For this reason, problems such as complicated component layout, increase in the number of components, and increase in cost occur.
  • the satellite tracking method described in Patent Document 2 the power fluctuation at the time of peak search of C / N ratio becomes large according to the size of the antenna and the narrowness of the beam width, and the peak search of C / N ratio is performed. There is a problem that it is not stable while doing so.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to easily realize stable satellite communication in a phased array antenna device that receives a signal from a satellite.
  • the phased array antenna device that receives the signal from the satellite includes a sub-array, a demodulator, and a controller.
  • the subarray includes a plurality of antenna elements and a plurality of phase shifters connected to the plurality of antenna elements, respectively, and the signals received by the plurality of antenna elements are phase-shifted at a set phase shift value.
  • the demodulator demodulates and outputs the signal from the satellite to which the phase shifter has phase-shifted.
  • the controller sets the phase shift values of the plurality of phase shifters and controls the beam direction.
  • the controller calculates the direction-corrected phase shift value that maximizes the power value of the signal from the satellite by adding it to the phase shift value of the phase shifter for each subarray, and the phase shift of the phase shifter for each subarray. Add the direction correction phase shift value to the value.
  • a phased array antenna device that receives a signal from a satellite, it is easy and stable by correcting the beam direction to match the direction of the satellite based on the value of the power of the signal from the satellite. It will be possible to realize satellite communication.
  • phased array antenna device according to the present embodiment and the program for realizing the phased array antenna device will be described in detail with reference to the drawings.
  • the same or corresponding parts are designated by the same reference numerals in the drawings.
  • the phased array antenna device is mounted on a mobile body, performs beam scanning, tracks a satellite, and receives a signal from the satellite.
  • FIG. 1 is a diagram showing a configuration example of the phased array antenna device 1 according to the first embodiment.
  • the phased array antenna device 1 uses m sub-arrays 21, 22, ..., 2 m for transmitting and receiving signals, a detector 6 for extracting a signal from a satellite and detecting the power thereof, and a frequency of the input signal. It includes a frequency converter 7 for conversion, a modulator / demodulator 8 for demodulating or modulating an input signal, and a controller 9 for controlling the beam direction.
  • the sub-array 21 includes n antenna elements 311, ..., 31n, n amplifiers 411, ..., 41n, and n phase shifters 511, ..., 51n.
  • the sub-array 22 includes n antenna elements 321, ..., 32n, n amplifiers 421, ..., 42n, and n phase shifters 521, ..., 52n.
  • the sub-array 2m includes n antenna elements 3m1, ..., 3mn, n amplifiers 4m1, ..., 4mn, and n phase shifters 5m1, ..., 5mn. Note that m and n are natural numbers, respectively.
  • sub-arrays 21, 22, ..., 2 m are collectively referred to, they are referred to as sub-array 2.
  • the antenna elements 3m1, ..., 3mn are collectively referred to as the antenna element 3.
  • Amplifiers 411, ..., 41n, amplifiers 421, ..., 42n, amplifiers 4m1, ..., 4mn are collectively referred to as amplifier 4.
  • the phase shifters 511, ..., 51n the phase shifters 521, ..., 52n and the phase shifters 5m1, ..., 5mn are collectively referred to as the phase shifter 5.
  • An amplifier 4 is connected to each of the antenna elements 3, and a phase shifter 5 is connected to each of the amplifiers 4.
  • Each phase shifter 5 is connected to a detector 6.
  • a frequency converter 7 is connected to the detector 6.
  • a modulator / demodulator 8 is connected to the frequency converter 7.
  • the phase shifter 5, the detector 6, and the modulator / demodulator 8 of each subarray 2 are connected to the controller 9.
  • the controller 9 is a device that controls the operation of the phased array antenna device 1.
  • the controller 9 particularly controls the phase shift value of the phase shifter 5 to cause the phased array antenna device 1 to track the satellite as the communication partner by the application program.
  • the controller 9 includes a processor 91 that executes control processing, a storage unit 92 that stores an operation program of the processor 91, and an interface 93 that sets a phase amount instructed by the processor 91 in each phase shifter 5.
  • the storage unit 92 includes a satellite tracking program as an example of an operation program. By executing this satellite tracking program, the processor 91 realizes the satellite tracking process described later with reference to FIG. 4 by software processing.
  • the processor 91 is an example of a computer.
  • the m sub-arrays 21 to 2 m constituting the phased array antenna device 1 are arranged in a matrix as illustrated in FIG. 3A, for example.
  • Each of the subarrays 2 includes n antenna elements 3, as shown in FIG. 3B.
  • Each antenna element 3 receives a radio wave.
  • the radio wave received by each antenna element 3 includes a carrier signal including satellite transmission data.
  • the radio wave signal received by each antenna element 3 is phase-shifted by the phase shifter 5.
  • the phase-shifted signal is synthesized and input to the detector 6.
  • the detector 6 extracts a signal from the satellite from the synthesized signal and outputs it to the frequency converter 7.
  • the phase shift value set in the phase shifter 5 will be described later.
  • the frequency converter 7 frequency-converts the input signal to a low frequency.
  • the frequency converter 7 frequency-converts a signal having an RF (Radio Frequency) frequency into a signal having an IF (Intermediate Frequency) frequency, for example.
  • the modulator / demodulator 8 demodulates the signal frequency-converted by the frequency converter 7 to a low frequency, and outputs the received data.
  • the modifier 8 is an example of a demodulator.
  • the modulator / demodulator 8 modulates the transmitted data generated by a signal source (not shown).
  • the modulator / demodulator 8 is an example of a modulator.
  • the frequency converter 7 frequency-converts the signal modulated by the modulator / demodulator 8 to, for example, a frequency F2 close to the frequency F1 of the signal from the satellite.
  • the signal frequency-converted by the frequency converter 7 to the frequency F2 is distributed and input to each phase shifter 5.
  • Each phase shifter 5 shifts the input signal at the phase shift value set in the controller 9.
  • the amplifier 4 amplifies the phase-shifted signal by the phase shifter 5 at a set amplification factor.
  • the antenna element 3 radiates the signal amplified by the amplifier 4 into space by radio waves.
  • the radio wave radiated from the antenna element 3 forms a beam in its directivity direction.
  • the direction in which the beam is formed is referred to as a beam direction.
  • the controller 9 controls the pointing direction of the phased array antenna device 1 based on the position information of the moving body on which the phased array antenna device 1 is mounted, the orbit information of the satellite, and the like. Then, the initial acquisition is performed to acquire the satellite to be communicated. Existing technology will be used for the initial capture of the satellite.
  • the controller 9 sets each phase shifter 5 with a phase shift value for setting the direction of the initially captured satellite to the beam direction. The gain of the antenna element 3 is maximized when the beam direction and the satellite direction match.
  • the phased array antenna device 1 Since the beam direction deviates from the direction of the satellite due to the movement of the moving body on which the phased array antenna device 1 is mounted and the movement of the satellite, the phased array antenna device 1 corrects the beam direction and tracks the satellite. The operation of the phased array antenna device 1 when correcting the beam direction will be described.
  • the detector 6 detects the power of the signal from the satellite.
  • the detector 6 sends data indicating the detected electric power value to the controller 9.
  • the controller 9 Based on the data received from the detector 6, the controller 9 adds the phase shift value of the phase shifter 5 for each subarray 2 by using an array antenna calibration method such as the element electric field vector rotation method. Calculate the direction correction phase shift value that corrects the deviation between the beam direction and the direction of the satellite.
  • the directional correction phase shift value is an example of the correction phase shift value.
  • the controller 9 continuously adds the phase shift value from 0 degree to 360 degree to the phase shift value set in the phase shifter 5 in units of 2 subarrays. At this time, the controller 9 has the same phase shift value from 0 degrees to 360 degrees with respect to the phase shift values set in all the phase shifters 5 included in the subarray 2 to which the phase shift values are to be added. Add Padd continuously. The controller 9 sequentially performs a process of adding the phase shift value Padd to each subarray 2.
  • the control unit 9 for the configured phase shift value to the 16 phase shifter 5 in one sub-array 2 by adding the same phase value P the add from 0 to 360 degrees continuously During this period, the process of not adding the phase shift value Padd to the phase shift value set in the phase shifter 5 of the other subarray 2 is executed by selecting the subarray 2 in order.
  • the phase shift value Padd is not added to the phase shift value set in the phase shifter 5 of the other sub-array 22 to 2 m.
  • phase shift values of the 16 phase shifters 5 of the sub-array 21 are returned to the phase shift values set in the initial acquisition process, and then the 16 phase shifters 5 of the sub-array 22 are returned.
  • initial acquisition process for the configured phase shift values adding the same phase value P the add from 0 to 360 degrees in ⁇ increments to.
  • the phase shift value Padd is not added to the phase shift values set in the other subarray 21 and the phase shifter 5 of 23 to 2 m.
  • Controller 9 in each state phase value P the add is continuously added at ⁇ increments from 0 ° to the phase value of the phase shifters 5 of each subarray 2 to 360 degrees, the detector 6 is detected was based on the data indicative of the power value of signals from the satellites, the power values of signals from the satellites to calculate the phase value P the add with a maximum. Since the direction in which the power value of the signal from the satellite is maximum is the direction of the satellite, the phase shift value Padd in which the power value of the signal from the satellite is maximum is used as the phase shift value of the phase shifter 5. It is calculated as a direction correction phase shift value that corrects the deviation between the beam direction and the satellite direction by adding them. If there is no deviation between the beam direction and the satellite direction, the direction correction phase shift value is 0.
  • the controller 9 monitors the C / N ratio of the signal from the satellite in the modulator / demodulator 8, that is, the quality of the received signal, and whether the antenna element 3 receives the signal from the satellite whose C / N ratio is equal to or higher than the threshold value. Judge whether or not.
