WO2012169211A1 - 光学素子とその製造方法 - Google Patents

光学素子とその製造方法 Download PDF

Info

Publication number
WO2012169211A1
WO2012169211A1 PCT/JP2012/003774 JP2012003774W WO2012169211A1 WO 2012169211 A1 WO2012169211 A1 WO 2012169211A1 JP 2012003774 W JP2012003774 W JP 2012003774W WO 2012169211 A1 WO2012169211 A1 WO 2012169211A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductivity type
optical element
semiconductor substrate
element according
type impurity
Prior art date
Application number
PCT/JP2012/003774
Other languages
English (en)
French (fr)
Inventor
景士 立川
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013519395A priority Critical patent/JP6021019B2/ja
Publication of WO2012169211A1 publication Critical patent/WO2012169211A1/ja
Priority to US14/073,559 priority patent/US9136409B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies

Definitions

  • the present invention relates to an optical element, and more particularly to a technique relating to the periphery of a photoelectric conversion unit disposed in a substrate.
  • MOS type solid-state imaging devices have made remarkable progress against the background of low power consumption and high speed operation of the system, and cell miniaturization to reduce the unit pixel size is remarkable.
  • cell miniaturization to reduce the unit pixel size is remarkable.
  • FIG. 8 shows a cross-sectional view described in Patent Document 1.
  • a p-type diffusion layer 906 is formed on the surface of the semiconductor substrate 901 in order to separate the p-type diffusion layer 902 and the n-type diffusion layer 903 to be a photodiode.
  • a separation layer 907 composed of p-type diffusion layers 907-1, 907-2, 907-3, and 907-4 is formed in the deep part of the substrate so as to be in contact with the p-type diffusion layer 906.
  • the impurity concentration of the p-type diffusion layer is as follows: diffusion layer (907-1) ⁇ diffusion layer (907-2) ⁇ diffusion layer (907-3) ⁇ diffusion layer (907-4).
  • the impurity concentration is set so as to increase toward the deep part. By setting in this way, it is possible to prevent the electrons 911 generated by the photoelectric conversion of the incident light 910 from passing through the separation layer 907.
  • the structure is such that electrons passing through the separation layer 907 can be swept out to the n-type diffusion layer 905 on the surface of the semiconductor substrate (see arrow 912).
  • solid-state imaging devices as shown in Patent Documents 2 to 7 have been proposed.
  • a p-type diffusion layer 902 is formed below the p-type diffusion layer 902 and the n-type diffusion layer 903 that serve as photodiodes, and the photodiode extends over the deep portion of the semiconductor substrate 901.
  • An n-type diffusion layer is not formed. Accordingly, there is a possibility that electrons generated by photoelectric conversion of light having a long wavelength flow into the adjacent photodiode from the lower part of the photodiode. Therefore, it becomes difficult to reduce color mixing.
  • the width of the separation layer is sufficiently long, the impurity concentration of the p-type diffusion layer in the separation layer 907 is higher toward the deep portion, so that a potential gradient toward the deep portion of the substrate 901 is difficult to be formed, and electrons are generated on the surface of the semiconductor substrate. Overflowing toward the head (see arrow 912 in FIG. 8). However, as the cell becomes finer, the width of the separation layer cannot be set longer. Therefore, although some electrons can escape to the surface of the semiconductor substrate, most electrons pass through the separation layer and flow into adjacent photodiodes. That is, it is difficult to reduce color mixing while improving the number of output electrons per unit area (improving sensitivity).
  • an object of the present invention is to provide an optical element capable of reducing color mixing and a manufacturing method thereof. It is another object of the present invention to provide an optical element capable of reducing color mixing while improving the number of output electrons per unit area (improving sensitivity) and a method for manufacturing the same.
  • an optical element includes a semiconductor substrate, and the semiconductor substrate includes a first portion having a first conductivity type impurity therein, and the first portion in the inside thereof.
  • the width of the fourth portion is preferably wider than the width of the connection portion where the fourth portion and the third portion are connected.
  • the method for manufacturing an optical element according to the present invention includes a step (a) of implanting a first conductivity type impurity into a semiconductor substrate to form a first portion, and a second conductivity type in the semiconductor substrate.
  • the width of the fourth portion is preferably wider than the width of the connection portion where the fourth portion and the third portion are connected.
  • the method for manufacturing an optical element according to the present invention includes a step (a) of implanting a first conductivity type impurity into a semiconductor substrate to form a first portion, and a second conductivity type in the semiconductor substrate.
  • FIG. 1 shows a cross-sectional view of an optical element according to an embodiment of the present invention.
  • FIG. 2 is a plan view taken along line AA ′ of FIG.
  • FIG. 1 is a cross-sectional view taken along the line BB ′ of FIG.
  • a semiconductor substrate 101 includes a p + type diffusion layer 111 that is a first diffusion layer, an n type diffusion layer 104 that is formed immediately below the p + type diffusion layer 111, and immediately below the n type diffusion layer 104.
  • a first portion made of the n-type diffusion layer 105 is formed.
  • the first portion is a photoelectric conversion unit that functions as a photodiode. Note that the impurity concentration and depth of the n-type diffusion layer 104 determine the saturation output, afterimage, linearity, and roughness in principle.
  • the impurity concentration of the n-type diffusion layer 104 is 1.0E17 (cm ⁇ 3 ) or more, and the depth is less than 300 nm. Is preferred.
  • the semiconductor substrate 101 has a second portion formed of the p-type diffusion layer 102 immediately below the first portion.
  • the semiconductor substrate 101 is formed with a third portion including an STI (shallow Trench Isolation) 107, a p-type diffusion layer (upper part) 106, a p-type diffusion layer (middle part) 108, and a p-type diffusion layer (lower part) 109.
  • STI shallow Trench Isolation
  • a p-type diffusion layer upper part
  • a p-type diffusion layer lower part
  • STI shallow Trench Isolation
  • the third portion is arranged so as to surround the first portion in plan view, and functions as a separation layer for suppressing electrons generated in the photoelectric conversion unit from flowing into the adjacent photoelectric conversion unit. It becomes.
  • the semiconductor substrate 101 has a fourth portion formed of the p-type diffusion layer 103 so as to be connected to the third portion.
  • the fourth portion is disposed so as to surround the second portion in plan view.
  • the width of the fourth part is preferably larger than the width of the p-type diffusion layer 109 in the third part.
  • the p-type impurity concentration in the fourth portion is lower than the p-type impurity concentration in the second portion.
