WO2012167542A1 - 液流电池系统及其修复装置 - Google Patents

液流电池系统及其修复装置 Download PDF

Info

Publication number
WO2012167542A1
WO2012167542A1 PCT/CN2011/081988 CN2011081988W WO2012167542A1 WO 2012167542 A1 WO2012167542 A1 WO 2012167542A1 CN 2011081988 W CN2011081988 W CN 2011081988W WO 2012167542 A1 WO2012167542 A1 WO 2012167542A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow battery
battery system
stack
acid
liquid pipe
Prior art date
Application number
PCT/CN2011/081988
Other languages
English (en)
French (fr)
Inventor
汤浩
殷聪
张占奎
王荣贵
谢光有
胡蕴成
Original Assignee
中国东方电气集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国东方电气集团有限公司 filed Critical 中国东方电气集团有限公司
Priority to US14/124,271 priority Critical patent/US20140099520A1/en
Publication of WO2012167542A1 publication Critical patent/WO2012167542A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0693Treatment of the electrolyte residue, e.g. reconcentrating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • a liquid flow battery is generally called a redox flow battery, and is a novel large-scale electrochemical energy storage device.
  • a flow battery using a vanadium salt solution for both positive and negative electrodes is called an all-vanadium redox flow battery.
  • the all-vanadium redox flow battery is an electrochemical reaction device for redox oxidation of vanadium ion electrolytes with different valence states, which can efficiently realize the mutual conversion between chemical energy and electric energy.
  • This type of battery has the advantages of long service life, high energy conversion efficiency, good safety and environmental friendliness. It can be used in large-scale energy storage systems for wind power generation and photovoltaic power generation. It is the main choice for grid peaking and valley filling and balancing load. one. Therefore, in recent years, all-vanadium redox flow batteries have gradually become the focus of research on large-capacity energy storage batteries.
  • the vanadium redox flow battery uses vanadium ions v 2+ /v 3+ and v 4+ /v 5+ as the positive and negative oxide redox pairs of the battery, and the positive and negative electrolytes are respectively stored in the two stock solutions.
  • the active electrolyte is driven by the acid-resistant liquid pump to the reaction site (battery stack) and then returned to the liquid storage tank to form a circulating liquid flow circuit to realize the charging and discharging process.
  • the performance of the battery stack determines the charge and discharge performance of the entire system, especially the charge and discharge power and efficiency.
  • the battery stack is formed by stacking and stacking a plurality of single cells in sequence, wherein the composition of the conventional single-chip flow battery is as shown in FIG.
  • the conventional all-vanadium redox flow battery system is composed of a battery stack 6, a positive liquid storage tank 71, a negative liquid storage tank 72, a positive circulating fluid liquid pump 81, and a negative circulating liquid liquid pump 82. And positive electrode liquid lines 91, 101 and negative electrode liquid lines 92, 102.
  • the V 4+ /V 5+ electrolyte is transported by the liquid pump 81 to the positive half cell 61, and the negative electrode V 2+ /V 3+ electrolyte is transported by the liquid pump 82 to the negative half cell 62.
  • the conventional all-vanadium redox flow battery system may cause the electrolyte to precipitate precipitates when it is operated for a long time or stays in a high state of charge (State Of Charge, SOC for short) or an abnormal operating temperature, so that the electrolyte is clogged.
  • SOC State Of Charge
  • a primary object of the present invention is to provide a flow battery system and a repair device thereof, which solve the problem that the performance of the flow battery system is degraded relatively quickly, thereby causing a decrease in the life of the flow battery.
  • a repair apparatus for a flow battery system is provided.
  • a repair device for a flow battery system comprising: an acid liquid storage tank for storing an acid solution; a first acid liquid liquid pipe, the first end thereof The first end of the acid liquid storage tank is connected, the second end is for connecting the first end of the battery stack, and the second acid liquid liquid pipe is connected to the second end of the acid liquid storage tank. a second end is used for connecting the second end of the battery stack; and a power device is disposed in the first acid liquid pipe or the second acid liquid pipe for driving the acid solution in the acid liquid storage tank An acid liquid liquid pipe and a second acid liquid pipe circulate.
  • the flow battery system includes: an electrolyte liquid storage tank; a first electrolyte liquid pipe connected between the first end of the electrolyte liquid storage tank and the first end of the battery stack; and the second electrolyte liquid a second end of the first acid liquid pipe is connected to the first electrolyte liquid pipe, and is connected between the second end of the electrolyte liquid storage tank and the second end of the battery stack, The second end of the second acid liquid pipe is for connection to the second electrolyte liquid pipe.
  • the repairing device of the flow battery system includes a first directional valve and a second directional valve, wherein the second end of the first acid liquid pipe is used to connect the first electrolyte liquid through the first directional valve a second end of the second acid liquid pipe for connecting the second electrolyte liquid pipe via the second diverter valve;
  • the first diverter valve and the second diverter valve each have a first position and a second position Position, when the first diverter valve and the second diverter valve are simultaneously in the first position, the acid liquid storage tank is electrically connected to the battery stack to constitute a circulation line, and the first diverter valve and the second diverter valve At the same time in the second position, the electrolyte reservoir is electrically connected to the stack to form a circulation line.
  • the acid solution is a dilute acid.
  • the repair device of the flow battery system comprises: a flow battery monitoring device for determining whether the battery stack of the flow battery system needs to be cleaned; and a control device for determining that the battery stack of the flow battery system needs to be cleaned, The control power device drives the acid solution in the acid liquid storage tank to circulate in the first acid liquid pipe and the second acid liquid pipe.
  • the flow battery monitoring device is configured to: monitor the first curve, the first curve is a curve of the relationship between the liquid pump power consumption and the output pressure of the flow battery system; comparing the first curve with the first standard curve, first The standard curve is a standard curve of the relationship between the liquid pump power consumption and the output pressure of the preset flow battery system; And determining whether the battery stack of the flow battery system needs cleaning according to the comparison result of the first curve and the first standard curve.
  • the flow battery monitoring device is configured to: monitor a second curve, the second curve is a curve of a relationship between a voltage of the flow battery system and a state of charge of the battery stack; comparing the second curve with the second standard curve, The second standard curve is a standard curve of the relationship between the voltage of the preset flow battery system and the state of charge of the stack; and whether the stack of the flow battery system is required according to the comparison between the second curve and the second standard curve Cleaning.
  • the flow battery monitoring device is configured to: monitor a cell voltage of the battery cell of the flow battery system, wherein the battery stack includes a plurality of single cells; compare the cell voltage with a preset standard voltage of the cell; and The comparison of the voltage with the preset standard voltage of the single cell determines whether the stack of the flow battery system needs to be cleaned.
  • a flow battery system comprising the above described flow battery repair device.
  • the flow battery system is an all-vanadium redox flow battery system.
