WO2012165792A2 - 진공증착장치 - Google Patents

진공증착장치 Download PDF

Info

Publication number
WO2012165792A2
WO2012165792A2 PCT/KR2012/004025 KR2012004025W WO2012165792A2 WO 2012165792 A2 WO2012165792 A2 WO 2012165792A2 KR 2012004025 W KR2012004025 W KR 2012004025W WO 2012165792 A2 WO2012165792 A2 WO 2012165792A2
Authority
WO
WIPO (PCT)
Prior art keywords
oil
substrate
flow path
substrate transfer
source
Prior art date
Application number
PCT/KR2012/004025
Other languages
English (en)
French (fr)
Other versions
WO2012165792A3 (ko
Inventor
공두원
이종하
이동현
정성재
박상현
Original Assignee
에스엔유 프리시젼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스엔유 프리시젼 주식회사 filed Critical 에스엔유 프리시젼 주식회사
Priority to US13/634,090 priority Critical patent/US20140144383A1/en
Priority to EP12753370.1A priority patent/EP2562288A4/en
Publication of WO2012165792A2 publication Critical patent/WO2012165792A2/ko
Publication of WO2012165792A3 publication Critical patent/WO2012165792A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates

Definitions

  • the present invention relates to a vacuum deposition apparatus, and more particularly, to a vacuum deposition apparatus capable of improving productivity by having a substrate transfer part to prevent source deposition.
  • a vacuum deposition apparatus is used as a physical vapor deposition method for forming a thin film on a substrate.
  • a thin film is formed by allowing a deposition method of atomic or molecular units to be solidified on the surface of a substrate to be deposited by a physical method or a chemical method in a vacuum chamber.
  • the deposition material injected in the particulate state from the nozzle is injected to the substrate side without the target region being precisely determined, the deposition material is deposited in the extended region not only to the substrate but also to the transfer roller for in-line transfer of the substrate. there is a problem.
  • Deposition material particles deposited at an unnecessary position may contaminate the transfer roller to shorten the lifespan and become a factor that inhibits productivity and efficiency.
  • an object of the present invention is to provide a vacuum deposition apparatus capable of minimizing productivity degradation caused by granulation and deposition of a source onto a substrate transfer unit for transporting a substrate. .
  • a vacuum deposition apparatus for depositing a source on a substrate disposed in a chamber of a vacuum, comprising: a substrate transfer unit for transferring the substrate; A nozzle disposed to face the substrate transfer part, and spraying a source to a substrate disposed on the substrate transfer part; It is achieved by a vacuum deposition apparatus comprising a; temperature control unit for controlling the surface temperature of the substrate transfer portion to prevent the source is deposited on the substrate transfer portion.
  • the temperature control unit may control the surface temperature of the substrate transfer unit by injecting a heated fluid into the substrate transfer unit.
  • the temperature control unit may include an oil supply unit provided at an outside of the chamber and storing heated oil; It may include; a connecting pipe for circulating the oil by interconnecting the ends of the oil supply unit and the substrate transfer unit.
  • the substrate transfer part may include an oil flow path through which the oil flows, wherein the substrate transfer part includes a feed roller provided along the width direction of the substrate, and the connection pipe is configured to inject oil into the oil flow path.
  • An injection pipe configured to interconnect one end of the flow path with the oil supply part; It may include; a recovery pipe for interconnecting the other end of the oil flow path and the oil supply unit to recover the oil from the oil flow path.
  • the substrate transfer unit includes a pair of transfer rollers disposed to face each other so as to support while supporting both ends of the substrate, each of the transfer rollers is formed with an oil inlet and an oil recovery port in communication with the oil inlet
  • the connection pipe is an injection pipe connecting the oil inlet and the oil supply of the respective transport roller; It may include; a recovery pipe for connecting the oil recovery port and the oil supply of the respective transport roller.
  • a first oil flow path is formed inside the transfer roller to flow the oil supplied from the oil inlet to the inner direction of the chamber, and the outer surface of the first flow path is wrapped inside the transfer roller.
  • a second oil flow path may be formed in communication with the first flow path to flow oil provided from the first flow path to the oil recovery port.
  • a vacuum deposition apparatus capable of preventing the source from being granulated and deposited on the substrate transfer portion by controlling the surface temperature of the substrate transfer portion.
  • the surface temperature of the substrate transfer portion may be controlled by circulating oil between the substrate transfer portion and the oil supply portion.
  • FIG. 1 is a cross-sectional view of a vacuum deposition apparatus according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line II-II 'of the vacuum deposition apparatus of FIG.
  • FIG. 3 is a cross-sectional view of a vacuum deposition apparatus according to a second embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV 'of the vacuum deposition apparatus of FIG.
  • FIG. 1 is a cross-sectional view of a vacuum deposition apparatus according to a first embodiment of the present invention
  • Figure 2 is a cross-sectional view taken along the line II-II 'of the vacuum deposition apparatus of FIG.
  • the vacuum deposition apparatus 100 includes a chamber 110, a substrate transfer part 120, a nozzle 130, and a temperature control part 140. .
  • the chamber 110 is a member accommodating the target substrate 10 deposited on a source ejected from the nozzle 120 to be described later.
  • the chamber 110 is configured to control the pressure inside, and a substrate transfer part 120 for transferring the substrate 10 during the deposition process is provided therein.