  • the impurity concentration of the p-type diffusion layer 103 is preferably smaller than the impurity concentration of each of the p-type diffusion layers 106, 108 and 109. By doing in this way, when the electron from a photoelectric conversion part reaches
  • the impurity concentration of the p-type diffusion layer 103 is 5.0E14 (cm ⁇ 3 ) to 5.0E16 (cm ⁇ 3 ), and the impurity concentration of the p-type diffusion layer 106 is 1.0E17 (cm ⁇ 3).
  • the impurity concentration of the p-type diffusion layer 108 is 5.0E16 (cm ⁇ 3 ) to 1.0E18 (cm ⁇ 3 ), and the impurity concentration of the p-type diffusion layer 109 Is preferably from 1.0E16 (cm ⁇ 3 ) to 5.0E17 (cm ⁇ 3 ).
  • the impurity concentration of each of the p-type diffusion layers 106, 108, and 109 is preferably smaller than the impurity concentration of the p-type diffusion layer 102.
  • the impurity concentration of the p-type diffusion layer 102 is preferably 5.0E15 (cm ⁇ 3 ) to 1.0E17 (cm ⁇ 3 ).
  • the width of the p-type diffusion layer 108 is preferably smaller than the width of the p-type diffusion layer 106, and the width of the p-type diffusion layer 109 is preferably smaller than the width of the p-type diffusion layer 108.
  • the impurity concentration of the p-type diffusion layer 108 is preferably smaller than the impurity concentration of the p-type diffusion layer 106, and the impurity concentration of the p-type diffusion layer 109 is preferably smaller than the impurity concentration of the p-type diffusion layer 108. preferable.
  • the width of the third portion is preferably 0.5 ⁇ m or less.
  • the width of the p-type diffusion layer 109 is preferably set to 0.1 ⁇ m to 0.5 ⁇ m. Even if the number of output electrons per unit area is increased, it is particularly effective as a photoelectric element that can suppress color mixing. In addition, this is particularly effective for suppressing color mixing due to light having a wavelength longer than that of green light.
  • the width of the fourth part is preferably 0.7 ⁇ m or less.
  • the width of the p-type diffusion layer 103 is preferably set to 0.1 ⁇ m to 0.7 ⁇ m. Even if the number of output electrons per unit area is increased, it is particularly effective as a photoelectric element capable of suppressing color mixing.
  • the cell size is preferably 1.4 ⁇ m or less, and in particular, the width of the first portion is preferably 1.4 ⁇ m or less. Even if the number of output electrons per unit area is increased, it is particularly effective as an optical element capable of suppressing color mixing.
  • each part is illustrated on the semiconductor substrate 101 for convenience.
  • the first part, the first part, The second part, the third part, the fourth part, and the like are formed in the semiconductor substrate 101.
  • an insulating film 110 such as an oxide film and an interlayer insulating film 112 are preferably formed on the semiconductor substrate 101, and wirings, waveguides, and the like are preferably formed therein.
  • the waveguide is a path for incident light and is realized by changing the refractive index with other portions.
  • the lowermost portion of the p-type diffusion layer 106 is preferably lower than the lowermost portions of the p-type diffusion layer 111 and the n-type diffusion layer 104.
  • the n-type diffusion layer 105 functions as a diffusion layer for generating electrons from light having a long wavelength longer than 500 nm (longer than green light) in the deep portion of the semiconductor substrate 101.
  • the fourth portion surrounds the third portion so as to contact the third portion and is arranged in a lattice shape. That is, the photoelectric conversion portions (first portions) are arranged in an array to form a plurality of pixel portions.
  • one photoelectric conversion unit (first part) and a part of the third part surrounding it can be called one cell.
  • a third transistor that discharges electrons is preferably formed.
  • the voltage conversion unit, the second transistor, and the third transistor may be formed at a ratio of one for each cell (pixel). From the viewpoint of miniaturization, one voltage conversion unit, one second transistor, and a third transistor are provided. It is preferable to be formed at a ratio.
  • an optical element capable of reducing color mixing can be provided.
  • FIG. 3 is a drawing for explaining a light collection / color mixing suppression mechanism in a cross section taken along the line BB ′ of FIG.
  • FIG. 3 the same reference numerals as those in FIGS.
  • blue light 301 enters the photoelectric conversion unit.
  • Blue light 301 having a short wavelength of 400 nm to 500 nm is incident on the photoelectric conversion unit with almost no diffraction.
  • the number of electrons 302 generated on the surface of the semiconductor substrate is the largest. Therefore, by appropriately setting the width 310 and the impurity concentration of the p-type diffusion layer 106, the electrons 302 can be prevented from flowing into the adjacent photoelectric conversion unit. For this reason, the concentration of light on the n-type diffusion layer 104 can be increased, and the sensitivity can be improved.
  • the number of saturated electrons can be maximized by the impurity concentration and the region width of the n-type diffusion layer 104 regardless of the width 310 and the impurity concentration of the p-type diffusion layer 106.
  • Green light 303 having a medium wavelength of 500 nm to 600 nm diffracts, and electrons 304 may be generated at the periphery of the n-type diffusion layer 105.
  • the width 311 of the p-type diffusion layer 108 is set to be narrower than the width 310 of the p-type diffusion layer 106, the electrons 304 can be prevented from flowing into the adjacent photoelectric conversion unit.
  • the width 311 of the p-type diffusion layer 108 it is possible to increase the concentration of light on the n-type diffusion layers 104 and 105 in the deep part of the semiconductor substrate 101 and to improve the sensitivity.
  • a potential gradient 320 is generated in the n-type diffusion layers 104 and 105, and reaches the boundary between the p-type diffusion layers 106, 108, and 109. To reach. Therefore, the collection degree of the electrons 302 and 304 generated by blue light and green light in the n-type diffusion layers 104 and 105 is increased, and the sensitivity can be improved.
  • Red light 305 enters the photoelectric conversion unit.
  • Red light 305 having a long wavelength of 600 nm or more causes diffraction, and electrons 306 may be generated in the p-type diffusion layer 109.
  • the impurity concentration of the p-type diffusion layer as the separation layer is set so that p-type diffusion layer 106 ⁇ p-type diffusion layer 108 ⁇ p-type diffusion layer 109, it is applied to the bottom of the semiconductor substrate 101. Due to the substrate voltage, a potential gradient 321 is formed inside the p-type diffusion layer 109 in the depth direction of the semiconductor substrate 101.
  • the impurity concentration of the p-type diffusion layer 103 is set to be lower than the impurity concentration of the p-type diffusion layer 102 and lower than the impurity concentration of the p-type diffusion layer 109, a potential gradient 322 is formed in the p-type diffusion layer 102.
  • the potential gradient 323 is formed only in the p-type diffusion layer 103. Therefore, the electrons 306 generated in the p-type diffusion layer 109 by the red light 305 reach the p-type diffusion layer 103 along the potential gradient 321 and are swept out to the back surface side of the semiconductor substrate 101 along the potential gradient 323. It becomes possible. As a result, the electrons 306 can be prevented from flowing into adjacent photoelectric conversion units. Thereby, the color mixture by red light can be improved dramatically.
