WO2012164956A1 - パターン又はfpの特徴量作成方法、作成プログラム、及び作成装置 - Google Patents

パターン又はfpの特徴量作成方法、作成プログラム、及び作成装置 Download PDF

Info

Publication number
WO2012164956A1
WO2012164956A1 PCT/JP2012/003618 JP2012003618W WO2012164956A1 WO 2012164956 A1 WO2012164956 A1 WO 2012164956A1 JP 2012003618 W JP2012003618 W JP 2012003618W WO 2012164956 A1 WO2012164956 A1 WO 2012164956A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
feature
target
attribution
creation
Prior art date
Application number
PCT/JP2012/003618
Other languages
English (en)
French (fr)
Inventor
手島 昌一
芳和 森
桂一 野田
Original Assignee
株式会社ツムラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ツムラ filed Critical 株式会社ツムラ
Priority to EP12791963.7A priority Critical patent/EP2717045B1/en
Priority to KR1020127032279A priority patent/KR101442117B1/ko
Priority to CN201280001661.5A priority patent/CN102959395B/zh
Priority to US13/806,725 priority patent/US20130204539A1/en
Publication of WO2012164956A1 publication Critical patent/WO2012164956A1/ja
Priority to HK13108497.6A priority patent/HK1181119A1/zh
Priority to US15/261,462 priority patent/US10605792B2/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/20Identification of molecular entities, parts thereof or of chemical compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8624Detection of slopes or peaks; baseline correction
    • G01N30/8631Peaks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • G01N30/8686Fingerprinting, e.g. without prior knowledge of the sample components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8886Analysis of industrial production processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information