  • the C / N ratio may be calculated by the modulator / demodulator 8 or the controller 9. If the antenna element 3 receives a signal from a satellite whose C / N ratio is equal to or higher than the threshold value, the controller 9 adds the direction correction phase shift value to the phase shift value of the phase shifter 5 of each subarray 2. To do.
  • the direction-corrected phase shift value added to the phase shift value of the phase shifter 5 included in the same subarray 2 is the same value.
  • the controller 9 repeats the process of calculating the direction-corrected phase-shift value for each sub-array 2 and adding the direction-corrected phase-shift value to the phase-shift value of the phase shifter 5 of each sub-array 2 for each beam update cycle. Then, the beam direction is corrected to match the direction of the satellite.
  • the beam update cycle may be preset or may be set by the user.
  • the controller 9 is set to C / It is not necessary to execute the process of determining whether or not the antenna element 3 receives the signal from the satellite whose N ratio is equal to or larger than the threshold value.
  • the overall flow of the satellite tracking process executed by the phased array antenna device 1 will be described with reference to FIG.
  • the satellite tracking process shown in FIG. 4 starts when the power of the phased array antenna device 1 is turned on.
  • the controller 9 obtains the direction of the satellite to be communicated based on the position information of the moving body on which the phased array antenna device 1 is mounted and the orbit information of the satellite. (Step S11).
  • the controller 9 sets each of the 256 phase shifters 5 with a phase shift value in which the directivity direction of the phased array antenna device 1 is the direction obtained by the initial acquisition process, that is, the phase shift value facing the calculated position of the satellite is set. (Step S12).
  • Controller 9 to the phase value set in the first sub-array 2 16 phase shifter 5 provided in, adds the phase value P the add of 0 degrees (step S13).
  • the detector 6 detects the power of the signal from the satellite (step S14).
  • the detector 6 sends data indicating the detected electric power value to the controller 9.
  • step S15 If the phase shift value Padd is not 360 degrees (step S15; NO), the process returns to step S13, adds a step value ⁇ to the phase shift value Padd , and repeats steps S13 to S15.
  • step S15; YES whether or not the subarray 2 subjected to the process of adding the phase shift value Padd to the phase shift value of the phase shifter 5 is the 16th subarray 2. (Step S16). If it is not the 16th sub-array 2 (step S16; NO), the process returns to step S13 and repeats steps S13 to S15 for the next sub-array 2.
  • step S16 When the sub-array 2 that has been processed to add the phase-shifting value Padd to the phase-shifting value of the phase-shifting device 5 is the 16th sub-array 2 (step S16; YES), the controller 9 detects each sub-array 2.
  • vessel 6 is based on the data indicative of the power value of signals from the satellites detected, the power of the value of the signal from the satellite the phase value P the add with a maximum, is added to the phase value of the phase shifter 5 Therefore, it is calculated as a direction correction phase shift value for correcting the deviation between the beam direction and the direction of the satellite (step S17).
  • the controller 9 monitors the C / N ratio of the signal from the satellite in the modulator / demodulator 8 and determines whether or not the antenna element 3 receives the signal from the satellite whose C / N ratio is equal to or higher than the threshold value (step). S18). If the antenna element 3 does not receive a signal from a satellite whose C / N ratio is equal to or greater than the threshold value (step S18; NO), the process returns to step S11 and repeats steps S11 to S18. If the antenna element 3 receives a signal from a satellite whose C / N ratio is equal to or higher than the threshold value (step S18; YES), the controller 9 directs the phase shift value of the phase shifter 5 of each subarray 2.
  • the correction phase shift value is added (step S19). That is, the controller 9 adds the direction-corrected phase shift value to the phase shift value of each phase shifter 5 while the phased array antenna device 1 continues to communicate with the satellite to be communicated. Correct the deviation between the beam direction and the satellite direction.
  • step S20; NO If the beam update cycle has not elapsed (step S20; NO) and the power supply of the phased array antenna device 1 has not been turned off (step S21; NO), steps S20 and S21 are repeated to obtain a beam update cycle. Wait for progress. Until the beam update cycle elapses, the phased array antenna device 1 receives the signal from the satellite and transmits the signal to the satellite. When the beam update cycle elapses (step S20; YES), the process returns to step S13, and steps S13 to S20 are repeated. When the power of the phased array antenna device 1 is turned off (step S21; YES), the process ends.
  • the phased array antenna device 1 for receiving the signal from the satellite As described above, according to the phased array antenna device 1 for receiving the signal from the satellite according to the first embodiment, the power value of the signal from the satellite and the C / N ratio of the signal from the satellite are set. Based on this, by correcting the beam direction to match the direction of the satellite, it becomes possible to easily realize stable satellite communication.
  • the detector 6 extracts a signal from the satellite and detects the electric power thereof, but in the second embodiment, the detector 6 is frequency-converted to a lower frequency by the frequency converter 7.
  • the signal from the satellite is extracted from the signal of, and the power is detected.
  • FIG. 5 shows a configuration example of the phased array antenna device 1 according to the second embodiment.
  • the frequency converter 7 frequency-converts a signal obtained by combining the signals received by each antenna element 3 into a low frequency.
  • the frequency converter 7 frequency-converts an RF frequency signal into an IF frequency signal, for example.
  • the detector 6 extracts a signal from the satellite from the signal frequency-converted by the frequency converter 7 to a low frequency, and detects the electric power thereof. That is, the controller 9 uses an array antenna calibration method such as the element electric field vector rotation method based on the data indicating the power value of the signal from the satellite frequency-converted to the low frequency received from the detector 6. Calculate the direction correction phase shift value. Other processing is the same as that of the first embodiment.
  • the phased array antenna device 1 for receiving the signal from the satellite according to the second embodiment, the power value of the signal from the satellite and the C / N ratio of the signal from the satellite are set. Based on this, by correcting the beam direction to match the direction of the satellite, it becomes possible to easily realize stable satellite communication.
  • the controller 9 calculates the direction correction phase shift value from the value of the power of the signal from the satellite indicated by the data received from the detector 6, but in the third embodiment, the controller 9 calculates the direction correction phase shift value. 9 calculates the direction correction phase shift value from the C / N ratio in the modulator / demodulator 8.
  • FIG. 6 shows a configuration example of the phased array antenna device 1 according to the third embodiment.
  • the frequency converter 7 frequency-converts a signal obtained by combining signals from satellites received by each antenna element 3 into a low frequency.
  • the frequency converter 7 frequency-converts an RF frequency signal into an IF frequency signal, for example.
  • the modifier 8 demodulates and outputs a signal frequency-converted by the frequency converter 7 to a low frequency.
  • the controller 9 monitors the C / N ratio of the signal from the satellite in the modulator / demodulator 8, and based on the C / N ratio, uses an array antenna calibration method such as the element electric field vector rotation method to correct the direction correction phase shift. Calculate the value.
  • controller 9 in each state of phase value P the add was continuously added from 0 ° to the phase value of the phase shifters 5 of each subarray 2 to 360 degrees monitoring the C / N ratio of the signal from the satellite in modem 8, C / N ratio is calculated phase value P the add with a maximum. Since the direction in which the C / N ratio of the signal from the satellite is maximized is the direction of the satellite, the phase shift value Padd in which the C / N ratio is maximized should be added to the phase shift value of the phase shifter 5. Is calculated as a direction correction phase shift value that corrects the deviation between the beam direction and the satellite direction. That is, in the third embodiment, the phased array antenna device 1 does not have to include the detector 6. Other processing is the same as in the first and second embodiments.
  • the phased array antenna device 1 for receiving the signal from the satellite As described above, according to the phased array antenna device 1 for receiving the signal from the satellite according to the third embodiment, the power value of the signal from the satellite and the C / N ratio of the signal from the satellite are set. Based on this, by correcting the beam direction to match the direction of the satellite, stable satellite communication can be realized. Further, since the phased array antenna device 1 does not have to include the detector 6, the cost can be reduced.
  • FIG. 7 shows a configuration example of the phased array antenna device 1 according to the fourth embodiment.
  • the sub-array 22 includes n antenna elements 321 ..., 32n, 2n amplifiers 421, 422, ..., 42N-1, 42N, and 2n phase shifters 521, 522, ... , 52N-1, 52N.
  • the sub-array 2m includes n antenna elements 3m1, ..., 3mn, 2n amplifiers 4m1,4m2, ..., 4mN-1,4mN, and 2n phase shifters 5m1,5m2, ... , 5mN-1, and 5mN.
  • phase shifter 511,512, ..., 51N-1,51N, Phaser 521,522, ..., 52N-1,52N, Phaser 5m1,5m2, ..., 5mN-1,5mN Is generically referred to as a phase shifter 5.
  • Each of the antenna elements 3 has two ports, and two amplifiers 4 and two phase shifters 5 are connected to each other. Other configurations are the same as those of the first to third embodiments.
  • the operation of the phased array antenna device 1 when receiving a signal from the satellite, the operation of the phased array antenna device 1 when initializing the beam direction, and the operation of the phased array antenna device 1 when correcting the beam direction is the same as in the first to third embodiments.
  • the phased array antenna device 1 may perform the initial setting of the plane of polarization of the antenna element 3 when the beam direction is initially set.
  • the operation of the phased array antenna device 1 when the plane of polarization of the antenna element 3 is aligned with the plane of polarization of the signal from the satellite will be described.
  • the detector 6 extracts a signal from the satellite and detects the electric power thereof.
  • the detector 6 sends data indicating the detected electric power value to the controller 9.
  • the controller 9 shifts the phase for each antenna element 3 by using an array antenna calibration method such as the element electric field vector rotation method based on the data indicating the power value of the signal from the satellite received from the detector 6.