  • the adjacent n-type diffusion layers 105 can be completely separated. Further, by setting the p-type diffusion layer 103 to have an impurity concentration equal to or lower than that of the p-type diffusion layers 102 and 109, potential gradients 323 and 321 in the p-type diffusion layers 103 and 109 are formed in the depth direction of the substrate 101. be able to.
  • the degree of electron collection is increased by the potential gradient 304 in the n-type diffusion layer 104 for green light and red light traveling straight without diffraction, Sensitivity can be improved. Furthermore, since the separation between the deeper portion of the semiconductor substrate 101 than the p-type diffusion layer 102 and the n-type diffusion layer 104 can be enhanced, punch-through can be suppressed and a high dynamic range can be realized by maintaining a high number of saturated electrons.
  • the sensitivity can be improved if the color mixture can be reduced.
  • the configuration of the p-type diffusion layers 102 and 103 having an effect of discharging electrons to the back side of the semiconductor substrate 101 becomes important. Therefore, although the separation layer is formed separately so as to be composed of the diffusion layers 106, 108, 109, it does not have to be formed separately. Further, the separation layers (diffusion layers 106, 108, and 109) do not have to be narrow along the depth direction of the semiconductor substrate 101, and the impurity concentration does not have to be low.
  • the two n-type diffusion layers 104 and 105 are formed as the photoelectric conversion portion, only one n-type diffusion layer may be used. This is because the n-type diffusion layer 104 formed on the surface side of the semiconductor substrate 101 can form a sufficient potential gradient when electrons are accumulated.
  • the fourth portion is the p-type diffusion layer 103, but the n-type diffusion layer 103 may be used. Even in that case, the same effect can be exhibited.
  • the semiconductor substrate 101 is an n-type semiconductor substrate
  • the n-type diffusion layer may not be formed in the fourth portion. That is, the n-type impurity concentration in the second portion and the fifth portion immediately below the fourth portion is equal to the impurity concentration in the fourth portion. In this case, it is preferable that the p-type impurity forming the p-type diffusion layer 102 is not implanted into the fourth portion.
  • a mask 750 made of a photoresist is formed on the surface of the semiconductor substrate 701. Thereafter, an n-type diffusion layer 704 is formed by ion implantation 751 of an n-type impurity such as arsenic or phosphorus.
  • an n-type impurity such as arsenic or phosphorus.
  • a p-type diffusion layer 703 is formed on the entire semiconductor substrate by ion-implanting p-type impurities such as boron into the entire semiconductor substrate (see 752).
  • p-type impurities such as boron into the entire semiconductor substrate.
  • the ion implanter suppresses channeling, it is preferable to implant boron with an acceleration energy of 1200 KeV to 3000 KeV. If the ion implanter is a type that actively uses channeling, it is preferable to implant boron with an acceleration energy of 600 KeV to 2000 KeV.
  • the dose when boron is implanted is preferably 5.0E10 (cm ⁇ 2 ) to 1.0E12 (cm ⁇ 2 ).
  • a mask 753 made of a photoresist is formed on the surface of the semiconductor substrate 701 with a thickness of 2000 nm or more.
  • the mask 753 when viewed from the upper surface of the semiconductor substrate 701, the mask 753 is patterned in a lattice shape, and regions without resist are formed in an island shape.
  • the size of the lattice pattern is 0.1 ⁇ m to 0.7 ⁇ m.
  • a p-type impurity made of boron or the like is implanted with the same acceleration energy as that for forming the p-type diffusion layer 703 to form the p-type diffusion layer 702.
  • the total dose when the p-type impurity is implanted is 1.0E11 (cm ⁇ 2 ) to 2.0E12 (cm ⁇ 2 ) in total when the p-type diffusion layer 703 is formed. .
  • the p-type impurity concentration of the p-type diffusion layer 702 can be set higher than the p-type impurity concentration of the p-type diffusion layer 703. .
  • a mask 755 made of a photoresist is formed on the surface of the semiconductor substrate 701 with a thickness of 2000 nm or more.
  • the mask 755 when viewed from the upper surface of the semiconductor substrate 701, the mask 755 is patterned in an island shape, and regions without resist are formed in a lattice shape.
  • the region size without the lattice-like resist is 0.1 ⁇ m to 0.5 ⁇ m.
  • p-type impurities such as boron are ion-implanted with an acceleration energy equal to or lower than that for forming the p-type diffusion layer 703 (see 756) to form the p-type diffusion layer 709.
  • the dose amount when the p-type impurity is implanted is set to 2.0E11 (cm ⁇ 2 ) to 1.0E13 (cm ⁇ 2 ).
  • the photoresist mask 755 used for forming the p-type diffusion layer 709 is used as it is, or a new photoresist mask in which a region without a lattice-like resist is set wider than the mask 755 is used.
  • a p-type diffusion layer 708 and a p-type diffusion layer 706 are formed by ion implantation of a p-type impurity such as boron.
  • a trench is formed in the p-type diffusion layer 706, and an STI 707 is formed by embedding an insulating film in the trench.
  • a p-type impurity such as boron is implanted into the surface of the n-type diffusion layer 704 to form a p + -type diffusion layer 711.
  • a oxide film 710 and an interlayer film 712 are formed on the semiconductor substrate 701, wirings, waveguides, and the like are formed in the interlayer film to form an optical element.
  • the diffusion layers 711, 704, and 705 that are photoelectric conversion portions are surrounded by the respective diffusion layers (diffusion layers 702, 703, 706, 708, and 709), electrons generated in the photoelectric conversion portions are It is possible to suppress the flow into the adjacent photoelectric conversion unit, and it is possible to sufficiently suppress color mixing.
  • the p-type impurity made of boron or the like is ion-implanted into the entire semiconductor substrate.
  • the p-type impurity is ion-implanted into the entire semiconductor substrate other than the fourth portion. Also good.
  • the p-type impurity is added to the region to be the fourth portion (corresponding to the p-type diffusion layer 703) so that the impurity concentration is lower than that of the second portion. Ion implantation is preferred.
  • n-type impurity may be implanted into the region to be the portion.
  • the acceleration energy is preferably 2000 KeV to 6000 KeV, and if it is phosphorus, it is preferably 1500 KeV to 4000 KeV.
  • the dose is preferably 1.0E11 (cm ⁇ 2 ) to 2.0E12 (cm ⁇ 2 ). Also, nothing need be injected.
  • the n-type impurity concentration in the region to be the fourth portion and the n-type impurity concentration immediately below the second portion are the same if the semiconductor substrate is an n-type semiconductor substrate. Even in this case, color mixing can be sufficiently suppressed.
  • an optical element capable of reducing color mixing can be manufactured. Furthermore, it is possible to manufacture an optical element capable of reducing color mixing while improving the number of output electrons per unit area (improving sensitivity).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