  • a predetermined vacuum pump (not shown) is installed to generate a pressure difference with the outside and to allow the vaporized source to be seated on the lower substrate 10 from the nozzle 130, thereby allowing the inside of the chamber 110 to be internalized. It is preferable that the vacuum state is maintained.
  • a cold trap 111 may be provided on the upper side of the chamber 110 to suck a gaseous source that is not used to deposit the substrate 10 by being connected to a predetermined storage unit.
  • the deposition process is performed in the single chamber 110, but the present invention is not limited thereto, and the substrate 10 deposited by the plurality of chambers 110 is continuously enlarged to further increase the area. can do.
  • the substrate transfer part 120 is a member for continuously transporting the substrate accommodated in the chamber 110 and includes a plurality of transfer rollers 121.
  • the conveying roller 121 is provided to extend along one of the width direction of the substrate 10 by extending from one side of the inner wall surface of the chamber 110 to the other side, a plurality is spaced apart along the conveying direction of the substrate 10. .
  • An oil flow path 122 is formed inside the feed roller 121 as a flow path through which oil supplied for surface temperature control may flow.
  • the oil flow path 122 is formed by penetrating the feed roller 121 from one end to the other end in the longitudinal direction, and the diameter of the oil flow path 122 is related to the durability of the feed roller 121 so as to inject It is preferably determined in consideration of the oil, the temperature inside the chamber 1100, the area and the load of the substrate 10, and the like.
  • the nozzle 130 is a member for spraying and depositing a gas source onto the lower substrate 10 by receiving a source from the outside.
  • the temperature control unit 140 is for circulating the oil and injecting it into the above-described feed roller 121 to adjust the surface temperature, the oil supply unit 141 and the connection pipe 142 and the heating member (not shown) and forced circulation It includes a portion (not shown).
  • the oil supply unit 141 stores the heated oil and injects the oil into the conveying roller 121 or recovers oil from the conveying roller 121 to serve as a reservoir for storing and supplying the oil to be circulated.
  • connection pipe 142 is a passage for connecting the feed roller 121 and the oil supply unit 141 to each other, and includes an injection pipe 143 and a recovery pipe 144.
  • the injection pipe 143 is provided to inject the oil stored in the oil supply unit 141 into the feed roller 121, one end of the oil flow path 122 of the feed roller 121 and the oil supply unit 141. It consists of a tubular shape that interconnects them.
  • the recovery pipe 144 flows into one end of the feed roller 121 and flows inside the oil flow path 122, and then recovers oil discharged through the other end of the feed roller 121 into the oil supply part 141.
  • the injection pipe 143 is configured in the form of a pipe connecting the oil flow passage 122 and the oil supply unit 141 of the opposite end connected to each other.
  • the heating member (not shown) is mounted to the oil supply unit 141, and is a member for heating the oil so as to maintain a temperature suitable for injecting temporarily stored oil into the oil flow path 122.
  • the forced circulation unit (not shown) is a member that provides a forced pressure to repeatedly circulate the oil supply unit 141, the injection pipe 143, the oil flow path 122 and the recovery pipe 144, This may be provided with a predetermined pump that is applied to generate a pressure difference.
  • the oil circulating from the oil supply unit 141 to the conveying roller 121 is preferably vaporized at a high vaporization point so as not to be vaporized at the injection temperature into the conveying roller 121 to circulate in the liquid phase.
  • a source that is a gas from an external predetermined supply source is supplied into the nozzle 130, and the supplied gas is supplied.
  • the source in the state is ejected from the nozzle 130 toward the substrate 10.
  • the source sprayed from the nozzle 130 is not sprayed with the correct directionality, it is sprayed on the unintentional area in the chamber 110 in addition to the substrate 10 to be deposited, and in particular, is deposited on the transfer roller 121. It contaminates the feed roller 121.
  • the oil heated from the oil supply unit 141 together with the source injection of the nozzle 130 is injected into the oil flow path 122 formed in the feed roller 121 through the injection pipe 143 by the forced circulation unit. .
  • the injected hot oil flows through the oil flow path 122 to perform heat exchange with the surface of the feed roller 121, and the surface of the feed roller 121 is maintained at a high temperature. Due to the high temperature of the surface, the gaseous source applied to the surface of the feed roller 121 is not granulated, and maintains the gaseous state.
  • the gaseous source is sucked into and stored in a predetermined storage unit through the cold trap 111, thereby preventing deposition in an unnecessary position in the chamber 110.
  • the oil which flows the oil flow path 122 and heat transfers to the surface of the feed roller 121 is discharged from the feed roller 121 in a state in which the temperature is relatively low, and is discharged from the feed roller 121 to the oil supply unit 141 through the recovery pipe 144. It is recovered.
  • the oil supply unit 141 is provided with a predetermined heating member (not shown) to heat the oil to a temperature required for resupply to the feed roller 121 later.
  • FIG. 3 is a cross-sectional view of a vacuum deposition apparatus according to a second embodiment of the present invention
  • Figure 4 is a cross-sectional view taken along the line IV-IV 'of the vacuum deposition apparatus of FIG.
  • the vacuum deposition apparatus 200 includes a chamber 110, a substrate transfer part 220, a nozzle 130, and a temperature control part 240. . Since the chamber 110 and the nozzle 130 are the same as the above-described configuration in the first embodiment, redundant description is omitted.
  • the single feed roller 121 is formed to be long in the width direction of the substrate 10 so as to support the entire surface of the substrate 10 along the width direction.
  • the substrate transfer part 220 of the second embodiment is composed of a pair of feed rollers 221 spaced apart from each other, so as to support only both sides of the substrate 10, a pair of feed rollers 221 are disposed to face each other do.
  • One end of the transfer roller 221 of the present embodiment is mounted so as to face the inside of the chamber 110, the other end is exposed to the outside of the chamber 110, the end of the feed roller 221 exposed to the outside of the chamber 110 An oil injection hole 222 through which oil is injected is formed, and an oil recovery hole 223 through which the injected oil is recovered.
  • a first oil flow path 224 communicating with the oil inlet 222 is formed in each of the conveying rollers 221 so that oil flowing from the oil inlet 222 flows, and the conveying roller 221.
  • the second oil flow path 225 communicating with the oil recovery port 223 is formed therein.
  • the first oil flow path 224 is formed at the center of the cylindrical feed roller 221 and wraps the first oil flow path 224 coaxially with the first oil flow path 224 and the second oil flow path.
  • the furnace 225 is formed, that is, the oil injection hole 222 is formed on the surface exposed to the outside of the chamber of the transfer roller 221, the first oil flow path 224 in communication with the oil injection hole 222 ) Is formed along the longitudinal direction of the feed roller 221, one end is connected to the first oil flow path 225 and the other end is the oil recovery formed on the surface formed with the oil inlet 222 of the feed roller 221
  • a second oil flow path 225 connected to the sphere 223 is formed inside the feed roller 221 in a form of wrapping the first oil flow path 224 coaxially with the first oil flow path 224. .
  • the temperature control part 240 is for controlling the surface temperature of the feed roller 221 by supplying oil into the feed roller 221, and includes an oil supply part 241 and a connection pipe 242.
  • oil supply unit 241 is the same as the above-described configuration in the first embodiment, redundant description is omitted.
  • connection pipe 242 includes an injection pipe 243 and the recovery pipe 244.
  • the injection pipe 243 interconnects an oil supply unit 241 and an oil injection hole 222 formed in each of the transport rollers 221, and the recovery pipe 244 is any one of the oil supply unit 241 and the transport roller.
  • An oil recovery port 223 formed at 221 is interconnected. That is, in this embodiment, since one injection tube 243 and one recovery tube 244 are mounted for each feed roller 221, a pair of injection pipes 243 are provided in the pair of feed rollers 221 facing each other. And a recovery pipe 244 is provided.
  • a source of gas is supplied into the nozzle 130 from an external predetermined supply source, and the source of the supplied gas state is a nozzle. It is injected from the 130 toward the substrate 10.
  • the source sprayed from the nozzle 130 is not sprayed with the correct directionality, it is partially sprayed on the unintentional area of the chamber 110 in addition to the substrate 10 to be deposited, and in particular, is deposited on the transfer roller 221. To contaminate the feed roller.
  • the oil heated in the oil supply unit 241 together with the source injection from the nozzle 130 is injected into the first oil flow path 224 formed in the feed roller 221 through the injection pipe 243.
  • the heated oil flows toward the inside of the chamber in the first oil flow path 244 and transfers heat to the surface of the oil and feed roller 221 flowing in the second oil flow path 225 through the partition wall.
  • the surface of the feed roller 221 is to maintain a high temperature. Due to the high temperature of the surface, a gaseous source applied to the surface of the feed roller 221 is prevented from being deposited on the substrate 10.
  • the gaseous source is sucked into and stored in a predetermined storage unit through the cold trap 111, thereby preventing deposition in an unnecessary position in the chamber 110.
  • the oil flows into the second oil flow passage 225 in communication with the first oil flow passage 224, and flows through the second oil flow passage 225 to the first oil. Receives some heat from the oil flowing in the flow path 224 through the partition wall and at the same time reheats the surface of the feed roller 221.
  • the oil in which the flow in the second oil flow path 225 is completed is discharged to the outside of the feed roller 221 through the oil recovery port 222 and stored in the oil supply part 241 through the connected recovery pipe 244.
  • the oil supply unit 241 is provided with a predetermined heating member (not shown) to heat the oil to a temperature required for re-supply to the feed roller 221 later.
  • the oil is supplied to each of the conveying rollers 221, but is configured to recover the structure, it is possible to control the surface temperature of each of the conveying rollers 221 individually. .
  • the oil flowing in the first oil flow path 224 and the oil flowing in the second oil flow path 225 along the opposite direction repeatedly heat the surface of the feed roller 221, thereby providing excellent heating performance. Can be implemented.
  • a vacuum deposition apparatus capable of preventing the source from being granulated and deposited on the substrate transfer portion by controlling the surface temperature of the substrate transfer portion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 진공증착장치에 관한 것으로서, 본 발명에 따른 진공증착장치는 진공의 챔버 내에 배치되는 기판에 소스를 증착하기 위한 진공증착장치에 있어서, 상기 기판을 이송하는 기판 이송부; 상기 기판 이송부와 대향되게 배치되며, 상기 기판 이송부 상에 배치되는 기판에 소스를 분사하는 노즐; 상기 기판 이송부에 소스가 증착되는 것을 방지되도록 상기 기판 이송부의 표면온도를 제어하는 온도제어부;를 포함하는 것을 특징으로 한다. 이에 의하여, 소스가 기판을 이송하는 기판이송부 상에 입자화되어 증착됨으로써 발생하는 생산성 저하를 최소화할 수 있는 진공증착장치가 제공된다.

Description

진공증착장치
본 발명은 진공증착장치에 관한 것으로서, 보다 상세하게는 소스 증착이 방지되는 기판이송부를 구비하여 생산성을 향상시킬 수 있는 진공증착장치에 관한 것이다.
디스플레이 제조나 태양전지 제조에 있어서, 기판에 박막을 형성하기 위한 물리적 증착 방법으로서 진공증착장치가 이용되고 있다. 이러한 진공증착장치에 의하면 진공 상태의 챔버 내에서 물리적 방법 또는 화학적 방법을 통하여 원자 또는 분자 단위의 증착물질을 피증착 기판의 표면에 응고되도록 함으로써 박막을 형성한다.
한편, 이송롤러에 의하여 연속적으로 이송되는 기판 상에 증착물질을 분사하는 방법을 통하여, 공정의 인라인(in-line)화를 도모하고, 처리대상 기판을 대면적화하고 있다.
그러나, 이러한 종래의 진공증착장치에 의하면, 노즐로부터 입자상태로 분사되는 증착물질은 표적영역이 정확히 정해지지 않고 기판측으로 분사되므로, 기판 뿐만 아니라 기판을 인라인 이송하는 이송롤러에 까지 확장된 영역으로 증착되는 문제가 있다.
불필요한 위치에 증착되는 증착물질입자는 이송롤러를 오염시켜 수명을 단축시키고, 생산성 및 효율을 저해하는 요소가 된다.
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 소스가 기판을 이송하는 기판이송부 상에 입자화되어 증착됨으로써 발생하는 생산성 저하를 최소화할 수 있는 진공증착장치를 제공함에 있다.
상기 목적은, 본 발명에 따라, 진공의 챔버 내에 배치되는 기판에 소스를 증착하기 위한 진공증착장치에 있어서, 상기 기판을 이송하는 기판이송부; 상기 기판 이송부와 대향되게 배치되며, 상기 기판 이송부 상에 배치되는 기판에 소스를 분사하는 노즐; 상기 기판 이송부에 소스가 증착되는 것을 방지하도록 상기 기판이송부의 표면온도를 제어하는 온도제어부;를 포함하는 것을 특징으로 하는 진공증착장치에 의해 달성된다.
또한, 상기 온도제어부는 상기 기판이송부 내부에 가열된 유체를 주입함으로써 상기 기판이송부의 표면온도를 제어할 수 있다.
또한, 상기 온도제어부는 상기 챔버의 외측에 마련되며 가열된 오일이 저장되는 오일공급부; 상기 오일공급부와 상기 기판 이송부의 단부를 상호 연결함으로써, 상기 오일을 순환시키는 연결관;을 포함할 수 있다.
또한, 상기 기판 이송부는 내부에 상기 오일이 유동하는 오일유동로가 형성되되, 기판의 폭방향을 따라서 길게 마련되는 이송롤러를 포함하며, 상기 연결관은 상기 오일유동로 내로 오일을 주입하도록 상기 오일유동로의 일단부와 상기 오일공급부를 상호 연결하는 주입관; 상기 오일유동로로부터 오일을 회수하도록 상기 오일유동로의 타단부와 상기 오일공급부를 상호 연결하는 회수관;을 포함할 수 있다.
또한, 상기 기판 이송부는 기판의 양측단을 접촉지지하면서 이송하도록 상호 대향되게 배치되는 한 쌍의 이송롤러를 포함하고, 상기 각각의 이송롤러에는 오일주입구와 상기 오일주입구와 연통되는 오일회수구가 형성되며, 상기 연결관은 상기 각각의 이송롤러의 오일주입구와 상기 오일공급부를 연결하는 주입관; 상기 각각의 이송롤러의 오일회수구와 상기 오일공급부를 연결하는 회수관;을 포함할 수 있다.
또한, 상기 이송롤러의 내부에는 오일주입구로부터 연장되어 공급받은 오일을 상기 챔버의 내부 방향으로 유동시키는 제1오일유동로가 형성되고, 상기 이송롤러의 내부에 상기 제1유동로의 외면을 감싸되 상기 제1유동로와 연통되어 상기 제1유동로로부터 제공되는 오일을 상기 오일회수구 측으로 유동시키는 제2오일유동로가 형성될 수 있다.
본 발명에 따르면, 기판이송부의 표면온도를 제어함으로써 기판이송부 상에서 소스가 입자화되어 증착되는 것을 방지할 수 있는 진공증착장치가 제공된다.
또한, 기판이송부와 오일공급부와의 사이에서 오일을 순환시켜 기판이송부의 표면온도를 제어할 수 있다.
또한, 기판이송부를 이격되는 한 쌍의 이송롤러로 구성하여, 길이를 최소화하고 열전달면적을 최소화함으로써, 표면온도 제어용 에너지 소모를 최소화할 수 있다.
도 1은 본 발명의 제1실시예에 따른 진공증착장치의 단면도이고,
도 2는 도 1의 진공증착장치를 II - II' 선을 따라 절단한 단면도이고,
도 3은 본 발명의 제2실시예에 따른 진공증착장치의 단면도이고,
도 4는 도 2의 진공증착장치를 IV - IV' 선을 따라 절단한 단면도이다.
설명에 앞서, 여러 실시예에 있어서, 동일한 구성을 가지는 구성요소에 대해서는 동일한 부호를 사용하여 대표적으로 제1실시예에서 설명하고, 그 외의 실시예에서는 제1실시예와 다른 구성에 대해서 설명하기로 한다.
이하, 첨부한 도면을 참조하여 본 발명의 제1실시예에 따른 진공증착장치(100)에 대하여 상세하게 설명한다.
도 1은 본 발명의 제1실시예에 따른 진공증착장치의 단면도이고, 도 2는 도 1의 진공증착장치를 II - II' 선을 따라 절단한 단면도이다.
도 1 및 도 2를 참조하면, 본 발명의 제1실시예에 따른 진공증착장치(100)는 챔버(110)와 기판이송부(120)와 노즐(130)과 온도제어부(140)를 포함한다.
상기 챔버(110)는 후술하는 노즐(120)로부터 분사되는 소스에 증착되는 대상 기판(10)을 수용하는 부재이다. 챔버(110)는 내부의 압력 조절이 가능하도록 구성되며, 내부에는 증착 공정시 기판(10)을 이송하기 위한 기판이송부(120)가 마련된다.
챔버(110)에는 외부와의 압력차를 발생시키고 기화된 소스가 노즐(130)로부터 하측의 기판(10)에 안착될 수 있도록 소정의 진공펌프(미도시)가 설치됨으로써, 챔버(110) 내부는 진공상태가 유지되는 것이 바람직하다.
또한, 챔버(110)의 상측에는 소정의 저장부와 연결됨으로써 기판(10)을 증착하는데 이용되지 않는 기체 상태의 소스를 흡입하기 위한 콜드트랩(111)이 마련될 수 있다.
