WO2012168981A1 - 半導体記憶装置 - Google Patents
半導体記憶装置 Download PDFInfo
- Publication number
- WO2012168981A1 WO2012168981A1 PCT/JP2011/003285 JP2011003285W WO2012168981A1 WO 2012168981 A1 WO2012168981 A1 WO 2012168981A1 JP 2011003285 W JP2011003285 W JP 2011003285W WO 2012168981 A1 WO2012168981 A1 WO 2012168981A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- layers
- gate semiconductor
- channel
- gate
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 206
- 238000003860 storage Methods 0.000 title claims abstract description 4
- 230000015654 memory Effects 0.000 claims abstract description 78
- 239000000463 material Substances 0.000 claims description 43
- 239000000758 substrate Substances 0.000 claims description 25
- 238000003491 array Methods 0.000 claims description 10
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 38
- 229920005591 polysilicon Polymers 0.000 description 38
- 238000000034 method Methods 0.000 description 26
- 239000012782 phase change material Substances 0.000 description 18
- 239000002184 metal Substances 0.000 description 15
- 238000010586 diagram Methods 0.000 description 14
- 101100101240 Schizosaccharomyces pombe (strain 972 / ATCC 24843) txl1 gene Proteins 0.000 description 8
- 102100030268 Thioredoxin domain-containing protein 6 Human genes 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- 101150038252 nme9 gene Proteins 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 101100311249 Schizosaccharomyces pombe (strain 972 / ATCC 24843) stg1 gene Proteins 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000010187 selection method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0004—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0023—Address circuits or decoders
- G11C13/0026—Bit-line or column circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0023—Address circuits or decoders
- G11C13/0028—Word-line or row circuits
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/30—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
- H10B63/34—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors of the vertical channel field-effect transistor type
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/80—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
- H10B63/84—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/71—Three dimensional array
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/75—Array having a NAND structure comprising, for example, memory cells in series or memory elements in series, a memory element being a memory cell in parallel with an access transistor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/231—Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/826—Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/882—Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
- H10N70/8828—Tellurides, e.g. GeSbTe
Definitions
- the present invention relates to a semiconductor memory device.
- phase change memories using chalcogenide materials as recording materials have been actively studied.
- a phase change memory is a type of resistance change memory that stores information using the fact that recording materials between electrodes have different resistance states.
- the phase change memory stores information using the fact that the resistance value of a phase change material such as Ge 2 Sb 2 Te 5 is different between an amorphous state and a crystalline state.
- the resistance is high in the amorphous state and low in the crystalline state. Therefore, reading is performed by applying a potential difference to both ends of the element, measuring the current flowing through the element, and determining the high resistance state / low resistance state of the element.
- phase change memory data is rewritten by changing the electrical resistance of the phase change film to a different state by Joule heat generated by current.
- the reset operation that is, the operation of changing to a high resistance amorphous state is performed by flowing a large current for a short time to dissolve the phase change material, and then rapidly decreasing and rapidly cooling the current.
- the set operation that is, the operation of changing to a low-resistance crystalline state is performed by flowing a current sufficient for maintaining the phase change material at the crystallization temperature for a long time.
- this phase change memory is suitable for miniaturization because the current required to change the state of the phase change film decreases as the miniaturization progresses. For this reason, research is actively conducted.
- Patent Document 1 discloses a multilayer structure in which a plurality of gate electrode materials and insulating films are alternately stacked, and a plurality of through-holes penetrating all layers are collectively processed.
- a structure in which a gate insulating film, a channel layer, and a phase change film are formed and processed inside the through hole is disclosed.
- the phase change memory described in Patent Document 1 has the following problems. This is because the upper and lower electrode wirings are processed in stripes at the same pitch as the memory cells, so the electrode wiring width is narrow, and the contacts connecting the electrode wiring and peripheral circuits can only be as large as the wiring width. The resistance is increased. As a result, when the memory cell is operated by supplying a current, the voltage drops at the contact portion, and the voltage necessary for the operation increases. As a result, the peripheral circuit increases and the reliability of the memory cell decreases. The problem is particularly serious when the memory cell is miniaturized and the wiring width is narrowed, and when the depth of the contact hole is increased by stacking multiple layers. Memory cell miniaturization and multilayer stacking are indispensable for increasing capacity.
- Patent Document 2 discloses a method for bundling metal wiring by performing ion implantation using a mask so that adjacent selection transistors are of an enhancement type and a depletion type.
- ions are implanted and diffused by ion implantation, it becomes difficult to make adjacent selection transistors into enhancement type and depletion type as miniaturization progresses.
- an object of the present invention is to reduce contact resistance in a memory cell array suitable for miniaturization.
- a plurality of word lines extending in the X direction parallel to the main surface of the semiconductor substrate, a plurality of diode layers provided above the plurality of word lines, A first gate semiconductor layer extending in the Y direction parallel to the principal surface of the first electrode and extending above the plurality of diode layers, and an insulating layer extending in the Y direction and provided above the first gate semiconductor layer.
- a plurality of second gate semiconductor layers stacked on each other, and a third gate semiconductor layer extending in the Y direction and provided above the plurality of second gate semiconductor layers, and periodically provided in the X direction.
- a plurality of second channel layers that are periodically provided in the Y direction and are electrically connected to the first channel layer, and a first gate insulation on the + X side of side surfaces of the plurality of second gate semiconductor layers.
- the first channel layer is provided on the ⁇ X side via the first gate insulating film layer and periodically provided in the Y direction.
- a plurality of third channels electrically connected to Of the plurality of second gate semiconductor layers on the ⁇ X side via the first gate semiconductor layer and the third channel layer, periodically provided in the Y direction, and electrically connected to the first channel layer.
- a plurality of second variable resistance material layers made of a material whose resistance value changes depending on a flowing current, and a plurality of word lines that are provided vertically above each of the plurality of word lines with respect to the main surface of the semiconductor substrate.
- a plurality of bit lines electrically connected to the extension, the plurality of second channels and the plurality of third channels, and each of the plurality of word lines is bound to another word line, and the plurality of bit lines
- Each of the first and second bit lines is bundled with another bit line, and two bit lines provided vertically above each of the two word lines to be bundled among the plurality of word lines are electrically separated.
- a semiconductor memory device a plurality of word lines extending in the X direction parallel to the main surface of the semiconductor substrate, and each extending in the Y direction parallel to the main surface of the semiconductor substrate and intersecting the X direction
- a first gate semiconductor layer provided above the plurality of word lines
- a plurality of second gate semiconductor layers extending in the Y direction and provided above the first gate semiconductor layer and stacked on each other via an insulating layer
- a third gate semiconductor layer extending in the Y direction and provided above the plurality of second gate semiconductor layers, a plurality of stacked bodies periodically provided in the X direction, and a plurality of first gate semiconductor layers
- a plurality of first channel layers that are electrically connected to the word line and provided with an insulating layer therebetween, and the + X side and the ⁇ X side among the side surfaces of the plurality of second gate semiconductor layers and the third gate semiconductor layers
- a plurality of first gate insulating films provided on the substrate Of the plurality of second gate semiconductor layers and the third gate semiconductor layers on the +
- a plurality of second channel layers connected to each other, and provided on the + X side of the side surfaces of the plurality of second gate semiconductor layers via the first gate semiconductor layer and the second channel layer, and periodically provided in the Y direction.
- a first variable resistance material layer made of a material electrically connected to the first channel layer and having a resistance value changed by a flowing current, and -X of side surfaces of the plurality of second gate semiconductor layers and the third gate semiconductor layers
- a plurality of third channel layers which are provided on the side through the first gate insulating film layer and periodically provided in the Y direction and electrically connected to the first channel layer; and a plurality of second gate semiconductor layers
- the first gate half on the -X side of the side A second variable resistance material layer provided via the body layer and the third channel layer, periodically provided in the Y direction, electrically connected to the first channel layer, and made of a material whose resistance value changes according to a flowing current
- a plurality of bits provided vertically above each of the plurality of word lines with respect to the main surface of
- a first plate provided above the semiconductor substrate and a second plate provided above the first plate are each in a Y direction parallel to the main surface of the semiconductor substrate.