  • the flow battery system comprises: a first flow battery repair device, a positive half cell stack for cleaning the flow battery system; and a second flow battery repair device for cleaning the negative half battery of the flow battery system stack.
  • a flow battery repairing device comprising: an acid liquid storage tank for storing an acid solution; a first acid liquid liquid pipe connected to the first end of the acid liquid storage tank, Connecting a first end of the stack; a second acid liquid pipe connected to the second end of the acid liquid storage tank for connecting the second end of the battery stack; and a power device disposed on the first acid liquid
  • the acid solution used to drive the acid liquid storage tank circulates in the first acid liquid pipe and the second acid liquid pipe, and solves the flow battery system.
  • the performance degradation is relatively fast, which in turn leads to a problem of reduced life of the flow battery, thereby achieving an effect of improving the operating efficiency of the flow battery and prolonging the service life of the flow battery system.
  • FIG. 1 is a schematic diagram of a monolithic flow battery of an all-vanadium redox flow battery according to the prior art
  • FIG. 2 is a schematic diagram of an all-vanadium redox flow battery system according to the prior art
  • 3 is a schematic view of a repairing apparatus of a flow battery system according to a first embodiment of the present invention
  • FIG. 4 is a schematic view of a repairing apparatus of a flow battery system according to a second embodiment of the present invention
  • FIG. 3 is a schematic view of a repairing device of a flow battery system according to a first embodiment of the present invention, as shown in FIG.
  • a repair device for a flow battery system, a battery stack for cleaning a flow battery system including: an acid liquid a liquid storage tank 11 for storing an acid solution; a first acid liquid pipe 12 having a first end connected to the first end of the acid liquid storage tank 11 and a second end connected to the first end of the battery stack a second acid liquid pipe 13 having a first end connected to the second end of the acid liquid storage tank 11, a second end for connecting the second end of the battery stack, and a power unit 14 disposed at the first end In the acid liquid pipe 12 or the second acid liquid pipe 13, the acid solution for driving the acid liquid storage tank 11 is circulated in the first acid liquid pipe 12 and the second acid liquid pipe 13 flow.
  • the present invention uses a simple device to pass the acid solution to the electrode.
  • the precipitated precipitate is washed and redissolved, and the battery stack is cleaned in time.
  • the special acid solution storage tank is used to store the acid solution for cleaning the flow battery system to prevent the acid solution from corroding the storage tank.
  • the special acid liquid pipeline is used for the diversion and circulation of the acid solution, and the setting is made.
  • the power unit drives the acid solution to circulate in the circuit formed by the acid solution storage tank, the acid liquid pipeline and the battery stack, which not only saves the acid solution but also enhances the cleaning effect of the battery stack.
  • the flow battery system includes: an electrolyte reservoir tank 7; a first electrolyte liquid conduit 9, connected Between the first end of the electrolyte reservoir 7 and the first end of the stack; and a second electrolyte circuit tube 10 connected to the second end of the electrolyte reservoir 7 and the second end of the stack Between the first acid liquid pipe 12 is connected to the first electrolyte liquid pipe 9, and the second acid liquid pipe 13 is used for connection to the second electrolyte liquid pipe 10.
  • the acid liquid pipe is connected to the electrolyte liquid pipe, which not only can clean the battery stack, but also can clean the electrolyte liquid pipe and save the pipe cost.
  • the repairing device of the flow battery system comprises a first directional valve 15 and a second directional valve 16, wherein the first acid liquid pipe 12 is used to connect the first electrolyte liquid via the first directional valve 15.
  • the tube 13 is for connecting the second electrolyte liquid pipe 10 via the second diverter valve 16; the first diverter valve 15 and the second diverter valve 16 each have a first position and a second position, when the first diverter valve When the second split valve 16 and the second split valve 16 are simultaneously in the first position, the acid liquid storage tank 11 is electrically connected to the battery stack to constitute a circulation line, and the first split valve 15 and the second split valve 16 are simultaneously at the same time. In the second position, the electrolyte reservoir 7 is electrically connected to the stack to form a circulation line.
  • a split valve is disposed at the connection between the electrolyte liquid pipe and the acid liquid pipe, and the setting of the split valve is adopted. , making the flow battery system more convenient when switching between charge and discharge mode and cleaning mode.
  • the first directional valve 15 and the second directional valve 16 in this embodiment must be in the first position or in the second position at the same time; when the flow battery system is charged and discharged, the power device is disposed in the circuit itself.
  • the power unit 14 in the repairing device can be removed, and its function is realized by the power unit of the flow battery system itself; further, this embodiment shows only the flow battery system.
  • the repairing device may be provided only in the negative half-cell stack of the flow battery system.
  • the acid solution is a dilute acid.
  • the dilute acid is dilute sulfuric acid, wherein the dilute sulfuric acid concentration ranges from 0.1 to 8 mol/L, and preferably, the dilute sulfuric acid concentration is from 0.8 to 5 mol/L.
  • the embodiment of the present invention is not intended to be specific to the type and concentration of the acid solution.
  • the acid solution may be any inorganic or organic acid which does not have strong oxidizing properties.
  • the manner in which the acid solution is added to the above-mentioned repairing device can be a variety of methods and optimization methods which can be obtained by those skilled in the art in combination with the basic knowledge at their disposal.
  • the acid solution referred to in the examples of the present invention includes, but is not limited to, hydrochloric acid, phosphoric acid, hydrobromic acid, benzenesulfonic acid, oxalic acid, and the like.
  • the dilute acid used is the same as the support liquid of the electrolyte in the flow battery.
  • the repair device of the flow battery system comprises: a flow battery monitoring device for determining whether the battery stack of the flow battery system needs to be cleaned; and a control device for determining that the battery stack of the flow battery system needs to be cleaned,
  • the control power unit 14 drives the acid solution in the acid liquid storage tank 11 to circulate in the first acid liquid liquid pipe 12 and the second acid liquid liquid pipe 13.
  • a flow battery monitoring device is added to the repair device of the flow battery system, by which the monitoring device can Real-time monitoring of various important parameters of the flow battery to comprehensively evaluate the health of the battery system.
  • a control device is provided.
  • the control device controls the power device to drive the acid solution to circulate between the acid solution storage tank, the acid liquid pipe and the battery stack.
  • the flow battery monitoring device is configured to: monitor the first curve, the first curve is a curve of the relationship between the liquid pump power consumption and the output pressure of the flow battery system; comparing the first curve with the first standard curve, first The standard curve is a standard curve of the relationship between the liquid pump power consumption and the output pressure of the preset flow battery system; and whether the battery stack of the flow battery system needs to be cleaned according to the comparison between the first curve and the first standard curve.
  • the flow battery monitoring device monitors the relationship between the liquid pump power consumption of the flow battery system and the output pressure. In the case of good battery performance, a standard curve of the power consumption of the liquid pump at various flow rates - output pressure was tested.
