WO2012169607A1 - バルーン付きアブレーションカテーテル - Google Patents

バルーン付きアブレーションカテーテル Download PDF

Info

Publication number
WO2012169607A1
WO2012169607A1 PCT/JP2012/064752 JP2012064752W WO2012169607A1 WO 2012169607 A1 WO2012169607 A1 WO 2012169607A1 JP 2012064752 W JP2012064752 W JP 2012064752W WO 2012169607 A1 WO2012169607 A1 WO 2012169607A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
lead wire
temperature sensor
shaft
power supply
Prior art date
Application number
PCT/JP2012/064752
Other languages
English (en)
French (fr)
Inventor
紘行 原田
元紀 高岡
哲律 松熊
隆浩 八木
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES12796694.3T priority Critical patent/ES2644245T3/es
Priority to CN201280027663.1A priority patent/CN103582464B/zh
Priority to KR1020137029585A priority patent/KR101637434B1/ko
Priority to RU2013158645/14A priority patent/RU2592781C2/ru
Priority to DK12796694.3T priority patent/DK2719350T3/en
Priority to US14/123,595 priority patent/US9439725B2/en
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP12796694.3A priority patent/EP2719350B1/en
Priority to AU2012267815A priority patent/AU2012267815A1/en
Priority to CA2837853A priority patent/CA2837853C/en
Priority to BR112013030398-0A priority patent/BR112013030398B1/pt
Publication of WO2012169607A1 publication Critical patent/WO2012169607A1/ja
Priority to AU2015204289A priority patent/AU2015204289B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00357Endocardium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00434Neural system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00505Urinary tract
    • A61B2018/00511Kidney
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00821Temperature measured by a thermocouple