한편, 본 실시예에서는 단일의 챔버(110) 내에서 증착공정이 진행되는 것으로 설명하나, 이에 제한되는 것은 아니고, 다수개의 챔버(110)가 연속적으로 연됨으로써 증착되는 기판(10)을 더욱 대면적화할 수 있다.
상기 기판이송부(120)는 챔버(110) 내에 수용되어 기판을 연속적으로 이송하기 위한 부재로서, 다수개의 이송롤러(121)를 포함한다.
상기 이송롤러(121)는 챔버(110)의 내벽면의 일측에서 타측까지 연장됨으로써 기판(10)의 폭방향을 따라서 길게 마련되는 것으로서, 기판(10)의 이송방향을 따라서 다수개가 이격되게 마련된다.
이송롤러(121)의 내부에는 표면 온도조절을 위하여 공급되는 오일이 유동할 수 있는 유로로서 오일유동로(122)가 형성된다. 오일유동로(122)는 일단부에서부터 타단부까지 이송롤러(121)를 길이방향으로 관통함으로써 형성되는 것으로서, 오일유동로(122)의 직경은 이송롤러)(121)의 내구성과 관련이 있으므로 주입되는 오일, 챔버(1100 내부의 온도, 기판(10)의 면적 및 하중 등을 고려하여 결정되는 것이 바람직하다.
상기 노즐(130)은 외부로부터 소스를 공급받아 하방의 기판(10)에 기체의 소스를 분사하고, 증착하기 위한 부재이다.
상기 온도제어부(140)는 오일을 순환시켜 상술한 이송롤러(121) 내로 주입하여 표면온도를 조절하기 위한 것으로서, 오일공급부(141)와 연결관(142)과 가열부재(미도시)와 강제순환부(미도시)를 포함한다.
상기 오일공급부(141)는 가열된 오일을 저장하여 이송롤러(121) 내로 주입하거나, 이송롤러(121)로부터 오일을 회수함으로써, 순환 대상이 되는 오일을 저장 및 공급하기 위한 저장소의 역할을 한다.
상기 연결관(142)은 이송롤러(121)와 오일공급부(141)를 상호 연결하기 위한 통로로서, 주입관(143)과 회수관(144)을 포함한다.
상기 주입관(143)은 오일공급부(141)에 저장된 오일을 이송롤러(121) 내로 주입하기 위해 마련되는 것으로서, 이송롤러(121)의 오일유동로(122)의 일단부와 오일공급부(141)를 상호 연결하는 관형태로 구성된다.
상기 회수관(144)은 이송롤러(121)의 일단부로 유입되어 오일유동로(122)의 내부를 유동한 후에 이송롤러(121)의 타단부를 통하여 배출되는 오일을 오일공급부(141) 내로 회수하기 위하여 마련되는 것으로서, 주입관(143)이 연결되는 반대편 단부의 오일유동로(122)와 오일공급부(141)를 상호 연결하는 관형태로 구성된다.
상기 가열부재(미도시)는 오일공급부(141)에 장착되며, 임시 저장되는 오일이 오일유동로(122)에 주입하기에 적합한 온도를 유지하도록 오일을 가열하기 위한 부재이다.
상기 강제순환부(미도시)는 오일이 오일공급부(141), 주입관(143), 오일유동로(122) 및 회수관(144)을 반복하여 순환하도록 강제적인 압력을 제공하는 부재로서, 전원이 인가되어 압력차를 발생시키는 소정의 펌프로 마련될 수 있다.
한편, 오일공급부(141)로부터 이송롤러(121)를 순환하는 오일은 이송롤러 (121)내로의 주입온도에서 기화되지 않고, 액상으로 순환할 수 있도록 기화점이 높은 것을 이용하는 것이 바람직하다.
지금부터는 상술한 진공증착장치(100)의 제1실시예의 작동에 대하여 설명한다.
도 2를 참조하면, 진공 상태의 챔버(110)내에서 이송롤러(121)에 의하여 기판(10)이 이송되면, 외부 소정의 공급처로부터 기체인 소스가 노즐(130)내로 공급되고, 공급된 기체 상태의 소스는 노즐(130)로부터 기판(10)을 향해 분사된다.
노즐(130)로부터 분사되는 소스는 정확한 방향성을 가지고 분사되는 것이 아니므로, 증착 대상인 기판(10) 외에 의도하지 않은 챔버(110) 내의 영역에도 분사되며, 특히, 이송롤러(121) 상에 증착되어 이송롤러(121)를 오염시킨다.
이때, 노즐(130)의 소스 분사와 함께 오일공급부(141)로부터 가열된 오일이 강제순환부에 의하여 주입관(143)을 통하여 이송롤러(121) 내부에 형성된 오일유동로(122)로 주입된다.
주입된 고온의 오일이 오일유동로(122) 내를 유동함으로써 이송롤러(121)의 표면과 열교환을 수행하고, 이송롤러(121)의 표면은 고온을 유지하게 된다. 표면의 높은 온도로 인하여 이송롤러(121) 표면에 도포되는 기체상태의 소스는 입자화되지 못하고, 기체 상태를 유지한다.
이러한 기체 상태의 소스는 콜드트랩(111)을 통하여 소정의 저장부에 흡입, 저장됨으로써, 불필요한 챔버(110) 내의 위치에 증착되는 것을 방지하게 된다.
오일유동로(122)를 유동하며 이송롤러(121) 표면과 열전달을 한 오일은 상대적으로 온도가 떨어진 상태로 이송롤러(121)로부터 배출되고, 회수관(144)을 통하여 오일공급부(141)로 회수된다. 이때, 오일공급부(141)에는 소정의 가열부재(미도시)가 구비되어, 추후 이송롤러(121)에 재공급시에 필요한 온도로 오일을 가열하게 된다.
다음으로 본 발명의 제2실시예에 따른 진공증착장치(200)에 대하여 설명한다.
도 3은 본 발명의 제2실시예에 따른 진공증착장치의 단면도이고, 도 4는 도 2의 진공증착장치를 IV - IV' 선을 따라 절단한 단면도이다.
도 3 및 도 4를 참조하면, 본 발명의 제2실시예에 따른 진공증착장치(200)는 챔버(110)와 기판이송부(220)와 노즐(130)과 온도제어부(240)를 포함한다. 상기 챔버(110)와 노즐(130)은 제1실시예에서 상술한 구성과 동일하므로 중복 설명은 생략한다.