- a first gate semiconductor layer extending and provided above the first plate; a plurality of second gate semiconductor layers extending in the Y direction and provided above the first gate semiconductor layer and stacked on each other via an insulating layer;
- a plurality of third gate semiconductor layers extending in the Y direction and provided above the plurality of second gate semiconductor layers, and provided periodically in the X direction parallel to the main surface of the semiconductor substrate and intersecting the Y direction.
- a plurality of first channel layers provided via an insulating layer between the plurality of first gate semiconductor layers, the + X side of the side surfaces of the plurality of second gate semiconductor layers and the third gate semiconductor layers, and -Provided on the X side
- a plurality of first gate insulating film layers, and a plurality of second gate semiconductor layers and third gate semiconductor layers provided on the + X side of the side surfaces of the first gate insulating film layers via the first gate insulating film layers and periodically provided in the Y direction.
- a plurality of second channel layers electrically connected to the first channel layer and the second plate, and the first gate semiconductor layer and the second channel layer on the + X side of the side surfaces of the plurality of second gate semiconductor layers.
- a first variable resistance material layer made of a material that is periodically provided in the Y direction and is electrically connected to the first channel layer, the resistance value of which is changed by a flowing current, and a plurality of second gate semiconductors Of the side surfaces of the layer and the third gate semiconductor layer, provided on the ⁇ X side via the first gate insulating film layer, periodically provided in the Y direction, and electrically connected to the first channel layer and the second plate
- a first transistor layer that selects two of the first transistors; a second transistor layer that is provided between the first transistor layer and the first gate semiconductor layer and that selects two adjacent ones of the plurality of first channels in the Y direction; It is characterized by having.
- contact resistance can be reduced in a memory cell array suitable for miniaturization.
- FIG. 3 is an equivalent circuit diagram of the phase change memory according to the first embodiment of the present invention. It is a figure explaining the reset operation
- FIG. 1 is a partial three-dimensional schematic diagram of a semiconductor memory device according to a first embodiment of the present invention, showing a part of a memory cell array, wiring, and contacts.
- Word line 2 contact hole LC connecting word line 2 and the peripheral circuit
- polysilicon layer 40p doped with p-type impurities
- polysilicon layer 50p doped with low-concentration impurities
- n-type impurities Diode layer PD composed of polysilicon layer 60p, memory cell gate polysilicon layers 21p, 22p, 23p, and 24p, selection transistor gate polysilicon layers 81p and 82p, and metal wiring for supplying power to the memory cell gate polysilicon layer GL1, GL2, GL3, GL4, memory cell gate polysilicon layers 21p, 22p, 23p, 24p, and contacts GC1, GC2, GC3, GC4, and bit line 3, respectively connecting the wirings GL1, GL2, GL3, GL4. This portion is shown in FIG.
- Two adjacent word lines 2 are bundled outside the memory array (electrically short-circuited), and a contact hole LC is formed in the bundled portion MLC to be connected to a peripheral circuit. . Since the LC is formed in the wiring bundling portion MLC, it can be formed larger than the width of each wiring. For this reason, the resistance of the contact LC is lower than that in the case where the contact LC is formed in the width of one wiring.
- FIG. 2 is a three-dimensional schematic diagram in a case where a large capacity is promoted by stacking the MAs of FIG. A structure similar to that shown in FIG. 1 is stacked and the word lines 2 and 202 are bound together. Although not shown, the bit lines 3 and 203 are also bound on the opposite side of the MA.
- lowering the contact LC to the word lines 2 and 202 and the bit lines 3 and 203 is particularly beneficial when stacking the memory array MA as shown in FIG. is there.
- the position of the metal wiring moves away from the semiconductor substrate on which the peripheral circuit is formed, and the resistance of the contact connecting the peripheral circuit and the metal wiring of the MA increases.
- an increase in contact resistance can be suppressed.
- Each of the word lines 2 is bundled with another word line 2.
- FIG. 2 in a configuration in which a plurality of memory arrays are stacked, contacts between the memory arrays can be provided in the binding portion of the word lines 2, and an increase in contact resistance between the memory arrays is suppressed. This is possible.
- the bit line 3 is similarly bound to other bit lines 3.
- the word line 2 and the bit line 3 must not be bundled with the same pattern. That is, the wiring bundling pattern shown in FIG. 1 is provided 2 vertically above each of the word lines to be bundled (in the + Z direction when taking the Z axis perpendicular to the main surface of the semiconductor substrate).
- the bit lines 3 of the book are electrically isolated.
- the word line 2 and the bit line 3 are (1) each of the word lines is bundled with another word line, and (2) each of the bit lines is bundled with another bit line. (3)
- the two bit lines provided vertically above each of the two word lines to be bound are electrically separated. Such a feature makes it possible to provide a contact at each bundling portion of the word line and the bit line, thereby reducing the contact resistance.
- FIG. 3 shows the memory array MA extracted from FIG.
- a diode layer PD made of polysilicon is provided on the plurality of word lines 2 extending in the X direction.
- the diode layer PD is periodically provided in the X direction via an insulating film (not shown).
- the diode layer PD may also be extended in the X direction. is there.
- the stacked films of the gate polysilicon layers 81p, 21p, 22p, 23p, 24p, 82p and the insulating film layers 11, 12, 13, 14, 15, 71 are striped in the Y direction perpendicular to the extending direction of the word line 2. Patterned.
- the bit line 3 has a stripe shape extending in the X direction parallel to the word line 2 and is disposed on the insulating film 71 via an n-type polysilicon layer 48p.
- Insulating film layer 10 is a layer for preventing diffusion between phase change material layer 7 and channel polysilicon layer 8p.
- An insulating film layer 91 is buried between the phase change material layers 7 on both sides.
- a gate insulating film layer 9 and a channel polysilicon layer 8p are stacked on the upper side wall of the insulating film layer 15 and the gate polysilicon layer 82p, and on the side wall of the insulating film layer 71.
- An insulating film layer 92 is buried between the channel polysilicon layers 8p on both sides.
- the polysilicon layer 42p is further connected to the wiring 2 through the polysilicon layer 41p.
- the memory array (MA) of FIG. 3 includes the first gate semiconductor layer (81p) extending in the Y direction and provided above the diode layer (PD), and the first gate semiconductor layer extending in the Y direction.
- a stacked body including the semiconductor layer (82p) is periodically provided in the X direction.
- a first channel layer (41p) provided between the first gate semiconductor layers via an insulator and electrically connected to the diode layer PD, and side surfaces of the second gate semiconductor layer and the third gate semiconductor layer A plurality of first gate insulating film layers (9) provided on the + X side and ⁇ X side, and the side surfaces of the second gate semiconductor layer and the third gate semiconductor layer on the + X side via the first gate semiconductor layer
- a plurality of second channel layers (8p + X) provided periodically in the Y direction and electrically connected to the first channel layer, and a plurality of third channel layers (8p similarly provided on the ⁇ X side) -X), provided on the + X side of the side surface of the second gate semiconductor layer via the first gate insulating film layer and the second channel layer, periodically provided in the Y direction, and the resistance value varies depending on the flowing current
- a plurality of materials 1 has a variable resistance material layer, as well as a plurality of second variable resistance material layer provided on the -X side.
- the first gate semiconductor layer and the first channel layer form a first X selection transistor layer that performs selection in the X direction.
- the third gate semiconductor layer, the second channel, and the third channel form a second X selection transistor layer.
- the second gate semiconductor layer, the second channel and the first variable resistance material layer, and the second gate semiconductor layer, the third channel and the second variable resistance material layer form memory cells (SMC, USMC), respectively.
- the semiconductor memory device of the present invention stores information by utilizing the fact that the phase change material such as Ge 2 Sb 2 Te 5 included in the phase change material layer 7 has different resistance values between the amorphous state and the crystalline state.
- the resistance is high in the amorphous state and low in the crystalline state. Therefore, reading can be performed by determining a high resistance state and a low resistance state of the element by applying a potential difference to both ends of the resistance variable element and measuring a current flowing through the element.
- the operation of changing the phase change material from the amorphous state, which is a high resistance state, to the crystalline state, which is a low resistance state, that is, the set operation is to heat the phase change material in the amorphous state to a temperature higher than the crystallization temperature for about 10 ⁇ 6 seconds.
- the phase change material in a crystalline state can be brought into an amorphous state by heating it to a temperature equal to or higher than the melting point to make it liquid and then rapidly cooling it.