Definitions

  • the present invention relates to an ablation catheter with a balloon.
  • Catheter ablation is a method for treating arrhythmia by inserting an ablation catheter into the heart chamber and cauterizing the myocardial tissue with an electrode attached to the tip of the catheter.
  • An ablation catheter with a balloon expands a balloon attached to the distal end of the catheter with a heating liquid, and then applies a high-frequency current between a counter electrode outside the patient's body and a high-frequency energizing electrode disposed inside the balloon. Then, the heating liquid is heated and the whole myocardial tissue in contact with the balloon surface is cauterized.
  • the temperature of the balloon surface is controlled by a temperature sensor arranged inside the balloon, and is further made uniform by agitating the heating liquid in the balloon by a vibration applying device or the like.
  • thermocouple temperature sensor As a temperature sensor for an ablation catheter with a balloon, a thermocouple temperature sensor is often used in which a metal wire that supplies high-frequency power to a high-frequency energizing electrode is joined to a dissimilar metal wire.
  • the thermocouple is arranged near the rear end and on the surface of the high-frequency energizing electrode, the thermocouple is surely positioned inside the balloon, and the reliability of the detected temperature is further increased (patent) Reference 3).
  • the thermocouple temperature sensor is also located in the vicinity of the lumen communicating with the inside of the balloon, so that it is easily affected by the cooling by the heating liquid discharged into the balloon for stirring. It is also known that there arises a problem that the control of the surface temperature becomes unstable.
  • thermocouple temperature sensor on the tip side of the high-frequency energization electrode for the purpose of suppressing the influence of cooling by the heating liquid discharged into the balloon (Patent Document 4).
  • JP 2002-78809 A Japanese Patent No. 4062935 Japanese Patent No. 4222040 Japanese Patent No. 4222152
  • thermocouple temperature sensor is arranged on the tip side of the electrode for high-frequency energization
  • the dissimilar metal wire must be stretched further to the tip side inside the balloon, and in this case, the range in which the dissimilar metal wire is stretched
  • the diameter of the balloon in the vicinity of the electrode for high-frequency energization when the balloon is deflated increases, which makes it difficult to introduce an ablation catheter with a balloon into the patient's body, and catheter operation and burden on the patient. This is inconvenient.
  • thermocouple temperature sensor Regardless of the position of the thermocouple temperature sensor on the surface of the high-frequency energizing electrode, reliable bonding by soldering or the like is required for spot bonding of dissimilar metal wires. It was one of the factors that increased the diameter. Furthermore, since it is inevitable that the strength of the thermocouple with point-bonded dissimilar metal wires remains, there is an urgent need to take measures to reduce the risk of disconnection, etc., and an improvement in the reliability of the thermocouple temperature sensor is required. It was.
  • the present invention achieves both a reduction in the diameter of the balloon when the balloon is deflated and an improvement in the reliability of the thermocouple temperature sensor, and at the same time, the balloon surface is not affected by the heating liquid discharged into the balloon with high accuracy.
  • An object of the present invention is to provide a balloon ablation catheter capable of controlling the temperature.
  • a shaft having a lumen penetrating in the long axis direction, a balloon fixed to the shaft and communicating with the lumen, and a measurement signal supplied to the power supply means disposed inside the balloon.
  • a high frequency power supply electrode formed by winding the high frequency power supply lead wire around the shaft in a coil shape, and the high frequency power supply lead wire and the temperature sensor lead wire constituting the high frequency power supply electrode,
  • Ablation catheter with balloon where a thermocouple temperature sensor is formed at the first contact point when viewed from the rear end side in the long axis direction Le.
  • thermocouple temperature sensor is formed at a rear end portion of the high-frequency energization electrode.
  • the diameter of the balloon can be further reduced when the balloon is deflated, and the burden on the patient when the ablation catheter with a balloon is introduced into the body can be reduced.
  • the thermocouple temperature sensor for the ablation catheter with a balloon according to the present invention is less susceptible to the heating liquid discharged into the balloon, and the risk of disconnection and the like is suppressed, so the balloon surface temperature is controlled with high accuracy. it can.
  • FIG. 3 is a schematic view showing a cross section taken along line A-A ′ of the shaft portion of the ablation catheter with balloon according to the first embodiment of the present invention. It is the schematic which shows the external appearance of the front-end
  • FIG. It is the schematic which shows a horizontal cross section with respect to the major axis direction of the high frequency electricity supply electrode vicinity of the ablation catheter with a balloon of the comparative example 1.
  • FIG. It is the schematic which shows the external appearance of the front-end
  • FIG. It is the schematic which shows a horizontal cross section with respect to the long-axis direction of the high frequency electricity supply electrode vicinity of the ablation catheter with a balloon of the comparative example 2.
  • FIG. It is the schematic which showed the evaluation system for measuring the balloon surface temperature of an ablation catheter with a balloon.
  • the ablation catheter with a balloon includes a shaft having a lumen penetrating in the long axis direction, a balloon fixed to the shaft, and the lumen communicating with the inside of the ablation catheter.
  • the temperature sensor lead wire that supplies the measurement signal to the shaft is fixed along the long axis direction of the shaft so that the temperature is between the shaft and the high frequency power supply lead wire that supplies high frequency power from the power supply means.
  • a high-frequency power supply electrode formed by winding the high-frequency power supply lead wire in a coil around the shaft while sandwiching a sensor lead wire, and the high-frequency power supply lead wire constituting the high-frequency power supply electrode,
  • the thermocouple temperature sensor is located at the point where the temperature sensor lead wire first contacts the rear end of the long axis. Is made, it is characterized in that.
  • FIG. 1 is a schematic view of an ablation catheter with a balloon according to the first embodiment of the present invention.
  • FIG. 2 is a schematic view showing a cross section taken along line A-A ′ of the shaft portion of the ablation catheter with balloon according to the first embodiment of the present invention.
  • An ablation catheter 1 with a balloon shown in FIG. 1 has a balloon 2 that can be inflated and deflated at the distal end, a high-frequency energizing electrode 3 and a thermocouple temperature sensor inside the balloon 2, and an inner cylinder at the lumen of the outer cylinder shaft 5.
  • a double cylindrical shaft into which the shaft 6 is inserted is provided, and a high-frequency power generator connection connector 7 is provided on the rear end side.
  • a space between the outer cylinder shaft 5 and the inner cylinder shaft 6 shown in FIG. 2, that is, a lumen communicates with the inside of the balloon 2, and a lead wire 8 for supplying high-frequency power and a temperature sensor lead wire 9 are provided in the space. It is inserted.
  • the shape of the balloon 2 may be any shape that can fit into a blood vessel, but for example, a spherical shape having a diameter of 20 to 40 mm is preferable.
  • the film thickness of the balloon 2 is preferably 20 to 120 ⁇ m, more preferably 20 to 50 ⁇ m.
  • the material of the balloon 2 is preferably a stretchable material excellent in antithrombogenicity, and more preferably a polyurethane-based polymer material.
  • the polyurethane-based polymer material include thermoplastic polyether urethane, polyether polyurethane urea, fluorine polyether urethane urea, polyether polyurethane urea resin, and polyether polyurethane urea amide.
  • the “shaft having a lumen penetrating in the longitudinal direction” is preferably a double-tube shaft in which the inner cylinder shaft 6 is inserted into the lumen of the outer cylinder shaft 5. .
  • the distal end portion of the balloon 2 is fixed to the distal end portion in the major axis direction of the inner cylindrical shaft 6, and the rear end portion of the balloon 2 is fixed to the distal end portion in the major axis direction of the outer cylindrical shaft 5.
  • the length of the balloon 2 in the long axis direction can be changed by sliding the inner cylinder shaft 6 and the outer cylinder shaft 5, which is preferable.
  • both ends of the balloon 2 may be fixed only to either the inner cylinder shaft 6 or the outer cylinder shaft 5.
  • the length of the outer cylinder shaft 5 and the inner cylinder shaft 6 is preferably 500 to 1700 mm, and more preferably 600 to 1200 mm.
  • the flexible material excellent in antithrombogenicity is preferable, for example, a fluororesin, a polyamide resin, a polyurethane resin, or a polyimide resin is mentioned.
  • the outer diameter of the outer cylinder shaft 5 is preferably 3.0 to 4.0 mm, and the inner diameter is preferably 2.5 to 3.5 mm.
  • the outer diameter of the inner cylindrical shaft 6 is preferably 1.5 to 1.7 mm, and the inner diameter is preferably 1.2 to 1.3 mm.
  • the outer cylinder shaft 5 may have a multilayer structure.
  • FIG. 3 is a schematic view showing the appearance of the vicinity of the distal end of the ablation catheter with a balloon according to the first embodiment of the present invention.
  • FIG. 4 is a schematic view showing a horizontal cross section with respect to the major axis direction in the vicinity of the high-frequency energizing electrode of the ablation catheter with balloon according to the first embodiment of the present invention.
  • the high-frequency energizing electrode 3 is disposed inside the balloon 2, but when the “shaft having a lumen penetrating in the long axis direction” is a double-pipe shaft as shown in FIG. As shown in FIG. 4, it is preferable that the high-frequency power supply lead wire 8 is wound around the inner cylindrical shaft 6 in a coil shape.
  • the diameter of the lead wire 8 for supplying high-frequency power that forms the high-frequency energizing electrode 3 is preferably 0.1 to 1 mm, and more preferably 0.2 to 0.5 mm.
  • Examples of the material of the lead wire 8 for supplying high-frequency power include high conductivity metals such as copper, silver, gold, platinum, tungsten, and alloys.
  • the electrode 3 for high-frequency energization is formed. It is preferable that an electrically insulating protective coating such as a fluororesin is applied except for the portion to be applied.
  • thermocouple temperature sensor 4a is formed by winding the high frequency power supply lead wire 8 around the inner cylindrical shaft 6 in a coil shape while sandwiching the temperature sensor lead wire 9 between the high frequency power supply lead wire 8 and the inner cylindrical shaft 6.
  • the high-frequency power supply lead wire 8 and the temperature sensor lead wire 9 are thermocouple temperature sensors formed at the first contact point when viewed from the rear end side in the long axis direction.
  • thermocouple temperature sensor 4a is formed by sandwiching the temperature sensor lead wire 9 between the high frequency power supply lead wire 8 and the inner cylindrical shaft 6, and inevitably the high frequency energizing electrode 3 and the inner cylindrical shaft 6 are interposed therebetween. In other words, that is, on the inner surface of the high-frequency energizing electrode 3.
  • the ablation catheter with a balloon of the present invention includes a vibration applying device for applying vibration to the heating liquid in the balloon by repeatedly sucking and discharging the heating liquid from a lumen communicating with the inside of the balloon.
  • Examples of the vibration applying device that applies vibration to the heating liquid in the balloon include a roller pump, a diaphragm pump, a bellows pump, a vane pump, a centrifugal pump, or a device including a pump composed of a combination of a piston and a cylinder.
  • thermocouple temperature sensor of the balloon ablation catheter of the present invention is formed at the end of the high frequency energizing electrode. It is preferable that it is formed at the rear end portion of the high-frequency energizing electrode.
  • the ablation catheter with balloon 1 includes the above-described vibration applying device and the thermocouple temperature sensor 4a is formed at the rear end portion of the high-frequency energizing electrode 3 as shown in FIG.
  • the temperature sensor 4 a is located in the vicinity of the lumen communicating with the inside of the balloon 2.