제1실시예의 기판이송부(120)는 단일의 이송롤러(121)가 기판(10)의 폭방향으로 길게 형성됨으로써 기판(10)을 폭방향을 따라서 전면(全面) 지지하도록 구성된 것과는 달리, 제2실시예의 상기 기판이송부(220)는 기판(10)의 양측부만을 지지하도록, 상호 이격되는 한 쌍의 이송롤러(221)로 구성되며, 한 쌍의 이송롤러(221)는 상호 대향되게 배치된다.
본 실시예의 이송롤러(221)의 일단부는 챔버(110) 내부를 향하고, 타단부는 챔버(110)의 외부에 노출되도록 장착되며, 챔버(110)의 외측으로 노출되는 이송롤러(221)의 단부에는 오일이 주입되는 오일주입구(222)와, 주입된 오일이 회수되는 오일회수구(223)가 형성된다.
또한, 오일주입구(222)로부터 유입되는 오일이 유동할 수 있도록 각각의 이송롤러(221)의 내부에 오일주입구(222)와 연통되는 제1오일유동로(224)가 형성되며, 이송롤러(221) 내부에는 오일회수구(223)와 연통되는 제2오일유동로(225)가 형성된다.
전체적으로 실린더 형상의 이송롤러(221)의 중심에는 제1오일유동로(224)가 형성되고, 제1오일유동로(224)와 동축상에 제1오일유동로(224)를 감싸며 제2오일유동로(225)가 형성된다, 즉, 다시 말하면, 이송롤러(221)의 챔버 외부로 노출된 면에는 오일주입구(222)가 형성되고, 오일주입구(222)와 연통되는 제1오일유동로(224)가 이송롤러(221)의 길이방향을 따라서 형성되며, 일단부는 제1오일유동로(225)과 연결되고 타단부는 이송롤러(221)의 오일주입구(222)가 형성된 면에 형성되는 오일회수구(223)와 연결되는 제2오일유동로(225)가 제1오일유동로(224)와 동축상에 제1오일유동로(224)를 감싸는 형태로 이송롤러(221)의 내부에 형성된다.
상기 온도제어부(240)는 이송롤러(221)의 내부에 오일을 공급하여 이송롤러(221)의 표면온도를 제어하기 위한 것으로서, 오일공급부(241)와 연결관(242)을 포함한다.
상기 오일공급부(241)는 제1실시예에서 상술한 구성과 동일한 것이므로 중복설명은 생략한다.
상기 연결관(242)은 주입관(243)과 회수관(244)을 포함한다.
상기 주입관(243)은 오일공급부(241)와 각각의 이송롤러(221)에 형성된 오일주입구(222)를 상호 연결하며, 상기 회수관(244)은 오일공급부(241)와 어느 하나의 이송롤러(221)에 형성된 오일회수구(223)를 상호 연결하는 관이다. 즉, 본 실시예에서는 각 이송롤러(221) 마다 주입관(243)과 회수관(244)이 하나씩 각각 장착되므로, 대향하는 한 쌍의 이송롤러(221)에는 총 한 쌍의 주입관(243)과 회수관(244)이 구비된다.
지금부터는 상술한 진공증착장치(200)의 제2실시예의 작동에 대하여 설명한다.
진공 상태의 챔버(110)내에서 기판이송부(220)에 의하여 기판(10)이 이송되면, 외부 소정의 공급처로부터 기체의 소스가 노즐(130)내로 공급되고, 공급된 기체상태의 소스는 노즐(130)로부터 기판(10)을 향해 분사된다.
노즐(130)로부터 분사되는 소스는 정확한 방향성을 가지고 분사되는 것이 아니므로, 증착 대상인 기판(10) 외에 의도하지 않은 챔버(110) 내의 영역에도 일부 분사되며, 특히, 이송롤러(221) 상에 증착되어 이송롤러를 오염시키다.
이때, 노즐(130)로부터의 소스 분사와 함께 오일공급부(241)에서 가열된 오일이 주입관(243)을 통하여 이송롤러(221) 내부에 형성되는 제1오일유동로(224)로 주입된다. 가열된 오일은 제1오일유동로(244) 내에서 챔버의 내부를 향하여 유동하며 격벽을 통하여 제2오일유동로(225) 내를 유동하는 오일 및 이송롤러(221)의 표면에 열을 전달하고, 이송롤러(221)의 표면은 고온상태를 유지하게 된다. 표면의 높은 온도로 인하여 이송롤러(221) 표면에 도포되는 기체 상태의 소스가 입자화 되어 기판(10)에 증착되는 것을 방지한다.
이러한 기체 상태의 소스는 콜드트랩(111)을 통하여 소정의 저장부에 흡입, 저장됨으로써, 불필요한 챔버(110) 내의 위치에 증착되는 것을 방지하게 된다.
제1오일유동로(224)의 단부에서 오일은 제1오일유동로(224)와 연통된 제2오일유동로(225) 내로 유입되고, 제2오일유동로(225)를 유동하며 제1오일유동로(224)내를 유동하는 오일로부터 격벽을 통하여 일부 열을 전달받는 동시에 이송롤러(221)의 표면을 재가열하게 된다.
제2오일유동로(225) 내의 유동이 완료된 오일은 오일회수구(222)를 통하여 이송롤러(221)의 외부로 배출되고, 연결된 회수관(244)을 통하여 오일공급부(241)내에 저장된다. 이때, 오일공급부(241)에는 소정의 가열부재(미도시)가 구비되어, 추후 이송롤러(221)에 재공급시에 필요한 온도로 오일을 가열하게 된다.
본 실시예의 진공증착장치(200)에 따르면, 각 이송롤러(221)에 오일이 공급되되, 이를 다시 회수하는 구조로 구성되어, 각각의 이송롤러(221)의 표면온도를 개별적으로 제어할 수 있다.
또한, 이송롤러(221)의 구조적 특성으로 인하여, 오일이 유동하며 이송롤러(221)의 표면과 열전달하는 구간이 상대적으로 짧게 형성되고, 주입되는 오일과 회수되는 오일의 온도차를 최소화할 수 있으므로, 이송롤러의 온도제어에 필요한 에너지 소모를 최소화할 수 있다
또한, 제1오일유동로(224) 내를 유동하는 오일과 이와 반대 방향을 따라서 제2오일유동로(225) 내에서 유동하는 오일이 이송롤러(221)의 표면을 반복 가열함으로써 우수한 가열 성능이 구현될 수 있다.
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.
본 발명에 따르면, 기판이송부의 표면온도를 제어함으로써 기판이송부 상에서 소스가 입자화되어 증착되는 것을 방지할 수 있는 진공증착장치가 제공된다.