- the insulating film layer 31 is an insulating film embedded in the space between the PDs, which is omitted in FIGS.
- 0V 0 V is applied in any case of the reset operation, the set operation, and the read operation).
- 0 V is applied to the gate line GL1 to which the selected cell SMC is connected, and the transistor whose channel is the channel polysilicon layer 8p is turned off.
- 5 V is applied to the gate lines GL2, GL3, and GL4 to which the selected cell SMC is not connected, and the transistor is turned on.
- 0V is applied to the bit line BL1, and 5, 4, and 2V are applied to the word line WL1 during reset operation, set operation, and read operation, respectively.
- the gate polysilicon of the selection transistor applies 5 V to the gate connected to the SMC, that is, STGLU1, and turns the transistor on.
- 0 V is applied to the gate on the side to which SMC is not connected, that is, STGLU2, to turn off the transistor.
- STGLU2 the gate on the side to which SMC is not connected
- the resistance of the channel is low when the transistor is ON, and the resistance of the channel polysilicon layer 8p of STGL1 in the ON state is also low. Regardless of the state of the phase change material layer 7 in the USMC 1 portion, substantially the same current can flow.
- SMC since the transistor is in an OFF state, a current flows through the phase change material layer 7.
- the operation is performed by changing the resistance value of the phase change material 7 by the current flowing through the phase change material layer 7 by SMC.
- the current value flowing through the phase change material layer 7 is determined by SMC and the operation is performed.
- FIG. 5 shows an equivalent circuit diagram of the memory cell array portion of FIG. From the above, it can be seen that the selection operation in the Z direction is possible.
- ⁇ X direction selection operation> 6 shows a cross-sectional view in the XZ plane of FIG. 3, and shows the relationship between the selection transistor and the gate wirings GL1, GL2, GL3, and GL4 when performing the reset operation, the set operation, and the read operation. Similar to FIG. 4, the potential of WLn, 5/4 / 2V, is the potential at the time of reset operation, set operation, and read operation, respectively. Similarly, the notation of the potentials of the other terminals in FIG. 6 sequentially represents the potentials during the reset operation, the set operation, and the read operation. When only the STGLDm is turned on in the lower selection transistor and the STGLU1 is turned on in the upper selection transistor, the path through which the current flows is limited to only the path including the selected cell SMC.
- the X selection transistor layer TXL1 including the first gate semiconductor layer and the first channel, the third gate semiconductor layer and the second channel, and the X selection transistor layer TXL2 including the third gate semiconductor layer and the second channel.
- the memory array MA can be selected in the X direction.
- the X selection transistor layer TXL1 simultaneously selects the + X side and ⁇ X side channel layers. For example, as shown in FIG. 6, when 5/5 / 5V is applied to STGLDm, channel layers 8p + X1 and 8p ⁇ X1 are selected and electrically connected to diode layer PD. However, these two channel layers are not selected by the X selection transistor layer TXL1.
- the channel layers 8p + X1 and 8p-X2 can be electrically connected to the diode layer PD at the same time, and the channel layers 8p-X1 and 8p + X2 can be electrically connected to the diode layer PD at the same time. It is because it is possible to be connected to.
- the X selection transistor layer TXL2 selects two channel layers. For example, as shown in FIG. 6, when 5/5 / 5V is applied to STGLU1, only channel layers 8p-X2 and 8p + X3 are selected. Therefore, there are only two channel layers selected by the X selection transistor layer TXL2 that are directly connected via the insulating film.
- one channel layer can be selected in the X direction by shifting the gate semiconductor layer to be selected by one in the X direction.
- four of 8p + X1, 8p-X1, 8p + X2, and 8p-X2 are selected in TXL1, and two of 8p-X2 and 8p + X3 are selected in TXL2, and the other channel layers are in a non-selected state.
- the channel layer that is in the selected state and through which the current flows is only 8p-X2 selected by both TXL1 and TXL2. Accordingly, the X direction selection operation is possible with the configuration of this embodiment.
- FIG. 7 shows a cross section of the memory array MA of FIG. 3 in the YZ plane, particularly at the polysilicon 8p.
- the potential of the pair (WLn ⁇ 1, WLn) and the pair (BLn ⁇ 2, BLn ⁇ 1) is set to 5/4/2 V during the reset operation, the set operation, and the read operation. All other wiring potentials are set to 0V. Since a forward bias is applied to PD between WLn and BLn, a current flows. Since no potential flows between WLn ⁇ 1 and BLn ⁇ 1, between WLn + 1 and BLn + 1, etc., no current flows. Since a reverse bias is applied to PD between WLn-2 and BLn-2, no current flows. Therefore, it can be seen that the Y direction can be selected with such a configuration.
- the configuration according to the present embodiment enables the selection operation in all directions of X, Y, and Z, and only the selected cell SMC can be operated.
- the potentials of the pair (WLn ⁇ 1, WLn) and the pair (BLn ⁇ 2, BLn ⁇ 1) are set to 5/4 / 2V during the reset operation, the set operation, and the read operation, and (BLn, The operation of applying 0V to the pair BLn + 1), setting all other lower wirings to 0V, and setting all other upper wirings to 5/4 / 2V is also possible.
- the selected chain need not be limited to the chain between WLn and BLn.
- the potential of reset operation, set operation, read operation is 5/4 / 2V, and all other wiring potentials are 0V
- the coordinates of Xn and Z direction are the same WLn
- Two chains can be selected between BLn and WLn-4 and BLn-4.
- FIG. 8 shows a layout of the word line 2, the bit line 3, and the contact LC to them for realizing the wiring connection of FIG. Two adjacent lines are bound, and a contact LC is formed in the binding portion MLC having a large area.
- the contacts of the word line 2 and the bit line 3 are respectively formed on one side of the array.
- the bit line 3 is omitted in order to clearly show the layout of the word line 2.
- FIGS. 7 and 8 two adjacent word lines are bound together, two adjacent bit lines are bound together, and two of the word lines are bound vertically above.
- the two bit lines provided in are electrically isolated from each other. With such a configuration, it is possible to realize the selection operation in the Y direction while reducing the contact resistance in each bundling portion of the word line and the bit line.
- the connection pattern can be made simpler than other connection methods described later.
- the bundling method of the word line 2 and the bit line 3 is not limited to the method shown in FIGS.
- An example of another method is shown in FIGS.
- FIG. 9 shows a cross section of the polysilicon 8p in the YZ plane of FIG.
- the word lines 2 are bundled with two adjacent lines, but the bit lines 3 are bundled every other line.
- 5/4 / 2V is applied to the pair (WLn-1, WLn) at the time of reset operation, set operation, and read operation, BL1 connected by the path including the selected cell is 0V, and the other BL2 is The same potential as that of the pair (WLn-1, WLn) is applied.
- FIG. 10 shows a layout corresponding to the bundling method of FIG. All contacts of the wiring 2 are formed on one side. In the upper wiring 3, even-numbered and odd-numbered ones are bound on both sides of the array to form a contact.
- Each contact LC is formed in a binding portion MLC having an increased area. Since a large contact LC can be formed, the resistance can be reduced. Furthermore, compared to the layout according to FIG. 8, only two contacts corresponding to BL1 and BL2 are required, so the number of contacts can be reduced. Also, the number of driver circuits can be reduced because there are only two driver circuits corresponding to BL1 and BL2.
- the bundling method according to FIGS. 9 and 10 is characterized in that two adjacent word lines are bundled, and odd-numbered and even-numbered bit lines are bundled. With such a feature, it is possible to reduce contact resistance and further reduce the number of contacts and the number of driver circuits.
- the selected cell need not be limited to the chain of WLn and BL1.
- the pair of (WLn ⁇ 1, WLn), (WLn + 1, WLn + 2), BL2 potential is set to 5 at the time of reset operation, set operation, and read operation. / 4 / 2V, and all other wiring potentials are set to 0V.
- Two chains can be selected: a chain between WLn and BL1 and a chain between WLn + 2 and BL1 having the same X-direction and Z-direction coordinates.
- FIG. 11 shows a cross section of the polysilicon 8p as viewed in the Y direction.
- the word line 2 binds three continuous lines.