  • the thermocouple temperature sensor 4a is not disposed on the surface of the high-frequency energization electrode 3, but is disposed on the inner surface of the high-frequency energization electrode 3, the heat conduction from the high-frequency energization electrode 3 can be reduced. While being greatly affected, it is difficult to be affected by the cooling by the heating liquid discharged into the balloon 2 for stirring. As a result, stable high-frequency power is supplied to the high-frequency energization electrode 3, and the surface temperature of the balloon 2 can be remarkably stabilized.
  • the thermocouple temperature sensor 4 a has a temperature sensor lead wire 9 between the high frequency power supply lead wire 8 and the inner cylinder shaft 6 so that the temperature sensor lead wire 9 is fixed along the long axis direction of the inner cylinder shaft 6. Since the high frequency power supply lead wire 8 is wound around the inner cylinder shaft 6 in a coil shape and fixed while sandwiching the wire, there is no need for soldering or the like unlike the conventional thermocouple. As a result, the balloon diameter when the balloon 2 is deflated can be made smaller, and the ablation catheter 1 with a balloon can be easily introduced into the patient's body.
  • the thermocouple temperature sensor 4 a includes a temperature sensor lead wire 9 between the high frequency power supply lead wire 8 and the inner cylinder shaft 6 so that the temperature sensor lead wire 9 is fixed along the long axis direction of the inner cylinder shaft 6.
  • the high-frequency power supply lead wire 8 is wound around the inner cylinder shaft 6 in a coil shape and fixed. For this reason, the temperature sensor lead wire 9 is inserted between the inner cylinder shaft 6 and the high-frequency power supply lead wire 8, and is extended toward the distal end side in the long axis direction when viewed from the position of the thermocouple temperature sensor 4a.
  • the temperature sensor lead 9 is preferably in contact with the high-frequency power supply lead 8 forming the high-frequency energization electrode 3 at a plurality of points.
  • the temperature sensor lead wire 9 is continuously in contact with the high frequency power supply lead wire 8 over the entire length of the high frequency energizing electrode. That is, it is more preferable that the temperature sensor lead wire 9 reaches the tip of the high-frequency energizing electrode 3.
  • the temperature sensor lead wire 9 is fixed to the inner cylinder shaft 6 by the high-frequency power supply lead wire 8 while being inserted between the inner cylinder shaft 6 and the high-frequency power supply lead wire 8, so that the balloon of the thermocouple temperature sensor 4a. Fixing to the attached ablation catheter 1 is stronger than soldering or the like. As a result, the strength as a thermocouple temperature sensor is remarkably improved, the risk of disconnection, poor contact, etc. is suppressed, and its reliability is significantly improved.
  • the temperature sensor lead wire 9 is compactly stored in a small space between the inner cylinder shaft 6 and the high-frequency power supply lead wire 8, no deflection of the temperature sensor lead wire 9 occurs.
  • the balloon diameter when the balloon 2 is deflated can be made smaller as compared with the case where the temperature sensor lead wire 9 is extended into the space inside the balloon 2, and the flexibility of the catheter is impaired. None will happen.
  • the diameter of the temperature sensor lead wire 9 is preferably 0.1 to 0.6 mm, more preferably 0.1 to 0.3 mm.
  • the material of the temperature sensor lead wire 9 is, for example, constantan.
  • an electrical insulating protective coating such as a fluororesin is provided on the rear end side of the portion where the temperature sensor 4 is formed. Is preferably applied.
  • the material of the Y-type connector 13 is preferably an electrically insulating material, such as polycarbonate or ABS resin.
  • the high frequency power generator connection connector 7 has a high conductivity metal pin inside.
  • the material of the high conductivity metal pin include copper, silver, gold, platinum, tungsten, and an alloy. Further, the outside of the high conductivity metal pin is protected by an electrically insulating and chemical resistant material. Examples of the material include polysulfone, polyurethane, polypropylene, and polyvinyl chloride.
  • length represents a length in the major axis direction.
  • Example 2 A polyurethane balloon 2 having a diameter of 30 mm and a thickness of 20 ⁇ m was produced by blow molding in which air was injected into the lumen while the polyurethane tube was stretched.
  • a polyurethane tube having an outer diameter of 4 mm, an inner diameter of 3 mm, and a total length of 1000 mm was used as the outer cylinder shaft 5, and the Y-type connector 13 was inserted and fitted into a luer lock 12 provided at the rear end thereof, followed by adhesive fixation.
  • a polyimide tube having an outer diameter of 1.8 mm, an inner diameter of 1.4 mm, and a total length of 1100 mm was used as the inner cylinder shaft 6.
  • a copper wire having a diameter of 0.3 mm provided with an electrical insulating protective coating was used as a high-frequency power supply lead 8, and a constantan wire having a diameter of 0.1 mm provided with an electrical insulating protective coating was used as a temperature sensor lead 9.
  • the high-frequency power supply lead 8 and the temperature sensor lead 9 are partially stripped of the electrically insulating protective coating, and the start point is 20 mm from the tip of the inner cylindrical shaft 6.
  • a high frequency power supply lead wire 8 is wound around the inner cylindrical shaft 6 in a coil shape while the temperature sensor lead wire 9 is sandwiched between the inner cylindrical shaft 6, and the coiled high frequency energizing electrode 3 having a length of 13 mm and the high frequency energizing electrode.
  • a thermocouple temperature sensor 4a disposed at the rear end of the electrode 3 was formed.
  • the front and rear ends of the formed high-frequency energizing electrode 3 were welded and fixed to the inner cylindrical shaft 6 with a polyurethane tube.
  • the inner cylinder shaft 6 is inserted into the outer cylinder shaft 5, the tip of the balloon 2 is welded and fixed at a position 10 mm from the tip of the inner cylinder shaft 6, and the rear end of the balloon 2 is fixed to the tip of the outer cylinder shaft 5. did.
  • Example catheter The high-frequency power supply lead wire 8 and the temperature sensor lead wire 9 are inserted through the space between the outer tube shaft 5 and the inner tube shaft 6 and the Y-type connector 13, and the rear ends thereof are both connected to the high-frequency power generator connection connector 7.
  • Example catheter To complete the balloon ablation catheter of the present invention (hereinafter referred to as “Example catheter”).
  • FIG. 1 catheter An ablation catheter with a balloon (hereinafter referred to as “Comparative Example 1 catheter”) was completed in the same manner as in the example except for the method for forming the electrode for high-frequency current and the thermocouple temperature sensor.
  • FIG. 5 is a schematic view showing the appearance of the vicinity of the distal end of the comparative example 1 catheter.
  • FIG. 6 is a schematic view showing a horizontal section with respect to the major axis direction in the vicinity of the high-frequency energizing electrode of the catheter of Comparative Example 1.
  • Comparative Example 1 The high frequency energizing electrode 3 and the thermocouple temperature sensor 4b of the catheter were formed as follows. First, a part of the electrically insulating protective coating applied to the high frequency power supply lead wire 8 and the temperature sensor lead wire 9 is peeled off, and the high frequency power supply lead wire is started from a position 20 mm from the tip of the inner cylindrical shaft 6. 8 was wound around the inner cylinder shaft 6 in a coil shape to form a coil-shaped high-frequency energizing electrode 3 having a length of 10 mm.
  • the tip of the constantan wire 9 having a diameter of 0.1 mm is spot-bonded by soldering to the surface of the high-frequency power supply lead wire 8 at a position 2 mm from the rear end of the high-frequency energizing electrode 3, and the thermocouple temperature sensor 4 b is attached. Formed.
  • the leading end and the trailing end of the formed high-frequency energizing electrode 3 were fixed to the inner cylindrical shaft 6 with a heat shrinkable tube.
  • FIG. 7 is a schematic view showing the appearance of the vicinity of the distal end of a comparative example 2 catheter.
  • FIG. 8 is a schematic view showing a horizontal cross section with respect to the long axis direction in the vicinity of the high frequency energizing electrode of the catheter of Comparative Example 2.
  • the high-frequency energizing electrode 3 and the thermocouple temperature sensor 4c of the catheter were formed as follows. First, a part of the electrically insulating protective coating applied to the high frequency power supply lead wire 8 and the temperature sensor lead wire 9 is peeled off, and the high frequency power supply lead wire is started from a position 20 mm from the tip of the inner cylindrical shaft 6. 8 was wound around the inner cylindrical shaft 6 in a coil shape to form a coil-shaped high-frequency energizing electrode 3 having a length of 12 mm. Next, the tip of the constantan wire 9 having a diameter of 0.1 mm was spot-bonded to the tip surface of the high-frequency energizing electrode 3 by soldering to form a thermocouple temperature sensor 4c. The front end and rear end of the high-frequency energizing electrode 3 were fixed to the inner cylindrical shaft 6 with a heat-shrinkable tube.
  • FIG. 9 is a schematic view showing an evaluation system for measuring the balloon surface temperature of the ablation catheter with a balloon.
  • Example 2 The balloon 2 of the catheter was expanded to a balloon diameter of 28 mm with a diluted contrast medium (diluted twice with physiological saline). Further, the length of the balloon 2 (hereinafter referred to as “balloon length”) was adjusted to 30 mm by sliding the inner cylinder shaft 6 and the outer cylinder shaft 5.
  • balloon length a diluted contrast medium (diluted twice with physiological saline).
  • the balloon 2 is immersed in a water tank filled with physiological saline, and the balloon 2 is inserted into the pulmonary vein 14 which is artificially made of an acrylic polymer material.
  • the thermocouple 15 for measuring the balloon surface temperature is placed above and below the balloon 2. It installed so that it might contact the surface of.
  • the counter electrode plate 16 for supplying a high frequency current was immersed in a water tank, and the high frequency power generator connection connector 7 and the counter electrode plate 16 of the example catheter were connected to the high frequency power generator 17.
  • a guide wire 18 was inserted through the inner tube 6 of the catheter of the example.
  • High-frequency power (frequency 1.8 MHz, maximum power 150 W, set temperature 70 ° C.) is energized, the balloon surface temperature during energization is recorded in the thermocouple data logger 19, and the inside of the balloon is measured by the high-frequency output and thermocouple temperature sensor 4 a Was recorded in the high-frequency power generator 17.
  • the balloon surface temperature during energization of high-frequency power in each case of a balloon length of 30 mm and a balloon length of 25 mm was recorded by the same method as described above.
  • Table 1 shows the maximum temperature of the balloon surface during energization of the high-frequency power for each of the example catheter, the comparative example 1 catheter, and the comparative example 2 catheter.
  • the catheters of Example and Comparative Example 2 have almost no effect on the maximum temperature of the balloon surface even when the balloon length is changed.
  • only the catheter of Comparative Example 1 had a maximum balloon surface temperature of 66.1 ° C. when the balloon length was 25 mm, which was about 4 ° C. higher than that when the balloon length was 30 mm. This maximum temperature exceeded 65 ° C., which is a heating temperature that could cause pulmonary vein stenosis.
  • the maximum diameter of the balloon 2 at the time of deflation was measured for each of the example catheter, the comparative example 1 catheter, and the comparative example 2 catheter.
  • the maximum diameter of the balloon 2 is 2.38 mm for the example catheter, 2.68 mm for the comparative example 1 catheter, and 2.64 mm for the comparative example 2 catheter, and the example catheter is the same as the comparative example 1 catheter and the comparative example 2 catheter.
  • a reduction in diameter of about 0.3 mm was achieved.
  • the present invention can be used in the medical field as an ablation catheter with a balloon for treating arrhythmias such as atrial fibrillation, endometriosis, cancer cells or hypertension.
  • SYMBOLS 1 Ablation catheter with a balloon (Example), 2 ... Balloon, 3 ... Electrode for high frequency electricity supply, 4a, 4b, 4c ... Thermocouple temperature sensor, 5 ... Outer cylinder shaft, 6 ... Inner cylinder shaft, 7 ... Connector for high frequency power generator, 8 ... Lead wire for high frequency power supply, 9 ... Temperature sensor lead wire, 12 ... Lure lock, 13 ... Y type Connector: 14 ... Pseudo pulmonary vein, 15 ... Thermocouple for measuring balloon surface temperature, 16 ... Counter electrode, 17 ... High frequency power generator, 18 ... Guide wire, 19 ... Thermoelectric Data logger