Claims (6)

  1. 진공의 챔버 내에 배치되는 기판에 소스를 증착하기 위한 진공증착장치에 있어서,
    상기 기판을 이송하는 기판이송부;
    상기 기판 이송부와 대향되게 배치되며, 상기 기판 이송부 상에 배치되는 기판에 소스를 분사하는 노즐;
    상기 기판 이송부에 소스가 증착되는 것을 방지하도록 상기 기판이송부의 표면온도를 제어하는 온도제어부;를 포함하는 것을 특징으로 하는 진공증착장치.
  2. 제1항에 있어서,
    상기 온도제어부는 상기 기판이송부 내부에 가열된 유체를 주입함으로써 상기 기판이송부의 표면온도를 제어하는 것을 특징으로 하는 진공증착장치.
  3. 제2항에 있어서,
    상기 온도제어부는 상기 챔버의 외측에 마련되며 가열된 오일이 저장되는 오일공급부; 상기 오일공급부와 상기 기판 이송부의 단부를 상호 연결함으로써, 상기 오일을 순환시키는 연결관;을 포함하는 것을 특징으로 하는 진공증착장치.
  4. 제3항에 있어서,
    상기 기판 이송부는 내부에 상기 오일이 유동하는 오일유동로가 형성되되, 기판의 폭방향을 따라서 길게 마련되는 이송롤러를 포함하며,
    상기 연결관은 상기 오일유동로 내로 오일을 주입하도록 상기 오일유동로의 일단부와 상기 오일공급부를 상호 연결하는 주입관; 상기 오일유동로로부터 오일을 회수하도록 상기 오일유동로의 타단부와 상기 오일공급부를 상호 연결하는 회수관;을 포함하는 것을 특징으로 하는 진공증착장치.
  5. 제3항에 있어서,
    상기 기판 이송부는 기판의 양측단을 접촉지지하면서 이송하도록 상호 대향되게 배치되는 한 쌍의 이송롤러를 포함하고,
    상기 각각의 이송롤러에는 오일주입구와 상기 오일주입구와 연통되는 오일회수구가 형성되며,
    상기 연결관은 상기 각각의 이송롤러의 오일주입구와 상기 오일공급부를 연결하는 주입관; 상기 각각의 이송롤러의 오일회수구와 상기 오일공급부를 연결하는 회수관;을 포함하는 것을 특징으로 하는 진공증착장치.
  6. 제5항에 있어서,
    상기 이송롤러의 내부에는 오일주입구로부터 연장되어 공급받은 오일을 상기 챔버의 내부 방향으로 유동시키는 제1오일유동로가 형성되고, 상기 이송롤러의 내부에 상기 제1유동로의 외면을 감싸되 상기 제1유동로와 연통되어 상기 제1유동로로부터 제공되는 오일을 상기 오일회수구 측으로 유동시키는 제2오일유동로가 형성되는 것을 특징으로 하는 진공증착장치.
PCT/KR2012/004025 2011-05-31 2012-05-22 진공증착장치 WO2012165792A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/634,090 US20140144383A1 (en) 2011-05-31 2012-05-22 Vacuum deposition apparatus
EP12753370.1A EP2562288A4 (en) 2011-05-31 2012-05-22 VACUUM DEPOSITION APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0052455 2011-05-31
KR20110052455A KR101114832B1 (ko) 2011-05-31 2011-05-31 진공증착장치

Publications (2)

Publication Number Publication Date
WO2012165792A2 true WO2012165792A2 (ko) 2012-12-06
WO2012165792A3 WO2012165792A3 (ko) 2013-02-07

Family

ID=46140952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004025 WO2012165792A2 (ko) 2011-05-31 2012-05-22 진공증착장치

Country Status (4)

Country Link
US (1) US20140144383A1 (ko)
EP (1) EP2562288A4 (ko)
KR (1) KR101114832B1 (ko)
WO (1) WO2012165792A2 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116081A1 (en) * 2017-12-14 2019-06-20 Arcelormittal Vacuum deposition facility and method for coating a substrate
WO2019116082A1 (en) * 2017-12-14 2019-06-20 Arcelormittal Vacuum deposition facility and method for coating a substrate
CN113463034B (zh) * 2021-06-16 2023-07-25 Tcl华星光电技术有限公司 一种蒸镀装置及蒸镀方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381420A (en) * 1979-12-26 1983-04-26 Western Electric Company, Inc. Multi-conductor flat cable
IT1261918B (it) * 1993-06-11 1996-06-04 Cetev Cent Tecnolog Vuoto Struttura per deposizione reattiva di metalli in impianti da vuoto continui e relativo processo.
FR2740726B1 (fr) * 1995-11-08 1998-01-23 Heidelberg Harris Sa Dispositif de refroidissement de la surface du blanchet d'un groupe d'impression d'une machine rotative a imprimer
JPH09157832A (ja) * 1995-11-30 1997-06-17 Sony Corp 防着板およびそれを用いた真空装置
JPH09176855A (ja) * 1995-12-22 1997-07-08 Fuji Electric Corp Res & Dev Ltd 薄膜形成装置
JPH09302468A (ja) * 1996-05-13 1997-11-25 Ricoh Co Ltd 薄膜形成装置
US6270580B2 (en) * 1999-04-12 2001-08-07 Advanced Micro Devices, Inc. Modified material deposition sequence for reduced detect densities in semiconductor manufacturing
US9017480B2 (en) * 2006-04-06 2015-04-28 First Solar, Inc. System and method for transport
JP5081516B2 (ja) * 2007-07-12 2012-11-28 株式会社ジャパンディスプレイイースト 蒸着方法および蒸着装置
KR100942203B1 (ko) * 2007-11-07 2010-02-11 이창재 탑 사이드 램프가열방식의 인-라인형 apcvd 장치
KR101610771B1 (ko) * 2009-05-25 2016-04-08 주성엔지니어링(주) 박막 증착 장치
US20110097494A1 (en) * 2009-10-27 2011-04-28 Kerr Roger S Fluid conveyance system including flexible retaining mechanism

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2562288A4

Also Published As

Publication number Publication date
US20140144383A1 (en) 2014-05-29
KR101114832B1 (ko) 2012-03-06
EP2562288A2 (en) 2013-02-27
WO2012165792A3 (ko) 2013-02-07
EP2562288A4 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
WO2012165792A2 (ko) 진공증착장치
KR100990060B1 (ko) 성막 장치, 성막 장치계, 성막 방법, 및 전자 장치 또는유기 일렉트로루미네선스 소자의 제조 방법
WO2016006741A1 (ko) 복수의 증발원을 갖는 박막 증착장치
WO2011155652A1 (ko) 박막 증착 장치 및 박막 증착 시스템
WO2013165106A1 (ko) 난방효율을 향상시킨 난방 및 온수의 동시 사용이 가능한 보일러
CN104120386A (zh) 沉积装置和制造有机发光二极管显示器的方法
KR20010021733A (ko) 유체 이송 장치 및 방법
TW200946708A (en) Coating apparatus with rotation module
KR101232910B1 (ko) 유기물 공급장치, 이를 이용한 유기물 증착장치 및 방법
WO2011019157A2 (ko) 질소가스 분사장치
WO2010128811A2 (ko) 박막 증착 장치 및 이를 구비하는 박막 증착 시스템
TW201217732A (en) characterized by having a construction designed as an up-down double-layered structure to increase drying length, thereby greatly saving drying space and reducing cost
CN106531661A (zh) 衬底处理设备
KR101871717B1 (ko) 화학물질 전달 시스템
TW200907082A (en) Deposition source unit, deposition apparatus and temperature control apparatus for deposition source unit
KR101625001B1 (ko) 진공증착장치 용 원료가스 분사노즐
WO2012091470A2 (ko) 증기압력을 이용한 자동 급수식 증기발생기
WO2020105855A1 (ko) 복수 개의 연료전지를 포함하는 연료전지 시스템
WO2019013465A1 (ko) 다공성 기재의 표면 코팅 장치 및 방법
WO2010110615A2 (en) Source supplying unit, method for supplying source, and thin film depositing apparatus
CN212669786U (zh) 一种oled线性蒸发源装置
WO2013172683A1 (ko) 기상 증착용 반응로 및 유기 박막의 제조 방법
WO2021125629A1 (ko) 이차 전지 양극재 소성 장치
KR20170083587A (ko) 진공 증착을 위한 재료 소스 배열체 및 노즐
KR20130068926A (ko) 증발원 및 이를 구비한 진공 증착 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13634090

Country of ref document: US

Ref document number: 2012753370

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12753370

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE