WO2012167673A1 - 一种电源电路 - Google Patents

一种电源电路 Download PDF

Info

Publication number
WO2012167673A1
WO2012167673A1 PCT/CN2012/074298 CN2012074298W WO2012167673A1 WO 2012167673 A1 WO2012167673 A1 WO 2012167673A1 CN 2012074298 W CN2012074298 W CN 2012074298W WO 2012167673 A1 WO2012167673 A1 WO 2012167673A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
bias
diode
source
Prior art date
Application number
PCT/CN2012/074298
Other languages
English (en)
French (fr)
Inventor
周翔
姚洪涛
Original Assignee
湖南三一智能控制设备有限公司
三一重工股份有限公司
罗轶峰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 三一重工股份有限公司, 罗轶峰 filed Critical 湖南三一智能控制设备有限公司
Publication of WO2012167673A1 publication Critical patent/WO2012167673A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/74Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of diodes

Definitions

  • a power supply circuit is claimed in the Chinese Patent Application No. 2011101520.21, the entire disclosure of which is incorporated herein by reference. in.
  • the present invention relates to the field of electronic technologies, and in particular, to a power supply circuit.
  • the existing anti-reverse protection circuit is usually designed for the board level control system, generally low power consumption, low current, diode unidirectional conduction characteristics or small current self-recovery fuse and diode unidirectional conduction
  • the features together complete the reverse connection protection of the power supply target.
  • the power supply voltage is often 24V, so the single-wire load current is as high as several tens of amperes, and the power consumption loss is caused by the reverse-cut characteristic of a single diode. Large, unable to resist many problems such as transient shocks.
  • the reverse current protection of the small current self-recovery fuse and the diode is simply impossible.
  • Existing high-power power protection schemes are often designed with independent protection modules for high-current systems. They are usually bulky, have many components, and have complex circuits. They are not suitable for board-level power supplies, especially for vehicle-mounted board-level power supplies.
  • the present invention provides a power supply circuit.
  • the power circuit includes a MOS tube (metal-oxide-semiconductor) and a bias control circuit, and a source and a drain of the MOS transistor are connected in series between a power source and a load,
  • the bias control circuit controls the bias state between the MOS gate sources based on the received power-on timing signals.
  • the bias control circuit includes a first capacitor, a second capacitor, a first diode, a second diode, a third diode, a bias NMOS transistor, and a bias PMOS transistor; Connected to the gate of the bias PMOS transistor as an input to receive the input of the power-on timing signal, and the bias NMOS transistor is connected to the drain of the bias PMOS transistor as an output terminal, the output terminal and the first capacitor Connected at one end, the source of the biased PM0S tube is connected to the anode of the power source and the anode of the first diode, the source of the bias NMOS transistor is connected to the anode of the third diode, and the cathode of the third diode is connected to a negative pole of the power supply; the other end of the first capacitor is connected to the cathode of the first diode and the anode of the second diode, and the cathode of the second diode and one end of the second capacitor are connected to the
  • the power circuit further includes a third diode, an anode of the third diode is connected to the source of the bias NMOS transistor, and a cathode of the third diode is connected to the negative pole of the power source.
  • a varistor is connected between the positive pole of the power source and the negative pole of the power source.
  • a TVS tube Transient Voltage Suppressor
  • a TVS tube Transient Voltage Suppressor
  • the MOSFET is an N-channel power MOSFET, the source of which is connected to the positive pole of the power supply, and the drain is connected to the load.
  • the cathode of the TVS tube is connected to the drain of the MOS tube, and the anode of the TVS tube is connected to the negative pole of the power source.
  • the invention provides a power supply circuit, which receives an external pulse control signal (power-on timing signal) through a bias control circuit to control a bias state between MOS tube gate sources, that is, a power supply state of the power source to the load is controlled or not
  • the external pulse control signal is used to ensure that the power supply is normally powered by the load.
  • the reverse connection protection and transient protection functions of the power supply are realized by connecting the varistor and the TVS tube with few devices.
  • FIG. 1 is a schematic diagram of a power supply circuit according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a power supply circuit according to an embodiment of the present invention.
  • a power supply circuit of an embodiment of the present invention includes a varistor R1, a TVS tube D2, and an N-channel power MOS transistor U2 (with an on-resistance between a few milliohms and a dozen milliohms), and an offset.
  • MOS transistors U3 and U4 (U3 is a bias PMOS transistor, U4 is a bias NMOS transistor), a first diode D3, a second diode D4, a third diode D5, a first capacitor CI, and a second capacitor C2;
  • the voltage of the power supply is positively connected to VCC, and the negative ground is GND.
  • the connection of the power supply circuit is: 3 ⁇ 4 port:
  • the source S of the U2 is connected to the positive VCC of the power supply (or one end of the varistor R1), N-channel power
  • the drain D of the MOS transistor U2 is connected to the cathode of the TVS tube D2, and the other end of the TVS tube D2 is connected to the ground GND (or one end of the load), and the gate G of the N-channel power MOSFET U2 is connected to the second diode D4.
  • One end of the cathode and the second capacitor C2, and the other end of the second capacitor C2 is connected to the ground GND (if U2 is a P-channel power MOS tube, it is connected to the positive pole of the power supply), one end of the first capacitor C1 is respectively first
  • the cathode of the diode D3 is connected to the anode of the second diode D4, and the gates of the bias PMOS transistor U3 and the bias NMOS transistor U4 are connected as an input terminal to receive a power-on timing signal from the outside (ie, an external pulse control signal P).
  • the bias PMOS transistor U3 and the drain of the bias NMOS transistor U4 are connected as an output terminal connected to the other end of the first capacitor C1;
  • the source of the tube U3 is connected to the anode of the power source VCC and the anode of the first diode, the bias NMOS transistor U4 is connected to the anode of the third diode D5, and the cathode of the third diode D5 is connected to the ground GND, wherein
  • the bias PMOS transistor U3 and the bias NMOS transistor U4, the first diode D3, the second diode D4, the third diode D5, the first capacitor C1 and the second capacitor C2 together form an N-channel power MOS
  • the resistance of the varistor R1 can be considered to be infinite and open.
  • the built-in diode of the N-channel power MOS transistor U2 is pre-conducted, and the MOS transistors U3 and U4 are biased. It can be turned on under the action of the power-on timing signal (ie, the external pulse control signal P), and the gate source of the N-channel power MOS transistor U2 is normally biased by charging and discharging the first capacitor C1 and the second capacitor C2. Therefore, the drain-source channel of the N-channel power MOS transistor U2 is turned on to provide a normal working power supply for the load;
  • the resistance of the varistor R1 is still infinite, and is in an open circuit.
  • the TVS tube D2 is in an on state, and the gate source of the N-channel power MOS transistor U2 is The leakage channel of the N-channel power MOS transistor U2 is always off, and the path of the reverse power supply is cut off to avoid affecting the load;
  • the gate-source bias state of the N-channel power MOS transistor U2 is controlled by the bias control circuit, and the bias control circuit performs the corresponding operation according to the received external pulse control signal, that is, Whether the power supply to the load is turned on or not is controlled by the external pulse control signal.
  • the external pulse control signal can be in the form of a power supply circuit.
  • the control circuit outside sets the output to meet various control needs.
  • the above-mentioned bias control circuit can also reversely bias the gate source of the N-channel power MOS transistor U2 when the power supply is reversed. , thereby keeping the drain-source channel of the N-channel power MOS transistor U2 in a closed state;
  • bias control circuit in the above embodiment may also be replaced by other circuits that can implement corresponding functions.
  • a circuit composed of the bias PMOS transistor U3 and the bias NMOS transistor U4 in the parametric control circuit may also be used.
  • a TTL circuit that can implement similar functions is replaced.
  • the N communication power MOS transistor U2 is used.
  • a P-channel MOS transistor may be used, and the source thereof is connected to the ground GND, and the drain is connected to the load.
  • the arrangement of the bias control circuit is similar to that of the above embodiment, and will not be described again.
  • the power supply circuit provided by the embodiment of the invention controls the bias control circuit through the power-on timing signal (external pulse control signal) to realize the conduction and the closing of the drain-source channel of the N-communication power MOS transistor, and through the varistor
  • the cooperation of the TVS tube not only prevents the abnormal operation of the power supply at the moment of power-on, but also has a reverse connection protection function when the power supply is in the reverse connection state, and has a transient protection function when subjected to a surge impact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

一种电源电路,包括MOS管(U2)和偏置控制电路。该MOS管的源极(S)和漏极(D)串接于电源和负载之间。该偏置控制电路根据接收到的上电时序信号(P)控制MOS管栅源极之间的偏置状态,从而根据上电时序信号控制电源电路对负载的供电状态。并且该电源电路还包括压敏电阻(R1)和瞬态电压抑制TVS管(D2),从而以很少的器件实现电源电路的瞬态保护功能。

Description

一种电源电路 本申请要求于 2011 年 06 月 08 日提交中国专利局、 申请号为 201110152021.1、 发明名称为"一种电源电路"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电子技术领域, 特别是涉及一种电源电路。
背景技术
在电子控制器系统中, 现有的防反接保护电路通常针对板级控制系统 设计, 一般功耗较低, 电流较小, 利用二极管单向导通特性或小电流自恢 复保险丝与二极管单向导通特性共同完成对供电对象电源的反接防护。 但 对于为负载提供大功率驱动的板级电源系统, 尤其是车载功率驱动电源系 统, 其电源电压往往为 24V, 故单线负载电流高达几十安培, 利用单一二 极管的反向截至特性存在功耗损耗大、 无法抵抗瞬态沖击等诸多问题。 而 小电流自恢复保险丝与二极管共同完成的反接防护则根本无法实现。 而现 有的大功率电源保护方案往往针对大电流系统专门设计独立的保护模块, 通常体积大、 器件多, 电路复杂, 不适合板级功率电源尤其是车载板级功 率电源的保护。
因此, 如何研发出一种适用于板级功率电源尤其是车载功率电源的电 源电路, 是本领域技术人员亟待解决的技术难题。
发明内容
为了克服现有技术的上述缺陷, 本发明提供了一种电源电路。 该电源 电路包括 MOS管(metal-oxide-semiconductor, 金属-氧化物-半导体场效应 管)和偏置控制电路, 所述 MOS管的源极和漏极串接于电源和负载之间, 所述偏置控制电路根据接收到的上电时序信号控制 MOS 管栅源之间的偏 置状态。
优选地, 所述偏置控制电路包括第一电容、 第二电容、 第一二极管、 第二二极管、 第三二极管、 偏置 NMOS管和偏置 PMOS管; 偏置 NMOS 管与偏置 PMOS管的栅极相连作为输入端接收上电时序信号的输入, 偏置 NMOS管与偏置 PMOS管的漏极相连作为输出端,该输出端与第一电容的 一端连接, 偏置 PM0S管的源极连接于与电源正极和第一二极管的阳极, 偏置 NMOS管的源极连接于第三二极管的阳极,第三二极管的阴极连接于 电源负极; 第一电容的另一端连接于第一二极管的阴极和第二二极管的阳 极, 第二二极管的阴极和第二电容的一端连接于 MOS 管的栅极, 第二电 容的另一端连接于电源正极或负极。
优选地, 所述电源电路还包括第三二极管, 第三二极管的阳极连接于 偏置 NMOS管的源极, 第三二极管的阴极连接于电源负极。
优选地, 电源正极与电源负极之间连接有压敏电阻。
优选地, MOS 管的漏极与电源正极或负极之间连接有 TVS 管 ( Transient Voltage Suppressor, 瞬态电压抑制器)。
优选地,所述 M0S管为 N沟道功率 M0S管,其源极连接于电源正极, 漏极连接于负载。
优选地, 所述 TVS管的阴极连接于 MOS管的漏极, 所述 TVS管的阳 极连接于电源负极。
本发明提供的一种电源电路, 通过偏置控制电路接收外部脉沖控制信 号 (上电时序信号) 来控制 MOS 管栅源之间的偏置状态, 即功率电源对 负载的供电状态与否受控于外部脉沖控制信号, 以保证功率电源为负载正 常供电, 此外, 在优选方案中, 通过接入压敏电阻和 TVS管, 以极少的器 件实现功率电源的反接保护和瞬态保护功能。
附图说明
图 1所示为本发明实施例所提供的一种电源电路的示意图;
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案, 下面结合附图 和具体实施例对本发明作进一步的详细说明。 应当指出, 本部分中的对具 体结构的描述及描述顺序仅是对具体实施例的说明, 不应视为对本发明的 保护范围有任何限制作用。
请参考图 1 , 图 1所示为本发明实施例所提供的一种电源电路的示意 图。
如图所示, 本发明实施例的一种电源电路包括压敏电阻 Rl、 TVS 管 D2、 N沟道功率 MOS管 U2 (导通电阻为几毫欧至十几毫欧之间)、 偏置 MOS管 U3 和 U4 ( U3为偏置 PMOS管, U4为偏置 NMOS管)、 第一二 极管 D3、 第二二极管 D4、 第三二极管 D5、 第一电容 CI和第二电容 C2; 功率电源的电压正极接 VCC, 负极接地线 GND; 该电源电路的连接关系 :¾口下: 管 U2的源极 S接电源正极 VCC (或者压敏电阻 R1的一端), N沟道功率 MOS管 U2的漏极 D接 TVS管 D2的阴极, TVS管 D2的另一端与地线 GND (或负载的一端)连接, N沟道功率 M0S管 U2的栅极 G接第二二 极管 D4的阴极和第二电容 C2的一端,第二电容 C2的另一端与地线 GND 连接(若 U2为 P沟道功率 M0S管, 则与电源正极连接), 第一电容 C1 的一端分别与第一二极管 D3 的阴极和第二二极管 D4的阳极相连, 偏置 PMOS管 U3和偏置 NMOS管 U4的栅极相连作为输入端接收来自外部的 上电时序信号(即外部脉沖控制信号 P ) , 偏置 PMOS管 U3和偏置 NMOS 管 U4的漏极相连作为输出端连接于第一电容 C1 的另一端; 偏置 PMOS 管 U3的源极与电源正极 VCC和第一二极管的阳极相连, 偏置 NMOS管 U4与第三二极管 D5的阳极相连, 第三二极管 D5的阴极与地线 GND相 连, 其中, 偏置 PMOS管 U3和偏置 NMOS管 U4、 第一二极管 D3、 第二 二极管 D4、第三二极管 D5、第一电容 C1和第二电容 C2共同构成 N沟道 功率 M0S管 U2的偏置控制电路。
在工作过程中, 当功率电源正确连接时, 压敏电阻 R1 的阻值可认为 无穷大,处于开路,此时, N沟道功率 MOS管 U2的内置二极管预先导通, 偏置 MOS管 U3和 U4可在上电时序信号 (即外部脉沖控制信号 P ) 的作 用下轮流导通, 通过对第一电容 Cl、 第二电容 C2充放电, 使 N沟道功率 MOS管 U2的栅源正常偏置, 从而使 N沟道功率 MOS管 U2的漏源通道 开启, 为负载提供正常工作电源;
在工作过程中, 当功率电源处于反接状态时, 压敏电阻 R1 的阻值仍 为无穷大, 处于开路, 此时, TVS管 D2处于导通状态, N沟道功率 MOS 管 U2的栅源之间无法正常偏置, N沟道功率 MOS管 U2的漏源通道始终 处于关闭状态, 反向电源的通路被切断, 以避免对负载产生影响;
在工作过程中, 当电源电路受外部瞬态干扰(如雷击、 浪涌等) 时, 压敏电阻 R1电阻值急剧减少, 使电源正极 VCC与地线 GND之间构成低 阻通路, 同时, TVS 管 D2 (通常为较大功率)可以吸收掉绝大部分的瞬 态能量, 从而保护负载不受瞬态干扰。
需要说明的是, 上述实施例中, N沟道功率 MOS管 U2的栅源偏置状 态受偏置控制电路的控制, 而偏置控制电路是根据接收到外部脉沖控制信 号来执行相应操作, 即功率电源对负载的供电开启与否受外部脉沖控制信 号控制, 如此可保证在功率电源系统上电时不会有功率输出, 防止了上电 瞬间的异常动作, 外部脉沖控制信号的形式可由电源电路之外的控制电路 设定输出, 以满足各种控制需要, 此外, 上述的偏置控制电路在功率电源 反接时, 也可使 N沟道功率 MOS管 U2的栅源之间反向偏置, 从而将 N 沟道功率 MOS管 U2的漏源通道保持在关闭状态;
需要说明的是, 上述实施例中的偏置控制电路也可以采用其他可实现 相应功能的电路代替, 例如偏执控制电路中的由偏置 PMOS管 U3和偏置 NMOS管 U4组成的电路也可以用可实现类似功能的 TTL电路代替。
需要说明的是, 上述实施例使用 N沟通功率 MOS管 U2, 在本发明的 其他实施例中, 也可以使用 P沟道 MOS管, 则其源极与地线 GND相连, 漏极与负载相连, 其偏置控制电路的布置方式与上述实施例类似, 兹不赘 述。
本发明实施例提供的一种电源电路, 通过上电时序信号 (外部脉沖控 制信号 )控制偏置控制电路以实现 N沟通功率 MOS管的漏源通道的导通 和关闭, 且通过压敏电阻与 TVS管的配合, 不仅防止了功率电源在上电瞬 间的异常动作, 也使得功率电源处于反接状态时具有反接保护功能, 在受 到浪涌沖击时具有瞬态保护功能。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在 本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包 含在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种电源电路, 其特征在于, 所述电源电路包括 MOS管和偏置控 制电路, 所述 MOS 管的源极和漏极串接于电源和负载之间, 所述偏置控 制电路根据接收到的上电时序信号控制 MOS管栅源之间的偏置状态。
2、 如权利要求 1所述的电源电路, 其特征在于, 所述偏置控制电路包 括第一电容、第二电容、第一二极管、第二二极管、第三二极管、偏置 NMOS 管和偏置 PMOS管; 偏置 NMOS管与偏置 PMOS管的栅极相连作为输入 端接收上电时序信号的输入, 偏置 NMOS管与偏置 PMOS管的漏极相连 作为输出端并连接于第一电容的一端, 偏置 PMOS管的源极连接于与电源 正极和第一二极管的阳极, 偏置 NMOS 管的源极连接于第三二极管的阳 极, 第三二极管的阴极连接于电源负极; 第一电容的另一端连接于第一二 极管的阴极和第二二极管的阳极, 第二二极管的阴极和第二电容的一端连 接于 MOS管的栅极, 第二电容的另一端连接于电源正极或负极。
3、 如权利要求 1至 2所述的电源电路, 其特征在于, 电源正极与电源 负极之间连接有压敏电阻。
4、 如权利要求 3所述的电源电路, 其特征在于, MOS管的漏极与电 源正极或负极之间连接有 TVS管。
5、 如权利要求 4所述的电源电路, 其特征在于, 所述 MOS管为 N沟 道功率 MOS管, 其源极连接于电源正极, 漏极连接于负载。
6、 如权利要求 5所述的电源电路, 其特征在于, 所述 TVS管的阴极 连接于 MOS管的漏极, 所述 TVS管的阳极连接于电源负极。
PCT/CN2012/074298 2011-06-08 2012-04-18 一种电源电路 WO2012167673A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110152021.1A CN102231598B (zh) 2011-06-08 2011-06-08 一种电源电路
CN201110152021.1 2011-06-08

Publications (1)

Publication Number Publication Date
WO2012167673A1 true WO2012167673A1 (zh) 2012-12-13

Family

ID=44844142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074298 WO2012167673A1 (zh) 2011-06-08 2012-04-18 一种电源电路

Country Status (2)

Country Link
CN (1) CN102231598B (zh)
WO (1) WO2012167673A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231598B (zh) * 2011-06-08 2014-01-15 三一重工股份有限公司 一种电源电路
DE102012216185A1 (de) * 2012-09-12 2014-03-13 Robert Bosch Gmbh Begrenzerschaltung für einen Halbleitertransistor und Verfahren zum Begrenzen der Spannung über einen Halbleitertransistor
CN103354415B (zh) * 2013-06-28 2016-01-20 江苏浩峰汽车附件有限公司 一种用于防反接的n沟道mos管栅极悬浮驱动电路
CN103595035A (zh) * 2013-11-14 2014-02-19 江苏绿扬电子仪器集团有限公司 提高电源性能的保护电路
CN105068636A (zh) * 2015-08-25 2015-11-18 山东超越数控电子有限公司 一种应用于加固计算机中的防冲击浪涌电路
CN107168901B (zh) * 2016-03-08 2021-06-25 德昌电机(深圳)有限公司 单线双向通信电路
CN107946299B (zh) * 2017-12-14 2020-06-02 上海艾为电子技术股份有限公司 一种负载开关及电子设备
CN112436725A (zh) * 2020-10-15 2021-03-02 北京交通大学 一种基于跨导增益负反馈机理的栅源电压扰动抑制电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160745A (ja) * 1999-10-09 2001-06-12 Robert Bosch Gmbh 負荷を電子的に接続するためのスイッチに対する制御装置
CN2838140Y (zh) * 2005-08-25 2006-11-15 是蓉珠 车载dc-dc转换器
US20060267671A1 (en) * 2005-05-27 2006-11-30 Khan Qadeer A Charge pump circuit for high side drive circuit and driver driving voltage circuit
CN2894061Y (zh) * 2005-09-05 2007-04-25 廉洁 直流电源变换组合
CN101465597A (zh) * 2007-12-21 2009-06-24 英飞凌科技股份有限公司 为晶体管驱动器电路提供电压供给的电路装置
CN102231598A (zh) * 2011-06-08 2011-11-02 三一重工股份有限公司 一种电源电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992683A (en) * 1989-09-28 1991-02-12 Motorola, Inc. Load driver with reduced dissipation under reverse-battery conditions
FR2726698B1 (fr) * 1994-11-04 1996-11-29 Thomson Csf Circuit de protection pour alimentation continue et alimentation associee a un tel circuit
DE19506074A1 (de) * 1995-02-22 1996-09-05 Telefunken Microelectron Schaltungsanordnung zum Schutz der elektrischen Verbraucher eines Kraftfahrzeugs vor unzulässigen negativen Spannungen auf dem Bordnetz
ITTO20020805A1 (it) * 2002-09-17 2004-03-18 Finmek Magneti Marelli Sistemi Elettronici Spa Circuito di protezione dall'inversione di polarita'
CN201398073Y (zh) * 2009-05-22 2010-02-03 上海华魏光纤传感技术有限公司 新型电源安全保护系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160745A (ja) * 1999-10-09 2001-06-12 Robert Bosch Gmbh 負荷を電子的に接続するためのスイッチに対する制御装置
US20060267671A1 (en) * 2005-05-27 2006-11-30 Khan Qadeer A Charge pump circuit for high side drive circuit and driver driving voltage circuit
CN2838140Y (zh) * 2005-08-25 2006-11-15 是蓉珠 车载dc-dc转换器
CN2894061Y (zh) * 2005-09-05 2007-04-25 廉洁 直流电源变换组合
CN101465597A (zh) * 2007-12-21 2009-06-24 英飞凌科技股份有限公司 为晶体管驱动器电路提供电压供给的电路装置
CN102231598A (zh) * 2011-06-08 2011-11-02 三一重工股份有限公司 一种电源电路

Also Published As

Publication number Publication date
CN102231598A (zh) 2011-11-02
CN102231598B (zh) 2014-01-15

Similar Documents

Publication Publication Date Title
WO2012167673A1 (zh) 一种电源电路
KR102379554B1 (ko) 보호 회로
US10897246B2 (en) Radio frequency switching circuitry with reduced switching time
US8295784B2 (en) Semiconductor switching device
US20090040671A1 (en) Power clamp for on-chip ESD protection
US20180062517A1 (en) Redundant power supply control circuit
US8786990B2 (en) Driver-based distributed multi-path ESD scheme
US9948291B1 (en) 20V to 50V high current ASIC PIN diode driver
US9136698B2 (en) Power supply selector and method for minimizing an inrush current in a power supply selector
US20170047927A1 (en) 20v to 50v high current asic pin diode driver
CN117155370B (zh) 一种防倒灌电路
EP3251150B1 (en) Self-sensing reverse current protection switch
CN107894933B (zh) 支持冷备份应用的cmos输出缓冲电路
JP4880436B2 (ja) 半導体集積回路および電源装置
US20170264281A1 (en) Low side output driver reverse current protection circuit
CN112532218A (zh) 高效的高压数字i/o保护
CN116298481A (zh) 一种超低功耗过压检测电路
CN114356013B (zh) 一种集成防反向电流的电子保险丝电路
US11196243B2 (en) Pin-short detection circuits
CN111769541B (zh) 一种供电电路、防止电压倒流的终端附件和方法
CN210168022U (zh) 多输入的开漏输出电路
JP2010130742A (ja) 逆流防止回路
TW201611519A (zh) 積體電路
JP2020161982A (ja) 論理回路
CN115483923B (zh) 高压传输门电路、芯片及比较器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12796989

Country of ref document: EP

Kind code of ref document: A1