- the bit lines 3 are bundled in two. (5n / 2V) is applied to the set of (WLn-1, WLn, WLn + 1) at the time of reset operation, set operation, and read operation, and BL1 connected by the path including the selected cell is 0V, and other BL2 , BL3 apply the same potential as the set of (WLn-1, WLn, WLn + 1). Since a forward bias is applied to PD between WLn and BL1, a current flows.
- FIG. 12 shows a layout corresponding to the bundling method of FIG. Each contact LC is formed in a binding portion MLC having an increased area. Since a large contact LC can be formed, the resistance can be reduced. Furthermore, compared with the layouts of FIGS. 8 and 10, there is an effect of reducing the number of driver circuits for driving the word lines.
- the selected cells need not be limited to the chain of WLn and BL1.
- the group of (WLn-1, WLn, WLn + 1), the group of (WLn + 2, WLn + 3, WLn + 4), and the potentials of BL2 and BL3 are reset.
- 5/4 / 2V is set and all other wiring potentials are set to 0V.
- Two chains can be selected: a chain between WLn and BL1 and a chain between WLn + 3 and BL1 having the same coordinates in the X and Z directions.
- FIG. 13 summarizes the voltage conditions for realizing the selection operation in the Y direction with respect to the three types of wiring bundling methods of the first embodiment.
- the semiconductor memory device can reduce the contact resistance because the contacts LC can be formed by bundling the wires, and compared with the case where the contacts are formed for each wire. This is advantageous when the stacking of MAs is promoted.
- FIG. 14 compares how the contact resistance is increased with respect to the number of MA stacks in the prior art and the technique of the present invention. By using the technique of the present invention, the number of stacked MAs can be increased, and the capacity increase of the semiconductor memory device can be promoted.
- FIG. 15 shows a modification of the diode layer PD.
- the diode PD is processed into a pillar shape and exists only in the lower part of the portion from which the laminated film such as 21p to 24p is removed, but may extend in the X direction.
- the X direction is selected by the method described in FIG.
- FIG. 16 is a partial three-dimensional schematic diagram of the semiconductor memory device according to the second embodiment of the present invention, and shows a part of a memory cell array, wiring, and contacts.
- Example 2 differs in that no diode layer PD is used.
- 17A and 17B are views showing a cross section in the Y direction of the second embodiment, and show a cross section of the polysilicon 8p. Both the lower electrode wiring (word line) 2 and the upper electrode wiring (bit line) 3 are bound together in the same manner as in FIG.
- the word lines WLn are connected to each other.
- 5/4/2 V is applied to the two word lines including the reset operation, the set operation, and the read operation.
- 0V is applied to BLn on the opposite side of WLn through the selected cell. A current flows because a potential difference is generated between WLn and BLn.
- the word line whose number in the Y direction is n or less and the bit line whose number is n-1 or less are all applied with 5/4 / 2V during reset operation, set operation, and read operation, respectively.
- a word line with n + 1 or more and a bit line with n or more apply 0 V at the time of reset operation, set operation, and read operation.
- the current does not flow because the potential is equal except for between WLn and BLn.
- the Y direction can be selected because a current can flow only between WLn and BLn by the above driving method.
- the Y direction can be selected because a current can flow only between WLn-1 and BLn-1 by the above driving method.
- the X direction is selected by the method described in FIG.
- each of the plurality of word lines (2) extending in the X direction parallel to the main surface of the semiconductor substrate is parallel to the main surface of the semiconductor substrate and intersects the X direction.
- a plurality of first channel layers (81p) provided between the plurality of stacked bodies and the plurality of first gate semiconductor layers through an insulating layer and electrically connected to the word line, and a plurality of second gates
- the semiconductor layer and the third gate semiconductor layer ;
- a plurality of first gate insulating film layers (9) provided on the + X side and -X side of the surface, and a first gate insulating film on the + X side of the side surfaces of the plurality of second gate semiconductor layers and the third gate semiconductor layer
- a plurality of second channel layers (8p + X) provided through the layers and periodically provided in the Y direction and electrically connected to the first channel layer, and + X of side surfaces of the plurality of second gate semiconductor layers
- the first gate semiconductor layer and the second channel layer are provided on the side, provided periodically in the Y direction, electrically connected to the first channel layer, and made of a material whose resistance value is changed by a flowing current.
- variable resistance material layer (7) and provided on the ⁇ X side of the side surfaces of the plurality of second gate semiconductor layers and the third gate semiconductor layers via the first gate insulating film layer, and periodically provided in the Y direction Electrically connected to the first channel layer Of the plurality of third channel layers (8p-X) and the side surfaces of the plurality of second gate semiconductor layers provided on the ⁇ X side via the first gate semiconductor layer and the third channel layer and periodically in the Y direction.
- a second variable resistance material layer (7) made of a material that is electrically connected to the first channel layer and has a resistance value changed by a flowing current, and a plurality of word lines with reference to the main surface of the semiconductor substrate.
- a plurality of bit lines (3) provided in the vertical direction and extending in the X direction and electrically connected to the plurality of second channels and the plurality of third channels, and each of the plurality of word lines Are bound two by two, and each of the plurality of bit lines is bound by two adjacent ones, and two of the plurality of word lines are provided vertically above each of the two electrically coupled.
- the bit lines are electrically separated It is separated.
- the memory can be operated by flowing a current in the reverse direction by switching the voltage relationship between the upper and lower wirings. That is, the driver can switch between a first operation in which the first potential is higher than the second potential and a second operation in which the first potential is lower than the second potential, and the third potential is changed from the fourth potential. It is further characterized in that it can be switched between a third operation for setting a high potential and a fourth operation for setting the third potential to be lower than the fourth potential.
- the vertical memory array when the chain is selected, when the upper electrode (bit line) is set to 0 V and a positive voltage is applied to the lower electrode (word line) to operate, it is close to the bit line.
- the voltage applied to the selected cell is different between the case of selecting a cell and the case of selecting a distant cell, the characteristics are varied.
- the voltage applied to the selected cell is different because of the parasitic resistance (channel resistance) of the non-selected cell in the selected chain.
- the selected cell need not be limited to the chain between WLn and BLn.
- 5/4 / 2V is applied to WLn-1 and WLn during reset operation, set operation, and read operation, respectively, If all the potentials are set to 0V, it is possible to select two places, a chain between WLn and BLn and a chain between WLn-1 and BLn-1 having the same coordinates in the X and Z directions.
- the wiring and contact layout can be the same as in FIG. Since the resistance of the contact LC can be reduced, the number of stacked MA layers can be increased, and the capacity increase of the semiconductor memory device can be promoted.
- FIG. 18 shows a modification of the bundling portion, in which a part of the memory cell array, wiring, and contacts is shown.
- the wiring is finely processed in accordance with the cell pitch in the MA and is bound by the binding portion MLC outside the MA, but may be bound inside.
- the shape of each wiring in the XY plane can be made closer to a rectangle, and not only can the resistance of the contact LC be reduced, but also the word lines and bit lines can be thickened. Resistance can also be reduced.
- the layout of the contact LC in the MLC section can be the same as in FIG. With such a configuration, the resistance of the contact LC can be reduced, so that the number of stacked MA layers can be increased, and the capacity of the semiconductor memory device can be increased.
- the electrode wiring is processed into a stripe shape in order to realize selection in the Y direction, but it may be formed into a plate shape.
- both selection in the X direction and selection in the Y direction may be performed by a selection transistor.
- FIG. 19 shows a selection transistor that realizes selection in the Y direction, which includes a two-stage stripe gate extending in the X direction, silicons 141p to 144p on pillars divided in both the X and Y directions, a gate insulating film, and the like. .
- a selection transistor that realizes selection in the Y direction, which includes a two-stage stripe gate extending in the X direction, silicons 141p to 144p on pillars divided in both the X and Y directions, a gate insulating film, and the like.
- FIG. 19 shows a selection transistor that realizes selection in the Y direction, which includes a two-stage stripe gate extending in the X direction, silicons 141p to 144p on pillars divided in both the X and Y directions, a gate insulating film, and the like.
- the selection operation in the Y direction in the present embodiment is provided between the first plate (102) and the plurality of first gate semiconductor layers (81p), and the Y direction among the plurality of first channels (41p).
- the first transistor layer (TYL1) that selects two adjacent to each other and the two adjacent to each other in the Y direction are selected between the first transistor layer and the first gate semiconductor layer.