Definitions

  • the present invention relates to a pattern feature value creation method, a multi-component substance, for example, a multi-component substance FP feature value creation method, a creation program, and a creation device for evaluating quality of a Chinese medicine that is a multi-component drug.
  • multi-component substance for example, there is a natural product-derived drug such as Chinese medicine, which is a drug composed of multiple components (hereinafter referred to as multi-component drug).
  • Chinese medicine which is a drug composed of multiple components (hereinafter referred to as multi-component drug).
  • the quantitative and qualitative profiles of these drugs vary due to the geological factors, ecological factors, collection time, collection location, collection age, growing season weather, etc. of the raw material crude drug used.
  • the criteria for determining the quality of a multi-component drug and the like are generally set based on the content and the like of one or several characteristic components in the multi-component drug.
  • Non-Patent Document 1 when an active ingredient cannot be identified in a multi-component drug, quantitative analysis is possible, it is easily dissolved in water, does not decompose in hot water, does not chemically react with other components, etc. A plurality of components having the above are selected, and the content of those components obtained by chemical analysis is used as a criterion for evaluation.
  • Patent Document 1 a multi-component drug is evaluated by selecting a part of the peak in the HPLC chromatogram data and converting it into a barcode.
  • the object of evaluation is limited to “content of specific component” or “chromatography peak of specific component”, and some of the components contained in the multi-component drug are to be evaluated. Only. For this reason, since there are many components that are not subject to evaluation for multi-component drugs, they are insufficiently accurate as an evaluation method for multi-component drugs.
  • the problem to be solved is that the existing evaluation method has a limit in efficiently evaluating the quality of multi-component substances with high accuracy.
  • the present invention divides a pattern in which a peak changes in time series into a plurality of regions and patterns from the presence rate or the amount of peaks existing in each region.
  • the feature of the pattern feature quantity creation method is that a pattern area division feature quantity creation step for creating an area division feature quantity is provided.
  • the present invention divides an FP composed of a peak detected from a chromatographic analysis of a multi-component substance and its retention time into a plurality of regions, and calculates the FP region dividing feature amount from the abundance rate or abundance of the peaks existing in each region.
  • the feature of the FP feature quantity creation method is that it includes an FP region division feature quantity creation step for creating the FP feature quantity.
  • the present invention provides a computer with a pattern area division feature quantity creation function for creating a pattern area division feature quantity from the existence rate or quantity of peaks existing in each area by dividing a pattern whose peak changes in time series into a plurality of areas.
  • the realization is a feature of the pattern feature creation program.
  • the present invention divides an FP composed of a peak detected from a chromatographic analysis of a multi-component substance and its retention time into a plurality of regions, and calculates the FP region dividing feature amount from the abundance rate or abundance of the peaks existing in each region.
  • the feature of the FP feature quantity creation program is that it has an FP region division feature quantity creation function.
  • the present invention includes a pattern region division feature amount creation unit that divides a pattern whose peak changes in time series into a plurality of regions and creates a pattern region division feature amount from the presence rate or the amount of the peak existing in each region.
  • This is the feature of the pattern feature quantity creation device.
  • the present invention divides an FP composed of a peak detected from a chromatographic analysis of a multi-component substance and its retention time into a plurality of regions, and calculates the FP region dividing feature amount from the abundance rate or abundance of the peaks existing in each region.
  • the feature of the FP feature quantity creation device is that it includes an FP area division feature quantity creation section for creating a FP feature quantity.
  • the pattern or FP feature value creation method of the present invention has the above configuration, the pattern or FP feature value can be easily obtained by area division. Therefore, for example, a feature amount can be created by capturing a fine peak.
  • the pattern or FP feature value creation program of the present invention has the above-described configuration, it is possible to easily obtain the pattern or FP feature value by causing a computer to realize each function. Since the pattern or FP feature value creation apparatus of the present invention has the above-described configuration, it is possible to easily obtain the pattern or FP feature value by operating each part.
  • Example 1 It is a block diagram of the evaluation apparatus of a multicomponent medicine.
  • Example 1 It is a block diagram which shows the evaluation procedure of a multicomponent medicine.
  • Example 1 It is explanatory drawing of FP created from three-dimensional chromatogram data (henceforth, 3D chromatography).
  • Example 1 (A) is the drug A, (B) is the drug B, and (C) is the FP of the drug C.
  • Example 1 It is a figure which shows the retention time of object FP and reference
  • Example 1 It is a figure which shows the retention * time * appearance pattern of object FP.
  • Example 1 It is a figure which shows the retention, time, and appearance pattern of reference
  • Example 1 It is a figure which shows the coincidence number of retention, time, and appearance distance of object FP and reference
  • Example 1 It is a figure which shows the coincidence degree of the retention time and appearance pattern of the target FP and the reference FP.
  • Example 1 It is a figure which shows the attribution object peak of object FP.
  • Example 1 It is a peak pattern figure by three peaks including an assignment object peak.
  • Example 1 It is a peak pattern figure by five peaks including an assignment object peak.
  • Example 1 It is a figure which shows the tolerance
  • Example 1 It is a figure which shows the attribution candidate peak of the reference
  • Example 1 It is a peak pattern figure by three peaks of the attribution object peak and the attribution candidate peak.
  • Example 1 It is a peak pattern figure by three peaks of the attribution candidate peak and another attribution candidate peak.
  • Example 1 It is a peak pattern figure by three peaks of the attribution candidate peak and another attribution candidate peak. (Example 1)) It is a peak pattern figure by three peaks of the attribution candidate peak and another attribution candidate peak.
  • Example 1 It is a peak pattern figure by five peaks of the attribution object peak and the attribution candidate peak.
  • Example 1 It is a peak pattern figure by five peaks of the attribution candidate peak different from the attribution object peak.
  • Example 1 It is a peak pattern figure by five peaks of the attribution candidate peak different from the attribution object peak.
  • Example 1 It is a peak pattern figure by five peaks of the attribution candidate peak different from the attribution object peak.
  • Example 1 It is a figure which shows the peak pattern configuration candidate peak of the attribution object peak and the attribution candidate peak.
  • Example 1 It is a figure which shows the number of all the peak patterns of the attribution object peak when a peak pattern structure candidate peak is set to four.
  • Example 1 It is a figure which shows the number of all the peak patterns of the attribution candidate peak when a peak pattern structure candidate peak is set to four.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is explanatory drawing of the comprehensive comparison of the peak pattern of the attribution candidate peak with respect to the peak pattern of the attribution object peak.
  • Example 1 It is a figure which shows the calculation method of the coincidence degree of the peak pattern by three peaks of the attribution object peak and the attribution candidate peak.
  • Example 1 It is a figure which shows the calculation method of the coincidence degree of the peak pattern by three peaks of the attribution object peak and the attribution candidate peak.
  • Example 1 It is a figure which shows the calculation method of the coincidence degree of the peak pattern by five peaks of the attribution object peak and the attribution candidate peak.
  • Example 1 It is a figure which shows the UV spectrum of the attribution object peak and the attribution candidate peak.
  • Example 1 It is explanatory drawing of the coincidence degree of the UV spectrum of an attribution object peak and an attribution candidate peak.
  • Example 1 It is explanatory drawing of coincidence degree calculation of the attribution candidate peak by the comparison of both a peak pattern and UV spectrum.
  • Example 1 It is explanatory drawing which shows attribution to the reference
  • Example 1 It is a figure which shows the condition where object FP was attributed to reference
  • Example 1 It is explanatory drawing which shows quantification by area
  • Example 1 It is explanatory drawing which shows the relationship with fluctuation
  • Example 1 It is explanatory drawing which changes and changes the position of an area
  • Example 1 It is a chart which shows the data of FP type 2.
  • Example 1 It is explanatory drawing which shows the pattern of FP type 2.
  • Example 1 It is explanatory drawing which shows the feature-value conversion for every area
  • Example 1 It is explanatory drawing which shows the setting of a vertical division line (1st line).
  • Example 1 It is explanatory drawing which shows the setting of a horizontal parting line (1st line).
  • Example 1 It is explanatory drawing which shows the area
  • Example 1 It is explanatory drawing which shows the number of the area
  • FIG. 6 is an explanatory diagram showing identification of a region 1;
  • Example 1 It is a graph which shows the height and total of all the peaks.
  • Example 1 It is explanatory drawing which shows the sum total of the peak height of the area
  • FIG. Example 1 It is a graph which shows the feature-value of all the area
  • Example 1 It is a graph which shows the feature-value in each area
  • Example 1 It is a graph which shows the feature-value in each area
  • Example 1 It is a graph which shows the feature-value in one way which does not change the position of each vertical and horizontal dividing line.
  • Example 1 It is a figure which shows various object FP and its evaluation value (MD value).
  • Example 1 It is a figure which shows various object FP and its evaluation value (MD value).
  • Example 1 It is a figure which shows various object FP and its evaluation value (MD value).
  • Example 1 It is a figure which shows various object FP and its evaluation value (MD value).
  • Example 1 It is a figure which shows various object FP and its evaluation value (MD value).
  • Example 1 It is process drawing which shows the evaluation method of a multicomponent chemical
  • Example 1 It is a quality evaluation flowchart of a multi-component medicine.
  • Example 1 It is a quality evaluation flowchart of a multi-component medicine.
  • Example 1 It is a data processing flowchart in the FP creation function by a single wavelength.
  • Example 1 It is a data processing flowchart in the FP creation function by a plurality of wavelengths.
  • Example 1 It is a data processing flowchart in the FP creation function by a plurality of wavelengths.
  • Example 1 It is a data processing flowchart in peak attribution processing 1 (selection of standard FP).
  • Example 1 It is a data processing flowchart in peak attribution processing 2 (calculation of attribution score).
  • Example 1 It is a data processing flowchart in the peak attribution process 3 (identification of a corresponding peak).
  • Example 1 It is a data processing flowchart in the peak attribution process 4 (attribute to the reference group FP).
  • Example 1 It is a data processing flowchart in the peak attribution process 4 (attribute to the reference group FP).
  • Example 1 10 is a flowchart of a retention / time / appearance pattern coincidence calculation process in peak attribution process 1 (selection of reference FP).
  • Example 1 It is a flowchart of the coincidence degree calculation process of the UV spectrum in the peak attribution process 2 (calculation of the attribution score).
  • Example 1 It is a flowchart of the coincidence calculation processing of peak patterns in peak attribution processing 2 (calculation of attribution score).
  • Example 1 It is a flowchart which shows the detail of "FP_type2 creation”.
  • Example 1 It is a flowchart which shows the detail of "the feature-quantization process of object FP_type2 by area division”.
  • Example 1 It is a flowchart which shows the detail of "integration of the peak feature-value and area
  • Example 1 It is a flowchart for creating a reference FP feature value integration file.
  • Example 1 It is a flowchart for creating a reference FP feature value integration file.
  • Example 1 It is a flowchart which shows the detail of "reference
  • Example 1 It is a flowchart which shows the detail of “reference
  • Example 1 It is a flowchart which shows the detail of “peak feature-quantization process (creation of the reference group FP).”
  • Example 1 It is a flowchart which shows the detail of "the production
  • Example 1 It is a flowchart which shows the detail of "the feature-quantization process of the reference
  • Example 1 It is a flowchart which concerns on the feature-value integration process of reference
  • Example 1 It is a chart which shows the example of data of 3D chromatography.
  • Example 1 It is a chart which shows the example of data of peak information.
  • Example 1 It is a chart which shows the example of data of FP.
  • Example 1 It is a graph which shows the attribution score calculation result (judgment result file example) to the reference
  • Example 1 It is a graph which shows the collation process of the peak corresponding by object FP and reference
  • Example 1 It is a graph which shows the result (collation result file) example which specified the peak corresponding to object FP and standard FP.
  • Example 1 It is a chart which shows the example of data of standard group FP.
  • Example 1 It is a graph which shows the example of object FP peak feature-value file.
  • Example 1 It is a chart which shows the example of data of object and standard FP type 2.
  • Example 1 It is a graph which shows the example of object FP area
  • Example 1 It is a graph which shows the example of object FP integrated feature-value file.
  • Example 1 It is a graph which shows the reference
  • Example 1 It is a chart which shows the example of standard group integration data.
  • Example 1 It is a flowchart which shows the detail of the modification of the subroutine 2 applied instead of FIG.
  • Example 1 It is a graph which shows the example of calculation of a moving average and a moving inclination.
  • Example 1 It is a chart which shows the example of calculation of a moving average and a moving inclination.
  • the purpose of making it possible to contribute to improving the accuracy and efficiency of evaluation is to divide the FP consisting of the peaks detected from the chromatography of multi-component substances and their retention times into multiple regions and to exist in each region This is realized by creating an FP region segmentation feature amount from the existence rate or the abundance of the peak.
  • Example 1 of the present invention is a multicomponent drug evaluation method, an evaluation program, a pattern FP feature value creation method, a creation program, and a creation device for evaluating a multicomponent substance, for example, a multicomponent drug.
  • a multi-component drug is defined as a drug containing a plurality of active chemical ingredients, and includes, but is not limited to, herbal medicines, combinations of herbal medicines, extracts thereof, and herbal medicines.
  • the dosage form is not particularly limited.
  • liquids, extracts, capsules, granules, pills, suspensions / emulsions, powders, spirits, specified in the 15th revised Japanese Pharmacopoeia Tablets, soaking agents, decoction, tinctures, troches, fragrances, fluid extracts and the like are included.
  • Multi-component substances include those other than drugs.
  • Kampo medicines are described in the industry unification and voluntary revision of the 148 prescription “Precautions for use” of Kampo medicines for medical use, and the general Kampo prescription (1978).
  • the three-dimensional chromatogram data (hereinafter referred to as 3D chromatogram) of the drug to be evaluated is used.
  • a target FP from which drug-specific information is extracted is created.
  • each peak of the target FP is assigned to the peak correspondence data (hereinafter referred to as a reference group FP) of all the reference FPs created by performing the peak assignment process for all the reference FPs to obtain peak feature values.
  • FP type 2 is created from the remaining peaks except for the assigned peaks from the target FP, and the FP type 2 is divided into regions to obtain region divided feature values.
  • FIG. 1 is a block diagram of an evaluation apparatus for a multi-component drug
  • FIG. 2 is a block diagram showing an evaluation procedure for the multi-component drug
  • FIG. 3 is an explanatory diagram of an FP created from 3D chromatography
  • the drugs A and (B) are drugs B and (C) is the FP of the drug C.
  • the multi-component drug evaluation apparatus 1 includes an FP creation unit 3, a target FP peak attribution unit 5, a target FP peak feature creation unit 7, a target FP type 2 creation unit 9, and a target FP.
  • the multi-component drug evaluation device 1 includes a FP feature value creation device that is a pattern.
  • the FP creation unit 3 includes a target FP creation unit 29 and a reference FP creation unit 31.
  • the target FP peak attribution unit 5 includes a reference FP selection unit 33, a peak pattern creation unit 35, and a peak attribution unit 37.
  • the multi-component drug evaluation apparatus 1 is composed of, for example, a single computer and includes a CPU, a ROM, a RAM, and the like (not shown).
  • the multi-component medicine evaluation apparatus 1 can obtain an FP feature quantity by realizing an FP feature quantity creation program as a pattern feature quantity creation program installed in a computer.
  • the FP feature value creation program uses the FP feature value creation program recording medium in which the FP feature value creation program is recorded, and causes the multi-component drug evaluation apparatus 1 configured by a computer to read the FP feature value creation program, thereby obtaining the FP feature value. It can also be achieved.
  • Each component of the evaluation apparatus 1 for a multi-component drug can be configured by a separate computer.
  • the target FP region division feature quantity creation unit 11, the target FP feature quantity integration unit 13, and the evaluation unit 27 are configured by one computer, and a reference FP creation unit 31, a reference FP peak attribution unit 15, and a reference FP attribution.
  • the result integration unit 17, the reference FP peak feature value creation unit 19, the reference FP type 2 creation unit 21, the reference FP region division feature value creation unit 23, and the reference FP feature value integration unit 25 are configured by other computers. You can also.
  • the reference FP integrated feature value is created by another computer and input to the evaluation unit 27 of the evaluation apparatus 1.
  • the target FP integrated feature value is created by the quantity integration unit 13, the reference FP creation unit 31, the reference FP peak attribution unit 15, the reference FP attribution result integration unit 17, the reference FP peak feature quantity creation unit 19, and the reference
  • a reference FP integrated feature value is generated by the FP type 2 generation unit 21, the reference FP region division feature value generation unit 23, and the reference FP feature value integration unit 25.
  • the target FP creation unit 29 of the FP creation unit 3 uses a plurality of peaks at a specific detection wavelength from a 3D chromatogram 41 that is three-dimensional chromatogram data as a chromatograph of Chinese medicine 39.
  • This is a functional unit that creates a target FP 43 (hereinafter, simply referred to as “FP43”) from which the retention time and UV spectrum are extracted.
  • This FP 43 is composed of three-dimensional information (peak, retention time, and UV spectrum) in the same manner as the 3D chromatography 41.
  • the FP 43 is data that inherits the drug-specific information as it is. Nevertheless, since the data volume is compressed to about 1/70, the amount of information to be processed can be greatly reduced and the processing speed can be increased compared to the 3D chromatogram 41.
  • 3D chromatography 41 is the result of applying high performance liquid chromatography (HPLC) to Chinese medicine 39.
  • HPLC high performance liquid chromatography
  • This 3D chromatogram 41 is expressed as a moving speed of each component, which is expressed as a moving distance at a specific time, or in a chart that appears in time series from the column end.
  • the detector response with respect to the time axis is plotted, and the appearance time of the peak is called the retention time (retention time).
  • the detector is not particularly limited, but an absorbance detector using optical properties (Absorbance Detector) is used, and the peak is obtained three-dimensionally as the signal intensity corresponding to the detection wavelength of ultraviolet rays (UV). Is.
  • a transmission detector Transmittance Detector
  • UV ultraviolet rays
  • the detection wavelength is not limited, and is preferably in the range of 150 nm to 900 nm, particularly preferably in the UV-visible absorption region of 200 nm to 400 nm, and more preferably a plurality of wavelengths selected from 200 nm to 300 nm.
  • the 3D chromatograph 41 has at least a Chinese medicine number (lot number), a retention time, a detection wavelength, and a peak as data.
  • the 3D chromatogram 41 can also be obtained by a commercially available device, and an example of such a commercially available device is the Agilent 1100 system. Further, the chromatography is not limited to HPLC, and various types can be adopted.
  • the 3D chromatogram 41 displays the x-axis as the retention time, the y-axis as the detection wavelength, and the z-axis as the signal intensity as shown in FIGS.
  • FP43 has at least a Chinese medicine number (lot number), a retention time, a peak at a specific wavelength, and a UV spectrum as data.
  • the FP 43 is displayed in two dimensions with the x-axis as a retention time and the y-axis as a peak at a specific detection wavelength as shown in FIGS. 2 and 3, but similar to the UV spectrum 42 shown as one peak as shown in FIG. This is data having UV spectrum information for each peak.
  • the specific detection wavelength for creating the ⁇ ⁇ FP 43 is not particularly limited and can be variously selected. However, it is important to include all the peaks in 3D chromatography in FP43 in that information is inherited. For this reason, in this Example 1, the detection wavelength was set to 203 nm including all peaks in 3D chromatography.
  • not all peaks may be included in a single wavelength.
  • a plurality of detection wavelengths are used, and an FP including all peaks is created by combining a plurality of wavelengths as will be described later.
  • the peak is the maximum value of the signal intensity (peak height), but the area value can also be adopted as the peak. It is also possible to include only two-dimensional information in which the UV spectrum is not included in the FP, the x-axis is the retention time, and the y-axis is the peak at a specific detection wavelength. In this case, FP can also be created from 2D chromatography as a chromatograph having Chinese medicine number (lot number) and retention time as data.
  • (A) in FIG. 4 is the drug A
  • (B) is the drug B
  • (C) is the FP 55, 57, 59 of the drug C.
  • the target FP peak attribution unit 5 is a functional unit that compares the peak of the target FP with the reference FP of the multi-component substance corresponding to the target FP and identifies the corresponding peak.
  • the target FP peak attribution unit 5 includes a reference FP selection unit 33, a peak pattern creation unit 35, and a peak attribution unit 37.
  • the reference FP selection unit 33 is a functional unit that selects a multi-component substance FP suitable for peak assignment of the target FP from a plurality of reference FPs. That is, in order to perform peak attribution of each peak of the target FP with high accuracy, the degree of coincidence of the peak retention, time, and appearance pattern between the target FP and the reference FP is calculated as shown in FIGS. The reference FP that minimizes the degree of coincidence is selected from all the reference FPs.
  • the peak pattern creation unit 35 has n peaks existing in at least one before and after the time axis direction with respect to a peak to be attributed in the target FP 61 (hereinafter referred to as an attribute target peak).
  • This is a functional unit that creates a peak pattern composed of a total of n + 1 peaks including the peak of the peak as the peak pattern of the attribution target peak.
  • n is a natural number.
  • FIG. 11 a peak pattern composed of a total of three peaks including two peaks existing at least before and after the time axis direction is illustrated in FIG. 12 (described later).
  • FIG. 12 A peak pattern composed of a total of five peaks including four peaks present in at least one of them is shown.
  • the peak pattern creation unit 35 sets all the peaks within the range (allowable width) in which the difference from the retention time of the attribution target peak is set in the reference FP 83 (hereinafter, referred to as “below”).
  • a function unit that creates a peak pattern consisting of a total of n + 1 peaks including n peaks existing in at least one of before and after the time axis direction as a peak pattern of attribution candidate peaks. is there.
  • FIGS. 15 to 18 show a peak pattern composed of a total of three peaks including two peaks existing at least before and after the time axis direction.
  • 19 to 22 show a peak pattern composed of a total of five peaks including four peaks existing at least before and after the time axis direction.
  • Example 1 There is no limitation on the allowable width, and 0.5 to 2 minutes is preferable from the viewpoint of accuracy and efficiency. In Example 1, it was 1 minute.
  • the peak pattern creation unit 35 can flexibly cope with the case where there is a difference in the number of peaks of the target FP 61 and the reference FP 83 (that is, there is a peak that does not exist in either one). Therefore, as shown in FIG. 23 to FIG. 61 (described later), the peaks constituting the peak pattern (hereinafter referred to as peak pattern constituting peaks) are changed comprehensively by both the attribution target peak and the attribution candidate peak. Create a pattern.
  • FIGS. 23 to 61 show the case of a peak pattern composed of a total of three peaks including two peaks existing in at least one of the time axis directions.
  • the peak attribution unit 37 is a functional unit that compares the peak patterns of the target FP and the reference FP and identifies the corresponding peak. In the embodiment, the degree of coincidence between the peak pattern of the attribution target peak and the peak pattern of the attribution candidate peak and the coincidence degree of the UV spectrum are calculated to identify the corresponding peak.
  • the degree of coincidence of the attribution candidate peak obtained by integrating the two coincidence degrees is calculated, and based on the coincidence degree, each peak of the target FP 61 is assigned to each peak of the reference FP 83.
  • the degree of coincidence of peak patterns is based on the difference in the corresponding peak and retention time between the peak patterns of the attribution target peak and the attribution candidate peak as shown in FIGS. 62 to 64 (described later).
  • the degree of coincidence of the UV spectra is calculated based on the difference in absorbance at each wavelength of the UV spectrum 135 of the attribution target peak 73 and the UV spectrum 139 of the attribution candidate peak 95 as shown in FIGS. 65 and 66 (described later). . Further, as shown in FIG. 67 (described later), the degree of coincidence of attribution candidate peak 95 is calculated by multiplying these two degrees of coincidence.
  • the target FP peak feature value creation unit 7 compares and evaluates the peak identified and attributed by the target FP peak attribution unit 5 and the peak of the reference group FP45, which is a plurality of reference FPs, and is converted into a feature value. It is a functional part created as The plurality of reference FPs are created corresponding to a plurality of Chinese medicines that are multi-component substances serving as evaluation criteria, and the plurality of Chinese medicines are regarded as normal products.
  • the target FP peak feature quantity creation unit 7 finally assigns each peak of the target FP43 to the reference group FP45 as shown in FIGS. 2, 68, and 69 (described later) based on the attribution result of the target FP61 and the reference FP83.
  • This is a functional unit that creates a target FP peak feature value 47 attributed to each peak.
  • the target FP type 2 creation unit 9 creates a pattern composed of the remaining peaks by excluding the characteristicized peak from the target pattern as the target pattern type 2.
  • the target FP type 2 (49) shown in FIG. 2 is defined as the FP composed of the peak 47 identified by the target FP peak feature quantity creation unit 7 by removing the peak 47 from the original target FP 43 and its retention time. It is a functional part created as a pattern.
  • This target FP type 2 (49) is a FP that collects peaks that have not been converted into feature quantities in the target FP peak feature quantity creation unit 7. By making this target FP type 2 (49) a feature quantity and adding it to the evaluation, a more accurate evaluation can be performed.
  • the target FP region segmentation feature amount creation unit 11 divides the target pattern type 2 into a plurality of regions, and creates an FP region segmentation feature amount creation unit that creates a target pattern region segmentation feature amount from the presence rate of peaks existing in each region. It is a functional unit configured to divide the target FP type 2 (49) into a plurality of areas and create the target FP area division feature quantity as the target pattern area division feature quantity from the existence rate of peaks existing in each area.
  • the target FP region division feature value creation unit 11 can also use the presence amount instead of the presence rate.
  • the abundance ratio is a value obtained by dividing the abundance of the peak height in each region by the sum of the whole peak heights (that is, the abundance of the whole peak height). Therefore, it is possible to create a region segmentation feature amount using the existence amount of the peak height of each region itself.
  • the target FP region division feature value creation unit 11 converts the target FP type 2 (49) into a plurality of vertical division lines parallel to the signal intensity axis and a plurality of parallel to the time axis as shown in FIG. 70 (described later), for example.
  • the target FP area division feature quantity 51 shown in FIG. 2 is created by dividing the area into grid-like areas using the horizontal dividing lines.
  • the target FP feature quantity integration unit 13 uses the target FP peak feature quantity 47 created by the target FP peak feature quantity creation unit 7 and the target FP area division feature quantity 51 created by the target FP area division feature quantity creation step 11. It is a functional unit that integrates and creates a target FP integrated feature.
  • the reference FP creation unit 31 of the FP creation unit 3 is a functional unit that creates a plurality of reference FPs in the same manner as the target FP creation unit 29.
  • a reference obtained by extracting a plurality of peaks at a specific detection wavelength, its retention time, and a UV spectrum from each 3D chromatogram, which is three-dimensional chromatogram data of a plurality of Chinese medicines (reference Chinese medicines) determined to be normal products.
  • FP is created for each standard Chinese medicine.
  • the reference FP peak attribution unit 15 is also a functional unit that identifies a peak to be attributed by pattern recognition, similar to the target peak attribution unit 5. However, the reference FP peak attribution unit 15 specifies peaks by calculating attribution scores in the selected combination and order for all the reference FPs.
  • the reference FP attribution result integration unit 17 is a functional unit that creates a reference peak correspondence table (described later) by integrating the peaks identified and assigned by the reference peak attribution unit 15.
  • the reference FP peak feature value creation unit 19 is a functional unit that creates a reference FP peak feature value obtained by characterizing the plurality of reference FPs based on the reference peak correspondence table created by the reference FP attribution result integration unit 17.
  • the reference FP type 2 creation unit 21 functions in the same manner as the target FP type 2 creation unit 9, and includes a peak remaining from the plurality of reference FPs excluding the featured peak and its retention time. This is a functional unit that creates an FP as a reference FP type 2 pattern.
  • the reference FP area division feature quantity creation unit 23 functions in the same manner as the target FP area division feature quantity creation unit 11 and divides the reference FP type 2 into a plurality of areas as the FP area division feature quantity creation unit. This is a functional unit that creates a reference FP region segmentation feature amount from the peak presence rate.
  • the reference FP area division feature value creation unit 23 changes the position of each divided area and creates a reference FP area division feature value before and after the change. That is, the position of each region is changed by changing and setting the position so that each vertical / horizontal dividing line is translated within the set range.
  • the reference FP feature value integration unit 25 functions in the same manner as the target FP feature value integration unit 13 and is a functional unit that generates a reference FP integrated feature value by integrating the reference FP peak feature value and the reference FP region division feature value. is there.
  • the evaluation unit 27 compares and evaluates the target pattern integrated feature quantity and a reference pattern integrated feature quantity based on a plurality of reference patterns corresponding to the target pattern integrated feature quantity and serving as an evaluation reference. That is, the evaluation unit 27 is a functional unit that compares and evaluates the target FP integrated feature value as the target pattern integrated feature value and the reference FP integrated feature value as the reference pattern integrated feature value. In the embodiment, the equivalence between the target FP integrated feature value and the reference FP integrated feature value is evaluated by the MT method.
  • the MT method means a calculation method generally known in quality engineering.
  • “Mathematics of Quality Engineering” published by the Japanese Standards Association (2000), pages 136-138, Quality Engineering Application Course “Technology Development of Chemistry, Pharmacy, Biology” (1999), pages 454-456 and Quality Engineering 11 (5), 78-84 (2003), Introductory MT system (2008).
  • MT method program software can be used.
  • Commercially available MT method program software includes AMTTS of Angle Tri Co., Ltd .; TM-ANOVA of Japan Standards Association; MT Method for Windows of Oken Co., Ltd., and the like.
  • the evaluation unit 27 assigns a variable axis in the MT method to the lot number of Chinese herbal medicine and one of the retention time or the UV detection wavelength in the target FP 43, and sets the peak as a feature amount in the MT method.
  • variable axis There is no particular limitation on the allocation of the variable axis, but the retention time is allocated to the so-called item axis in the MT method, the number of multi-component drugs is allocated to the so-called number column axis, and the peak is allocated to the so-called feature amount in the MT method Is preferred.
  • a reference point and a unit quantity are obtained from the data and feature quantity to which the axis is assigned using the MT method.
  • the reference point, the unit amount, and the unit space are defined according to the description of the MT method literature.
  • the MD value is obtained as a value representing the degree of difference from the unit space of the drug to be evaluated by the MT method.
  • the MD value is defined in the same manner as the description of the MT method document, and the MD value is obtained by a method described in the document.
  • the drug to be evaluated can be evaluated by determining the degree of difference from a plurality of drugs determined as normal products.
  • the MD value (MD value: 0.26, 2.20, etc.) can be obtained by the above-described MT method by assigning each target FP of FIGS. 87 to 91 as described above.
  • the MD value When evaluating this MD value against the MD value of a normal product, the MD value is obtained in the same manner for a plurality of drugs determined as normal products.
  • a threshold value is set from the MD value of the normal product, and the MD value of the evaluation target drug can be plotted as shown in the evaluation result 53 of the evaluation unit 27 in FIG. 2 to determine whether the product is a normal product or an abnormal product. .
  • an MD value of 10 or less is regarded as a normal product.
  • FIGS. 5 to 69 illustrate the operating principles of the reference FP selection unit 33, the peak pattern creation unit 35, the peak attribution unit 37, and the target FP peak feature value creation unit 7.
  • FIG. 5 to 69 illustrate the operating principles of the reference FP selection unit 33, the peak pattern creation unit 35, the peak attribution unit 37, and the target FP peak feature value creation unit 7.
  • FIG. 5 to 9 are diagrams for explaining the degree of coincidence of retention, time, and appearance pattern between the target FP and the reference FP according to the reference FP selection unit 33.
  • FIG. FIG. 5 is a diagram showing the retention time of the target FP and the reference FP
  • FIG. 6 is a diagram showing the retention time, appearance pattern of the target FP
  • FIG. 7 is a diagram showing the retention time, appearance pattern of the reference FP. It is.
  • FIG. 8 is a diagram showing the number of coincidence between retention, time, and appearance distance between the target FP and the reference FP
  • FIG. 9 is a diagram showing the degree of coincidence between the retention, time, and appearance pattern between the target FP and the reference FP.
  • FIG. 5 shows the retention times of the target FP 61 and the reference FP 83.
  • 6 and 7 show the retention times and appearance patterns in which all the retention time intervals are calculated from the retention times of the target FP 61 and the reference FP 83, and the distances are tabulated.
  • the number of coincidences of retention / time / appearance distance is calculated from these appearance patterns, and the number of coincidence of retention / time / appearance distance is shown in a tabular form.
  • the degree of coincidence of retention / time / appearance pattern is calculated based on the number of coincidence, and the degree of coincidence of retention / time / occurrence pattern is shown in a table format.
  • FIG. 10 to FIG. 12 are diagrams for explaining the peak pattern created by the attribution target peak related to the peak pattern creation unit 35 and its surrounding peaks.
  • FIG. 10 is a diagram showing peaks to be attributed to the target FP
  • FIG. 11 is a peak pattern created with three peaks including two peripheral peaks
  • FIG. 12 is five peaks including four peripheral peaks. It is a figure explaining the peak pattern created by.
  • FIGS. 13 and 14 describe the relationship between the attribution target peak and the attribution candidate peak according to the peak pattern creation unit 35
  • FIG. 13 is a diagram showing the allowable range of the attribution target peak
  • FIG. It is a figure which shows the attribution candidate peak of reference
  • FIG. 15 to 18 are examples of peak patterns of attribution target peaks and attribution candidate peaks created by three peaks according to the peak pattern creation unit 35.
  • FIG. FIG. 15 is a peak pattern diagram of three peaks of attribution target peak and attribution candidate peak
  • FIG. 16 is a peak pattern diagram of three attribution candidate peaks and three attribution candidate peaks
  • FIG. FIG. 18 is a peak pattern diagram of three peaks of attribution candidate peaks and three attribution candidate peaks different from the attribution target peak.
  • FIGS. 19 to 22 are peak pattern diagrams of attribution target peaks and attribution candidate peaks created with five peaks according to the peak pattern creation unit 35.
  • 23 to 61 are diagrams illustrating the principle of exhaustive comparison in which the peak patterns of the attribution target peak and the attribution candidate peak according to the peak pattern creation unit 35 are comprehensively created and compared.
  • FIG. 62 and 63 are diagrams illustrating a method for calculating the coincidence of peak patterns created with three peaks related to the peak attribution unit 37.
  • FIG. 62 and 63 are diagrams illustrating a method for calculating the coincidence of peak patterns created with three peaks related to the peak attribution unit 37.
  • FIG. 64 is a diagram for explaining a method for calculating the coincidence degree of peak patterns created with five peaks related to the peak attribution unit 37.
  • FIG. 65 is a diagram showing UV spectra 135 and 139 of the assignment target peak 73 and the assignment candidate peak 95 related to the peak assignment portion 37.
  • FIG. 66 is a diagram illustrating the degree of coincidence between the UV spectrum 135 of the assignment target peak 73 and the UV spectrum 139 of the assignment candidate peak 95 related to the peak assignment portion 37.
  • FIG. 67 is a diagram illustrating the degree of coincidence of attribution candidate peaks calculated from the degree of coincidence of the peak patterns of the attribution target peak 73 and the attribution candidate peak 95 related to the peak attribution unit 37 and the degree of coincidence of the UV spectra.
  • FIG. 68 is a diagram for explaining the attribution of each peak to the reference group FP45 in the target FP43 related to the peak attribution unit 37.
  • FIG. 68 is a diagram for explaining the attribution of each peak to the reference group FP45 in the target FP43 related to the peak attribution unit 37.
  • FIG. 69 is a diagram for explaining the target FP peak feature quantity 47 indicating the situation in which each peak of the target FP 43 related to the peak attribution unit 37 is attributed to the reference group FP45.
  • FIG. 5 is a diagram showing the retention time of the target FP and the reference FP
  • FIG. 6 is a diagram showing the retention time, appearance pattern of the target FP
  • FIG. 7 is a diagram showing the retention time, appearance pattern of the reference FP. It is.
  • FIG. 8 is a diagram showing the number of coincidence between retention, time, and appearance distance between the target FP and the reference FP
  • FIG. 9 is a diagram showing the degree of coincidence between the retention, time, and appearance pattern between the target FP and the reference FP.
  • FIG. 5 shows the retention times of the target FP 61 and the reference FP 83.
  • 6 and 7 show the retention times and appearance patterns in which all the retention time intervals are calculated from the retention times of the target FP 61 and the reference FP 83, and the distances are tabulated.
  • the number of coincidences of retention / time / appearance distance is calculated from these appearance patterns, and the number of coincidence of retention / time / appearance distance is shown in a tabular form.
  • the degree of coincidence of retention / time / appearance pattern is calculated based on the number of coincidence, and the degree of coincidence of retention / time / occurrence pattern is shown in a table format.
  • each peak of the target FP 61 is assigned with a reference FP that is as similar as possible to the target FP 61 in the FP pattern. Selecting a reference FP similar to the target FP 61 from a plurality of reference FPs is an important point in making attribution with high accuracy.
  • the similarity of the FP pattern is evaluated based on the degree of coincidence of the retention time, the appearance pattern.
  • the retention times of the target FP 61 and the reference FP 83 are as shown in FIG. 5
  • the retention times and appearance patterns of the target FP 61 and the reference FP 83 are as shown in FIGS.
  • the value of each cell is created as a tabular pattern composed of the retention-time distances for the upper target FP 61 and the reference FP 83 as shown in the lower chart.
  • the retention times of the peaks (63, 65, 67, 69, 71, 73, 75, 77, 79, 81) of the target FP 61 are (10.2), (10.5), (10 .8), (11.1), (11.6), (12.1), (12.8), (13.1), (13.6), and (14.0).
  • the retention times of the peaks (85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105) of the reference FP83 are (10.1), (10.4), (10.7), (11.1), (11.7), (12.3), (12.7), (13.1), (13.6), (14.1), (14 4).
  • the distance between the retention times is the reference FP appearance pattern in the lower chart of FIG.
  • the number of matches is seven.
  • the seven coincidence numbers are written in the first line of the target and reference FP retention / time / appearance pattern of FIG.
  • the target FP retention / time / appearance pattern 1 to 9 and the reference FP retention / time / appearance pattern 1 to 10 are displayed.
  • a brute force comparison is made and the number of matches is obtained.
  • the numerical value 7 at the left end circled is the result of comparing the first line of the target and the reference FP retention / time / appearance pattern, and the numerical value 7 next to the numerical value is the target FP retention / This is a result of comparing the first line of the time / appearance pattern with the second line of the reference FP retention / time / appearance pattern.
  • the setting range There is no limitation on the setting range, and the range is preferably 0.05 minutes to 0.2 minutes. In Example 1, it was 0.1 minutes.
  • the degree of coincidence between the retention time is RP
  • a is the number of peaks of the target FP 61 (number of target FP peaks)
  • b is the number of peaks of the reference FP 83 (number of reference FP peaks)
  • m is the number of matches of the retention time, appearance pattern (number of matches of the appearance distance).
  • RP_min which is the minimum value of these RPs, is used as the degree of coincidence between the retention time, the appearance pattern of the target FP 61 and the reference FP 83.
  • (0.50) is the degree of coincidence of the target FP 61 with respect to the reference FP.
  • the degree of coincidence is calculated for all the reference FPs, the reference FP having the smallest degree of coincidence is selected, and the peak assignment of the target FP is performed for the reference FP.
  • the reference FP selection unit 5 can also pattern the target FP 61 and the reference FP 83 with a peak height ratio.
  • the Tanimoto coefficient is defined as “the number of coincidence of height ratio / (number of target FP peaks + number of reference FP peaks ⁇ number of coincidence of height ratio)”, and the (1-Tanimoto coefficient) is close to zero. The degree of coincidence can be obtained.
  • (1-Tanimoto coefficient) is weighted by (number of target FP peaks ⁇ number of occurrence patterns or height ratio coincidence + 1), and “(1-Tanimoto coefficient) ⁇ (number of target FP peaks ⁇ appearance pattern or high It is possible to select a reference FP that matches more peaks (63, 65,%) Of the target FP 61 by weighting.
  • an allowable range of retention time deviation is set between each peak of the attribution target peak 73 and the reference FP 83, and the peak of the reference FP 83 existing in the allowable range (hereinafter, attribution candidate).
  • the assignment destination is determined by combining all the information, so the accuracy is improved compared to the peak attribution based on the single information.
  • the assignment candidate peak includes a plurality of similar components. After all, it becomes attribution only by peak information, and sufficient accuracy cannot be obtained. Therefore, in order to perform peak assignment with higher accuracy, information in addition to these three pieces of information is necessary.
  • a peak pattern including peripheral peak information as shown in FIG. 11 and FIG. 12 was created, and a peak was assigned by comparing the peak patterns.
  • the surrounding information is added to the previous three pieces of information, and peak attribution based on the four pieces of information becomes possible, and higher attribution accuracy is obtained.
  • the constraint conditions (peak definition, etc.) to be set for existing peak attribution are no longer necessary.
  • a peak pattern 115 including peaks 71 and 75 existing in both time axis directions is created for the attribution target peak 73.
  • a peak pattern 125 including peaks 69, 71, 75, and 77 that exist in both time axis directions is created for the attribution target peak 73.
  • an allowable range of retention time deviation is set between each peak of the attribution target peak 73 and the reference FP 83, and the peak of the reference FP 83 existing within the tolerance range corresponds to the attribution target peak 73.
  • Candidate peaks hereinafter referred to as attribution candidate peaks) were used.
  • Peak patterns 119, 121, and 123 were created.