  • the polarization correction phase shift value for correcting the deviation between the polarization plane of the antenna element 3 and the polarization plane of the signal from the satellite is calculated.
  • the polarization correction phase shift value is an example of the correction phase shift value.
  • the controller 9 continuously adds the phase shift value from 0 degree to 360 degree to the phase shift value set in the phase shifter 5 in units of 3 antenna elements. At this time, the controller 9 has the same phase shift from 0 degrees to 360 degrees with respect to the phase shift values set in the two phase shifters 5 included in the antenna element 3 to which the phase shift values are to be added. The value Padd is continuously added. The controller 9 sequentially performs a process of adding the phase shift value Padd to each antenna element 3.
  • phase shift value Padd is not added to the phase shift value set in the phase shifter 5 of the other antenna element 3.
  • Controller 9 from satellites detector 6 detects in each state phase value P the add was continuously added from the phase shift value to 0 degree phase shifter 5 for each antenna element 3 to 360 times based on the data indicating the power value of the signal, the power values of signals from the satellites to calculate the phase value P the add with a maximum.
  • the state in which the power value of the signal from the satellite is maximized is the state in which the polarization plane of the antenna element 3 and the polarization plane of the signal from the satellite coincide with each other, so that the power value of the signal from the satellite is the maximum.
  • a polarization correction phase shift value that corrects the deviation between the polarization plane of the antenna element 3 and the polarization plane of the signal from the satellite by adding the phase shift value Padd to be the phase shift value of the phase shifter 5. To do. If the plane of polarization of the antenna element 3 and the plane of polarization of the signal from the satellite match, the polarization correction phase shift value is 0.
  • the controller 9 monitors the C / N ratio in the modulator / demodulator 8 and determines whether or not the antenna element 3 receives a signal from a satellite whose C / N ratio is equal to or greater than the threshold value.
  • the C / N ratio may be calculated by the modulator / demodulator 8 or the controller 9. If the antenna element 3 receives a signal from a satellite whose C / N ratio is equal to or greater than the threshold value, the controller 9 corrects polarization with respect to the phase shift value of the phase shifter 5 connected to each antenna element 3. Add the phase shift values.
  • the controller 9 repeats such a process every beam update cycle to align the polarization planes of all the antenna elements 3 with the polarization planes of the signals from the satellite.
  • the controller 9 does not have to execute a process of determining whether or not the antenna element 3 receives a signal from a satellite whose C / N ratio is equal to or greater than the threshold value. Other processes are the same as those in the first to third embodiments.
  • the phased array antenna device 1 for receiving the signal from the satellite according to the fourth embodiment, the power value of the signal from the satellite and the C / N ratio of the signal from the satellite are set. Based on this, by correcting the beam direction to match the direction of the satellite, it becomes possible to easily realize stable satellite communication. Further, by connecting one antenna element 3 to two phase shifters 5 and two ports, it is possible to track not only the direction of the satellite but also the plane of polarization of the signal from the satellite.
  • the detector 6 extracts a signal from the satellite and detects the electric power thereof, but in the fifth embodiment, the detector 6 is frequency-converted to a lower frequency by the frequency converter 7. The signal from the satellite is extracted from the signal of, and the power is detected.
  • FIG. 8 shows a configuration example of the phased array antenna device 1 according to the fifth embodiment.
  • the frequency converter 7 frequency-converts a signal obtained by combining the signals received by each antenna element 3 into a low frequency.
  • the frequency converter 7 frequency-converts an RF frequency signal into an IF frequency signal, for example.
  • the detector 6 extracts a signal from the satellite from the signal frequency-converted by the frequency converter 7 to a low frequency, and detects the electric power thereof. That is, the controller 9 uses an array antenna calibration method such as the element electric field vector rotation method based on the data indicating the power value of the signal from the satellite frequency-converted to the low frequency received from the detector 6.
  • the direction correction phase shift value and the polarization correction phase shift value are calculated. Other processing is the same as in the fourth embodiment.
  • the phased array antenna device 1 for receiving the signal from the satellite according to the fifth embodiment, the power value of the signal from the satellite and the C / N ratio of the signal from the satellite are set. Based on this, by correcting the beam direction to match the direction of the satellite, it becomes possible to easily realize stable satellite communication. Further, by connecting one antenna element 3 to two phase shifters 5 and two ports, it is possible to track not only the direction of the satellite but also the polarization of the satellite.
  • the controller 9 determines the direction-corrected phase shift value for each subarray 2 and the polarization-corrected phase shift for each antenna element 3 based on the power value of the signal from the satellite received from the detector 6. However, in the sixth embodiment, the controller 9 calculates the direction correction phase shift value for each subarray 2 and the polarization correction shift for each antenna element 3 based on the change in the C / N ratio in the modulator / demodulator 8. Calculate the phase value.
  • FIG. 9 shows a configuration example of the phased array antenna device 1 according to the sixth embodiment.
  • the frequency converter 7 frequency-converts a signal obtained by combining signals from satellites received by each antenna element 3 into a low frequency.
  • the frequency converter 7 frequency-converts an RF frequency signal into an IF frequency signal, for example.
  • the modifier 8 demodulates and outputs a signal frequency-converted by the frequency converter 7 to a low frequency.
  • the controller 9 monitors the C / N ratio of the signal from the satellite in the modulator / demodulator 8, and based on the C / N ratio, uses an array antenna calibration method such as the element electric field vector rotation method to perform polarization correction transfer. Calculate the phase value.
  • controller 9 in each state of phase value P the add was continuously added from 0 ° to the phase value of the phase shifters 5 of each subarray 2 to 360 degrees C / N ratio of the signal from the satellite in modem 8, i.e., to monitor the quality of the received signal, C / N ratio is calculated phase value P the add with a maximum.
  • the state in which the C / N ratio of the signal from the satellite is maximized is the state in which the plane of polarization of the antenna element 3 and the plane of polarization of the signal from the satellite coincide with each other, so that the C / N ratio of the signal from the satellite is the same.
  • phased array antenna device 1 does not have to include the detector 6.
  • Other processing is the same as in the fourth and fifth embodiments.
  • the phased array antenna device 1 for receiving the signal from the satellite As described above, according to the phased array antenna device 1 for receiving the signal from the satellite according to the sixth embodiment, the power value of the signal from the satellite and the C / N ratio of the signal from the satellite are set. Based on this, by correcting the beam direction to match the direction of the satellite, it becomes possible to easily realize stable satellite communication. Further, by connecting one antenna element 3 to two phase shifters 5 and two ports, it is possible to track not only the direction of the satellite but also the polarization of the satellite. Further, since the phased array antenna device 1 does not have to include the detector 6, the cost can be reduced.
  • an example of the element electric field vector rotation method is given as an array antenna calibration method, but the method is not limited to this.
  • the array antenna calibration method described in Odo, Miura “Transmission Array Antenna Calibration Using Synchronous Orthogonal Code", Shingaku Giho A.pp99-121, RCS99-118, October 1999 is used. Good.
  • the phased array antenna device 1 that receives the signal from the satellite and transmits the signal to the satellite has been described, but the phased array antenna device 1 may only receive the signal from the satellite. ..
  • the modulator / demodulator 8 does not have to have a modulation function.
  • the frequency converter 7 does not have to have a function of frequency-converting the input signal to a high frequency.
  • the phased array antenna device 1 does not have to include the amplifier 4.
  • phased array antenna device 1 mounted on the moving body has been described in the above-described first to sixth embodiments, the phased array antenna device 1 may not be mounted on the moving body.
  • the C / N ratio was used to evaluate the quality of the received signal, but other evaluation values may be used.
  • An example of adding the direction correction addition value and the polarization correction phase shift value is shown, but the value of the addition value may be a negative value.
  • the range of addition is 0 to 360 degrees, but for example, it may be narrowed down to a range of 0 to 180 degrees, 0 to ⁇ 90 degrees, and the like.
  • the addition process is an example of a process for adjusting the phase shift value, and another adjustment method may be adopted.
  • the target of communication is not limited to satellites, and the effect can be obtained if the target of communication is moving.
  • the phased array antenna device itself does not have to move.
  • the processor 91 of the controller 9 executes the satellite tracking program to realize the satellite tracking process by software processing.
  • satellite tracking processing can be realized not only by using a dedicated system but also by using a normal computer system.
  • a satellite tracking program is stored and distributed in a recording medium such as a computer-readable CD-ROM (Compact Disc Read Only Memory) or DVD-ROM (Digital Amsterdam Disc Read Only Memory), and this program is distributed to the computer.
  • a computer capable of realizing satellite tracking processing may be configured.
  • the satellite tracking process is realized by sharing the OS (Operating System) and the application, or by cooperating with the OS and the application, only the application may be stored in the recording medium.
  • OS Operating System
  • a satellite tracking program may be posted on a bulletin board system (BBS, Bulletin Board System) on a communication network and provided via the communication network.
  • BSS bulletin board System
  • Phased array antenna device 2,21 to 2 m sub-array, 3,311 to 31n, 321 to 32n, 3m1 to 3mn antenna element, 4,411 to 41N, 421 to 42N, 4m1 to 4mN amplifier, 5,511 to 51N, 521 to 52N, 5m1 to 5mN phase shifter, 6 detector, 7 frequency converter, 8 modulator / demodulator, 9 controller, 91 processor, 92 storage unit, 93 interface.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

衛星からの信号を受信するフェーズドアレイアンテナ装置(1)は、アンテナ素子(311~3mn)、および、アンテナ素子(311~3mn)が受信した信号を設定された移相値で移相する移相器(511~5mn)を含むサブアレイ(21~2m)と、移相器(511~5mn)が移相した衛星からの信号を復調して出力する復調器(8)と、移相器(511~5mn)の移相値を設定し、ビーム方向を制御する制御器(9)と、を備える。制御器(9)は、サブアレイ(21~2m)ごとに、移相器(511~51n、521~52n、・・・、5m1~5mn)の移相値に加算することで衛星からの信号の電力の値が最大となる方向補正移相値を算出し、サブアレイ(21~2m)ごとの移相器(511~51n、521~52n、・・・、5m1~5mn)の移相値に方向補正移相値を加算する。

Description

フェーズドアレイアンテナ装置とプログラム
 本開示は、フェーズドアレイアンテナ装置とプログラムに関する。
 航空機、船舶、自動車などにおける移動体衛星通信には、低背化を目的として、楕円反射鏡、ホーンアレイアンテナなどが用いられてきた。一方で、半導体技術の進化により、増幅器、移相器などを小型で安価に集積化できるようになった。このような集積化回路を用いることで、低コスト、低背、高性能のフェーズドアレイアンテナが実現可能となり、移動体衛星通信への適用が可能となった。
 フェーズドアレイアンテナを移動体衛星通信に適用する場合、安定した通信を得るために、高精度に安定して衛星を追尾することが求められる。一般的には、移動体に搭載されたフェーズドアレイアンテナの衛星追尾には、移動体の各種センサ情報、通信対象となる衛星の情報などに基づいて、ビーム走査をしてアンテナを衛星の方向に指向させる方法が用いられる。しかし、この方法では、センサ情報の誤差、アンテナの指向誤差などによって、受信する信号の電力低下が発生する。特に高周波を用いるシステムではアンテナサイズが大きくなってビーム幅が狭くなるため、これらの誤差による受信する信号の電力低下量が大きくなる。
 特許文献1には、複数のアンテナを衛星の方向に指向させる追尾アンテナ装置において、各アンテナにフィードバック系を構築し、フィードバック信号を用いてアンテナ間の位相ずれを補償し、電力低下を抑制する技術が開示されている。
 その他の衛星追尾方法として、特許文献2には、CS(Communication Satellite)通信システムにおいて、制御チャネルのC/N比(carrier to noise ratio)のピークを追尾対象としてアンテナの向きを制御する処理を目的の衛星からの電波を良好に受信するまで繰り返すことで、アンテナを衛星の方向に指向させる方法が開示されている。
特開2014-3431号公報 特開2000-299655号公報
 しかしながら、移動体の各種センサ情報、通信対象となる衛星の情報などに基づいて、ビームを走査してアンテナを衛星の方向に指向させて衛星を追尾するフェーズドアレイアンテナ装置に、特許文献1に記載の技術を適用してフィードバック系を構築する場合、フィードバック信号を生成するハードウェアが必要になる。このため、部品のレイアウトの複雑化、部品点数の増加、コストの増加などの問題が発生する。また、特許文献2に記載の衛星追尾方法では、アンテナの大きさ、ビーム幅の狭さに応じて、C/N比のピークサーチ時の電力変動が大きくなり、C/N比のピークサーチをしている間は安定しないという問題がある。
 本開示は、上述のような事情に鑑みてなされたもので、衛星からの信号を受信するフェーズドアレイアンテナ装置において、簡単に、安定した衛星通信を実現することを目的とする。
 上記目的を達成するため、衛星からの信号を受信するフェーズドアレイアンテナ装置は、サブアレイと、復調器と、制御器とを備える。サブアレイは、複数のアンテナ素子、および、複数のアンテナ素子にそれぞれ接続され、複数のアンテナ素子が受信した信号を設定された移相値で移相する複数の移相器を含む。復調器は、移相器が移相した衛星からの信号を復調して出力する。制御器は、複数の移相器の移相値を設定し、ビーム方向を制御する。制御器は、サブアレイごとに、移相器の移相値に加算することで衛星からの信号の電力の値が最大となる方向補正移相値を算出し、サブアレイごとの移相器の移相値に方向補正移相値を加算する。
 本開示によれば、衛星からの信号を受信するフェーズドアレイアンテナ装置において、衛星からの信号の電力の値に基づいて、ビーム方向を衛星の方向に合わせる補正をすることで、簡単に、安定した衛星通信を実現することが可能になる。
実施の形態1に係るフェーズドアレイアンテナ装置の構成例を示す図 図1に示す制御器のブロック図 実施の形態1に係るフェーズドアレイアンテナ装置の例を示す斜視図 実施の形態1に係るフェーズドアレイアンテナ装置のサブアレイの例を示す斜視図 実施の形態1に係るフェーズドアレイアンテナ装置が実行する衛星追尾処理を示すフローチャート 実施の形態2に係るフェーズドアレイアンテナ装置の構成例を示す図 実施の形態3に係るフェーズドアレイアンテナ装置の構成例を示す図 実施の形態4に係るフェーズドアレイアンテナ装置の構成例を示す図 実施の形態5に係るフェーズドアレイアンテナ装置の構成例を示す図 実施の形態6に係るフェーズドアレイアンテナ装置の構成例を示す図
 以下に、本実施の形態に係るフェーズドアレイアンテナ装置とそれを実現するプログラムについて図面を参照して詳細に説明する。なお、図中同一または相当する部分には同じ符号を付す。以下の実施の形態に係るフェーズドアレイアンテナ装置は、移動体に搭載され、ビーム走査を行って衛星を追尾し、衛星からの信号を受信する。
(実施の形態1)
 図1は、実施の形態1に係るフェーズドアレイアンテナ装置1の構成例を示す図である。フェーズドアレイアンテナ装置1は、信号を送受信するm個のサブアレイ21,22,・・・,2mと、衛星からの信号を取り出し、その電力を検知する検知器6と、入力された信号の周波数を変換する周波数変換器7と、入力された信号を復調または変調する変復調器8と、ビーム方向を制御する制御器9とを備える。
 サブアレイ21は、n個のアンテナ素子311,・・・,31nと、n個の増幅器411,・・・,41nと、n個の移相器511,・・・,51nとを備える。サブアレイ22は、n個のアンテナ素子321,・・・,32nと、n個の増幅器421,・・・,42nと、n個の移相器521,・・・,52nとを備える。サブアレイ2mは、n個のアンテナ素子3m1,・・・,3mnと、n個の増幅器4m1,・・・,4mnと、n個の移相器5m1,・・・,5mnとを備える。なお、mとnはそれぞれ自然数である。
 以下、サブアレイ21,22,・・・,2mを総称する場合、サブアレイ2という。アンテナ素子311,・・・,31n、アンテナ素子321,・・・,32n、・・・、アンテナ素子3m1,・・・,3mnを総称する場合、アンテナ素子3という。増幅器411,・・・,41n、増幅器421,・・・,42n、増幅器4m1,・・・,4mnを総称する場合、増幅器4という。移相器511,・・・,51n、移相器521,・・・,52n、移相器5m1,・・・,5mnを総称する場合、移相器5という。
 アンテナ素子3にはそれぞれ、増幅器4が接続され、増幅器4にはそれぞれ、移相器5が接続される。各移相器5は、検知器6に接続される。検知器6には、周波数変換器7が接続される。周波数変換器7には、変復調器8が接続される。制御器9には、各サブアレイ2の移相器5と、検知器6と、変復調器8とが接続される。
 制御器9は、フェーズドアレイアンテナ装置1の動作を制御する装置である。本実施の形態では、制御器9は、特に、移相器5の移相値を制御して、フェーズドアレイアンテナ装置1に通信相手である衛星を追尾させる制御を、アプリケーションプログラムにより実行する。制御器9は、図2に示すように、制御処理を実行するプロセッサ91、プロセッサ91の動作プログラムを記憶する記憶部92,プロセッサ91が指示する位相量を各移相器5に設定するインタフェース93を備える。記憶部92は、動作プログラムの一例として衛星追尾プログラムを含む。プロセッサ91は、この衛星追尾プログラムを実行することにより、図4を参照して後述する衛星追尾処理を、ソフトウェア処理により実現する。プロセッサ91は、コンピュータの一例である。
 フェーズドアレイアンテナ装置1を構成するm個のサブアレイ21~2mは、例えば、図3Aに例示するようにマトリクス状に配置される。なお、図3Aでは、サブアレイ2は4×4のマトリクス状に配置されており、m=16である。サブアレイ2はそれぞれ、図3Bに示すように、n個のアンテナ素子3を備える。図3Bの例では、アンテナ素子3は、4×4のマトリクス状に配置されており、n=16である。従って、図3Aおよび図3Bの例では、アンテナ素子3の数は、n×m=16×16=256個である。以下の説明では、フェーズドアレイアンテナ装置1が備えるサブアレイ2の数m=16、サブアレイ2が備えるアンテナ素子3の数n=16とする。
 ここで、衛星からの信号を受信するときのフェーズドアレイアンテナ装置1の動作について説明する。各アンテナ素子3は、電波を受信する。各アンテナ素子3が受信する電波は、衛星の送信データを含むキャリア信号を含む。各アンテナ素子3が受信した電波の信号は、移相器5で移相される。移相された信号は合成されて、検知器6に入力される。検知器6は、合成された信号から衛星からの信号を取り出して周波数変換器7に出力する。移相器5に設定される移相値については後述する。周波数変換器7は、入力された信号を、低い周波数に周波数変換する。周波数変換器7は、例えば、RF(Radio Frequency)周波数の信号をIF(Intermediate Frequency)周波数の信号に周波数変換する。変復調器8は、周波数変換器7が低い周波数に周波数変換した信号を復調し、受信データを出力する。変復調器8は、復調器の例である。
 次に、衛星へ信号を送信するときのフェーズドアレイアンテナ装置1の動作について説明する。変復調器8は、図示しない信号源が生成した送信データを変調する。変復調器8は、変調器の例である。周波数変換器7は、変復調器8が変調した信号を、例えば衛星からの信号の周波数F1に近い周波数F2に周波数変換する。周波数変換器7が周波数F2に周波数変換した信号は分配されて、各移相器5に入力される。各移相器5は、入力された信号を制御器9に設定された移相値で移相する。増幅器4は、移相器5が移相した信号を設定された増幅率で増幅する。アンテナ素子3は、増幅器4が増幅した信号を電波で空間に放射する。アンテナ素子3から放射される電波はその指向方向にビームを形成する。以下、ビームを形成する方向をビーム方向という。
 続いて、ビーム方向を初期設定するときのフェーズドアレイアンテナ装置1の動作について説明する。制御器9は、通信対象の衛星が特定されると、フェーズドアレイアンテナ装置1が搭載される移動体の位置情報および衛星の軌道情報などに基づいて、フェーズドアレイアンテナ装置1の指向方向を制御して、通信対象の衛星を捕捉する初期捕捉を行う。衛星の初期捕捉には既存の技術を用いる。制御器9は、初期捕捉した衛星の方向をビーム方向に設定するための移相値を各移相器5に設定する。ビーム方向と衛星の方向とが一致することで、アンテナ素子3の利得が最大となる。
 フェーズドアレイアンテナ装置1が搭載された移動体の移動および衛星の移動により、ビーム方向は衛星の方向とずれるため、フェーズドアレイアンテナ装置1は、ビーム方向を補正し、衛星を追尾する。ビーム方向を補正するときのフェーズドアレイアンテナ装置1の動作について説明する。検知器6は、衛星からの信号の電力を検知する。検知器6は、検知した電力の値を示すデータを制御器9に送る。制御器9は、検知器6から受け取ったデータに基づいて、素子電界ベクトル回転法のようなアレイアンテナ校正方法を用いて、サブアレイ2ごとに、移相器5の移相値に加算することでビーム方向と衛星の方向とのずれを補正する方向補正移相値を算出する。方向補正移相値は、補正移相値の例である。
 素子電界ベクトル回転法を用いる場合、制御器9は、サブアレイ2単位で移相器5に設定された移相値に0度から360度までの移相値を連続的に加算する。このとき、制御器9は、移相値を加算する対象のサブアレイ2が備える全ての移相器5に設定されている移相値に対して、0度から360度までの同一の移相値Paddを連続的に加算する。制御器9は、移相値Paddを加算する処理を各サブアレイ2に対して順に行う。つまり、制御器9は、1つのサブアレイ2の16個の移相器5に設定された移相値に対して、0度から360度までの同一の移相値Paddを連続的に加算し、この間、他のサブアレイ2の移相器5に設定された移相値には移相値Paddを加算しない処理を、サブアレイ2を順番に選択して実行する。例示すると、サブアレイ21の16個の移相器5に初期捕捉処理で設定された移相値に対して、0度から360度までの同一の移相値PaddをΔθ刻み、例えば、0.5度刻みで加算する。ただし、この間、他のサブアレイ22~2mの移相器5に設定された移相値には移相値Paddを加算しない。サブアレイ21についての処理が終了すると、サブアレイ21の16個の移相器5の移相値を初期捕捉処理で設定された移相値に戻し、次に、サブアレイ22の16個の移相器5に初期捕捉処理で設定された移相値に対して、0度から360度までの同一の移相値PaddをΔθ刻みで加算する。ただし、この間、他のサブアレイ21と23~2mの移相器5に設定された移相値には移相値Paddを加算しない。
 制御器9は、各サブアレイ2の移相器5の移相値に0度から360度までの移相値PaddがΔθ刻みで連続的に加算している各状態において、検知器6が検知した衛星からの信号の電力の値を示すデータに基づいて、衛星からの信号の電力の値が最大となる移相値Paddを算出する。衛星からの信号の電力の値が最大となる方向はつまり衛星の方向であるので、衛星からの信号の電力の値が最大となる移相値Paddを、移相器5の移相値に加算することでビーム方向と衛星の方向とのずれを補正する方向補正移相値として算出する。ビーム方向と衛星の方向とにずれがなければ、方向補正移相値は0である。
 ここまで、素子電界ベクトル回転法を用いる場合について説明したが、素子電界ベクトル回転法についての詳細は、例えば、真野、片木、「フェイズドアレイアンテナの素子振幅位相測定方法―素子電界ベクトル回転法-」、電子情報通信学会論文誌B、Vol.J65-B,No.5、pp.555-560、1982年5月に記載されている。
 制御器9は、変復調器8における衛星からの信号のC/N比、即ち、受信信号の品質を監視し、C/N比が閾値以上の衛星からの信号をアンテナ素子3が受信しているか否かを判定する。C/N比を算出するのは、変復調器8でもよいし、制御器9でもよい。C/N比が閾値以上の衛星からの信号をアンテナ素子3が受信していれば、制御器9は、各サブアレイ2の移相器5の移相値に対して方向補正移相値を加算する。同じサブアレイ2に含まれる移相器5の移相値に加算される方向補正移相値は、同じ値である。制御器9は、サブアレイ2ごとに方向補正移相値を算出して、各サブアレイ2の移相器5の移相値に対して方向補正移相値を加算する処理をビーム更新周期ごとに繰り返して、ビーム方向を衛星の方向に合わせる補正をする。ビーム更新周期は、あらかじめ設定されていてもよいし、ユーザが設定してもよい。
 例えば、静止衛星のように通信相手の衛星が切り替わらない場合であって、移動体の姿勢の変化が方向補正移相値によって補正可能な範囲内である場合には、制御器9は、C/N比が閾値以上の衛星からの信号をアンテナ素子3が受信しているか否かを判定する処理を実行しなくてもよい。
 フェーズドアレイアンテナ装置1が実行する衛星追尾処理の全体の流れを、図4を用いて説明する。図4に示す衛星追尾処理は、フェーズドアレイアンテナ装置1の電源が投入された時に開始する。
 制御器9は、通信対象の衛星が特定されると、フェーズドアレイアンテナ装置1が搭載される移動体の位置情報および衛星の軌道情報などに基づいて、通信対象の衛星の方向を求める初期捕捉処理を行う(ステップS11)。制御器9は、フェーズドアレイアンテナ装置1の指向方向が初期捕捉処理で求めた方向になる、即ち、衛星の計算上の位置を向く移相値を、256個の各移相器5に設定する(ステップS12)。
 制御器9は、1番目のサブアレイ2が備える16個の移相器5に設定されている移相値に対して、0度の移相値Paddを加算する(ステップS13)。検知器6は、衛星からの信号の電力を検知する(ステップS14)。検知器6は、検知した電力の値を示すデータを制御器9に送る。
 移相値Paddが360度でない場合(ステップS15;NO)、処理は、ステップS13に戻り、移相値Paddに刻み値Δθを加算して、ステップS13~ステップS15を繰り返す。移相値Paddが360度になると(ステップS15;YES)、移相値Paddを移相器5の移相値に加算する処理を行ったサブアレイ2が16番目のサブアレイ2であるか否かを判定する(ステップS16)。16番目のサブアレイ2でない場合(ステップS16;NO)、処理は、ステップS13に戻り、次のサブアレイ2に対してステップS13~ステップS15を繰り返す。
 移相値Paddを移相器5の移相値に加算する処理を行ったサブアレイ2が16番目のサブアレイ2である場合(ステップS16;YES)、制御器9は、サブアレイ2ごとに、検知器6が検知した衛星からの信号の電力の値を示すデータに基づいて、衛星からの信号の電力の値が最大となる移相値Paddを、移相器5の移相値に加算することでビーム方向と衛星の方向とのずれを補正する方向補正移相値として算出する(ステップS17)。
 制御器9は、変復調器8における衛星からの信号のC/N比を監視し、C/N比が閾値以上の衛星からの信号をアンテナ素子3が受信しているか否かを判定する(ステップS18)。C/N比が閾値以上の衛星からの信号をアンテナ素子3が受信していなければ(ステップS18;NO)、処理はステップS11に戻り、ステップS11~ステップS18を繰り返す。C/N比が閾値以上の衛星からの信号をアンテナ素子3が受信していれば(ステップS18;YES)、制御器9は、各サブアレイ2の移相器5の移相値に対して方向補正移相値を加算する(ステップS19)。即ち、制御器9は、フェーズドアレイアンテナ装置1が通信対象の衛星と通信を継続している状態で、各移相器5の移相値に対して方向補正移相値を加算することで、ビーム方向と衛星の方向とのずれを補正する。
 ビーム更新周期が経過しておらず(ステップS20;NO)、フェーズドアレイアンテナ装置1の電源がOFFになっていなければ(ステップS21;NO)、ステップS20およびステップS21を繰り返して、ビーム更新周期の経過を待機する。ビーム更新周期が経過するまでの間、フェーズドアレイアンテナ装置1は、衛星からの信号の受信および衛星への信号の送信を行う。ビーム更新周期が経過すると(ステップS20;YES)、処理はステップS13に戻り、ステップS13~ステップS20を繰り返す。フェーズドアレイアンテナ装置1の電源がOFFになると(ステップS21;YES)、処理は終了する。
 以上説明したように、実施の形態1に係る、衛星からの信号を受信するフェーズドアレイアンテナ装置1によれば、衛星からの信号の電力の値と、衛星からの信号のC/N比とに基づいて、ビーム方向を衛星の方向に合わせる補正をすることで、簡単に、安定した衛星通信を実現することが可能になる。
(実施の形態2)
 実施の形態1では、検知器6は、衛星からの信号を取り出して、その電力を検知したが、実施の形態2では、検知器6は、周波数変換器7によって低い周波数に周波数変換された後の信号から、衛星からの信号を取り出して、その電力を検知する。
 図5は、実施の形態2に係るフェーズドアレイアンテナ装置1の構成例を示す。周波数変換器7は、各アンテナ素子3が受信した信号を合成した信号を低い周波数に周波数変換する。周波数変換器7は、例えば、RF周波数の信号をIF周波数の信号に周波数変換する。検知器6は、周波数変換器7が低い周波数に周波数変換した信号から、衛星からの信号を取り出して、その電力を検知する。すなわち、制御器9は、検知器6から受け取った低い周波数に周波数変換された衛星からの信号の電力の値を示すデータに基づいて、素子電界ベクトル回転法のようなアレイアンテナ校正方法を用いて方向補正移相値を算出する。その他の処理は、実施の形態1と同様である。
 以上説明したように、実施の形態2に係る、衛星からの信号を受信するフェーズドアレイアンテナ装置1によれば、衛星からの信号の電力の値と、衛星からの信号のC/N比とに基づいて、ビーム方向を衛星の方向に合わせる補正をすることで、簡単に、安定した衛星通信を実現することが可能になる。
(実施の形態3)
 実施の形態1および2では、制御器9は、検知器6から受け取ったデータが示す衛星からの信号の電力の値から、方向補正移相値を算出したが、実施の形態3では、制御器9は、変復調器8におけるC/N比から、方向補正移相値を算出する。
 図6は、実施の形態3に係るフェーズドアレイアンテナ装置1の構成例を示す。周波数変換器7は、各アンテナ素子3が受信した衛星からの信号を合成した信号を低い周波数に周波数変換する。周波数変換器7は、例えば、RF周波数の信号をIF周波数の信号に周波数変換する。変復調器8は、周波数変換器7が低い周波数に周波数変換した信号を復調し、出力する。制御器9は、変復調器8における衛星からの信号のC/N比を監視し、C/N比に基づいて、素子電界ベクトル回転法のようなアレイアンテナ校正方法を用いて、方向補正移相値を算出する。
 素子電界ベクトル回転法を用いる場合、制御器9は、各サブアレイ2の移相器5の移相値に0度から360度までの移相値Paddが連続的に加算された各状態での変復調器8における衛星からの信号のC/N比を監視し、C/N比が最大となる移相値Paddを算出する。衛星からの信号のC/N比が最大となる方向はつまり衛星の方向であるので、C/N比が最大となる移相値Paddを、移相器5の移相値に加算することでビーム方向と衛星の方向とのずれを補正する方向補正移相値として算出する。すなわち、実施の形態3では、フェーズドアレイアンテナ装置1は、検知器6を備えなくてもよい。その他の処理は、実施の形態1および2と同様である。
 以上説明したように、実施の形態3に係る、衛星からの信号を受信するフェーズドアレイアンテナ装置1によれば、衛星からの信号の電力の値と、衛星からの信号のC/N比とに基づいて、ビーム方向を衛星の方向に合わせる補正をすることで、安定した衛星通信を実現することが可能になる。また、フェーズドアレイアンテナ装置1は、検知器6を備えなくてもよいので、コストを低減できる。
(実施の形態4)
 実施の形態1から3では、衛星の方向を追尾したが、実施の形態4では、衛星の方向だけでなく衛星からの信号の偏波面を追尾する。
 図7は、実施の形態4に係るフェーズドアレイアンテナ装置1の構成例を示す。フェーズドアレイアンテナ装置1のサブアレイ21では、n個のアンテナ素子311,・・・,31nと、2n個の増幅器411,412,・・・,41N-1,41Nと、2n個の移相器511,512,・・・,51N-1,51Nとを備える。サブアレイ22は、n個のアンテナ素子321,・・・,32nと、2n個の増幅器421,422,・・・,42N-1,42Nと、2n個の移相器521,522,・・・,52N-1,52Nとを備える。サブアレイ2mは、n個のアンテナ素子3m1,・・・,3mnと、2n個の増幅器4m1,4m2,・・・,4mN-1,4mNと、2n個の移相器5m1,5m2,・・・,5mN-1,5mNとを備える。
 以下、増幅器411,412,・・・,41N-1,41N、増幅器421,422,・・・,42N-1,42N、増幅器4m1,4m2,・・・,4mN-1,4mNを総称する場合、増幅器4という。移相器511,512,・・・,51N-1,51N、移相器521,522,・・・,52N-1,52N、移相器5m1,5m2,・・・,5mN-1,5mNを総称する場合、移相器5という。アンテナ素子3はそれぞれ2ポート有し、2つの増幅器4と2つの移相器5とが接続される。その他の構成は、実施の形態1から3と同様である。
 衛星からの信号を受信するときのフェーズドアレイアンテナ装置1の動作と、ビーム方向を初期設定するときのフェーズドアレイアンテナ装置1の動作と、ビーム方向を補正するときのフェーズドアレイアンテナ装置1の動作とは、実施の形態1から3と同様である。フェーズドアレイアンテナ装置1は、ビーム方向を初期設定するときに、アンテナ素子3の偏波面の初期設定を行ってもよい。
 アンテナ素子3の偏波面を衛星からの信号の偏波面に合わせるときのフェーズドアレイアンテナ装置1の動作について説明する。検知器6は、衛星からの信号を取り出して、その電力を検知する。検知器6は、検知した電力の値を示すデータを制御器9に送る。制御器9は、検知器6から受け取った衛星からの信号の電力の値を示すデータに基づいて、素子電界ベクトル回転法のようなアレイアンテナ校正方法を用いて、アンテナ素子3ごとに、移相器5の移相値に加算することでアンテナ素子3の偏波面と衛星からの信号の偏波面とのずれを補正する偏波補正移相値を算出する。偏波補正移相値は、補正移相値の例である。
 素子電界ベクトル回転法を用いる場合、制御器9は、アンテナ素子3単位で移相器5に設定された移相値に0度から360度までの移相値を連続的に加算する。このとき、制御器9は、移相値を加算する対象のアンテナ素子3が備える2つの移相器5に設定されている移相値に対して、0度から360度までの同一の移相値Paddを連続的に加算する。制御器9は、移相値Paddを加算する処理を各アンテナ素子3に対して順に行う。つまり、1つのアンテナ素子3が備える2つの移相器5に設定された移相値に対して、0度から360度までの同一の移相値Paddが連続的に加算されているとき、他のアンテナ素子3の移相器5に設定された移相値には移相値Paddが加算されない。
 制御器9は、各アンテナ素子3の移相器5の移相値に0度から360度までの移相値Paddが連続的に加算された各状態において検知器6が検知した衛星からの信号の電力の値を示すデータに基づいて、衛星からの信号の電力の値が最大となる移相値Paddを算出する。衛星からの信号の電力の値が最大となる状態はつまりアンテナ素子3の偏波面と衛星からの信号の偏波面とが一致している状態であるので、衛星からの信号の電力の値が最大となる移相値Paddを、移相器5の移相値に加算することでアンテナ素子3の偏波面と衛星からの信号の偏波面とのずれを補正する偏波補正移相値として算出する。アンテナ素子3の偏波面と衛星からの信号の偏波面とが一致していれば、偏波補正移相値は0である。
 制御器9は、変復調器8におけるC/N比を監視し、C/N比が閾値以上の衛星からの信号をアンテナ素子3が受信しているか否かを判定する。C/N比を算出するのは、変復調器8でもよいし、制御器9でもよい。C/N比が閾値以上の衛星からの信号をアンテナ素子3が受信していれば、制御器9は、各アンテナ素子3に接続される移相器5の移相値に対して偏波補正移相値を加算する。制御器9は、このような処理をビーム更新周期ごとに繰り返して、すべてのアンテナ素子3の偏波面を衛星からの信号の偏波面に合わせる。
 例えば、静止衛星のように通信相手の衛星が切り替わらない場合であって、移動体の姿勢の変化が方向補正移相値および偏波補正移相値によって補正可能な範囲内である場合には、制御器9は、C/N比が閾値以上の衛星からの信号をアンテナ素子3が受信しているか否かを判定する処理を実行しなくてもよい。その他の処理は、実施の形態1から3と同様である。
 以上説明したように、実施の形態4に係る、衛星からの信号を受信するフェーズドアレイアンテナ装置1によれば、衛星からの信号の電力の値と、衛星からの信号のC/N比とに基づいて、ビーム方向を衛星の方向に合わせる補正をすることで、簡単に、安定した衛星通信を実現することが可能になる。また、1つのアンテナ素子3が2つの移相器5と2ポート接続されることで、衛星の方向だけでなく、衛星からの信号の偏波面を追尾することができる。
(実施の形態5)
 実施の形態5では、実施の形態4と同様に、衛星の方向だけでなく衛星からの信号の偏波面を追尾する。実施の形態4では、検知器6は、衛星からの信号を取り出して、その電力を検知したが、実施の形態5では、検知器6は、周波数変換器7によって低い周波数に周波数変換された後の信号から、衛星からの信号を取り出して、その電力を検知する。
 図8は、実施の形態5に係るフェーズドアレイアンテナ装置1の構成例を示す。周波数変換器7は、各アンテナ素子3が受信した信号を合成した信号を低い周波数に周波数変換する。周波数変換器7は、例えば、RF周波数の信号をIF周波数の信号に周波数変換する。検知器6は、周波数変換器7が低い周波数に周波数変換した信号から、衛星からの信号を取り出して、その電力を検知する。すなわち、制御器9は、検知器6から受け取った低い周波数に周波数変換された衛星からの信号の電力の値を示すデータに基づいて、素子電界ベクトル回転法のようなアレイアンテナ校正方法を用いて方向補正移相値および偏波補正移相値を算出する。その他の処理は、実施の形態4と同様である。
 以上説明したように、実施の形態5に係る、衛星からの信号を受信するフェーズドアレイアンテナ装置1によれば、衛星からの信号の電力の値と、衛星からの信号のC/N比とに基づいて、ビーム方向を衛星の方向に合わせる補正をすることで、簡単に、安定した衛星通信を実現することが可能になる。また、1つのアンテナ素子3が2つの移相器5と2ポート接続されることで、衛星の方向だけでなく、衛星の偏波も追尾することができる。
(実施の形態6)
 実施の形態6では、実施の形態4および5と同様に、衛星の方向だけでなく衛星からの信号の偏波面を追尾する。実施の形態4および5では、制御器9は、検知器6から受け取った衛星からの信号の電力の値から、サブアレイ2ごとの方向補正移相値と、アンテナ素子3ごとの偏波補正移相値とを算出したが、実施の形態6では、制御器9は、変復調器8におけるC/N比の変化から、サブアレイ2ごとの方向補正移相値と、アンテナ素子3ごとの偏波補正移相値とを算出する。
 図9は、実施の形態6に係るフェーズドアレイアンテナ装置1の構成例を示す。周波数変換器7は、各アンテナ素子3が受信した衛星からの信号を合成した信号を低い周波数に周波数変換する。周波数変換器7は、例えば、RF周波数の信号をIF周波数の信号に周波数変換する。変復調器8は、周波数変換器7が低い周波数に周波数変換した信号を復調し、出力する。制御器9は、変復調器8における衛星からの信号のC/N比を監視し、C/N比に基づいて、素子電界ベクトル回転法のようなアレイアンテナ校正方法を用いて、偏波補正移相値を算出する。
 素子電界ベクトル回転法を用いる場合、制御器9は、各サブアレイ2の移相器5の移相値に0度から360度までの移相値Paddが連続的に加算された各状態での変復調器8における衛星からの信号のC/N比、即ち、受信信号の品質を監視し、C/N比が最大となる移相値Paddを算出する。衛星からの信号のC/N比が最大となる状態はつまりアンテナ素子3の偏波面と衛星からの信号の偏波面とが一致している状態であるので、衛星からの信号のC/N比が最大となる移相値Paddを、移相器5の移相値に加算することでアンテナ素子3の偏波面と衛星からの信号の偏波面とのずれを補正する偏波補正移相値として算出する。すなわち、実施の形態6では、フェーズドアレイアンテナ装置1は、検知器6を備えなくてもよい。その他の処理は、実施の形態4および5と同様である。
 以上説明したように、実施の形態6に係る、衛星からの信号を受信するフェーズドアレイアンテナ装置1によれば、衛星からの信号の電力の値と、衛星からの信号のC/N比とに基づいて、ビーム方向を衛星の方向に合わせる補正をすることで、簡単に、安定した衛星通信を実現することが可能になる。また、1つのアンテナ素子3が2つの移相器5と2ポート接続されることで、衛星の方向だけでなく、衛星の偏波も追尾することができる。さらに、フェーズドアレイアンテナ装置1は、検知器6を備えなくてもよいので、コストを低減できる。
 上記の実施の形態1~6では、アレイアンテナ校正方法として、素子電界ベクトル回転法の例を挙げたが、これに限らない。例えば、大堂、三浦、「同期直交符号を利用した送信アレイアンテナ較正」、信学技報A・pp99-121、RCS99-118、1999年10月に記載されているアレイアンテナ校正方法を用いてもよい。
 上記の実施の形態1~6では、衛星からの信号を受信し、衛星へ信号を送信するフェーズドアレイアンテナ装置1について説明したが、フェーズドアレイアンテナ装置1は衛星からの信号を受信するだけでもよい。この場合、変復調器8は、変調機能を備えなくてもよい。周波数変換器7は、入力された信号を高い周波数に周波数変換する機能を備えなくてもよい。また、フェーズドアレイアンテナ装置1は、増幅器4を備えなくてもよい。
 上記の実施の形態1~6では、移動体に搭載されるフェーズドアレイアンテナ装置1について説明したが、フェーズドアレイアンテナ装置1は移動体に搭載されなくてもよい。
 受信信号の品質を評価するためにC/N比を使用したが、他の評価値を使用してもよい。方向補正加算値および偏波補正移相値を加算する例を示したが、加算値の値を負の値としてもよい。加算の範囲を0~360度としたが、例えば、0~180度、0~-90度などの範囲に絞っても良い。加算処理は、移相値を調整する処理の一例であり、他の調整手法を採用してもよい。通信の対象も衛星に限定されるものでは無く、移動する通信対象であれば効果が得られる。なお、フェーズドアレイアンテナ装置自体は移動しなくてもよい。
 上記実施の形態1~6では、制御器9のプロセッサ91が、衛星追尾プログラムを実行することにより、衛星追尾処理をソフトウェア処理により実現するものとした。しかしながら、衛星追尾処理は、専用のシステムによらず、通常のコンピュータシステムを用いても実現可能である。例えば、衛星追尾プログラムを、コンピュータが読み取り可能なCD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)などの記録媒体に格納して配布し、このプログラムをコンピュータにインストールすることにより、衛星追尾処理を実現することができるコンピュータを構成してもよい。衛星追尾処理をOS(Operating System)とアプリケーションとの分担、またはOSとアプリケーションとの協同により実現する場合には、アプリケーションのみを記録媒体に格納してもよい。
 また、搬送波に衛星追尾プログラムを重畳し、通信ネットワークを介して提供することも可能である。例えば、通信ネットワーク上の掲示板(BBS, Bulletin Board System)に衛星追尾プログラムを掲示し、通信ネットワークを介して提供してもよい。
 なお、本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この開示を説明するためのものであり、本開示の範囲を限定するものではない。即ち、本開示の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、この開示の範囲内とみなされる。
 本出願は、2019年6月20日に出願された、日本国特許出願特願2019-114250号に基づく。本明細書中に日本国特許出願特願2019-114250号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
 1 フェーズドアレイアンテナ装置、2,21~2m サブアレイ、3,311~31n,321~32n,3m1~3mn アンテナ素子、4,411~41N,421~42N,4m1~4mN 増幅器、5,511~51N,521~52N,5m1~5mN 移相器、6 検知器、7 周波数変換器、8 変復調器、9 制御器、91 プロセッサ、92 記憶部、93 インタフェース。