  • the parameters such as the power consumption of the liquid pump and the output pressure are monitored in real time and compared with the standard curve to determine the fluid flow damping inside the battery stack and the pipe.
  • the flow battery monitoring device is configured to: monitor a second curve, the second curve is a curve of a relationship between a voltage of the flow battery system and a state of charge of the battery stack; comparing the second curve with the second standard curve, The second standard curve is a standard curve of the relationship between the voltage of the preset flow battery system and the state of charge of the stack; and whether the stack of the flow battery system is required according to the comparison between the second curve and the second standard curve Cleaning.
  • the flow battery monitoring device monitors the charge and discharge polarization curves of the flow battery system. Under the condition that the performance of the battery stack is good, the relationship between the charge and discharge voltage and the SOC under various liquid flow speeds is tested as a reference standard.
  • the flow battery monitoring device is configured to: monitor a cell voltage of the battery cell of the flow battery system, wherein the battery stack includes a plurality of single cells; compare the cell voltage with a preset standard voltage of the cell; and The comparison of the voltage with the preset standard voltage of the single cell determines whether the stack of the flow battery system needs to be cleaned.
  • the flow battery monitoring device monitors the cell voltages of the stack of the flow battery system.
  • the voltage of each battery cell can be compared with the standard voltage of the single battery under the condition of good battery stack performance, and the charging and discharging voltage of each single battery in the battery stack can be monitored in real time, and in each order
  • the battery is used for horizontal comparison to evaluate the relative health of each cell in the stack.
  • each failure determination value is selected according to different types of parameters at the initial value of 40 ⁇ 150%.
  • the type of the monitoring parameter may be one or more of the above various parameters.
  • a flow battery system comprising the above described flow battery repair device.
  • the flow battery system is an all-vanadium redox flow battery system.
  • the all-vanadium redox flow battery system is equipped with an external flow battery repair device, so that the system has a self-repair function, the battery charge and discharge performance is degraded or the liquid pump consumption is drastically increased or a certain order When the performance of the battery drops sharply, the precipitate deposited in the stack or the pipeline can be washed and redissolved by the acid solution, and the stack and the liquid circulation line can be cleaned in time.
  • the flow battery system comprises: a first flow battery repair device, a positive half cell stack for cleaning the flow battery system; and a second flow battery repair device for cleaning the negative half battery of the flow battery system stack.
  • FIG. 5 is a schematic illustration of a repair apparatus for a flow battery system in accordance with a third embodiment of the present invention.
  • a set of external liquid flow battery system repairing devices are respectively provided for the positive liquid circuit circulation and the negative liquid circuit circulation.
  • the positive electrode liquid pipeline is firstly passed through the split valves 151 and 161, and then enters the positive electrolyte storage tank 71 or the positive acid solution storage tank 111.
  • the pipe of the split valve is divided into a charge and discharge gear and a dilute acid.
  • the cleaning gear, and the pipe selection of the branch valves 151 and 161 must be consistent; the negative liquid path pipe passes through the split valves 152 and 162 from the negative half cell 62, and then enters the negative electrode electrolyte storage tank 72 or the negative acid solution storage tank. 112, the pipe selection of the split valve is divided into a charge and discharge gear and a dilute acid cleaning gear, and the pipe selection of the split valves 152 and 162 must be consistent.
  • the four split valves 151, 161, 152, 162 must simultaneously select the charge and discharge gear position to ensure that the positive and negative electrolyte reservoirs 71, 72 are connected to the entire liquid circulation system.
  • the four diverter valves 151, 161, 152, 162 When the liquid battery system selects the cleaning gear, the four diverter valves 151, 161, 152, 162 must simultaneously select the cleaning gear position to ensure that the positive and negative acid solution reservoirs 111, 112 are connected to the entire liquid circulation system.
  • the switching mode of the above cleaning gear can be manually switched or automatically switched.
  • the acid solution used in the repair device of the above flow battery system has a better effect than the use of sulfuric acid.
  • the all-vanadium redox flow battery system with self-repairing function is designed by using the technical scheme of the invention, as follows:
  • Example 1 An all-vanadium redox flow battery system with self-healing function was prepared. A highly conductive porous graphite felt was used as the electrode material, a graphite plate was used as the current collecting plate, and a Nafion film was used as the ion exchange film.
  • the cell using the above materials has a charge and discharge coulombic efficiency of 90.5%, a voltage efficiency of 88.0%, and an energy efficiency of 79.6%.
  • the battery cell is connected to the repairing device according to the method of the present invention to obtain a battery system having a self-repairing function.
  • Example 2 An all-vanadium redox flow battery system with self-healing function was prepared. A highly conductive porous graphite felt was used as the electrode material, a graphite plate was used as the current collecting plate, and a Nafion film was used as the ion exchange film.
  • the battery has a charge and discharge coulombic efficiency of 89.8%, a voltage efficiency of 86.4%, and an energy efficiency of 77.6%.
  • the battery pack is connected to the repairing device according to the method of the present invention to obtain a battery system having a self-repairing function. After the battery pack was subjected to charge and discharge cycles for 500 times, the charge and discharge coulombic efficiency of the battery pack was reduced to 80.3%, the voltage efficiency was reduced to 69.9%, and the energy efficiency was reduced to 56.1%. Start the cleaning process and clean the battery pack.
  • Example 3 An all-vanadium redox flow battery system with self-healing function was prepared. A highly conductive porous graphite felt was used as the electrode material, a graphite plate was used as the current collecting plate, and a Nafion film was used as the ion exchange film. Using the single cells of the above materials, 15 single cells are combined into one battery pack. The battery has a charge and discharge coulombic efficiency of 89.8%, a voltage efficiency of 86.4%, and an energy efficiency of 77.6%.
  • the battery pack is connected to the repairing device according to the method of the present invention to obtain a battery system having a self-repairing function.
  • the operation of the battery pack is determined by monitoring the voltage efficiency of the battery pack.
  • the voltage efficiency is reduced to 60% of the initial efficiency, and the cleaning process is started to clean the battery pack.
  • the charge and discharge coulombic efficiency of the battery pack was 86.4%, the voltage efficiency was 85.3%, and the energy efficiency was 73.7%.
  • the self-repairing process can be carried out in time through the external acid solution device, that is, the liquid battery system is cleaned to prevent the electrolyte precipitate from blocking the electrode or the pipe, thereby improving the charge. Discharge efficiency and service life.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种液流电池系统及其修复装置。该修复装置用于清洗液流电池系统的电池堆,包括:酸液储液罐(11),用于存储酸溶液;第一酸液液路管(12),与酸液储液罐(11)的第一端相连接,用于连接电池堆的第一端;第二酸液液路管(13),与酸液储液罐(11)的第二端相连接,用于连接电池堆的第二端;以及动力装置(14),设置于第一酸液液路管(12)或第二酸液液路管(13)中,用于驱动酸液储液罐(11)中的酸溶液在第一酸液液路管(12)和第二酸液液路管(13)中循环流动。通过本发明,能够方便、及时地对液流电池系统进行清洗以实现液流电池的自修复,提高液流电池运行效率,并延长液流电池系统使用寿命。

Description

液流电池系统及其修复装置 技术领域 本发明涉及液流电池领域, 具体而言, 涉及一种液流电池系统及其修复装置。 背景技术 液流电池一般称为氧化还原液流电池, 是一种新型的大型电化学储能装置, 正负 极全使用钒盐溶液的液流电池称为全钒氧化还原液流电池。 全钒氧化还原液流电池是 一种以不同价态的钒离子电解液进行氧化还原的电化学反应装置, 能够高效地实现化 学能与电能之间的相互转化。该类电池具有使用寿命长, 能量转化效率高, 安全性好, 环境友好等优点, 能用于风能发电和光伏发电配套的大规模储能系统, 是电网削峰填 谷、 平衡负载的主要选择之一。 因此, 近年来全钒氧化还原液流电池逐渐成为大容量 储能电池研究的重点。 全钒氧化还原液流电池分别以钒离子 v2+/v3+和 v4+/v5+作为电池的正负极氧化还 原电对, 将正负极电解液分别存储于两个储液罐中, 由耐酸液体泵驱动活性电解液至 反应场所 (电池堆) 再回至储液罐中形成循环液流回路, 以实现充放电过程。 在全钒 氧化还原液流电池储能系统中, 电池堆性能的好坏决定着整个系统的充放电性能, 尤 其是充放电功率及效率。 电池堆是由多片单电池依次叠放压紧, 串联而成, 其中, 传 统的单片液流电池的组成如图 1所示。 1为液流框, 2为集流板, 3为电极, 4为隔膜, 各组件组成单体电池 5, 通过 N个单体电池 5的堆叠组成电池堆 6。 传统的全钒氧化还原液流电池系统, 如图 2所示, 由电池堆 6, 正极储液罐 71, 负极储液罐 72, 正极循环液路液体泵 81, 负极循环液路液体泵 82, 以及正极液体管 路 91、 101和负极液体管路 92、 102构成。 V4+/V5+电解液由液体泵 81运送至正极半 电池 61, 而负极 V2+/V3+电解液由液体泵 82运送至负极半电池 62。传统的全钒氧化还 原液流电池系统在长时间运行或者长时间停留于高电池荷电状态(State Of Charge, 简 称为 SOC) 或者工作温度反常等状态下会导致电解液析出沉淀物, 以致堵塞石墨毡、 管道及液体泵等, 大大降低电池堆充放电效率和寿命, 甚至导致整个液流电池系统瘫 痪。 针对相关技术中液流电池系统因上述原因造成的性能下降比较快, 进而导致液流 电池寿命降低的问题, 目前尚未提出有效的解决方案。 发明内容 本发明的主要目的在于提供一种液流电池系统及其修复装置, 以解决液流电池系 统的性能下降比较快, 进而导致液流电池寿命降低的问题。 为了实现上述目的, 根据本发明的一个方面, 提供了一种液流电池系统的修复装 置。 根据本发明的液流电池系统的修复装置,用于清洗液流电池系统的电池堆,包括: 酸液储液罐, 用于存储酸溶液; 第一酸液液路管, 其第一端与酸液储液罐的第一端相 连接, 第二端用于连接电池堆的第一端; 第二酸液液路管, 其第一端与酸液储液罐的 第二端相连接, 第二端用于连接电池堆的第二端; 以及动力装置, 设置于第一酸液液 路管或第二酸液液路管中, 用于驱动酸液储液罐中的酸溶液在第一酸液液路管和第二 酸液液路管中循环流动。 进一步地, 液流电池系统包括: 电解液储液罐; 第一电解液液路管, 连接于电解 液储液罐的第一端和电池堆的第一端之间; 以及第二电解液液路管, 连接于电解液储 液罐的第二端和电池堆的第二端之间, 其中, 第一酸液液路管的第二端用于连接至第 一电解液液路管中, 第二酸液液路管的第二端用于连接至第二电解液液路管中。 进一步地, 液流电池系统的修复装置包括第一分向阀和第二分向阀, 其中, 第一 酸液液路管的第二端用于经由第一分向阀连接第一电解液液路管; 第二酸液液路管的 第二端用于经由第二分向阀连接第二电解液液路管; 第一分向阀和第二分向阀均具有 第一位置和第二位置, 当第一分向阀和第二分向阀同时处于第一位置时, 酸液储液罐 与电池堆相导通以构成循环管路, 当第一分向阀和第二分向阀同时处于第二位置, 电 解液储液罐与电池堆相导通以构成循环管路。 进一步地, 酸溶液为稀酸。 进一步地, 液流电池系统的修复装置包括: 液流电池监测装置, 用于判断液流电 池系统的电池堆是否需要清洗; 控制装置, 用于在确定液流电池系统的电池堆需要清 洗时, 控制动力装置驱动酸液储液罐中的酸溶液在第一酸液液路管和第二酸液液路管 中循环流动。 进一步地, 液流电池监测装置用于: 监测第一曲线, 第一曲线为液流电池系统的 液体泵消耗功率与输出压强之间关系的曲线; 比较第一曲线与第一标准曲线, 第一标 准曲线为预设的液流电池系统的液体泵消耗功率与输出压强之间关系的标准曲线; 以 及根据第一曲线与第一标准曲线的比较结果判断液流电池系统的电池堆是否需要清 洗。 进一步地, 液流电池监测装置用于: 监测第二曲线, 第二曲线为液流电池系统的 电压与电池堆的荷电状态之间关系的曲线; 比较第二曲线与第二标准曲线, 第二标准 曲线为预设的液流电池系统的电压与电池堆的荷电状态之间关系的标准曲线; 以及根 据第二曲线与第二标准曲线的比较结果判断液流电池系统的电池堆是否需要清洗。 进一步地, 液流电池监测装置用于: 监测液流电池系统电池堆的单电池电压, 其 中, 电池堆包括多个单电池; 比较单电池电压与预设的单电池标准电压; 以及根据单 电池电压与预设的单电池标准电压的比较结果判断液流电池系统的电池堆是否需要清 洗。 根据本发明的另一方面, 还提供了一种液流电池系统, 包括上述的液流电池修复 装置。 进一步地, 液流电池系统为全钒氧化还原液流电池系统。 进一步地, 液流电池系统包括: 第一液流电池修复装置, 用于清洗液流电池系统 的正极半电池堆; 以及第二液流电池修复装置, 用于清洗液流电池系统的负极半电池 堆。 通过本发明, 采用包括以下部分的液流电池修复装置: 酸液储液罐, 用于存储酸 溶液; 第一酸液液路管, 与酸液储液罐的第一端相连接, 用于连接电池堆的第一端; 第二酸液液路管, 与酸液储液罐的第二端相连接, 用于连接电池堆的第二端; 以及动 力装置, 设置于第一酸液液路管或第一酸液液路管中, 用于驱动酸液储液罐中的酸溶 液在第一酸液液路管和第二酸液液路管中循环流动, 解决了液流电池系统的性能下降 比较快, 进而导致液流电池寿命降低的问题, 进而达到了提高液流电池运行效率, 并 延长液流电池系统使用寿命的效果。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是根据现有技术的全钒氧化还原液流电池的单片液流电池的示意图; 图 2是根据现有技术的全钒氧化还原液流电池系统的示意图; 图 3是根据本发明第一实施例的液流电池系统的修复装置的示意图; 图 4是根据本发明第二实施例的液流电池系统的修复装置的示意图; 以及 图 5是根据本发明第三实施例的液流电池系统的修复装置的示意图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 图 3是根据本发明第一实施例的液流电池系统的修复装置的示意图,如图 3所示, 液流电池系统的修复装置, 用于清洗液流电池系统的电池堆, 包括: 酸液储液罐 11, 用于存储酸溶液; 第一酸液液路管 12, 其第一端与酸液储液罐 11 的第一端相连接, 第二端用于连接电池堆的第一端; 第二酸液液路管 13, 其第一端与酸液储液罐 11 的 第二端相连接, 第二端用于连接电池堆的第二端; 以及动力装置 14, 设置于第一酸液 液路管 12或第二酸液液路管 13中,用于驱动酸液储液罐 11中的酸溶液在第一酸液液 路管 12和第二酸液液路管 13中循环流动。 在液流电池系统中, 由于电解液析出沉淀物容易导致电池堆堵塞, 而电池堆又是 影响液流电池系统性能好坏的关键因素, 所以本发明采用简单的装置可通过酸溶液对 电极中析出的沉淀物进行冲刷和再溶解, 及时对电池堆进行清洗。 采用特制的酸溶液 储液罐存储用于清洗液流电池系统的酸溶液, 以防止酸溶液对储罐的腐蚀, 采用特制 的酸液液路管用于酸溶液的导流和循环, 并且设置了动力装置, 驱动酸溶液在酸溶液 储液罐、 酸液液路管以及电池堆形成的回路中循环, 既节省了酸溶液又增强了电池堆 的清洗效果。 图 4是根据本发明第二实施例的液流电池系统的修复装置的示意图,如图 4所示, 液流电池系统包括: 电解液储液罐 7; 第一电解液液路管 9, 连接于电解液储液罐 7 的第一端和电池堆的第一端之间; 以及第二电解液液路管 10, 连接于电解液储液罐 7 的第二端和电池堆的第二端之间, 第一酸液液路管 12用于连接至第一电解液液路管 9 中, 第二酸液液路管 13用于连接至第二电解液液路管 10中。 在该实施例中, 将酸液液路管连接于电解液液路管中, 不但可以实现电池堆的清 洗, 而且可以实现电解液液路管的清洗, 并且节省了管道成本。 优选地, 液流电池系统的修复装置包括第一分向阀 15和第二分向阀 16, 其中, 第一酸液液路管 12用于经由第一分向阀 15连接第一电解液液路管 9; 第二酸液液路 管 13用于经由第二分向阀 16连接第二电解液液路管 10; 第一分向阀 15和第二分向 阀 16均具有第一位置和第二位置,当第一分向阀 15和第二分向阀 16同时处于第一位 置时, 酸液储液罐 11与电池堆相导通以构成循环管路, 当第一分向阀 15和第二分向 阀 16同时处于第二位置, 电解液储液罐 7与电池堆相导通以构成循环管路。 在该实施例中, 当液流电池系统的修复装置长时间固定于液流电池系统时, 在电 解液液路管和酸液液路管连接处设置了分向阀, 通过分向阀的设置, 使得液流电池系 统在转换充放电模式和清洗模式时更加方便。 当两个分向阀同时处于第一位置时, 充 放电回路关闭, 液流电池系统处于清洗模式; 当两个分向阀同时处于第二位置时, 清 洗回路关闭, 液流电池系统处于充放电模式。 需要说明的是, 该实施中的第一分向阀 15和第二分向阀 16必须同时处于第一位 置或者同时处于第二位置; 当液流电池系统得充放电回路中本身设置有动力装置, 如 电解液液体泵 8时, 为节省成本, 可以将修复装置中的动力装置 14去除, 其功能通过 液流电池系统本身的动力装置实现; 此外, 本实施例示出了仅在液流电池系统的正极 半电池堆设置修复装置的情况, 需要说明的是, 也可以仅在液流电池系统的负极半电 池堆设置修复装置。 优选地, 酸溶液为稀酸。 进一步优选地, 上述稀酸为稀硫酸, 其中, 稀硫酸浓度范围为 0.1~8mol/L, 优化 地, 稀硫酸浓度为 0.8~5mol/L。 本发明实施例并不现定于特定的酸溶液种类及浓度, 根据本发明实施例的要求, 上述酸溶液可以是任意不具有强氧化性的无机或有机酸。 上述修复装置中酸溶液的加 入方式可以是本领域技术人员结合其所掌握的基本知识所能获得的各种各样的方法及 其优化方法。 本发明实施例所提到的酸溶液包含且不仅限于盐酸、 磷酸、 氢溴酸、 苯磺酸、 乙 二酸等。 优选地, 所使用的稀酸和液流电池中电解液的支撑液相同。 优选地, 液流电池系统的修复装置包括: 液流电池监测装置, 用于判断液流电池 系统的电池堆是否需要清洗; 控制装置, 用于在确定液流电池系统的电池堆需要清洗 时,控制动力装置 14驱动酸液储液罐 11中的酸溶液在第一酸液液路管 12和第二酸液 液路管 13中循环流动。 为了及时地评估液流电池系统的健康状况, 并修复电池系统, 从而提高其充放电 性能和使用寿命, 在液流电池系统的修复装置中添加了液流电池监测装置, 通过该监 测装置,可以对液流电池的各项重要参数实时监测, 以综合评估电池系统的健康状况。 同时设置了控制装置, 当液流电池监测装置确定液流电池系统需要清洗时, 控制装置 控制动力装置驱动酸溶液在酸溶液储液罐、 酸液液路管和电池堆之间循环流动。 采用 该实施例修复装置的液流电池系统, 实现了液流电池健康状况的实时监测和评估, 并 可以根据监测和评估结果进行电池堆自修复。 优选地, 液流电池监测装置用于: 监测第一曲线, 第一曲线为液流电池系统的液 体泵消耗功率与输出压强之间关系的曲线; 比较第一曲线与第一标准曲线, 第一标准 曲线为预设的液流电池系统的液体泵消耗功率与输出压强之间关系的标准曲线; 以及 根据第一曲线与第一标准曲线的比较结果判断液流电池系统的电池堆是否需要清洗。 