  • the peak patterns to be compared with the peak pattern 125 of the attribution target peak 73 include peaks that exist both before and after the time axis direction with respect to different attribution candidate peaks 95, 97, and 99. Peak patterns 129, 131, and 133 were created.
  • a peak that is a candidate for a peak / pattern configuration peak (hereinafter referred to as a peak / pattern configuration candidate peak) is set in advance from the peripheral peaks of the target peak of the target FP, and the peak / pattern configuration candidate peak In order, a peak pattern is created as a peak constituting a peak pattern.
  • a peak pattern configuration candidate peak is set for the attribution candidate peak of the reference FP, and a peak pattern is created using the peak pattern configuration candidate peak in order as a peak pattern configuration peak.
  • the degree of coincidence of the peak pattern based on the difference in the corresponding peak and retention time between all the peak patterns of the attribution target peak and the attribution candidate peak created by the peak pattern creation unit 35 ( Hereinafter, P_Sim) is calculated.
  • the peak attribution unit 37 uses the minimum value of P_Sim (hereinafter, P_Sim_min) as the degree of coincidence between the peak pattern of the attribution target peak and the attribution candidate peak.
  • each of the attribution target peak 73 and the attribution candidate peak 93 has four peak pattern configuration candidate peaks around the time axis direction, and the peak pattern configuration peak is set to any two. To do.
  • P_Sim_min which is the minimum value of these P_Sim is determined as the degree of coincidence between the attribution target peak 73 and the attribution candidate peak 93.
  • This P_Sim is similarly calculated for all attribution candidate peaks of the attribution target peak 73.
  • the peak pattern 115 of the attribution target peak 73 and the peak pattern 119 of the attribution candidate peak 95 are taken as examples.
  • the peak and retention time of the attribution target peak 73 are p1 and r1
  • the peak and retention time of the peak pattern constituting peak 71 are dn1 and cn1
  • the peak pattern constituting peak 75 is Let dn2 and cn2 be peak and retention times.
  • the peak and retention time of the attribution candidate peak 95 are p2 and r2
  • the peak and retention time of the peak pattern constituting peak 93 are fn1 and en1
  • the peak pattern constituting peak 97 is Let the peak and retention times be fn2 and en2.
  • the degree of coincidence of the peak pattern is P_Sim
  • the degree of coincidence of the peak pattern (P_Sim (73-95)) composed of the three peaks of the attribution target peak 73 and the attribution candidate peak 95 is P_Sim (73-95) (
  • d in the equation is a value for correcting a retention time shift.
  • FIG. 64 explains a method for calculating the coincidence of peak patterns for comparing peak patterns composed of five peaks.
  • the peak pattern 125 of the attribution target peak 73 and the peak pattern 129 of the attribution candidate peak 95 are taken as examples.
  • the peaks and retention times of the attribution target peak 73 are p1 and r1
  • the peaks and retention times of the peak pattern constituting peaks 69, 71, 75, and 77 are dn1 and cn1, respectively.
  • the peaks and retention times of the attribution candidate peaks 95 are p2 and r2, the peaks and retention times of the peak pattern constituting peaks 91, 93, 97, and 99 are fn1 and en1, respectively.
  • P_Sim (73-95) (
  • d in the equation is a value for correcting a retention time shift.
  • the peak attribution unit 37 calculates the degree of coincidence of the UV spectrum between the attribution target peak and the attribution candidate peak as shown in FIGS.
  • N is the number of diss.
  • the waveform of the UV spectrum includes the maximum wavelength and the minimum wavelength, and the degree of coincidence can be calculated by comparing the maximum wavelength and / or the minimum wavelength.
  • the maximum wavelength and the minimum wavelength are the same for compounds that have no absorption characteristics or similar absorption characteristics, but the overall waveform may be quite different. In comparison of the maximum and minimum wavelengths, the waveforms match. The degree may not be calculated.
  • the degree of coincidence of this UV spectrum is calculated in the same manner for all attribution candidate peaks of the attribution target peak 73.
  • the peak attribution unit 37 calculates the degree of coincidence of the attribution candidate peak obtained by integrating the above two coincidences as shown in FIG.
  • the degree of coincidence of this attribution candidate peak is calculated in the same manner for all attribution candidate peaks of the attribution target peak 73.
  • this SCORE is compared among all attribution candidate peaks, and the attribution candidate peak having the smallest SCORE is determined as the attribution peak of the attribution target peak 73.
  • the peak attribution unit 37 determines the peaks to be attributed to the attribution target peak from the two viewpoints, accurate peak attribution can be realized.
  • the target peak feature quantity creation unit 7 assigns each peak of the target FP 43 to the reference group FP 45 as shown in FIG. 68 based on the result of the assignment of the target FP to the reference FP.
  • Each peak of the target FP 43 is attributed to the reference FP constituting the reference group FP 45 by the attribution process. Based on this attribution result, it finally belongs to the peak of the reference group FP45.
  • the reference group FP45 is created by assigning all the reference FPs defined as normal products as described above, and each peak is the average value (black dot) ⁇ standard deviation (vertical length) of the assigned peak. (Dividing line).
  • FIG. 69 shows the result of assigning the target FP43 to the reference group FP45, and this result is the target FP peak feature amount 47 of the target FP43.
  • FIG. 70 to FIG. 86 show the operation principle of FP region division feature value creation
  • FIG. 70 is an explanatory diagram showing quantification by region division
  • FIG. 71 is an explanatory diagram showing the relationship with fluctuations in retention time
  • etc. 72 is an explanatory diagram for quantifying by changing the position of the area
  • FIG. 73 is a chart showing FP type 2 data
  • FIG. 74 is an explanatory diagram showing an FP type 2 pattern
  • FIG. 76 is an explanatory diagram showing the setting of the vertical dividing line (first line), and FIG. 77 is the setting of the horizontal dividing line (first line).
  • 78 is an explanatory diagram showing area division by vertical and horizontal dividing lines
  • FIG. 79 is an explanatory diagram showing the number of areas to be featured
  • FIG. 80 is an explanatory diagram showing the identification of the area 1.
  • FIG. 81 is a chart showing the height and total of all peaks
  • FIG. 82 is the peak height of region 1
  • FIG. 83 is an explanatory diagram showing the total
  • FIG. 83 is a chart showing the feature amounts of all the areas by the first one pattern
  • FIG. 84 is a chart showing the feature amounts in each area formed by sequentially changing the position of the first vertical line
  • FIG. 85 is a chart showing the feature values in each area obtained by sequentially changing the position of the first horizontal line
  • FIG. 86 is a chart showing one feature quantity without changing the position of each vertical / horizontal dividing line.
  • the target FP region segmentation feature amount creation unit 11 or the reference FP region segmentation feature amount creation unit 23 calculates the target FP from the presence rate of the peaks existing in each region obtained by dividing the target FP type 2 or the reference FP type 2 as described above. A region division feature amount or a reference FP region division feature amount is created.
  • the area is divided as shown in FIG. 70, for example.
  • the FP 55 of the medicine A is divided.
  • the plurality of horizontal dividing lines 143 are set at equal ratio intervals in the direction in which the signal intensity increases. By this setting, it is possible to subdivide the region division in the dense peak portion and to grasp the peak existence rate more accurately. However, it is also possible to set at equal intervals by increasing the number of the plurality of horizontal dividing lines 143.
  • the retention time and peak height fluctuate like FP55A and 55B due to slight variations in analysis conditions. Due to this variation, there is a possibility that the value in each lattice 145 varies greatly.
  • FIG. 73 shows reference FP type 2 data d202, d207, d208 as an example.
  • This data has only the information of retention time (RT) and peak height (Height).
  • This data corresponds to the reference FP type 2 composed of the peaks remaining from the plurality of reference FPs except for the characteristicized peaks and their retention times in the reference FP type 2 creation unit 21, Each UV spectrum of the peak is excluded.
  • the patterns of the reference FP type 2 data d202, d207, d208 are as shown in FIG.
  • These FP patterns are divided into regions by vertical and horizontal dividing lines 141 and 143, and feature values are made for each region.
  • the first vertical position is set at multiple locations under the following conditions.
  • the first horizontal position is set at multiple locations under the following conditions.
  • X 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4
  • the second and subsequent dividing lines are sequentially set by combining all of these 100 ways, and the region is divided.
  • the second and subsequent vertical dividing lines are set until the number of lines specified at the specified interval (equal difference) is reached.
  • the first vertical line is 0.0
  • the vertical interval 10
  • the first horizontal dividing line is 7
  • the first horizontal dividing line is 0.5
  • the horizontal interval 1
  • the horizontal line number is 6.
  • Vertical dividing line 0, 10, 20, 30, 40, 50, 60
  • Horizontal dividing line 0.5, 1.5, 3.5, 7.5, 15.5, 31.5 Set to
  • FIG. 78 shows the set vertical and horizontal dividing lines on the FP based on the previous example.
  • ⁇ ⁇ FP is featured for each area surrounded by the vertical and horizontal lines.
  • Feature amount total peak height in region / total peak height (method of feature amount)
  • FIG. 83 shows the calculation result. (Change the first vertical dividing line in order to make it feature quantity) Each region formed by sequentially changing the position of the first vertical dividing line is converted into a feature amount by the above method. The results are shown in FIG.
  • FIG. 85 shows the result.
  • FIG. 92 is a process diagram showing a method for evaluating a multi-component drug of Example 1 of the present invention, including the FP feature value creation method of Example 1 of the present invention.
  • the multi-component drug evaluation method includes an FP creation step 148, a target FP peak attribution step 149, a target FP peak feature creation step 151, a target FP type 2 creation step 153, and a target FP region.
  • the FP creation process 148 includes a target FP creation process 173 and a reference FP creation process 175.
  • the target FP peak attribution step 149 includes a reference FP selection step 177, a peak pattern creation step 179, and a peak attribution step 181.
  • FP creation step 148 the target FP peak attribution step 149, the target FP peak feature creation step 151, the target FP type 2 creation step 153, the target FP region division feature creation step 155, the target FP feature integration step 157, the reference FP peak attribution step 159, reference FP attribution result integration step 161, reference FP peak feature creation step 163, reference FP type 2 creation step 165, reference FP region segmentation feature creation step 167, reference FP feature integration step 169, evaluation Step 171 is performed using the multi-component drug evaluation apparatus 1 in this embodiment.
  • the FP creation step 148 is performed by the function of the FP creation unit 3 in FIG. 1. Similarly, the target FP peak attribution step 149, the target FP peak feature creation step 151, the target FP type 2 creation step 153, and the target FP region division feature Amount creation step 155, target FP feature amount integration step 157, reference FP peak attribution step 159, reference FP attribution result integration step 161, reference FP peak feature amount creation step 163, reference FP type 2 creation step 165, reference FP region division feature
  • the amount creation step 167, the reference FP feature amount integration step 169, and the evaluation step 171 are performed using the target FP peak attribution unit 5, the target FP peak feature amount creation unit 7, the target FP type 2 creation unit 9, and the target FP region division feature amount creation unit.
  • Target FP feature amount integration unit 13 reference FP peak attribution unit 15, reference FP attribution result integration unit 17, reference FP peak feature quantity production Part 19, the reference FP type 2 creating unit 21, the reference FP region division feature quantity preparation unit 23, the reference FP feature value integrating unit 25, to perform the respective functions of the evaluation unit 27.
  • each process can be made to function by a separate computer, for example, a target FP creation process 173, a target FP peak attribution process 149, a target FP peak feature value creation process 151, and a target FP type 2 creation process 153.
  • the target FP region segmentation feature creation step 155, the target FP feature integration step 157, and the evaluation step 171 are functioned by one computer, and the reference FP creation step 175, the reference FP peak attribution step 159, the reference The FP attribution result integration step 161, the reference FP peak feature creation step 163, the reference FP type 2 creation step 165, the reference FP region division feature creation step 167, and the reference FP feature integration step 169 are performed by another computer. You can also make it work with.
  • the reference FP integrated feature value is created by another computer and supplied to the evaluation step 171.
  • the target FP type 2 creation step 153 creates the target FP type 2 as a pattern in which the peak changes in time series.
  • the target FP region division feature value creation step 155 is a pattern region division feature value creation step of creating the target pattern region division feature value from the presence rate of peaks existing in each region by dividing the target pattern type 2 into a plurality of regions.
  • the FP region division feature value creation step is configured.
  • FIGS. 93 to 108 are flowcharts relating to the evaluation program for multi-component drugs
  • FIGS. 109 to 116 are flowcharts relating to the creation of reference data
  • FIG. 117 is a chart showing an example of 3D chromatogram data
  • FIG. 119 is a chart showing an example of FP data
  • FIG. 120 is a chart showing an example of an attribution score calculation result (determination result file) to the reference FP of the target FP
  • FIG. FIG. 122 shows examples of two intermediate files (attribute candidate peak score table and attribute candidate peak number table) created in the matching process of peaks corresponding to FP and reference FP.
  • FIG. 122 shows peaks corresponding to target FP and reference FP.
  • FIG. 123 is a chart showing an example of the collation result file that is the identified result
  • FIG. 123 is a chart showing an example of data of the reference group FP
  • FIG. 124 is an object F belonging to the reference group FP.
  • FIG. 125 is a chart showing an example of the target and reference FP type 2 data
  • FIG. 126 is a chart showing an example of the target FP region segmentation feature quantity file
  • FIG. 127 is the target.
  • FIG. 128 is a chart showing an example of an FP feature quantity integration file
  • FIG. 128 is a chart showing an example of a reference type 2 group FP
  • FIG. 129 is a chart showing an example of reference group integration data.
  • FIG. 93 and FIG. 94 are flowcharts showing the steps of the entire process for evaluating the evaluation target drug.
  • the processing starts when the system is started, and the FP creation function of the FP creation unit 3 and the target FP of the target FP peak attribution unit 5 Peak attribution function, target FP peak feature value creation function of the target FP peak feature value creation unit 7, target FP type 2 creation function of the target FP type 2 creation unit 9, and target of the target FP region division feature value creation unit 11 FP region segmentation feature creation function, target FP feature integration function of the target FP feature integration unit 13, reference FP peak attribution function of the reference FP peak attribution unit 15, and reference FP attribution of the reference FP attribution result integration unit 17 A result integration function, a reference FP peak feature creation function of the reference FP peak feature creation unit 19, and a reference FP type 2 creation function of the reference FP type 2 creation unit 21 A reference FP region division feature quantity generation function of the reference FP region division feature quantity preparation unit 23, and the reference FP feature value
  • FP creation function is realized in step S1.
  • the target FP peak attribution function is realized in steps S2, S3, and S4.
  • the target FP peak feature value creation function is realized in step S5.
  • the target FP type 2 creation function is realized in step S6.
  • the target FP region division feature value creation function is realized in step S7.
  • the target FP feature value integration function is realized in step S8.
  • the evaluation function is realized in steps S9 and S10.
  • step S1 “FP creation processing” is executed using 3D chromatography and peak information at a specific detection wavelength as input data.
  • the 3D chromatogram is data obtained by analyzing the drug to be evaluated by HPLC.
  • the data example 183 of the 3D chromatogram in FIG. 117 the three-dimensional information of the retention time, the detection wavelength, and the peak (signal intensity).
  • the peak information is data obtained by processing chromatographic data at a specific wavelength obtained by the same HPLC analysis with an HPLC data analysis tool (for example, ChemStation etc.).
  • an HPLC data analysis tool for example, ChemStation etc.
  • This is data composed of the maximum and area values of all peaks detected as peaks and the retention time at that time.
  • step S1 the target FP creation unit 29 (FIG. 1) of the FP creation unit 3 of the computer functions to create the target FP 43 (FIG. 2) from 3D chromatography and peak information, and output the data as a file.
  • the target FP 43 is data composed of a retention time, a peak height, and a UV spectrum for each peak height, as shown in the FP data example 187 in FIG.
  • step S2 “target FP attribution process 1” is executed with the target FP and all reference FPs output in step S1 as inputs.
  • step S2 the reference FP selection unit 33 of the computer functions to calculate the retention / time / appearance pattern coincidence with the target FP 43 for all the reference FPs, and select a reference FP suitable for the attribution of the target FP 43. .
  • the reference FP is an FP created by the same processing as in Step S1 from 3D chromatography and peak information of a drug determined as a normal product.
  • a normal product is defined as a drug that has been confirmed to be safe and effective (standard Chinese medicine), and includes a plurality of drugs with different product lots.
  • the heel reference FP is data configured in the same manner as the FP data example 187 in FIG.
  • step S3 the target FP 43 and the reference FP selected in step S2 are input, and the “target FP attribution process 2” is executed.
  • step S3 the peak pattern creation unit 35 (FIG. 1) and the peak attribution unit 37 (FIG. 1) of the computer function.
  • peak patterns are comprehensively created as shown in FIGS. 23 to 61 for all peaks of the target FP 43 and the reference FP selected in step S2, and then the degree of coincidence of these peak patterns (FIG. 63 or FIG. P_Sim) in FIG. 64 is calculated. Further, the degree of coincidence of UV spectra (UV_Sim in FIG. 66) between the peaks of the target FP and the reference FP is calculated. Further, the degree of coincidence of attribution candidate peaks (SCORE in FIG. 67) is calculated from these two degrees of coincidence. The calculation result is output to a file similar to the determination result file example 189 of FIG.
  • step S4 the determination result file 189 output in step S3 is input, and the “target FP attribution process 3” is executed.
  • step S4 the peak attribution unit 37 of the computer functions to identify the peak of the reference FP corresponding to each peak of the target FP based on the degree of coincidence (SCORE) of the attribution candidate peak between the target FP 43 and the reference FP. .
  • the result is output to a collation result file similar to the collation result file example 195 of FIG.
  • step S5 the verification result file output in step S4 and the reference group FP197 are input, and the “target FP attribution process 4” is executed.
  • the reference group FP 197 is peak correspondence data between all the reference FPs created from the all reference FPs by the same processing as in the steps S2 to S4.
  • step S5 the target FP peak feature amount generating unit 7 of the computer functions, and based on the matching result file of the target FP 43, each peak of the target FP 43 is changed to a peak of the reference group FP 197 as shown in FIGS. Belong.
  • the result is output to a file similar to the peak data feature amount file example 199 in FIG.
  • step S6 the peak data feature file output in step S5 and the target FP are input, and the process of “Create FP_type 2” is executed.
  • step S6 the target FP type 2 creation unit 9 of the computer functions, and is composed of the remaining peaks after removing the peak 47 specified by the target FP peak feature creation unit 7 from the original target FP 43 and its retention time.
  • the created FP is created as the target FP type 2 (49).
  • the result is output to an FP type 2 file (see FP type 2 file example 201 in FIG. 125).
  • step S7 “feature amount processing of target FP_type2 by area division” is executed.
  • the target FP area division feature value creation unit 11 of the computer functions, and the target FP area division feature value is created by the area division of FIG.
  • the result is output to a target FP region division feature value file (see target FP region division feature value file example 203 in FIG. 126).
  • step S8 processing of “integration of peak data feature quantity and region division feature quantity” is executed.
  • the target FP feature value integration unit 13 of the computer functions, and the target FP peak feature value 47 created by the target FP peak feature value creation unit 7 and the target created by the target FP region division feature value creation unit 11.
  • the target FP integrated feature value is created by integrating the FP region division feature value 51.
  • the result is output to a target FP feature value integration file (see target FP feature value integration file example 205 in FIG. 127).
  • step S9 the computer evaluation unit 27 functions to evaluate the equivalence between the target FP integrated feature value output in step S8 and the reference FP integrated feature value by the MT method, and the evaluation results are shown in FIGS.
  • Such an MD value is output (FIGS. 87 to 91).
  • step S10 “pass / fail judgment” is executed with the MD value output in step S9 as an input.
  • step S10 the evaluation unit 27 of the computer functions to compare the MD value output in step S9 with a preset threshold value (upper limit value of MD value) to determine pass / fail (evaluation result 53 in FIG. 2).
  • a preset threshold value upper limit value of MD value
  • FIG. 95 is a flowchart when the peak information of a single wavelength in step S1 “FP creation processing” in FIG. 93 is used.
  • FIG. 95 shows details of steps for creating an evaluation target FP with a single wavelength, for example, 203 nm.
  • an FP composed of a retention time and a peak at a peak detected at 203 nm and a UV spectrum of the peak is created from 3D chromatography and peak information at a detection wavelength of 203 nm.
  • step S101 a process of “reading peak information” is executed.
  • the peak information is read as the first of the two data necessary for creating the FP, and the process proceeds to step S102.
  • step S102 a process of “obtaining peak data (P1) corresponding to the peak retention time (R1) in order” is executed.
  • the peak retention time (R1) and peak data (P1) are sequentially acquired from the peak information one by one, and the process proceeds to step S103.
  • step S103 the process of “read 3D chromatogram” is executed.
  • the 3D chromatogram is read as the second of the two data necessary for creating the FP, and the process proceeds to step S104.
  • step S104 processing of “acquire UV spectrum (U1) corresponding to peak retention time (R2) in order” is executed.
  • the retention time (R2) and UV spectrum (U1) are acquired from the 3D chromatograph for each sampling rate during HPLC analysis, and the process proceeds to step S105.
  • step S105 a determination process of “
  • threshold?” Is executed.
  • R1 and R2 read in steps S102 and S104 correspond to each other within a threshold range. If it corresponds (YES), it is determined that the two retention times are the same, the UV spectrum of the peak with the retention time R1 is U1, and the process proceeds to step S106. If it does not correspond (NO), the two retention times are not the same, and the UV spectrum of the peak with the retention time R1 is not U1, and for comparison with the next data of 3D chromatography, The process proceeds to step S104.
  • the threshold value in this determination process is “sampling rate / 2” in 3D chromatography.
  • step S106 the process of “normalize U1 to the maximum value 1” is executed.
  • U1 determined as the UV spectrum of R1 in S105 is normalized with the maximum value 1, and the process proceeds to step S107.
  • step S107 a process of “output R1 and P1 and standardized U1 (target FP)” is executed.
  • R1 and P1 acquired from the peak information and U1 normalized in S106 are output to the target FP, and the process proceeds to step S108.
  • step S108 a determination process of “End of processing for all peaks?” Is executed. In this process, it is determined whether or not the processing has been performed for all the peaks in the peak information. If the processing has not been completed for all the peaks (NO), in order to process the unprocessed peaks, The process proceeds to step S102. The processing from S102 to S108 is repeated until the processing of all peaks is completed. When the processing of all peaks is completed (YES), the FP creation processing is terminated. [S1: FP creation processing (using multiple wavelengths)] FIGS. 96 and 97 are flowcharts when step S1 “FP creation processing” in FIG. 93 uses peak information of a plurality of wavelengths instead of the peak information of the single wavelength. For example, in this case, a plurality of (n) wavelengths are selected in the detection wavelength axis direction including 203 nm to create an FP.
  • 96 and 97 show details of a step of creating FPs having a plurality of wavelengths from n FPs after creating n FPs for each wavelength by the FP creation process using only the single wavelength.
  • step S110 the process of “Create FP for each wavelength” is executed.
  • an FP creation process using only the single wavelength is performed for each wavelength, n FPs are created, and the process proceeds to step S111.
  • step S111 a process of “listing FP in peak number (descending order)” is executed.
  • n FPs are listed in descending order of the number of peaks, and the process proceeds to step S112.
  • step S112 1 is substituted for n (n ⁇ 1) as initialization of a counter for sequentially processing n FPs, and the process proceeds to step S113.
  • step S113 a process of “reading the nth FP in the list” is executed. In this process, the nth FP in the list is read, and the process proceeds to step S114.
  • step S114 the process of “obtain all retention times (X)” is executed. In this process, all the retention time information of the FP read in S113 is acquired, and the process proceeds to step S115.
  • step S115 the process of “n update (n ⁇ n + 1)” is executed.
  • n + 1 is substituted for n as an update of n, and the process proceeds to step S116.
  • step S116 a process of “reading the nth FP in the list” is executed. In this process, the nth FP in the list is read, and the process proceeds to step S117.
  • step S117 the process of “obtain all retention times (Y)” is executed.
  • all the retention time information of the FP read in S116 is acquired, and the process proceeds to step S118.
  • step S118 the process of “Integrate X and Y without duplication (Z)” is executed.
  • the retention time information X acquired in S114 and the retention time information Y acquired in S117 are integrated without duplication, then stored in Z, and the process proceeds to step S119.
  • step S119 the process of “X update (X ⁇ Z)” is executed.
  • Z stored in S118 is substituted for X as X update, and the process proceeds to step S120.
  • step S120 a determination process of “End of all FP processes?” Is executed. In this process, it is determined whether or not all n FPs created in S110 have been processed. If the process has been completed (YES), the process proceeds to step S121. If there is an unprocessed FP (NO), the process proceeds to S115 in order to execute the processes of S115 to S120 for the unprocessed FP. The processes of S115 to S120 are repeated until all the FP processes are completed.
  • step S121 1 is substituted for n (n ⁇ 1) as initialization of a counter for sequentially processing n FPs again, and the process proceeds to step S122.
  • step S122 a process of “reading the nth FP in the list” is executed. In this process, the nth FP in the list is read, and the process proceeds to step S123.
  • step S123 a process of “obtaining each peak's retention time (R1), peak data (P1), and UV spectrum (U1) in order” is executed.
  • the retention time (R1), peak data (P1), and UV spectrum (U1) are obtained one by one from the FP read in S122, and the process proceeds to step S124.
  • step S124 a process of “obtaining retention times (R2) in order from X” is executed.
  • the retention times of all the FPs are acquired sequentially from X stored without duplication one by one retention time (R2), and the process proceeds to step S125.
  • step S126 a determination process of “completion of all X retention times?” Is executed. In this process, it is determined whether or not the comparison between R1 acquired in S123 and the total retention time of X has been completed. If completed (YES), it is determined that the peak with the retention time R1 has been processed, and the process proceeds to step S123 to shift the process to the next peak. If not finished (NO), the next retention of X. In order to shift to time, the process proceeds to step S124.
  • step S127 the process of “add (n ⁇ 1) ⁇ analysis time (T) to R1 (R1 ⁇ R1 + (n ⁇ 1) ⁇ T)” is executed.
  • the retention time of the peak existing in the first FP of the list having the largest number of peaks remains as it is, the retention time of the peak existing in the second FP of the list does not exist in the first FP of the list.
  • the analysis time (T) is added to the time R1, and the retention time of the peak existing in the nth FP of the list does not exist in the list 1 to the (n-1) th FP. ) ⁇ T is added, and the process proceeds to step S128.
  • step S128 the process of “output R1, P1, and U1 (target FP)” is executed.
  • R1 processed in S127, P1 and U1 acquired in S123 are output to the target FP, and the process proceeds to step S129.
  • step S129 the process “Delete R2 from X” is executed.
  • the process in which the retention time is R1 ( R2) ends in S127 and S128, the processed retention time (R2) is deleted from X, and the process proceeds to S130.
  • step S130 a determination process of “End of all peak processing?” Is executed. In this process, it is determined whether or not the process has been completed for all the peaks of the list nth FP. If the process has been completed (YES), the FP creation process in the list nth FP is terminated, The process proceeds to S131. If there is an unprocessed peak (NO), the process proceeds to step S123 in order to process the unprocessed peak. The processes of S123 to S130 are repeated until all the peaks are processed.
  • step S131 the process of “n update (n ⁇ n + 1)” is executed.
  • n + 1 is substituted for n as an update of n, and the process proceeds to step S132.
  • step S132 a determination process of “End of all FP processes?” Is executed. In this process, it is determined whether all n FPs created in S110 have been processed. If the process has been completed (YES), the FP creation process is terminated. If there is an unprocessed FP (NO), the process proceeds to S122 in order to execute the processes of S122 to S132 for the unprocessed FP. The processes in S122 to S132 are repeated until all FP processes are completed.
  • S2 Target FP attribution process 1
  • FIG. 98 is a flowchart showing details of the “target FP attribution process 1” in step S2 of FIG. This process is a pre-process for attribution, and a reference FP suitable for attribution of the target FP 43 is selected from a plurality of reference FPs that are regarded as normal products.
  • step S201 the process of “read target FP” is executed.
  • the attribution target FP is read, and the process proceeds to step S202.
  • step S202 the process of “obtain all retention time (R1)” is executed.
  • R1 the retention time information of the target FP read in S201 is acquired, and the process proceeds to step S203.
  • step S203 a process of “listing file names of all reference FPs” is executed.
  • the file names of all the reference FPs are listed in advance, and the process proceeds to step S204.
  • step S204 1 is substituted for n (n ⁇ 1) as the initial value of the counter for sequentially processing all the reference FPs, and the process proceeds to step S205.
  • step S205 a process of “reading the list n-th reference FP (reference FP n )” is executed.
  • the n-th FP of the file name list of all reference FPs listed in S203 is read, and the process proceeds to step S206.
  • step S206 the process of “obtain all retention time (R2)” is executed.
  • R2 the retention time information of the reference FP read in S205 is acquired, and the process proceeds to step S207.
  • step S207 the process of “calculate the degree of coincidence of retention, time, and appearance pattern of R1 and R2 (RP n — min)” is executed.
  • RP n — min is calculated from the retention time of the target FP acquired in S202 and the retention time of the reference FP acquired in S206, and the process proceeds to step S208.
  • the detailed calculation flow of RP n — min will be separately described with reference to subroutine 1 in FIG.
  • step S208 the processing of "Saving RP n _min (RP all _min" is performed.
  • the RP n _min calculated in S207 and stored in the RP all _min the process proceeds to step S209.
  • step S209 the process of “update n (n ⁇ n + 1)” is executed.
  • n + 1 is substituted for n as an update of n, and the process proceeds to step S210.
  • step S210 a determination process of “End all reference FP processes?” Is executed. In this process, it is determined whether or not all the reference FPs have been processed. If the process has been completed (YES), the process proceeds to step S211. If there is an unprocessed reference FP (NO), the process proceeds to S205 to execute the processes of S205 to S210 for the unprocessed FP. The processes of S205 to S210 are repeated until the process of all the reference FPs is completed.
  • step S211 the processing of "selection criteria FP matching degree from RP all _min is minimized" is executed.
  • RP n — min is compared with RP 1 — min calculated for all the reference FPs, a reference FP that has the lowest degree of coincidence of retention, time, and appearance pattern with the target FP is selected, and target FP attribution processing 1 is finished.
  • FIG. 99 is a flowchart showing details of the “target FP attribution process 2” in step S3 of FIG. This process is the main process of attribution, and the degree of coincidence (SCORE) of each attribution candidate peak between the target FP 43 and the reference FP selected in step S2 based on the coincidence of the peak pattern and the UV spectrum as described above. Is calculated.
  • S3 Target FP attribution process 2
  • step S301 the process of “read target FP” is executed.
  • the attribution target FP is read, and the process proceeds to step S302.
  • step S302 a process of “obtaining the retention time (R1), peak data (P1), and UV spectrum (U1) of the assignment target peak in order)” is executed.
  • each peak of the target FP read in S301 is set as the attribute target peak in order, R1, P1, and U1 are acquired, and the process proceeds to step S303.
  • step S303 the process of “reading the reference FP” is executed.
  • the reference FP selected in [Target FP attribution process 1] in FIG. 98 is read, and the process proceeds to step S304.
  • step S304 a process of “obtaining the reference FP peak retention time (R2), peak data (P2), and UV spectrum (U2) in order” is executed.
  • R2, P2, and U2 are acquired one by one from the reference FP read in S303, and the process proceeds to step S305.
  • step S305 a determination process of “
  • R1 and R2 read in steps S302 and S304 correspond within the threshold range. If it corresponds (YES), it is determined that the peak with the retention time R2 is the attribution candidate peak of the peak with the retention time R1, and step S306 is performed to calculate the degree of coincidence (SCORE) of the attribution candidate peak.
  • S309 a determination process of “
  • d in this determination process is a value for correcting the retention time of the peak of the target FP and the reference FP, the initial value is 0, and as the process proceeds, the difference in retention time between the peaks attributed as needed is calculated. Obtain d and update d with that value.
  • the threshold value is an allowable range of retention time for determining whether or not to be an attribution candidate peak.
  • step S306 a process of “calculate UV spectrum matching degree (UV_Sim)” is executed.
  • UV_Sim is calculated from U1 of the attribution target peak acquired in S302 and U2 of the attribution candidate peak acquired in S304, and the process proceeds to step S307.
  • the detailed calculation flow of UV_Sim is described separately in subroutine 2 in FIG.
  • step S307 the processing of “calculate the degree of coincidence of peak patterns (P_Sim_min)” is executed.
  • a peak pattern is comprehensively created for these peaks from R1 and P1 of the attribution target peaks acquired in S302 and R2 and P2 of the attribution candidate peaks acquired in S304.
  • P_Sim_min of these peak patterns is calculated, and the process proceeds to step S308.
  • the detailed calculation flow of P_Sim_min is described separately in subroutine 3 of FIG.
  • step S308 a process of “calculate the degree of coincidence of attribution candidate peaks (SCORE)” is executed.
  • step S309 the process of “Substitute 888888 for SCORE (SCORE ⁇ 888888)” is executed.
  • the SCORE of the peak that does not correspond to the attribution candidate peak of the attribution target peak is set to 888888, and the process proceeds to step S310.
  • step S310 the process of “save SCORE (SCORE_all)” is executed.
  • the SCORE obtained in S308 or S309 is stored in SCORE_all, and the process proceeds to step S311.
  • step S311 a determination process of “End of processing of all reference peaks?” Is executed. In this process, it is determined whether or not all the peaks of the reference FP have been processed. If the processing has been completed (YES), the process proceeds to step S312. If there is an unprocessed peak (NO), the process proceeds to S304 in order to execute the processes of S304 to S311 for the unprocessed peak. The processes of S304 to S311 are repeated until all the peaks are processed.
  • step S312 the process of “output SCORE_all to the determination result file and initialize SCORE_all (empty)” is executed. In this process, after outputting SCORE_all to the determination result file, SCORE_all is initialized (empty), and the process proceeds to step S313.
  • step S313 a determination process of “End processing of all target peaks?” Is executed. In this process, it is determined whether or not all the peaks of the target FP have been processed. If the processing has been completed (YES), the target FP attribution process 2 ends. If there is an unprocessed peak (NO), the process proceeds to S302 in order to execute the processes of S302 to S313 for the unprocessed peak. The processes in S302 to S313 are repeated until all the peaks are processed.
  • FIG. 100 is a flowchart showing details of the “target FP attribution process 3” in step S4 of FIG. This process is a post-process of attribution, and specifies the peak of the reference FP corresponding to each peak of the target FP from the matching degree (SCORE) of the attribution candidate peak calculated as described above.
  • step S401 the process of “reading the determination result file” is executed.
  • the determination result file created in the “target FP attribution process 2” in FIG. 81 is read, and the process proceeds to step S402.
  • step S402 a process of “create attribution candidate peak score table with data satisfying condition of“ SCORE ⁇ threshold ”” is executed.
  • an attribution candidate score table (see attribution candidate score table 191 in the upper diagram of FIG. 121) is created based on SCORE of the determination result file, and the process proceeds to step S403.
  • This attribution candidate peak score table is a table in which, for each peak of the reference FP, only SCOREs smaller than the threshold are arranged in ascending order from the SCORE calculated for all the target FP peaks. Incidentally, the smaller the value of this SCORE, the more likely the peak to be assigned.
  • the threshold value is an upper limit value of SCORE for determining whether or not to be an attribution candidate.
  • step S403 the process of “create attribution candidate peak number table” is executed.
  • an attribution candidate peak number table (see attribution candidate peak number table 193 in the lower diagram of FIG. 121) is created based on the attribution candidate peak score table, and the process proceeds to step S404.
  • This attribution candidate peak number table is a table in which each score in the attribution candidate peak score table is replaced with the peak number of the target FP corresponding to the score. Therefore, this table is a table in which the peak numbers of the target FP to be associated with each peak of the reference FP are arranged in order.
  • step S404 the process of “obtain the peak number of the target FP to be attributed” is executed.
  • the peak number of the target FP positioned at the top for each peak of the reference FP is acquired from the attribution candidate peak number table created in S403, and the process proceeds to step S405.
  • step S405 a determination process of “the acquired peak numbers are arranged in descending order (no duplication)?” Is executed. In this process, it is determined whether or not the peak numbers of the target FP acquired in S404 are arranged in descending order without duplication. If they are lined up (YES), it is determined that the peak of the target FP corresponding to each peak of the reference FP has been confirmed, and the process proceeds to step S408. If not (NO), the process proceeds to step S406 in order to review the peak of the target FP to be attributed to the problematic reference FP peak.
  • step S406 a process of “compare SCORE between problematic peaks and update attribute candidate peak number table” is executed.
  • the SCORE corresponding to the peak number of the target FP having a problem is compared in the attribution candidate score table, and the peak number with the larger SCORE is replaced with the peak number located second. Update, and the process proceeds to step S407.
  • step S407 the process of “update attribution candidate peak score table” is executed.
  • the attribution candidate peak score table is updated in accordance with the update contents of the attribution candidate peak number table in S406, and the process proceeds to step S404.
  • the processing from S404 to S407 is repeated until there is no problem in the peak number of the target FP (there is duplication and not arranged in descending order).
  • step S408 a process of “save attribution result (TEMP)” is executed.
  • the peak number of all the peaks of the reference FP, the retention time, and the peak data of the target FP specified as the peak corresponding to these peaks are stored in TEMP, and the process proceeds to step S409.
  • step S409 a determination process of “Are all peaks of the target FP included in TEMP?” Is executed. In this process, it is determined whether or not the peak data of all peaks of the target FP is included in the TEMP stored in S408. If all are included (YES), it is determined that the processing has been completed for all the peaks of the target FP, and the process proceeds to S412. If there is a peak not included (NO), the process proceeds to step S410 in order to add peak data of a peak not included to TEMP.
  • step S410 a process of “correct peak retention time of target FP not included in TEMP” is executed.
  • k2 Assigned near the peak of the target FP requiring correction Of the two peaks on the reference FP side, the retention time of the peak with the largest retention time t0: the retention time of the peak of the target FP that needs to be corrected t1: 2 assigned near the peak of the target FP that needs to be corrected
  • Retention time of the peak with the shortest retention time among the two peaks on the target FP t2 Peak with the long retention time among the peaks on the two target FPs assigned near the
  • step S411 a process of “adding the corrected retention time and the peak data of the peak to TEMP and updating TEMP” is executed.
  • the retention time of the peak of the target FP not included in the TEMP corrected in S410 is compared with the retention time of the reference FP during the TEMP, and the target FP not included in the TEMP at a proper position in the TEMP.
  • the corrected retention time and peak data of the peak are added, TEMP is updated, and the process proceeds to S409.
  • the processing from S409 to S411 is repeated until all the peaks of the target FP are added.
  • step S412 the process of “output TEMP to collation result file” is executed.
  • TEMP that specifies the correspondence between all the peaks of the reference FP and all the peaks of the target FP is output as a verification result file, and the target FP attribution process 3 ends.
  • [S5: Target FP attribution process 4] 101 and 102 are flowcharts showing details of the “target FP attribution process 4” in step S5 of FIG. This process is a final process of attribution, and each peak of the target FP is determined based on the collation result file (see collation result file example 195 in FIG. 122) created in step S4 in FIG. It belongs to the peak of data example 197 of group FP).
  • the reference group FP197 is an FP that specifies the peak correspondence among all the reference FPs as described above. Like the reference group FP data example 197 in FIG. 123, the reference group FP peak number and the reference group retention are used. -Data composed of time and peak height. As shown by the reference group FP45 in FIG. 2, each peak can be represented by an average value (black dot) ⁇ standard deviation (vertical dividing line).
  • step S501 the process of “reading the collation result file” is executed.
  • the collation result file output in S412 of FIG. 100 is read, and the process proceeds to step S502.
  • step S502 the process of “reading the reference group FP” is executed.
  • the reference group FP197 that is the final attribution partner of each peak of the target FP is read, and the process proceeds to step S503.
  • step S503 a process of “integrating and storing the target FP and the reference group FP (TEMP)” is executed.
  • the two files are integrated based on the peak data of the reference FP that exists in common in the collation result file and the reference group FP197, the result is stored as TEMP, and the process proceeds to step S504.
  • step S504 a process of “correcting the retention times of all peaks of the target FP having no peak corresponding to the reference FP” is executed.
  • the retention times of all the peaks of the target FP having no peak corresponding to the reference FP in the collation result file are corrected to the TEMP retention times stored in S503, and the process proceeds to step S505.
  • the retention time is corrected by the same method as in step S410 of the “target FP attribution process 3” in step S4.
  • step S505 a process of “obtaining peak data (P1) corresponding to the corrected retention times (R1, R3) in order” is executed.
  • the retention times corrected in S504 are sequentially acquired as R1 and R3, and the peak data of the corresponding peaks as P1, and the process proceeds to step S506.
  • step S506 a process of “obtaining peak data (P2) corresponding to the retention time (R2) of the candidate candidate peak of the target FP in order from TEMP” is executed.
  • the retention time to which the peak of the target FP is not attributed is stored as R2 from the TEMP stored in S503, and the corresponding peak data is acquired as P2, and the process proceeds to step S507.
  • step S507 a determination process of “
  • step S508 a process of “acquiring UV spectra corresponding to R1 and R2 (U1, U2)” is executed.
  • the UV spectra corresponding to the peaks of the retention times R1 and R2 determined to be possible in S507 are acquired from the respective FPs, and the process proceeds to step S509.
  • step S509 a process of “calculate UV spectrum coincidence (UV_Sim)” is executed.
  • UV_Sim is calculated from the UV spectra U1 and U2 acquired in S508 by the same method as in step S306 of the “target FP attribution process 2” in step S3, and the process proceeds to step S510.
  • the detailed calculation flow of UV_Sim will be described separately in subroutine 2 of FIG.
  • step S510 a determination process of “UV_Sim ⁇ threshold 2?” Is executed.
  • UV_Sim calculated in S509 is smaller than the threshold value 2. If it is small (YES), it is determined that the peak of U1 corresponds to the peak of U2 in the UV spectrum, and the process proceeds to step S511. If UV_Sim is greater than or equal to the threshold value 2 (NO), it is determined that it is not supported, and the process proceeds to step S507.
  • step S511 the processing of “R3 ⁇ R2, threshold 2 ⁇ UV_Sim” is executed.