 半導体基板を備える光学素子において、半導体基板内における第1導電型の不純物を有する第1の部分と、半導体基板内における第1の部分の下に形成された第2導電型の不純物を有する第2の部分と、平面視において第1の部分を取り囲むように配置された第2導電型の不純物を有する第3の部分と、第3の部分に接続し、かつ、平面視において第2の部分を取り囲むような第4の部分とを有し、第4の部分の幅は、第4の部分と第3の部分とが接続している接続部の幅よりも広い。

Description

光学素子とその製造方法
 本発明は、光学素子に関し、特に、基板内に配置される光電変換部周辺に関する技術である。
 近年、システムの低消費電力化、高速動作化を背景にしてMOS型固体撮像素子の躍進が目覚しく、単位画素サイズを縮小するセル微細化の進展が著しい。この要請に応えるには、セルサイズの微細化とともに、単位面積当たり、単位光量当たりの出力電子数を向上することが必要である。
 従来、特許文献1のような固体撮像素子が提案されている。図8は、特許文献1に記載された断面図を示している。図8に示すように、フォトダイオードとなるp型拡散層902、n型拡散層903を分離するため、半導体基板901表面にp型拡散層906が形成されている。さらに、p型拡散層906と接するように基板深部にp型拡散層907-1、907-2、907-3、907-4からなる分離層907を形成している。ここで、p型拡散層の不純物濃度は、拡散層(907-1)<拡散層(907-2)<拡散層(907-3)<拡散層(907-4)となっており、基板901の深部に向かうにつれて不純物濃度が高くなるように設定されている。このように設定することにより、入射光910の光電変換により発生した電子911が分離層907を通過するのを抑制することができる。なお、分離層907を通過しようとする電子を半導体基板表面のn型拡散層905に掃き出すことができる構成となっている(矢印912を参照)。
他にも、特許文献2~7に示すような固体撮像素子が提案されている。
特開2009-252782号公報 特開2004-165462号公報 米国特許第6268234号公報 米国特許第6380603号公報 米国特許第6403994号公報 米国特許第6765246号公報 米国特許第7776643号公報
 ここで、特許文献1によると、フォトダイオードとなるp型拡散層902、n型拡散層903の下部には、p型拡散層902が形成されており、半導体基板901の深部に亘ってフォトダイオードとなるn型拡散層が形成されていない。従って、長波長の光の光電変換により発生した電子がフォトダイオードの下部から隣接するフォトダイオードに流入する可能性がある。そのため、混色を低減することが難しくなる。
 また、分離層の幅が十分に長ければ、分離層907におけるp型拡散層の不純物濃度は深部に向かうほど高いので、基板901の深部に向かう電位勾配は形成されにくく、電子は半導体基板表面に向かって溢れ出すこととなる(図8の矢印912参照)。しかし、セルの微細化が進むと、分離層の幅を長く設定することができない。そのため、一部の電子は半導体基板表面に逃がすことができるものの、大部分の電子は分離層を通過し、隣接するフォトダイオードに流れ込んでしまう。つまり、単位面積当たりの出力電子数を向上させながら(感度を向上させながら)、混色を低減することが難しくなる。
 そこで、本発明は、混色を低減することが可能な光学素子とその製造方法を提供することを目的とする。さらに、単位面積当たりの出力電子数を向上させながら(感度を向上させながら)、混色を低減することが可能な光学素子とその製造方法を提供することを目的とする。
 上記目的を達成するために、本発明に係る光学素子は、半導体基板を備え、当該半導体基板は、その内部における第1導電型の不純物を有する第1の部分と、その内部における前記第1の部分の下に形成された第2導電型の不純物を有する第2の部分と、平面視において前記第1の部分を取り囲むように配置された第2導電型の不純物を有する第3の部分と、前記第3の部分に接続し、かつ、平面視において前記第2の部分を取り囲むような第4の部分とを有することを特徴とする。
 なお、第4の部分の幅は、第4の部分と第3の部分とが接続している接続部の幅よりも広いことが好ましい。
 また、本発明に係る光学素子の製造方法は、半導体基板内に第1導電型の不純物を注入して、第1の部分を形成する工程(a)と、半導体基板内に第2導電型の不純物を注入して、第1の部分より下側に第2の部分を形成する工程(b)と、半導体基板内に第2導電型の不純物を注入して、平面視において第1の部分を囲うように、第3の部分を形成する工程(c)と、半導体基板内に第2導電型の不純物を注入して、第3の部分の直下で、かつ、平面視において第2の部分を囲うような第4の部分を形成する工程(d)とを有していることを特徴とする。
 なお、第4の部分の幅は、第4の部分と第3の部分とが接続している接続部の幅よりも広いことが好ましい。
 また、本発明に係る光学素子の製造方法は、半導体基板内に第1導電型の不純物を注入して、第1の部分を形成する工程(a)と、半導体基板内に第2導電型の不純物を注入して、第1の部分より下側に第2の部分を形成する工程(b)と、半導体基板内に第2導電型の不純物を注入して、平面視において第1の部分を囲うように、第3の部分を形成する工程(c)とを有し、工程(b)は、第2の部分が第1の部分の直下のみに形成されるように第2導電型の不純物を注入する工程であることを特徴とする。
 上記のような光学素子及びその製造方法を提供することで、混色を低減することが可能となる。
本発明の実施形態に係る光学素子の断面図である。 本発明の実施形態に係る光学素子の平面図である。 本発明の実施形態に係る光学素子のメカニズムを説明する図である。 本発明の実施形態に係る光学素子の製造工程の断面図である。 本発明の実施形態に係る光学素子の製造工程の断面図である。 本発明の実施形態に係る光学素子の製造工程の断面図である。 本発明の実施形態に係る光学素子の製造工程の断面図である。 従来技術の説明図である。
 本発明においては、光学素子の一例として固体撮像素子を例にとって説明することにするが、固体撮像素子以外の光学素子においても、矛盾の無い範囲で適用可能である。また、n型拡散層と書かれている箇所をp型拡散層とし、p型拡散層と書かれている箇所をn型拡散層として読み替えても同様の効果が期待できる。また、本明細書中に記載された数値範囲は具体例であり、これらに限定されることはない。
[実施形態]
 図1は本発明の実施形態に係る光学素子の断面図を示している。また、図2は、図1のA-A’における平面図を示している。なお、図1は、図2のB-B’における断面図を示している。
 図1に示すように、半導体基板101には、第1の拡散層であるp+型拡散層111とp+型拡散層111の直下に形成されるn型拡散層104とn型拡散層104の直下に形成されるn型拡散層105からなる第1の部分が形成されている。ここで、第1の部分はフォトダイオードとして機能する光電変換部である。なお、n型拡散層104の不純物濃度、深さが、飽和出力と残像、リニアリティー、ザラを原理上決定することとなる。そして、セルサイズにもよるが、1.4μm以下の微細セルでは、n型拡散層104の不純物濃度は1.0E17(cm-3)以上であり、深さは300nmよりも浅く形成されることが好ましい。
 また、半導体基板101には、第1の部分の直下にp型拡散層102からなる第2の部分が形成されている。
 また、半導体基板101には、STI(shallow Trench Isolation)107とp型拡散層(上部)106とp型拡散層(中部)108とp型拡散層(下部)109からなる第3の部分が形成されている。なお、STIとは、半導体基板に溝を形成して絶縁膜を埋め込んだ構造を言う。STIにより、半導体基板表面において、隣接する光電変換部間の電子の流入をより確実に抑制することが可能となる。ここで、第3の部分は平面視において第1の部分を囲うように配置され、光電変換部において発生した電子が隣接する光電変換部に流入するのを抑制するための分離層として機能することとなる。