在该实施例中, 液流电池监测装置监测液流电池系统的液体泵消耗功率与输出压 强的关系。在电池堆性能良好的情况下, 测试出各种流速下液体泵消耗功率-输出压强 的标准曲线。 在液流电池系统的充放电过程中, 实时监测液体泵消耗功率与输出压强 等参数, 并与标准曲线比较, 以判断电池堆及管道内部的液流阻尼情况。 优选地, 液流电池监测装置用于: 监测第二曲线, 第二曲线为液流电池系统的电 压与电池堆的荷电状态之间关系的曲线; 比较第二曲线与第二标准曲线, 第二标准曲 线为预设的液流电池系统的电压与电池堆的荷电状态之间关系的标准曲线; 以及根据 第二曲线与第二标准曲线的比较结果判断液流电池系统的电池堆是否需要清洗。 在该实施例中, 液流电池监测装置监测液流电池系统的充放电极化曲线。 在电池 堆性能良好的情况下,测试各种液流速度下,充放电电压与 SOC关系, 以作参考标准。 优选地, 液流电池监测装置用于: 监测液流电池系统电池堆的单电池电压, 其中, 电池堆包括多个单电池; 比较单电池电压与预设的单电池标准电压; 以及根据单电池 电压与预设的单电池标准电压的比较结果判断液流电池系统的电池堆是否需要清洗。 在该实施例中, 液流电池监测装置监测液流电池系统的电池堆各单电池电压。 在 液流电池系统的充放电过程中, 可以将各单电池电压与电池堆性能良好条件下的单电 池标准电压相比较, 也可以实时监测电池堆内部各单电池充放电电压, 并在各单电池 间作横向比较, 评估电池堆中各单电池的相对健康状况。 本发明所述对各种参数监测以判断液流电池系统的电池堆是否需要清洗时, 与标 准参数相比较以确定失效判定值, 各失效判定值根据不同类型的参数选择位于初始值 的 40~150%。 监测参数的种类可以是上述各种参数中的一种或几种。 根据本发明的另一方面, 还提供了一种液流电池系统, 包括上述的液流电池修复 装置。 优选地, 液流电池系统为全钒氧化还原液流电池系统。 在该实施例中, 全钒氧化还原液流电池系统通过配备一套外接的液流电池修复装 置, 使得系统具有自修复功能, 在电池充放电性能下降或者液体泵消耗急剧增大或者 某节单电池性能急剧下降等情况下, 可通过酸溶液对电池堆或管道中析出的沉淀物进 行冲刷和再溶解, 及时对电池堆及液体循环管路进行清洗。 优选地, 液流电池系统包括: 第一液流电池修复装置, 用于清洗液流电池系统的 正极半电池堆; 以及第二液流电池修复装置,用于清洗液流电池系统的负极半电池堆。 图 5是根据本发明第三实施例的液流电池系统的修复装置的示意图。如图 5所示, 在传统的全钒氧化还原液流电池系统的基础上, 为正极液路循环和负极液路循环分别 配备一套外接的液流电池系统的修复装置。正极液路管道由正极半电池 61先通过分向 阀 151和 161, 再进入正极电解液储液罐 71或正极酸溶液储液罐 111, 分向阀的管道 选择分为充放电档和稀酸清洗档, 并且分向阀 151和 161的管道选择务必一致; 负极 液路管道由负极半电池 62先通过分向阀 152和 162, 再进入负极电解液储液罐 72或 负极酸溶液储液罐 112, 分向阀的管道选择分为充放电档和稀酸清洗档, 并且分向阀 152和 162的管道选择务必一致。液路电池系统选择充放电档时,四个分向阀 151、161、 152、 162必须同时选择充放电档位, 以确保正负极电解液储液罐 71、 72接入整个液 路循环系统; 液路电池系统选择清洗档时, 四个分向阀 151、 161、 152、 162必须同时 选择清洗档位, 以确保正负极酸溶液储液罐 111、 112接入整个液路循环系统。 上述清 洗档位的切换方式可以选用手动切换或自动切换。 上述液流电池系统的修复装置中所 用的酸溶液选用硫酸具有更佳的效果。 通过本发明实施例所提供的技术方案, 能够方便、 及时地对液流电池系统进行清 洗以实现液流电池的自修复,提高液流电池运行效率, 并延长液流电池系统使用寿命。 采用本发明技术方案设计具有自修复功能的全钒氧化还原液流电池系统, 举例如 下: 例 1 : 制备具有自修复功能的全钒氧化还原液流电池系统。 选用高导电性多孔石 墨毡作为电极材料, 石墨板作为集流板, 使用 Nafion膜作为离子交换膜。 使用上述材 料组成的单电池充放电库仑效率为 90.5%, 电压效率为 88.0%, 能量效率为 79.6%。将 该单电池按本发明所述方法接入修复装置即制得具有自修复功能的电池系统。 该电池 进行充放电循环 500次后, 单电池充放电库仑效率降为 82.1%, 电压效率降为 72.4%, 能量效率降为 59.4%。 启动进入清洗程序, 对单电池进行清洗。 清洗完成后电池充放 电库仑效率为 88.7%, 电压效率为 87.4%, 能量效率为 77.5%。 例 2: 制备具有自修复功能的全钒氧化还原液流电池系统。 选用高导电性多孔石 墨毡作为电极材料, 石墨板作为集流板, 使用 Nafion膜作为离子交换膜。 使用上述材 料组成的单电池,将 15个单电池组成一个电池组。该电池组充放电库仑效率为 89.8%, 电压效率为 86.4%, 能量效率为 77.6%。 将该电池组按本发明所述方法接入修复装置 即制得具有自修复功能的电池系统。 该电池组进行充放电循环 500次后, 电池组充放 电库仑效率降为 80.3%, 电压效率降为 69.9%, 能量效率降为 56.1%。启动进入清洗程 序, 对电池组进行清洗。 清洗完成后电池组充放电库仑效率为 88.4%, 电压效率为 85.9%, 能量效率为 75.9%。 例 3 : 制备具有自修复功能的全钒氧化还原液流电池系统。 选用高导电性多孔石 墨毡作为电极材料, 石墨板作为集流板, 使用 Nafion膜作为离子交换膜。 使用上述材 料组成的单电池,将 15个单电池组成一个电池组。该电池组充放电库仑效率为 89.8%, 电压效率为 86.4%, 能量效率为 77.6%。 将该电池组按本发明所述方法接入修复装置 即制得具有自修复功能的电池系统。 通过监测该电池组的电压效率判定电池组的运行 状况。 此处选取电压效率降低到初始效率的 60%启动进入清洗程序, 对电池组进行清 洗。 清洗完成后电池组充放电库仑效率为 86.4%, 电压效率为 85.3%, 能量效率为 73.7%。 从以上的描述中, 可以看出, 本发明实现了如下技术效果: 通过实时监测液流电 池系统各项重要参数指标, 掌握液流电池系统的健康状况。 在液流电池系统性能下降 到一定程度时, 可通过外接的酸溶液路装置及时进行自修复过程, 即对液流电池系统 进行清洗, 防止电解液析出物将电极或管道堵死, 提高其充放电效率和使用寿命。 以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何 修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种液流电池系统的修复装置, 用于清洗液流电池系统的电池堆, 其特征在于 包括:
酸液储液罐 (11 ), 用于存储酸溶液;
第一酸液液路管(12),其第一端与所述酸液储液罐(11 )的第一端相连接, 第二端用于连接所述电池堆的第一端;
第二酸液液路管(13 ),其第一端与所述酸液储液罐(11 )的第二端相连接, 第二端用于连接所述电池堆的第二端; 以及
动力装置(14), 设置于所述第一酸液液路管(12)或所述第二酸液液路管 ( 13 ) 中, 用于驱动所述酸液储液罐 (11 ) 中的酸溶液在所述第一酸液液路管 ( 12) 和所述第二酸液液路管 (13 ) 中循环流动。
2. 根据权利要求 1所述的液流电池系统的修复装置, 其中, 所述液流电池系统包 括:
电解液储液罐 (7);
第一电解液液路管(9), 连接于所述电解液储液罐(7)的第一端和所述电 池堆的第一端之间; 以及
第二电解液液路管 (10), 连接于所述电解液储液罐 (7) 的第二端和所述 电池堆的第二端之间,
其特征在于, 所述第一酸液液路管 (12) 的第二端用于连接至所述第一电 解液液路管(9) 中, 所述第二酸液液路管(13 ) 的第二端用于连接至所述第二 电解液液路管 (10) 中。
3. 根据权利要求 2所述的液流电池系统的修复装置, 其特征在于, 还包括第一分 向阀 (15 ) 和第二分向阀 (16), 其中,
所述第一酸液液路管 (12) 的第二端用于经由所述第一分向阀 (15 ) 连接 所述第一电解液液路管 (9);
所述第二酸液液路管 (13 ) 的第二端用于经由所述第二分向阀 (16) 连接 所述第二电解液液路管 (10); 所述第一分向阀 (15 ) 和所述第二分向阀 (16) 均具有第一位置和第二位 置, 在所述第一分向阀 (15 ) 和所述第二分向阀 (16) 同时处于所述第一位置 时, 所述酸液储液罐 (11 ) 与所述电池堆相导通以构成循环管路, 在所述第一 分向阀 (15 ) 和所述第二分向阀 (16) 同时处于所述第二位置, 所述电解液储 液罐 (7) 与所述电池堆相导通以构成循环管路。
4. 根据权利要求 1所述的液流电池系统的修复装置, 其特征在于所述酸溶液为稀 酸。
5. 根据权利要求 1所述的液流电池系统的修复装置, 其特征在于, 还包括: 液流电池监测装置, 用于判断所述液流电池系统的电池堆是否需要清洗; 以及
控制装置, 用于在确定所述液流电池系统的电池堆需要清洗时, 控制所述 动力装置驱动所述酸液储液罐 (11 ) 中的酸溶液在所述第一酸液液路管 (12) 和所述第二酸液液路管 (13 ) 中循环流动。
6. 根据权利要求 5所述的液流电池系统的修复装置, 其特征在于, 所述液流电池 监测装置用于:
监测第一曲线, 所述第一曲线为所述液流电池系统的液体泵消耗功率与输 出压强之间关系的曲线;
比较第一曲线与第一标准曲线, 所述第一标准曲线为预设的所述液流电池 系统的液体泵消耗功率与输出压强之间关系的标准曲线; 以及
根据所述第一曲线与所述第一标准曲线的比较结果判断所述液流电池系统 的电池堆是否需要清洗。
7. 根据权利要求 5所述的液流电池系统的修复装置, 其特征在于, 所述液流电池 监测装置用于:
监测第二曲线, 所述第二曲线为所述液流电池系统的电压与所述电池堆的 荷电状态之间关系的曲线;
比较第二曲线与第二标准曲线, 所述第二标准曲线为预设的所述液流电池 系统的电压与电池堆的荷电状态之间关系的标准曲线; 以及
根据所述第二曲线与所述第二标准曲线的比较结果判断所述液流电池系统 的电池堆是否需要清洗。
8. 根据权利要求 5所述的液流电池系统的修复装置, 其特征在于, 所述液流电池 监测装置用于:
监测所述液流电池系统电池堆的单电池电压, 其中, 所述电池堆包括多个 单电池;
比较所述单电池电压与预设的单电池标准电压; 以及
根据所述单电池电压与所述预设的单电池标准电压的比较结果判断所述液 流电池系统的电池堆是否需要清洗。
9. 一种液流电池系统, 其特征在于, 包括权利要求 1至 8中任一项所述的液流电 池修复装置。
10. 根据权利要求 9所述的液流电池系统, 其特征在于, 所述液流电池系统为全钒 氧化还原液流电池系统。
11. 根据权利要求 9所述的液流电池系统, 其特征在于, 所述液流电池修复装置包 括:
第一液流电池修复装置, 用于清洗所述液流电池系统的正极半电池堆; 以 及
第二液流电池修复装置, 用于清洗所述液流电池系统的负极半电池堆。
PCT/CN2011/081988 2011-06-07 2011-11-09 液流电池系统及其修复装置 WO2012167542A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/124,271 US20140099520A1 (en) 2011-06-07 2011-11-09 Liquid Flow Battery System and Repairing Device Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110151029.6 2011-06-07
CN201110151029.6A CN102244286B (zh) 2011-06-07 2011-06-07 液流电池系统及其修复装置

Publications (1)

Publication Number Publication Date
WO2012167542A1 true WO2012167542A1 (zh) 2012-12-13

Family

ID=44962214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081988 WO2012167542A1 (zh) 2011-06-07 2011-11-09 液流电池系统及其修复装置

Country Status (3)

Country Link
US (1) US20140099520A1 (zh)
CN (1) CN102244286B (zh)
WO (1) WO2012167542A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014198546A1 (de) 2013-06-13 2014-12-18 Cellstrom Gmbh Redox-durchflussbatterie und verfahren zu ihrer reaktivierung
CN114784331A (zh) * 2022-05-18 2022-07-22 西安交通大学 锌溴液流电池的酸碱调控系统及其工作方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569852A (zh) * 2012-01-06 2012-07-11 国网电力科学研究院武汉南瑞有限责任公司 一种全钒液流电池用管路系统
CN104979577B (zh) * 2015-05-19 2017-05-31 中国华能集团清洁能源技术研究院有限公司 一种钒/氯化物电解液及使用该电解液的氧化还原液流电池
WO2018123962A1 (ja) 2016-12-28 2018-07-05 昭和電工株式会社 レドックスフロー電池システム及びレドックスフロー電池の運転方法
WO2020021611A1 (ja) * 2018-07-23 2020-01-30 住友電気工業株式会社 レドックスフロー電池の運転方法、及びレドックスフロー電池
CN113540543B (zh) * 2020-04-09 2022-05-06 陕西五洲钒金属材料科技有限公司 一种全钒液流电池电堆及其使用方法
CN113130944B (zh) * 2021-03-18 2022-02-22 上海发电设备成套设计研究院有限责任公司 适用于盐酸系液流电池的电池堆残液清洗装置及方法
CN114263567B (zh) * 2021-12-08 2024-04-02 广东力恒新能源科技有限公司 一种铁铬液流储能电池系统
CN114276871A (zh) * 2021-12-24 2022-04-05 雅安市中甫新能源开发有限公司 一种钒电池电堆清洗剂及其制备方法与电堆清洗方法
CN116666717B (zh) * 2023-08-02 2024-03-22 北京普能世纪科技有限公司 液流电池清理装置、清理方法及系统
CN116689395B (zh) * 2023-08-07 2023-10-17 纬景储能科技有限公司 一种液流电池的清洗装置以及液流电池
CN117080491B (zh) * 2023-10-18 2024-02-09 液流储能科技有限公司 液流电池电解液的纯化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188729A (ja) * 2006-01-12 2007-07-26 Sumitomo Electric Ind Ltd バナジウムレドックスフロー電池の再生方法
CN101677135A (zh) * 2008-09-18 2010-03-24 中国人民解放军63971部队 一种锌锰液流电池
CN101997129A (zh) * 2009-08-27 2011-03-30 中国科学院金属研究所 一种液流电池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3425060B2 (ja) * 1997-05-09 2003-07-07 住友電気工業株式会社 内部抵抗回復機構付電解液流通型電池
JP3098977B2 (ja) * 1997-07-09 2000-10-16 住友電気工業株式会社 レドックスフロー電池およびその運転方法
JP2004111182A (ja) * 2002-09-18 2004-04-08 Sumitomo Electric Ind Ltd レドックスフロー電池用電極の再賦活方法
US8277964B2 (en) * 2004-01-15 2012-10-02 Jd Holding Inc. System and method for optimizing efficiency and power output from a vanadium redox battery energy storage system
CN100550479C (zh) * 2006-08-15 2009-10-14 中国人民解放军63971部队 一种锌镍液流电池
US7517608B2 (en) * 2007-03-09 2009-04-14 Vrb Power Systems Inc. Inherently safe redox flow battery storage system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188729A (ja) * 2006-01-12 2007-07-26 Sumitomo Electric Ind Ltd バナジウムレドックスフロー電池の再生方法
CN101677135A (zh) * 2008-09-18 2010-03-24 中国人民解放军63971部队 一种锌锰液流电池
CN101997129A (zh) * 2009-08-27 2011-03-30 中国科学院金属研究所 一种液流电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014198546A1 (de) 2013-06-13 2014-12-18 Cellstrom Gmbh Redox-durchflussbatterie und verfahren zu ihrer reaktivierung
CN114784331A (zh) * 2022-05-18 2022-07-22 西安交通大学 锌溴液流电池的酸碱调控系统及其工作方法
CN114784331B (zh) * 2022-05-18 2023-09-22 西安交通大学 锌溴液流电池的酸碱调控系统及其工作方法

Also Published As

Publication number Publication date
US20140099520A1 (en) 2014-04-10
CN102244286B (zh) 2014-10-15
CN102244286A (zh) 2011-11-16

Similar Documents

Publication Publication Date Title
WO2012167542A1 (zh) 液流电池系统及其修复装置
CN102055000B (zh) 氧化还原液流电池和使电池长时间持续运行的方法
TW575972B (en) Secondary battery and running method thereof
KR101394255B1 (ko) 레독스 흐름전지 및 그 운전 방법
WO2017156679A1 (zh) 液流电池调控方法及其调控系统、液流电池
KR101291753B1 (ko) 션트전류 저감을 위한 레독스 흐름전지용 매니폴드 및 이를 포함하는 레독스 흐름전지
CN102354761B (zh) 液流电池系统及其停机保护方法和装置
US10665882B2 (en) Redox flow battery
KR102357651B1 (ko) 레독스 흐름 전지의 모듈 시스템
WO2017156681A1 (zh) 电解液储罐、液流电池、箱式液流电池系统及液流电池充放电控制方法
KR102069832B1 (ko) 바나듐 레독스 플로우 전지용 전해액 저장부 및 이를 포함하는 바나듐 레독스 플로우 전지
JP4830190B2 (ja) レドックスフロー電池
WO2013097595A1 (zh) 一种质子交换膜在铁-铬系液相流体电池中的应用
CN116053532A (zh) 一种液流电池电堆控制装置、控制方法、液流电池电堆及储能系统
CN116454341A (zh) 一种铁铬液流电池电堆系统
CN105702980B (zh) 一种在线恢复液流电池系统性能的控制方法及其系统
KR101491784B1 (ko) 화학흐름전지의 운전 방법
CN106450404A (zh) 液流电池电堆
CN114243053A (zh) 一种延长燃料电池寿命的测试方法及装置
JP6629911B2 (ja) レドックスフロー電池
EP3446351A1 (en) A reduction-oxidation flow battery
CN114156514A (zh) 一种液流电池电解液及其应用
JP2006012425A (ja) レドックスフロー電池の運転方法
KR20160098591A (ko) 산화환원 유동 에너지 저장장치 및 그 제어방법
KR20160115477A (ko) 레독스 플로우 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867189

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14124271

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867189

Country of ref document: EP

Kind code of ref document: A1