  • the threshold 2 is updated to the value of UV_Sim, and the process proceeds to S507.
  • step S512 a determination process of “comparison of retention times of all attribution candidate peaks?” Is executed. In this process, it is determined whether or not the comparison of the retention times of R1 and all attribution candidate peaks has been completed. If the comparison has been completed (YES), the process proceeds to step S513. If not completed (NO), the process proceeds to step S507.
  • step S513 the processing of “save R1, R3 and P1 and threshold 2 (TEMP2)” is executed.
  • the retention time (R1) determined to correspond in S510, the peak (P1) corresponding to R3 updated to the corresponding partner's retention time (R2), and the current threshold value 2 are stored (TEMP2), and S507 is performed.
  • step S514 a determination process of “completion of retention times of all non-corresponding peaks?” Is executed. In this process, it is determined whether or not the comparison with the retention time of the attribution candidate peak is completed for the retention times of all the non-corresponding peaks. If it has been completed (YES), it is determined that all non-corresponding peak attribution processing has been completed, and the process proceeds to step S516. If not completed (NO), it is determined that an unprocessed non-corresponding peak remains, and the process proceeds to step S515.
  • step S515 the process of “threshold 2 ⁇ initial value” is executed.
  • the threshold value 2 updated to UV_Sim in S511 is returned to the initial value, and the process proceeds to step S505.
  • step S516 a determination process of “is there a peak having the same value of R3 in TEMP2?” Is executed. In this process, it is determined whether or not a plurality of non-corresponding peaks belong to the same peak in TEMP. If there is a non-corresponding peak attributed to the same peak (YES), the process proceeds to step S517. If it does not exist (NO), the process proceeds to step S518.
  • step S517 a process of “comparing threshold values 2 of peaks having the same R3 value and returning R3 of a peak having a large value to the original value (R1)” is executed.
  • the threshold value 2 of the peak having the same value of R3 in TEMP2 is compared, the value of R3 of the peak having a large value is returned to the original value (that is, R1), and the process proceeds to step S518.
  • step S518 the processing of “add TEMP2 peak to TEMP (only peaks where TEMP retention time and R3 match)” is executed.
  • a peak corresponding to R3 is added to TEMP only for the peak in which the retention time of TEMP and R3 match, and the process proceeds to step S519.
  • a peak in which R3 does not coincide with the retention time of TEMP is not added because there is no peak that becomes an belonging partner in the reference group FP.
  • step S519 the process of “output the peak of the target FP during TEMP (peak feature file)” is executed.
  • the peak data of the target FP attributed to the reference group FP197 is output as a peak data feature amount file, and the target FP attribution process 4 ends.
  • FIG. 124 shows an example file 199 of peak data feature values output as described above.
  • FIG. 103 is a flowchart showing details of “subroutine 1” in the “reference FP selection process” of FIG. In this process, the degree of coincidence of the retention time, the appearance pattern between the FPs (for example, the target FP and the reference FP) is calculated.
  • step S1001 the process of “x ⁇ R1, y ⁇ R2” is executed.
  • R1 and R2 acquired in S202 and S206 of FIG. 98 are substituted for x and y, respectively, and the process proceeds to step S1002.
  • step S1002 the process of “obtaining the number of data of x and y (a, b)” is executed.
  • the numbers of data of x and y are acquired as a and b, respectively, and the process proceeds to step S1003.
  • step S1003 1 is substituted for i (i ⁇ 1) as the initial value of the counter for sequentially calling the retention times of x (i ⁇ 1), and the process proceeds to step S1004.
  • step S1004 the process of “obtain all distance from xi-th retention time (f)” is executed. In this process, the distance between the xith retention time and all subsequent retention times is acquired as f, and the process proceeds to step S1005.
  • step S1005 1 is substituted for j (j ⁇ 1) as the initial value of the counter for sequentially calling the retention times of y, and the process proceeds to step S1006.
  • step S1006 the process of “obtain all distance from yj-th retention time (g)” is executed.
  • the distance between the yj-th retention time and all subsequent retention times is acquired as g, and the process proceeds to step S1007.
  • step S1007 the processing of “"
  • the retention time distances f and g acquired in S1004 and S1006 are compared in a round-robin manner, and the condition of “
  • step S1008 the processing of “calculate the degree of coincidence of retention and time / appearance pattern of f and g (RP fg )” is executed.
  • RP fg is obtained from a and b acquired in S1002 and m acquired in S1007.
  • RP fg (1 ⁇ (m / (a + b ⁇ m))) ⁇ (a ⁇ m + 1)
  • step S1009 the processing of “calculate the degree of coincidence of retention and time / appearance pattern of f and g (RP fg )” is executed.
  • RP fg is obtained from a and b acquired in S1002 and m acquired in S1007.
  • RP fg (1 ⁇ (m / (a + b ⁇ m))) ⁇ (a ⁇ m + 1)
  • step S1009 the processing of “calculate the degree of coincidence of retention and time / appearance pattern of f and g (RP fg )” is executed.
  • RP fg is obtained from a and b
  • step S1009 the process of “save RP fg (RP_all)” is executed.
  • the degree of coincidence calculated in S1008 is stored in RP_all, and the process proceeds to step S1010.
  • step S1010 the process of “update j (j ⁇ j + 1)” is executed.
  • j + 1 is substituted for j as an update of j, and the process proceeds to step S1011.
  • step S1011 a determination process of “Processing complete with all retention times of y?” Is executed. In this process, it is determined whether or not all the retention times for y have been processed. If it has been completed (YES), it is determined that the processing of all retention times of y has been completed, and the process proceeds to step S1012. If not completed (NO), it is determined that an unprocessed retention time remains in y, and the process proceeds to step S1006. That is, the processing from S1006 to S1011 is repeated until all the retention times of y are processed.
  • step S1012 the process of “update i (i ⁇ i + 1)” is executed.
  • i + 1 is substituted for i as an update of i, and the process proceeds to step S1013.
  • step S1013 a determination process of “Processing completed with all retention times of x?” Is executed. In this process, it is determined whether or not all the retention times for x have been processed. If it has been completed (YES), it is determined that all the retention times for x have been processed, and the process proceeds to step S1014. If not completed (NO), it is determined that an unprocessed retention time remains in x, and the process proceeds to step S1004. That is, the processing from S1004 to S1013 is repeated until all the retention times of x are processed.
  • step S1014 the process of “obtain minimum value from RP_all (RP_min)” is executed.
  • FIG. 104 is a flowchart showing details of “subroutine 2” in “target FP attribution process 2” of FIG. This process calculates the degree of coincidence of the UV spectra.
  • step S2001 the process of “x ⁇ U1, y ⁇ U2, z ⁇ 0” is executed.
  • the UV spectra U1 and U2 acquired in S302 and S304 of FIG. 99 are substituted into x and y, respectively, and 0 is substituted as the initial value of the square sum (z) of the distance between the UV spectra, step S2002.
  • step S2002 the process of “acquire the number of x data (a)” is executed.
  • the number of x data is acquired as a, and the process proceeds to step S2003.
  • step S2003 1 is substituted into i as an initial value for sequentially calling the absorbance at each detection wavelength constituting the UV spectrum U1 from x, and the process proceeds to step S2004.
  • step S2004 the process of “obtain xi-th data (b)” is executed.
  • the i-th absorbance data of x to which the UV spectrum U1 is substituted is acquired as b, and the process proceeds to step S2005.
  • step S2005 the “acquire yi-th data (c)” process is executed.
  • the i-th absorbance data of y into which the UV spectrum U2 is substituted is acquired as c, and the process proceeds to step S2006.
  • step S2006 a process of “calculate the sum of squares (z) of the distance between UV spectra (d) and the distance between UV spectra” is executed.
  • the process proceeds to step S2007.
  • step S2007 the “i update (i ⁇ i + 1)” process is executed.
  • i + 1 is substituted for i as an update of i, and the process proceeds to step S2008.
  • step S2008 a determination process of “process complete with all data of x?” Is executed. In this process, it is determined whether or not the processing of all data of x and y has been completed. If it has been completed (YES), it is determined that the processing of all data of x and y has been completed, and the process proceeds to step S2009. If not completed (NO), it is determined that unprocessed data remains in x and y, and the process proceeds to step S2004. That is, the processes from S2004 to S2008 are repeated until all the absorbance data of x and y are processed.
  • step S2009 the process of “calculate the degree of coincidence between the x and y UV spectra (UV_Sim)” is executed.
  • UV_Sim is calculated from the sum of squares z of the distance between the UV spectra and the number of data a.
  • UV_Sim ⁇ (z / a)
  • This UV_Sim is passed to step S306 in FIG. 99, and the UV spectrum coincidence degree calculation process is terminated.
  • FIG. 105 is a flowchart showing details of “subroutine 3” in “target FP attribution process 2” of FIG. This process calculates the coincidence of peak patterns.
  • step S3001 a process of “setting the number of peak pattern configuration candidates (m) and the number of peak pattern configuration peaks (n)” is executed.
  • the peak pattern configuration candidate number (m) and the peak pattern configuration peak number (n) are set as settings for comprehensively creating peak patterns, and the process proceeds to step S3002.
  • step S3002 the process of “x ⁇ target FP name, r1 ⁇ R1, p1 ⁇ P1, y ⁇ reference FP name, r2 ⁇ R2, p2 ⁇ P2” is executed.
  • the file names of the target FP and reference FP necessary for the process, and the retention time and peak data acquired in S302 and S304 in FIG. 99 are substituted into x, r1, p1, y, r2, and p2, respectively.
  • the process proceeds to step S3003.
  • step S3003 the process of “obtain all retention times of x (a)” is executed.
  • the file (target FP) with the name assigned to x in S3002 is read, the entire retention time of the file is acquired as a, and the process proceeds to step S3004.
  • step S3004 the process of “obtain all retention times of y (b)” is executed.
  • the file (reference FP) with the name assigned to y in S3002 is read, the entire retention time of the file is acquired as b, and the process proceeds to step S3005.
  • step S3005 the process of “obtain retention time (cm) and peak data (dm) of m peak pattern configuration candidate peaks from a to r1” is executed.
  • the retention time of m peak pattern configuration candidate peaks of r1 which is the retention time of the attribution target peak, is obtained from a as cm, and the peak data is obtained as dm, and the process proceeds to step S3006.
  • the m peak pattern configuration candidate peaks are m having a retention time close to r1.
  • step S3006 the processing of “obtain m retention time (em) and peak data (fm) of m peak pattern configuration candidate peaks from b to r2” is executed.
  • the retention time of m peak pattern configuration candidate peaks of r2 which is the retention time of the attribution candidate peak, is acquired from b as em, and the peak data is acquired as fm, and the process proceeds to step S3007.
  • the m peak pattern configuration candidate peaks are m having a retention time close to r2.
  • step S3007 a process of “arranging cm and dm in retention time order (ascending order)” is executed.
  • the cm and dm acquired in S3005 are rearranged so that the retention times are in ascending order, and the process proceeds to step S3008.
  • step S3008 a process of “arranging em and fm in the order of retention time (ascending order)” is executed.
  • em and fm acquired in S3006 are rearranged so that the retention times are in ascending order, and the process proceeds to step S3009.
  • step S3009 the processing of “obtaining peak pattern configuration peak n retention times (cn) and peak data (dn) in order from cm and dm” is executed.
  • the retention time of n peak pattern configuration peaks is set to cn and the peak data is set to dn in order, and the process proceeds to step S3010.
  • step S3010 a process of “obtaining n retention times (en) and peak data (fn) of n peak pattern constituent peaks in order from em and fm” is executed.
  • the retention time of n peak pattern configuration peaks is en and the peak data is acquired in order as fn, and the process proceeds to step S3011.
  • step S3011 the processing of “calculate peak pattern coincidence (P_Sim)” is executed.
  • r1 and p1 of the attribution target peak obtained so far, cn and dn of the peak pattern constituting peak n, and r2 and p2 of the attribution candidate peak and en of n peaks and peaks constituting the attribution pattern are obtained.
  • step S3012 the process of “save P_Sim (P_Sim_all)” is executed.
  • P_Sim calculated in S3011 is sequentially stored in P_Sim_all, and the process proceeds to step S3013.
  • step S3013 a determination process of “all combinations out of m out of em taken out?” Is executed. In this process, it is determined whether or not the process has been completed for all combinations of extracting n peak pattern configuration peaks from m peak pattern configuration candidate peaks of attribution candidate peaks. If completed (YES), it is determined that the creation of an exhaustive peak pattern and the calculation of the degree of coincidence in the attribution candidate peak have been completed, and the process proceeds to step S3014. If not completed (NO), it is determined that the combination of extracting n from m is not completed, and the process proceeds to step S3010. That is, the processing from S3010 to S3013 is repeated until the processing is completed for all combinations in which n are extracted from m.
  • step S3014 a determination process of “all combinations out of m out of cm is completed?” Is executed. In this process, it is determined whether or not the process has been completed for all combinations that extract n peak pattern configuration peaks from m peak pattern configuration candidate peaks of the attribution target peak. If completed (YES), it is determined that the creation of an exhaustive peak pattern and calculation of the degree of coincidence in the attribution target peak have been completed, and the process proceeds to step S3015. If not completed (NO), it is determined that the combination of taking n out of m is not completed, and the process proceeds to step S3009. That is, the processing from S3009 to S3014 is repeated until the processing is completed for all combinations in which n are extracted from m.
  • step S3015 the process of “obtain minimum value from P_Sim_all (P_Sim_min)” is executed.
  • the minimum value of P_Sim_all stored in S3012 is acquired as P_Sim_min, and this P_Sim_min is passed to step S307 in FIG. 99, and the peak pattern matching degree calculation process is terminated.
  • FIG. 106 is a flowchart showing details of “FP_type2 creation” in step S6 of FIG.
  • step S601 the process of “read target FP” is executed.
  • the file of the target FP 43 (see the FP data example 187 in FIG. 119) is read, and the process proceeds to step S602.
  • step S602 a process of “reading a peak data feature file” is executed.
  • a peak data feature amount file (see the peak data feature amount file example 199 in FIG. 124) is read, and the process proceeds to step S603.
  • the example of the peak data feature file includes the peak information of the target FP 43 attributed to the peak of the reference group FP 45 by the target FP peak feature generating unit 7.
  • step S603 a process of “compare the target FP with the peak data feature file” is executed.
  • the file of the target FP 43 is compared with the peak data feature file.
  • the residual peak of the target FP43 that has not been assigned to the peak of the reference group FP45 is specified, and the process proceeds to step S604.
  • step S604 the processing of “output retention time and peak data of peak existing only in target FP” is executed.
  • the retention time and peak data of the remaining peak of the target FP 43 are output to the target FP type 2 data file (see the reference and target FP type 2 data example 201 in FIG. 125).
  • FIG. 107 is a flowchart showing details of the “feature value processing for target FP_type2 by area division” in step S7 of FIG.
  • step S701 the processing of “setting the FP space area division condition” is executed.
  • the processing of “setting the FP space area division condition” is executed.
  • one position is set for each of the first vertical and horizontal lines (division lines).
  • vertical and horizontal dividing lines (first line) are set as dividing lines in the FP space as shown in FIGS. 76 and 77, for example.
  • the amplitude is not related.
  • step S702 a process of “creating an FP space area division pattern” is executed.
  • the positions of the second and subsequent dividing lines are set for all combinations of the first vertical and horizontal dividing lines, and a divided pattern (one) is created.
  • the FP space is divided into regions by vertical and horizontal dividing lines as shown in FIG. 78, for example.
  • region division the process proceeds to step S703.
  • step S703 a process of “reading a file of the target FP_type2” is executed. With this process, the target FP type 2 file is read, and the process proceeds to step S704.
  • step S704 the process of “calculate total peak data of entire FP space” is executed.
  • the total height of the peaks present in all the divided grids 145 as shown in FIG. 79 is calculated (FIG. 81), and the process proceeds to step S705.
  • step S705 the process of “divide the FP space by the division pattern” is executed.
  • the target FP type 2 read in S703 is divided into regions as shown in FIG. 79 using the region division pattern set in S702, and the process proceeds to step S706.
  • step S706 the processing of “calculate the existence ratio of peak data in the divided area” is executed.
  • the calculation result is as shown in FIG.
  • the process proceeds to step S707.
  • step S707 a process of “output the existence ratio of each region as a feature amount” is executed.
  • one target FP region division feature value file (see one target FP region division feature value file example 203 shown in FIG. 126) is output.
  • FIG. 108 is a flowchart showing details of the “integration of peak data feature quantity and area division feature quantity” in step S8 of FIG.
  • step S801 a process of “reading a peak data feature value file” is executed. By this processing, the same file as the peak data feature amount file example 199 shown in FIG. 124 is read, and the process proceeds to step S802.
  • step S802 a process of “reading an area division feature value file” is executed. With this processing, the target FP region division feature value file 203 shown in FIG. 126 is read, and the process proceeds to step S803.
  • step S803 a process of “integrating two feature data as one horizontal line of data” is executed.
  • the peak data feature file see the peak data feature file example 199 shown in FIG. 12
  • the target FP region segmentation feature file see target FP region segmentation feature file example 203 shown in FIG. 126.
  • Is integrated as a target FP feature value integration file see target FP feature value integration file example 205 in FIG. 127
  • the process proceeds to step S804.
  • step S804 a process of “output integrated data” is executed.
  • the target FP feature amount integration file 205 of FIG. 127 is output.
  • [Creation of standard FP attribution result feature file] A reference FP feature value integration file for comparing the target FP feature value integration data with the reference FP feature value integration data is created as shown in FIGS.
  • the FP creation function of the reference FP creation unit 31 the reference FP peak attribution function of the reference FP peak attribution unit 15, and the reference FP attribution.
  • the computer realizes the reference FP region division feature value creation function of the division feature value creation unit 23 and the reference FP feature value integration function of the reference FP feature value integration unit 25.
  • the reference FP creation function is realized in step S10001.
  • the reference FP peak attribution function is realized in steps S10002, S10003, and S10004.
  • the reference FP attribution result integration function is realized in step S10005.
  • the reference FP peak feature creation function is realized in step S10006.
  • the reference FP type 2 creation function is realized in step S10007.
  • the reference FP region division feature value creation function is realized in step S10008.
  • the reference FP feature value integration function is realized in step S10009.
  • S10001 to S10004 correspond to S1 to S4 related to the creation of the target FP feature amount integrated file of FIGS. 93 and 94, and S1007 to S10009 correspond to S6 to S8.
  • step S1000 “FP creation processing” is executed using 3D chromatography and peak information at a specific detection wavelength as input data.
  • Both 3D chromatograms and peak data are provided for each of a plurality of evaluation standard drugs (standard Chinese medicines) as an evaluation standard.
  • step S10001 the reference FP creation unit 31 (FIG. 1) of the FP creation unit 3 of the computer functions to create a reference FP from the 3D chromatogram and peak information in the same manner as the target FP 43 (FIG. 2). Output as a file.
  • step S10002 “reference FP attribution process 1” is executed with all the reference FPs output in step S10001 as inputs.
  • step S10002 the reference FP peak attribution unit 15 of the computer functions to select all combinations from all the reference FPs in order to calculate the attribution score in the selected combination and order for all the reference FPs, and the process proceeds to step S10003. .
  • step S10003 the combination of the selected reference FP is input, and “reference FP attribution process 2” is executed.
  • step S10003 a peak pattern is comprehensively created as shown in FIGS. 23 to 61 for all the peaks of the combination of the reference FP selected in step S2, and then the degree of coincidence of these peak patterns (FIG. 63 or FIG. 64 P_Sim) is calculated. Further, the degree of coincidence of UV spectra (UV_Sim in FIG. 66) is calculated between the peaks of the selected combination of reference FPs. Further, the degree of coincidence of attribution candidate peaks (SCORE in FIG. 67) is calculated from these two degrees of coincidence. The calculation result is output as a determination result file (see determination result file example 189 in FIG. 120).
  • step S10004 the determination result file output in step S10003 is input, and the “reference FP attribution process 3” is executed.
  • step S10004 corresponding peaks are identified between combinations of selected reference FPs based on the matching degree (SCORE) of attribution candidate peaks among selected combinations of reference FPs.
  • the result is output as reference FP attribution data for each reference FP.
  • step S10005 all reference FP attribution data output in step S10004 is input, and “reference FP attribution result integration processing” is executed.
  • step S10005 the reference FP attribution result integration unit 17 of the computer functions, refers to the peak correspondence relationship of each reference FP identified by the reference FP peak attribution unit 15, and integrates all reference FP attribution data to correspond to the reference FP.
  • a table is created and the process proceeds to step S10006.
  • the reference FP peak feature value creation unit 19 of the computer functions to create a peak feature value (reference group FP) for all the reference FPs based on the reference FP correspondence table created by the reference FP attribution result integration unit 17. To do.
  • the processing in the reference FP peak feature quantity creation unit 19 calculates a statistic (maximum value, minimum value, median value, average value, etc) for each peak (column) in the reference FP correspondence table, and uses that information as a basis. Select the peak (column). The selected peak (row) is output as a reference group FP (see reference group FP example 197 in FIG. 123).
  • step S10007 the reference group FP and all reference FPs output in step S10006 are input, and the process of “Create FP_type2” is executed.
  • step S10007 the reference FP type 2 creation unit 21 of the computer functions in the same manner as the target FP type 2 creation unit 9, and the featured peaks are obtained from a plurality of reference FPs in the same manner as in step S6 in FIG. An FP composed of the remaining peaks and their retention times is created as a reference FP type 2 (see FP type 2 file example 201 in FIG. 125).
  • step S10008 “reference FP_type2 feature value conversion processing” is executed.
  • the reference FP region division feature value creation unit 23 of the computer functions, and a reference FP region division feature value is created by the region division of FIGS. 73 to 85.
  • the result is output as the reference type 2 group FP (see the reference type 2 group FP example 207 in FIG. 128).
  • step S10009 the “reference data creation process” is executed.
  • the reference FP feature amount integration unit 25 of the computer functions, and the reference type FP group feature creation unit 23 creates the reference group FP created by the reference FP peak feature creation unit 19 and the reference type 2 group FP created by the reference FP region division feature creation unit 23.
  • the result is output as reference group integration data (see reference group integration data example 209 in FIG. 129).
  • [S10005: Creation of standard FP correspondence table] 111 and 112 are flowcharts showing details of the “reference FP attribution result integration process (creation of reference FP correspondence table)” in step S10005 of FIG.
  • step S10101 a process of “reading attribution data with attribution number 1 as integrated data” is executed.
  • the reference FP attribution data that has been assigned for the first time in S10004 and identified the peak correspondence is read as integrated data, and the process proceeds to step S10102.
  • step S10102 a process of “reading attribute data second and later in order” is executed.
  • the reference FP attribution data that has been subjected to the second attribution process in S10004 and identified the peak correspondence is read as integrated data, and the process proceeds to step S10103.
  • step S10103 a process of “integrating integrated data and attribution data with common peak data” is executed.
  • the two files are integrated based on the peak data of the reference FP that exists in common in the integrated data and the attribution data, and the integrated data is updated as a result, and the process proceeds to step S10104.
  • step S10104 a determination process of “Add all peaks in attribution data to integrated data?” Is executed. In this process, it is determined whether all the peaks of the attribution data have been added to the integrated data. If it has been added (YES), the process proceeds to step S10105. If there is a peak that has not been added (missing peak) (NO), the process proceeds to step S10107 in order to add this missing peak to the integrated data. Note that the processing for adding missing peaks to the integrated data (S10107 to S10120) is the same as steps S504 to S517 in S5 (target FP attribution processing 4).
  • step S10121 processing of “add TEMP2 data to integrated data (all retention times and peaks)” is executed.
  • all retention times (R3) and peaks (P1) of TEMP2 are added to the corresponding locations of the integrated data, and the process proceeds to step S10122.
  • step S10122 processing of “threshold 2 ⁇ initial value, delete all data in TEMP2” is executed.
  • the threshold value 2 updated to UV_Sim is returned to the initial value, all data is deleted from TEMP2 containing data such as the retention time and peak of all missing peaks, and the process returns to step S10104.
  • step S10105 which is shifted from step S10104, a determination process of “all attribute data processing completed?” Is executed. In this process, it is determined whether or not the processing of all reference data has been completed. If the process is finished (YES), the process proceeds to step S10106 in order to output the reference FP correspondence table that is the result of the integration of all attribution data. If all the processes have not been completed (NO), the process returns to step S10102 to sequentially process the remaining attribution data.
  • step S10106 the process of “output integrated data (reference FP correspondence table)” is executed.
  • the result of integrating all attribution data is output as a standard FP correspondence table, and the standard FP correspondence table creation process ends.
  • FIG. 113 is a flowchart showing details of the “peak feature value conversion process (creation of reference group FP)” in step S10006 of FIG.
  • step S10201 the process of “read the reference FP correspondence table” is executed.
  • the reference FP correspondence table created in S10005 is read, and the process proceeds to step S10202.
  • step S10202 the processing of “calculate statistics for each peak (column)” is executed.
  • a statistic maximum value, minimum value, median value, average value, variance, standard deviation, number of existence, presence rate
  • step S10203 a process of “selecting a peak (column) with reference to the calculated statistic” is executed.
  • a peak is selected with reference to the statistic calculated in S10102, and the process proceeds to step S10204.
  • step S10204 the process of “output selected peak (row) (reference group FP)” is executed.
  • the peak (column) selection result is output as the reference group FP based on the statistics, and the process of creating the reference group FP is terminated.
  • FIG. 123 shows a reference FP correspondence table example 197 that is output as described above.
  • FIG. 114 shows “reference FP editing process (reference FP_type2) in step S10007 of FIG. Is a flowchart showing the details of “
  • step S10301 a process of “reading the reference FP in order” is executed.
  • a plurality of reference FP files (see FP data example 187 in FIG. 119) are read, and the process proceeds to step S10302.
  • step S10302 a process of “reading the reference group FP” is executed.
  • the data file of the reference group FP (see the data example 197 of the reference group FP in FIG. 123) is read, and the process proceeds to step S10303.
  • step S10303 a process of “extracting a peak data feature amount of the reference FP from the reference group FP” is executed.
  • the peak data feature value subjected to the attribution process of the reference FP is extracted from the file of the reference group FP45, and the process proceeds to step S10304.
  • step S10304 a process of “compare the reference FP with the extracted peak data feature file” is executed, the reference FP is compared with the peak data feature file, and the process proceeds to step S10305.
  • step S10305 the processing of “output the retention time and peak data of the peak existing only in the reference FP” is executed, the peak of the peak data feature file is removed from the reference FP, and the process proceeds to step S10306. .
  • step S10306 a determination process of “Processing completed with all reference FPs?” Is executed.
  • S10007 is finished, and when the process is not finished with all the reference FPs (NO), S10301 to S10305 are repeated.
  • a plurality of reference FPs are processed in order, and the peak of the peak data feature file is removed from each reference FP, and the file of the reference FP type 2 (see the target and reference FP type 2 data example 201 shown in FIG. 125). Is created.
  • FIG. 115 is a flowchart showing details of the “feature value processing of reference FP_type2 by area division” in step S10008 of FIG.
  • step S10401 the processing of “setting the FP space area division condition” is executed.
  • a plurality of positions of the first vertical and horizontal lines (division lines) are set.
  • a plurality of vertical / horizontal dividing lines (first) 141 and 143 are set as dividing lines in the FP space as shown in FIGS. 76 and 77, for example.
  • the process proceeds to step S10402.
  • step S 10402 the processing of “setting the FP space area division pattern” is executed.
  • the positions of the second and subsequent dividing lines are set for all combinations of the first vertical and horizontal dividing lines, and divided patterns (m ⁇ n) are created.
  • this setting for example, as shown in FIG. 78, a plurality of area division patterns by the vertical and horizontal division lines 141 and 143 are set for the FP space.
  • region division is performed, the process proceeds to step S10403.
  • step S10403 a process of “reading files of reference FP_type2 in order” is executed. With this process, the reference FP type 2 file is read, and the process proceeds to step S10404.
  • step S10404 a process of “calculate total peak data of entire FP space” is executed.
  • the total height of the peaks present in all the lattices 145 divided as shown in FIG. 79 is calculated (FIG. 81), and the process proceeds to step S10405.
  • step S10405 a process of “divide the FP space in order by each division pattern” is executed.
  • the FP space is sequentially divided by the plurality of area division patterns set in S10402, and the process proceeds to step S10406.
  • step S10406 the processing of “calculate the existence ratio of peak data in the divided area” is executed.
  • the calculation results are as shown in FIGS. 83 to 85, for example.
  • the process proceeds to step S10408.
  • step S10408 the process of “end division with all division patterns” is executed. In this processing, it is determined whether or not the feature amount processing for the plurality of all region division patterns set in S10402 is completed. If the feature amount process is completed (YES), the process proceeds to step S10409. If the feature value process is not completed (NO), the process proceeds to step S10405. Steps S10405 to S10408 are repeated until the feature amount processing for the entire area division pattern is completed.
  • step S10409 a determination process of “processing complete with all reference FP_type2?” Is executed. In this process, it is determined whether or not the feature amount process has been completed for all of the plurality of reference FP types 2 created for each of the plurality of reference FPs. If all the reference FP types 2 are finished (YES), S10008 is finished. If all the reference FP types 2 are not finished (NO), the process proceeds to step S10403. Steps S10403 to S10409 are repeated until the feature amount processing in the reference FP type 2 is completed.
  • FIG. 128 shows a reference type 2 group FP example 207.
  • S10009 Reference data creation processing
  • FIG. 116 is a flowchart showing details of the “reference data creation process” in step S10009 of FIG.
  • step S10501 a process of “reading an area division feature file” is executed.
  • the reference FP region division feature value file (see the reference type 2 group FP example 207 shown in FIG. 128) is read, and the process proceeds to step S10502.
  • step S10502 a process of “calculate the number of division patterns when the area is divided” is executed.
  • the number of division patterns for area division is calculated.
  • the number of division patterns is calculated as 100, for example, as described with reference to FIGS. After this calculation, the process proceeds to step S10503.
  • step S10503 a process of “reading the reference group FP” is executed, the reference group FP is read, and the process proceeds to step S10504.
  • step S10504 a process of “creating a file (reference group FP2) in which each row of the reference group FP is duplicated by the number of division patterns” is executed.
  • the rows of the reference group FP are duplicated according to the number of division patterns to create the reference group FP2.
  • the file example 197 of the reference group FP in FIG. 123 is duplicated so as to correspond to the peak data feature amount (reference group FP2) in the reference group integrated data example 209 in FIG. After this duplication, the process proceeds to step S10505.
  • step S10505 a process of “integrating the reference group FP2 and the area division feature file for each line” is executed.
  • the data of the reference group FP2 and the data of the area division feature amount file copied in S10504 are integrated for each row, and the process proceeds to step S10506.
  • step S10506 a process of “output integrated data” is executed.
  • a reference FP feature value integration file (see reference group integration data example 209 in FIG. 129) based on the integration result is output.
  • a step 165, a reference FP region division feature value creation step 167, a reference FP feature value integration step 169, and an evaluation step 171 are provided.
  • the FP creation step 148 includes the target FP creation step 173 and a reference FP creation step 175.
  • the target FP peak attribution step 149 includes the reference FP selection step 177, a peak pattern creation step 179, and a peak attribution step 181.
  • a target FP peak feature value that has been characterized based on the target FP 43 and a plurality of reference FPs is created, and a target FP type 2 is created as a residual peak of the target FP 43 that has been leaked from this feature quantification, and this target FP type 2 Is divided into a plurality of regions, the target FP region segmentation feature amount is created from the existence rate of the peak existing in each region, and the target FP peak feature amount and the target FP region segmentation feature amount are integrated to create the target FP integrated feature amount
  • the target FP integrated feature quantity and the reference FP integrated feature quantity based on a plurality of reference FPs of multi-component substances corresponding to the target FP integrated feature quantity, It is possible to evaluate including the peak of the target peak that has not been made, and it is possible to reliably improve the quality evaluation accuracy of the evaluation target drug.
  • the target FP 43 created in the target FP creation step 173 is composed of three-dimensional information (peak, retention time, and UV spectrum) as in the 3D chromatography 41. Therefore, it is data that inherits information specific to the drug as it is. Nevertheless, since the data volume is compressed to about 1/70, the amount of information to be processed can be greatly reduced and the processing speed can be increased compared to the 3D chromatogram 41.
  • the target FP creation step 173 creates an FP that combines a plurality of FPs with different detection wavelengths. Thereby, even if it is a multi-component medicine in which components that cannot detect all components at one wavelength are combined, quality evaluation including all components can be performed by synthesizing FPs having a plurality of detection wavelengths. .
  • Target FP creation step 173 creates an FP that includes all peaks detected by 3D chromatography. For this reason, it is suitable for the quality evaluation of the Chinese medicine which is a multi-component medicine.
  • the reference FP suitable for the attribution of the target FP is compared with the retention / time / occurrence pattern between the FPs, and the reference FP having a good pattern matching degree is selected.
  • the peak attribution step 181 attribution processing can be performed between FPs having similar patterns, so that attribution with high accuracy is possible.
  • a peak pattern is comprehensively created using a plurality of peripheral peaks for each of the attribution target peak and the attribution candidate peak. As a result, even if the pattern of the entire FP is slightly different between the target FP and the reference FP, high-accuracy attribution is possible in the peak attribution step 181.
  • the peak to be assigned is specified by taking into account the degree of coincidence of the UV spectrum of the attribution target peak and the attribution candidate peak in addition to the degree of coincidence of the peak pattern created in the peak pattern creation step 179. ing. Therefore, attribution with high accuracy is possible.
  • the peak assignment step 181 all the peaks of the target FP are assigned all at once to the peaks of the reference FP. Therefore, efficient attribution processing is possible.
  • FPs composed of multicomponents that are multidimensional data are aggregated in one dimension as MD values by the MT method, and a plurality of evaluation target lots are easily compared and evaluated. For this reason, it is suitable for the evaluation of multi-component drugs composed of a plurality of components.
  • the region is divided by a plurality of vertical division lines 141 parallel to the signal intensity axis and a plurality of horizontal division lines 143 parallel to the time axis.
  • the plurality of horizontal dividing lines 143 were set at equal ratio intervals in the direction in which the signal intensity increases.
  • the region can be subdivided at a portion where the peak density is high, and the peak existence rate can be calculated efficiently by dividing the region.
  • the multi-component substance evaluation method further includes the reference FP creation step 175, the reference FP peak attribution step 159, the reference FP attribution result integration step 161, the reference FP peak feature creation step 163, and the reference FP type 2 creation step. 165, a reference FP region division feature value creation step 167, and a reference FP feature value integration step 169.
  • a reference FP integrated feature value obtained by integrating the reference FP peak feature value and the reference FP region segmentation feature value can be created and compared with the target FP integrated feature value which is the evaluation step 171, and the quality evaluation of the evaluation target drug Accuracy and efficiency can be further improved.
  • the reference FP region division feature value creation step 167 can change the position of each region and create a reference FP region division feature value before and after the change.
  • the retention time and peak height fluctuate due to slight variations in analysis conditions, and even if the value in each grid 145 fluctuates greatly in a single pattern, regardless of this fluctuation, The abundance of the peak can be captured, and the accuracy and efficiency of the quality evaluation of the evaluation target drug can be further improved.
  • the region is divided by a plurality of vertical division lines 141 parallel to the signal intensity axis and a plurality of horizontal division lines 143 parallel to the time axis.
  • the plurality of horizontal dividing lines 143 were set at equal ratio intervals in the direction in which the signal intensity increases.
  • the region can be subdivided at a portion where the peak density is high, and the peak existence rate can be calculated efficiently by dividing the region.
  • each region 145 is changed by changing the position so that the vertical and horizontal division lines 141 and 143 are translated within the set range.
  • the evaluation program for a multi-component drug according to the embodiment of the present invention can realize each function on a computer and improve the accuracy and efficiency of the evaluation.
  • the evaluation apparatus for a multi-component drug causes each part 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 to act to improve the accuracy and efficiency of the evaluation. Can be improved.
  • P_Sim Modification of Peak Pattern Matching Calculation
  • the peak pattern coincidence calculation (P_Sim) in FIG. 63, FIG. 64, and FIG. 105 is applied to the case of the above embodiment in which the FP is created at the peak height, and based on the difference in the peak heights to be compared. Calculated.
  • the signal intensity (height) maximum value and the signal intensity area value ( Any of the cases where the peak area is expressed in terms of height can be included.
  • the FP when the FP is created with the peak area, the FP is created by expressing the area value with the height, and therefore, the FP has the same expression as that when creating with the peak height in the above-described embodiment. For this reason, it can evaluate similarly by the process of the said Example similar to the case where FP is created by peak height.
  • FIG. 130 is a flowchart showing details of a modification example of “subroutine 2” in “target FP attribution process 2” in FIG. 99, according to a modification example of subroutine 2 applied instead of FIG. The degree of coincidence of the UV spectra is calculated by the processing according to this modification.
  • DNS slope information
  • steps S2001 to S2008 are substantially the same as subroutine 2 of FIG.
  • the initial setting of the section 1 ⁇ w1 and the section 2 ⁇ w2 is additionally performed and used for a section for calculating a moving average and a moving slope, which will be described later.
  • steps S2010 to S2013 are added for DNS addition, and the degree of coincidence can be calculated in consideration of DNS in step S2009A.
  • step S2010 a determination process of “Does DNS take into account?” Is executed, and when it is determined that DNS is taken into account (YES), the process proceeds to step S2011, and when it is determined that DNS is not taken into account (NO). The process proceeds to step S2009A.
  • the cause of whether or not DNS is taken into account is, for example, the initial setting. For example, when FP is created with a peak area, DNS is added, and when FP is created with a peak height, DNS is not taken into account.
  • the UV pattern coincidence can be calculated by the processing that takes the DNS into account, and even when the FP is created with the peak area, the DNS is not taken into account.
  • the UV pattern matching degree can be calculated by the processing of the above embodiment.
  • step S2011 the process of “calculate moving average of x and y in section 1 (w1)” is executed, and the moving average in section 1 (w1) is obtained.
  • step S2012 the processing of “calculate moving slope of x and y in section 2 (w2)” is executed, and the moving slope in section 2 (w2) is obtained.
  • step S2013 a process of “calculate the number of mismatched signs of the x and y movement slopes (DNS)” is executed, and the number of coincidence of slopes ( ⁇ ) is calculated from the movement slope calculated in step S2012.
  • DAS x and y movement slopes
  • the number of coincidence of slopes
  • step S2013 When the process proceeds from step S2013 to step S2009A, the degree of coincidence is calculated in consideration of DNS in the process of step S2009A.
  • step S2010 to step S2009A Note that the processing in the case of shifting from step S2010 to step S2009A is the same as step S2009 in FIG.
  • FIG. 131 is a chart showing a calculation example of a moving average and a moving slope.
  • UV intensity 131 shows an example of UV data
  • the middle shows an example of moving average calculation
  • the lower shows an example of calculation of moving slope.
  • the UV intensity is expressed as a1 to a7 instead of specific numerical values.
  • the UV intensity at 220 nm is a1
  • the UV intensity at 221 nm is a2.
  • the moving average calculation example and the moving inclination calculation example also use UV intensities a1 to a7 instead of specific numerical values.
  • the moving slope is also the section 2 (3) as an example, and in step S2013 (FIG. 130), the values calculated for the sections (m1, m2, m3), sections (m2, m3, m4),. ⁇ ⁇ Is calculated.
  • the moving average difference m3 ⁇ m1 is the moving slope, and the ( ⁇ ) is taken out.
  • the UV pattern matching degree can be calculated by the process including DNS in the attribution process to the reference group FP and the standard FP attribution result integration process. With this calculation, even if the distance (dis) between the two corresponding points shown in FIG. 66 is larger than the FP created at the peak height, it is easy to handle and the UV pattern matching degree can be calculated accurately. it can. [Others]
  • the signal intensity axis is applied as an area value axis, and the signal intensity is applied as an area value. be able to.
  • the examples of the present invention are applied to the evaluation of Chinese medicine as a multi-component drug, but can also be applied to the evaluation of other multi-component substances.
  • the region division feature amount is created for the target FP type 2 or the reference FP type 2, but it is also possible to create the region division feature amount for the target FP and the reference FP.
  • the method includes a target pattern region dividing feature amount creating step of creating a pattern region dividing feature amount from a presence rate or an existing amount of a peak existing in each region by dividing a pattern whose peak changes in time series into a plurality of regions. If present, it can be widely applied.
  • FP of the above-mentioned example is intended for all peaks on 3D chromatography, fine data, for example, FP can be created except for peaks whose peak area is less than 5% on 3D chromatography.
  • the FP of the above example was created based on the peak height, and the evaluations of FIGS. 87 to 91 were obtained. However, the FP was created based on the peak height even when the FP was created based on the peak area.
  • the MD value is obtained by the MT method in the same procedure as in the example, and the evaluation can be obtained in the same manner as in FIGS.
  • Chromatography is not limited to 3D chromatography, and a FP composed of a peak excluding the UV spectrum and its retention time can also be used. In this case, it can be performed in the same manner as in the above embodiment except for the degree of coincidence of UV spectra.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Library & Information Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Epidemiology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 多成分物質の評価の精度及び効率を向上させることを可能とする。 対象FP作成工程173と、対象FPピーク帰属工程149と、対象FPピーク特徴量作成工程151と、対象FPタイプ2作成工程153と、対象FP領域分割特徴量作成工程155と、対象FP特徴量統合工程157と、評価工程171とを備え、対象FPピーク特徴量及び対象FP領域分割特徴量を統合して対象FP統合特徴量を作成し、対象FP統合特徴量とこの対象FP統合特徴量に対応し評価基準となる多成分物質の複数の基準FPに基づく基準FP統合特徴量とを比較評価することを特徴とする。