 また、半導体基板101には、第3の部分と接続するようにp型拡散層103からなる第4の部分が形成されている。ここで、第4の部分は平面視において第2の部分を囲うように配置されている。なお、第3の部分と第4の部分とは接触していることが好ましい。
 上記構成により、光電変換部が各拡散層(拡散層102、103、106、108、109)により囲まれているため、光電変換部で発生した電子が隣接する光電変換部に流入するのを抑制することが可能となり、混色を十分に抑制することが可能となる。
 ここで、第4の部分の幅は、第3の部分におけるp型拡散層109の幅よりも大きいことが好ましい。このようにすることで、半導体基板深部において、より確実に光電変換部で発生した電子が隣接する光電変換部に流入するのを抑制することが可能となる。
 また、第4の部分のp型不純物濃度は第2の部分のp型不純物濃度よりも低いことが望ましい。このようにすることで、半導体基板深部において、より確実に光電変換部で発生した電子が隣接する光電変換部に流入するのを抑制することが可能となる。
 また、p型拡散層103の不純物濃度は、p型拡散層106、108、109のそれぞれの不純物濃度よりも小さいことが好ましい。このようにすることで、光電変換部からの電子が分離層に到達した際に、半導体基板101の裏面から電子を排出することができ、混色をより抑制することが可能となる。ここで、例えば、p型拡散層103の不純物濃度は5.0E14(cm-3)~5.0E16(cm-3)であり、p型拡散層106の不純物濃度は1.0E17(cm-3)~1.0E19(cm-3)であり、p型拡散層108の不純物濃度は5.0E16(cm-3)~1.0E18(cm-3)であり、p型拡散層109の不純物濃度は1.0E16(cm-3)~5.0E17(cm-3)であることが好ましい。
 また、p型拡散層106、108、109のそれぞれの不純物濃度は、p型拡散層102の不純物濃度よりも小さいことが好ましい。このように設定することで、光電変換部のn型拡散層104、105と基板101とのパンチスルーを抑制して飽和出力を維持し、高ダイナミックレンジを実現することができる。ここで、例えば、p型拡散層102の不純物濃度は5.0E15(cm-3)~1.0E17(cm-3)であることが好ましい。
 また、p型拡散層108の幅はp型拡散層106の幅よりも小さいことが好ましく、さらに、p型拡散層109の幅はp型拡散層108の幅よりも小さいことが好ましい。こうすることで、長波長の光が回折を起こしても光電変換部の深部で電子を効果的に発生させることが可能となる。そのため、単位面積当たりの電子数を増加することが可能となる。
 また、p型拡散層108の不純物濃度はp型拡散層106の不純物濃度よりも小さいことが好ましく、さらに、p型拡散層109の不純物濃度はp型拡散層108の不純物濃度よりも小さいことが好ましい。このようにすることで、光電変換部からの電子が分離層に到達した際に、半導体基板101の裏面側から電子を排出することができ、混色をより抑制することが可能となる。
 また、第3の部分の幅は0.5μm以下であることが好ましい。例えば、p型拡散層109の幅を0.1μm~0.5μmに設定することが好ましい。単位面積当たりの出力電子数を増加しても、混色を抑制することができる光電素子として特に有効である。また、緑光より長い波長の光による混色を抑制するには特に有効となる。
 また、第4の部分の幅は0.7μm以下であることが好ましい。例えば、p型拡散層103の幅を0.1μm~0.7μmに設定することが好ましい。単位面積当たりの出力電子数を増加させても、混色を抑制することができる光電素子として特に有効である。
 また、セルサイズは1.4μm以下であることが好ましく、特に、第1の部分の幅が1.4μm以下であることが好ましい。単位面積当たりの出力電子数を増加させても、混色を抑制することができる光学素子として特に有効である。
 ここで、図1などでは、各部分を分かりやすくするために、半導体基板101の上に各部分が形成されたように便宜上図示しているが、実際の構成においては、第1の部分、第2の部分、第3の部分、および第4の部分などについては、半導体基板101内に形成されている。
 なお、半導体基板101の上には酸化膜などの絶縁膜110、層間絶縁膜112を形成し、その中に配線、導波路などを形成することが好ましい。そして、導波路とは入射光の通り道となっており、他の部分と屈折率を変えるなどして実現する。
 なお、第3の部分をさらに詳細に説明すると、p型拡散層106の最下部がp型拡散層111とn型拡散層104の最下部よりも下であることが好ましい。
 なお、n型拡散層105は半導体基板101の深部において500nmよりも長い(緑光よりも長い)長波長の光から電子を発生させるための拡散層として働く。
 なお、図2からも明らかなように、第4の部分は第3の部分に接触するように第3の部分を囲い、格子状に配置されることが好ましい。つまり、光電変換部(第1の部分)がアレイ状に配列されて複数の画素部を形成することとなる。ここで、1つの光電変換部(第1の部分)とそれを囲む第3の部分の一部分を1つのセルと呼ぶことができる。
 また、半導体基板101の表面において、光電変換部から電子を読み出すための第1のトランジスタと、電子を電圧に変換する電圧変換部と、電子信号を出力する第2のトランジスタと、電圧変換部から電子を排出する第3のトランジスタが形成されていることが好ましい。
 また、電圧変換部、第2のトランジスタ、第3のトランジスタはそれぞれ、1つのセル(画素)に一つの割合で形成されていても構わないが、微細化の観点からは複数の画素に一つの割合で形成されていることが好ましい。
 以上のように、本発明の実施形態によると、混色を低減できる光学素子を提供できる。
 [メカニズムの説明]
 次に、図3を用いて、感度を向上させながら混色を低減できるメカニズムを説明する。図3は、図2のB-B’に沿った断面における集光/混色抑制メカニズムを説明するための図面である。図3において、図1、図2と同じ符号については、同じであるので記述を省略する。
 まず、青光301が光電変換部に入射することを考える。400nm~500nmの短波長である青光301は、殆ど回折なく光電変換部に入射する。ここで、半導体基板101に吸収される光は指数関数的に減衰するため、半導体基板表面で発生する電子302が最も多い。そのため、p型拡散層106の幅310と不純物濃度を適切に設定することにより、隣接する光電変換部へと電子302が流入することを防ぐことができる。そのため、n型拡散層104への集光を高めることができ、感度を向上することが可能となる。また、飽和電子数は、p型拡散層106の幅310や不純物濃度に関係なく、n型拡散層104の不純物濃度と領域の幅により最大化することが可能となる。
 次に、緑光303が光電変換部に入射することを考える。500nm~600nmの中波長である緑光303は回折を起こし、電子304がn型拡散層105の周縁に発生することがある。しかし、p型拡散層108の幅311をp型拡散層106の幅310よりも狭く設定することにより、隣接する光電変換部へと電子304が流入することを防ぐことができる。また、p型拡散層108の幅311を狭く設定することで、半導体基板101深部におけるn型拡散層104、105への集光を高めることができ、感度を向上することが可能となる。光電変換された電子がn型拡散層104、105に蓄積されている時には、n型拡散層104、105には、電位勾配320が発生し、p型拡散層106、108、109の境界にまで到達する。そのため、青光、緑光によって発生する電子302、304のn型拡散層104、105における収集度が高まり、感度を向上することができる。