- the second transistor layer (TYL2) In particular, two of the first channels selected by the first transistor layer are different from two selected by the second transistor layer.
- FIG. 20 shows a selection transistor that realizes selection in the X direction, which includes a one-stage stripe gate extending in the Y direction, silicon 145p and 146p on pillars separated in both the X and Y directions, a gate insulating film, and the like.
- a select transistor STG3, a chain cell array, a bit line 3, and the like are shown.
- FIG. 20 by applying an ON voltage only to STG3 and n at the first stage selection gate, only the two channel silicon 145p on both sides of the gate can be turned on. Furthermore, only one chain shown in FIG. 20 can be selected by applying an ON voltage only to STG4 and n + 1 with the second selection transistor. That is, the configuration and selection operation in the X direction are the same as those in FIG.
- the first plate (102) provided above the semiconductor substrate and the second plate (103) provided above the first plate are respectively formed on the semiconductor substrate.
- the first gate semiconductor layer (81p) extending in the Y direction parallel to the main surface of the first plate and provided above the first plate, and the first gate semiconductor layer extending in the Y direction and provided above the first gate semiconductor layer via the insulating layer.
- first channel layers (41p) provided via an insulating layer between the plurality of first gate semiconductor layers and the plurality of stacked bodies periodically provided in the X direction that is parallel to the main surface of the first layer.
- a plurality of second channel layers (8p + X) provided on the + X side of the side surface via the first gate insulating film layer, periodically provided in the Y direction, and electrically connected to the first channel layer and the second plate ), And is provided on the + X side among the side surfaces of the plurality of second gate semiconductor layers via the first gate semiconductor layer and the second channel layer, periodically provided in the Y direction, and electrically connected to the first channel layer
- a first variable resistance material layer (7) made of a material whose resistance value changes depending on a flowing current, and a
- a first transistor layer that is provided between the first plate and the plurality of first gate semiconductor layers and selects two adjacent ones in the Y direction among the plurality of first channels.
- (TYL1) and a second transistor layer (TYL2) provided between the first transistor layer and the first gate semiconductor layer and selecting two adjacent ones in the Y direction among the plurality of first channels. It is characterized by.
- FIG. 21 is a partial three-dimensional schematic diagram of the semiconductor memory device of this embodiment. In FIG. 21, for simplicity, the structure between STG1, the structure between STG2, and the structure between stacked bodies are omitted.
- either one of the upper and lower electrodes may be at a higher potential during operation. That is, as in the second embodiment, the memory cell can be operated with an upward current or the memory cell can be operated with a downward current.
- the MLC portion can be enlarged, so that the contact LC can be further increased. Therefore, since the resistance of the contact LC can be further reduced, the number of stacked MA layers can be increased, and the increase in capacity of the semiconductor memory device can be promoted.
- the upper metal wiring and the lower metal wiring are separately formed in the respective layers.
- the upper electrode wiring in the lower MA layer and the lower part of the upper MA layer are formed.
- the electrode wiring can be shared as shown in FIG. Which of the upper and lower MA layers is selected can be selected by a selection transistor.
- the layout of the MLC section can use the same system as in the first to third embodiments.
- the contact LC can also be increased. Therefore, since the resistance of the contact LC can be reduced, the number of stacked MA layers can be increased, and the capacity increase of the semiconductor memory device can be promoted.
- Electrode wiring 3 103, 203 Electrode wiring 40pp Polysilicon layer 50p doped with p-type impurities Polysilicon layers 60p, 61p, 62pn with low impurity concentration Polysilicon layer 7 doped with n-type impurities, 207 Phase change material layer 8p, 8p + X1, 8p + X2, 8p + X3, 8p-X1, 8p-X2, 208p Channel polysilicon layer 41p, 241p, 141p, 143p, 145p, 147p Channel polysilicon layer 42p, 242p, 48p, 142p, 144p 146p, 148p N-type impurity doped polysilicon layers 9, 209 Gate insulating film layers 10, 210 Insulating film layers 11, 12, 13, 14, 15 Insulating film layers 21p, 22p, 23p, 24p, 81p, 82p Gate polysilicon layers 221p, 222p, 2 23p, 224p, 281p, 282p Gate polysilicon layers 221
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
図1は本発明の実施例1の半導体記憶装置の一部立体模式図であり、メモリセルアレイ、配線、コンタクトの一部が示されている。ワード線2、ワード線2と周辺回路とを接続するコンタクト孔LC、p型不純物がドープされたポリシリコン層40pと低濃度の不純物がドープされたポリシリコン層50pとn型不純物がドープされたポリシリコン層60pからなるダイオード層PD、メモリセルのゲートポリシリコン層21p、22p、23p、24p、選択トランジスタのゲートポリシリコン層81p、82p、メモリセルのゲートポリシリコン層に給電するための金属配線GL1、GL2、GL3、GL4、メモリセルのゲートポリシリコン層21p、22p、23p、24pと配線GL1、GL2、GL3、GL4をそれぞれ接続するコンタクトGC1、GC2、GC3、GC4、ビット線3から構成される部分が図1に示されている。
図4では、図3のメモリセルアレイMAのXZ平面における断面のうち一部分を抜き出して示している。絶縁膜層31は、図1、2、3では分かりやすさのために省いていたが、PD間スペースに埋め込まれた絶縁膜である。
図6では、図3のXZ平面における断面図を示しており、リセット動作、セット動作、読出し動作を行う際の、選択トランジスタと、ゲート配線GL1、GL2、GL3、GL4の関係を示している。図4と同様に、WLnの電位、5/4/2Vはそれぞれ、リセット動作時、セット動作時、読出し動作時の電位である。図6の他の端子の電位の表記も同様に、順にリセット動作時、セット動作時、読出し動作時の電位を表している。下側の選択トランジスタでは、STGLDmだけをON状態にし、上側の選択トランジスタではSTGLU1をON状態にすると、電流が流れるパスは選択セルSMCを含む経路だけに限られる。
図7は、図3のメモリアレイMAのYZ平面における断面のうち、特にポリシリコン8pでの断面を示している。例えば、(WLn-1,WLn)のペアと、(BLn-2,BLn-1)のペアの電位をリセット動作時、セット動作時、読出し動作時に5/4/2Vとする。他の配線電位は全て0Vとする。WLnとBLnの間はPDに順バイアスが印加されるので電流が流れる。WLn-1とBLn-1の間、WLn+1とBLn+1の間などは等電位であるために電流は流れない。WLn-2とBLn-2の間はPDに逆バイアスが印加されるので電流は流れない。従って、係る構成で、Y方向の選択が可能なことが分かる。
ワード線2、ビット線3の結束方法は、図7、8の方法だけには限られない。別の方法の例を図9、10に示す。図9は図3のYZ平面における断面のうち特にポリシリコン8pでの断面を示している。ワード線2は図7と同様に隣接する2本どうしを結束するが、ビット線3は1本おきに結束している。(WLn-1,WLn)のペアにリセット動作時、セット動作時、読出し動作時にそれぞれ5/4/2Vを印加し、選択セルが含まれる経路で接続されるBL1は0V、もう一方のBL2は(WLn-1,WLn)のペアと同じ電位を印加する。WLn、BL1間はPDに順バイアスが印加されるので電流が流れる。WLn-1、BL2間は等電位なので電流が流れない。WLn-2、BL1間なども等電位なので電流が流れない。WLn+1、BL2間などはPDに逆バイアスが印加されるので電流が流れない。したがってWLn、BL1間だけに電流を流すことができ、図7、8の例と同様にY方向の選択が可能である。図10に図9の結束方式に対応するレイアウトを示す。配線2のコンタクトは全て片側で形成している。上部配線3は偶数番目と奇数番目をそれぞれアレイの両側で結束しコンタクトを形成している。それぞれのコンタクトLCは、面積が大きくなった結束部MLCに形成する。大きなコンタクトLCを形成できるので抵抗を低減でき、さらに、図8に係るレイアウトと比較して、BL1とBL2に対応した2つのコンタクトがあれば良いので、コンタクト数を低減できる。また、ドライバ回路についても、BL1、BL2に対応した2つがあれば良いので個数を低減できる。
更に別の結束方法の例を図11、12に示す。図11はY方向で見た断面でポリシリコン8pでの断面を示している。ワード線2は連続する3本を結束する。ビット線3は2本とばしで結束する。(WLn-1,WLn,WLn+1)の組にリセット動作時、セット動作時、読出し動作時にそれぞれ5/4/2Vを印加し、選択セルが含まれる経路で接続されるBL1は0V、他のBL2、BL3は(WLn-1,WLn,WLn+1)の組と同じ電位を印加する。WLn、BL1間はPDに順バイアスが印加されるので電流が流れる。WLn-1、BL2間とWLn+1、BL3間は等電位なので電流が流れない。WLn-3、BL1間なども等電位なので電流が流れない。WLn+2、BL2間、WLn-2、BL3間などはPDに逆バイアスが印加されるので電流が流れない。したがってWLn、BL1間だけに電流を流すことができ、図7、8の例、図9、10の例と同様にY方向の選択が可能である。図12に図11の結束方式に対応するレイアウトを示す。それぞれのコンタクトLCは、面積が大きくなった結束部MLCに形成する。大きなコンタクトLCを形成できるので抵抗を低減できる。さらに、図8や図10のレイアウトと比較して、ワード線を駆動するドライバ回路数を削減する効果がある。
図13に、実施例1の3種類の配線結束方法に対して、Y方向の選択動作を実現するための電圧条件をまとめる。
図15に、ダイオード層PDの変形例を示す。図3では、ダイオードPDはピラー形状に加工され、21p~24pなどの積層膜が除去された部分の下部だけに存在したが、X方向に延在していても良い。係る構成によって、ピラー形状への加工工程や、絶縁膜31を充填する工程を省略し、製造コストを低減することが可能となる。ただし、図15でY方向に隣接するPD間では分断されている必要がある。X方向は図6で説明した方法で選択する。
(a)m番目の積層体と電気的に接続されるワード線が、(m―1)番目の積層体と電気的に接続されるワード線と結束されている場合は、m番目以下の積層体に接続されるワード線のそれぞれ、および、(m―1)番目以下の積層体に接続されるビット線のそれぞれに、第1電位を印加し、(m+1)番目以上の積層体に接続されるワード線のそれぞれ、および、m番目の積層体に接続されるビット線のそれぞれに、第1電位と異なる第2電位を印加する。
図18は結束部の変形例であり、メモリセルアレイ、配線、コンタクトの一部が示されている。
3、103、203 電極配線
40p p型不純物がドープされたポリシリコン層
50p 不純物濃度が低いポリシリコン層
60p、61p、62p n型不純物がドープされたポリシリコン層
7、207 相変化材料層
8p、8p+X1、8p+X2、8p+X3、8p-X1、8p-X2、208p チャネルポリシリコン層
41p、241p、141p、143p、145p、147p チャネルポリシリコン層
42p、242p、48p、142p、144p、146p、148p n型不純物がドープされたポリシリコン層
9、209 ゲート絶縁膜層
10、210 絶縁膜層
11、12、13、14、15 絶縁膜層
21p、22p、23p、24p、81p、82p ゲートポリシリコン層
221p、222p、223p、224p、281p、282p ゲートポリシリコン層
31、32 絶縁膜層
71、271 絶縁膜層
91、92、93 絶縁膜層
MA メモリアレイ
BL、BL1、BL3 ビット線
WLn-6、WLn-5、WLn-4、WLn-3、WLn-2、WLn-1、WLn、WLn+1、WLn+2、WLn+3、WLn+4、WLn+5 ワード線
MLC 配線結束領域
LC 配線結束領域に至るコンタクト
GC1、GC2、GC3、GC4 ゲート電極へのコンタクト
GC21、GC22、GC23、GC24 ゲート電極へのコンタクト
GL1、GL2、GL3、GL4 ゲート電極に給電するための金属配線
GL21、GL22、GL23、GL24 ゲート電極に給電するための金属配線
STGLU1、STGLU2、STGLU3 選択トランジスタのゲートに給電するための金属配線
STGLDm、STGLDm+1 選択トランジスタのゲートに給電するための金属配線
SMC 選択メモリセル
USMC、USMC1、USMC2、USMC3 非選択メモリセル
PD ダイオード層
STG1,n、STG1,n+1 選択トランジスタゲート
STG2,n、STG2,n+1、STG2,n+2 選択トランジスタゲート
STG3,m、STG3,m+1 選択トランジスタゲート
STG4,m、STG4,m+1、STG4,m+2 選択トランジスタゲート
Tx,n,1、Tx,n,2、Tx,n+1,1、Tx,n+1,2 端子
Ty,m,1、Ty,m,2、Ty,m+1,1、Ty,m+1,2 端子
STG1、STG2、STG3、STG4、STG5 選択トランジスタゲート
X,Y、Z 方向
TXL1、TXL2 X選択トランジスタ層
TYL1、TYL2 Y選択トランジスタ層
Claims (15)
- 半導体基板の主面に平行なX方向に延伸する複数のワード線と、
前記複数のワード線の上方に設けられる複数のダイオード層と、
それぞれが、前記半導体基板の主面に平行かつ前記X方向と交差するY方向に延伸し前記複数のダイオード層の上方に設けられる第1ゲート半導体層と、Y方向に延伸し第1ゲート半導体層の上方に設けられ絶縁層を介して互いに積層される複数の第2ゲート半導体層と、Y方向に延伸し前記複数の第2ゲート半導体層の上方に設けられる第3ゲート半導体層と、を有し、X方向に周期的に設けられる複数の積層体と、
前記複数の第1ゲート半導体層の間に絶縁層を介して設けられ、前記ダイオード層と電気的に接続される複数の第1チャネル層と、
前記複数の第2ゲート半導体層および前記第3ゲート半導体層の側面のうち+X側および-X側に設けられる複数の第1ゲート絶縁膜層と、
前記複数の第2ゲート半導体層および前記第3ゲート半導体層の側面のうち+X側に前記第1ゲート絶縁膜層を介して設けられ、Y方向に周期的に設けられ、前記第1チャネル層と電気的に接続される複数の第2チャネル層と、
前記複数の第2ゲート半導体層の側面のうち+X側に前記第1ゲート絶縁膜層および前記第2チャネル層を介して設けられ、Y方向に周期的に設けられ、前記第1チャネル層と電気的に接続され、流れる電流によって抵抗値が変化する材料からなる複数の第1抵抗変化材料層と、
前記複数の第2ゲート半導体層および前記第3ゲート半導体層の側面のうち-X側に前記第1ゲート絶縁膜層を介して設けられ、Y方向に周期的に設けられ、前記第1チャネル層と電気的に接続される複数の第3チャネル層と、
前記複数の第2ゲート半導体層の側面のうち-X側に前記第1ゲート半導体層および前記第3チャネル層を介して設けられ、Y方向に周期的に設けられ、前記第1チャネル層と電気的に接続され、流れる電流によって抵抗値が変化する材料からなる複数の第2抵抗変化材料層と、
前記半導体基板の主面を基準として前記複数のワード線のそれぞれの鉛直上方に設けられ、X方向に延伸し、前記複数の第2チャネルおよび前記複数の第3チャネルと電気的に接続される複数のビット線と、を有し、
前記複数のワード線のそれぞれは、他の前記ワード線と結束され、
前記複数のビット線のそれぞれは、他の前記ビット線と結束され、
前記複数のワード線のうち結束される2本のそれぞれの鉛直上方に設けられる2本の前記ビット線は、電気的に分離されることを特徴とする半導体記憶装置。 - 請求項1において、
前記複数のワード線のそれぞれは、隣接する2本ずつ結束され、
前記複数のビット線のそれぞれは、隣接する2本ずつ結束されることを特徴とする半導体記憶装置。 - 請求項1において、
前記複数のワード線のそれぞれは、隣接する2本ずつ結束され、
前記複数のビット線のうち奇数本目は結束され、
前記複数のビット線のうち偶数本目は結束されることを特徴とする半導体記憶装置。 - 請求項1において、
前記複数のワード線のそれぞれは、隣接する3本ずつ結束され、
前記複数のビット線のうち3m本目(mは自然数)は結束され、
前記複数のビット線のうち(3m+1)本目は結束され、
前記複数のビット線のうち(3m+2)本目は結束されることを特徴とする半導体記憶装置。 - 請求項1において、
前記複数のダイオード層のそれぞれは、X方向に延伸することを特徴とする半導体記憶装置。 - 請求項1において、
前記複数のダイオード層のそれぞれは、X方向において絶縁膜を介して周期的に設けられることを特徴とする半導体記憶装置。 - 請求項1において、
前記複数のワード線、前記複数のビット線、前記複数のダイオード層、前記複数の積層体、前記複数の第1ゲート絶縁膜層、前記複数の第1チャネル層、前記複数の第1抵抗変化材料層、前記第1トランジスタ層、および前記第2トランジスタ層を含むメモリアレイが複数個互いに積層され、
前記複数のメモリアレイ間のコンタクトは、前記複数のワード線のそれぞれが結束される部分および前記複数のビット線のそれぞれが結束される部分に設けられることを特徴とする半導体記憶装置。 - 半導体基板の主面に平行なX方向に延伸する複数のワード線と、
それぞれが、前記半導体基板の主面に平行かつ前記X方向と交差するY方向に延伸し前記複数のワード線の上方に設けられる第1ゲート半導体層と、Y方向に延伸し第1ゲート半導体層の上方に設けられ絶縁層を介して互いに積層される複数の第2ゲート半導体層と、Y方向に延伸し前記複数の第2ゲート半導体層の上方に設けられる第3ゲート半導体層と、を有し、X方向に周期的に設けられる複数の積層体と、
前記複数の第1ゲート半導体層の間に絶縁層を介して設けられ、前記ワード線と電気的に接続される複数の第1チャネル層と、
前記複数の第2ゲート半導体層および前記第3ゲート半導体層の側面のうち+X側および-X側に設けられる複数の第1ゲート絶縁膜層と、
前記複数の第2ゲート半導体層および前記第3ゲート半導体層の側面のうち+X側に前記第1ゲート絶縁膜層を介して設けられ、Y方向に周期的に設けられ、前記第1チャネル層と電気的に接続される複数の第2チャネル層と、
前記複数の第2ゲート半導体層の側面のうち+X側に前記第1ゲート半導体層および前記第2チャネル層を介して設けられ、Y方向に周期的に設けられ、前記第1チャネル層と電気的に接続され、流れる電流によって抵抗値が変化する材料からなる第1抵抗変化材料層と、
前記複数の第2ゲート半導体層および前記第3ゲート半導体層の側面のうち-X側に前記第1ゲート絶縁膜層を介して設けられ、Y方向に周期的に設けられ、前記第1チャネル層と電気的に接続される複数の第3チャネル層と、
前記複数の第2ゲート半導体層の側面のうち-X側に前記第1ゲート半導体層および前記第3チャネル層を介して設けられ、Y方向に周期的に設けられ、前記第1チャネル層と電気的に接続され、流れる電流によって抵抗値が変化する材料からなる第2抵抗変化材料層と、
前記半導体基板の主面を基準として前記複数のワード線のそれぞれの鉛直上方に設けられ、X方向に延伸、前記複数の第2チャネルおよび前記複数の第3チャネルと電気的に接続される複数のビット線と、を有し、
前記複数のワード線のそれぞれは、隣接する2本ずつ結束され、
前記複数のビット線のそれぞれは、隣接する2本ずつ結束され、
前記複数のワード線のうち結束される2本のそれぞれの鉛直上方に設けられる2本の前記ビット線は、電気的に分離されることを特徴とする半導体記憶装置。 - 請求項8において、
前記複数のワード線および前記複数のビット線のそれぞれに駆動電位を印加するドライバをさらに有し、
前記Y方向に、N個の前記積層体が並んで設けられ(Nは、N≧2である整数)、
前記第2チャネルまたは前記第3チャネルのうち、前記Y方向に並んだm番目の前記積層体と前記第1ゲート絶縁膜層を介して接続されるものを選択する際に(mは、2≦m≦N―1である整数)、
(a)m番目の前記積層体と電気的に接続される前記ワード線が、(m―1)番目の前記積層体と電気的に接続される前記ワード線と結束されている場合は、
前記ドライバは、
m番目以下の前記積層体に接続される前記ワード線のそれぞれ、および、(m―1)番目以下の前記積層体に接続される前記ビット線のそれぞれに、第1電位を印加し、
(m+1)番目以上の前記積層体に接続される前記ワード線のそれぞれ、および、m番目の前記積層体に接続される前記ビット線のそれぞれに、前記第1電位と異なる第2電位を印加し、
(b)m番目の前記積層体と電気的に接続される前記ワード線が、(m+1)番目の前記積層体と電気的に接続される前記ワード線と結束されている場合は、
前記ドライバは、
m番目以上の前記積層体に接続される前記ワード線のそれぞれ、および、(m+1)番目以上の前記積層体に接続される前記ビット線のそれぞれに、第3電位を印加し、
(m―1)番目以下の前記積層体に接続される前記ワード線のそれぞれ、および、(m―1)番目以下の前記積層体に接続される前記ビット線のそれぞれに、前記第3電位と異なる第4電位を印加することを特徴とする半導体記憶装置。 - 請求項9において、
前記ドライバは、前記第1電位を前記第2電位より高電位とする第1動作と、前記第1電位を前記第2電位より低電位とする第2動作とを切り替えられ、
前記ドライバは、前記第3電位を前記第4電位より高電位とする第3動作と、前記第3電位を前記第4電位より低電位とする第4動作とを切り替えられることを特徴とする半導体記憶装置。 - 請求項8において、
前記複数のワード線、前記複数のビット線、前記複数の積層体、前記複数の第1ゲート絶縁膜層、前記複数の第1チャネル層、前記複数の第1抵抗変化材料層、前記第1トランジスタ層、および前記第2トランジスタ層メモリアレイが複数個互いに積層され、
前記複数のメモリアレイ間のコンタクトは、前記複数のワード線のそれぞれが結束される部分および前記複数のビット線のそれぞれが結束される部分に設けられることを特徴とする半導体記憶装置。 - 請求項8において、
前記第1電位と前記第3電位は等しく、
前記第2電位と前記第4電位は等しいことを特徴とする半導体記憶装置。 - 半導体基板の上方に設けられる第1プレートと、
前記第1プレートの上方に設けられる第2プレートと、
それぞれが、前記半導体基板の主面に平行なY方向に延伸し前記第1プレートの上方に設けられる第1ゲート半導体層と、前記Y方向に延伸し第1ゲート半導体層の上方に設けられ絶縁層を介して互いに積層される複数の第2ゲート半導体層と、前記Y方向に延伸し前記複数の第2ゲート半導体層の上方に設けられる第3ゲート半導体層と、を有し、前記半導体基板の主面に平行かつ前記Y方向と交差するX方向に周期的に設けられる複数の積層体と、
前記複数の第1ゲート半導体層の間に絶縁層を介して設けられる複数の第1チャネル層と、
前記複数の第2ゲート半導体層および前記第3ゲート半導体層の側面のうち+X側および-X側に設けられる複数の第1ゲート絶縁膜層と、
前記複数の第2ゲート半導体層および前記第3ゲート半導体層の側面のうち+X側に前記第1ゲート絶縁膜層を介して設けられ、前記Y方向に周期的に設けられ、前記第1チャネル層および前記第2プレートと電気的に接続される複数の第2チャネル層と、
前記複数の第2ゲート半導体層の側面のうち+X側に前記第1ゲート半導体層および前記第2チャネル層を介して設けられ、前記Y方向に周期的に設けられ、前記第1チャネル層と電気的に接続され、流れる電流によって抵抗値が変化する材料からなる第1抵抗変化材料層と、
前記複数の第2ゲート半導体層および前記第3ゲート半導体層の側面のうち-X側に前記第1ゲート絶縁膜層を介して設けられ、前記Y方向に周期的に設けられ、前記第1チャネル層および前記第2プレートと電気的に接続される複数の第3チャネル層と、
前記複数の第2ゲート半導体層の側面のうち-X側に前記第1ゲート半導体層および前記第3チャネル層を介して設けられ、前記Y方向に周期的に設けられ、前記第1チャネル層と電気的に接続され、流れる電流によって抵抗値が変化する材料からなる第2抵抗変化材料層と、
前記第1プレートと前記複数の第1ゲート半導体層の間に設けられ、前記複数の第1チャネルのうち前記Y方向に隣接する2つを選択する第1トランジスタ層と、
前記第1トランジスタ層と前記第1ゲート半導体層の間に設けられ、前記複数の第1チャネルのうち前記Y方向に隣接する2つを選択する第2トランジスタ層と、を有することを特徴とする半導体記憶装置。 - 請求項13において、
前記第1プレート、前記第2プレート、前記複数の積層体、前記複数の第1ゲート絶縁膜層、前記複数の第1チャネル層、前記複数の第2チャネル層、前記複数の第3チャネル層、前記複数の第1抵抗変化材料層、前記複数の第2抵抗変化材料層、前記第1トランジスタ層、および前記第2トランジスタ層を含むメモリアレイが複数個互いに積層され、
前記複数のメモリアレイ間のコンタクトは、前記第1プレートおよび前記第2プレートに設けられることを特徴とする半導体記憶装置。 - 請求項13において、
前記複数の第1チャネルのうち、前記第1トランジスタ層によって選択される2つと、前記第2トランジスタ層によって選択される2つとは、異なることを特徴とする半導体記憶装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/003285 WO2012168981A1 (ja) | 2011-06-10 | 2011-06-10 | 半導体記憶装置 |
JP2013519239A JP5543027B2 (ja) | 2011-06-10 | 2011-06-10 | 半導体記憶装置 |
US14/124,725 US9099177B2 (en) | 2011-06-10 | 2011-06-10 | Semiconductor storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/003285 WO2012168981A1 (ja) | 2011-06-10 | 2011-06-10 | 半導体記憶装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012168981A1 true WO2012168981A1 (ja) | 2012-12-13 |
Family