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Medical Informatics (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Surgical Instruments (AREA)

Abstract

 本発明は、バルーン収縮時のバルーンの細径化及び熱電対温度センサーの信頼性向上を併せて達成すると同時に、バルーン内に吐出される加熱用液体の影響受けづらく高い精度でバルーン表面温度を制御することが可能な、バルーン付きアブレーションカテーテルを提供することを目的としている。本発明は、ルーメンを有するシャフトと、ルーメンが内部に連通しているバルーンと、温度センサーリード線がシャフトの長軸方向に沿って固定されるように、高周波電力供給リード線とシャフトとの間に温度センサーリード線を挟みながら、高周波電力供給リード線をシャフトにコイル状に巻きつけて形成される高周波通電用電極と、を備え、高周波通電用電極を構成する高周波電力供給リード線と温度センサーリード線とが、長軸方向の後端側からみて最初に接触する点に熱電対温度センサーが形成される、バルーン付きアブレーションカテーテルを提供する。

Description

バルーン付きアブレーションカテーテル
 本発明は、バルーン付きアブレーションカテーテルに関する。
 カテーテルアブレーションは、心腔内にアブレーションカテーテルを挿入し、カテーテルの先端に取り付けられた電極により心筋組織を焼灼して不整脈を治療する方法である。
 近年、カテーテルの先端側に取り付けられたバルーンを経皮的に下大静脈に導入し、心臓の右心房から心房中隔を経て左心房へと到達させ、そこで膨張させたバルーンを高周波電力によって加熱して心筋組織を焼灼するバルーン付きアブレーションカテーテルが開発され(特許文献1及び2)、カテーテルアブレーションの主流になっている。
 バルーン付きアブレーションカテーテルは、カテーテルの先端に取り付けられたバルーンを加熱用液体で膨張させてから、患者の体外の対極板と、バルーン内部に配置された高周波通電用電極との間に高周波電流を通電して加熱用液体を加熱し、バルーン表面と接触した心筋組織全体を焼灼するものである。バルーン表面の温度は、バルーン内部に配置された温度センサーにより制御され、さらに振動印加装置等によってバルーン内の加熱用液体が撹拌されることで均一化される。
 バルーン付きアブレーションカテーテルの温度センサーは、高周波通電用電極に高周波電力を供給する金属線に、異種金属線を点接合した熱電対温度センサーが用いられることが多い。この場合、熱電対を高周波通電用電極の後端近傍かつ表面上に配置すれば、熱電対は確実にバルーン内部に位置することとなり、検出温度の信頼性がより高まると言われている(特許文献3)。しかし同時に、熱電対温度センサーはバルーン内部に連通したルーメンの近傍にも位置することになるため、撹拌のためにバルーン内に吐出される加熱用液体による冷却の影響を直接的に受けやすく、バルーン表面温度の制御が不安定化する問題が生じることも知られている。
 その一方で、バルーン内に吐出される加熱用液体による冷却の影響を抑制することを目的として、熱電対温度センサーを高周波通電用電極の先端側に配置する試みがなされている(特許文献4)。
特開2002-78809号公報 特許第4062935号公報 特許第4226040号公報 特許第4222152号公報
 しかしながら、熱電対温度センサーを高周波通電用電極の先端側に配置しようとすると、バルーン内部において異種金属線をより先端側へ延伸しなければならなくなり、この場合には、異種金属線を延伸した範囲のカテーテルの柔軟性が損なわれるばかりか、バルーンを収縮したときの高周波通電用電極近傍のバルーン径が大きくなるため、バルーン付きアブレーションカテーテルの患者の体内への導入を困難とし、カテーテル操作及び患者負担の面で不都合を生じさせるものであった。
 また、熱電対温度センサーを高周波通電用電極の表面のいずれに配置したにせよ、異種金属線を点接合させるためにははんだ付け等による確実な接着が必要となり、この接着がバルーン収縮時におけるバルーン径を大きくする要因の一つとなっていた。さらに、異種金属線を点接合した熱電対は、その強度に不安が残ることは不可避であるため、断線等のリスクを抑制する対策が急務であり、熱電対温度センサーの信頼性向上が求められていた。
 そこで本発明は、バルーン収縮時のバルーンの細径化及び熱電対温度センサーの信頼性向上を併せて達成すると同時に、バルーン内に吐出される加熱用液体の影響を受けづらく、高い精度でバルーン表面温度を制御することが可能なバルーン付きアブレーションカテーテルを提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、以下の(1)~(4)の発明を見出した。
(1) 長軸方向に貫通したルーメンを有するシャフトと、上記シャフトに固定され、上記ルーメンが内部に連通しているバルーンと、上記バルーンの内部に配置され、電力供給手段に測定信号を供給する温度センサーリード線が上記シャフトの長軸方向に沿って固定されるように、上記電力供給手段から高周波電力を供給する高周波電力供給リード線と上記シャフトとの間に該温度センサーリード線を挟みながら、上記高周波電力供給リード線を上記シャフトにコイル状に巻きつけて形成される高周波通電用電極と、を備え、上記高周波通電用電極を構成する上記高周波電力供給リード線と上記温度センサーリード線とが長軸方向の後端側からみて最初に接触する点に熱電対温度センサーが形成される、バルーン付きアブレーションカテーテル。
(2) 上記ルーメンから加熱用液体の吸引と吐出を繰り返して上記バルーン内の加熱用液体に振動を付与する振動付与装置を備える、(1)記載のバルーン付きアブレーションカテーテル。
(3) 上記熱電対温度センサーは、上記高周波通電用電極の後端部に形成される、(1)又は(2)記載のバルーン付きアブレーションカテーテル。
(4) 上記温度センサーリード線は、上記高周波通電用電極の先端部まで到達している、(1)~(3)のいずれかに記載のバルーン付きアブレーションカテーテル。
 本発明のバルーン付きアブレーションカテーテルによれば、バルーン収縮時におけるバルーンのさらなる細径化が可能となり、バルーン付きアブレーションカテーテルを体内に導入する際の患者負担を軽減できる。また、本発明のバルーン付きアブレーションカテーテルの熱電対温度センサーは、バルーン内に吐出される加熱用液体の影響を受けづらく、断線等のリスクが抑制されているため、高い精度でバルーン表面温度を制御できる。
本発明の第一実施形態に係るバルーン付きアブレーションカテーテルの概略図である。 本発明の第一実施形態に係るバルーン付きアブレーションカテーテルのシャフト部分のA-A’線における断面を示す概略図である。 本発明の第一実施形態に係るバルーン付きアブレーションカテーテルの先端近傍の外観を示す概略図である。 本発明の第一実施形態に係るバルーン付きアブレーションカテーテルの高周波通電用電極近傍の長軸方向に対して水平な断面を示す概略図である。 比較例1のバルーン付きアブレーションカテーテルの先端近傍の外観を示す概略図である。 比較例1のバルーン付きアブレーションカテーテルの高周波通電用電極近傍の長軸方向に対して水平な断面を示す概略図である。 比較例2のバルーン付きアブレーションカテーテルの先端近傍の外観を示す概略図である。 比較例2のバルーン付きアブレーションカテーテルの高周波通電用電極近傍の長軸方向に対して水平な断面を示す概略図である。 バルーン付きアブレーションカテーテルのバルーン表面温度を測定するための評価系を示した概略図である。
 以下、図面を参照しながら、本発明の好適な実施形態について詳細に説明するが、本発明はこれらの態様に限定されるものではない。なお、同一の要素には同一符号を用いるものとして、重複する説明は省略する。また、図面の比率は説明のものとは必ずしも一致しない。
 本発明のバルーン付きアブレーションカテーテルは、長軸方向に貫通したルーメンを有するシャフトと、上記シャフトに固定され、上記ルーメンが内部に連通しているバルーンと、上記バルーンの内部に配置され、電力供給手段に測定信号を供給する温度センサーリード線が上記シャフトの長軸方向に沿って固定されるように、上記電力供給手段から高周波電力を供給する高周波電力供給リード線と上記シャフトとの間に該温度センサーリード線を挟みながら、上記高周波電力供給リード線を上記シャフトにコイル状に巻きつけて形成される高周波通電用電極と、を備え、上記高周波通電用電極を構成する上記高周波電力供給リード線と上記温度センサーリード線とが、長軸方向の後端側からみて最初に接触する点に熱電対温度センサーが形成される、ことを特徴としている。
 図1は、本発明の第一実施形態に係るバルーン付きアブレーションカテーテルの概略図である。また、図2は、本発明の第一実施形態に係るバルーン付きアブレーションカテーテルのシャフト部分のA-A’線における断面を示す概略図である。
 図1に示されるバルーン付きアブレーションカテーテル1は、先端側に膨張及び収縮可能なバルーン2を、バルーン2の内部に高周波通電用電極3及び熱電対温度センサーを、外筒シャフト5のルーメンに内筒シャフト6が挿入された二重筒式のシャフトを、後端側に高周波電力発生装置接続コネクター7を、それぞれ備える。また、図2に示される外筒シャフト5と内筒シャフト6との間の空間すなわちルーメンがバルーン2の内部に連通し、該空間に高周波電力供給用リード線8及び温度センサー用リード線9が挿通している。
 バルーン2の形状は、血管にフィットできる形状であればよいが、例えば、直径20~40mmの球形が好ましい。また、バルーン2の膜厚としては、20~120μmが好ましく、20~50μmがより好ましい。
 バルーン2の材料としては、抗血栓性に優れた伸縮性のある材料が好ましく、ポリウレタン系の高分子材料がより好ましい。ポリウレタン系の高分子材料としては、例えば、熱可塑性ポリエーテルウレタン、ポリエーテルポリウレタンウレア、フッ素ポリエーテルウレタンウレア、ポリエーテルポリウレタンウレア樹脂又はポリエーテルポリウレタンウレアアミドが挙げられる。
 「長軸方向に貫通したルーメンを有するシャフト」は、図1に示されるように、外筒シャフト5のルーメンに内筒シャフト6が挿入されている、二重管式のシャフトであることが好ましい。
 バルーン2を外筒シャフト5又は内筒シャフト6に固定化する方法としては、溶着が好ましい。ここで、図1に示されるようにバルーン2の先端部が内筒シャフト6の長軸方向における先端部に固定され、バルーン2の後端部が外筒シャフト5の長軸方向における先端部に固定されれば、内筒シャフト6と外筒シャフト5のスライドによってバルーン2の長軸方向の長さを変えられることとなるため、好ましい。一方で、バルーン2の両端部を内筒シャフト6又は外筒シャフト5のいずれかにのみ固定をしても構わない。
 外筒シャフト5及び内筒シャフト6の長さは、500~1700mmが好ましく、600~1200mmがより好ましい。また、外筒シャフト5及び内筒シャフト6の材料としては、抗血栓性に優れる可撓性材料が好ましく、例えば、フッ素樹脂、ポリアミド樹脂、ポリウレタン樹脂又はポリイミド樹脂等が挙げられる。外筒シャフト5の外径は3.0~4.0mmが好ましく、内径は2.5~3.5mmが好ましい。内筒シャフト6の外径は1.5~1.7mmが好ましく、内径は1.2~1.3mmが好ましい。なお、外筒シャフト5は多層構造であっても構わない。
 図3は、本発明の第一実施形態に係るバルーン付きアブレーションカテーテルの先端近傍の外観を示す概略図である。また、図4は、本発明の第一実施形態に係るバルーン付きアブレーションカテーテルの高周波通電用電極近傍の長軸方向に対して水平な断面を示す概略図である。
 高周波通電用電極3は、バルーン2内部に配置されるものであるが、「長軸方向に貫通したルーメンを有するシャフト」が図1に示されるような二重管式のシャフトである場合には、図4に示されるように、高周波電力供給リード線8を内筒シャフト6にコイル状に巻きつけて形成されることが好ましい。高周波通電用電極3を形成する高周波電力供給用リード線8の直径は、0.1~1mmが好ましく、0.2~0.5mmがより好ましい。高周波電力供給用リード線8の材料としては、例えば、銅、銀、金、白金、タングステン又は合金等の高導電率金属が挙げられるが、短絡を防止するために、高周波通電用電極3を形成する部分を除いてフッ素樹脂等の電気絶縁性保護被覆が施されていることが好ましい。
 熱電対温度センサー4aは、高周波電力供給リード線8と内筒シャフト6との間に温度センサーリード線9を挟みながら、高周波電力供給リード線8を内筒シャフト6にコイル状に巻きつけて形成する際に、高周波電力供給リード線8と温度センサーリード線9とが、長軸方向の後端側からみて最初に接触する点に形成される熱電対温度センサーである。
 熱電対温度センサー4aは、高周波電力供給リード線8と内筒シャフト6との間に温度センサーリード線9を挟みながら形成されるものであり、必然的に高周波通電用電極3と内筒シャフト6との間、すなわち高周波通電用電極3の内面に配置されることとなる。
 本発明のバルーン付きアブレーションカテーテルは、バルーン内部に連通しているルーメンから加熱用液体の吸引と吐出を繰り返して上記バルーン内の加熱用液体に振動を付与する振動付与装置を備えることが好ましい。
 バルーン内の加熱用液体に振動を付与する振動付与装置としては、例えば、ローラーポンプ、ダイヤフラムポンプ、ベローズポンプ、ベーンポンプ、遠心ポンプ又はピストンとシリンダの組み合わせからなるポンプを備える装置が挙げられる。
 また、高周波通電用電極において高周波電力が最も集中し易い場所は電極の端部であることから、本発明のバルーン付きアブレーションカテーテルの熱電対温度センサーは、高周波通電用電極の端部に形成されることが好ましく、高周波通電用電極の後端部に形成されることが好ましい。
 ここで、バルーン付きアブレーションカテーテル1が上記の振動付与装置を備え、かつ、図4に示されるように熱電対温度センサー4aが高周波通電用電極3の後端部に形成された場合には、熱電対温度センサー4aはバルーン2の内部に連通したルーメンの近傍に位置することになる。しかしながら、熱電対温度センサー4aは高周波通電用電極3の表面に配置されたものではなく、高周波通電用電極3の内面に配置されているものであるから、高周波通電用電極3からの熱伝導の影響を大きく受ける一方で、撹拌のためにバルーン2内に吐出される加熱用液体による冷却の影響を受けづらい。この結果、高周波通電用電極3に対し安定した高周波電力が供給されることとなり、バルーン2の表面温度を顕著に安定化することが可能となる。
 熱電対温度センサー4aは、温度センサーリード線9が内筒シャフト6の長軸方向に沿って固定されるように、高周波電力供給リード線8と内筒シャフト6との間に温度センサーリード線9を挟みながら、高周波電力供給リード線8を内筒シャフト6にコイル状に巻きつけて固定化されていることから、従来技術の熱電対のようにはんだ付け等の必要が一切ない。この結果、バルーン2の収縮時のバルーン径をより小さくすることが可能となり、患者の体内にバルーン付きアブレーションカテーテル1を容易に導入することが可能となる。
 熱電対温度センサー4aは、温度センサーリード線9が内筒シャフト6の長軸方向に沿って固定されるように、高周波電力供給リード線8を内筒シャフト6との間に温度センサーリード線9を挟みながら、高周波電力供給リード線8を内筒シャフト6にコイル状に巻きつけて固定化されている。このため、温度センサーリード線9は内筒シャフト6と高周波電力供給リード線8の間を挿通し、熱電対温度センサー4aの位置からみて長軸方向の先端側に向かって延伸されることになる。ここで、温度センサーリード線9は高周波通電用電極3を形成する高周波電力供給リード線8と複数の点で接触していることが好ましい。また、図4に示すように、温度センサーリード線9は高周波通電用電極の全長に渡って高周波電力供給リード線8と連続的に接触していることがより好ましい。すなわち、温度センサーリード線9は、高周波通電用電極3の先端部まで到達していることがより好ましい。
 温度センサーリード線9が、内筒シャフト6と高周波電力供給リード線8の間を挿通しながら高周波電力供給リード線8によって内筒シャフト6に固定化されることによって、熱電対温度センサー4aのバルーン付きアブレーションカテーテル1への固定は、はんだ付け等と比較してより強固なものとなる。この結果、熱電対温度センサーとしての強度は格段に向上して断線や接触不良等のリスクが抑制され、その信頼性は顕著に向上する。
 さらには、温度センサーリード線9は内筒シャフト6と高周波電力供給リード線8の間の僅かな空間にコンパクトに格納されることから、温度センサーリード線9のたわみ等が一切生じることがない。この結果、バルーン2の内部の空間に温度センサーリード線9を延伸した場合と比較してバルーン2の収縮時のバルーン径をより小さくすることが可能となるばかりか、カテーテルの柔軟性が損なわれることがなくなる。
 温度センサーリード線9の直径は、0.1~0.6mmが好ましく、0.1~0.3mmがより好ましい。温度センサーリード線9の材料としては、例えば、コンスタンタンが挙げられるが、短絡を防止するために、温度センサー4が形成された部分よりも後端側については、フッ素樹脂等の電気絶縁性保護被覆が施されていることが好ましい。
 図2に示される外筒シャフト5と内筒シャフト6との間の空間を挿通した高周波電力供給リード線8及び温度センサーリード線9の後端は、いずれもY型コネクター13をさらに挿通し、高周波電力発生装置接続コネクター7に接続されている。
 Y型コネクター13の材料としては電気絶縁性材料が好ましく、例えば、ポリカーボネート又はABS樹脂が挙げられる。
 高周波電力発生装置接続コネクター7はその内部に高伝導率金属ピンを備える。高伝導率金属ピンの材料としては、例えば、銅、銀、金、白金、タングステン又は合金が挙げられる。また、高伝導率金属ピンの外部は電気絶縁性かつ耐薬品性材料で保護されているが、その材料としては、例えば、ポリスルフォン、ポリウレタン、ポリプロピレン又はポリ塩化ビニルが挙げられる。
 以下、本発明のバルーン付きアブレーションカテーテルの具体的な実施例を、図を交えて説明する。なお、「長さ」というときには、長軸方向における長さを表すものとする。
(実施例)
 ポリウレタン製のチューブを引き延ばしながらそのルーメンにエアーを注入するブロー成形によって、直径30mm、厚み20μmのポリウレタン製のバルーン2を製作した。
 外径4mm、内径3mm、全長1000mmのポリウレタン製チューブを外筒シャフト5とし、その後端に設けたルアーロック12にY型コネクター13を内挿嵌合してから接着固定した。また、外径1.8mm、内径1.4mm、全長1100mmのポリイミド製チューブを内筒シャフト6とした。
 電気絶縁性保護被覆が施された直径0.3mmの銅線を高周波電力供給リード線8とし、電気絶縁性保護被覆が施された直径0.1mmのコンスタンタン線を温度センサーリード線9とした。
 高周波電力供給リード線8及び温度センサーリード線9に施された電気絶縁性保護被覆の一部をそれぞれ剥ぎ、内筒シャフト6の先端から20mmの位置を開始点として、高周波電力供給リード線8と内筒シャフト6の間に温度センサーリード線9を挟みながら高周波電力供給リード線8を内筒シャフト6にコイル状に巻きつけて、長さ13mmのコイル状の高周波通電用電極3及び高周波通電用電極3の後端部に配置された熱電対温度センサー4aを形成した。
 形成した高周波通電用電極3の先端及び後端は、ポリウレタンチューブで内筒シャフト6に溶着固定した。
 内筒シャフト6を外筒シャフト5に挿入し、バルーン2の先端部を内筒シャフト6の先端から10mmの位置に、バルーン2の後端部を外筒シャフト5の先端部に、それぞれ溶着固定した。
 高周波電力供給リード線8及び温度センサーリード線9を外筒シャフト5と内筒シャフト6との間の空間及びY型コネクター13を挿通させ、それらの後端をいずれも高周波電力発生装置接続コネクター7と接続して、本発明のバルーン付きアブレーションカテーテル(以下、「実施例カテーテル」)を完成した。
(比較例1)
 高周波通電用電極及び熱電対温度センサーの形成方法を除いて、実施例と同様の方法でバルーン付きアブレーションカテーテル(以下、「比較例1カテーテル」)を完成した。図5は、比較例1カテーテルの先端近傍の外観を示す概略図である。また、図6は、比較例1カテーテルの高周波通電用電極近傍の長軸方向に対して水平な断面を示す概略図である。
 比較例1カテーテルの高周波通電用電極3及び熱電対温度センサー4bは、以下のように形成した。まず、高周波電力供給リード線8及び温度センサーリード線9に施された電気絶縁性保護被覆の一部をそれぞれ剥ぎ、内筒シャフト6の先端から20mmの位置を開始点として、高周波電力供給リード線8を内筒シャフト6にコイル状に巻き付けて、長さ10mmのコイル状の高周波通電用電極3を形成した。次に、直径0.1mmのコンスタンタン線9の先端を、高周波通電用電極3の後端から2mmの位置で高周波電力供給リード線8の表面にはんだ付けで点接合させ、熱電対温度センサー4bを形成した。形成した高周波通電用電極3の先端及び後端は、熱収縮チューブで内筒シャフト6に固定した。
(比較例2)
 高周波通電用電極及び熱電対温度センサーの形成方法を除いて、実施例と同様の方法でバルーン付きアブレーションカテーテル(以下、「比較例2カテーテル」)を完成した。図7は、比較例2カテーテルの先端近傍の外観を示す概略図である。また、図8は、比較例2カテーテルの高周波通電用電極近傍の長軸方向に対して水平な断面を示す概略図である。
 比較例2カテーテルの高周波通電用電極3及び熱電対温度センサー4cは、以下のように形成した。まず、高周波電力供給リード線8及び温度センサーリード線9に施された電気絶縁性保護被覆の一部をそれぞれ剥ぎ、内筒シャフト6の先端から20mmの位置を開始点として、高周波電力供給リード線8を内筒シャフト6にコイル状に巻き付けて、長さ12mmのコイル状の高周波通電用電極3を形成した。次に、直径0.1mmのコンスタンタン線9の先端を、高周波通電用電極3の先端表面にはんだ付けで点接合させ、熱電対温度センサー4cを形成した。高周波通電用電極3の先端及び後端は、熱収縮チューブで内筒シャフト6に固定した。
(バルーン表面温度の測定)
 図9は、バルーン付きアブレーションカテーテルのバルーン表面温度を測定するための評価系を示した概略図である。
 実施例カテーテルのバルーン2を希釈造影剤(生理食塩水で2倍希釈)でバルーン径28mmまで拡張した。また、内筒シャフト6と外筒シャフト5のスライドによってバルーン2の長さ(以下、「バルーン長」)が30mmになるように調整をした。
 バルーン2を生理食塩水で満たした水槽の中に浸漬させ、バルーン2をアクリル系高分子材料で疑似的に製作した肺静脈14に挿入し、バルーン表面温度測定用熱電対15をバルーン2の上下の表面に接触するように設置した。
 高周波電流を通電するための対極板16を水槽の中に浸漬させ、実施例カテーテルの高周波電力発生装置接続コネクター7及び対極板16を高周波電力発生装置17に接続した。実施例カテーテルの内筒シャフト6には、ガイドワイヤー18を挿通させた。
 高周波電力(周波数1.8MHz、最大電力150W、設定温度70℃)を通電し、通電中のバルーン表面温度を熱電対データロガー19に記録し、高周波出力及び熱電対温度センサー4aで測定したバルーン内部の温度を高周波電力発生装置17に記録した。
 バルーン長を25mmにしたこと(熱電対温度センサー4aが、バルーン内に吐出される加熱用液体による冷却の影響をより受けやすい状態になる)を除き、上記と同様の方法で高周波電力通電中のバルーン表面温度を記録した。
 比較例1カテーテル及び比較例2カテーテルについても、上記と同様の方法で、バルーン長30mm及びバルーン長25mmのそれぞれの場合の高周波電力通電中のバルーン表面温度を記録した。
 実施例カテーテル、比較例1カテーテル及び比較例2カテーテルのそれぞれについて、高周波電力通電中のバルーン表面の最高温度を表1に示す。実施例カテーテル及び比較例2カテーテルは、バルーン長を変化させてもバルーン表面の最高温度にはほとんど影響がない。しかしながら、比較例1カテーテルのみは、バルーン長を25mmにした場合のバルーン表面の最高温度が66.1℃となり、バルーン長が30mmの場合と比べて約4℃近くも高くなった。また、この最高温度は、肺静脈狭窄を生じさせかねない加熱温度である、65℃を上回るものであった。
Figure JPOXMLDOC01-appb-T000001
(バルーン最大径の測定)
 実施例カテーテル、比較例1カテーテル及び比較例2カテーテルのそれぞれについて、収縮時におけるバルーン2の最大径を測定した。その結果、バルーン2の最大径は実施例カテーテルが2.38mm、比較例1カテーテルが2.68mm、比較例2カテーテルが2.64mmとなり、実施例カテーテルは比較例1カテーテル及び比較例2カテーテルに対して約0.3mmもの細径化が達成されていた。
 本発明は医療分野において、心房細動等の不整脈、子宮内膜症、癌細胞又は高血圧等の治療を行うためのバルーン付きアブレーションカテーテルとして用いることができる。
 1・・・バルーン付きアブレーションカテーテル(実施例)、2・・・バルーン、3・・・高周波通電用電極、4a,4b,4c・・・熱電対温度センサー、5・・・外筒シャフト、6・・・内筒シャフト、7・・・高周波電力発生装置接続コネクター、8・・・高周波電力供給リード線、9・・・温度センサーリード線、12・・・ルアーロック、13・・・Y型コネクター、14・・・疑似肺静脈、15・・・バルーン表面温度測定用熱電対、16・・・対極板、17・・・高周波電力発生装置、18・・・ガイドワイヤー、19・・・熱電対データロガー

Claims (4)

  1.  長軸方向に貫通したルーメンを有するシャフトと、
     前記シャフトに固定され、前記ルーメンが内部に連通しているバルーンと、
     前記バルーンの内部に配置され、電力供給手段に測定信号を供給する温度センサーリード線が前記シャフトの長軸方向に沿って固定されるように、前記電力供給手段から高周波電力を供給する高周波電力供給リード線と前記シャフトとの間に該温度センサーリード線を挟みながら、前記高周波電力供給リード線を前記シャフトにコイル状に巻きつけて形成される高周波通電用電極と、
    を備え、
     前記高周波通電用電極を構成する前記高周波電力供給リード線と前記温度センサーリード線とが長軸方向の後端側からみて最初に接触する点に熱電対温度センサーが形成される、バルーン付きアブレーションカテーテル。
  2.  前記ルーメンから加熱用液体の吸引と吐出を繰り返して前記バルーン内の加熱用液体に振動を付与する振動付与装置を備える、請求項1記載のバルーン付きアブレーションカテーテル。
  3.  前記熱電対温度センサーは、前記高周波通電用電極の後端部に形成される、請求項1又は2記載のバルーン付きアブレーションカテーテル。
  4.  前記温度センサーリード線は、前記高周波通電用電極の先端部まで到達している、請求項1~3のいずれか一項記載のバルーン付きアブレーションカテーテル。
PCT/JP2012/064752 2011-06-08 2012-06-08 バルーン付きアブレーションカテーテル WO2012169607A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CN201280027663.1A CN103582464B (zh) 2011-06-08 2012-06-08 带有球囊的消融导管
KR1020137029585A KR101637434B1 (ko) 2011-06-08 2012-06-08 벌룬이 부착된 어블레이션 카테터
RU2013158645/14A RU2592781C2 (ru) 2011-06-08 2012-06-08 Абляционный катетер с баллоном
DK12796694.3T DK2719350T3 (en) 2011-06-08 2012-06-08 Ablation catheter with balloon
US14/123,595 US9439725B2 (en) 2011-06-08 2012-06-08 Ablation catheter with balloon
ES12796694.3T ES2644245T3 (es) 2011-06-08 2012-06-08 Catéter de ablación con balón
EP12796694.3A EP2719350B1 (en) 2011-06-08 2012-06-08 Ablation catheter with balloon
AU2012267815A AU2012267815A1 (en) 2011-06-08 2012-06-08 Ablation catheter with balloon
CA2837853A CA2837853C (en) 2011-06-08 2012-06-08 Ablation catheter with balloon
BR112013030398-0A BR112013030398B1 (pt) 2011-06-08 2012-06-08 Cateter de ablação com balão
AU2015204289A AU2015204289B2 (en) 2011-06-08 2015-07-14 Ablation catheter with balloon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011128052A JP5853426B2 (ja) 2011-06-08 2011-06-08 バルーン付きアブレーションカテーテル
JP2011-128052 2011-06-08

Publications (1)

Publication Number Publication Date
WO2012169607A1 true WO2012169607A1 (ja) 2012-12-13

Family

ID=47296161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064752 WO2012169607A1 (ja) 2011-06-08 2012-06-08 バルーン付きアブレーションカテーテル

Country Status (13)

Country Link
US (1) US9439725B2 (ja)
EP (1) EP2719350B1 (ja)
JP (1) JP5853426B2 (ja)
KR (1) KR101637434B1 (ja)
CN (1) CN103582464B (ja)
AU (1) AU2012267815A1 (ja)
BR (1) BR112013030398B1 (ja)
CA (1) CA2837853C (ja)
DK (1) DK2719350T3 (ja)
ES (1) ES2644245T3 (ja)
RU (1) RU2592781C2 (ja)
TW (1) TWI586316B (ja)
WO (1) WO2012169607A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103892906A (zh) * 2012-12-27 2014-07-02 四川锦江电子科技有限公司 绕线式灌注导管
CN103892903A (zh) * 2012-12-27 2014-07-02 四川锦江电子科技有限公司 一种灌注导管

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2341859B1 (en) 2008-10-06 2017-04-05 Virender K. Sharma Apparatus for tissue ablation
US10064697B2 (en) 2008-10-06 2018-09-04 Santa Anna Tech Llc Vapor based ablation system for treating various indications
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US9561068B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US9561066B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
WO2014113724A2 (en) 2013-01-17 2014-07-24 Sharma Virender K Method and apparatus for tissue ablation
JP6149431B2 (ja) * 2013-03-08 2017-06-21 住友ベークライト株式会社 医療用機器、カテーテルおよび医療用機器の製造方法
US20160199126A1 (en) * 2013-10-04 2016-07-14 Japan Electel Inc. Balloon catheter ablation system
US10413240B2 (en) 2014-12-10 2019-09-17 Staton Techiya, Llc Membrane and balloon systems and designs for conduits
CN104689458A (zh) * 2015-02-27 2015-06-10 李广平 一种血管内射频消融扩张导管
JP2019516472A (ja) * 2016-05-13 2019-06-20 タイワン アーニング カンパニー リミテッド 腫瘍焼灼システム
CN109475378B (zh) * 2016-05-19 2022-01-14 圣安娜技术有限公司 对组织产生并应用加热消融区域且具有双囊结构的导管
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
JP2021509846A (ja) 2018-01-05 2021-04-08 マイトリックス, インコーポレイテッド 巾着縫合糸付き開創器および使用方法
TWI785200B (zh) * 2018-02-09 2022-12-01 日商東麗股份有限公司 氣球導管
CN108371745A (zh) * 2018-03-16 2018-08-07 上海心至医疗科技有限公司 一种带振动的药物洗脱球囊导管系统
US11806066B2 (en) 2018-06-01 2023-11-07 Santa Anna Tech Llc Multi-stage vapor-based ablation treatment methods and vapor generation and delivery systems
JP2022517950A (ja) * 2019-01-11 2022-03-11 マイトリックス, インコーポレイテッド カテーテルベースの心臓手技のためのデバイスおよび方法
CN112914677B (zh) * 2019-12-07 2022-03-08 贵州医科大学附属医院 一种用于血管溶栓的双球囊注射导管器械
KR20220159940A (ko) * 2020-03-31 2022-12-05 도레이 카부시키가이샤 벌룬 카테터 및 벌룬 카테터 시스템
CN112494134B (zh) * 2020-11-27 2022-04-22 威脉清通医疗科技(无锡)有限公司 一种热电偶、具有其的热消融导管及热消融装置
CN112986863B (zh) * 2021-02-04 2024-04-12 三一重能股份有限公司 温度检测系统的线路检测方法、装置和电子设备
WO2022211010A1 (ja) * 2021-03-31 2022-10-06 東レ株式会社 アブレーションカテーテルシステム
WO2023080147A1 (ja) 2021-11-04 2023-05-11 東レ株式会社 アブレーションカテーテルシステム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002078809A (ja) 2000-09-07 2002-03-19 Shutaro Satake 肺静脈電気的隔離用バルーンカテーテル
JP2003111848A (ja) * 2001-10-05 2003-04-15 Nihon Medix 加熱式バルーンカテーテル装置およびその加熱方法
JP4062935B2 (ja) 2002-03-01 2008-03-19 東レ株式会社 バルーン付アブレーションカテーテル
JP4222152B2 (ja) 2003-08-13 2009-02-12 東レ株式会社 バルーン付きアブレーションカテーテル
JP4226040B2 (ja) 2007-01-12 2009-02-18 有限会社日本エレクテル 高周波加温バルーンカテーテルシステム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3110792B2 (ja) 1990-05-15 2000-11-20 旭硝子株式会社 多結晶半導体薄膜トランジスタの製造方法及びアクティブマトリックス基板
JPH04222152A (ja) 1990-12-21 1992-08-12 Fujitsu General Ltd 電話装置
JP2890386B2 (ja) * 1992-04-22 1999-05-10 インター・ノバ株式会社 バルーンカテーテル
US5344398A (en) * 1992-02-25 1994-09-06 Japan Crescent, Inc. Heated balloon catheter
US5486173A (en) * 1993-12-08 1996-01-23 Vancaillie; Thierry G. Self-guiding electrode and cutting tip for tissue resection
SE505332C2 (sv) * 1995-05-18 1997-08-11 Lund Instr Ab Anordning för värmebehandling av kroppsvävnad
US6869431B2 (en) 1997-07-08 2005-03-22 Atrionix, Inc. Medical device with sensor cooperating with expandable member
US6258087B1 (en) * 1998-02-19 2001-07-10 Curon Medical, Inc. Expandable electrode assemblies for forming lesions to treat dysfunction in sphincters and adjoining tissue regions
US6711444B2 (en) * 1999-11-22 2004-03-23 Scimed Life Systems, Inc. Methods of deploying helical diagnostic and therapeutic element supporting structures within the body
TWI235073B (en) 2002-08-20 2005-07-01 Toray Industries Catheter for treating cardiac arrhythmias
EP1709922A4 (en) * 2004-01-06 2008-06-11 Toray Industries BALLOON CATHETER
JP4649506B2 (ja) * 2008-09-16 2011-03-09 有限会社日本エレクテル 高周波加温バルーンカテーテル
TWI517833B (zh) * 2009-03-31 2016-01-21 東麗股份有限公司 附有氣球之電燒導管用軸及附有氣球之電燒導管系統
JP5615508B2 (ja) * 2009-03-31 2014-10-29 東レ株式会社 撹拌方法及びバルーン付きアブレーションカテーテルシステム
JP5272888B2 (ja) * 2009-05-19 2013-08-28 東レ株式会社 ガイドワイヤ及びバルーン付きアブレーションカテーテルシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002078809A (ja) 2000-09-07 2002-03-19 Shutaro Satake 肺静脈電気的隔離用バルーンカテーテル
JP2003111848A (ja) * 2001-10-05 2003-04-15 Nihon Medix 加熱式バルーンカテーテル装置およびその加熱方法
JP4062935B2 (ja) 2002-03-01 2008-03-19 東レ株式会社 バルーン付アブレーションカテーテル
JP4222152B2 (ja) 2003-08-13 2009-02-12 東レ株式会社 バルーン付きアブレーションカテーテル
JP4226040B2 (ja) 2007-01-12 2009-02-18 有限会社日本エレクテル 高周波加温バルーンカテーテルシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2719350A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103892906A (zh) * 2012-12-27 2014-07-02 四川锦江电子科技有限公司 绕线式灌注导管
CN103892903A (zh) * 2012-12-27 2014-07-02 四川锦江电子科技有限公司 一种灌注导管

Also Published As

Publication number Publication date
KR101637434B1 (ko) 2016-07-07
CA2837853A1 (en) 2012-12-13
AU2012267815A1 (en) 2014-01-16
RU2592781C2 (ru) 2016-07-27
TWI586316B (zh) 2017-06-11
RU2013158645A (ru) 2015-07-20
US9439725B2 (en) 2016-09-13
EP2719350B1 (en) 2017-09-27
BR112013030398A2 (pt) 2016-12-13
TW201302151A (zh) 2013-01-16
DK2719350T3 (en) 2018-01-02
KR20130140175A (ko) 2013-12-23
ES2644245T3 (es) 2017-11-28
BR112013030398B1 (pt) 2021-07-27
CN103582464B (zh) 2016-07-06
EP2719350A4 (en) 2014-10-22
US20140114306A1 (en) 2014-04-24
EP2719350A1 (en) 2014-04-16
CA2837853C (en) 2017-09-05
CN103582464A (zh) 2014-02-12
JP2012254140A (ja) 2012-12-27
JP5853426B2 (ja) 2016-02-09

Similar Documents

Publication Publication Date Title
JP5853426B2 (ja) バルーン付きアブレーションカテーテル
JP5870694B2 (ja) 電位測定用カテーテル
JP6265434B2 (ja) バルーン型アブレーションカテーテルおよびアブレーションカテーテル装置
KR101319899B1 (ko) 벌룬이 부착된 어블레이션 카테터 및 벌룬이 부착된 어블레이션 카테터 시스템
JP6308683B2 (ja) バルーン型アブレーションカテーテル
WO2010113914A1 (ja) バルーン付きアブレーションカテーテル用シャフト
WO2010113915A1 (ja) ガイドワイヤ及びそれを備えるバルーン付きアブレーションカテーテルシステム
WO2010134504A1 (ja) ガイドワイヤ及びバルーン付きアブレーションカテーテルシステム
AU2015204289B2 (en) Ablation catheter with balloon
CN115427100B (zh) 带弯曲检测功能的基部部件、弯曲检测系统、具备带弯曲检测功能的基部部件的设备及球囊导管
CN115297794A (zh) 球囊导管及球囊导管系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796694

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012796694

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012796694

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137029585

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2837853

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14123595

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013158645

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012267815

Country of ref document: AU

Date of ref document: 20120608

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013030398

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013030398

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131126