 次に、赤光305が光電変換部に入射することを考える。600nm以上の長波長である赤光305は回折を起こし、電子306がp型拡散層109内に発生することがある。ここで、分離層であるp型拡散層の不純物濃度は、p型拡散層106≧p型拡散層108≧p型拡散層109となるように設定されていれば、半導体基板101の底部に印加する基板電圧により、p型拡散層109の内部には、半導体基板101の深部方向に電位勾配321が形成される。さらに、p型拡散層103の不純物濃度を、p型拡散層102の不純物濃度以下に設定し、p型拡散層109の不純物濃度以下に設定すると、p型拡散層102では電位勾配322が形成されず、p型拡散層103内にのみ電位勾配323が形成されることとなる。このため、赤光305によりp型拡散層109で発生した電子306は、電位勾配321に沿ってp型拡散層103に到達し、電位勾配323に沿って半導体基板101の裏面側に掃き出すことが可能となる。その結果、隣接する光電変換部へと電子306が流入することを防ぐ事ができる。これにより、赤光による混色を飛躍的に向上させることができる。
 ここで、p型拡散層109とp型拡散層103とが接していると、隣接するn型拡散層105を完全に分離することができる。また、p型拡散層103をp型拡散層102、109よりも等しいか低い不純物濃度とすることで、p型拡散層103、109での電位勾配323、321を基板101の深部方向に形成することができる。
 また、p型拡散層102では電位勾配322を形成することで、回折がなく直進する緑光、赤光に対しては、n型拡散層104内での電位勾配304により電子の収集度が高まり、感度を向上することができる。さらに、半導体基板101におけるp型拡散層102よりも深部とn型拡散層104との分離も強化できるので、パンチスルーを抑制できて高い飽和電子数を維持することにより高ダイナミックレンジを実現できる。
 なお、本実施形態においては、混色を低減できれば感度は向上することは可能である。そのためには、半導体基板101裏面側へ電子を排出する効果を有するp型拡散層102、103の構成が重要となってくる。従って、分離層が拡散層106、108、109からなるように別々に形成したが、別々に形成しなくてもよい。また、分離層(拡散層106、108、109)は、半導体基板101の深さ方向に沿って、狭くならなくてもよいし、不純物濃度が低くならなくてもよい。
 なお、光電変換部として2つのn型拡散層104、105を形成したが、1つのn型拡散層だけでも構わない。半導体基板101の表面側に形成したn型拡散層104によって、電子が蓄積した場合には十分な電位勾配を形成することも可能だからである。
 なお、本実施形態においては、第4の部分をp型拡散層103としていたが、n型拡散層103としても構わない。その場合でも同様の効果を発揮することができる。また、半導体基板101がn型半導体基板である場合には、第4の部分にn型拡散層を形成しなくても構わない。つまり、第2の部分、第4の部分直下の第5の部分のn型不純物の濃度と第4の部分の不純物濃度が等しくなる。この場合、p型拡散層102を形成するp型不純物が第4の部分には注入されないようにすることが好ましい。
 [製造方法の説明]
 次に、本発明の実施形態における光学素子の製造方法を説明する。図4から図7は、各製造工程の断面図を示している。
 まず、図4(a)に示すように、半導体基板701の表面にフォトレジストからなるマスク750を形成する。その後、ヒ素又はリンなどからなるn型不純物をイオン注入751することにより、n型拡散層704を形成する。ここで、ヒ素であれば400KeV以下、リンであれば200KeV以下の加速エネルギーでイオン注入することが好ましい。
 次に、図4(b)に示すように、半導体基板全体に、ボロンなどからなるp型不純物をイオン注入する(752参照)ことにより、p型拡散層703を半導体基板全体に形成する。ここで、イオン注入機がチャネリングを抑制するタイプであれば、1200KeV~3000KeVの加速エネルギーでボロンをイオン注入することが好ましい。また、イオン注入機がチャネリングを積極的に利用するタイプであれば、加速エネルギー600KeV~2000KeVの加速エネルギーでボロンをイオン注入することが好ましい。また、ボロンを注入する場合のドーズ量は5.0E10(cm-2)~1.0E12(cm-2)とすることが好ましい。
 次に、図5(a)に示すように、半導体基板701表面にフォトレジストからなるマスク753を2000nm以上の厚みで形成する。この時、図5(b)に示すように、半導体基板701の上面からみると、マスク753は格子状にパターン化されており、レジストのない領域が島状に形成される。この時、格子状パターンの寸法は0.1um~0.7umで形成される。次に、p型拡散層703を形成する場合と同じ加速エネルギーでボロンなどからなるp型不純物を注入し、p型拡散層702を形成する。ここで、p型不純物を注入する際のドーズ量は、p型拡散層703の形成時との合計で、1.0E11(cm-2)~2.0E12(cm-2)となるようにする。このようにすることで、図5(a)および図5(b)に示すように、p型拡散層702のp型不純物濃度は、p型拡散層703のp型不純物濃度よりも高く設定できる。
 次に、図6(a)に示すように、半導体基板701表面にフォトレジストからなるマスク755を2000nm以上の厚みで形成する。この時、図6(b)に示すように、半導体基板701の上面からみると、マスク755は島状にパターン化されており、レジストのない領域が格子状に形成される。この時、格子状のレジストのない領域寸法は0.1um~0.5umで形成される。次に、p型拡散層703を形成する場合と等しいか低い加速エネルギーでボロンなどのp型不純物をイオン注入し(756参照)、p型拡散層709を形成する。ここで、p型不純物を注入する際のドーズ量は2.0E11(cm-2)~1.0E13(cm-2)となるようにする。
 次に、図7に示すように、p型拡散層709を形成する際のフォトレジストマスク755をそのまま用いるか、マスク755よりも格子状のレジストのない領域を広く設定した新しいフォトレジストマスクを用いるかして、ボロンなどのp型不純物をイオン注入することでp型拡散層708、p型拡散層706を形成する。その後、p型拡散層706に溝を形成し、溝内に絶縁膜を埋め込むことでSTI707を形成する。その後、n型拡散層704の表面にボロンなどのp型不純物を注入し、p+型拡散層711を形成する。その後、半導体基板701上部に酸化膜710、層間膜712を形成し、層間膜内に配線、導波路などを形成して、光学素子を形成する。
 本製造方法によると、光電変換部である拡散層711、704、705が各拡散層(拡散層702、703、706、708、709)により囲まれているため、光電変換部で発生した電子が隣接する光電変換部に流入するのを抑制することが可能となり、混色を十分に抑制することが可能となる。
 なお、図4(b)に示す工程において、半導体基板全体にボロンなどからなるp型不純物をイオン注入したが、第4の部分となる部分以外の半導体基板全体にp型不純物をイオン注入してもよい。その際、図5(a)に対応する工程においては、第4の部分となる領域(p型拡散層703に相当)に、第2の部分よりも不純物濃度が低くなるようにp型不純物をイオン注入することが好ましい。
 また、図4(b)に示す工程において、第4の部分となる部分以外の半導体基板全体にp型不純物をイオン注入する場合には、図4(c)に対応する工程においては、第4の部分となる領域にn型不純物を注入しても構わない。ここで注入するn型不純物がヒ素であれば、加速エネルギーは2000KeV~6000KeV、リンであれば1500KeV~4000KeVであることが好ましい。また、注入するn型不純物がヒ素であればドーズ量は1.0E11(cm-2)~2.0E12(cm-2)であることが好ましい。また、何も注入しなくても構わない。この場合には、第4の部分となる領域のn型不純物濃度と第2の部分の直下のn型不純物濃度は、半導体基板がn型半導体基板であれば、同じとなる。このようにしても、混色を十分に抑制することが可能である。
 以上説明したとおり、本発明により、混色を低減することが可能な光学素子を製造することができる。さらに、単位面積当たりの出力電子数を向上させながら(感度を向上させながら)、混色を低減することが可能な光学素子製造することができる。
 101.半導体基板
 102.p型拡散層
 103.p型拡散層
 104、105.n型拡散層
 106、108、109.p型拡散層
 107.STI
 110.酸化膜
 111.p+拡散層
 112.層間膜

Claims (35)

  1.  半導体基板を備える光学素子であって、
     前記半導体基板は、
     その内部における第1導電型の不純物を有する第1の部分と、
     その内部における前記第1の部分の下に形成された第2導電型の不純物を有する第2の部分と、
     平面視において前記第1の部分を取り囲むように配置された第2導電型の不純物を有する第3の部分と、
     前記第3の部分に接続し、かつ、平面視において前記第2の部分を取り囲むような第4の部分とを有し、
     前記第4の部分の幅は、前記第4の部分と前記第3の部分とが接続している接続部の幅よりも広い光学素子。
  2.  請求項1に記載の光学素子において、
     前記第4の部分は第2導電型の不純物を有することを特徴とする。
  3.  請求項2に記載の光学素子において、
     前記第4の部分に含まれる第2導電型の不純物濃度は、前記第2の部分に含まれる第2導電型の不純物濃度よりも小さいことを特徴とする。
  4.  請求項2に記載の光学素子において、
     前記第4の部分に含まれる第2導電型の不純物濃度は、前記第3の部分に含まれる第2導電型の不純物濃度よりも小さいことを特徴とする。
  5.  請求項2に記載の光学素子において、
     前記第3の部分に含まれる第2導電型の不純物濃度は、前記第2の部分に含まれる第2導電型の不純物濃度よりも小さいことを特徴とする。
  6.  請求項2に記載の光学素子において、
     前記第1の部分は、表面から順に第1の拡散層と第2の拡散層と第3の拡散層を有し、
     前記第1の拡散層は第2導電型の不純物を有し、
     前記第2の拡散層及び前記第3の拡散層は、第1導電型の不純物を有していることを特徴とする。
  7.  請求項2に記載の光学素子において、
     前記第2の部分は電子の通過を抑制するための分離層として機能することを特徴とする。
  8.  請求項2に記載の光学素子において、
     前記第2の部分内における表面にはSTI(shallow Trench Isolation)が配置されていることを特徴とする。
  9.  請求項2に記載の光学素子において、
     前記第4の部分の表面は、前記第1の部分及び前記第3の部分と接続していることを特徴とする。
  10.  請求項2に記載の光学素子において、
     前記第2の部分は上部と、前記第1の部分よりも下に位置する中部を有し、
     前記中部の幅は前記上部の幅よりも小さいことを特徴とする。
  11.  請求項10に記載の光学素子において、
     前記上部内の第2導電型の不純物濃度は、前記中部内の第2導電型の不純物濃度よりも高いことを特徴とする。
  12.  請求項2に記載の光学素子において、
     前記第2の部分は、前記中部よりも下に位置する下部を有し、
     前記下部の幅は前記中部の幅よりも小さいことを特徴とする。
  13.  請求項12に記載の光学素子において、
     前記中部内の第2導電型の不純物濃度は、前記下部内の第2導電型の不純物濃度よりも高いことを特徴とする。
  14.  請求項1に記載の光学素子において、
     前記第4の部分は第1導電型の不純物を有することを特徴とする。
  15.  請求項14に記載の光学素子において、
     前記第3の部分及び前記第4の部分の下には第5の部分があり、
     前記第5の部分は第1導電型の不純物を有し、
     前記第4の部分に含まれる第1導電型の不純物濃度と前記第5の部分に含まれる第1導電型の不純物濃度とは等しいことを特徴とする。
  16.  請求項1に記載の光学素子において、
     前記第3の部分の幅は0.5μm以下であることを特徴とする。
  17.  請求項1に記載の光学素子において、
     前記第4の部分の幅が0.7μm以下であることを特徴とする。
  18.  請求項1に記載の光学素子において、
     セルサイズが1.4μm以下であることを特徴とする。
  19.  請求項1に記載の光学素子において、
     前記第1の部分の幅が1.4μm以下であることを特徴とする。
  20.  請求項1に記載の光学素子において、
     前記第1の部分は光電変換部であり、
     前記半導体基板は、前記光電変換部から電子を読み出すための第1のトランジスタを有することを特徴とする。
  21.  請求項1に記載の光学素子において、
     前記第1の部分は光電変換部であり、
     前記光電変換部で発生した電子の一部が前記第3の部分と前記第4の部分を通過し、前記半導体基板の裏面側に流れるような構成であることを特徴とする。
  22.  請求項1に記載の光学素子において、
     前記半導体基板は、電子を電圧に変換する電圧変換部を有することを特徴とする。
  23.  請求項1に記載の光学素子において、
     前記半導体基板は、電子信号を出力する第2のトランジスタをさらに有することを特徴とする。
  24.  請求項23に記載の光学素子において、
     前記半導体基板は、アレイ状に配列された複数の画素部を有し、前記複数の画素部に1つの割合で、前記第2のトランジスタを有することを特徴とする。
  25.  請求項1に記載の光学素子において、
     前記半導体基板は、電子を排出する第3のトランジスタをさらに有することを特徴とする。
  26.  請求項1に記載の光学素子において、
     前記第1導電型の不純物は、N型の不純物であり、
     前記第2導電型の不純物は、P型の不純物であることを特徴とする。
  27.  半導体基板を備える光学素子であって、
     前記半導体基板は、
     その内部における第1導電型の不純物を有する第1の部分と、
     その内部における前記第1の部分の下に形成された第2導電型の不純物を有する第2の部分と、
     平面視において前記第1の部分を取り囲むように配置された第2導電型の不純物を有する第3の部分と、
     前記第3の部分に接続し、かつ、平面視において前記第2の部分を取り囲むような第4の部分とを有している光学素子。
  28.  半導体基板内に第1導電型の不純物を注入して、第1の部分を形成する工程(a)と、
     前記半導体基板内に第2導電型の不純物を注入して、前記第1の部分より下側に第2の部分を形成する工程(b)と、
     前記半導体基板内に第2導電型の不純物を注入して、平面視において前記第1の部分を囲うように、第3の部分を形成する工程(c)とを有し、
     前記工程(b)は、前記第2の部分が前記第1の部分の直下のみに形成されるように第2導電型の不純物を注入する工程であることを特徴とする光学素子の製造方法。
  29.  請求項28に記載の光学素子の製造方法において、
     前記第1の部分は前記半導体基板内に複数形成され、
     前記第2の部分は、前記第1の部分にそれぞれ対応するように前記半導体基板内に複数形成され、
     隣接する前記第2の部分同士の間隔は、第3の部分における最下層部の幅よりも大きいことを特徴とする。
  30.  請求項28に記載の光学素子の製造方法において、
     前記半導体基板内に第2導電型の不純物を注入して、前記第2の部分を囲うように第4の部分を形成する工程(d)を有する。
  31.  半導体基板内に第1導電型の不純物を注入して、第1の部分を形成する工程(a)と、
     前記半導体基板内に第2導電型の不純物を注入して、前記第1の部分より下側に第2の部分を形成する工程(b)と、
     前記半導体基板内に第2導電型の不純物を注入して、平面視において前記第1の部分を囲うように、第3の部分を形成する工程(c)と、
     前記半導体基板内に第2導電型の不純物を注入して、第3の部分の直下で、かつ、平面視において前記第2の部分を囲うような第4の部分を形成する工程(d)とを有し、
     前記第4の部分の幅は、前記第4の部分と前記第3の部分とが接続する接続部の幅よりも広いことを特徴とする光学素子の製造方法。
  32.  請求項31に記載の光学素子の製造方法において、
     前記第4の部分に含まれる第2導電型の不純物濃度は、前記第3の部分に含まれる第2導電型の不純物濃度よりも小さいことを特徴とする。
  33.  請求項31に記載の光学素子の製造方法において、
     前記第3の部分に含まれる第2導電型の不純物濃度は、前記第2の部分に含まれる第2導電型の不純物濃度よりも小さいことを特徴とする。
  34.  請求項28又は31に記載の光学素子の製造方法において、
     前記第3の部分の幅は0.5μm以下であることを特徴とする。
  35.  半導体基板内に第1導電型の不純物を注入して、第1の部分を形成する工程(a)と、
     前記半導体基板内に第2導電型の不純物を注入して、前記第1の部分より下側に第2の部分を形成する工程(b)と、
     前記半導体基板内に第2導電型の不純物を注入して、平面視において前記第1の部分を囲うように、第3の部分を形成する工程(c)と、
     前記半導体基板内に第2導電型の不純物を注入して、第3の部分の直下で、かつ、平面視において前記第2の部分を囲うような第4の部分を形成する工程(d)とを有していることを特徴とする光学素子の製造方法。
PCT/JP2012/003774 2011-06-09 2012-06-08 光学素子とその製造方法 WO2012169211A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013519395A JP6021019B2 (ja) 2011-06-09 2012-06-08 光学素子とその製造方法
US14/073,559 US9136409B2 (en) 2011-06-09 2013-11-06 Optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011128968 2011-06-09
JP2011-128968 2011-06-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/073,559 Continuation US9136409B2 (en) 2011-06-09 2013-11-06 Optical device