ID=47295591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/003285 WO2012168981A1 (ja) | 2011-06-10 | 2011-06-10 | 半導体記憶装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9099177B2 (ja) |
JP (1) | JP5543027B2 (ja) |
WO (1) | WO2012168981A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014188484A1 (ja) * | 2013-05-20 | 2014-11-27 | 株式会社日立製作所 | 半導体記憶装置 |
US9293508B2 (en) | 2011-10-07 | 2016-03-22 | Hitachi, Ltd. | Semiconductor storage device and method of fabricating same |
US9391268B2 (en) | 2012-06-04 | 2016-07-12 | Hitachi, Ltd. | Semiconductor storage device |
US9905756B2 (en) | 2014-02-03 | 2018-02-27 | Hitachi, Ltd. | Semiconductor storage device |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101994309B1 (ko) * | 2013-03-27 | 2019-09-30 | 에스케이하이닉스 주식회사 | 반도체 장치 및 그 제조 방법, 이 반도체 장치를 포함하는 마이크로 프로세서, 프로세서, 시스템, 데이터 저장 시스템 및 메모리 시스템 |
JP6271460B2 (ja) | 2015-03-02 | 2018-01-31 | 東芝メモリ株式会社 | 半導体記憶装置 |
US9768233B1 (en) | 2016-03-01 | 2017-09-19 | Toshiba Memory Corporation | Semiconductor device and method of manufacturing the same |
US10037800B2 (en) | 2016-09-28 | 2018-07-31 | International Business Machines Corporation | Resistive memory apparatus using variable-resistance channels with high- and low-resistance regions |
CN111564169B (zh) * | 2020-04-30 | 2022-05-17 | 北京大学 | 三维垂直阻变存储器阵列及其操作方法、装置、设备及介质 |
US11763857B2 (en) * | 2021-05-14 | 2023-09-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Memory device and method of forming the same |
CN113571544A (zh) * | 2021-07-09 | 2021-10-29 | 杭州电子科技大学 | 高集成度相变存储器阵列结构 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008160004A (ja) * | 2006-12-26 | 2008-07-10 | Toshiba Corp | 半導体記憶装置及びその製造方法 |
JP2008192708A (ja) * | 2007-02-01 | 2008-08-21 | Toshiba Corp | 不揮発性半導体記憶装置 |
JP2010165982A (ja) * | 2009-01-19 | 2010-07-29 | Hitachi Ltd | 半導体記憶装置 |
WO2011074545A1 (ja) * | 2009-12-17 | 2011-06-23 | 株式会社日立製作所 | 半導体記憶装置およびその製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1321941B1 (en) * | 2001-12-21 | 2005-08-17 | Kabushiki Kaisha Toshiba | Magnetic random access memory with stacked memory cells |
KR100612872B1 (ko) * | 2004-11-16 | 2006-08-14 | 삼성전자주식회사 | 채널의 물성이 인가전압에 따라 가변적인 트랜지스터와 그제조 및 동작 방법 |
JP4578329B2 (ja) * | 2005-06-03 | 2010-11-10 | ルネサスエレクトロニクス株式会社 | 半導体記憶装置 |
WO2012070096A1 (ja) | 2010-11-22 | 2012-05-31 | 株式会社日立製作所 | 不揮発性記憶装置およびその製造方法 |
-
2011
- 2011-06-10 US US14/124,725 patent/US9099177B2/en not_active Expired - Fee Related
- 2011-06-10 WO PCT/JP2011/003285 patent/WO2012168981A1/ja active Application Filing
- 2011-06-10 JP JP2013519239A patent/JP5543027B2/ja not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008160004A (ja) * | 2006-12-26 | 2008-07-10 | Toshiba Corp | 半導体記憶装置及びその製造方法 |
JP2008192708A (ja) * | 2007-02-01 | 2008-08-21 | Toshiba Corp | 不揮発性半導体記憶装置 |
JP2010165982A (ja) * | 2009-01-19 | 2010-07-29 | Hitachi Ltd | 半導体記憶装置 |
WO2011074545A1 (ja) * | 2009-12-17 | 2011-06-23 | 株式会社日立製作所 | 半導体記憶装置およびその製造方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9293508B2 (en) | 2011-10-07 | 2016-03-22 | Hitachi, Ltd. | Semiconductor storage device and method of fabricating same |
US9391268B2 (en) | 2012-06-04 | 2016-07-12 | Hitachi, Ltd. | Semiconductor storage device |
WO2014188484A1 (ja) * | 2013-05-20 | 2014-11-27 | 株式会社日立製作所 | 半導体記憶装置 |
JP5982565B2 (ja) * | 2013-05-20 | 2016-08-31 | 株式会社日立製作所 | 半導体記憶装置 |
US9478284B2 (en) | 2013-05-20 | 2016-10-25 | Hitachi, Ltd. | Semiconductor storage device |
US9905756B2 (en) | 2014-02-03 | 2018-02-27 | Hitachi, Ltd. | Semiconductor storage device |
Also Published As
Publication number | Publication date |
---|---|
JP5543027B2 (ja) | 2014-07-09 |
JPWO2012168981A1 (ja) | 2015-02-23 |
US9099177B2 (en) | 2015-08-04 |
US20140218999A1 (en) | 2014-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5543027B2 (ja) | 半導体記憶装置 | |
US8901712B2 (en) | Semiconductor memory device | |
JP5512700B2 (ja) | 半導体記憶装置およびその製造方法 | |
JP5765430B2 (ja) | 半導体記憶装置及びその製造方法 | |
JP5396544B2 (ja) | 半導体記憶装置 | |
JP5851030B2 (ja) | 半導体記憶装置 | |
JP6140845B2 (ja) | 半導体記憶装置 | |
WO2012070096A1 (ja) | 不揮発性記憶装置およびその製造方法 | |
JP2011233831A (ja) | 半導体記憶装置 | |
US20220399400A1 (en) | Nonvolatile semiconductor memory device | |
JP5639828B2 (ja) | 半導体記憶装置およびその製造方法 | |
US11744088B2 (en) | Memory device | |
JP5386528B2 (ja) | 半導体記憶装置およびその製造方法 | |
JP2016076561A (ja) | 記憶装置 | |
JP2016072536A (ja) | 記憶装置 | |
JP2015153974A (ja) | 半導体記憶装置 | |
US9184217B2 (en) | Memory device | |
US10762956B2 (en) | Semiconductor memory device | |
WO2016157334A1 (ja) | 半導体記憶装置及びその製造方法 | |
JP2023137450A (ja) | 半導体記憶装置 | |
CN118630011A (zh) | 三维存储器设备 | |
CN116798472A (zh) | 存储器器件 | |
WO2012049721A1 (ja) | 半導体記憶装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11867183 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013519239 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14124725 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11867183 Country of ref document: EP Kind code of ref document: A1 |