Description

パターン又はFPの特徴量作成方法、作成プログラム、及び作成装置
 本発明は、パターンの特徴量作成方法、多成分物質、例えば多成分薬剤である漢方薬の品質評価を行うための多成分物質のFPの特徴量作成方法、作成プログラム、及び作成装置に関する。
 多成分物質として、例えば多成分で構成される薬剤(以下、多成分薬剤)である漢方薬などの天然物由来の薬剤がある。これら薬剤の定量的、定性的プロフィールは、使用する原料生薬の、地質学的要因、生態学的要因、収集時期、収集場所、収集年代、生育期の天候等が原因で変化する。
 そのため、これら多成分薬剤などについては、その安全性および有効性を担保するための品質として一定の基準を規定し、その基準に基づいて、国家の監督機関、化学的組織、製造業者等が品質評価を行っている。
 しかしながら、多成分薬剤の品質等の判定基準は、多成分薬剤中のある特徴的な1ないしは数成分を選択して、その含有量などに基づいて設定することが一般的であった。
 例えば、非特許文献1では、多成分薬剤において有効成分の同定ができていない場合、定量分析が可能、水に溶けやすい、熱水中で分解しない、他の成分と化学反応をしない等の物性を持った複数の成分を選択し、化学分析により得られるそれら成分の含有量を評価の基準としている。
 また、多成分薬剤にクロマトグラフィーを適用し、保持時間ごとに紫外可視吸収スペクトルを得て、その中の一部の成分情報から評価の基準を設定することも知られている。
 例えば、特許文献1では、HPLCクロマトグラム・データ中の一部のピークを選択し、バーコード化することによって多成分薬剤を評価している。
 しかしながら、これらの方法は、評価の対象が「特定成分の含有量」又は「特定成分のクロマト・ピーク」に限定されており、多成分薬剤が含有する成分の一部が評価対象になっているに過ぎない。このため、多成分薬剤については、評価の対象外となっている成分が多数存在することから、多成分薬剤の評価方法として精度的に不十分である。
 多成分薬剤の品質を正確に評価するには、全ピーク情報或いは数%の細かい情報を除外した全ピーク情報に近いピーク情報を網羅した評価が必要であり、そのため、多成分薬剤間で全ピーク或いはこれに近い個数のピークを対応させる必要がある。
 ところが、複数のピークを高精度で効率的に対応させることが困難であり、このことが多成分薬剤の高精度で効率的な評価の妨げとなっていた。
 さらに説明すると、同じ製品名の多成分薬剤であっても生薬は天然物であるがために構成成分が僅かに異なる場合がある。このため、同じ品質の薬剤であっても構成成分の含量比率が異なったり、ある薬剤に存在する成分が他の薬剤には存在しないこと(以下、薬剤間誤差)がある。さらに、クロマトにおけるピーク強度やピークの溶出時間には厳密な再現性がない(以下、分析誤差)などの要因もある。これらにより、多成分薬剤間の全ピーク或いはこれに近い個数のピークについて同じ成分に由来するピークに対応させること(以下、ピーク帰属)ができないことが原因となって高精度で効率的な評価の妨げとなっていた。
特開2002-214215号公報
月刊薬事 vol.28, No.3, 67-71 (1986)
 解決しようとする問題点は、既存の評価方法では多成分物質の品質等を高精度で効率的に評価することに限界があった点である。
 本発明は、評価の精度及び効率を向上させることに寄与可能とするために、時系列でピークが変化するパターンを複数の領域に分割し各領域に存在するピークの存在率又は存在量からパターン領域分割特徴量を作成するパターン領域分割特徴量作成工程を備えたことをパターンの特徴量作成方法の特徴とする。
 本発明は、多成分物質のクロマトから検出されたピークとそのリテンション・タイムとで構成されるFPを複数の領域に分割し各領域に存在するピークの存在率又は存在量からFP領域分割特徴量を作成するFP領域分割特徴量作成工程を備えたことをFPの特徴量作成方法の特徴とする。
 本発明は、時系列でピークが変化するパターンを複数の領域に分割し各領域に存在するピークの存在率又は存在量からパターン領域分割特徴量を作成するパターン領域分割特徴量作成機能をコンピュータに実現させることをパターンの特徴量作成プログラムの特徴とする。
 本発明は、多成分物質のクロマトから検出されたピークとそのリテンション・タイムとで構成されるFPを複数の領域に分割し各領域に存在するピークの存在率又は存在量からFP領域分割特徴量を作成するFP領域分割特徴量作成機能を備えたことをFPの特徴量作成プログラムの特徴とする。
 本発明は、時系列でピークが変化するパターンを複数の領域に分割し各領域に存在するピークの存在率又は存在量からパターン領域分割特徴量を作成するパターン領域分割特徴量作成部を備えたことをパターンの特徴量作成装置の特徴とする。本発明は、多成分物質のクロマトから検出されたピークとそのリテンション・タイムとで構成されるFPを複数の領域に分割し各領域に存在するピークの存在率又は存在量からFP領域分割特徴量を作成するFP領域分割特徴量作成部を備えたことをFPの特徴量作成装置の特徴とする。
 本発明のパターン又はFPの特徴量作成方法は、上記構成であるから、パターン又はFPの特徴量を領域分割により簡単に得ることが可能となる。したがって、例えば細かいピークをも捉えて特徴量を作成することができる。
 本発明のパターン又はFPの特徴量作成プログラムは、上記構成であるから、各機能をコンピュータに実現させ、パターン又はFPの特徴量を簡単に得ることが可能となる。本発明のパターン又はFPの特徴量作成装置は、上記構成であるから、各部を作用させ、パターン又はFPの特徴量を簡単に得ることが可能となる。
多成分薬剤の評価装置のブロック図である。(実施例1) 多成分薬剤の評価手順を示すブロック図である。(実施例1) 三次元クロマトグラム・データ(以下、3Dクロマト)から作成したFPの説明図である。(実施例1) (A)は、薬剤A、(B)は、薬剤B、(C)は、薬剤CのFPである。(実施例1) 対象FP及び基準FPのリテンション・タイムを示す図である。(実施例1) 対象FPのリテンション・タイム・出現パターンを示す図である。(実施例1) 基準FPのリテンション・タイム・出現パターンを示す図である。(実施例1) 対象FPと基準FPのリテンション・タイム・出現距離の一致数を示す図である。(実施例1) 対象FPと基準FPのリテンション・タイム・出現パターンの一致度を示す図である。(実施例1) 対象FPの帰属対象ピークを示す図である。(実施例1) 帰属対象ピークを含めたピーク3本によるピーク・パターン図である。(実施例1) 帰属対象ピークを含めたピーク5本によるピーク・パターン図である。(実施例1) 帰属対象ピークの許容幅を示す図である。(実施例1) 帰属対象ピークに対する基準FPの帰属候補ピークを示す図である。(実施例1) 帰属対象ピークと帰属候補ピークのピーク3本によるピーク・パターン図である。(実施例1) 帰属対象ピークと別な帰属候補ピークのピーク3本によるピーク・パターン図である。(実施例1) 帰属対象ピークと別な帰属候補ピークのピーク3本によるピーク・パターン図である。(実施例1)) 帰属対象ピークと別な帰属候補ピークのピーク3本によるピーク・パターン図である。(実施例1) 帰属対象ピークと帰属候補ピークのピーク5本によるピーク・パターン図である。(実施例1) 帰属対象ピークと別な帰属候補ピークのピーク5本によるピーク・パターン図である。(実施例1) 帰属対象ピークと別な帰属候補ピークのピーク5本によるピーク・パターン図である。(実施例1)) 帰属対象ピークと別な帰属候補ピークのピーク5本によるピーク・パターン図である。(実施例1) 帰属対象ピークと帰属候補ピークのピーク・パターン構成候補ピークを示す図である。(実施例1) ピーク・パターン構成候補ピークを4本とした場合の帰属対象ピークの全ピーク・パターン数を示す図である。(実施例1) ピーク・パターン構成候補ピークを4本とした場合の帰属候補ピークの全ピーク・パターン数を示す図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークのピーク・パターンに対する帰属候補ピークのピーク・パターンの網羅的比較の説明図である。(実施例1) 帰属対象ピークと帰属候補ピークのピーク3本によるピーク・パターンの一致度の算出方法を示す図である。(実施例1) 帰属対象ピークと帰属候補ピークのピーク3本によるピーク・パターンの一致度の算出方法を示す図である。(実施例1) 帰属対象ピークと帰属候補ピークのピーク5本によるピーク・パターンの一致度の算出方法を示す図である。(実施例1) 帰属対象ピーク及び帰属候補ピークのUVスペクトルを示す図である。(実施例1) 帰属対象ピークと帰属候補ピークのUVスペクトルの一致度の説明図である。(実施例1) ピーク・パターンとUVスペクトルの両方の比較による帰属候補ピークの一致度計算の説明図である。(実施例1) 対象FPの基準群FPへの帰属を示す説明図である。(実施例1) 対象FPが基準群FPへ帰属された状況を示す図である。(実施例1) 領域分割による数量化を示す説明図である。(実施例1) リテンション・タイム等の変動との関係を示す説明図である。(実施例1) 領域の位置を変更して数量化する説明図である。(実施例1) FPタイプ2のデータを示す図表である。(実施例1) FPタイプ2のパターンを示す説明図である。(実施例1) 縦・横分割線での領域分割による領域ごとの特徴量化を示す説明図である。(実施例1) 縦分割線(1本目)の設定を示す説明図である。(実施例1) 横分割線(1本目)の設定を示す説明図である。(実施例1) 縦・横分割線による領域分割を示す説明図である。(実施例1) 特徴量化する領域の数を示す説明図である。(実施例1) 領域1の特定を示す説明図である。(実施例1) 全ピークの高さ及び合計を示す図表である。(実施例1) 領域1のピーク高さの合計を示す説明図である。(実施例1) 全領域の特徴量を示す図表である。(実施例1) 縦1本目の位置を順次変更してできた各領域での特徴量を示す図表である。(実施例1) 横1本目の位置を順次変更してできた各領域での特徴量を示す図表である。(実施例1) 各縦・横分割線の位置を変更しない1通りでの特徴量を示す図表である。(実施例1) 各種対象FPとその評価値(MD値)を示す図である。(実施例1) 各種対象FPとその評価値(MD値)を示す図である。(実施例1) 各種対象FPとその評価値(MD値)を示す図である。(実施例1) 各種対象FPとその評価値(MD値)を示す図である。(実施例1) 各種対象FPとその評価値(MD値)を示す図である。(実施例1) 多成分薬剤の評価方法を示す工程図である。(実施例1) 多成分薬剤の品質評価フロー図である。(実施例1) 多成分薬剤の品質評価フロー図である。(実施例1) 単波長によるFP作成機能におけるデータ処理フローチャートである。(実施例1) 複数波長によるFP作成機能におけるデータ処理フローチャートである。(実施例1) 複数波長によるFP作成機能におけるデータ処理フローチャートである。(実施例1) ピーク帰属処理1(基準FPの選定)におけるデータ処理フローチャートである。(実施例1) ピーク帰属処理2(帰属スコアの算出)におけるデータ処理フローチャートである。(実施例1) ピーク帰属処理3(対応ピークの特定)におけるデータ処理フローチャートである。(実施例1) ピーク帰属処理4(基準群FPへの帰属)におけるデータ処理フローチャートである。(実施例1) ピーク帰属処理4(基準群FPへの帰属)におけるデータ処理フローチャートである。(実施例1) ピーク帰属処理1(基準FPの選定)におけるリテンション・タイム・出現パターンの一致度計算処理のフローチャートである。(実施例1) ピーク帰属処理2(帰属スコアの算出)におけるUVスペクトルの一致度計算処理のフローチャートである。(実施例1) ピーク帰属処理2(帰属スコアの算出)におけるピーク・パターンの一致度計算処理のフローチャートである。(実施例1) 「FP_type2作成」の詳細を示すフローチャートである。(実施例1) 「領域分割による対象FP_type2の特徴量化処理」の詳細を示すフローチャートである。(実施例1) 「対象FPのピーク特徴量と領域分割特徴量の統合」の詳細を示すフローチャートである。(実施例1) 基準FP特徴量統合ファイルを作成するためのフローチャートである。(実施例1) 基準FP特徴量統合ファイルを作成するためのフローチャートである。(実施例1) 「基準FP帰属結果統合処理(基準FP対応表の作成)」の詳細を示すフローチャートである。(実施例1) 「基準FP帰属結果統合処理(基準FP対応表の作成)」の詳細を示すフローチャートである。(実施例1) 「ピーク特徴量化処理(基準群FPの作成)」の詳細を示すフローチャートである。(実施例1) 「基準FP_type2の作成処理」の詳細を示すフローチャートである。(実施例1) 「領域分割による基準FPの特徴量化処理」の詳細を示すフローチャートである。(実施例1) 基準FPの特徴量統合処理に係るフローチャートである。(実施例1) 3Dクロマトのデータ例を示す図表である。(実施例1) ピーク情報のデータ例を示す図表である。(実施例1) FPのデータ例を示す図表である。(実施例1) 対象FPの基準FPへの帰属スコア計算結果(判定結果ファイル例)を示す図表である。(実施例1) 対象FPと基準FPで対応するピークの照合過程を示す図表である。(実施例1) 対象FPと基準FPで対応するピークを特定した結果(照合結果ファイル)例を示す図表である。(実施例1) 基準群FPのデータ例を示す図表である。(実施例1) 対象FPピーク特徴量ファイル例を示す図表である。(実施例1) 対象及び基準FPタイプ2のデータ例を示す図表である。(実施例1) 対象FP領域分割特徴量ファイル例を示す図表である。(実施例1) 対象FP統合特徴量ファイル例を示す図表である。(実施例1) 基準type2群FP例を示す図表である。(実施例1) 基準群統合データ例を示す図表である。(実施例1) 図104に代えて適用するサブルーチン2の変形例の詳細を示すフローチャートである。(実施例1) 移動平均及び移動傾きの計算例を示す図表である。(実施例1)
 評価の精度及び効率を向上させることに寄与可能にするという目的を、多成分物質のクロマトから検出されたピークとそのリテンション・タイムとで構成されるFPを複数の領域に分割し各領域に存在するピークの存在率又は存在量からFP領域分割特徴量を作成することにより実現した。
 本発明の実施例1は、多成分物質、例えば多成分薬剤を評価する多成分薬剤の評価方法、評価プログラム、パターンであるFPの特徴量作成方法、作成プログラム、作成装置である。
 多成分薬剤は、複数の有効化学成分を含有する薬剤と定義され、限定はされないが、生薬、生薬の組合せ、それらの抽出物、漢方薬等が含まれる。また剤形も特に限定されず、例えば、第15改正日本薬局方の製剤総則で規定されている液剤、エキス剤、カプセル剤、顆粒剤、丸剤、懸濁剤・乳剤、散剤、酒精剤、錠剤、浸剤・煎剤、チンキ剤、トローチ剤、芳香水剤、流エキス剤等が含まれる。多成分物質としては、薬剤以外のものも含まれる。
 漢方薬の具体例は、医療用漢方製剤148処方「使用上の注意」の業界統一と自主改訂、一般用漢方処方の手引き(1978年)に記載されている。
 多成分薬剤の評価では、評価対象薬剤が正常品と定めた複数の薬剤と同等であるかどうかを評価するため、まず、評価対象薬剤の三次元クロマトグラム・データ(以下、3Dクロマト)からその薬剤特有の情報を抽出した対象FPを作成する。
 次に、対象FPの各ピークを、全基準FPをピーク帰属処理し作成した全基準FPのピーク対応データ(以下、基準群FP)に帰属し、ピーク特徴量を得る。
 さらに、対象FPから帰属されたピークを除き、残ったピークでFPタイプ2を作成し、このFPタイプ2を領域分割し領域分割特徴量を得る。
 これら2つの特徴量を統合し、対象FP統合特徴量を得る。
 この対象FP統合特徴量と全基準FPから得た基準FP統合特徴量により、基準群FPと対象FPの同等性をMT法で評価する。最後に、得られた評価値(以下、MD値)と予め設定しておいた判定値(MD値の上限値)を比較し、評価対象薬剤が正常品と同等であるかどうかを判定する。 
[多成分薬剤の評価装置]
 図1は、多成分薬剤の評価装置のブロック図、図2は、多成分薬剤の評価手順を示すブロック図、図3は、3Dクロマトから作成したFPの説明図、図4(A)は、薬剤A、(B)は、薬剤B、(C)は、薬剤CのFPである。
 図1のように、多成分薬剤の評価装置1は、FP作成部3と、対象FPピーク帰属部5と、対象FPピーク特徴量作成部7と、対象FPタイプ2作成部9と、対象FP領域分割特徴量作成部11と、対象FP特徴量統合部13と、基準FPピーク帰属部15と、基準FP帰属結果統合部17と、基準FPピーク特徴量作成部19と、基準FPタイプ2作成部21と、基準FP領域分割特徴量作成部23と、基準FP特徴量統合部25と、評価部27とを備えている。多成分薬剤の評価装置1は、パターンであるFPの特徴量作成装置を含む。
 FP作成部3は、対象FP作成部29と、基準FP作成部31とを備えている。
 対象FPピーク帰属部5は、基準FP選定部33と、ピーク・パターン作成部35と、ピーク帰属部37とを備えている。
 この多成分薬剤の評価装置1は、例えば、一つのコンピュータで構成され、図示はしないが、CPU、ROM、RAMなどを備えている。多成分薬剤の評価装置1は、コンピュータにインストールされたパターンの特徴量作成プログラムとしてFPの特徴量作成プログラムを実現させ、FPの特徴量を得ることができる。但し、FPの特徴量作成プログラムは、これを記録したFPの特徴量作成プログラム記録媒体を用い、コンピュータで構成された多成分薬剤の評価装置1にこれを読み取らせることで、FPの特徴量を得ることを実現させることもできる。
 多成分薬剤の評価装置1は、各部をそれぞれ別々のコンピュータで構成することができ、例えば対象FPピーク帰属部5と、対象FPピーク特徴量作成部7と、対象FPタイプ2作成部9と、対象FP領域分割特徴量作成部11と、対象FP特徴量統合部13と、評価部27とを一つのコンピュータで構成し、基準FP作成部31と、基準FPピーク帰属部15と、基準FP帰属結果統合部17と、基準FPピーク特徴量作成部19と、基準FPタイプ2作成部21と、基準FP領域分割特徴量作成部23と、基準FP特徴量統合部25を他のコンピュータで構成することなどもできる。
 この場合、基準FP統合特徴量は、他のコンピュータで作成し、評価装置1の評価部27に入力されることになる。
 そして、対象FP作成部29と、対象FPピーク帰属部5と、対象FPピーク特徴量作成部7と、対象FPタイプ2作成部9と、対象FP領域分割特徴量作成部11と、対象FP特徴量統合部13とにより対象FP統合特徴量が作成され、基準FP作成部31と、基準FPピーク帰属部15と、基準FP帰属結果統合部17と、基準FPピーク特徴量作成部19と、基準FPタイプ2作成部21と、基準FP領域分割特徴量作成部23と、基準FP特徴量統合部25とにより基準FP統合特徴量が作成され、これらが比較評価されて対象FP43と基準群FP45との同等性を評価する。
 FP作成部3の対象FP作成部29は、例えば、図2、図3のように、漢方薬39のクロマトとして三次元クロマトグラム・データである3Dクロマト41から、特定の検出波長における複数のピークとそのリテンション・タイムならびにUVスペクトルを抽出した対象FP43(以下単に、「FP43」ということもある。)を作成する機能部である。
 このFP43は、3Dクロマト41と同様に三次元の情報(ピーク、リテンション・タイム及びUVスペクトル)で構成している。
 このため、FP43は、その薬剤特有の情報をそのまま継承したデータである。それにも係らず、データ容量は約1/70に圧縮されているため、3Dクロマト41に比較して、処理すべき情報量を大幅に減少させることができ処理速度を速めることができる。
 3Dクロマト41は、漢方薬39に高速液体クロマトグラフィー(HPLC)を適用した結果である。この3Dクロマト41は、各成分の移動速度として現れ、それを特定時間における移動距離として表し、或いはカラム末端から時系列に現れる様をチャートに表したものである。HPLCにおいては、時間軸に対する検出器応答をプロットしたもので、ピークの出現時間を保持時間(リテンション・タイム)と呼んでいる。
 検出器としては、特に限定されないが、光学的性質を利用した吸光度検出器(Absorbance Detector) が使用され、ピークは、紫外線(UV)の検出波長に応じたシグナル強度として三次元的に得られたものである。光学的性質を利用したものとしては、透過率検出器(Transmittance Detector)を用いることもできる。
 検出波長に限定はなく、好ましくは150nm~900nmの範囲であり、特に好ましくは200nm~400nmの紫外可視吸領域、更に好ましくは200nm~300nmから選ばれた複数の波長である。
 そして、3Dクロマト41は、少なくとも、漢方薬の番号(ロット番号)、リテンション・タイム、検出波長、及びピークをデータとして有するものである。
 なお、3Dクロマト41は、市販の装置によっても得ることができ、かかる市販の装置としては、Agilent1100システム等が挙げられる。また、クロマトグラフィーは、HPLCに限定されず、種々のものを採用することができる。
 3Dクロマト41は、図2、図3のようにx軸をリテンション・タイム、y軸を検出波長、z軸をシグナル強度として表示する。
 FP43は、少なくとも、漢方薬の番号(ロット番号)、リテンション・タイム、特定の波長におけるピーク、及びUVスペクトルをデータとして有するものである。
 FP43は、図2、図3のようにx軸をリテンション・タイム、y軸を特定の検出波長におけるピークとした二次元で表示するが、図3のように1ピークで示すUVスペクトル42と同様なUVスペクトル情報をピークごとに有したデータである。 FP43を作成する特定の検出波長は、特に限定されず種々選択できる。但し、FP43には3Dクロマト中の全てのピークを含めることが情報を継承するという点において重要である。このため、本実施例1では検出波長を3Dクロマト中の全てのピークを含んでいる203nmとした。
 一方、単独の波長では全てのピークを含めることができないことがある。そのような場合は検出波長を複数とし、後述のように複数の波長を組み合わせて全てのピークを含んだFPを作成する。
 本実施例1では、ピークをシグナル強度(ピーク高さ)の極大値としたが、ピークとして面積値を採用することもできる。また、FPにUVスペクトルを含めず、x軸をリテンション・タイム、y軸を特定の検出波長におけるピークとした二次元の情報のみにすることも可能である。この場合は、FPを漢方薬の番号(ロット番号)、リテンション・タイムをデータとして有するクロマトとしての2Dクロマトから作成することもできる。
 図4の(A)は、薬剤A、(B)は、薬剤B、(C)は、薬剤CのFP55、57、59である。
 対象FPピーク帰属部5は、前記対象FPとこの対象FPに対応し評価基準となる多成分物質の基準FPとのピークを比較し対応するピークを特定する機能部である。この対象FPピーク帰属部5は、基準FP選定部33と、ピーク・パターン作成部35と、ピーク帰属部37とからなっている。
 基準FP選定部33は、対象FPのピーク帰属に適した多成分物質のFPを複数の基準FPから選定する機能部である。すなわち、対象FPの各ピークのピーク帰属を高い精度で行うため、図5~図9(後述)のように対象FPと基準FP間でピークのリテンション・タイム・出現パターンの一致度を算出し、この一致度が最小となる基準FPを全基準FPから選定する。
 ピーク・パターン作成部35は、図10~図12(後述)のように対象FP61における帰属の対象となるピーク(以下、帰属対象ピーク)に対し、時間軸方向前後の少なくとも一方に存在するn本のピークを含めた計n+1本のピークで構成されるピーク・パターンを帰属対象ピークのピーク・パターンとして作成する機能部である。nは、自然数である。
 なお、図11(後述)では時間軸方向前後の少なくとも一方に存在する2本のピークを含めた計3本のピークで構成されるピーク・パターンを、図12(後述)では時間軸方向前後の少なくとも一方に存在する4本のピークを含めた計5本のピークで構成されるピーク・パターンを示す。
 また、ピーク・パターン作成部35は、図13~図22(後述)のように基準FP83において帰属対象ピークのリテンション・タイムとの差が設定した範囲(許容幅)内の全てのピーク(以下、帰属候補ピーク)に対し、時間軸方向前後の少なくとも一方に存在するn本のピークを含めた計n+1本のピークで構成されるピーク・パターンを帰属候補ピークのピーク・パターンとして作成する機能部である。なお、図15~図18(後述)では時間軸方向前後の少なくとも一方に存在する2本のピークを含めた計3本のピークで構成されるピーク・パターンを示す。図19~図22(後述)では時間軸方向前後の少なくとも一方に存在する4本のピークを含めた計5本のピークで構成されるピーク・パターンを示す。
 許容幅に限定はなく、精度と効率の点から0.5分~2分が好ましい。実施例1では、1分とした。
 さらに、ピーク・パターン作成部35では、対象FP61と基準FP83のピーク数に違いがある(つまり、どちらか一方に存在しないピークがある)場合に対しても柔軟に対応できるようにする。このため、図23~図61(後述)のように、帰属対象ピークならびに帰属候補ピークの両方でピーク・パターンを構成するピーク(以下、ピーク・パターン構成ピーク)を変化させて網羅的にピーク・パターンを作成する。なお、図23~図61では時間軸方向前後の少なくとも一方に存在する2本のピークを含めた計3本のピークで構成されるピーク・パターンの場合について示す。
 ピーク帰属部37は、対象FP、基準FPそれぞれのピーク・パターンを比較し対応するピークを特定する機能部である。実施例では、帰属対象ピークのピーク・パターンと帰属候補ピークのピーク・パターンとの一致度及びUVスペクトルの一致度を算出して対応するピークを特定する。
 また、この2つの一致度を統合した帰属候補ピークの一致度を算出し、この一致度に基づき、対象FP61の各ピークを基準FP83の各ピークに帰属する機能部である。
 ピーク帰属部37において、ピーク・パターンの一致度は、図62~図64(後述)のように帰属対象ピークと帰属候補ピークのピーク・パターン間の対応するピーク及びリテンション・タイムの差をもとに算出する。また、UVスペクトルの一致度は、図65、図66(後述)のように帰属対象ピーク73のUVスペクトル135と帰属候補ピーク95のUVスペクトル139の各波長における吸光度の差をもとに算出する。さらに、図67(後述)のようにこれら2つの一致度を乗じて帰属候補ピーク95の一致度を算出する。
 対象FPピーク特徴量作成部7は、対象FPピーク帰属部5で特定されて帰属したピークと複数の基準FPである基準群FP45のピークとを比較評価して特徴量化された対象FPピーク特徴量として作成する機能部である。複数の基準FPは、評価基準となる多成分物質である複数の漢方薬に対応して作成されており、この複数の漢方薬は、正常品とされているものである。
 すなわち、対象FPピーク特徴量作成部7は、対象FP61と基準FP83の帰属結果に基づき、最終的に図2、図68、図69(後述)のように対象FP43の各ピークを基準群FP45の各ピークに帰属して特徴量化された対象FPピーク特徴量47を作成する機能部である。
 対象FPタイプ2作成部9は、対象パターンから特徴量化されたピークを除いて残ったピークで構成されるパターンを対象パターン・タイプ2として作成する。例えば、対象FPピーク特徴量作成部7において特定されたピーク47を元の対象FP43から除いて残ったピークとそのリテンション・タイムとで構成されるFPを図2の対象FPタイプ2(49)をパターンとして作成する機能部である。
 この対象FPタイプ2(49)は、対象FPピーク特徴量作成部7において特徴量化されなかったピークを集めてFPとしたものである。この対象FPタイプ2(49)を特徴量化し評価に加えることで、より正確な評価を行わせることができる。
 対象FP領域分割特徴量作成部11は、対象パターン・タイプ2を複数の領域に分割し各領域に存在するピークの存在率から対象パターン領域分割特徴量を作成するFP領域分割特徴量作成部を構成し、対象FPタイプ2(49)を複数の領域に分割し各領域に存在するピークの存在率から対象FP領域分割特徴量を対象パターン領域分割特徴量として作成する機能部である。
 なお、対象FP領域分割特徴量作成部11は、存在率に代えて存在量を用いることもできる。存在率は、後述のように各領域のピーク高さの存在量を全体のピーク高さの合計(つまり全体のピーク高さの存在量)で割った値である。したがって、各領域のピーク高さの存在量そのものを用いて領域分割特徴量を作成する構成にすることもできる。
 この対象FP領域分割特徴量作成部11は、例えば図70(後述)のように、対象FPタイプ2(49)を、シグナル強度軸に平行な複数の縦分割線と時間軸に平行な複数の横分割線とにより格子状の領域に分割し、図2の対象FP領域分割特徴量51を作成する。
 対象FP特徴量統合部13は、対象FPピーク特徴量作成部7で作成された対象FPピーク特徴量47と対象FP領域分割特徴量作成工程11で作成された対象FP領域分割特徴量51とを統合して対象FP統合特徴量を作成する機能部である。
 一方、FP作成部3の基準FP作成部31は、対象FP作成部29と同様にして複数の基準FPを作成する機能部である。例えば、正常品と判定されている複数の漢方薬(基準漢方薬)の三次元クロマトグラム・データである各3Dクロマトから、特定の検出波長における複数のピークとそのリテンション・タイムならびにUVスペクトルを抽出した基準FPを基準漢方薬ごとに作成する。
 基準FPピーク帰属部15も、対象ピーク帰属部5と同様にパターン認識により帰属すべきピークを特定する機能部である。但し、この基準FPピーク帰属部15では、全基準FPを対象とし、選択した組み合わせ且つ順番で帰属スコアを算出することでピークを特定する。
 基準FP帰属結果統合部17は、基準ピーク帰属部15で特定されて帰属したピークを統合して基準ピーク対応表(後述)を作成する機能部である。
 基準FPピーク特徴量作成部19は、基準FP帰属結果統合部17で作成された基準ピーク対応表に基づき前記複数の基準FPを特徴量化した基準FPピーク特徴量を作成する機能部である。
 基準FPタイプ2作成部21は、対象FPタイプ2作成部9と同様に機能し、複数の各基準FPから前記特徴量化されたピークを除いて残ったピークとそのリテンション・タイムとで構成されるFPを基準FPタイプ2をパターンとして作成する機能部である。
 基準FP領域分割特徴量作成部23は、対象FP領域分割特徴量作成部11と同様に機能し、FP領域分割特徴量作成部として基準FPタイプ2を複数の領域に分割し各領域に存在するピークの存在率から基準FP領域分割特徴量を作成する機能部である。
 但し、基準FP領域分割特徴量作成部23では、分割された各領域の位置を変更し変更前後で基準FP領域分割特徴量を作成する。すなわち、各縦・横分割線を設定範囲内で平行移動させるように位置を変更設定することで前記各領域の位置を変更する。
 基準FP特徴量統合部25は、対象FP特徴量統合部13と同様に機能し、基準FPピーク特徴量と基準FP領域分割特徴量とを統合して基準FP統合特徴量を作成する機能部である。
 評価部27は、対象パターン統合特徴量とこの対象パターン統合特徴量に対応し評価基準となる複数の基準パターンに基づく基準パターン統合特徴量とを比較評価する。すなわち、評価部27は、対象パターン統合特徴量としての対象FP統合特徴量と基準パターン統合特徴量としての基準FP統合特徴量とを比較評価する機能部である。実施例では、MT法で対象FP統合特徴量と基準FP統合特徴量との同等性を評価する。
 MT法は、品質工学で一般に知られている計算手法を意味する。例えば、「品質工学の数理」日本規格協会発行(2000)第136-138頁、品質工学応用講座「化学・薬学・生物学の技術開発」日本規格協会編(1999)第454-456頁及び品質工学 11(5),78-84(2003)、入門 MTシステム(2008)に記載がある。
 また一般に市販されているMT法プログラムソフトも使用できる。市販のMT法プログラムソフトとしては、アングルトライ(株)のATMTS; (財)日本規格協会のTM-ANOVA;(株)オーケンのMT法 for windows等が挙げられる。
 評価部27は、対象FP43のうち、漢方薬のロット番号と、リテンション・タイム又はUV検出波長の一方とに対して、MT法における変数軸を割り振り、ピークをMT法における特徴量とする。
 変数軸の割り振りには特に限定はないが、MT法におけるいわゆる項目軸にリテンション・タイムを割り振り、いわゆる番号列軸に多成分系薬剤の番号を割り振り、MT法におけるいわゆる特徴量にピークを割り振ることが好ましい。
 ここで、上記項目軸と番号列軸は、以下のように定義される。すなわちMT法においては、データセットXijについて、平均値mjと標準偏差σjを求め、Xijを規準化した値であるxij=(Xij-mj)/σjから、iとjの相関係数rを求めて、単位空間やマハラノビスの距離を得る。この時、「平均値mjと標準偏差σjは、項目軸の値ごとに、番号列軸の値を変化させて求める」というように項目軸と番号列軸とは定義される。
 軸が割り振られたデータと特徴量とから、MT法を用いて、基準点と単位量(以下、「単位空間」と略記することがある)を得る。ここで、基準点、単位量及び単位空間は、上記MT法の文献の記載に従い定義される。
 MT法により、評価すべき薬剤の単位空間との相違の程度を表す値としてMD値を得る。ここでMD値は、MT法の文献の説明と同様に定義され、またMD値は、文献に記載の方法で求められる。
 このようにして得られたMD値を用いて、評価すべき薬剤は、正常品として定めた複数の薬剤からの相違の程度を判定し評価することができる。
 例えば、図87~図91の各対象FPを前記のように帰属処理することで、上記MT法によりMD値(MD値:0.26、2.20等)を求めることができる。
 このMD値を正常品のMD値に対して評価する場合、正常品と定めた複数の薬剤で同様にMD値を求める。この正常品のMD値から閾値を設定し、図2の評価部27の評価結果53に示すように評価対象薬剤のMD値をプロットし、正常品か非正常品かの判定を行うことができる。図2の評価部27の評価結果53では、例えばMD値10以下を正常品としている。
 なお、評価部27は、対象FP統合特徴量と基準FP統合特徴量との同等性を比較評価できれば良いため、MT法以外のパターン認識手法等を適用することも可能である。
[ピーク・パターン処理の動作原理]
 図5~図69は、前記基準FP選定部33、ピーク・パターン作成部35、ピーク帰属部37、及び対象FPピーク特徴量作成部7の動作原理を説明するものである。
 図5~図9は、基準FP選定部33に係る対象FPと基準FPとのリテンション・タイム・出現パターンの一致度について説明した図である。図5は、対象FP及び基準FPのリテンション・タイムを示す図、図6は、対象FPのリテンション・タイム・出現パターンを示す図、図7は、基準FPのリテンション・タイム・出現パターンを示す図である。図8は、対象FPと基準FPのリテンション・タイム・出現距離の一致数を示す図、図9は、対象FPと基準FPのリテンション・タイム・出現パターンの一致度を示す図である。
 図5では、対象FP61及び基準FP83それぞれのリテンション・タイムを示す。図6、図7では、対象FP61及び基準FP83それぞれのリテンション・タイムから全てのリテンション・タイム間距離を算出し、それら距離を表形式にまとめたリテンション・タイム・出現パターンを示す。図8では、これらの出現パターンからリテンション・タイム・出現距離の一致数を算出し、それら一致数を表形式にまとめたリテンション・タイム・出現距離の一致数を示す。図9では、この一致数をもとにリテンション・タイム・出現パターンの一致度を算出し、それら一致度を表形式にまとめたリテンション・タイム・出現パターンの一致度を示す。
 図10~図12は、ピーク・パターン作成部35に係る帰属対象ピークとその周辺ピークで作成したピーク・パターンについて説明した図である。図10は、対象FPの帰属対象ピークを示す図、図11は、周辺ピーク2本を含めたピーク3本で作成したピーク・パターンについて、図12は、周辺ピーク4本を含めたピーク5本で作成したピーク・パターンについて説明した図である。
 図13、図14は、ピーク・パターン作成部35に係る帰属対象ピークと帰属候補ピークの関係について説明し、図13は、帰属対象ピークの許容幅を示す図、図14は、帰属対象ピークに対する基準FPの帰属候補ピークを示す図である。
 図15~図18は、ピーク・パターン作成部35に係るピーク3本で作成した帰属対象ピーク及び帰属候補ピークのピーク・パターン例である。図15は、帰属対象ピークと帰属候補ピークのピーク3本によるピーク・パターン図、図16は、帰属対象ピークと別な帰属候補ピークのピーク3本によるピーク・パターン図、図17は、帰属対象ピークと別な帰属候補ピークのピーク3本によるピーク・パターン図、図18は、帰属対象ピークと別な帰属候補ピークのピーク3本によるピーク・パターン図である。
 図19~図22は、ピーク・パターン作成部35に係るピーク5本で作成した帰属対象ピーク及び帰属候補ピークのピーク・パターン図である。
 図23~図61は、ピーク・パターン作成部35に係る帰属対象ピーク及び帰属候補ピークのピーク・パターンを網羅的に作成し、比較する網羅的比較の原理を説明した図である。 
 図62、図63は、ピーク帰属部37に係るピーク3本で作成したピーク・パターンの一致度の算出方法について説明した図である。
 図64は、ピーク帰属部37に係るピーク5本で作成したピーク・パターンの一致度の算出方法について説明した図である。
 図65は、ピーク帰属部37に係る帰属対象ピーク73及び帰属候補ピーク95のUVスペクトル135及び139を示した図である。
 図66は、ピーク帰属部37に係る帰属対象ピーク73のUVスペクトル135と帰属候補ピーク95のUVスペクトル139の一致度について説明した図である。
 図67は、ピーク帰属部37に係る帰属対象ピーク73と帰属候補ピーク95のピーク・パターンの一致度とUVスペクトルの一致度から算出する帰属候補ピークの一致度について説明した図である。
 図68は、ピーク帰属部37に係る対象FP43における各ピークの基準群FP45への帰属を説明した図である。
 図69は、ピーク帰属部37に係る対象FP43の各ピークが基準群FP45に帰属された状況を示す対象FPピーク特徴量47を説明した図である。
 (基準FPの選定)
 前記基準FP選定部33の機能を、図5~図9を用いてさらに説明する。
 図5は、対象FP及び基準FPのリテンション・タイムを示す図、図6は、対象FPのリテンション・タイム・出現パターンを示す図、図7は、基準FPのリテンション・タイム・出現パターンを示す図である。図8は、対象FPと基準FPのリテンション・タイム・出現距離の一致数を示す図、図9は、対象FPと基準FPのリテンション・タイム・出現パターンの一致度を示す図である。
 図5では、対象FP61及び基準FP83それぞれのリテンション・タイムを示す。図6、図7では、対象FP61及び基準FP83それぞれのリテンション・タイムから全てのリテンション・タイム間距離を算出し、それら距離を表形式にまとめたリテンション・タイム・出現パターンを示す。図8では、これらの出現パターンからリテンション・タイム・出現距離の一致数を算出し、それら一致数を表形式にまとめたリテンション・タイム・出現距離の一致数を示す。図9では、この一致数をもとにリテンション・タイム・出現パターンの一致度を算出し、それら一致度を表形式にまとめたリテンション・タイム・出現パターンの一致度を示す。
 対象FP61のピーク帰属処理において、対象FP61とできるだけFPパターンが類似した基準FPで対象FP61の各ピークを帰属する。この対象FP61に類似した基準FPを複数の基準FPから選定することが精度の高い帰属を行う上で重要なポイントである。
 そこで、対象FP61のFPパターンとの類似性を客観的かつ簡易的に評価する方法として、リテンション・タイム・出現パターンの一致度によりFPパターンの類似性を評価する。
 例えば、対象FP61及び基準FP83のリテンション・タイムが図5のような場合、対象FP61及び基準FP83それぞれのリテンション・タイム・出現パターンは、図6、図7のようになる。図6、図7では、上段の対象FP61及び基準FP83に対し、下段の図表のように、各セルの値がリテンション・タイム間距離で構成された表形式のパターンとして作成している。
 図6において、対象FP61の各ピーク(63、65、67、69、71、73、75、77、79、81)のリテンション・タイムは、(10.2)、(10.5)、(10.8)、(11.1)、(11.6)、(12.1)、(12.8)、(13.1)、(13.6)、(14.0)となっている。
 したがって、ピーク63及びピーク65間のリテンション・タイム間距離は、(10.5)-(10.2)=(0.3)となる。同様に、ピーク63及びピーク67間は、(0.6)、ピーク65及びピーク67間は、(0.3)などとなる。以下、同様であり、図6の下段図表の対象FP出現パターンとなる。
 図7において、基準FP83の各ピーク(85、87、89、91、93、95、97、99、101、103、105)のリテンション・タイムは、(10.1)、(10.4)、(10.7)、(11.1)、(11.7)、(12.3)、(12.7)、(13.1)、(13.6)、(14.1)、(14.4)となっている。
 したがって、同様にリテンション・タイム間距離は、図7の下段図表の基準FP出現パターンとなる。
 この図6、図7ようにパターン化した各ピークを総当たりで比較し一致数を求める。例えば、図6下段図表の対象FP出現パターンの各セルの値と図7下段図表の基準FP出現パターンの各セルの値とを比較し、図8のように一致数を得る。
 すなわち、対象FP61と基準FP83のリテンション・タイム・出現パターンの全てのリテンション・タイム間距離を行単位で順番に総当たりで比較し、設定した範囲内で距離が一致した数を算出した。
 例えば、図6、図7の対象及び基準FPリテンション・タイム・出現パターンの1行を比較すると、一致数は7個である。この7個の一致数が、図8の対象及び基準FPリテンション・タイム・出現パターンの1行目に書き込まれる。図6、図7中のその他の行についても同様であり、対象FPリテンション・タイム・出現パターンの1行~9行までと、基準FPリテンション・タイム・出現パターンの1行~10行までとを総当たりで比較し、それぞれ一致数が得られる。
 図8に結果を示した。この図8において、丸で囲まれた左端の7の数値は、対象及び基準FPリテンション・タイム・出現パターンの1行目を比較した結果であり、その隣の7の数値は、対象FPリテンション・タイム・出現パターンの1行目と基準FPリテンション・タイム・出現パターンの2行目とを比較した結果である。設定の範囲に限定はなく、好ましくは0.05分~0.2分の範囲である。実施例1は、0.1分とした。
 リテンション・タイム・出現パターンの一致度をRPとすると、対象FP61のf行目のリテンション・タイム・出現パターンと基準FP83のg行目のリテンション・タイム・出現パターンの一致度(RPfg)は、Tanimoto係数を用いて、
 RPfg = {1-(m/(a+b-m))}×(a-m+1)
として算出する。
 なお、式中aは対象FP61のピーク数(対象FPピーク数)、bは基準FP83のピーク数(基準FPピーク数)、mはリテンション・タイム・出現パターンの一致数(出現距離の一致数)である(図8参照)。図8の一致数をもとに前記式により各リテンション・タイム・出現パターンの一致度(RP)を算出した(図9参照)。
 これらRPの最小値であるRP_minを対象FP61と基準FP83とのリテンション・タイム・出現パターンの一致度とする。図9では、(0.50)が対象FP61の基準FPに対する一致度となる。
 この一致度を全ての基準FPについて算出し、最も小さい一致度の基準FPが選定され、この基準FPに対して対象FPのピーク帰属を行わせる。
 基準FP選定部5は、対象FP61及び基準FP83を、ピーク高さ比でパターン化することもできる。
 ピーク高さ比でパターン化した各ピークを総当たりで比較し、設定した範囲内で高さ比が一致した数を算出する。この算出により図8と同様に一致数を得ることができる。
 なお、ピーク高さ比でパターン化する場合は、1行中に、同じような値が複数存在するケースがあり、これらを複数回カウントしないようにしなければならない。 
 一致度は、Tanimoto係数を、「高さ比の一致数/(対象FPピーク数+基準FPピーク数-高さ比の一致数)」とし、(1-Tanimoto係数)が零に近いことで前記一致度を求めることができる。
 また、(1-Tanimoto係数)に、(対象FPピーク数-出現パターン又は高さ比の一致数+1)の重み付けをし、「(1-Tanimoto係数)×(対象FPピーク数-出現パターン又は高さ比の一致数+1」とし、重み付けにより対象FP61のピーク(63、65、・・・)がより多く一致している基準FPを選ぶことができる。
 (ピーク・パターンによる特徴量化)
 前記ピーク・パターン作成部35の機能を、図10~図67を用いてさらに説明する。
 図10のように帰属対象ピーク73を基準FP83のいずれかのピークに帰属するとき、何れのピークに帰属すべきか、ということになる。仮に、このピーク帰属を、ピーク、リテンション・タイム又はUVスペクトルのいずれかの情報のみで行ったとすると、これら3つの情報のいずれもが前記薬剤間誤差と分析誤差に起因する誤差を含んでいるため、単独情報によるピーク帰属の精度には限界がある。
 また、図13、図14のように帰属対象ピーク73と基準FP83の各ピーク間でリテンション・タイムのズレの許容幅を設定し、その許容幅内に存在する基準FP83のピーク(以下、帰属候補ピーク)とUVスペクトル情報の2つの情報によるピーク帰属では、すべての情報を総合して帰属先を判定しているため、上記単独情報によるピーク帰属に比べ精度は向上する。
 しかし、3つの情報を使ったピーク帰属であったとしても、UVスペクトルの特性として、類似成分のUVスペクトルはほとんど同じとなってしまうため、帰属候補ピークに複数の類似成分が含まれている場合は、結局ピーク情報のみでの帰属となってしまい、十分な精度は得られない。そのため、より精度の高いピーク帰属を行うためには、これら3つの情報にプラスする情報が必要である。
 そこで、図11、図12のような周辺ピークの情報を含めたピーク・パターンを作成し、このピーク・パターンの比較によってピークを帰属することにした。
 周辺のピークを含めたピーク・パターンとすると、これまでの3つの情報に周辺情報がプラスされ、4つの情報によるピーク帰属が可能となり、より高い帰属精度が得られる。
 その結果として、一度の帰属処理で大量のピークを高精度かつ効率的に一斉帰属することができる。
 さらに、ピーク帰属で使用するデータを周辺情報を含めた4つの情報にすることで、既存のピーク帰属の際に設定する制約条件(ピーク定義など)も必要なくなった。
 図11では、帰属対象ピーク73に対し、時間軸方向の双方に存在するピーク71、75を含めたピーク・パターン115を作成した。
 図12では、帰属対象ピーク73に対し、時間軸方向の双方に存在するピーク69、71、75、77を含めたピーク・パターン125を作成した。
 図13、図14では、帰属対象ピーク73と基準FP83の各ピーク間でリテンション・タイムのズレの許容幅を設定し、その許容幅内に存在する基準FP83のピークを帰属対象ピーク73に対応する候補ピーク(以下、帰属候補ピーク)とした。 
 図15では、帰属対象ピーク73のピーク・パターン115と比較するピーク・パターンとして、帰属候補ピーク93に対し、時間軸方向前後の双方に存在するピーク91、95を含めたピーク・パターン117を作成した。
 図16~図18では、帰属対象ピーク73のピーク・パターン115と比較するピーク・パターンとして、別な帰属候補ピーク95、97、99に対し、それぞれ時間軸方向前後の双方に存在するピークを含めたピーク・パターン119、121、123を作成した。
 このピーク・パターンの比較をより高い精度で行わせるには、図19~図22のように、対象FPならびに基準FPの両方で周辺のピーク数を増加させたピーク・パターンを作成することが肝要である。
 例えば、周辺のピーク4本を含めた計5本のピークによるピーク・パターンの比較にすると、より高い帰属精度が得られる。
 図19では、帰属対象ピーク73のピーク・パターン125と比較するピーク・パターンとして、帰属候補ピーク93に対し、時間軸方向の双方に存在するピーク89、91、95、97を含めたピーク・パターン127を作成した。
 図20~図22では、帰属対象ピーク73のピーク・パターン125と比較するピーク・パターンとして、別な帰属候補ピーク95、97、99に対し、それぞれ時間軸方向前後の双方に存在するピークを含めたピーク・パターン129、131、133を作成した。
 さらに、このピーク・パターンによる帰属をより高い精度で行わせるには、対象FPと基準FPのピーク数に違いがある(つまり、どちらか一方に存在しないピークがある)場合の対応が必要である。そのためには図23~図25のように帰属対象ピークならびに帰属候補ピークの両方でピーク・パターン構成ピークを網羅的に変化させたピーク・パターンを作成することが肝要である。
 具体的には、対象FPの帰属対象ピークの周辺ピークの中から予めピーク・パターン構成ピークの候補となるピーク(以下、ピーク・パターン構成候補ピーク)を設定し、このピーク・パターン構成候補ピークを順番にピーク・パターン構成ピークとしてピーク・パターンを作成する。基準FPの帰属候補ピークについても同様にピーク・パターン構成候補ピークを設定し、このピーク・パターン構成候補ピークを順番にピーク・パターン構成ピークとしてピーク・パターンを作成する。
 例えば、図23のように帰属対象ピーク73のピーク・パターン構成候補ピークとして時間軸方向周辺4本(69、71、75、77)、帰属候補ピーク93のピーク・パターン構成候補ピークとして時間軸方向周辺4本(89、91、95、97)とし、ピーク・パターン構成ピークを任意の2本にそれぞれ設定する。この場合、図24、図25のように帰属対象ピーク73及び帰属候補ピーク93それぞれでピーク・パターンが4C2(=6)パターン作成される。 
 さらに、ピーク・パターン構成候補ピークを10本とし、ピーク・パターン構成ピークを任意の2本に設定すると、帰属対象ピーク及び帰属候補ピークそれぞれで、10C2(=45)パターンのピーク・パターンが作成される。ピーク・パターン構成ピークを任意の4本に設定すると、帰属対象ピーク及び帰属候補ピークそれぞれで、10C4(=210)
パターンのピーク・パターンが作成される。
 前記ピーク帰属部37の機能を、図26~図69を用いてさらに説明する。
 ピーク帰属部37では、ピーク・パターン作成部35で作成した帰属対象ピークと帰属候補ピークの全ピーク・パターン間で、対応するピーク及びリテンション・タイムの差をもとにピーク・パターンの一致度(以下、P_Sim)を算出する。ピーク帰属部37は、P_Simの最小値(以下、P_Sim_min)を帰属対象ピークと帰属候補ピークのピーク・パターンの一致度とする。
 例えば、図26~図61のように帰属対象ピーク73及び帰属候補ピーク93のそれぞれでピーク・パターン構成候補ピークを時間軸方向前後周辺4本とし、ピーク・パターン構成ピークを任意の2本に設定する。この設定では、帰属対象ピーク及び帰属候補ピークそれぞれで、4C2(=6)パターンのピーク・パターンが作成される。したがって、帰属対象ピーク73及び帰属候補ピーク93のP_Simは、6パターン×6パターン(=36)通りで算出され、これらP_Simの最小値であるP_Sim_minを帰属対象ピーク73と帰属候補ピーク93の一致度とする。
 ちなみに、帰属対象ピーク73及び帰属候補ピーク93のそれぞれでピーク・パターン構成候補ピークを時間軸方向前後周辺10本とし、ピーク・パターン構成ピークを任意の2本に設定すると、帰属対象ピーク及び帰属候補ピークそれぞれで、10C2(=45)パターンのピーク・パターンが作成される。したがって、帰属対象ピーク73及び帰属候補ピーク93のP_Simは、45パターン×45パターン(=2025)通りで算出され、これらP_Simの最小値であるP_Sim_minを帰属対象ピーク73と帰属候補ピーク93の一致度とする。また、ピーク・パターン構成ピークを任意の4本に設定すると、帰属対象ピーク及び帰属候補ピークそれぞれで、10C4(=210)パターンのピーク・パターンが作成される。したがって、帰属対象ピーク73及び帰属候補ピーク93のP_Simは、210パターン×210パターン(=44100)通りで算出され、これらP_Simの最小値であるP_Sim_minを帰属対象ピーク73と帰属候補ピーク93の一致度とする。
 このP_Simは、帰属対象ピーク73の全ての帰属候補ピークについて同様に算出する。
 図62、図63で、3本のピークで構成されたピーク・パターンを比較するためのピーク・パターンの一致度の算出方法を説明する。この場合、帰属対象ピーク73のピーク・パターン115と帰属候補ピーク95のピーク・パターン119を例にする。
 帰属対象ピーク73のピーク・パターン115において、帰属対象ピーク73のピーク及びリテンション・タイムをp1及びr1、ピーク・パターン構成ピーク71のピーク及びリテンション・タイムをdn1及びcn1、ピーク・パターン構成ピーク75のピーク及びリテンション・タイムをdn2及びcn2とする。
 帰属候補ピーク95のピーク・パターン119において、帰属候補ピーク95のピーク及びリテンション・タイムをp2及びr2、ピーク・パターン構成ピーク93のピーク及びリテンション・タイムをfn1及びen1、ピーク・パターン構成ピーク97のピーク及びリテンション・タイムをfn2及びen2とする。
 ピーク・パターンの一致度をP_Simとすると、帰属対象ピーク73と帰属候補ピーク95の3本のピークで構成するピーク・パターンの一致度(P_Sim(73-95))は、
 P_Sim(73-95) = (|p1-p2|+1)×(|(r1-(r2+d)|+1)
                +(|dn1-fn1|+1)×(|(cn1-r1)-(en1-r2)|+1)
                +(|dn2-fn2|+1)×(|(cn2-r1)-(en2-r2)|+1)
として算出する。
 なお、式中のdは、リテンション・タイムのずれを補正する値である。
 図64で、5本のピークで構成されたピーク・パターンを比較するためのピーク・パターンの一致度の算出方法を説明する。この場合、帰属対象ピーク73のピーク・パターン125と帰属候補ピーク95のピーク・パターン129を例にする。
 帰属対象ピーク73のピーク・パターン125において、帰属対象ピーク73のピーク及びリテンション・タイムをp1及びr1、ピーク・パターン構成ピーク69、71、75、77のピーク及びリテンション・タイムをそれぞれdn1及びcn1、dn2及びcn2、dn3及びcn3、dn4及びcn4とする。
 帰属候補ピーク95のピーク・パターン129において、帰属候補ピーク95のピーク及びリテンション・タイムをp2及びr2、ピーク・パターン構成ピーク91、93、97、99のピーク及びリテンション・タイムをそれぞれfn1及びen1、fn2及びen2、fn3及びen3、fn4及びen4とする。
 帰属対象ピーク73と帰属候補ピーク95の5本のピークで構成するピーク・パターンの一致度(P_Sim(73-95))は、
 P_Sim(73-95) = (|p1-p2|+1)×(|(r1-(r2+d)|+1)