Publications (1)

Publication Number Publication Date
WO2012169211A1 true WO2012169211A1 (ja) 2012-12-13

Family

ID=47295794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003774 WO2012169211A1 (ja) 2011-06-09 2012-06-08 光学素子とその製造方法

Country Status (3)

Country Link
US (1) US9136409B2 (ja)
JP (1) JP6021019B2 (ja)
WO (1) WO2012169211A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9754923B1 (en) * 2016-05-09 2017-09-05 Qualcomm Incorporated Power gate placement techniques in three-dimensional (3D) integrated circuits (ICs) (3DICs)
WO2019019052A1 (en) * 2017-07-26 2019-01-31 Shenzhen Xpectvision Technology Co., Ltd. RADIATION DETECTOR AND METHOD FOR MANUFACTURING SAME

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629511A (ja) * 1992-07-09 1994-02-04 Nec Corp 固体撮像素子
JPH08255889A (ja) * 1995-03-17 1996-10-01 Matsushita Electron Corp 固体撮像装置
JPH09266296A (ja) * 1996-03-28 1997-10-07 Nec Corp 固体撮像装置
JP2001177769A (ja) * 1999-12-20 2001-06-29 Nec Corp 固体撮像素子の駆動方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6709192A (ja) * 1967-07-01 1969-01-03
JP2557750B2 (ja) * 1991-02-27 1996-11-27 三洋電機株式会社 光半導体装置
JPH05150049A (ja) * 1991-11-30 1993-06-18 Shimadzu Corp 放射線検出器
JP2731115B2 (ja) * 1994-07-14 1998-03-25 シャープ株式会社 分割型受光素子
JP2000022121A (ja) 1998-06-29 2000-01-21 Sony Corp 固体撮像素子
JP2001060680A (ja) 1999-08-23 2001-03-06 Sony Corp 固体撮像素子およびその製造方法
JP3317942B2 (ja) 1999-11-08 2002-08-26 シャープ株式会社 半導体装置およびその製造方法
JP3530159B2 (ja) 2001-08-22 2004-05-24 松下電器産業株式会社 固体撮像装置およびその製造方法
JP3840203B2 (ja) * 2002-06-27 2006-11-01 キヤノン株式会社 固体撮像装置及び固体撮像装置を用いたカメラシステム
JP2004165462A (ja) 2002-11-14 2004-06-10 Sony Corp 固体撮像素子及びその製造方法
JP5230058B2 (ja) * 2004-06-07 2013-07-10 キヤノン株式会社 固体撮像装置およびカメラ
JP4680552B2 (ja) 2004-09-02 2011-05-11 富士フイルム株式会社 固体撮像素子の製造方法
JP5328207B2 (ja) * 2008-04-01 2013-10-30 キヤノン株式会社 固体撮像装置
JP2010245100A (ja) * 2009-04-01 2010-10-28 Nikon Corp 固体撮像素子
JP5325006B2 (ja) * 2009-04-22 2013-10-23 パナソニック株式会社 固体撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629511A (ja) * 1992-07-09 1994-02-04 Nec Corp 固体撮像素子
JPH08255889A (ja) * 1995-03-17 1996-10-01 Matsushita Electron Corp 固体撮像装置
JPH09266296A (ja) * 1996-03-28 1997-10-07 Nec Corp 固体撮像装置
JP2001177769A (ja) * 1999-12-20 2001-06-29 Nec Corp 固体撮像素子の駆動方法

Also Published As

Publication number Publication date
JPWO2012169211A1 (ja) 2015-02-23
JP6021019B2 (ja) 2016-11-02
US9136409B2 (en) 2015-09-15
US20140061844A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
JP4020309B2 (ja) Cmosイメージセンサ及びその製造方法
CN100550405C (zh) 固体成像器件及其制造方法
CN104508821B (zh) 固态成像装置、制造固态成像装置的方法和电子设备
JP3403062B2 (ja) 固体撮像装置
JP4718875B2 (ja) 固体撮像素子
US9076704B2 (en) Photoelectric conversion apparatus and manufacturing method for a photoelectric conversion apparatus
US8354292B2 (en) CMOS image sensor having a crosstalk prevention structure and method of manufacturing the same
TWI469334B (zh) 背照式互補式金氧半導體影像感測器
US20060180885A1 (en) Image sensor using deep trench isolation
US7608874B2 (en) Fully isolated photodiode stack
KR20100051555A (ko) 고체 촬상 장치, 고체 촬상 장치의 제조 방법, 및 전자 기기
US7651883B2 (en) High energy implant photodiode stack
JP2005294705A (ja) 固体撮像素子及びその製造方法
JP2010206181A (ja) 光電変換装置及び撮像システム
JP2008091781A (ja) 増幅型固体撮像素子
JP5558859B2 (ja) 固体撮像装置および固体撮像装置の製造方法
JP2015023259A (ja) 固体撮像装置およびその製造方法
JP2008084962A (ja) 固体撮像装置及びその製造方法
JP5329142B2 (ja) イメージセンサ
JP6021019B2 (ja) 光学素子とその製造方法
CN102723349A (zh) 带有隔离层的cmos图像传感器及其制作方法
JP4625605B2 (ja) 固体撮像装置
JP2013042074A (ja) 固体撮像装置および固体撮像装置の製造方法
KR100718876B1 (ko) 이미지 센서의 픽셀 및 그 제조방법
JP2013162077A (ja) 固体撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12797484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013519395

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12797484

Country of ref document: EP

Kind code of ref document: A1