Claims (10)

  1.  衛星からの信号を受信するフェーズドアレイアンテナ装置であって、
     複数のアンテナ素子、および、前記複数のアンテナ素子にそれぞれ接続され、前記複数のアンテナ素子が受信した信号を設定された移相値で移相する複数の移相器を含む複数のサブアレイと、
     前記移相器が移相した前記衛星からの信号を復調して出力する復調器と、
     前記複数の移相器の移相値を設定し、ビーム方向を制御する制御器と、
     を備え、
     前記制御器は、前記サブアレイごとに、前記移相器の移相値に加算することで前記衛星からの信号の電力の値が最大となる方向補正移相値を算出し、前記サブアレイごとの前記移相器の移相値に前記方向補正移相値を加算するフェーズドアレイアンテナ装置。
  2.  前記制御器は、前記復調器における前記衛星からの信号の品質の評価値が閾値以上である場合に、前記サブアレイごとの前記移相器の移相値に前記方向補正移相値を加算する請求項1に記載のフェーズドアレイアンテナ装置。
  3.  前記衛星からの信号を低い周波数に周波数変換する周波数変換器を備え、
     前記制御器は、前記サブアレイごとに、前記移相器の移相値に加算することで前記周波数変換器が低い周波数に周波数変換した信号の電力の値が最大となる前記方向補正移相値を算出する請求項1または2に記載のフェーズドアレイアンテナ装置。
  4.  前記制御器は、前記サブアレイごとに、前記移相器の移相値に加算することで前記衛星からの信号のC/N比が最大となる前記方向補正移相値を算出する請求項1から3のいずれか1項に記載のフェーズドアレイアンテナ装置。
  5.  前記複数のアンテナ素子はそれぞれ、2つの前記移相器と2ポート接続され、
     前記制御器は、前記アンテナ素子ごとに、前記移相器の移相値に加算することで前記衛星からの信号の電力の値が最大となる偏波補正移相値を算出し、前記アンテナ素子ごとの前記移相器の移相値に前記偏波補正移相値を加算する請求項1から4のいずれか1項に記載のフェーズドアレイアンテナ装置。
  6.  前記衛星からの信号を低い周波数に周波数変換する周波数変換器を備え、
     前記制御器は、前記アンテナ素子ごとに、前記移相器の移相値に加算することで前記周波数変換器が低い周波数に周波数変換した信号の電力の値が最大となる前記偏波補正移相値を算出し、前記アンテナ素子ごとの前記移相器の移相値に前記偏波補正移相値を加算する請求項5に記載のフェーズドアレイアンテナ装置。
  7.  前記制御器は、前記アンテナ素子ごとに、前記移相器の移相値に加算することで前記衛星からの信号のC/N比が最大となる前記偏波補正移相値を算出し、前記アンテナ素子ごとの前記移相器の移相値に前記偏波補正移相値を加算する請求項5または6に記載のフェーズドアレイアンテナ装置。
  8.  前記制御器は、前記復調器における前記衛星からの信号の品質の評価値が閾値以上である場合に、前記アンテナ素子ごとの前記移相器の移相値に前記偏波補正移相値を加算する請求項5から7のいずれか1項に記載のフェーズドアレイアンテナ装置。
  9.  送信する信号を変調して出力する変調器をさらに備え、
     前記サブアレイは、前記複数のアンテナ素子にそれぞれ接続される複数の増幅器を含み、
     前記複数の移相器はそれぞれ、前記変調器によって変調された信号が分配された信号を設定された移相値で移相し、
     前記増幅器は、前記移相器が移相した信号を増幅して、接続する前記アンテナ素子に出力し、
     前記アンテナ素子は、入力された信号を電波で空間に放射する請求項1から8のいずれか1項に記載のフェーズドアレイアンテナ装置。
  10.  信号を受信するフェーズドアレイアンテナ装置を制御するコンピュータに、
     複数のアンテナ素子にそれぞれ接続され、前記複数のアンテナ素子が受信した信号を設定された移相値で移相する複数の移相器を含むサブアレイごとに、前記移相器の移相値を調整することで、受信する信号の電力が最大となる補正移相値を算出させ、
     前記サブアレイごとの前記移相器の移相値を前記補正移相値で調整させるプログラム。
PCT/JP2020/013723 2019-06-20 2020-03-26 フェーズドアレイアンテナ装置とプログラム WO2020255522A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021527383A JP7213975B2 (ja) 2019-06-20 2020-03-26 フェーズドアレイアンテナ装置とプログラム
US17/605,231 US11901632B2 (en) 2019-06-20 2020-03-26 Phased array antenna device and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-114250 2019-06-20
JP2019114250 2019-06-20

Publications (1)

Publication Number Publication Date
WO2020255522A1 true WO2020255522A1 (ja) 2020-12-24

Family

ID=74040454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013723 WO2020255522A1 (ja) 2019-06-20 2020-03-26 フェーズドアレイアンテナ装置とプログラム

Country Status (3)

Country Link
US (1) US11901632B2 (ja)
JP (1) JP7213975B2 (ja)
WO (1) WO2020255522A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11545749B2 (en) * 2019-07-17 2023-01-03 The Regents Of The University Of California Nonreciprocal and reconfigurable phased-array antennas
US20230353205A1 (en) * 2020-08-28 2023-11-02 Lg Electronics Inc. Method and device for terminal and base station transmitting/receiving signal in wireless communication system
US11619701B2 (en) * 2021-06-21 2023-04-04 Microelectronics Technology, Inc. Satellite tracking system and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242302A (ja) * 1991-01-16 1992-08-31 Aisin Seiki Co Ltd 平面アレイアンテナ
JPH0766619A (ja) * 1993-08-27 1995-03-10 Mitsubishi Electric Corp 電子走査型アレイアンテナ装置
JP2011019067A (ja) * 2009-07-08 2011-01-27 Mitsubishi Electric Corp アンテナ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3461911B2 (ja) * 1994-05-20 2003-10-27 株式会社東芝 フェーズドアレイアンテナ
JP2000299655A (ja) 1999-04-13 2000-10-24 Maspro Denkoh Corp Cs通信システム,cs追尾方法,cs受信装置
US9160430B2 (en) * 2012-04-13 2015-10-13 Intel Corporation Millimeter-wave transceiver with coarse and fine beamforming with interference suppression and method
JP5700571B2 (ja) 2012-06-18 2015-04-15 日本電信電話株式会社 追尾アンテナ装置および初期位相差補償方法
US10211527B2 (en) * 2016-10-21 2019-02-19 C-Com Satellite Systems Inc. Method and apparatus for phased antenna array calibration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242302A (ja) * 1991-01-16 1992-08-31 Aisin Seiki Co Ltd 平面アレイアンテナ
JPH0766619A (ja) * 1993-08-27 1995-03-10 Mitsubishi Electric Corp 電子走査型アレイアンテナ装置
JP2011019067A (ja) * 2009-07-08 2011-01-27 Mitsubishi Electric Corp アンテナ装置

Also Published As

Publication number Publication date
US20220200161A1 (en) 2022-06-23
JP7213975B2 (ja) 2023-01-27
JPWO2020255522A1 (ja) 2021-10-21
US11901632B2 (en) 2024-02-13

Similar Documents

Publication Publication Date Title
WO2020255522A1 (ja) フェーズドアレイアンテナ装置とプログラム
JP3032310B2 (ja) 追尾アンテナ装置
US9031163B2 (en) Phased array transmission device
JP4835670B2 (ja) アンテナ装置
US7764935B2 (en) Phase and power calibration in active antennas
EP3226350B1 (en) Phased array transmission device and carrier leak correction method
US20080129613A1 (en) Calibration for re-configurable active antennas
US20120086602A1 (en) Hybrid beam forming apparatus in wideband wireless communication system
JP5327059B2 (ja) 無線電力伝送システム及びレクテナ基地局
CN112702096B (zh) 一种信号处理方法及相关装置
US20160118715A1 (en) Monopulse Autotracking System for High Gain Antenna Pointing
US9432075B2 (en) Communication apparatus and phase adjustment method
US11367953B2 (en) Antenna device and calibration method
US11431400B2 (en) Method and apparatus for forming a plurality of beamformed signals using a plurality of received signals
JP5694240B2 (ja) 追尾アンテナ装置および送信位相補償方法
CN106532276B (zh) 用于阵列天线系统的温度补偿系统和方法
US20170222849A1 (en) Wireless device and method for controlling phase
JP4782090B2 (ja) 無線送信機及び無線送信方法
JP4088109B2 (ja) 反射器アレイアンテナの指向を修正する方法
KR100358106B1 (ko) 이동 위성통신용 능동위상배열 안테나 시스템 및위성추적을 위한 빔 제어방법
CN106887706B (zh) 全自动卫星跟踪通信天线电子极化跟踪方法和装置
US7372401B2 (en) Multitracking of collocated satellites
US20190237872A1 (en) Wireless communication device, control method, and program
US11831356B1 (en) Calibration and measurement of transmit phased array antennas with digital beamforming
Adams Beam tagging for control of adaptive transmitting arrays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527383

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826789

Country of ref document: EP

Kind code of ref document: A1