                +(|dn1-fn1|+1)×(|(cn1-r1)-(en1-r2)|+1)
                +(|dn2-fn2|+1)×(|(cn2-r1)-(en2-r2)|+1)
                +(|dn3-fn3|+1)×(|(cn3-r1)-(en3-r2)|+1)
                +(|dn4-fn4|+1)×(|(cn4-r1)-(en4-r2)|+1)
として算出する。
 なお、式中のdは、リテンション・タイムのずれを補正する値である。
 ピーク帰属部37では、図67、図68のように帰属対象ピークと帰属候補ピークでUVスペクトルの一致度を算出する。
 図65は、帰属対象ピーク73及び帰属候補ピーク95のUVスペクトル(135と139)図であり、図66のようにこれら2つのUVスペクトルの一致度(UV_Sim(73-95))は、
 UV_Sim(73-95)= RMSD(135 vs 139)
として算出する。
 RMSDは、平均二乗偏差のことで、対応する2点の距離(dis)をそれぞれ二乗し、その相加平均の平方根として定義される。つまり、
 RMSD = √{ Σdis/ n }
として算出する。
 nは、disの数である。
 ここで、UVスペクトルの波形は極大波長及び極小波長を含んでおり、この極大波長及び極小波長或いは何れかを比較することで一致度を算出することも可能である。しかし、吸収特性のない化合物あるいは吸収特性が類似した化合物等では、極大波長、極小波長は同じであるが、全体の波形がかなり異なる場合もあり、極大波長、極小波長の比較では、波形の一致度を算出できない恐れがある。
 これに対し、UVスペクトルの波形によりRMSDを利用した場合には、波形全体の比較となるため、UVスペクトルの波形の一致度の算出をより正確に行わせ、吸収特性のない化合物あるいは吸収特性が類似した化合物でも正確に識別できることになる。
 このUVスペクトルの一致度は、帰属対象ピーク73の全ての帰属候補ピークについて同様に算出する。
 さらに、ピーク帰属部37では、図67のように上記2つの一致度を統合した帰属候補ピークの一致度を算出する。
 図67のように帰属候補ピークの一致度(SCORE(73-95))はピーク・パターンとUVスペクトルのそれぞれの一致度を乗じて算出する。ピーク・パターン73、95の一致度を示すスコアが、P_Sim_min(73-95)であり、対応するUV波形データ135、139の一致度を示すスコアが、UV_Sim(73-95)であるとする。このとき、帰属候補ピークの一致度 SCORE(73-95)は、
 SCORE(73-95)
 = P_Sim_min(73-95)×UV_Sim(73-95)
として算出する。
 この帰属候補ピークの一致度を帰属対象ピーク73の全ての帰属候補ピークについて同様に計算する。
 そして、全帰属候補ピーク間でこのSCOREを比較し、SCOREが最小となる帰属候補ピークを帰属対象ピーク73の帰属ピークとして判定する。
 ピーク帰属部37では、帰属対象ピークの帰属すべきピークを2つの観点を総合して判定するため、正確なピーク帰属を実現することができる。
 また、対象ピーク特徴量作成部7では、対象FPの基準FPへの帰属結果をもとに、図68のように、対象FP43の各ピークを基準群FP45へ帰属する。
 対象FP43の各ピークは、前記帰属処理により基準群FP45を構成する基準FPに帰属される。この帰属結果をもとに最終的に基準群FP45のピークに帰属する。
 尚、基準群FP45は、正常品と定めた複数の基準FP全てを前記のように帰属処理し作成したものであり、その各ピークは帰属されたピークの平均値(黒点)±標準偏差(縦分割線)で表している。
 図69は、対象FP43を基準群FP45に帰属した結果であり、この結果が対象FP43の対象FPピーク特徴量47である。
[FP領域分割特徴量作成の動作原理]
 図70~図86は、FP領域分割特徴量作成の動作原理を示し、図70は、領域分割による数量化を示す説明図、図71は、リテンション・タイム等の変動との関係を示す説明図、図72は、領域の位置を変更して数量化する説明図、図73は、FPタイプ2のデータを示す図表、図74は、FPタイプ2のパターンを示す説明図、図75は、縦・横分割線での領域分割による領域ごとの特徴量化を示す説明図、図76は、縦分割線(1本目)の設定を示す説明図、図77は、横分割線(1本目)の設定を示す説明図、図78は、縦・横分割線による領域分割を示す説明図、図79は、特徴量化する領域の数を示す説明図、図80は、領域1の特定を示す説明図、図81は、全ピークの高さ及び合計を示す図表、図82は、領域1のピーク高さの合計を示す説明図、図83は、最初の1パターンによる全領域の特徴量を示す図表、図84は、縦1本目の位置を順次変更してできた各領域での特徴量を示す図表、図85は、横1本目の位置を順次変更してできた各領域での特徴量を示す図表、図86は、各縦・横分割線の位置を変更しない1通りでの特徴量を示す図表である。
 前記対象FP領域分割特徴量作成部11又は基準FP領域分割特徴量作成部23は、前記のように対象FPタイプ2又は基準FPタイプ2を分割した各領域に存在するピークの存在率から対象FP領域分割特徴量又は基準FP領域分割特徴量を作成する。
 領域の分割は、例えば図70のように行う。図70では、例えば薬剤AのFP55について分割している。シグナル強度軸に平行な複数の縦分割線141と時間軸に平行な複数の横分割線143とにより分割し、複数の領域である複数の格子145を作成する。
 複数の横分割線143は、本実施例では、シグナル強度が増大する方向へ等比間隔で設定される。この設定により、ピークの密集する部分での領域分割を細分化し、ピークの存在率をより正確に把握することが可能となる。但し、複数の横分割線143の本数を増加するなどして等差間隔で設定することも可能である。
 この各格子145内に存在するピーク高さの割合で数量化し、特徴量とする。
 一方、図71のように、分析条件の僅かなバラツキ等により、リテンション・タイムやピーク高さがFP55A、55Bのように変動する。この変動により各格子145内の値が大きく変動する恐れがある。
 (基準FPタイプ2の場合)
 そこで、基準FPタイプ2の場合には、図72のように、各格子145の位置を変更(シフト)し変更前後で数量化する。この操作により基準FP領域分割特徴量を正確に作成することが可能となる。各縦・横分割線141、143を設定範囲内で平行移動させるように位置を変更設定することで前記各格子145の位置を変更する。ここで、各格子145の位置を変更した数量化について、さらに説明する。
 図73は、基準FPタイプ2のデータd202、d207、d208を一例として示す。このデータは、リテンション・タイム(RT)及びピーク高さ(Height)の情報のみの構成となっている。このデータは、前記基準FPタイプ2作成部21において、複数の各基準FPから特徴量化されたピークを除いて残ったピークとそのリテンション・タイムとで構成される基準FPタイプ2に対応し、全ピークの各UVスペクトルは除いている。
 基準FPタイプ2のデータd202、d207、d208のパターンは、図74のようになっている。
 これらのFPパターンを縦・横分割線141、143により領域分割し、その領域ごとに特徴量化する。
 (縦分割線(1本目)の設定)
 縦分割線(1本目)の位置を設定するため、図76のように、1本目のリテンション・タイム(RT)、振幅、刻みを指定する。
 この3つのパラメータをもとに、次の条件で縦1本目の位置が複数箇所設定される。
 縦分割線(1本目)=RT-振幅+(振幅×2/刻み)×i
 (i=0、1、2、・・・・、刻み-1)
 例えば、RT=1、振幅=1、刻み回数=10 に指定すると、
 縦分割線(1本目)= 0.0、 0.2、 0.4、 0.6、 0.8、 1.0、 1.2、 1.4、 1.6、 1.8
が設定される。
 (横分割線(1本目)の設定)
 横(1本目)の位置を設定するため、図77のように、1本目の高さ、振幅、刻みを指定する。
 この3つのパラメータをもとに、次の条件で横1本目の位置が複数箇所設定される。
 例えば、高さ=1、振幅=0.5、刻み回数=10 に指定すると、
 横分割線(1本目)=高さ-振幅+(振幅×2/刻み)×i
 (i=0、1、2、・・・・、刻み-1)
 例えば、高さ=1、振幅=0.5、刻み回数=10 に指定すると、
 横分割線(1本目)= 0.5、 0.6、 0.7、 0.8、 0.9、 1.0、 1.1、 1.2、 1.3、 1.4
 が設定される。
 (縦・横分割線(1本目)の組み合わせ)
 設定された縦・横分割線(1本目)の全ての組み合わせで、順次2本目以降の標本線を設定し、領域分割する。
 前記の例では次のようになる。
 縦分割線(1本目)×横分割線(1本目)=
  (0.0、 0.2、 0.4、 0.6、 0.8、 1.0、 1.2、 1.4、 1.6、 1.8)
   ×(0.5、 0.6、 0.7、 0.8、 0.9、 1.0、 1.1、 1.2、 1.3、 1.4)=100通り
 この100通り全て組み合わせで順次2本目以降の分割線を設定し、領域を分割する。
 (縦・横分割線(2本目以降)の設定)
 縦分割線2本目以降は指定した間隔(等差)で指定した本数になるまで設定する。
 縦分割線i本目=縦分割線(i-1)本目+間隔 (i=2、・・・・、指定した本数)
 横分割線2本目以降は指定した間隔(等比)で指定した本数になるまで設定する。
 横分割線i本目=横分割線(i-1)本目+間隔×2÷(i-2)
 (i=2、・・・・、指定した本数)
 例えば、縦1本目=0.0、縦間隔=10、縦本数=7、横分割線1本目=0.5、横間隔=1、横本数=6 の場合、
 縦分割線=0、10、20、30、40、50、60
 横分割線=0.5、1.5、3.5、7.5、15.5、31.5
に設定される。
 (分割線による領域分割)
 設定された縦と横の分割線を先程の例をもとFP上に表記すると、図78のようになる。
 この縦と横の線で囲まれた領域ごとにFPを特徴量化する。
 領域は全部で30個あるので、図79のように30特徴量が得られる。
 (領域ごとの特徴量化)
 各領域は、次の式により特徴量化する。
 特徴量=領域内ピーク高さ合計/全ピーク高さ合計
 (特徴量化の方法)
 以下に、上の式により、図80に示すd202の領域1の特徴量を求める。
 まず、全ピークの高さ合計を算出すると、図81のように、15.545472となる。
 次に、領域1のピーク高さ合計を、図82のように算出する。
 従って、領域1の特徴量は、
 特徴量 = 2 / 15.545472=0.128655
となる。
 (全領域の特徴量化)
 上記特徴量化方法により、最初の1パターンによる全領域の特徴量を算出する。図83に算出結果を示す。
(縦分割線1本目を順次変更して特徴量化)
 縦分割線1本目の位置を順次変更してできた各領域を上記方法で特徴量化する。図84に結果を示す。
 (横1本目を順次変更して特徴量化)
 横分割線1本目の位置を変更するたびに縦1本目を1通り変更。できた各領域を上記方法で特徴量化する。図85に結果を示す。
 この処理により、縦・横分割線1本目が10箇所ずつあった場合では、
 100行(100通り)×31列(ファイル名+30特徴量)
のデータとなる。
 (全基準データの特徴量化(基準type2群FP))
 これまでの処理を全基準データで実施する。例えば、基準データがd202、 d207、 d208の3データであった場合は、
 300行(100通り×3データ)×31列(ファイル名+30特徴量)
となる。
 (対象FPタイプ2の場合)
 対象FPタイプ2では、縦・横分割線(1本目)の組み合わせは、1通り(縦(RT)=1、横(高さ)=1)となるので、この1通りでの特徴量を算出する。
[MD値]
 図87~図91は、前記のように、評価部27に係る各種対象FPとその評価値(MD値)を示した図であり、前記のように各対象FPを前記のように帰属処理することで、評価部27にて、上記MT法によりMD値(MD値:0.26、2.20等)を求めることができる。
[多成分薬剤の評価方法]
 図92は、本発明実施例1のFPの特徴量作成方法を含む本発明実施例1の多成分薬剤の評価方法を示す工程図である。
 図92のように、多成分薬剤の評価方法は、FP作成工程148と、対象FPピーク帰属工程149と、対象FPピーク特徴量作成工程151と、対象FPタイプ2作成工程153と、対象FP領域分割特徴量作成工程155と、対象FP特徴量統合工程157と、基準FPピーク帰属工程159と、基準FP帰属結果統合工程161と、基準FPピーク特徴量作成工程163と、基準FPタイプ2作成工程165と、基準FP領域分割特徴量作成工程167と、基準FP特徴量統合工程169と、評価工程171とを備えている。
 FP作成工程148は、対象FP作成工程173と、基準FP作成工程175とを備えている。
 対象FPピーク帰属工程149は、基準FP選定工程177と、ピーク・パターン作成工程179と、ピーク帰属工程181とを備えている。
 これら、FP作成工程148、対象FPピーク帰属工程149、対象FPピーク特徴量作成工程151、対象FPタイプ2作成工程153、対象FP領域分割特徴量作成工程155、対象FP特徴量統合工程157、基準FPピーク帰属工程159、基準FP帰属結果統合工程161、基準FPピーク特徴量作成工程163、基準FPタイプ2作成工程165、基準FP領域分割特徴量作成工程167、基準FP特徴量統合工程169、評価工程171は、本実施例において前記多成分薬剤の評価装置1を用いて行われる。
 FP作成工程148は、図1のFP作成部3の機能により行わせ、同様に対象FPピーク帰属工程149、対象FPピーク特徴量作成工程151、対象FPタイプ2作成工程153、対象FP領域分割特徴量作成工程155、対象FP特徴量統合工程157、基準FPピーク帰属工程159、基準FP帰属結果統合工程161、基準FPピーク特徴量作成工程163、基準FPタイプ2作成工程165、基準FP領域分割特徴量作成工程167、基準FP特徴量統合工程169、評価工程171を、対象FPピーク帰属部5、対象FPピーク特徴量作成部7、対象FPタイプ2作成部9、対象FP領域分割特徴量作成部11、対象FP特徴量統合部13、基準FPピーク帰属部15、基準FP帰属結果統合部17、基準FPピーク特徴量作成部19、基準FPタイプ2作成部21、基準FP領域分割特徴量作成部23、基準FP特徴量統合部25、評価部27の各機能により行わせる。
 但し、各工程を、それぞれ別々のコンピュータで機能させることができ、例えば対象FP作成工程173と、対象FPピーク帰属工程149と、対象FPピーク特徴量作成工程151と、対象FPタイプ2作成工程153と、対象FP領域分割特徴量作成工程155と、対象FP特徴量統合工程157と、評価工程171とを一つのコンピュータで機能させ、基準FP作成工程175と、基準FPピーク帰属工程159と、基準FP帰属結果統合工程161と、基準FPピーク特徴量作成工程163と、基準FPタイプ2作成工程165と、基準FP領域分割特徴量作成工程167と、基準FP特徴量統合工程169とを他のコンピュータで機能させることなどもできる。
 この場合、基準FP統合特徴量は、他のコンピュータで作成し、評価工程171に供給されることになる。
 こうして、対象FPタイプ2作成工程153は、時系列でピークが変化するパターンとして対象FPタイプ2を作成する。対象FP領域分割特徴量作成工程155は、前記対象パターン・タイプ2を複数の領域に分割し各領域に存在するピークの存在率から対象パターン領域分割特徴量を作成するパターン領域分割特徴量作成工程であるFP領域分割特徴量作成工程を構成する。
[多成分薬剤の評価プログラム]
 図93~図108は、多成分薬剤の評価プログラムに係るフローチャート、図109~図116は、基準データの作成に係るフローチャート、図117は、3Dクロマトのデータ例を示す図表、図118は、ピーク情報のデータ例を示す図表、図119は、FPのデータ例を示す図表、図120は、対象FPの基準FPへの帰属スコア計算結果(判定結果ファイル)例を示す図表、図121は、対象FPと基準FPで対応するピークの照合過程で作成する2つの中間ファイル(帰属候補ピークスコア表、帰属候補ピーク番号表)例を示す図表、図122は、対象FPと基準FPで対応するピークを特定した結果である照合結果ファイル例を示す図表、図123は、基準群FPのデータ例を示す図表、図124は、基準群FPに帰属した対象FPのピーク特徴量データのファイル例を示す図表、図125は、対象及び基準FPタイプ2のデータ例を示す図表、図126は、対象FP領域分割特徴量ファイル例を示す図表、図127は、対象FP特徴量統合ファイル例を示す図表、図128は、基準type2群FP例を示す図表、図129は、基準群統合データ例を示す図表である。
 図93、図94は、評価対象薬剤を評価するための処理全体のステップを示すフローチャートであり、システム起動によりスタートし、FP作成部3のFP作成機能と、対象FPピーク帰属部5の対象FPピーク帰属機能と、対象FPピーク特徴量作成部7の対象FPピーク特徴量作成機能と、対象FPタイプ2作成部9の対象FPタイプ2作成機能と、対象FP領域分割特徴量作成部11の対象FP領域分割特徴量作成機能と、対象FP特徴量統合部13の対象FP特徴量統合機能と、基準FPピーク帰属部15の基準FPピーク帰属機能と、基準FP帰属結果統合部17の基準FP帰属結果統合機能と、基準FPピーク特徴量作成部19の基準FPピーク特徴量作成機能と、基準FPタイプ2作成部21の基準FPタイプ2作成機能と、基準FP領域分割特徴量作成部23の基準FP領域分割特徴量作成機能と、基準FP特徴量統合部25の基準FP特徴量統合機能と、評価部27の評価機能とをコンピュータに実現させる。
 FP作成機能は、ステップS1で実現される。対象FPピーク帰属機能は、ステップS2、S3、S4で実現される。対象FPピーク特徴量作成機能は、ステップS5で実現される。対象FPタイプ2作成機能は、ステップS6で実現される。対象FP領域分割特徴量作成機能は、ステップS7で実現される。対象FP特徴量統合機能は、ステップS8で実現される。評価機能は、ステップS9、S10で実現される。
 ステップS1は、3Dクロマト及び特定の検出波長におけるピーク情報を入力データとして「FP作成処理」が実行される。
 3Dクロマトは、評価対象薬剤をHPLCで分析することにより得られるデータであり、図117の3Dクロマトのデータ例183で示すように、リテンション・タイム、検出波長、ピーク(シグナル強度)の三次元情報で構成されたデータである。ピーク情報は、同HPLC分析により得られる特定波長におけるクロマト・データをHPLCデータ解析ツール(例えば、ChemStation等)で処理することで得られるデータであり、図118のピーク情報例185で示すように、ピークとして検出された全ピークの極大値及び面積値とその時点のリテンション・タイム等で構成されたデータである。
 ステップS1では、コンピュータのFP作成部3の対象FP作成部29(図1)が機能し、3Dクロマト及びピーク情報から前記対象FP43(図2)を作成し、そのデータをファイルとして出力する。この対象FP43は、図119のFPのデータ例187で示すように、リテンション・タイムとピーク高さとピーク高さごとのUVスペクトルで構成されたデータである。
 ステップS2は、ステップS1で出力した対象FP及び全基準FPを入力として、「対象FP帰属処理1」が実行される。
 ステップS2では、コンピュータの基準FP選定部33が機能し、全基準FPに対して対象FP43とのリテンション・タイム・出現パターンの一致度を算出し、対象FP43の帰属に適した基準FPを選定する。
 基準FPは、正常品と定めた薬剤の3Dクロマトとピーク情報から前記ステップS1と同様の処理により作成されたFPである。なお、正常品は、安全性、有効性が確認された薬剤(基準漢方薬)と定義され、製品ロットの異なる複数の薬剤が該当する。 基準FPも、図119のFPのデータ例187と同様に構成されたデータである。
 ステップS3は、対象FP43とステップS2で選定した基準FPを入力とし、「対象FP帰属処理2」が実行される。
 ステップS3では、コンピュータのピーク・パターン作成部35(図1)及びピーク帰属部37(図1)が機能する。この機能により、対象FP43とステップS2で選定した基準FPの全ピークで、図23~図61のように網羅的にピーク・パターンを作成し、次にそれらピーク・パターンの一致度(図63または図64のP_Sim)を算出する。また、対象FPと基準FPのピーク間でUVスペクトルの一致度(図66のUV_Sim)を算出する。さらにこれら2つの一致度から帰属候補ピークの一致度(図67のSCORE)を算出する。その算出結果は、図120の判定結果ファイル例189と同様なファイルに出力される。
 ステップS4は、ステップS3で出力した判定結果ファイル189を入力とし、「対象FP帰属処理3」が実行される。
 ステップS4では、コンピュータのピーク帰属部37が機能し、対象FP43と基準FP間で、帰属候補ピークの一致度(SCORE)をもとに対象FPの各ピークに対応する基準FPのピークを特定する。その結果は、図122の照合結果ファイル例195と同様な照合結果ファイルに出力される。
 ステップS5は、ステップS4で出力した照合結果ファイルと基準群FP197とを入力とし、「対象FP帰属処理4」が実行される。
 基準群FP197は、全基準FPから前記ステップS2からステップS4と同様の処理により作成された全基準FP間のピーク対応データである。
 ステップS5では、コンピュータの対象FPピーク特徴量作成部7が機能し、対象FP43の照合結果ファイルをもとに、図68、図69のように、対象FP43の各ピークを基準群FP197のピークに帰属する。その結果は、図124のピーク・データ特徴量のファイル例199と同様なファイルに出力される。
 ステップS6は、ステップS5で出力したピーク・データ特徴量ファイルと対象FPとを入力とし、「FP_type2の作成」の処理が実行される。
 ステップS6では、コンピュータの対象FPタイプ2作成部9が機能し、対象FPピーク特徴量作成部7において特定されたピーク47を元の対象FP43から除いて残ったピークとそのリテンション・タイムとで構成されるFPを対象FPタイプ2(49)として作成する。その結果は、FPタイプ2ファイル(図125のFPタイプ2ファイル例201参照)に出力される。
 ステップS7では、「領域分割による対象FP_type2の特徴量化処理」が実行される。この処理では、コンピュータの対象FP領域分割特徴量作成部11が機能し、図70の領域分割により、対象FP領域分割特徴量が作成される。その結果は、対象FP領域分割特徴量ファイル(図126の対象FP領域分割特徴量ファイル例203参照)に出力される。
 ステップS8では、「ピーク・データ特徴量と領域分割特徴量の統合」の処理が実行される。
 この処理では、コンピュータの対象FP特徴量統合部13が機能し、対象FPピーク特徴量作成部7で作成された対象FPピーク特徴量47と対象FP領域分割特徴量作成部11で作成された対象FP領域分割特徴量51とを統合して対象FP統合特徴量を作成する。その結果は、対象FP特徴量統合ファイル(図127の対象FP特徴量統合ファイル例205参照)に出力される。
 ステップS9では、コンピュータの評価部27が機能し、ステップS8で出力した対象FP統合特徴量と基準FP統合特徴量との同等性をMT法により評価し、その評価結果を図87~図91のようなMD値として出力する(図87~図91)。
 ステップS10は、ステップS9で出力したMD値を入力として、「合否判定」が実行される。
 ステップS10では、コンピュータの評価部27が機能し、ステップS9で出力したMD値と予め設定した閾値(MD値の上限値)を比較し、合否を判定する(図2の評価結果53)。
[S1:FP作成処理(単一波長のみ利用)]
 図95は、図93ステップS1「FP作成処理」の単一波長のピーク情報を利用した場合のフローチャートである。
 図95は、波長を単一波長、例えば203nmとして評価対象のFPを作成するステップの詳細である。この処理では、3Dクロマトと検出波長が203nmにおけるピーク情報から、203nmで検出されたピークにおけるリテンション・タイムとピークならびにそれらピークのUVスペクトルで構成するFPを作成する。
 ステップS101では、「ピーク情報を読み込む」の処理が実行される。この処理では、FPの作成に必要な2つのデータのうちの1つ目としてピーク情報が読み込まれ、ステップS102へ移行する。
 ステップS102では、「ピークのリテンション・タイム(R1)と対応するピーク・データ(P1)を順番に取得」の処理が実行される。この処理では、ピーク情報から、ピークのリテンション・タイム(R1)及びピーク・データ(P1)を1ピークずつ順番に取得し、ステップS103へ移行する。
 ステップS103では、「3Dクロマトを読み込む」の処理が実行される。この処理では、FPの作成に必要な2つのデータのうちの2つ目として3Dクロマトが読み込まれ、ステップS104へ移行する。
 ステップS104では、「ピークのリテンション・タイム(R2)と対応するUVスペクトル(U1)を順番に取得」の処理が実行される。この処理では、3Dクロマトから、リテンション・タイム(R2)及びUVスペクトル(U1)をHPLC分析時のサンプリング・レートごとに取得し、ステップS105へ移行する。
 ステップS105では、「|R1-R2|<=閾値?」の判断処理が実行される。この処理では、ステップS102及びS104で読み込まれたR1とR2が閾値の範囲で対応したものであるか否かが判断される。対応している(YES)場合は、2つのリテンション・タイムは同じであり、リテンション・タイムがR1のピークのUVスペクトルはU1であると判断し、ステップS106へ移行する。対応していない(NO)場合は、2つのリテンション・タイムは同じではなく、リテンション・タイムがR1のピークのUVスペクトルはU1ではないと判断し、3Dクロマトの次のデータとの比較のため、ステップS104へ移行する。なお、この判断処理での閾値は、3Dクロマトにおける“サンプリング・レート/2”とする。
 ステップS106では、「U1を最大値1で規格化」の処理が実行される。この処理では、S105でR1のUVスペクトルと判断したU1を最大値1で規格化し、ステップS107へ移行する。
 ステップS107では、「R1とP1ならびに規格化したU1を出力(対象FP)」の処理が実行される。この処理では、ピーク情報から取得したR1とP1ならびにS106で規格化したU1を対象FPに出力し、ステップS108へ移行する。
 ステップS108では、「全ピークの処理終了?」の判断処理が実行される。この処理では、ピーク情報中の全てのピークに対して処理が行われたか否かが判断され、全ピークに対して処理が終了していなければ(NO)、未処理のピークを処理するため、ステップS102へ移行する。S102からS108までの処理は全ピークの処理が終了するまで繰り返され、全ピークの処理が終了すると(YES)、FP作成処理を終了する。
[S1:FP作成処理(複数波長利用)]
 図96、図97は、図93のステップS1「FP作成処理」において、前記単一波長のピーク情報に代え、複数波長のピーク情報を利用した場合のフローチャートである。例えば203nmを含めて、検出波長軸方向に複数(n個)の波長を選択し、FPを作成する場合である。
 このFP作成処理は、図95のような単一波長では3Dクロマトで検出されている全ピークを網羅できない場合に複数波長のピーク情報を利用し、3Dクロマトの全ピークを網羅したFPを作成するためのものである。
 なお、図96、図97は、上記単一波長のみを利用したFP作成処理で波長ごとのFPをn個作成後、それらFPから複数波長によるFPを作成するステップの詳細である。 
 ステップS110では、「波長ごとにFPを作成」の処理が実行される。この処理では、波長ごとに上記単一波長のみを利用したFP作成処理が行われ、n個のFPを作成し、ステップS111へ移行する。
 ステップS111では、「FPをピーク数(降順)でリスト化」の処理が実行される。この処理では、n個のFPをピーク数が多い順にリスト化し、ステップS112へ移行する。
 ステップS112では、n個のFPを順番に処理するためのカウンタの初期化としてnに1が代入(n←1)され、ステップS113へ移行する。
 ステップS113では、「リストn番目のFPを読み込む」の処理が実行される。この処理では、リストn番目のFPを読み込み、ステップS114へ移行する。
 ステップS114では、「全リテンション・タイム(X)を取得」の処理が実行される。この処理では、S113で読み込んだFPのリテンション・タイム情報を全て取得し、ステップS115へ移行する。
 ステップS115では、「nの更新(n←n+1)」の処理が実行される。この処理では、処理を次のFPへ移行するため、nの更新としてnにn+1を代入し、ステップS116へ移行する。
 ステップS116では、「リストn番目のFPを読み込む」の処理が実行される。この処理では、リストn番目のFPを読み込み、ステップS117へ移行する。
 ステップS117では、「全リテンション・タイム(Y)を取得」の処理が実行される。この処理では、S116で読み込んだFPのリテンション・タイム情報を全て取得し、ステップS118へ移行する。
 ステップS118では、「XとYを重複なしで統合(Z)」の処理が実行される。この処理では、S114で取得したリテンション・タイム情報XとS117で取得したリテンション・タイム情報Yを重複なしで統合した後、Zに保存し、ステップS119へ移行する。
 ステップS119では、「Xの更新(X←Z)」の処理が実行される。この処理では、Xの更新としてXにS118で保存したZを代入し、ステップS120へ移行する。
 ステップS120では、「全FP処理終了?」の判断処理が実行される。この処理では、S110で作成したn個のFP全てが処理されたか否かが判断され、処理済み(YES)の場合は、ステップS121へ移行する。未処理のFPがある(NO)の場合は、未処理のFPに対してS115~S120の処理を実行するため、S115へ移行する。全FPの処理が終了するまでS115~S120の処理を繰り返す。
 ステップS121では、n個のFPを再度順番に処理するためのカウンタの初期化としてnに1が代入(n←1)され、ステップS122へ移行する。
 ステップS122では、「リストn番目のFPを読み込む」の処理が実行される。この処理では、リストn番目のFPを読み込み、ステップS123へ移行する。
 ステップS123では、「各ピークのリテンション・タイム(R1)、ピーク・データ(P1)ならびにUVスペクトル(U1)を順番に取得」の処理が実行される。この処理では、S122で読み込んだFPからリテンション・タイム(R1)、ピーク・データ(P1)ならびにUVスペクトル(U1)を1ピークずつ順番に取得し、ステップS124へ移行する。
 ステップS124では、「Xからリテンション・タイム(R2)を順番に取得」の処理が実行される。この処理では、全FPのリテンション・タイムが重複なしで保存されているXから1リテンション・タイム(R2)ずつ順番に取得し、ステップS125へ移行する。
 ステップS125では、「R1=R2?」の判断処理が実行される。この処理では、S123で取得したR1とS124で取得したR2が等しいか否かが判断され、等しい(YES)場合は、ステップS127へ移行する。等しくない(NO)場合は、ステップS126へ移行する。
 ステップS126では、「Xの全リテンション・タイム比較終了?」の判断処理が実行される。この処理では、S123で取得したR1に対して、Xの全リテンション・タイムとの比較が終了しているか否かが判断される。終了している(YES)場合は、リテンション・タイムがR1のピークは処理済みであると判断し、次のピークへ処理を移行するため、ステップS123へ移行する。終了していない(NO)場合は、Xの次のリテンション。タイムに移行するため、ステップS124へ移行する。
 ステップS127では、「R1に(n-1)×分析時間(T)を加算(R1←R1+(n-1)×T)」の処理が実行される。この処理では、一番ピーク数の多いリスト1番目のFPに存在するピークのリテンション・タイムはそのままで、リスト1番目のFPには存在せず、リスト2番目のFPに存在するピークのリテンション・タイムはR1に分析時間(T)が加算され、さらに、リスト1~n-1番目のFPには存在せず、リストn番目のFPに存在するピークのリテンション・タイムはR1に(n-1)×Tが加算され、ステップS128へ移行する。
 ステップS128では、「R1、P1ならびにU1を出力(対象FP)」の処理が実行される。この処理では、S127で処理したR1とS123で取得したP1ならびにU1を対象FPに出力し、ステップS129へ移行する。
 ステップS129では、「XからR2を削除」の処理が実行される。この処理では、リテンション・タイムがR1(=R2)における処理がS127、S128で終了したため、Xから処理済みリテンション・タイム(R2)を削除し、S130へ移行する。
 ステップS130では、「全ピーク処理終了?」の判断処理が実行される。この処理では、リストn番目のFPの全ピークに対して処理が終了しているか否かが判断され、処理済み(YES)の場合は、リストn番目のFPにおけるFP作成処理を終了し、ステップS131へ移行する。未処理のピークがある(NO)場合は、未処理のピークを処理するため、ステップS123へ移行する。全ピークの処理が終了するまでS123~S130の処理を繰り返す。
 ステップS131では、「nの更新(n←n+1)」の処理が実行される。この処理では、処理を次のFPへ移行するため、nの更新としてnにn+1を代入し、ステップS132へ移行する。
 ステップS132では、「全FP処理終了?」の判断処理が実行される。この処理では、S110で作成したn個のFP全てが処理されたか否かが判断され、処理済み(YES)の場合は、FP作成処理を終了する。未処理のFPがある(NO)場合は、未処理のFPに対してS122~S132の処理を実行するため、S122へ移行する。全FPの処理が終了するまでS122~S132の処理を繰り返す。
[S2:対象FP帰属処理1]
 図98は、図93ステップS2の「対象FP帰属処理1」の詳細を示すフローチャートである。この処理は、帰属の前処理であり、正常品とされた複数の基準FPから対象FP43の帰属に適した基準FPを選定する。
 ステップS201では、「対象FPを読み込む」の処理が実行される。この処理では、帰属対象のFPを読み込み、ステップS202へ移行する。
 ステップS202では、「全リテンション・タイム(R1)を取得」の処理が実行される。この処理では、S201で読み込んだ対象FPのリテンション・タイム情報を全て取得し、ステップS203へ移行する。
 ステップS203では、「全基準FPのファイル名をリスト化」の処理が実行される。この処理では、後で全基準FPを順番に処理するために予め全基準FPのファイル名をリスト化し、ステップS204へ移行する。
 ステップS204では、全基準FPを順番に処理するためのカウンタの初期値としてnに1を代入(n←1)し、ステップS205へ移行する。
 ステップS205では、「リストn番目の基準FP(基準FP)を読み込む」の処理が実行される。この処理では、S203でリスト化した全基準FPのファイル名リストのn番目のFPを読み込み、ステップS206へ移行する。
 ステップS206では、「全リテンション・タイム(R2)を取得」の処理が実行される。この処理では、S205で読み込んだ基準FPのリテンション・タイム情報を全て取得し、ステップS207へ移行する。 
 ステップS207では、「R1とR2のリテンション・タイム・出現パターンの一致度を算出(RP_min)」の処理が実行される。この処理では、S202で取得した対象FPのリテンション・タイムとS206で取得した基準FPのリテンション・タイムからRP_minを算出し、ステップS208へ移行する。なお、RP_minの詳細な計算フローは、図103のサブルーチン1により別途説明する。
 ステップS208では、「RP_minの保存(RPall_min」の処理が実行される。この処理では、S207で算出したRP_minをRPall_minに保存し、ステップS209へ移行する。
 ステップS209では、「nの更新(n←n+1)」の処理が実行される。この処理では、処理を次のFPへ移行するためnの更新としてnにn+1を代入し、ステップS210へ移行する。
 ステップS210では、「全基準FP処理終了?」の判断処理が実行される。この処理では、基準FP全てが処理されたか否かが判断され、処理済み(YES)の場合は、ステップS211へ移行する。未処理の基準FPがある(NO)場合は、未処理のFPに対してS205~S210の処理を実行するため、S205へ移行する。全基準FPの処理が終了するまでS205~S210の処理を繰り返す。 
 ステップS211では、「RPall_minから一致度が最小となる基準FPを選定」の処理が実行される。この処理では、全基準FPに対して算出したRP_minからRP_minを比較し、対象FPとのリテンション・タイム・出現パターンの一致度が最小となる基準FPを選定し、対象FP帰属処理1を終了する。
[S3:対象FP帰属処理2]
 図99は、図93ステップS3の「対象FP帰属処理2」の詳細を示すフローチャートである。この処理は、帰属の本処理であり、対象FP43とステップS2で選定した基準FPとの間で、前記のようなピーク・パターン及びUVスペクトルの一致度から各帰属候補ピークの一致度(SCORE)を算出する。
 ステップS301では、「対象FPを読み込む」の処理が実行される。この処理では、帰属対象のFPを読み込み、ステップS302へ移行する。
 ステップS302では、「帰属対象ピークのリテンション・タイム(R1)とピーク・データ(P1)ならびにUVスペクトル(U1)を順番に取得」の処理が実行される。この処理では、S301で読み込んだ対象FPの各ピークを順番に帰属対象ピークとし、R1とP1ならびにU1を取得し、ステップS303へ移行する。
 ステップS303では、「基準FPを読み込む」の処理が実行される。この処理では、図98の[対象FP帰属処理1]で選定された基準FPを読み込み、ステップS304へ移行する。
 ステップS304では、「基準FPのピークのリテンション・タイム(R2)とピーク・データ(P2)ならびにUVスペクトル(U2)を順番に取得」の処理が実行される。この処理では、S303で読み込んだ基準FPからR2とP2ならびにU2を1ピークずつ取得し、ステップS305へ移行する。
 ステップS305では、「|R1-(R2+d)|<閾値?」の判断処理が実行される。この処理では、ステップS302及びS304で読み込まれたR1とR2が閾値の範囲内で対応したものであるか否かが判断される。対応している(YES)場合は、リテンション・タイムがR2のピークはリテンション・タイムがR1のピークの帰属候補ピークであると判断し、帰属候補ピークの一致度(SCORE)を算出するためステップS306へ移行する。対応していない(NO)場合は、リテンション・タイムがR2のピークとリテンション・タイムがR1のピークではリテンション・タイムが違いすぎるため、帰属候補ピークにはならないと判断し、ステップS309へ移行する。なお、この判断処理でのdは、対象FPと基準FPのピークのリテンション・タイムを補正する値で、初期値は0とし、処理を進める中で随時帰属したピーク間のリテンション・タイムの差を求め、その値でdを更新する。また、閾値は、帰属候補ピークとすべきかどうかを判断するためのリテンション・タイムの許容幅である。
 ステップS306では、「UVスペクトルの一致度を算出(UV_Sim)」の処理が実行される。この処理では、S302で取得した帰属対象ピークのU1とS304で取得した帰属候補ピークのU2から、UV_Simを算出し、ステップS307へ移行する。なお、UV_Simの詳細な計算フローは、図86のサブルーチン2に別途記載する。
 ステップS307では、「ピーク・パターンの一致度を算出(P_Sim_min)」の処理が実行される。この処理では、S302で取得した帰属対象ピークのR1及びP1とS304で取得した帰属候補ピークのR2及びP2から、これらピークに対して網羅的にピーク・パターンを作成する。これらピーク・パターンのP_Sim_minを算出し、ステップS308へ移行する。なお、P_Sim_minの詳細な計算フローは、図87のサブルーチン3に別途記載する。
 ステップS308では、「帰属候補ピークの一致度を算出(SCORE)」の処理が実行される。この処理では、S306で算出したUV_SimとS307で算出したP_Sim_minから、帰属対象ピークと帰属候補ピークのSCOREを、
 SCORE = UV_Sim × P_Sim_min
 として算出し、ステップS310へ移行する。
 ステップS309では、「SCOREに888888を代入(SCORE←888888)」の処理が実行される。この処理では、帰属対象ピークの帰属候補ピークに該当しないピークのSCOREを888888とし、ステップS310へ移行する。
 ステップS310では、「SCOREの保存(SCORE_all)」の処理が実行される。この処理では、S308あるいはS309で得られたSCOREをSCORE_allに保存し、ステップS311へ移行する。
 ステップS311では、「基準全ピークの処理終了?」の判断処理が実行される。この処理では、基準FPの全ピークが処理されたか否かが判断され、処理済み(YES)の場合は、ステップS312へ移行する。未処理のピークがある(NO)場合は、未処理のピークに対してS304~S311の処理を実行するため、S304へ移行する。全ピークの処理が終了するまでS304~S311の処理を繰り返す。
 ステップS312では、「判定結果ファイルにSCORE_allを出力し、SCORE_allを初期化(空にする)」の処理が実行される。この処理では、判定結果ファイルにSCORE_allを出力後、SCORE_allを初期化(空にする)し、ステップS313へ移行する。
 ステップS313では、「対象全ピークの処理終了?」の判断処理が実行される。この処理では、対象FPの全ピークが処理されたか否かが判断され、処理済み(YES)の場合は、対象FP帰属処理2を終了する。未処理のピークがある(NO)場合は、未処理のピークに対してS302~S313の処理を実行するため、S302へ移行する。全ピークの処理が終了するまでS302~S313の処理を繰り返す。
 図120で出力した判定結果ファイル例189を示す。
[S4:対象FP帰属処理3]
 図100は、図93ステップS4の「対象FP帰属処理3」の詳細を示すフローチャートである。この処理は、帰属の後処理であり、前記のように算出した帰属候補ピークの一致度(SCORE)から対象FPの各ピークに対応する基準FPのピークを特定する。
 ステップS401では、「判定結果ファイルを読み込む」の処理が実行される。この処理では、図81の「対象FP帰属処理2」で作成した判定結果ファイルを読み込み、ステップS402へ移行する。
 ステップS402では、「「SCORE<閾値」の条件を満たしたデータで帰属候補ピークスコア表を作成」の処理が実行される。この処理では、判定結果ファイルのSCOREをもとに帰属候補スコア表(図121上図の帰属候補スコア表191参照)を作成し、ステップS403へ移行する。この帰属候補ピークスコア表は、基準FPのピークごとに、対象FP全ピークに対して算出されたSCOREから、閾値より小さいSCOREだけを昇順に並べた表である。ちなにみ、このSCOREは値が小さいほど帰属すべきピークの可能性が高い。なお、閾値は、帰属候補とすべきかどうかを判断するためのSCOREの上限値である。
 ステップS403では、「帰属候補ピーク番号表を作成」の処理が実行される。この処理では、帰属候補ピークスコア表をもとに帰属候補ピーク番号表(図121下図の帰属候補ピーク番号表193参照)を作成し、ステップS404へ移行する。この帰属候補ピーク番号表は、帰属候補ピークスコア表の各スコアをそのスコアに対応する対象FPのピーク番号に置き換えた表である。このことから、この表は、基準FPのピークごとに対応させるべき対象FPのピーク番号が順番に並んだ表となっている。
 ステップS404では、「帰属すべき対象FPのピーク番号を取得」の処理が実行される。この処理では、S403で作成した帰属候補ピーク番号表から、基準FPのピークごとに一番上位に位置する対象FPのピーク番号を取得し、ステップS405へ移行する。
 ステップS405では、「取得したピーク番号が降順(重複なし)に並んでいる?」の判断処理が実行される。この処理では、S404で取得した対象FPのピーク番号が重複なしで降順に並んでいるか否かが判断される。並んでいる(YES)場合は、基準FPの各ピークに対応する対象FPのピークが確定できたと判断し、ステップS408へ移行する。並んでいない(NO)場合は、問題のあった基準FPのピークに帰属すべき対象FPのピークを見直すため、ステップS406へ移行する。
 ステップS406では、「問題のあったピーク間でSCOREを比較し、帰属候補ピーク番号表を更新」の処理が実行される。この処理では、問題のあった対象FPのピーク番号に対応するSCOREを帰属候補スコア表で比較し、SCOREが大きい方のピーク番号を2番目に位置するピーク番号に置き換えた帰属候補ピーク番号表に更新し、ステップS407へ移行する。
 ステップS407では、「帰属候補ピークスコア表を更新」の処理が実行される。この処理では、S406での帰属候補ピーク番号表の更新内容に沿って、帰属候補ピークスコア表を更新し、ステップS404へ移行する。対象FPのピーク番号に問題(重複あり、降順に並んでいない)がなくなるまで、S404からS407の処理を繰り返す。
 ステップS408では、「帰属結果を保存(TEMP)」の処理が実行される。この処理では、基準FPの全ピークのピーク番号、リテンション・タイム、及びピークとこれらピークに対応するピークとして特定した対象FPのピーク・データをTEMPに保存し、ステップS409へ移行する。
 ステップS409では、「TEMPに対象FPの全ピークが入っている?」の判断処理が実行される。この処理では、S408で保存したTEMP中に対象FPの全ピークのピーク・データが入っているか否かが判断される。全て入っている(YES)場合は、対象FPの全てのピークで処理が終了したと判断し、S412へ移行する。入っていないピークがある(NO)場合は、入っていないピークのピーク・データをTEMPに追加するため、ステップS410へ移行する。
 ステップS410では、「TEMPに入っていない対象FPのピークのリテンション・タイムを補正」の処理が実行される。この処理では、TEMPに入っていない対象FPのピーク(補正が必要な対象FPのピーク)のリテンション・タイムは、
 補正値 = k1+(k2-k1)*(t0-t1)/(t2-t1)
     k1:補正が必要な対象FPのピーク近傍で帰属された2つの基準FP側のピークのうちのリテンション・タイムが小さいピークのリテンション・タイム
     k2:補正が必要な対象FPのピーク近傍で帰属された2つの基準FP側のピークのうちのリテンション・タイムが大きいピークのリテンション・タイム
     t0:補正が必要な対象FPのピークのリテンション・タイム
     t1:補正が必要な対象FPのピーク近傍で帰属された2つの対象FP側のピークのうちのリテンション・タイムが小さいピークのリテンション・タイム
     t2:補正が必要な対象FPのピーク近傍で帰属された2つの対象FP側のピークのうちのリテンション・タイムが大きいピークのリテンション・タイム
として基準FPにおけるリテンション・タイムに補正し、ステップS411へ移行する。
 ステップS411では、「補正したリテンション・タイムとそのピークのピーク・データをTEMPに追加し、TEMPを更新」の処理が実行される。この処理では、S410で補正したTEMPに入っていない対象FPのピークのリテンション・タイムとTEMP中の基準FPのリテンション・タイムとを比較し、TEMP中の妥当な位置にTEMPに入っていない対象FPのピークの補正したリテンション・タイムならびにピーク・データを追加し、TEMPを更新し、S409へ移行する。対象FPの全ピークが追加されるまで、S409からS411の処理を繰り返す。
 ステップS412では、「TEMPを照合結果ファイルに出力」の処理が実行される。この処理では、基準FPの全ピークと対象FPの全ピークの対応関係を特定したTEMPを照合結果ファイルとして出力し、対象FP帰属処理3を終了する。
[S5:対象FP帰属処理4]
 図101、図102は、図93ステップS5の「対象FP帰属処理4」の詳細を示すフローチャートである。この処理は、帰属の最終処理であり、図93ステップS4で作成した照合結果ファイル(図122の照合結果ファイル例195参照)をもとに対象FPの各ピークを基準群FP(図123の基準群FPのデータ例197参照)のピークに帰属する。  
 なお、基準群FP197は、前記のように全基準FP間でピークの対応関係を特定したFPであり、図123の基準群FPのデータ例197のように、基準群FPピーク番号と基準群リテンション・タイムとピーク高さとで構成されたデータである。図2の基準群FP45で示すように各ピークは平均値(黒点)±標準偏差(縦分割線)で表すことができる。
 ステップS501では、「照合結果ファイルを読み込む」の処理が実行される。この処理では、図100のS412で出力した照合結果ファイルを読み込み、ステップS502へ移行する。
 ステップS502では、「基準群FPを読み込む」の処理が実行される。この処理では、対象FPの各ピークの最終的な帰属相手である基準群FP197を読み込み、ステップS503へ移行する。
 ステップS503では、「対象FPと基準群FPを統合し保存(TEMP)」の処理が実行される。この処理では、照合結果ファイルと基準群FP197で共通に存在する基準FPのピーク・データをもとに2つのファイルを統合し、その結果をTEMPとして保存し、ステップS504へ移行する。
 ステップS504では、「基準FPに対応するピークがない対象FPの全ピークのリテンション・タイムを補正」の処理が実行される。この処理では、照合結果ファイルで基準FPに対応するピークがない対象FPの全ピークのリテンション・タイムをS503で保存したTEMPのリテンション・タイムに補正し、ステップS505へ移行する。なお、リテンション・タイムの補正は、前記ステップS4の「対象FP帰属処理3」のステップS410と同様の方法で補正する。
 ステップS505では、「補正したリテンション・タイム(R1、R3)と対応するピーク・データ(P1)を順番に取得」の処理が実行される。この処理では、S504で補正したリテンション・タイムをR1ならびにR3として、対応するピークのピーク・データをP1として順番に取得し、ステップS506へ移行する。
 ステップS506では、「TEMPから対象FPの帰属候補ピークのリテンション・タイム(R2)と対応するピーク・データ(P2)を順番に取得」の処理が実行される。この処理では、S503で保存したTEMPから対象FPのピークが帰属されていないリテンション・タイムをR2として、対応するピーク・データをP2として順番に取得し、ステップS507へ移行する。
 ステップS507では、「|R1-R2|<閾値1?」の判断処理が実行される。この処理では、S505とS506で取得したR1とR2の差が閾値1より小さいか否かが判断される。小さい(YES)場合は、対象FPのリテンション・タイムがR1のピークと基準FPのリテンション・タイムがR2のピークが対応する可能性があると判断し、ステップS508へ移行する。R1とR2の差が閾値1以上(NO)の場合は、対応する可能性なしと判断し、ステップS512へ移行する。
 ステップS508では、「R1、R2に対応するUVスペクトルを取得(U1、U2)」の処理が実行される。この処理では、S507で対応する可能性ありと判断されたリテンション・タイムがR1とR2のピークに対応するUVスペクトルをそれぞれのFPから取得し、ステップS509へ移行する。
 ステップS509では、「UVスペクトルの一致度を算出(UV_Sim)」の処理が実行される。この処理では、S508で取得したUVスペクトルU1及びU2からステップS3の「対象FP帰属処理2」のステップS306と同様な方法でUV_Simを算出し、ステップS510へ移行する。なお、UV_Simの詳細な計算フローは図104のサブルーチン2で別途説明する。
 ステップS510では、「UV_Sim<閾値2?」の判断処理が実行される。この処理では、S509で算出したUV_Simが閾値2より小さいか否かが判断される。小さい(YES)場合は、UVスペクトルがU1のピークとU2のピークが対応していると判断し、ステップS511へ移行する。UV_Simが閾値2以上(NO)の場合は、対応していないと判断し、ステップS507へ移行する。
 ステップS511では、「R3 ← R2、閾値2 ← UV_Sim」の処理が実行される。この処理では、S510で対応すると判断したリテンション・タイムがR3(つまり、R1)を対応相手のリテンション・タイムであるR2に更新したのち、閾値2をUV_Simの値に更新し、S507に移行する。
 ステップS512では、「全ての帰属候補ピークのリテンション・タイムを比較終了?」の判断処理が実行される。この処理では、R1と全ての帰属候補ピークのリテンション・タイムの比較が終了したか否かが判断され、終了している(YES)場合は、ステップS513へ移行する。終了していない(NO)場合は、ステップS507へ移行する。
 ステップS513では、「R1、R3とP1ならびに閾値2を保存(TEMP2)」の処理が実行される。この処理では、S510で対応すると判断したリテンション・タイム(R1)と対応相手のリテンション・タイム(R2)に更新したR3と対応するピーク(P1)ならびに現時点の閾値2を保存(TEMP2)し、S507に移行する。
 ステップS514では、「全ての非対応ピークのリテンション・タイムを比較終了?」の判断処理が実行される。この処理では、全ての非対応ピークのリテンション・タイムで帰属候補ピークのリテンション・タイムとの比較が終了したか否かが判断される。終了している(YES)場合は、全ての非対応ピークの帰属処理が終了したと判断し、ステップS516へ移行する。終了していない(NO)場合は、未処理の非対応ピークが残っていると判断し、ステップS515へ移行する。
 ステップS515では、「閾値2 ← 初期値」の処理が実行される。この処理では、S511でUV_Simに更新されている閾値2を初期値に戻し、ステップS505へ移行する。
 ステップS516では、「TEMP2にR3の値が同じピークが存在する?」の判断処理が実行される。この処理では、TEMP中の同じピークに複数の非対応ピークが帰属されているか否かが判断される。同じピークに帰属された非対応ピークが存在する(YES)場合は、ステップS517へ移行する。存在しない(NO)場合は、ステップS518へ移行する。
 ステップS517では、「R3の値が同じピークの閾値2を比較し、値が大きいピークのR3を元の値(R1)に戻す」の処理が実行される。この処理では、TEMP2中のR3の値が同じピークの閾値2を比較し、値が大きいピークのR3の値を元の値(つまり、R1)に戻し、ステップS518へ移行する。
 ステップS518では、「TEMPにTEMP2のピークを追加(TEMPのリテンション・タイムとR3が一致したピークのみ)」の処理が実行される。この処理では、TEMPのリテンション・タイムとR3が一致したピークのみTEMPにR3に対応するピークを追加し、ステップS519へ移行する。R3がTEMPのリテンション・タイムと一致しないピークは、基準群FPに帰属相手となるピークが存在しないため、追加しない。
 ステップS519では、「TEMP中の対象FPのピークを出力(ピーク特徴量ファイル)」の処理が実行される。この処理では、基準群FP197に帰属された対象FPのピーク・データをピーク・データ特徴量ファイルとして出力し、対象FP帰属処理4を終了する。
 図124に前記のように出力するピーク・データ特徴量のファイル例199を示す。
 [サブルーチン1]
 図103は、図98の「基準FP選定処理」における「サブルーチン1」の詳細を示すフローチャートである。この処理は、FP間(例えば、対象FPと基準FP)のリテンション・タイム・出現パターンの一致度を計算する。
 ステップS1001では、「x←R1、y←R2」の処理が実行される。この処理では、図98のS202とS206で取得したR1及びR2をそれぞれxとyに代入し、ステップS1002へ移行する。
 ステップS1002では、「x、yのデータ数を取得(a、b)」の処理が実行される。この処理では、x、yのデータ数をそれぞれa、bとして取得し、ステップS1003へ移行する。
 ステップS1003では、xのリテンション・タイムを順番に呼び出すためのカウンタの初期値としてiに1を代入(i←1)し、ステップS1004へ移行する。
 ステップS1004では、「xi番目のリテンション・タイムからの全距離を取得(f)」の処理が実行される。この処理では、xi番目のリテンション・タイムとそれ以降の全リテンション・タイム間距離をfとして取得し、ステップS1005へ移行する。
 ステップS1005では、yのリテンション・タイムを順番に呼び出すためのカウンタの初期値としてjに1を代入(j←1)し、ステップS1006へ移行する。
 ステップS1006では、「yj番目のリテンション・タイムからの全距離を取得(g)」の処理が実行される。この処理では、yj番目のリテンション・タイムとそれ以降の全リテンション・タイム間距離をgとして取得し、ステップS1007へ移行する。
 ステップS1007では「”|fの各リテンション・タイム間距離-gの各リテンション・タイム間距離|<閾値”の条件を満たしたデータ数を取得(m)」の処理が実行される。この処理では、S1004及びS1006で取得したリテンション・タイム間距離fとgを総当りで比較し、”|fの各リテンション・タイム間距離-gの各リテンション・タイム間距離|<閾値”の条件を満たしたデータ数をmとして取得し、ステップS1008へ移行する。
 ステップS1008では、「fとgのリテンション・タイム・出現パターンの一致度を算出(RPfg)」の処理が実行される。この処理では、S1002で取得したa、bとS1007で取得したmからRPfgを、
 RPfg = (1-(m/(a+b-m)))×(a-m+1)
として算出し、ステップS1009へ移行する。
 ステップS1009では、「RPfgを保存(RP_all)」の処理が実行される。この処理では、S1008で算出した一致度をRP_allに保存し、ステップS1010へ移行する。
 ステップS1010では、「jの更新(j←j+1)」の処理が実行される。この処理では、yの処理を次のリテンション・タイムへ移行するためjの更新としてjにj+1を代入し、ステップS1011へ移行する。
 ステップS1011では、「yの全リテンション・タイムで処理終了?」の判断処理が実行される。この処理では、yの全てのリテンション・タイムの処理が終了したか否かが判断される。終了している(YES)場合は、yの全リテンション・タイムの処理が終了したと判断し、ステップS1012へ移行する。終了していない(NO)場合は、y中に未処理のリテンション・タイムが残っていると判断し、ステップS1006へ移行する。つまり、S1006~S1011までの処理はyの全てのリテンション・タイムが処理されるまで繰り返す。
 ステップS1012では、「iの更新(i←i+1)」の処理が実行される。この処理では、xの処理を次のリテンション・タイムへ移行するためiの更新としてiにi+1を代入し、ステップS1013へ移行する。
 ステップS1013では、「xの全リテンション・タイムで処理終了?」の判断処理が実行される。この処理では、xの全てのリテンション・タイムの処理が終了したか否かが判断される。終了している(YES)場合は、xの全リテンション・タイムの処理が終了したと判断し、ステップS1014へ移行する。終了していない(NO)場合は、x中に未処理のリテンション・タイムが残っていると判断し、ステップS1004へ移行する。つまり、S1004~S1013までの処理はxの全てのリテンション・タイムが処理されるまで繰り返す。
 ステップS1014では、「RP_allから最小値を取得(RP_min)」の処理が実行される。この処理では、対象FPと基準FPとのリテンション・タイム・出現パターンの全組み合わせでのRPが保存されたRP_all中の最小値を、RP_minとして取得し、そのRP_minを図98のS207に渡し、リテンション・タイム・出現パターンの一致度計算処理を終了する。
[サブルーチン2]
 図104は、図99の「対象FP帰属処理2」における「サブルーチン2」の詳細を示すフローチャートである。この処理は、UVスペクトルの一致度を計算する。
 ステップS2001では、「x←U1、y←U2、z←0」の処理が実行される。この処理では、図99のS302とS304で取得したUVスペクトルU1及びU2をそれぞれxとyに代入し、さらにUVスペクトル間の距離の二乗和(z)の初期値として0を代入し、ステップS2002へ移行する。
 ステップS2002では、「xデータ数を取得(a)」の処理が実行される。この処理では、xのデータ数をaとして取得し、ステップS2003へ移行する。
 ステップS2003では、UVスペクトルU1を構成する各検出波長における吸光度をxから順番に呼び出すための初期値としてiに1を代入し、ステップS2004へ移行する。
 ステップS2004では、「xi番目のデータを取得(b)」の処理が実行される。この処理では、UVスペクトルU1を代入したxのi番目の吸光度データをbとして取得し、ステップS2005へ移行する。
 ステップS2005では、「yi番目のデータを取得(c)」の処理が実行される。この処理では、UVスペクトルU2を代入したyのi番目の吸光度データをcとして取得し、ステップS2006へ移行する。
 ステップS2006では、「UVスペクトル間距離(d)とUVスペクトル間距離の二乗和(z)を算出」の処理が実行される。この処理では、UVスペクトル間距離dとUVスペクトル間距離の二乗和zを、
 d = b-c
 z = z+d2
として算出し、ステップS2007へ移行する。
 ステップS2007では、「iの更新(i←i+1)」の処理が実行される。この処理では、iの更新としてiにi+1を代入し、ステップS2008へ移行する。
 ステップS2008では、「xの全データで処理終了?」の判断処理が実行される。この処理では、xとyの全てのデータの処理が終了したか否かが判断される。終了している(YES)場合は、xとyの全データの処理が終了したと判断し、ステップS2009へ移行する。終了していない(NO)場合は、xとyに未処理のデータが残っていると判断し、ステップS2004へ移行する。つまり、S2004~S2008までの処理はxとyの全ての吸光度データが処理されるまで繰り返す。
 ステップS2009では、「xとyのUVスペクトルの一致度を計算(UV_Sim)」の処理が実行される。この処理では、UV_Simを、前記UVスペクトル間距離の二乗和zとxのデータ数aから、
 UV_Sim = √(z/a)
として算出し、このUV_Simを図99のステップS306に渡し、UVスペクトルの一致度計算処理を終了する。
[サブルーチン3]
 図105は、図99の「対象FP帰属処理2」における「サブルーチン3」の詳細を示すフローチャートである。この処理は、ピーク・パターンの一致度を計算する。
 ステップS3001では、「ピーク・パターン構成候補数(m)とピーク・パターン構成ピーク数(n)を設定」の処理が実行される。この処理では、ピーク・パターンを網羅的に作成するための設定として、ピーク・パターン構成候補数(m)とピーク・パターン構成ピーク数(n)をそれぞれ設定し、ステップS3002へ移行する。
 ステップS3002では、「x←対象FP名、r1←R1、p1←P1、y←基準FP名、r2←R2、p2←P2」の処理が実行される。この処理では、処理に必要とする対象FP及び基準FPのファイル名ならびに図99のS302とS304で取得したリテンション・タイム及びピーク・データをそれぞれx、r1、p1とy、r2、p2に代入し、ステップS3003へ移行する。
 ステップS3003では、「xの全リテンション・タイムを取得(a)」の処理が実行される。この処理では、S3002でxに代入した名前のファイル(対象FP)を読み込み、そのファイルの全リテンション・タイムをaとして取得し、ステップS3004へ移行する。
 ステップS3004では、「yの全リテンション・タイムを取得(b)」の処理が実行される。この処理では、S3002でyに代入した名前のファイル(基準FP)を読み込み、そのファイルの全リテンション・タイムをbとして取得し、ステップS3005へ移行する。
 ステップS3005では、「aからr1のピーク・パターン構成候補ピークm本のリテンション・タイム(cm)及びピーク・データ(dm)を取得」の処理が実行される。この処理では、aから帰属対象ピークのリテンション・タイムであるr1のピーク・パターン構成候補ピークm本のリテンション・タイムをcm、ピーク・データをdmとしてそれぞれ取得し、ステップS3006へ移行する。なお、ピーク・パターン構成候補ピークm本は、r1とリテンション・タイムが近いm本である。
 ステップS3006では、「bからr2のピーク・パターン構成候補ピークm本のリテンション・タイム(em)及びピーク・データ(fm)を取得」の処理が実行される。この処理では、bから帰属候補ピークのリテンション・タイムであるr2のピーク・パターン構成候補ピークm本のリテンション・タイムをem、ピーク・データをfmとしてそれぞれ取得し、ステップS3007へ移行する。なお、ピーク・パターン構成候補ピークm本は、r2とリテンション・タイムが近いm本である。
 ステップS3007では、「cm、dmをリテンション・タイム順(昇順)に並べる」の処理が実行される。この処理では、S3005で取得したcmとdmをリテンション・タイムが昇順になるように並び替え、ステップS3008へ移行する。
 ステップS3008では、「em、fmをリテンション・タイム順(昇順)に並べる」の処理が実行される。この処理では、S3006で取得したemとfmをリテンション・タイムが昇順になるように並び替え、ステップS3009へ移行する。
 ステップS3009では、「cm、dmからピーク・パターン構成ピークn本のリテンション・タイム(cn)及びピーク・データ(dn)を順番に取得」の処理が実行される。この処理では、ピーク・パターン構成候補ピークm本のcm及びdmからピーク・パターン構成ピークn本のリテンション・タイムをcn、ピーク・データをdnとして順番に取得し、ステップS3010へ移行する。
 ステップS3010では、「em、fmからピーク・パターン構成ピークn本のリテンション・タイム(en)及びピーク・データ(fn)を順番に取得」の処理が実行される。この処理では、ピーク・パターン構成候補ピークm本のem及びfmからピーク・パターン構成ピークn本のリテンション・タイムをen、ピーク・データをfnとして順番に取得し、ステップS3011へ移行する。
 ステップS3011では、「ピーク・パターンの一致度を計算(P_Sim)」の処理が実行される。この処理では、これまでに取得した帰属対象ピークのr1とp1及びそのピーク・パターン構成ピークn本のcnとdn、ならびに帰属候補ピークのr2とp2及びそのピーク・パターン構成ピークn本のenとfnから、ピーク・パターンの一致度(P_Sim)を、n=4の場合を例とすると、図66中のように
 P_Sim= (|p1-p2|+1)×(|(r1-(r2+d)|+1)
        +(|dn1-fn1|+1)×(|(cn1-r1)-(en1-r2)|+1)
         +(|dn2-fn2|+1)×(|(cn2-r1)-(en2-r2)|+1)
         +(|dn3-fn3|+1)×(|(cn3-r1)-(en3-r2)|+1)
       +(|dn4-fn4|+1)×(|(cn4-r1)-(en4-r2)|+1)
として算出し、ステップS3012へ移行する。
 ステップS3012では、「P_Simを保存(P_Sim_all)」の処理が実行される。この処理では、S3011で算出されたP_Simを順次P_Sim_allに保存し、ステップS3013へ移行する。
 ステップS3013では、「em中のm本からn本を取り出す全組み合わせ終了?」の判断処理が実行される。この処理では、帰属候補ピークのピーク・パターン構成候補ピークm本からピーク・パターン構成ピークn本を取り出す全組み合わせで処理が終了したか否かが判断される。終了した(YES)場合は、帰属候補ピークにおいて、網羅的なピーク・パターンの作成とそのパターンにおける一致度の計算が終了したと判断し、ステップS3014へ移行する。終了していない(NO)場合は、m本からn本を取り出す組み合わせが終了していないと判断し、ステップS3010へ移行する。つまり、S3010~S3013までの処理はm本からn本を取り出す全組み合わせで処理が終了するまで繰り返す。
 ステップS3014では、「cm中のm本からn本を取り出す全組み合わせ終了?」の判断処理が実行される。この処理では、帰属対象ピークのピーク・パターン構成候補ピークm本からピーク・パターン構成ピークn本を取り出す全組み合わせで処理が終了したか否かが判断される。終了した(YES)場合は、帰属対象ピークにおいて、網羅的なピーク・パターンの作成とそのパターンにおける一致度の計算が終了したと判断し、ステップS3015へ移行する。終了していない(NO)場合は、m本からn本を取り出す組み合わせが終了していないと判断し、ステップS3009へ移行する。つまり、S3009~S3014までの処理はm本からn本を取り出す全組み合わせで処理が終了するまで繰り返す。
 ステップS3015では、「P_Sim_allから最小値を取得(P_Sim_min)」の処理が実行される。この処理では、S3012で保存したP_Sim_allの最小値をP_Sim_minとして取得し、このP_Sim_minを図99のステップS307に渡し、ピーク・パターンの一致度計算処理を終了する。
[S6:対象FPタイプ2の作成処理]
 図106は、図93ステップS6の「FP_type2作成」の詳細を示すフローチャートである。
 ステップS601では、「対象FPを読み込む」の処理が実行される。この処理では、前記対象FP43(図119のFPのデータ例187参照)のファイルを読み込み、ステップS602へ移行する。
 ステップS602では、「ピーク・データ特徴量ファイルを読み込む」の処理が実行される。この処理では、前記対象FP43に関し、ピーク・データ特徴量のファイル(図124のピーク・データ特徴量のファイル例199参照)を読み込み、ステップS603へ移行する。ピーク・データ特徴量ファイル例は、前記対象FPピーク特徴量作成部7により、基準群FP45のピークに帰属された対象FP43のピーク情報を含んでいる。
 ステップS603では、「対象FPとピーク・データ特徴量ファイルを比較」の処理が実行される。この処理では、対象FP43のファイルとピーク・データ特徴量ファイルとが比較される。この比較により、基準群FP45のピークに帰属されなかった対象FP43の残存ピークが特定され、ステップS604へ移行する。
 ステップS604では、「対象FPのみに存在するピークのリテンション・タイムとピーク・データを出力」の処理が実行される。この処理では、対象FP43の残存ピークのリテンション・タイムとピーク・データとが、対象FPタイプ2のデータ・ファイル(図125の基準及び対象FPタイプ2のデータ例201参照)に出力される。
[S7:領域分割による対象FP_type2の特徴量化処理]
 図107は、図94ステップS7の「領域分割による対象FP_type2の特徴量化処理」の詳細を示すフローチャートである。
 ステップS701では、「FP空間の領域分割条件の設定」の処理が実行される。この処理では、対象FPタイプ2の領域を分割するため、縦・横の線(分割線)1本目の位置がそれぞれ1個設定される。この設定により、FP空間に対し、例えば図76、図77のように、縦・横分割線(1本目)が分割線として設定される。但し、対象FPタイプ2の場合、領域の位置変更はないので、振幅は関係しない。ステップS701で縦・横分割線(1本目)が設定されるとステップS702へ移行する。
 ステップS702では、「FP空間の領域分割パターンの作成」の処理が実行される。この処理では、縦・横分割線1本目の全組み合わせで2本目以降の分割線の位置が設定され、分割パターン(1個)が作成される。この処理により、FP空間に対し、例えば図78のように、縦・横分割線による領域分割が行われる。領域分割が行われるとステップS703へ移行する。
 ステップS703では、「対象FP_type2のファイルを読み込む」の処理が実行され
る。この処理により、対象FPタイプ2のファイルが読み込まれ、ステップS704へ移行する。
 ステップS704では、「FP空間全体の総ピーク・データを算出」の処理が実行される。この処理では、例えば、図79のように分割された各格子145全てに存在するピークの高さ合計が算出され(図81)、ステップS705へ移行する。
 ステップS705では、「FP空間を分割パターンで分割」の処理が実行される。、この処理では、S702で設定された領域分割パターンによりS703で読み込まれた対象FPタイプ2を図79のように領域分割し、ステップS706へ移行する。
 ステップS706では、「分割された領域内でのピーク・データの存在割合を算出」の処理が実行される。この処理では、各格子145内でのピーク存在割合が前記特徴量=領域内ピーク高さ合計/全ピーク高さ合計として算出される。算出結果は、図86のようになる。算出が終了するとステップS707へ移行する。
 ステップS707では、「各領域の存在割合を特徴量として出力」の処理が実行される。この処理では、1通りでの対象FP領域分割特徴量ファイル(図126で示す1通りでの対象FP領域分割特徴量ファイル例203参照)が出力される。
[S8:ピーク・データ特徴量と領域分割特徴量の統合]
 図108は、図94ステップS8の「ピーク・データ特徴量と領域分割特徴量の統合」の詳細を示すフローチャートである。
 ステップS801では、「ピーク・データ特徴量ファイルを読み込む」の処理が実行される。この処理により、図124で示すピーク・データ特徴量のファイル例199と同様のファイルが読み込まれ、ステップS802へ移行する。
 ステップS802では、「領域分割特徴量ファイルを読み込む」の処理が実行される。この処理により、図126で示す対象FP領域分割特徴量ファイル203が読み込まれ、ステップS803へ移行する。 ステップS803では、「2つの特徴量データを横1行のデータとして統合」の処理が実行される。この処理により、ピーク・データ特徴量のファイル(図124で示すピーク・データ特徴量のファイル例199参照)及び対象FP領域分割特徴量ファイル(図126で示す対象FP領域分割特徴量ファイル例203参照)が一行のである対象FP特徴量統合ファイル(図127の対象FP特徴量統合ファイル例205参照)として統合され、ステップS804へ移行する。
 ステップS804では、「統合したデータを出力」の処理が実行される。この処理では、図127の対象FP特徴量統合ファイル205が出力される。
[基準FP帰属結果特徴量統合ファイルの作成]
 対象FP特徴量統合データを基準FP特徴量統合データと比較するための基準FP特徴量統合ファイルは、図109~図116のように作成される。
 図109、図110は、基準FP特徴量統合ファイルを作成するためのフローチャートであり、基準FP作成部31のFP作成機能と、基準FPピーク帰属部15の基準FPピーク帰属機能と、基準FP帰属結果統合部17の基準FP帰属結果統合機能と、基準FPピーク特徴量作成部19の基準FPピーク特徴量作成機能と、基準FPタイプ2作成部21の基準FPタイプ2作成機能と、基準FP領域分割特徴量作成部23の基準FP領域分割特徴量作成機能と、基準FP特徴量統合部25の基準FP特徴量統合機能とをコンピュータに実現させる。
 基準FP作成機能は、ステップS10001で実現される。基準FPピーク帰属機能は、ステップS10002、S10003、S10004で実現される。基準FP帰属結果統合機能は、ステップS10005で実現される。基準FPピーク特徴量作成機能は、ステップS10006で実現される。基準FPタイプ2作成機能は、ステップS10007で実現される。基準FP領域分割特徴量作成機能は、ステップS10008で実現される。基準FP特徴量統合機能は、ステップS10009で実現される。
 S10001~S10004は、図93、94の対象FP特徴量統合ファイルの作成に係るS1~S4に対応し、S1007~S10009は、同S6~S8に対応している。
 ステップS10001は、3Dクロマト及び特定の検出波長におけるピーク情報を入力データとして「FP作成処理」が実行される。
 3Dクロマト及びピーク・データ共に、評価基準となる複数の評価基準薬剤(基準漢方薬)ごとに備えられている。
 ステップS10001では、コンピュータのFP作成部3の基準FP作成部31(図1)が機能し、3Dクロマト及びピーク情報から基準FPが対象FP43(図2)と同様に作成され、基準FPのデータがファイルとして出力される。
 ステップS10002は、ステップS10001で出力した全基準FPを入力として、「基準FP帰属処理1」が実行される。
 ステップS10002では、コンピュータの基準FPピーク帰属部15が機能し、全基準FPを対象とし、選択した組み合わせ且つ順番で帰属スコアを算出するために全基準FPから組み合わせを選択してステップS10003へ移行する。
 ステップS10003は、選択した基準FPの組み合わせを入力とし、「基準FP帰属処理2」が実行される。
 ステップS10003では、ステップS2で選定した基準FPの組み合わせの全ピークで、図23~図61のように網羅的にピーク・パターンを作成し、次にそれらピーク・パターンの一致度(図63または図64のP_Sim)を算出する。また、選定した基準FPの組み合わせのピーク間でUVスペクトルの一致度(図66のUV_Sim)を算出する。さらにこれら2つの一致度から帰属候補ピークの一致度(図67のSCORE)を算出する。その算出結果は、判定結果ファイル(図120の判定結果ファイル例189参照)として出力される。
 ステップS10004は、ステップS10003で出力した判定結果ファイルを入力とし、「基準FP帰属処理3」が実行される。
 ステップS10004では、選定した基準FPの組み合わせ間で、帰属候補ピークの一致度(SCORE)をもとに選定した基準FPの組み合わせ間で対応するピークを特定する。その結果は、基準FPごとに基準FP帰属データとして出力される。
 ステップS10005は、ステップS10004で出力した全基準FP帰属データを入力とし、「基準FP帰属結果統合処理」が実行される。
 ステップS10005では、コンピュータの基準FP帰属結果統合部17が機能し、、基準FPピーク帰属部15で特定した各基準FPのピーク対応関係を参照し、全基準FP帰属データを統合して基準FP対応表を作成し、ステップS10006へ移行する。ステップS10006では、コンピュータの基準FPピーク特徴量作成部19が機能し、基準FP帰属結果統合部17で作成された基準FP対応表を基に全基準FPによるピーク特徴量(基準群FP)を作成する。この基準FPピーク特徴量作成部19での処理は、基準FP対応表の各ピーク(列)で統計量(最大値、最小値、中央値、平均値、etc)を算出し、その情報を基にピーク(列)を選定する。選定したピーク(列)は、基準群FP(図123の基準群FP例197参照)として出力される。
 ステップS10007は、ステップS10006で出力した基準群FPと全基準FPとを入力とし、「FP_type2の作成」の処理が実行される。
 ステップS10007では、コンピュータの基準FPタイプ2作成部21が対象FPタイプ2作成部9と同様に機能し、図93のステップS6と同様にして、複数の各基準FPから前記特徴量化されたピークをそれぞれ除いて残ったピークとそのリテンション・タイムとで構成されるFPを基準FPタイプ2としてそれぞれ作成する(図125のFPタイプ2ファイル例201参照)。
 ステップS10008では、「基準FP_type2の特徴量化処理」が実行される。この処理では、コンピュータの基準FP領域分割特徴量作成部23が機能し、図73~図85の領域分割により、基準FP領域分割特徴量が作成される。その結果は、基準type2群FP(図128の基準type2群FP例207参照)として出力される。
 ステップS10009では、「基準データ作成処理」の処理が実行される。この処理では、コンピュータの基準FP特徴量統合部25が機能し、基準FPピーク特徴量作成部19で作成された基準群FPと基準FP領域分割特徴量作成部23で作成された基準type2群FPとを統合して全基準FPの特徴量データを作成する。その結果は、基準群統合データ(図129の基準群統合データ例209参照)として出力される。
[S10005:基準FP対応表の作成]
 図111、図112は、図110ステップS10005の「基準FP帰属結果統合処理(基準FP対応表の作成)」の詳細を示すフローチャートである。
 ステップS10101では、「帰属順番1番の帰属データを統合データとして読み込む」の処理が実行される。この処理では、S10004で1番目に帰属処理しピークの対応関係を特定した基準FP帰属データを統合データとして読み込み、ステップS10102へ移行する。
 ステップS10102では、「帰属データ2番目以降を順番に読み込む」の処理が実行される。この処理では、まずS10004で2番目に帰属処理しピークの対応関係を特定した基準FP帰属データを統合データのとして読み込み、ステップS10103へ移行する。
 ステップS10103では、「統合データと帰属データを共通するピーク・データで統合」の処理が実行される。この処理では、統合データと帰属データで共通に存在する基準FPのピーク・データをもとに2つのファイルを統合し、その結果で統合データを更新し、ステップS10104へ移行する。
 ステップS10104では、「帰属データ中の全てのピークを統合データに追加?」の判断処理が実行される。この処理では、帰属データの全てのピークが統合データに追加されたか否かが判断される。追加された(YES)場合は、ステップS10105へ移行する。追加されていないピーク(欠落ピーク)がある(NO)場合は、この欠落ピークを統合データに追加処理するため、ステップS10107へ移行する。尚、欠落ピークの統合データへの追加処理(S10107-S10120)は、前記S5(対象FP帰属処理4)におけるステップS504-S517と同様の処理が行われる。
 ステップS10121では、「統合データにTEMP2のデータを追加(全てのリテンション・タイムとピーク)」の処理が実行される。この処理では、TEMP2の全てのリテンション・タイム(R3)とピーク(P1)を統合データの該当箇所に追加し、ステップS10122へ移行する。
 ステップS10122では、「閾値2 ← 初期値、TEMP2内のデータを全て削除」の処理が実行される。この処理では、UV_Simに更新されている閾値2を初期値に戻し、全欠落ピークのリテンション・タイムやピークなどのデータが入ったTEMP2から全てのデータを削除し、ステップS10104へ戻る。
 ステップS10104から移行するステップS10105では、「全ての帰属データの処理終了?」の判断処理が実行される。この処理では、全基準データの処理が終了したか否かが判断される。処理が終了(YES)の場合は、全帰属データの統合結果である基準FP対応表を出力するため、ステップS10106へ移行する。全ての処理が終了していない(NO)の場合は、ステップS10102へ戻り、残りの帰属データを順次処理する。
 ステップS10106では、「統合データを出力(基準FP対応表)」の処理が実行される。この処理では、全帰属データを統合した結果を基準FP対応表として出力し、基準FP対応表の作成処理を終了する。
[S10006:ピーク特徴量化処理]
 図113は、図109ステップS10006の「ピーク特徴量化処理(基準群FPの作成)」の詳細を示すフローチャートである。
 ステップS10201では、「基準FP対応表を読み込む」の処理が実行される。この処理では、S10005で作成した基準FP対応表を読み込み、ステップS10202へ移行する。
 ステップS10202では、「各ピーク(列)で統計量を算出」の処理が実行される。この処理では、基準FP対応表の各ピーク(列)で統計量(最大値、最小値、中央値、平均値、分散、標準偏差、存在数、存在率)を算出し、ステップS10203へ移行する。
 ステップS10203では、「算出した統計量を参考にピーク(列)を選定」の処理が実行される。この処理では、S10102で算出した統計量を参考にピークを選定し、ステップS10204へ移行する。
 ステップS10204では、「選定したピーク(列)を出力(基準群FP)」の処理が実行される。この処理では、統計量によりピーク(列)の選定結果を基準群FPとして出力し、基準群FPの作成処理を終了する。
 図123に前記のように出力する基準FP対応表例197を示す。
[S10007:基準FPタイプ2の作成処理]
 図114は、図110ステップS10007の「基準FP編集処理(基準FP_type2
の作成)」の詳細を示すフローチャートである。
 ステップS10301では、「基準FPを順番に読み込む」の処理が実行される。この処理では、複数の基準FPのファイル(図119のFPのデータ例187参照)を読み込み、ステップS10302へ移行する。
 ステップS10302では、「基準群FPを読み込む」の処理が実行される。この処理では、基準群FPのデータ・ファイル(図123の基準群FPのデータ例197参照)が読み込まれ、ステップS10303へ移行する。
 ステップS10303では、「基準群FPから基準FPのピーク・データ特徴量を取り出す」の処理が実行される。この処理では、基準群FP45のファイルから基準FPの帰属処理されたピーク・データ特徴量を取り出し、ステップS10304へ移行する。
 ステップS10304では、「基準FPと取り出したピーク・データ特徴量ファイルを比較」の処理が実行され、基準FPがピーク・データ特徴量ファイルと比較され、ステップS10305へ移行する。
 ステップS10305では、「基準FPのみに存在するピークのリテンション・タイムとピーク・データを出力」の処理が実行され、基準FPからピーク・データ特徴量ファイルのピークが除かれて、ステップS10306へ移行する。
 ステップS10306では、「全基準FPで処理終了?」の判断処理が実行される。この処理では、全基準FPで処理終了したときは(YES)、S10007は終了し、全基準FPで処理終了していなければ(NO)、S10301-S10305が繰り返される。したがって、複数の基準FPが順に処理され、各基準FPからピーク・データ特徴量ファイルのピークが除かれて基準FPタイプ2のファイル(図125に示す対象及び基準FPタイプ2のデータ例201参照)が作成される。
[S10008:領域分割による基準FP_type2の特徴量化処理]
 図115は、図110ステップS10008の「領域分割による基準FP_type2の特徴量化処理」の詳細を示すフローチャートである。
 ステップS10401では、「FP空間の領域分割条件の設定」の処理が実行される。この処理では、基準FPタイプ2の領域を分割するため、縦・横の線(分割線)1本目の位置がそれぞれ複数個設定される。この設定により、FP空間に対し、例えば図76、図77のように、縦・横分割線(1本目)141、143が分割線として複数個設定される。縦・横分割線(1本目)141、143が複数個設定されるとステップS10402へ移行する。
 ステップS10402では、「FP空間の領域分割パターンの設定」の処理が実行される。この処理では、縦・横分割線1本目の全組み合わせで各2本目以降の分割線の位置が設定され、分割パターン(m×n個)が作成される。この設定により、FP空間に対し、例えば図78のように、縦・横分割線141、143による領域分割のパターンが複数設定される。領域分割が行われるとステップS10403へ移行する。
 ステップS10403では、「基準FP_type2のファイルを順番に読み込む」の処理が実行される。この処理により、基準FPタイプ2のファイルが読み込まれ、ステップS10404へ移行する。
 ステップS10404では、「FP空間全体の総ピーク・データを算出」の処理が実行される。この処理では、例えば、図79のように分割された各格子145全てに存在するピークの高さ合計が算出され(図81)、ステップS10405へ移行する。
 ステップS10405では、「FP空間を各分割パターンで順番に分割」の処理が実行される。この処理では、S10402で設定された複数の領域分割パターンでFP空間が順次分割され、ステップS10406へ移行する。
 ステップS10406では、「分割された領域内でのピーク・データの存在割合を算出」の処理が実行される。この処理では、例えば、図79のように分割された各格子145全てに存在するピークの高さ合計が算出され(図81)、図79の各格子145内でのピーク存在割合が前記特徴量=領域内ピーク高さ合計/全ピーク高さ合計としてされる。算出結果は、例えば図83~図85のようになる。算出が終了するとステップS10408へ移行する。
 ステップS10408では、「全分割パターンで分割終了」の処理が実行される。この処理では、S10402で設定された複数の全領域分割パターンでの特徴量処理が終了したか否かの判断が行われる。特徴量処理が終了すれば(YES)、ステップS10409へ移行し、特徴量処理が終了していなければ(NO)、ステップS10405へ移行する。S10405~S10408は、全領域分割パターンでの特徴量処理が終了するまで繰り返される。
 ステップS10409では、「全基準FP_type2で処理終了?」の判断処理が実行される。この処理では、複数の基準FPごとに作成された複数の基準FPタイプ2の全てにおいて特徴量処理が終了したか否かの判断が行われる。全基準FPタイプ2が終了すれば(YES)、S10008は終了し、全基準FPタイプ2が終了していなければ(NO)、ステップS10403へ移行する。S10403~S10409は、基準FPタイプ2での特徴量処理が終了するまで繰り返される。
 図128に、基準type2群FP例207を示す。
[S10009:基準データ作成処理]
 図116は、図110ステップS10009の「基準データの作成処理」の詳細を示すフローチャートである。
 ステップS10501では、「領域分割特徴量ファイルを読み込む」の処理が実行される。この処理により、基準FP領域分割特徴量ファイル(図128で示す基準type2群FP例207参照)が読み込まれ、ステップS10502へ移行する。
 ステップS10502では、「領域分割した際の分割パターン数を算出」の処理が実行される。この処理により、領域分割の分割パターン数が算出される。分割パターン数は、図70~図80での説明のように、例えば100通りと算出される。この算出後にステップS10503へ移行する。
 ステップS10503では、「基準群FPを読み込む」の処理が実行され、基準群FPが読み込まれてステップS10504へ移行する。
 ステップS10504では、「基準群FPの各行を分割パターン数分複製したファイル(基準群FP2)を作成」の処理が実行される。この処理では、基準群FPと領域分割特徴量ファイルとを統合するために基準群FPの行を分割パターン数に合わせて複製し、基準群FP2を作成する。例えば、図123の基準群FPのファイル例197を、図129の基準群統合データ例209のピーク・データ特徴量(基準群FP2)と対応するように複製する。この複製後に、ステップS10505へ移行する。
 ステップS10505では、「基準群FP2と領域分割特徴量ファイルを行ごとに統合」の処理が実行される。この処理では、S10504で複製された基準群FP2のデータと領域分割特徴量ファイルのデータとが行ごとに統合され、ステップS10506へ移行する。
 ステップS10506では、「統合したデータを出力」の処理が実行される。この処理では、統合結果による基準FP特徴量統合ファイル(図129の基準群統合データ例209参照)が出力される。
[実施例1の効果]
 本発明実施例1の多成分物質の評価方法では、前記FP作成工程148と、対象FPピーク帰属工程149と、対象FPピーク特徴量作成工程151と、対象FPタイプ2作成工程153と、対象FP領域分割特徴量作成工程155と、対象FP特徴量統合工程157と、基準FPピーク帰属工程159と、基準FP帰属結果統合工程161と、基準FPピーク特徴量作成工程163と、基準FPタイプ2作成工程165と、基準FP領域分割特徴量作成工程167と、基準FP特徴量統合工程169と、評価工程171とを備えている。
 前記FP作成工程148は、前記対象FP作成工程173と、基準FP作成工程175とを備えている。
 前記対象FPピーク帰属工程149は、前記基準FP選定工程177と、ピーク・パターン作成工程179と、ピーク帰属工程181とを備えている。
 評価対象となる多成分薬剤の3Dクロマト41をこれら7工程(178、149、151、153、155、157、171)で処理することで、評価対象薬剤の品質評価の精度及び効率をより向上させることができる。
 特に、対象FP43と複数の基準FPとに基づき特徴量化された対象FPピーク特徴量を作成し、この特徴量化から漏れた対象FP43の残存ピークとして対象FPタイプ2を作成し、この対象FPタイプ2を複数の領域に分割し各領域に存在するピークの存在率から対象FP領域分割特徴量を作成し、対象FPピーク特徴量及び対象FP領域分割特徴量を統合して対象FP統合特徴量を作成し、対象FP統合特徴量とこの対象FP統合特徴量に対応し評価基準となる多成分物質の複数の基準FPに基づく基準FP統合特徴量とを比較評価するため、対象FPピーク特徴量に含まれなかった対象ピークのピークをも含めて評価することができ、評価対象薬剤の品質評価の精度を確実に向上させることができる。
 対象FP作成工程173で作成された対象FP43は、3Dクロマト41と同様に三次元の情報(ピーク、リテンション・タイム及びUVスペクトル)で構成している。そのため、その薬剤特有の情報をそのまま継承したデータである。それにも係らず、データ容量は約1/70に圧縮されているため、3Dクロマト41に比較して、処理すべき情報量を大幅に減少させることができ処理速度を速めることができる。
 対象FP作成工程173は、検出波長の異なる複数のFPを合成したFPを作成する。これにより、1つの波長で全ての成分を検出できない成分が組み合わさった多成分薬剤であっても、複数の検出波長のFPを合成することで、全ての成分を含んだ品質評価が可能となる。
 対象FP作成工程173は、3Dクロマトで検出された全ピークを含んだFPを作成する。このため、多成分薬剤である漢方薬の品質評価に適している。
 基準FP選定工程177では、対象FPの帰属に適した基準FPをFP間のリテンション・タイム・出現パターンを比較し、パターンの一致度が良い基準FP選定する。これにより、ピーク帰属工程181において、パターンが類似したFP間で帰属処理ができるため、精度の高い帰属が可能となる。
 ピーク・パターン作成工程179では、帰属対象ピーク及び帰属候補ピークそれぞれで複数の周辺ピークを使って網羅的にピーク・パターンを作成する。これにより、対象FPと基準FPでFP全体のパターンが多少異なっていても、ピーク帰属工程181で精度の高い帰属が可能となる。
 ピーク帰属工程181では、ピーク・パターン作成工程179で作成されたピーク・パターンの一致度に加え、帰属対象ピークと帰属候補ピークのUVスペクトルの一致度も加味して、帰属すべきピークを特定している。そのため、精度の高い帰属が可能となる。 
 ピーク帰属工程181では、対象FPの全ピークを基準FPのピークへ一斉帰属する。そのため、効率のよい帰属処理が可能となる。
 評価工程171では、多次元データである多成分で構成されたFPをMT法でMD値として1次元に集約し、複数の評価対象ロットを簡単に比較評価する。このため、複数の成分で構成される多成分系薬剤の評価に適している。 
 対象FP領域分割特徴量作成工程155は、シグナル強度軸に平行な複数の縦分割線141と時間軸に平行な複数の横分割線143とにより前記領域の分割を行う。
 このため、領域分割を簡素化し、処理速度を速めることができる。
 複数の横分割線143は、シグナル強度が増大する方向へ等比間隔で設定された。
 このため、ピーク密度の高い部分で領域を細分化することができ、領域分割によるピーク存在率の算出を効率的に行わせることができる。
 多成分物質の評価方法は、さらに前記基準FP作成工程175と、基準FPピーク帰属工程159と、基準FP帰属結果統合工程161と、基準FPピーク特徴量作成工程163と、基準FPタイプ2作成工程165と、基準FP領域分割特徴量作成工程167と、基準FP特徴量統合工程169とを備えた。
 このため、基準FPピーク特徴量と基準FP領域分割特徴量とを統合した基準FP統合特徴量を作成し、評価工程171です対象FP統合特徴量と比較することができ、評価対象薬剤の品質評価の精度及び効率をより向上させることができる。
 基準FP領域分割特徴量作成工程167は、各領域の位置を変更し変更前後で基準FP領域分割特徴量を作成することができる。
 このため、分析条件の僅かなバラツキ等により、リテンション・タイムやピーク高さが変動し、単一パターンでは各格子145内の値が大きく変動する場合でも、この変動に係わらず各格子145内のピークの存在量を捉えることができ、評価対象薬剤の品質評価の精度及び効率をより向上させることができる。
 基準FP領域分割特徴量作成工程167は、シグナル強度軸に平行な複数の縦分割線141と時間軸に平行な複数の横分割線143とにより前記領域の分割を行う。
 このため、領域分割を簡素化し、処理速度を速めることができる。
 複数の横分割線143は、シグナル強度が増大する方向へ等比間隔で設定された。
 このため、ピーク密度の高い部分で領域を細分化することができ、領域分割によるピーク存在率の算出を効率的に行わせることができる。
 基準FP領域分割特徴量作成工程167は、各縦・横分割線141、143を設定範囲内で平行移動させるように位置を変更設定することで各領域145の位置を変更する。
 このため、各領域145の位置変更を簡単な処理で効率的に行わせることができる。
 本発明実施例の多成分薬剤の評価プログラムは、各機能をコンピュータに実現させ、評価の精度及び効率をより向上させることができる。
 本発明実施例の多成分薬剤の評価装置は、各部3、5、7、9、11、13、15、17、19、21、23、25、27を作用させ、評価の精度及び効率をより向上させることができる。
[ピーク・パターンの一致度計算(P_Sim)の変形例]
 図63、図64、図105でのピーク・パターンの一致度計算(P_Sim)は、FPをピーク高さで作成した上記実施例の場合について適用し、比較対象のピーク高さの差に基づいて計算した。
 一方、本発明のパターン又はFPの特徴量作成方法、作成プログラム、及び作成装置おけるピークについては、上記のようにシグナル強度(高さ)の極大値を意味する場合と、シグナル強度の面積値(ピーク面積)を高さで表現したものを意味する場合の何れも含めることができる。
 この場合、FPをピーク面積で作成するときも、面積値を高さで表現してFPを作成するため、FPとしては上記実施例のピーク高さで作成する場合と同様の表現となる。このため、FPをピーク高さで作成した場合と同様の上記実施例の処理により同様に評価することができる。
 但し、FPをピーク面積で作成したときは、比較対象のピーク値の差が大きくなるため、比に基づいた計算とし、取り扱いを容易とするのが適している。
 以下に、比に基づいて計算するピーク・パターンの一致度(P_Sim)を、n=2、n=4の場合を例として示す。
n=2の場合 
 P_Sim= (p1/p2♯1)×(|(r1-(r2+d)|+1)
        +(dn1/fn1♯1)×(|(cn1-r1)-(en1-r2)|+1)
         +(dn2/fn2♯1)×(|(cn2-r1)-(en2-r2)|+1)
n=4の場合 
 P_Sim= (p1/p2♯1)×(|(r1-(r2+d)|+1)
         +(dn1/fn1♯1)×(|(cn1-r1)-(en1-r2)|+1)
          +(dn2/fn2♯1)×(|(cn2-r1)-(en2-r2)|+1)
          +(dn3/fn3♯1)×(|(cn3-r1)-(en3-r2)|+1)
        +(dn4/fn4♯1)×(|(cn4-r1)-(en4-r2)|+1)
 ここに、#1は、比較対象の2つの値の比(大きい値/小さい値) であることを示している。
 なお、FPをピーク高さで作成した場合にも、比に基づいてピーク・パターンの一致度(P_Sim)を計算することができ、FPをピーク面積で作成した場合にも、上記ピーク高さの差同様に、ピーク面積値の差に基づいてピーク・パターンの一致度(P_Sim)を得ることができる。
[サブルーチン2の変形例]
 図130は、図104に代えて適用するサブルーチン2の変形例に係り、図99の「対象FP帰属処理2」における「サブルーチン2」の変形例の詳細を示すフローチャートである。この変形例に係る処理により、UVスペクトルの一致度を計算する。
 本サブルーチン2の変形例では、図104のサブルーチン2でのRMSDにUVパターンの移動平均の傾き情報(DNS)を加味する処理ができるようにした。DNSは、後述の式で表わされ、UVパターンにおける移動平均値の移動傾きを2つのパターンで比較した時の傾き符号( +/- )の不一致数として定義される。すなわち、DNSは、UVパターンの極大、極小値の位置の一致具合を評価する値である。
 このDNSの情報を前記RMSDに加味することで、UVスペクトルの波形の一致度をより正確に算出することができる。
 図130の変形例に係るサブルーチン2において、ステップS2001~S2008までは、図104のサブルーチン2とほぼ同一である。但し、ステップS2001では、区間1←w1、区間2←w2の初期設定が追加して行われ、後述する移動平均、移動傾きの計算の区間に用いられる。
 本変形例のサブルーチン2では、DNS加味のためにステップS2010~S2013を追加し、ステップS2009AでDNSを加味した一致度の計算を可能とした。
 ステップS2010では、「DNSを加味する?」の判断処理が実行され、DNSを加味すると判断されたときは(YES)、ステップS2011へ移行し、DNSを加味しないと判断されたときは(NO)、ステップS2009Aへ移行する。DNSを加味するか否かの起因は、例えば初期の設定による。例えば、FPを、ピーク面積で作成したときはDNS加味、FPをピーク高さで作成したときは、DNS非加味に設定する。
 但し、FPをピーク高さで作成した上記実施例の場合にも、DNSを加味する処理でUVパターン一致度を計算することができ、FPをピーク面積で作成した場合にも、DNSを加味しない上記実施例の処理でUVパターン一致度を計算することができる。
 ステップS2011では、「区間1(w1)でxとyの移動平均を計算」の処理が実行され、区間1(w1)における移動平均が求められる。区間1(w1)は、UVデータの波長に関する区間であり、ステップS2001の初期設定においてw1=3であれば区間1(3)となり、3個の波長におけるUV強度の平均が求められる。具体的には図131の図表で後述する。
 ステップS2012では、「区間2(w2)でxとyの移動傾きを計算」の処理が実行され、区間2(w2)における移動傾きが求められる。区間2(w2)は、ステップS2011で求めた移動平均に関する区間であり、ステップS2001の初期設定においてw2=3であれば区間2(3)となり、ステップS2011で計算した移動平均に基づき、3個の移動平均に渡る傾きの(±)が求められる。具体的には図101の図表で後述する。
 ステップS2013では、「xとyの移動傾きの符号の不一致数を算出(DNS)」の処理が実行され、ステップS2012で計算された移動傾きから傾きの(±)の一致数が計算される。移動傾きの+は、図66において右肩上がりを表し、移動傾きの-は、同右肩下がりを表す。
 ステップS2013からステップS2009Aへ移行すると、このステップS2009Aの処理においてDNSを加味した一致度の計算が行われる。
 ステップS2009Aでは、「xとyのUVスペクトルの一致度を計算(UV_Sim)」の処理が実行され、DNSを加味した一致度の計算では、UV_Simを、前記UVスペクトル間距離の二乗和zとxのデータ数aとDNSとから、
 UV_Sim = √(z/a)×1.1DNS
として算出し、このUV_Simを図81のステップS306に渡し、UVスペクトルの一致度計算処理を終了する。
 なお、ステップS2010からステップS2009Aへ移行した場合の処理は、図86のステップS2009と同一である。
 図131は、移動平均及び移動傾きの計算例を示す図表である。
 図131の上段は、UVデータ例、中段は、移動平均の計算例、下段は、移動傾きの計算例を示す。UVデータ例は、具体的な数値に代え、UV強度をa1~a7で表記している。例えば、220nmのUV強度がa1、221nmのUV強度がa2等となる。移動平均の計算例及び移動傾きの計算例も具体的数値に代え、UV強度a1~a7を使用している。
 移動平均は、区間1(w1=3)を例とし、ステップS2012(図130)において、区間(a1、a2、a3)、区間(a2、a3、a4)、・・・毎に計算した値としてm1、m2、・・・が計算される。移動傾きも区間2(3)を例とし、ステップS2013(図130)において、区間(m1、m2、m3)、区間(m2、m3、m4)、・・・毎に計算した値としてs1、・・・が計算される。例えば、移動平均の差m3-m1が移動傾きとなり、その(±)を取り出す。
 こうして、FPをピーク面積で作成したときは、基準群FPへの帰属処理ならびに基準FP帰属結果統合処理において、DNSを加味した処理でUVパターン一致度を計算することができる。この計算により、図66で示す対応する2点の距離(dis)がピーク高さで作成したFPに比較して大きくなっても、取り扱いを容易とし、UVパターン一致度を正確に計算することができる。
[その他]
 本発明実施例のパターン又はFPの特徴量作成方法、作成プログラム、及び作成装置では、FPをピーク面積で作成するときは、シグナル強度軸を面積値軸、シグナル強度を面積値として同様に適用することができる。
 本発明実施例は、多成分薬剤として漢方薬の評価について適用したが、その他の多成分物質の評価にも適用することができる。
 本実施例では、対象FPタイプ2又は基準FPタイプ2について領域分割特徴量を作成したが、対象FP、基準FPについて領域分割特徴量を作成することも可能である。
 また、時系列でピークが変化するパターンを複数の領域に分割し各領域に存在するピークの存在率又は存在量からパターン領域分割特徴量を作成する対象パターン領域分割特徴量作成工程を備えるものであれば、広く適用することができる。
 上記実施例のFPは、3Dクロマト上での全ピークを対象としたが、細かいデータ、例えば3Dクロマト上でピーク面積が5%未満のピークを除いてFPを作成することもできる。
 上記実施例のFPは、ピーク高さに基づいて作成し、図87~図91の評価を得たが、ピーク面積に基づいてFPを作成した場合についても、ピーク高さに基づいて作成した上記実施例同様の手順によりMT法によりMD値を求め、図87~図91と同様に評価を得ることができる。
 クロマトは、3Dクロマトに限らず、FPとしてUVスペクトルを除いたピークとそのリテンション・タイムとで構成されたものを用いることもできる。この場合、UVスペクトルの一致度を除き、上記実施例と同様に行わせることができる。
1 多成分薬剤の評価装置(パターンの特徴量作成装置、FPの特徴量作成装置)
3 FP作成部
5 対象FPピーク帰属部
7 対象FPピーク特徴量作成部
9 対象FPタイプ2作成部
11 対象FP領域分割特徴量作成部
13 対象FP特徴量統合部
15 基準FPピーク帰属部
17 基準FP帰属結果統合部
19 基準FPピーク特徴量作成部
21 基準FPタイプ2作成部
23 基準FP領域分割特徴量作成部
25 基準FP特徴量統合部
27 評価部
31 基準FP作成部
33 基準FP選定部
35 ピーク・パターン作成部
37 ピーク帰属部
39 漢方薬
41 3Dクロマト
42 対象FPに含まれるピークのUVスペクトル
43 対象FP
45 基準群FP
47 基準群FPに帰属した対象FP
49 対象FPタイプ2(FP)
51 対象FP領域分割特徴量
53 対象FPの評価結果
55 薬剤AのFP
57 薬剤BのFP
59 薬剤CのFP
61 対象FP(リテンション・タイム10.0-14.5分)
63、65、67、69、71、73、75、77、79、81 対象FP(リテンション・タイム10.0-14.5分)中の各ピーク
83 基準FP(リテンション・タイム10.0-14.5分)
85、87、89、91、93、95、97、99、101、103、105 基準FP(リテンション・タイム10.0-14.5分)中の各ピーク
107 対象FPリテンション・タイム・出現パターン
109 基準FPリテンション・タイム・出現パターン
111 リテンション・タイム・出現距離の一致数
113 リテンション・タイム・出現パターンの一致度
115 対象FP帰属対象ピークのピーク・パターン(3本)
117、119、121、123 基準FP帰属候補ピークのピーク・パターン(3本)125 対象FP帰属対象ピークのピーク・パターン(5本)
127、129、131、133 基準FP帰属候補ピークのピーク・パターン(5本)135 帰属対象ピークのUVスペクトル
139 帰属候補ピークのUVスペクトル
141 縦領域分割線
143 横領域分割線
145 縦・横領域分割線により分割した各領域(格子)
147 各領域をピーク高さ
148 FP作成工程
149 対象FPピーク帰属工程
151 対象FPピーク特徴量作成工程
153 対象FPタイプ2作成工程
155 対象FP領域分割特徴量作成工程(パターン領域分割特徴量作成工程、FP領域分割特徴量作成工程)
157 対象FP特徴量統合工程
159 基準FPピーク帰属工程
161 基準FP帰属結果統合工程
163 基準FPピーク特徴量作成工程
165 基準FPタイプ2作成工程
167 基準FP領域分割特徴量作成工程(パターン領域分割特徴量作成工程、FP領域分割特徴量作成工程)
169 基準FP特徴量統合工程
171 評価工程
173 対象FP作成工程
175 基準FP作成工程
177 基準FP選定工程
179 ピーク・パターン作成工程
181 ピーク帰属工程
183 3Dクロマト・データ例
185 ピーク情報データ例
187 FPデータ例
189 判定結果ファイル例
191 帰属候補ピークスコア表例
193 帰属候補ピーク番号表例
195 照合結果ファイル例
197 基準群FPデータ例
199 対象FPピーク特徴量ファイル例
201 FPタイプ2データ例
203 対象FP領域分割特徴量ファイル例
205 対象FP統合特徴量ファイル例
207 基準type2群FPデータ例
209 基準群統合データ例

Claims (24)

  1.  時系列でピークが変化するパターンを複数の領域に分割し各領域に存在するピークの存在率又は存在量からパターン領域分割特徴量を作成するパターン領域分割特徴量作成工程、
     を備えたことを特徴とするパターンの特徴量作成方法。
  2.  多成分物質のクロマトから検出されたピークとそのリテンション・タイムとで構成されるFPを複数の領域に分割し各領域に存在するピークの存在率又は存在量からFP領域分割特徴量を作成するFP領域分割特徴量作成工程、
     を備えたことを特徴とするFPの特徴量作成方法。
  3.  請求項2記載のFPの特徴量作成方法であって、
     前記多成分物質は、多成分薬剤である、
     ことを特徴とするFPの特徴量作成方法。
  4.  請求項3記載のFPの特徴量作成方法であって、
     前記多成分薬剤は、生薬、生薬の組合せ、それらの抽出物、漢方薬の何れかである、
     ことを特徴とするFPの特徴量作成方法。
  5.  請求項2~4の何れかに記載のFPの特徴量作成方法であって、
     前記FP領域分割特徴量作成工程は、シグナル強度軸又は面積値軸に平行な複数の縦分割線と時間軸に平行な複数の横分割線とにより前記領域の分割を行う、
     ことを特徴とするFPの特徴量作成方法。
  6.  請求項5記載のFPの特徴量作成方法であって、
     前記複数の横分割線は、シグナル強度又は面積値が増大する方向へ等比間隔で設定された、
     ことを特徴とするFPの特徴量作成方法。
  7.  請求項2~6の何れかに記載のFPの特徴量作成方法であって、
     前記FP領域分割特徴量作成工程は、前記各領域の位置を変更し変更前後で前記FP領域分割特徴量を作成する、
     ことを特徴とするFPの特徴量作成方法。
  8.  請求項7記載のFPの特徴量作成方法であって、
     前記FP領域分割特徴量作成工程は、前記各縦・横分割線を設定範囲内で平行移動させるように位置を変更設定することで前記各領域の位置を変更する、
     ことを特徴とするFPの特徴量作成方法。
  9.  時系列でピークが変化するパターンを複数の領域に分割し各領域に存在するピークの存在率又は存在量からパターン領域分割特徴量を作成するパターン領域分割特徴量作成機能、
     をコンピュータに実現させることを特徴とするパターンの特徴量作成プログラム。
  10.  多成分物質のクロマトから検出されたピークとそのリテンション・タイムとで構成されるFPを複数の領域に分割し各領域に存在するピークの存在率又は存在量からFP領域分割特徴量を作成するFP領域分割特徴量作成機能、
     を備えたことを特徴とするFPの特徴量作成プログラム。
  11.  請求項10記載のFPの特徴量作成プログラムであって、
     前記多成分物質は、多成分薬剤である、
     ことを特徴とするFPの特徴量作成プログラム。
  12.  請求項11記載のFPの特徴量作成プログラムであって、
     前記多成分薬剤は、生薬、生薬の組合せ、それらの抽出物、漢方薬の何れかである、
     ことを特徴とするFPの特徴量作成プログラム。
  13.  請求項10~12の何れかに記載のFPの特徴量作成プログラムであって、
     前記FP領域分割特徴量作成機能は、シグナル強度軸又は面積値軸に平行な複数の縦分割線と時間軸に平行な複数の横分割線とにより前記領域の分割を行う、
     ことを特徴とするFPの特徴量作成プログラム。
  14.  請求項13記載のFPの特徴量作成プログラムであって、
     前記複数の横分割線は、シグナル強度又は面積値が増大する方向へ等比間隔で設定された、
     ことを特徴とするFPの特徴量作成プログラム。
  15.  請求項10~14の何れかに記載のFPの特徴量作成プログラムであって、
     前記FP領域分割特徴量作成機能は、前記各領域の位置を変更し変更前後で前記FP領域分割特徴量を作成する、
     ことを特徴とするFPの特徴量作成プログラム。
  16.  請求項15記載のFPの特徴量作成プログラムであって、
     前記FP領域分割特徴量作成機能は、前記各縦・横分割線を設定範囲内で平行移動させるように位置を変更設定することで前記各領域の位置を変更する、
     ことを特徴とするFPの特徴量作成プログラム。
  17.  時系列でピークが変化するパターンを複数の領域に分割し各領域に存在するピークの存在率又は存在量からパターン領域分割特徴量を作成するパターン領域分割特徴量作成部、
     を備えたことを特徴とするパターンの特徴量作成装置。
  18.  多成分物質のクロマトから検出されたピークとそのリテンション・タイムとで構成されるFPを複数の領域に分割し各領域に存在するピークの存在率又は存在量からFP領域分割特徴量を作成するFP領域分割特徴量作成部、
     を備えたことを特徴とするFPの特徴量作成装置。
  19.  請求項18記載のFPの特徴量作成装置であって、
     前記多成分物質は、多成分薬剤である、
     ことを特徴とするFPの特徴量作成装置。
  20.  請求項19記載のFPの特徴量作成装置であって、
     前記多成分薬剤は、生薬、生薬の組合せ、それらの抽出物、漢方薬の何れかである、
     ことを特徴とするFPの特徴量作成装置。
  21.  請求項18~20の何れかに記載のFPの特徴量作成装置であって、
     前記FP領域分割特徴量作成部は、シグナル強度軸又は面積値軸に平行な複数の縦分割線と時間軸に平行な複数の横分割線とにより前記領域の分割を行う、
     ことを特徴とするFPの特徴量作成装置。
  22.  請求項21記載のFPの特徴量作成装置であって、
     前記複数の横分割線は、シグナル強度又は面積値が増大する方向へ等比間隔で設定された、
     ことを特徴とするFPの特徴量作成装置。
  23.  請求項18~22の何れかに記載のFPの特徴量作成装置であって、
     前記FP領域分割特徴量作成部は、前記各領域の位置を変更し変更前後で前記FP領域分割特徴量を作成する、
     ことを特徴とするFPの特徴量作成装置。
  24.  請求項23記載のFPの特徴量作成装置であって、
     前記FP領域分割特徴量作成部は、前記各縦・横分割線を設定範囲内で平行移動させるように位置を変更設定することで前記各領域の位置を変更する、
     ことを特徴とするFPの特徴量作成装置。
PCT/JP2012/003618 2011-06-01 2012-05-31 パターン又はfpの特徴量作成方法、作成プログラム、及び作成装置 WO2012164956A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12791963.7A EP2717045B1 (en) 2011-06-01 2012-05-31 Creation method, creation program, and creation device for characteristic amount of pattern or fingerprint
KR1020127032279A KR101442117B1 (ko) 2011-06-01 2012-05-31 패턴 또는 fp의 특징량작성방법, 작성프로그램, 및 작성장치
CN201280001661.5A CN102959395B (zh) 2011-06-01 2012-05-31 Fp的特征值作成方法以及作成装置
US13/806,725 US20130204539A1 (en) 2011-06-01 2012-05-31 Feature value preparing method, feature value preparing program, and feature value preparing device for pattern or fp
HK13108497.6A HK1181119A1 (zh) 2011-06-01 2013-07-19 的特徵值作成方法以及作成裝置
US15/261,462 US10605792B2 (en) 2011-06-01 2016-09-09 Method of and apparatus for formulating multicomponent drug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-123849 2011-06-01
JP2011123849 2011-06-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/806,725 A-371-Of-International US20130204539A1 (en) 2011-06-01 2012-05-31 Feature value preparing method, feature value preparing program, and feature value preparing device for pattern or fp
US15/261,462 Continuation-In-Part US10605792B2 (en) 2011-06-01 2016-09-09 Method of and apparatus for formulating multicomponent drug

Publications (1)

Publication Number Publication Date
WO2012164956A1 true WO2012164956A1 (ja) 2012-12-06

Family

ID=47258825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003618 WO2012164956A1 (ja) 2011-06-01 2012-05-31 パターン又はfpの特徴量作成方法、作成プログラム、及び作成装置

Country Status (8)

Country Link
US (2) US20130204539A1 (ja)
EP (1) EP2717045B1 (ja)
JP (1) JP5912880B2 (ja)
KR (1) KR101442117B1 (ja)
CN (1) CN102959395B (ja)
HK (1) HK1181119A1 (ja)
TW (1) TW201312109A (ja)
WO (1) WO2012164956A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6891459B2 (ja) * 2016-11-16 2021-06-18 富士フイルムビジネスイノベーション株式会社 通信装置
CN109001354B (zh) * 2018-05-30 2020-09-04 迈克医疗电子有限公司 波峰识别方法和装置、色谱分析仪及存储介质
US11977085B1 (en) 2023-09-05 2024-05-07 Elan Ehrlich Date rape drug detection device and method of using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264051A (ja) * 2003-02-07 2004-09-24 Shinichi Usui リポタンパク質の分析方法及び分析プログラム
JP2006170647A (ja) * 2004-12-13 2006-06-29 Intec Web & Genome Informatics Corp ピーク抽出方法およびピーク抽出装置
JP2007085868A (ja) * 2005-09-21 2007-04-05 Asahi Breweries Ltd 飲食品中のポリフェノールの定量分析方法、定量分析装置および飲食品の設計方法
JP2008541095A (ja) * 2005-05-12 2008-11-20 ウオーターズ・インベストメンツ・リミテツド 化学分析データの視覚化
JP2010118053A (ja) * 2008-10-23 2010-05-27 Microsoft Corp 反復処理

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3023664A (en) * 1959-12-03 1962-03-06 Coleman Instr Inc Chromatographic reader
JPH01178864A (ja) * 1988-01-07 1989-07-17 Takara Shuzo Co Ltd クロマトグラム又はスペクトルの解析方法
GB0016459D0 (en) * 2000-07-04 2000-08-23 Pattern Recognition Systems As Method
JP4886933B2 (ja) * 2001-01-12 2012-02-29 カウンセル オブ サイエンティフィック アンド インダストリアル リサーチ クロマトグラフフィンガープリントならびに単一の医薬および処方物の標準化のための新規な方法
CN100356380C (zh) * 2001-02-13 2007-12-19 科学与工业研究会 一种色谱指纹图谱和单一药物和制剂标准化的新方法
JP4185933B2 (ja) 2003-03-31 2008-11-26 株式会社メディカル・プロテオスコープ 試料解析方法及び試料解析プログラム
US7178386B1 (en) * 2003-04-10 2007-02-20 Nanostream, Inc. Parallel fluid processing systems and methods
WO2005073713A2 (en) * 2004-01-28 2005-08-11 Council Of Scientific And Industrial Research A method for standardization of chemical and therapeutic values of foods & medicines using animated chromatographic fingerprinting
US8428883B2 (en) * 2004-06-07 2013-04-23 Tsumura & Co. Multi-component medicine evaluation method
EP1812079A4 (en) * 2004-10-15 2012-07-25 Spectral Dimensions Inc EVALUATION OF PHARMACEUTICAL MIXTURES
JP2007315941A (ja) * 2006-05-26 2007-12-06 Univ Of Miyazaki 植物品種判定装置、植物品種判定方法及び植物品種判定用プログラム
JP4837520B2 (ja) * 2006-10-16 2011-12-14 アングルトライ株式会社 スペクトル波形パターンの領域分割方法およびプログラム
JP4905265B2 (ja) * 2007-06-18 2012-03-28 株式会社島津製作所 クロマトグラフ質量分析装置用データ処理装置
SG186302A1 (en) * 2010-06-16 2013-02-28 Abbott Lab Comparison of protein samples

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264051A (ja) * 2003-02-07 2004-09-24 Shinichi Usui リポタンパク質の分析方法及び分析プログラム
JP2006170647A (ja) * 2004-12-13 2006-06-29 Intec Web & Genome Informatics Corp ピーク抽出方法およびピーク抽出装置
JP2008541095A (ja) * 2005-05-12 2008-11-20 ウオーターズ・インベストメンツ・リミテツド 化学分析データの視覚化
JP2007085868A (ja) * 2005-09-21 2007-04-05 Asahi Breweries Ltd 飲食品中のポリフェノールの定量分析方法、定量分析装置および飲食品の設計方法
JP2010118053A (ja) * 2008-10-23 2010-05-27 Microsoft Corp 反復処理

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Mathematics for Quality Engineering", 2000, JAPANESE STANDARDS ASSOCIATION, pages: 136 - 138
"Quality Engineering of Application Course", 1999, JAPANESE STANDARDS ASSOCIATION, article "Technical Developments in Chemistry, Pharmacy and Biology", pages: 454 - 456
INTRODUCTION TO MT SYSTEM, 2008
PHARMACEUTICALS MONTHLY, vol. 28, no. 3, 1986, pages 67 - 71
QUALITY ENGINEERING, vol. 11, no. 5, 2003, pages 78 - 84
See also references of EP2717045A4

Also Published As

Publication number Publication date
EP2717045B1 (en) 2021-08-11
EP2717045A1 (en) 2014-04-09
CN102959395A (zh) 2013-03-06
JP5912880B2 (ja) 2016-04-27
US10605792B2 (en) 2020-03-31
HK1181119A1 (zh) 2013-11-01
KR101442117B1 (ko) 2014-09-18
US20170007502A1 (en) 2017-01-12
KR20130029406A (ko) 2013-03-22
TW201312109A (zh) 2013-03-16
CN102959395B (zh) 2016-03-30
EP2717045A4 (en) 2014-11-26
JP2013011598A (ja) 2013-01-17
TWI561818B (ja) 2016-12-11
US20130204539A1 (en) 2013-08-08

Similar Documents

Publication Publication Date Title
JP5915540B2 (ja) ピーク帰属方法、帰属プログラム、及び帰属装置
JP5912880B2 (ja) パターン又はfpの特徴量作成方法、作成プログラム、及び作成装置
JP5915539B2 (ja) パターンの評価方法、多成分物質の評価方法、評価プログラム、及び評価装置
JP5954180B2 (ja) パターンの評価方法、多成分物質の評価方法、評価プログラム、及び評価装置
JP5910506B2 (ja) 集合データの類似性評価方法、類似性評価プログラム、及び類似性評価装置
JP5895847B2 (ja) Fp作成方法、作成プログラム、作成装置、及びfp

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001661.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20127032279

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12791963

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13806725

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012791963

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE