WO2012164930A1 - Ledパッケージ製造システムおよびledパッケージ製造システムにおける樹脂塗布方法 - Google Patents

Ledパッケージ製造システムおよびledパッケージ製造システムにおける樹脂塗布方法 Download PDF

Info

Publication number
WO2012164930A1
WO2012164930A1 PCT/JP2012/003557 JP2012003557W WO2012164930A1 WO 2012164930 A1 WO2012164930 A1 WO 2012164930A1 JP 2012003557 W JP2012003557 W JP 2012003557W WO 2012164930 A1 WO2012164930 A1 WO 2012164930A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
led
light
light emission
unit
Prior art date
Application number
PCT/JP2012/003557
Other languages
English (en)
French (fr)
Inventor
野々村 勝
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to KR1020137022237A priority Critical patent/KR20140004736A/ko
Priority to CN201280019900.XA priority patent/CN103493228A/zh
Priority to US14/000,346 priority patent/US8993353B2/en
Priority to DE112012002301.3T priority patent/DE112012002301T5/de
Publication of WO2012164930A1 publication Critical patent/WO2012164930A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to an LED package manufacturing system for manufacturing an LED package in which an LED element mounted on a substrate is covered with a resin containing a phosphor, and a resin coating method in the LED package manufacturing system.
  • LEDs light emitting diodes having excellent characteristics of low power consumption and long life have been widely used as light sources for various lighting devices. Since the basic light emitted from the LED element is currently limited to three colors of red, green, and blue, in order to obtain white light suitable for general lighting applications, the above three basic lights are added.
  • a method of obtaining white light by color mixing, a method of obtaining pseudo white light by combining a blue LED and a phosphor emitting yellow fluorescence having a complementary color relationship with blue are used.
  • the latter method has been widely used, and an illumination device using an LED package in which a blue LED and a YAG phosphor are combined has been used for a backlight of a liquid crystal panel (for example, a patent). Reference 1).
  • YAG phosphor particles are placed in a mounting portion in which YAG phosphor particles are dispersed in the mounting portion.
  • An LED package is configured by injecting dispersed silicone resin, epoxy resin, or the like to form a resin packaging portion. And, for the purpose of uniforming the height of the resin packaging part in the mounting part after the resin injection, a residual resin storage part for discharging and storing the surplus resin injected more than a specified amount from the mounting part is formed.
  • An example is given. As a result, even when the discharge amount from the dispenser varies at the time of resin injection, a resin packaging portion having a certain resin amount and a specified height is formed on the LED element.
  • the LED element has undergone a manufacturing process in which a plurality of elements are formed on the wafer at the same time, and due to various error factors in this manufacturing process, such as non-uniform composition during film formation on the wafer, the wafer state Inevitably, variations in emission wavelength occur in the LED elements divided into individual pieces. And in the above-mentioned example, since the height of the resin wrapping part covering the LED element is set uniformly, the variation in the emission wavelength in the individual LED element is directly reflected in the variation in the emission characteristic of the LED package as a product.
  • the conventional LED package manufacturing technology has a problem in that the emission characteristics of the LED package as a product vary due to variations in the emission wavelength of the individual LED elements, leading to a decrease in production yield. .
  • the present invention provides a resin coating apparatus and a resin coating that can make the light emission characteristics of the LED package uniform and improve the production yield even when the light emission wavelength of the individual LED elements varies in the LED package manufacturing system. It aims to provide a method.
  • the LED package manufacturing system of the present invention is an LED package manufacturing system for manufacturing an LED package in which an LED element mounted on a substrate is covered with a resin containing a phosphor, and a plurality of the LED elements are mounted on the substrate.
  • a component mounting apparatus an element characteristic information providing unit for providing information obtained by separately measuring light emission characteristics including light emission wavelengths of the plurality of LED elements as element characteristic information, and an LED having a prescribed light emission characteristic
  • a resin information providing unit that provides, as resin coating information, information corresponding to the appropriate resin coating amount of the resin for obtaining a package and the element characteristic information Map data associating the mounting position information indicating the position with the element characteristic information about the LED element, Based on the map data creation unit to be created for each substrate, the map data and the resin application information, the resin having an appropriate resin application amount for providing specified light emission characteristics is applied to each LED element mounted on the substrate.
  • a resin application device that applies the resin, and the resin application device controls the resin application unit by controlling the resin application unit and the resin application unit that discharges the resin in a variable amount and applies the resin to any application target position.
  • a coating control unit that executes a coating process for measurement for applying a resin to a translucent member for light emission characteristic measurement and a production coating process for coating the LED element for actual production; and the resin in the coating process for measurement
  • the A light emission characteristic measurement unit that measures light emission characteristics of the light received from below the light transmission member by irradiating the resin applied to the light transmission member from above, and the light emission characteristic measurement
  • the appropriate resin coating amount for actual production to be applied to the LED element is derived by obtaining the deviation between the measurement result of the part and the predetermined light emission characteristic and correcting the appropriate resin coating amount based on the
  • the resin coating method in the LED package manufacturing system of the present invention is an LED package manufacturing system for manufacturing an LED package in which an LED element mounted on a substrate is covered with a resin containing a phosphor, and is mounted on the substrate by a component mounting apparatus.
  • a resin coating method in an LED package manufacturing system that covers the plurality of LED elements and applies the resin, wherein the LED package manufacturing system includes a component mounting apparatus that mounts the plurality of LED elements on the substrate, and the plurality of the plurality of LED elements.
  • An element characteristic information providing unit for providing information obtained by individually measuring emission characteristics including the emission wavelength of the LED element as element characteristic information, and the resin for obtaining an LED package having a prescribed emission characteristic Information corresponding to the appropriate resin application amount and the element characteristic information Map data associating a resin information providing unit provided as information, mounting position information indicating a position of the LED element mounted by the component mounting apparatus on the substrate, and the element characteristic information of the LED element; Based on the map data creation unit to be created every time, the map data and the resin application information, the resin having an appropriate resin application amount for providing a normal light emission characteristic required for a finished product is mounted on the substrate.
  • a resin coating device that coats each LED element, and a measurement application step of applying the resin to a translucent member as a light emission characteristic measurement by a resin discharge unit that discharges the resin in a variable amount; and A translucent member placement step of placing the translucent member on which the resin has been trial-applied on the translucent member placement portion; and a light source portion disposed above the translucent member placement portion.
  • An excitation light emitting step for emitting excitation light for exciting the phosphor, and light emitted from the resin by irradiating the resin applied to the light transmissive member from above from below the light transmissive member.
  • a correction amount deriving process for deriving a proper resin application amount for actual production to be applied to the LED element by correcting, and a coating control unit for controlling the resin discharge unit for the derived proper resin application amount A production execution step of executing a production coating process for coating the LED element with a resin having an appropriate resin coating amount.
  • a translucent member on which a resin has been trial-coated is placed on a translucent member placement unit
  • the light emitted from the resin is emitted by emitting excitation light that excites the phosphor from the light source unit disposed above the translucent member mounting unit and irradiating the resin applied to the translucent member from above with the excitation light.
  • the deviation between the measurement result obtained by measuring the light emission characteristics by receiving light from below the translucent member and the predetermined light emission characteristics is obtained, and the appropriateness of the resin to be applied to the LED element for actual production is determined based on this deviation.
  • the block diagram which shows the structure of the control system of the LED package manufacturing system of one embodiment of this invention Flowchart of LED package manufacturing by LED package manufacturing system of one embodiment of the present invention Flow chart of threshold data creation processing for non-defective product determination in LED package manufacturing system of one embodiment of the present invention (A)-(c) Explanatory drawing of threshold data for non-defective product determination in the LED package manufacturing system of one embodiment of the present invention Chromaticity diagram for explaining threshold data for non-defective product determination in the LED package manufacturing system of one embodiment of the present invention
  • the LED package manufacturing system 1 has a function of manufacturing an LED package in which an LED element mounted on a substrate is covered with a resin containing a phosphor.
  • the component mounting apparatus M1, the curing apparatus M2, the wire bonding apparatus M3, the resin coating apparatus M4, the curing apparatus M5, and the piece cutting apparatus M6 are connected by the LAN system 2. These devices are connected and controlled by the management computer 3 in an integrated manner.
  • the component mounting apparatus M1 mounts the LED element 5 on the substrate 4 (see FIGS. 2A and 2B) serving as the base of the LED package by bonding with a resin adhesive.
  • the curing device M2 cures the resin adhesive used for bonding at the time of mounting by heating the substrate 4 after the LED element 5 is mounted.
  • the wire bonding apparatus M3 connects the electrode of the substrate 4 and the electrode of the LED element 5 with a bonding wire.
  • the resin coating device M4 applies a resin containing a phosphor to each LED element 5 on the substrate 4 after wire bonding.
  • the curing device M5 cures the resin applied so as to cover the LED elements 5 by heating the substrate 4 after the resin application.
  • the piece cutting device M6 cuts the substrate 4 after the resin is cured into each individual LED element 5 and divides it into individual LED packages. Thereby, the LED package divided
  • FIG. 1 shows an example in which a production line is configured by arranging each of the component mounting device M1 to the piece cutting device M6 in series.
  • the LED package manufacturing system 1 does not necessarily have such a line configuration.
  • each process work may be sequentially executed by each of the distributed devices.
  • a plasma processing apparatus that performs plasma treatment for electrode cleaning prior to wire bonding before and after the wire bonding apparatus M3, and a surface modification for improving resin adhesion before resin application after wire bonding. You may make it interpose the plasma processing apparatus which performs the plasma processing for the purpose of quality.
  • the substrate 4 is a multiple-type substrate in which a plurality of individual substrates 4a serving as a base of one LED package 50 in a finished product are formed.
  • Each individual substrate 4a includes Each LED mounting portion 4b on which the LED element 5 is mounted is formed.
  • the LED element 5 is mounted in the LED mounting portion 4b for each individual substrate 4a, and then the resin 8 is applied to cover the LED element 5 in the LED mounting portion 4b. Is cut for each individual substrate 4a to complete the LED package 50 shown in FIG.
  • the LED package 50 has a function of irradiating white light used as a light source of various lighting devices, and includes a phosphor that emits yellow fluorescence that is complementary to the blue LED element 5 and blue. By combining with the resin 8, pseudo white light is obtained.
  • the individual substrate 4a is provided with a cavity-shaped reflecting portion 4c having, for example, a circular or elliptical annular bank that forms the LED mounting portion 4b.
  • the N-type part electrode 6a and the P-type part electrode 6b of the LED element 5 mounted inside the reflection part 4c are connected to the wiring layers 4e and 4d formed on the upper surface of the individual substrate 4a by bonding wires 7, respectively.
  • the resin 8 covers the LED element 5 in this state and is applied to the inside of the reflecting portion 4c with a predetermined thickness.
  • the resin 8 The contained phosphor is mixed with yellow light to emit light, and is irradiated as white light.
  • the LED element 5 is configured by stacking an N-type semiconductor 5b and a P-type semiconductor 5c on a sapphire substrate 5a, and further covering the surface of the P-type semiconductor 5c with a transparent electrode 5d.
  • An N-type part electrode 6a and a P-type part electrode 6b for external connection are formed on the N-type semiconductor 5b and the P-type semiconductor 5c, respectively.
  • the LED elements 5 are taken out from the LED wafer 10 that is stuck and held on the holding sheet 10a in a state where a plurality of LED elements 5 are formed in a lump and then divided into pieces.
  • the LED element 5 is divided into individual pieces from the wafer state due to various error factors in the manufacturing process, for example, non-uniform composition during film formation on the wafer. It is inevitable that variations occur in the case. If such an LED element 5 is mounted on the substrate 4 as it is, the emission characteristics of the LED package 50 as a product will vary.
  • the light emission characteristics of a plurality of LED elements 5 manufactured in the same manufacturing process are measured in advance, Element characteristic information corresponding to data indicating the light emission characteristics of the LED elements 5 is created, and an appropriate amount of the resin 8 corresponding to the light emission characteristics of each LED element 5 is applied in the application of the resin 8. .
  • resin application information to be described later is prepared in advance.
  • the LED elements 5 taken out from the LED wafer 10 are individually identified by element IDs (in this case, the individual LED elements 5 with the serial number (i) in the LED wafer 10). Are given sequentially to the light emission characteristic measuring device 11.
  • element ID if it is the information which can specify the LED element 5 separately, you may make it use the matrix coordinate which shows the arrangement
  • the LED element 5 can be supplied in the state of the LED wafer 10 in the component mounting apparatus M1 described later.
  • the light emission characteristic measuring device 11 power is actually supplied to each LED element 5 through a probe to actually emit light, and the light is spectrally analyzed to measure predetermined items such as a light emission wavelength and light emission intensity.
  • a standard distribution of emission wavelengths is prepared as reference data in advance, and the wavelength range corresponding to the standard range in the distribution is further divided into a plurality of wavelength ranges.
  • the plurality of target LED elements 5 are ranked according to the emission wavelength.
  • Bin codes [1], [2], [3], [4], [5] are assigned in order from the low wavelength side corresponding to each of the ranks set by dividing the wavelength range into five. ] Is given.
  • element characteristic information 12 having a data structure in which the Bin code 12b is associated with the element ID 12a is created.
  • the element characteristic information 12 is information obtained by individually measuring the light emission characteristics including the light emission wavelengths of the plurality of LED elements 5 in advance. Is transmitted.
  • the element characteristic information 12 may be transmitted in a form recorded on a single storage medium, or may be transmitted to the management computer 3 via the LAN system 2. In any case, the transmitted element characteristic information 12 is stored in the management computer 3 and provided to the component mounting apparatus M1 as necessary.
  • the plurality of LED elements 5 for which the light emission characteristic measurement is completed in this way are sorted for each characteristic rank as shown in FIG. 3D, and are distributed into five types according to each characteristic rank. Attached individually to 13a. Thereby, the three types of LED sheets 13A, 13B in which the LED elements 5 corresponding to the Bin codes [1], [2], [3], [4], and [5] are adhered and held on the adhesive sheet 13a, respectively. 13C, 13D, and 13E are created, and when these LED elements 5 are mounted on the individual substrate 4a of the substrate 4, the LED elements 5 are already classified into LED sheets 13A, 13B, 13C, and 13D. , 13E in the form of the component mounting apparatus M1.
  • the LED elements 5 corresponding to any of the Bin codes [1], [2], [3], [4], and [5] are held in the LED sheets 13A, 13B, 13C, 13D, and 13E, respectively.
  • the element characteristic information 12 is provided from the management computer 3 in a form indicating whether or not it has been.
  • the LED package 50 configured to obtain white light by combining a blue LED and a YAG phosphor
  • the blue light emitted from the LED element 5 and the yellow light emitted from the phosphor excited by the blue light are emitted. Since mixing is performed, the amount of the phosphor particles in the concave LED mounting portion 4b on which the LED element 5 is mounted is an important factor in securing the normal light emission characteristics of the LED package 50 of the product.
  • the appropriate amount of the phosphor particles in the resin 8 applied to cover the LED element 5 differs depending on the Bin codes [1], [2], [3], [4], and [5]. It will be a thing.
  • the appropriate resin application amount for each Bin classification of the resin 8 containing YAG-based phosphor particles in a silicone resin, an epoxy resin, or the like It is defined in advance according to the Bin code section 17 in units of nl (nanoliter).
  • the amount of the phosphor particles in the resin covering the LED element 5 is an appropriate amount of supplying phosphor particles. This ensures the normal emission wavelength required for the finished product after the resin is thermally cured.
  • the appropriate resin coating amount of the resin 8 is also set to an appropriate value (uncomfortable expression) according to the phosphor concentration of the resin 8 to be used. That is, when the resin having the phosphor concentration D1 is applied, the appropriate resin application amounts VA0, VB0, VC0, and Bin codes [1], [2], [3], [4], and [5] are applied. Resin 8 of VD0, VE0 (appropriate resin application amount 15 (1)) is applied.
  • the appropriate resin application amounts VF0, VG0, VH0 for the Bin codes [1], [2], [3], [4], and [5], respectively.
  • VJ0, VK0 appropriate resin coating amount 15 (2) of resin 8 is applied.
  • the appropriate resin application amounts VL0, VM0, VN0, and VP0 for the Bin codes [1], [2], [3], [4], and [5], respectively.
  • VR0 appropriate resin application amount 15 (3) of resin 8 is applied.
  • the appropriate resin coating amount is set for each of a plurality of different phosphor concentrations as described above, in order to ensure quality by applying the resin 8 having the optimum phosphor concentration according to the degree of variation in the emission wavelength. This is because it is more preferable.
  • the component mounting apparatus M1 includes a substrate transport mechanism 21 that transports the work target substrate 4 supplied from the upstream side in the substrate transport direction (arrow a).
  • the substrate transport mechanism 21 is provided with an adhesive application part A shown in section AA in FIG. 5B and a component mounting part B shown in section BB in FIG. 4C. It is installed.
  • the adhesive application unit A is disposed on the side of the substrate transport mechanism 21 and supplies the resin adhesive 23 in the form of a coating film having a predetermined film thickness, and the substrate transport mechanism 21 and the adhesive supply unit 22.
  • the component mounting portion B is disposed on the side of the board transport mechanism 21, and the parts supply mechanism 25 and the board transport mechanism 21 that hold the LED sheets 13A, 13B, 13C, 13D, and 13E shown in FIG.
  • a component mounting mechanism 26 that is movable in the horizontal direction (arrow c) above the supply mechanism 25 is provided.
  • the substrate 4 carried into the substrate transport mechanism 21 is positioned by the adhesive application portion A, and is bonded to the LED mounting portion 4b formed on each individual substrate 4a.
  • the agent 23 is applied. That is, first, the adhesive transfer mechanism 24 is moved above the adhesive supply unit 22 so that the transfer pin 24a is brought into contact with the coating film of the resin adhesive 23 formed on the transfer surface 22a, and the resin adhesive 23 is adhered. Next, the adhesive transfer mechanism 24 is moved above the substrate 4 and the transfer pin 24a is lowered to the LED mounting portion 4b (arrow d), whereby the resin adhesive 23 attached to the transfer pin 24a is moved into the LED mounting portion 4b. Supplied by transfer to the element mounting position.
  • the substrate 4 after application of the adhesive is conveyed to the downstream side, positioned at the component mounting portion B as shown in FIG. 5 (c), and the LED elements are targeted for each LED mounting portion 4b after the adhesive is supplied.
  • 5 is implemented. That is, first, the component mounting mechanism 26 is moved above the component supply mechanism 25, and the mounting nozzle 26a is lowered with respect to any of the LED sheets 13A, 13B, 13C, 13D, and 13E held by the component supply mechanism 25, and mounted. The LED element 5 is held and taken out by the nozzle 26a.
  • the component mounting mechanism 26 is moved above the LED mounting portion 4b of the substrate 4 to lower the mounting nozzle 26a (arrow e), whereby the LED element 5 held by the mounting nozzle 26a is bonded to the adhesive in the LED mounting portion 4b. It is mounted at the element mounting position where is applied.
  • any of the LED sheets 13A, 13B, 13C, 13D, and 13E is used in the element mounting program created in advance, that is, in the individual mounting operation by the component mounting mechanism 26.
  • the order in which the LED elements 5 are taken out and mounted on the plurality of individual boards 4a of the board 4 is set in advance, and the component mounting work is executed according to this element mounting program.
  • mounting position information 71a (see FIG. 11) indicating which of the plurality of individual boards 4a of the board 4 is mounted from the work execution history is extracted. Record.
  • the mounting position information 71a and the LED element 5 mounted on each individual substrate 4a correspond to any characteristic rank (Bin code [1], [2], [3], [4], [5]).
  • Data associated with the element characteristic information 12 indicating whether or not to be created is created as map data 18 shown in FIG. 6 by the map creation processing unit 74 (see FIG. 11).
  • the individual positions of the plurality of individual substrates 4a of the substrate 4 are specified by combinations of matrix coordinates 19X and 19Y indicating the positions in the X direction and the Y direction, respectively. Then, by making the Bin code to which the LED element 5 mounted at the position belongs correspond to the individual cell of the matrix constituted by the matrix coordinates 19X and 19Y, the LED element 5 mounted by the component mounting apparatus M1 on the substrate 4 Map data 18 in which the mounting position information 71a indicating the position and the element characteristic information 12 about the LED element 5 are associated is created.
  • the component mounting apparatus M1 displays the map data 18 in which the mounting position information indicating the position of the LED element 5 mounted by the apparatus on the board 4 and the element characteristic information 12 on the LED element 5 are associated with the board 4
  • a map creation processing unit 74 as a map data creation unit created every time is provided.
  • the created map data 18 is transmitted as feedforward data to the resin coating apparatus M4 described below via the LAN system 2.
  • the resin coating device M4 has a function of coating the resin 8 so as to cover the plurality of LED elements 5 mounted on the substrate 4 by the component mounting device M1.
  • the resin coating apparatus M4 transfers the work target substrate 4 supplied from the upstream side to the substrate transport mechanism 31 that transports the substrate 4 in the substrate transport direction (arrow f).
  • the resin application part C is provided with a resin discharge head 32 configured to discharge the resin 8 from the discharge nozzle 33a attached to the lower end.
  • the resin discharge head 32 is driven by the nozzle moving mechanism 34, and the nozzle moving mechanism 34 is controlled by the application control unit 36, whereby the horizontal direction (arrow g shown in FIG. 7A). ) Move and lift operations.
  • the resin discharge head 32 is supplied with the resin 8 stored in a syringe attached to the dispenser 33, and the resin discharge mechanism 35 discharges the resin 8 in the dispenser 33 by applying air pressure into the dispenser 33. It is discharged through the nozzle 33 a and applied to the LED mounting portion 4 b formed on the substrate 4. At this time, by controlling the resin discharge mechanism 35 by the application control unit 36, the discharge amount of the resin 8 can be arbitrarily controlled.
  • the resin application part C has a function of discharging the resin 8 in a variable amount and applying it to any application target position.
  • various liquid discharge methods such as a plunger method using a mechanical cylinder and a screw pump method can be employed for the resin discharge mechanism 35.
  • a test hitting / measurement unit 40 is disposed on the side of the substrate transport mechanism 31 so as to be located within the movement range of the resin discharge head 32.
  • the test hitting / measurement unit 40 determines whether or not the application amount of the resin 8 is appropriate. It has a function of determining by measuring the light emission characteristics. That is, the light emission characteristics when the light emitted from the measurement light source unit 45 is irradiated onto the translucent member 43 on which the resin 8 has been trial-applied by the resin application unit C, and the light emission characteristics including the spectroscope 42 and the light emission characteristic measurement processing unit 39. By measuring by the characteristic measuring unit and comparing the measurement result with a preset threshold value, the suitability of the preset resin coating amount defined by the resin coating information 14 shown in FIG. 4 is determined.
  • composition and properties of the resin 8 containing the phosphor particles are not necessarily stable, and even if an appropriate resin application amount is set in advance in the resin application information 14, the concentration of the phosphor and the resin viscosity over time. Inevitable fluctuations. For this reason, even if the resin 8 is discharged with the discharge parameters corresponding to the preset appropriate resin application amount, the resin application amount itself varies from the preset appropriate value, or the resin application amount itself is appropriate. However, the amount of the phosphor particles to be originally supplied varies depending on the concentration change.
  • a test coating for inspecting whether or not an appropriate supply amount of phosphor particles is supplied at a predetermined interval is executed by the resin coating apparatus M4.
  • the resin coating unit C provided in the resin coating apparatus M4 shown in the present embodiment includes a measurement coating process for applying the resin 8 to the light-transmitting member 43 for the above-described light emission characteristic measurement, and a substrate for actual production. 4 has a function of executing a production coating process to be applied to the LED element 5 mounted in the state 4. Both the coating process for measurement and the coating process for production are executed when the coating control unit 36 controls the resin coating unit C.
  • the translucent member 43 is wound and supplied on the supply reel 47 and fed along the upper surface of the trial hitting stage 40a, and then irradiated with the translucent member mounting portion 41. It is wound around a collection reel 48 driven by a take-up motor 49 via a portion 46.
  • a mechanism for rotating the translucent member 43 various methods such as a method of feeding the translucent member 43 into the collection box by a feeding mechanism are adopted in addition to a method of winding the translucent member 43 to collect it. be able to.
  • the irradiation unit 46 has a function of irradiating the translucent member 43 with measurement light emitted from the light source unit 45, and the measurement light emitted from the light source unit 45 is contained in a light shielding box 46a having a simple dark box function.
  • a light focusing tool 46b guided by a fiber cable is provided.
  • the light source unit 45 has a function of emitting excitation light that excites the phosphor contained in the resin 8.
  • the light source unit 45 is disposed above the translucent member mounting unit 41 and transmits measurement light.
  • the light member 43 is irradiated from above via the light focusing tool 46b.
  • the translucent member 43 a flat sheet-like member made of transparent resin is used as a tape material having a predetermined width, or an embossed portion 43a corresponding to the concave shape of the LED package 50 is provided on the lower surface of the same tape material.
  • the embossed type etc. which were made are used (refer FIG.8 (b)).
  • the resin 8 is trial-applied to the translucent member 43 by the resin ejection head 32.
  • a prescribed amount of resin 8 is applied to the translucent member 43 by the discharge nozzle 33a, as shown in FIG. 8B, with respect to the translucent member 43 whose lower surface is supported by the trial hitting stage 40a. This is done by discharging.
  • FIGS. 8B and 8I show a state in which the preset appropriate discharge amount of the resin 8 defined by the resin application information 14 is applied to the translucent member 43 made of the tape material described above.
  • FIGS. 8B and 8II show a state in which the resin 8 having a preset appropriate discharge amount is similarly applied to the embossed portion 43a of the embossed type translucent member 43 described above.
  • the resin 8 applied in the test hitting stage 40a is a test application for empirically determining whether or not the phosphor supply amount is appropriate for the target LED element 5. Therefore, when the resin 8 is continuously applied to the plurality of points on the translucent member 43 by the same trial application operation by the resin discharge head 32, the correlation between the measured light emission characteristic value and the application amount is known. Based on the data, the application amount is varied in stages and applied.
  • FIG. 8C shows the structure of the translucent member mounting portion 41 and the integrating sphere 44.
  • the translucent member mounting portion 41 has a structure in which an upper guide member 41 c having a function of guiding both end surfaces of the translucent member 43 is mounted on the upper surface of the lower support member 41 b that supports the lower surface of the translucent member 43. Yes.
  • the translucent member placement section 41 guides the translucent member 43 during conveyance in the test hitting / measurement unit 40, and places the translucent member 43 on which the resin 8 has been trial-applied in the measurement coating process to hold the position. It has a function to do.
  • the integrating sphere 44 has a function of collecting the transmitted light that has been irradiated from the light focusing tool 46 b (arrow h) and transmitted through the resin 8 and led to the spectroscope 42. That is, the integrating sphere 44 has a spherical spherical reflecting surface 44 c inside, and transmitted light (arrow i) incident from the opening 44 a located immediately below the light transmitting opening 41 a is the top of the integrating sphere 44.
  • the white light emitted by the LED package used for the light source unit 45 is applied to the resin 8 that has been trial-applied to the translucent member 43.
  • the blue light component contained in the white light excites the phosphor in the resin 8 to emit yellow light.
  • White light obtained by adding and mixing yellow light and blue light is irradiated upward from the resin 8 and is received by the spectroscope 42 via the integrating sphere 44 described above.
  • the received white light is analyzed by the light emission characteristic measurement processing unit 39 to measure the light emission characteristic, as shown in FIG. 7B.
  • the light emission characteristics such as the color tone rank of white light and the luminous flux are inspected, and a deviation from the prescribed light emission characteristics is detected as the inspection result.
  • the integrating sphere 44, the spectroscope 42, and the light emission characteristic measurement processing unit 39 emit excitation light emitted from the light source unit 45 onto the resin 8 coated with the light transmitting member 43 (here, white light emitted from the white LED). )
  • the light emitted from the resin 8 is received from below the translucent member 43, and a light emission characteristic measuring unit for measuring the light emission characteristic of the light emitted from the resin 8 is configured.
  • the light emission characteristic measuring unit is configured by disposing the integrating sphere 44 below the translucent member 43, and configured to receive light emitted from the resin 8 through the opening 44a of the integrating sphere 44. Has been.
  • the following effects can be obtained by configuring the light emission characteristic measuring unit as described above. That is, in the application shape of the resin 8 to be applied to the translucent member 43 shown in FIG. 8B, the lower surface side is always in contact with the upper surface of the translucent member 43 or the bottom surface of the embossed portion 43a.
  • the lower surface of 8 is always at a reference height defined by the translucent member 43. Therefore, the height difference between the lower surface of the resin 8 and the opening 44a of the integrating sphere 44 is always kept constant.
  • the upper surface of the resin 8 is not necessarily realized to have the same liquid surface shape and height due to disturbances such as application conditions by the discharge nozzle 33a, and between the upper surface of the resin 8 and the light focusing tool 46b. The interval of will vary.
  • the irradiation light irradiated on the resin 8 is the light focusing tool 46b. Therefore, the degree of focusing is high, and the influence of the variation in the distance between the upper surface of the resin 8 and the light focusing tool 46b on the light transmission can be ignored.
  • the transmitted light that has passed through the resin 8 is excitation light in which the phosphor is excited inside the resin 8, so that the degree of scattering is high, and the distance between the lower surface of the resin 8 and the opening 44 a varies. Has an influence on the degree of light being taken in by the integrating sphere 44.
  • the light emitted from the resin 8 is transmitted by irradiating the resin 8 with the excitation light emitted from the light source unit 45 as described above. Since the configuration in which light is received by the integrating sphere 44 from below the optical member 43 is employed, it is possible to determine stable light emission characteristics. Further, by using the integrating sphere 44, it is not necessary to separately provide a dark room structure in the light receiving portion, so that the apparatus can be made compact and the equipment cost can be reduced.
  • the measurement result of the light emission characteristic measurement processing unit 39 is sent to the application amount derivation processing unit 38, and the application amount derivation processing unit 38 defines the measurement result of the light emission characteristic measurement processing unit 39 in advance.
  • a deviation from the emitted light emission characteristic is obtained, and a process for deriving an appropriate resin application amount of the resin 8 to be applied to the LED element 5 for actual production is performed based on the deviation.
  • the new appropriate discharge amount derived by the application amount derivation processing unit 38 is sent to the production execution processing unit 37, and the production execution processing unit 37 commands the newly derived appropriate resin application amount to the application control unit 36.
  • the application control unit 36 controls the nozzle moving mechanism 34 and the resin discharge mechanism 35 to perform a production application process for applying an appropriate resin application amount of the resin 8 to the LED elements 5 mounted on the substrate 4. 32.
  • a resin 8 having an appropriate resin coating amount specified in the resin coating information 14 is actually applied, and light emission characteristics are measured while the resin 8 is uncured. Then, based on the obtained measurement results, a non-defective range of emission characteristic measurement values when the emission characteristics are measured for the resin 8 applied in the production coating is set, and the non-defective range is determined for the quality determination in the production coating. It is used as a threshold value (see threshold value data 81a shown in FIG. 11).
  • a white LED is used as the light source unit 45 for measuring the light emission characteristics, and is prescribed in advance as a basis for setting a threshold value for quality determination in production coating.
  • the regular emission characteristics required for the finished product in which the resin 8 applied to the LED element 5 is cured are biased by the difference in emission characteristics due to the resin 8 being in an uncured state. Emission characteristics are used. Thereby, control of the resin application amount in the resin application process to the LED element 5 can be performed based on the normal light emission characteristics of the finished product.
  • the LED package 50 that emits white light is used as the light source unit 45.
  • the light emission characteristic measurement of the resin 8 applied by trial can be performed by the light having the same characteristic as the excitation light emitted in the finished LED package 50, and a more reliable test result can be obtained.
  • a light source device that can stably emit blue light having a constant wavelength for example, a blue LED that emits blue light or a blue laser light source
  • a light source unit for inspection for example, a blue LED that emits blue light or a blue laser light source
  • blue light having a predetermined wavelength may be extracted using a band-pass filter.
  • a trial placement / measurement unit 140 having the configuration shown in FIGS. 9B and 10A may be used instead of the trial placement / measurement unit 40 having the above-described configuration. That is, as shown in FIGS. 9B and 10A, the test hitting / measurement unit 140 has an external structure in which a cover portion 140b is disposed above an elongated horizontal base portion 140a. The cover part 140b is provided with an opening part 140c, and the opening part 140c can be freely opened and closed by a sliding slide window 140d for application (arrow l).
  • a trial hitting stage 145a for supporting the translucent member 43 from the lower surface side, a translucent member mounting portion 141 on which the translucent member 43 is placed, and a translucent member mounting portion 141.
  • a spectroscope 42 is provided above.
  • the translucent member mounting unit 141 includes a light source device that emits excitation light that excites the phosphor, and the resin 8 is trial-coated in the measurement coating process.
  • the light transmissive member 43 is irradiated with excitation light from the lower surface side of the light source device.
  • the translucent member 43 is wound and supplied on the supply reel 47 in the same manner as in the example shown in FIG. 8A, and is sent along the upper surface of the test strike stage 145a (arrow m). It is wound around a collection reel 48 that is driven by a winding motor 49 via a space between the mounting portion 141 and the spectroscope 42.
  • the resin discharge head 32 applies the resin 8 to the light transmitting member 43 placed on the upper surface. Is possible.
  • the resin 8 having a prescribed application amount is applied to the translucent member 43 by the discharge nozzle 33a with respect to the translucent member 43 whose lower surface is supported by the test strike stage 145a. This is done by discharging.
  • FIG. 10B the translucent member 43 on which the resin 8 has been trial-applied is moved by the trial hitting stage 145a so that the resin 8 is positioned above the translucent member mounting portion 141, and the cover portion 140b is further moved.
  • a state in which a darkroom for measuring light emission characteristics is formed between the base 140a and the base 140a is shown.
  • An LED package 50 that emits white light is used as the light source device for the translucent member mounting portion 141.
  • the wiring layers 4e and 4d connected to the LED element 5 are connected to the power supply device 142.
  • the power supply device 142 When the power supply device 142 is turned on, the LED element 5 is supplied with power for light emission.
  • the LED package 50 emits white light.
  • the yellow light emitted from the phosphor in the resin 8 is excited by the blue light contained in the white light.
  • White light in which light and blue light are added and mixed is irradiated upward from the resin 8.
  • a spectroscope 42 is disposed above the trial hitting / measurement unit 140, and the white light emitted from the resin 8 is received by the spectroscope 42, and the received white light is analyzed by the light emission characteristic measurement processing unit 39. The emission characteristics are measured.
  • the light emission characteristic measurement processing unit 39 measures the light emission characteristic of the light emitted by the resin 8 by irradiating the resin 8 applied to the light transmitting member 43 with the excitation light emitted from the LED element 5 as the light source part. . Then, the measurement result of the light emission characteristic measurement processing unit 39 is sent to the coating amount derivation processing unit 38, and the same processing as in the example shown in FIG.
  • the configuration of the control system of the LED package manufacturing system 1 will be described with reference to FIG.
  • the component mounting device M1 and the resin coating device M4 the element characteristic information 12, the resin coating information 14, the map data 18, and the above-mentioned
  • the components related to the transmission / reception and update processing of the threshold data 81a are shown.
  • the management computer 3 includes a system control unit 60, a storage unit 61, and a communication unit 62.
  • the system control unit 60 controls the LED package manufacturing work by the LED package manufacturing system 1 in an integrated manner.
  • the storage unit 61 stores element characteristic information 12, resin application information 14, and map data 18 and threshold data 81a as necessary. ing.
  • the communication unit 62 is connected to other devices via the LAN system 2 and exchanges control signals and data.
  • the element characteristic information 12 and the resin application information 14 are transmitted from the outside via the LAN system 2 and the communication unit 62 or via a single storage medium such as a CD ROM, USB memory storage, SD card, and stored in the storage unit 61. Is done.
  • the component mounting apparatus M1 includes a mounting control unit 70, a storage unit 71, a communication unit 72, a mechanism driving unit 73, and a map creation processing unit 74.
  • the mounting control unit 70 controls each unit described below based on various programs and data stored in the storage unit 71 in order to execute a component mounting operation by the component mounting apparatus M1.
  • the storage unit 71 stores mounting position information 71 a and element characteristic information 12 in addition to programs and data necessary for control processing by the mounting control unit 70.
  • the mounting position information 71 a is created from execution history data of mounting operation control by the mounting control unit 70.
  • the element characteristic information 12 is transmitted from the management computer 3 via the LAN system 2.
  • the communication unit 72 is connected to other devices via the LAN system 2 and exchanges control signals and data.
  • the mechanism driving unit 73 is controlled by the mounting control unit 70 to drive the component supply mechanism 25 and the component mounting mechanism 26.
  • the map creation processing unit 74 includes mounting position information 71a indicating the position on the substrate 4 of the LED element 5 stored in the storage unit 71 and mounted by the component mounting apparatus M1, and an element for the LED element 5 A process of creating the map data 18 associated with the characteristic information 12 for each substrate 4 is performed. That is, the map data creation unit is provided in the component mounting apparatus M1, and the map data 18 is transmitted from the component mounting apparatus M1 to the resin coating apparatus M4. The map data 18 may be transmitted from the component mounting apparatus M1 to the resin coating apparatus M4 via the management computer 3. In this case, the map data 18 is also stored in the storage unit 61 of the management computer 3 as shown in FIG.
  • the resin coating apparatus M4 includes a coating control unit 36, a storage unit 81, a communication unit 82, a production execution processing unit 37, a coating amount derivation processing unit 38, and a light emission characteristic measurement processing unit 39.
  • the application control unit 36 controls the nozzle moving mechanism 34, the resin discharge mechanism 35, and the test hitting / measurement unit 40 constituting the resin application unit C, so that the resin 8 is applied to the translucent member 43 for light emission characteristic measurement.
  • the measurement coating process to be performed and the production coating process to be applied to the LED element 5 for actual production are performed.
  • the storage unit 81 stores programs and data necessary for control processing by the application control unit 36, as well as resin application information 14, map data 18, threshold data 81a, and actual production application amount 81b.
  • the resin application information 14 is transmitted from the management computer 3 via the LAN system 2, and the map data 18 is similarly transmitted from the component mounting apparatus M1 via the LAN system 2.
  • the communication unit 82 is connected to other devices via the LAN system 2 and exchanges control signals and data.
  • the light emission characteristic measurement processing unit 39 performs a process of measuring the light emission characteristic of the light emitted from the resin by irradiating the resin 8 applied to the light transmitting member 43 with the excitation light emitted from the light source unit 45.
  • the application amount derivation processing unit 38 obtains a deviation between the measurement result of the light emission characteristic measurement processing unit 39 and a predetermined light emission characteristic, and based on this deviation, the resin 8 to be applied to the LED element 5 for actual production. An arithmetic process for deriving an appropriate resin application amount is performed. Then, the production execution processing unit 37 instructs the application control unit 36 to specify the appropriate resin application amount derived by the application amount derivation processing unit 38, thereby applying the appropriate resin application amount of resin to the LED element 5. Execute the process.
  • processing functions other than the function for executing work operations unique to each apparatus for example, the function of the map creation processing unit 74 provided in the component mounting apparatus M1, and the resin coating apparatus M4 are provided.
  • the function of the applied amount derivation processing unit 38 is not necessarily attached to the apparatus.
  • the functions of the map creation processing unit 74 and the coating amount derivation processing unit 38 are covered by the arithmetic processing function of the system control unit 60 of the management computer 3 and necessary signal exchange is performed via the LAN system 2. It may be configured.
  • both the component mounting apparatus M1 and the resin coating apparatus M4 are connected to the LAN system 2. Then, the management computer 3 and the LAN system 2 in which the element characteristic information 12 is stored in the storage unit 61 uses the information obtained by separately measuring the emission characteristics including the emission wavelengths of the plurality of LED elements 5 in advance as the element characteristic information. 12 is an element characteristic information providing unit provided to the component mounting apparatus M1.
  • the element characteristic information providing unit that provides the element characteristic information 12 to the component mounting apparatus M1 and the resin information providing unit that provides the resin coating information 14 to the resin coating apparatus M4 are the storage unit 61 of the management computer 3 that is an external storage unit.
  • the element characteristic information and the resin application information read out are transmitted to the component mounting apparatus M1 and the resin application apparatus M4 via the LAN system 2, respectively.
  • element characteristic information 12 and resin application information 14 are acquired (ST1). That is, the appropriate resin application amount of the resin 8 for obtaining the LED package 50 having the element characteristic information 12 obtained by separately measuring the emission characteristics including the emission wavelengths of the plurality of LED elements 5 in advance and the prescribed emission characteristics.
  • the resin application information 14 in which the element characteristic information 12 is associated is acquired from an external device via the LAN system 2 or via a storage medium.
  • the board 4 to be mounted is carried into the component mounting apparatus M1 (ST2).
  • the resin adhesive 23 is supplied to the element mounting position in the LED mounting portion 4b by raising and lowering the transfer pin 24a of the adhesive transfer mechanism 24 (arrow n).
  • the LED element 5 held by the mounting nozzle 26a of the component mounting mechanism 26 is lowered (arrow o) and mounted in the LED mounting portion 4b of the substrate 4 via the resin adhesive 23 ( ST3).
  • the map creation processing unit 74 creates map data 18 that associates the mounting position information 71a with the element characteristic information 12 of each LED element 5 for the board 4 from the execution data of the component mounting work (ST4). ).
  • the map data 18 is transmitted from the component mounting apparatus M1 to the resin coating apparatus M4, and the resin coating information 14 is transmitted from the management computer 3 to the resin coating apparatus M4 (ST5). Thereby, it will be in the state which can perform the resin coating operation
  • the substrate 4 after component mounting is sent to the curing device M2, where it is heated, whereby as shown in FIG. 18 (c), the resin adhesive 23 is thermally cured to become a resin adhesive 23 *.
  • the LED element 5 is fixed to the individual substrate 4a.
  • the substrate 4 after resin curing is sent to the wire bonding apparatus M3, and as shown in FIG. 18 (d), the wiring layers 4e and 4d of the individual substrate 4a are respectively connected to the N-type portion electrodes 6a and P of the LED element 5.
  • the mold part electrode 6 b is connected to the bonding wire 7.
  • threshold data creation processing for non-defective product determination is executed (ST6). This process is executed in order to set a pass / fail judgment threshold value in production coating (see threshold value data 81a shown in FIG. 11). Bin codes [1], [2], [3 ], [4], and [5] are repeatedly executed for each of the production coatings. Details of the threshold data creation processing will be described with reference to FIGS. 13, 14A to 14C, and FIG. In FIG. 13, first, a resin 8 containing a phosphor specified in the resin application information 14 at a genuine concentration is prepared (ST11).
  • the resin discharge head 32 is moved to the test hitting stage 40 a of the test hitting / measurement unit 40, and the resin 8 is applied to the specified application amount (appropriate resin application) indicated in the resin application information 14.
  • the amount is applied to the translucent member 43 (ST12).
  • the resin 8 applied to the translucent member 43 is moved onto the translucent member mounting portion 41, the LED element 5 is caused to emit light, and the light emission characteristics in an uncured state of the resin 8 are measured by the light emission characteristic measuring section having the above-described configuration. Measure (ST13).
  • a non-defective product determination range of the measurement value for determining the light emission characteristic to be non-defective is set (ST14).
  • the non-defective product determination range is stored as threshold data 81a in the storage unit 81, transferred to the management computer 3, and stored in the storage unit 61 (ST15).
  • FIGS. 14A to 14C show threshold data created in this way, that is, measurement of light emission characteristics obtained in the uncured state of resin after applying resin 8 containing a genuine phosphor content.
  • the non-defective product determination range (threshold value) of the measured value for determining that the value and the light emission characteristic are good products is shown.
  • the phosphor concentration in the resin 8 is 5%, respectively.
  • the threshold values corresponding to the Bin codes [1], [2], [3], [4], and [5] in the case of 10% and 15% are shown.
  • each of the Bin codes 12b corresponds to the application amount shown in each of the appropriate resin application amounts 15 (1).
  • the measurement result obtained by measuring the light emission characteristics of the light emitted from the resin 8 by irradiating the resin 8 coated with the respective coating amounts with the blue light of the LED element 5 is the light emission characteristic measured value 39a (1 ).
  • threshold data 81a (1) is set based on the respective emission characteristic measurement values 39a (1).
  • the measurement result of measuring the light emission characteristics of the resin 8 coated with the appropriate resin coating amount VA0 corresponding to the Bin code [1] is based on the chromaticity coordinates ZA0 (XA0, YA0) on the chromaticity table shown in FIG. expressed.
  • a predetermined range for example, ⁇ 10%
  • a non-defective product determination range for example, ⁇ 10%
  • a non-defective product determination range (threshold value) is set based on the light emission characteristic measurement results (chromaticity table shown in FIG. 15). (See chromaticity coordinates ZB0 to ZE0 above).
  • the predetermined range set as the threshold is appropriately set according to the accuracy level of the light emission characteristics required for the LED package 50 as a product.
  • 14 (b) and 14 (c) show the emission characteristic measurement values and non-defective product determination ranges (threshold values) when the phosphor concentrations of the resin 8 are 10% and 15%, respectively.
  • the appropriate resin application amount 15 (2) and the appropriate resin application amount 15 (3) indicate the appropriate resin application amounts when the phosphor concentrations are 10% and 15%, respectively.
  • the emission characteristic measurement value 39a (2) and the emission characteristic measurement value 39a (3) are emission specific measurement values when the phosphor concentrations are 10% and 15%, respectively, and threshold data 81a ( 2)
  • the threshold value data 81a (3) indicates a non-defective product determination range (threshold value) in each case.
  • the threshold data created in this way is selectively used according to the Bin code 12b to which the target LED element 5 belongs in the production application work.
  • the threshold data creation process shown in (ST6) is executed as an off-line operation by a single inspection apparatus provided separately from the LED package manufacturing system 1, and is stored in the management computer 3 as threshold data 81a in advance. It is also possible to transmit the received data to the resin coating apparatus M4 via the LAN system 2.
  • the substrate 4 after wire bonding is transported to the resin coating device M4 (ST7), and as shown in FIG. 19A, the resin is discharged from the discharge nozzle 33a into the LED mounting portion 4b surrounded by the reflecting portion 4c. 8 is discharged.
  • the resin application information 14 based on the map data 18, the threshold value data 81a, and the resin application information 14, an operation of applying a prescribed amount of the resin 8 shown in FIG. 19B covering the LED element 5 is performed (ST8). Details of this resin coating operation processing will be described with reference to FIGS. 14 (a) to 14 (c) and FIG.
  • the resin container is exchanged as necessary (ST21). That is, the dispenser 33 attached to the resin discharge head 32 is replaced with one containing a resin 8 having a phosphor concentration selected according to the characteristics of the LED element 5.
  • the resin application portion C is used to test-apply the resin 8 to the translucent member 43 for measurement of light emission characteristics (measurement application step) (ST22). That is, the resin 8 having an appropriate resin application amount (VA0 to VE0) for each of the Bin cords 12b defined in FIG. 4 is formed on the light transmitting member 43 drawn out to the trial placement stage 40a by the trial placement / measurement unit 40. Apply. At this time, even if the discharge operation parameter corresponding to the appropriate resin application amount (VA0 to VE0) is commanded to the resin discharge mechanism 35, the actual resin application amount discharged from the discharge nozzle 33a and applied to the translucent member 43 is the resin.
  • the proper resin coating amount does not necessarily become the above-mentioned appropriate resin coating amount due to the change in the property of 8 over time, and the actual resin coating amount is VA1 to VE1 somewhat different from VA0 to VE0, as shown in FIG.
  • the translucent member 43 on which the resin 8 has been trial-applied is sent and placed on the translucent member mounting portion 41 (translucent member mounting step).
  • the excitation light which excites a fluorescent substance is light-emitted from the light source part 45 arrange
  • the light emission characteristic measurement processing unit 39 measures the light emission characteristic (light emission characteristic measurement step) (ST23).
  • the measurement result is within the threshold value (ST24), and as shown in FIG. 17C, the deviation obtained in (ST23) is compared with the threshold value.
  • the deviations ( ⁇ XA, ⁇ YA) to ( ⁇ XE, ⁇ YE) are within a range of ⁇ 10% with respect to ZA0 to ZE0.
  • the application amount is corrected (ST25). That is, the deviation between the measurement result in the light emission characteristic measurement step and the predetermined light emission characteristic is obtained, and as shown in FIG. 17 (d), the actual production to be applied to the LED element 5 based on the obtained deviation.
  • the process of deriving the new appropriate resin application amount (VA2 to VE2) is executed by the application amount deriving processing unit 38 (application amount deriving process step).
  • the corrected appropriate resin coating amount (VA2 to VE2) is an updated value obtained by adding a correction amount corresponding to each deviation to the preset appropriate resin coating amount VA0 to VE0.
  • the relationship between the deviation and the correction amount is recorded in the resin application information 14 as known accompanying data in advance.
  • the processes of (ST22), (ST23), (ST24), and (ST25) are repeatedly executed, and the measurement result is defined in advance in (ST24).
  • the proper resin coating amount for actual production is determined.
  • the appropriate resin coating amount is determined by repeatedly executing the measurement coating step, the translucent member placement step, the excitation light emission step, the light emission characteristic measurement step, and the coating amount derivation step. I try to derive.
  • the determined proper resin application amount is stored in the storage unit 81 as the actual production application amount 81b.
  • the production coating is executed (ST31). That is, when the production execution processing unit 37 instructs the application control unit 36 that controls the resin discharge mechanism 35, the appropriate resin application amount derived by the application amount derivation processing unit 38 and stored as the actual production application amount 81b. A production application process for applying the appropriate amount of resin 8 on the LED element 5 mounted on the substrate 4 is executed (production execution step).
  • the number of times of application by the dispenser 33 is counted, and it is monitored whether or not the predetermined number of times of application has passed (ST32). That is, until the predetermined number of times is reached, it is determined that there is little change in the properties of the resin 8 and the phosphor concentration, and the production coating execution (ST31) is repeated while maintaining the same actual production coating amount 81b. If the predetermined number of times has been confirmed in (ST32), it is determined that there is a possibility that the property of the resin 8 or the phosphor concentration has changed, and the process returns to (ST22). And the coating amount correction process based on the measurement result is repeatedly executed.
  • the substrate 4 is sent to the curing device M5, and the resin 8 is cured by heating by the curing device M5 (ST9).
  • the resin 8 applied so as to cover the LED element 5 is thermally cured to become the resin 8 *, and is fixed in the LED mounting portion 4b.
  • the substrate 4 after the resin curing is sent to the individual piece cutting device M6, where the substrate 4 is cut into the individual piece substrates 4a, and as shown in FIG. (ST10). Thereby, the LED package 50 is completed.
  • the LED package manufacturing system 1 shown in the embodiment described above separately measures the component mounting apparatus M1 for mounting the plurality of LED elements 5 on the substrate 4 and the emission wavelengths of the plurality of LED elements 5 in advance.
  • the element characteristic information providing unit that provides the obtained information as element characteristic information 12 and the appropriate resin application amount of the resin 8 for obtaining the LED package 50 having the prescribed light emission characteristic correspond to the element characteristic information 12.
  • the appropriate resin coating amount of the resin 8 for having a light emitting property has a configuration that includes a resin coating device M4 to be applied to each LED element mounted on the substrate 4.
  • the resin coating apparatus M4 controls the resin coating unit C that discharges the resin 8 in a variable amount and applies the resin 8 to an arbitrary coating target position, and the resin coating unit C.
  • a coating control unit 36 that executes a coating process for measurement that is applied to the translucent member 43 and a production coating process that is applied to the LED element 5 for actual production, and a light source unit that emits excitation light that excites the phosphor.
  • the translucent member mounting portion 41 on which the translucent member 43 on which the resin 8 has been trial-applied in the measurement application process is placed, and the excitation light emitted from the light source unit on the translucent member 43.
  • a light emission characteristic measuring unit that measures the light emission characteristic of the light emitted from the resin 8 by irradiation, and obtaining a deviation between a measurement result of the light emission characteristic measuring part and a predetermined light emission characteristic, and applying an appropriate resin based on this deviation Correct the amount
  • the application control unit 36 with the application amount derivation processing unit 38 for deriving the appropriate resin application amount for actual production to be applied to the LED element 5
  • It has a configuration including a production execution processing unit 37 that executes a production application process for applying a resin application amount of resin to the LED element 5.
  • the translucent member 43 on which the resin 8 is trial-coated for light emission characteristic measurement is placed on the translucent member.
  • This resin is placed on the unit 41, emits excitation light for exciting the phosphor from the light source unit 45 disposed above, and irradiates the resin 8 applied to the translucent member 43 from above with this resin. 8 is obtained from the lower side of the translucent member 43 and the light emission characteristic of the light is measured, and a deviation between the predetermined light emission characteristic is obtained, and the LED element 5 is used for actual production based on this deviation.
  • the appropriate resin application amount of the resin to be applied can be derived. Thereby, even when the light emission wavelengths of the individual LED elements 5 vary, the light emission characteristics of the LED package 50 can be made uniform and the production yield can be improved.
  • the LED package manufacturing system 1 having the above-described configuration shows a configuration in which the management computer 3 and the component mounting apparatus M1 to the individual piece cutting apparatus M6 are connected by the LAN system 2.
  • the LAN system 2 is indispensable. It is not a configuration requirement. That is, there is a storage unit that stores element characteristic information 12 and resin application information 14 that are prepared in advance and transmitted from the outside for each LED package 50, and from these storage units, the element characteristics are transmitted to the component mounting apparatus M1. If there is a data providing unit that can provide the information 12 and the resin coating information 14 and the map data 18 to the resin coating apparatus M4 as needed, the LED package manufacturing system 1 according to the present embodiment can be provided. Function can be realized.
  • the LED package manufacturing system of the present invention has the effect that even if the light emission wavelength of individual LED elements varies, the light emission characteristics of the LED package can be made uniform and the production yield can be improved.
  • the present invention can be used in the field of manufacturing an LED package in which the element is covered with a resin containing a phosphor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)

Abstract

 LED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージの製造に用いられる樹脂塗布において、樹脂8を発光特性測定用として試し塗布した透光部材43を透光部材載置部41に載置し、上方に配置された光源部45から蛍光体を励起する励起光を発光し透光部材43に塗布された樹脂8に上方から照射することにより樹脂8が発する光の発光特性を発光特性測定部によって測定した測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて実生産用としてLED素子に塗布されるべき樹脂の適正樹脂塗布量を導出する。

Description

LEDパッケージ製造システムおよびLEDパッケージ製造システムにおける樹脂塗布方法
 本発明は、基板に実装されたLED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージを製造するLEDパッケージ製造システムおよびLEDパッケージ製造システムにおける樹脂塗布方法に関するものである。
 近年、各種の照明装置の光源として、消費電力が少なく長寿命であるという優れた特性を有するLED(発光ダイオード)が、広範囲で用いられるようになっている。LED素子が発する基本光は、現在のところ赤、緑、青の3つに限られているため、一般的な照明用途として好適な白色光を得るためには、上述の3つの基本光を加色混合することによって白色光を得る方法や、青色LEDと青色と補色関係にある黄色の蛍光を発する蛍光体とを組み合わせることにより疑似白色光を得る方法などが用いられる。近年は後者の方法が広く用いられるようになっており、青色LEDとYAG蛍光体を組み合わせたLEDパッケージを用いた照明装置が、液晶パネルのバックライトなどに用いられるようになっている(例えば特許文献1参照)。
 この特許文献例においては、側壁に反射面が形成された凹状の実装部の底面にLED素子を実装した後、実装部内にYAG系蛍光体粒子が分散された実装部内にYAG系蛍光体粒子が分散されたシリコーン樹脂やエポキシ樹脂などを注入して樹脂包装部を形成することにより、LEDパッケージを構成するようにしている。そして、樹脂注入後の実装部内における樹脂包装部の高さを均一にすることを目的として、規定量以上に注入された剰余樹脂を実装部から排出して貯留するための剰余樹脂貯蔵部を形成する例が記載されている。これにより、樹脂注入時にディスペンサからの吐出量がばらついている場合にあっても、LED素子上には一定の樹脂量を有し規定高さの樹脂包装部が形成される。
日本国特開2007-66969号公報
 しかしながら上述の先行技術例においては、個々のLED素子における発光波長のばらつきに起因して、製品となるLEDパッケージの発光特性がばらつくという問題があった。すなわちLED素子は複数の素子をウェハ上に一括して作り込む製造過程を経ており、この製造過程における種々の誤差要因、例えばウェハにおける膜形成時の組成の不均一などに起因して、ウェハ状態から個片に分割されたLED素子には、発光波長のばらつきが生じることが避けられない。そして上述例では、LED素子を覆う樹脂包装部の高さは均一に設定されていることから、個片のLED素子における発光波長のばらつきは、そのまま製品としてのLEDパッケージの発光特性のばらつきに反映され、結果として品質許容範囲から逸脱する不良品の増加を余儀なくされていた。このように、従来のLEDパッケージ製造技術には、個片のLED素子における発光波長のばらつきに起因して、製品としてのLEDパッケージの発光特性がばらつき、生産歩留まりの低下を招くという問題があった。
 そこで本発明は、LEDパッケージ製造システムにおいて、個片のLED素子の発光波長がばらつく場合にあってもLEDパッケージの発光特性を均一にして、生産歩留まりを向上させることができる樹脂塗布装置および樹脂塗布方法を提供することを目的とする。
 本発明のLEDパッケージ製造システムは、基板に実装されたLED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージを製造するLEDパッケージ製造システムであって、前記基板に複数の前記LED素子を実装する部品実装装置と、前記複数のLED素子の発光波長を含む発光特性を予め個別に測定して得られた情報を素子特性情報として提供する素子特性情報提供部と、規定の発光特性を具備したLEDパッケージを得るための前記樹脂の適正樹脂塗布量と前記素子特性情報とを対応させた情報を樹脂塗布情報として提供する樹脂情報提供部と、前記部品実装装置によって実装されたLED素子の前記基板における位置を示す実装位置情報と当該LED素子についての前記素子特性情報とを関連付けたマップデータを、前記基板毎に作成するマップデータ作成部と、前記マップデータと前記樹脂塗布情報に基づき、規定の発光特性を具備するための適正樹脂塗布量の前記樹脂を、前記基板に実装された各LED素子に塗布する樹脂塗布装置とを備え、前記樹脂塗布装置は、前記樹脂を塗布量を可変に吐出して任意の塗布対象位置に塗布する樹脂塗布部と、前記樹脂塗布部を制御することにより、前記樹脂を発光特性測定用として透光部材に試し塗布する測定用塗布処理および実生産用として前記LED素子に塗布する生産用塗布処理を実行させる塗布制御部と、前記測定用塗布処理において前記樹脂が試し塗布された透光部材が載置される透光部材載置部と、前記透光部材載置部の上方に配置され前記蛍光体を励起する励起光を発光する光源部と、前記励起光を前記透光部材に塗布された樹脂に上方から照射することによりこの樹脂が発する光を前記透光部材の下方から受光して前記光の発光特性を測定する発光特性測定部と、前記発光特性測定部の測定結果と予め規定された発光特性との偏差を求めこの偏差に基づいて前記適正樹脂塗布量を補正することにより、前記LED素子に塗布されるべき実生産用の適正樹脂塗布量を導出する塗布量導出処理部と、前記導出された適正樹脂塗布量を前記塗布制御部に指令することにより、この適正樹脂塗布量の樹脂をLED素子に塗布する生産用塗布処理を実行させる生産実行処理部とを備えた。
 本発明のLEDパッケージ製造システムにおける樹脂塗布方法は、基板に実装されたLED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージを製造するLEDパッケージ製造システムにおいて、部品実装装置によって前記基板に実装された複数のLED素子を覆って前記樹脂を塗布するLEDパッケージ製造システムにおける樹脂塗布方法であって、前記LEDパッケージ製造システムは、前記基板に複数の前記LED素子を実装する部品実装装置と、前記複数のLED素子の発光波長を含む発光特性を予め個別に測定して得られた情報を素子特性情報として提供する素子特性情報提供部と、規定の発光特性を具備したLEDパッケージを得るための前記樹脂の適正樹脂塗布量と前記素子特性情報とを対応させた情報を樹脂塗布情報として提供する樹脂情報提供部と、前記部品実装装置によって実装されたLED素子の前記基板における位置を示す実装位置情報と当該LED素子についての前記素子特性情報とを関連付けたマップデータを、前記基板毎に作成するマップデータ作成部と、前記マップデータと前記樹脂塗布情報に基づき、完成製品に求められる正規の発光特性を具備するための適正樹脂塗布量の前記樹脂を、前記基板に実装された各LED素子に塗布する樹脂塗布装置とを備え、前記樹脂を塗布量を可変に吐出する樹脂吐出部によって、前記樹脂を発光特性測定用として透光部材に試し塗布する測定用塗布工程と、前記樹脂が試し塗布された透光部材を透光部材載置部に載置する透光部材載置工程と、前記透光部材載置部の上方に配置された光源部から前記蛍光体を励起する励起光を発光する励起光発光工程と、前記励起光を前記透光部材に塗布された樹脂に上方から照射することによりこの樹脂が発する光を前記透光部材の下方から受光して、前記光の発光特性を測定する発光特性測定工程と、前記発光特性測定工程における測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて前記適正樹脂塗布量を補正することにより、前記LED素子に塗布されるべき実生産用の適正樹脂塗布量を導出する塗布量導出処理工程と、前記導出された適正樹脂塗布量を前記樹脂吐出部を制御する塗布制御部に指令することにより、この適正樹脂塗布量の樹脂をLED素子に塗布する生産用塗布処理を実行させる生産実行工程とを含む。
 本発明によれば、LED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージの製造に用いられる樹脂塗布において、樹脂が試し塗布された透光部材を透光部材載置部に載置し、透光部材載置部の上方に配置された光源部から蛍光体を励起する励起光を発光し、励起光を透光部材に塗布された樹脂に上方から照射することによりこの樹脂が発する光を透光部材の下方から受光して光の発光特性を測定した測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて実生産用としてLED素子に塗布されるべき樹脂の適正樹脂塗布量を導出することにより、個片のLED素子の発光波長がばらつく場合にあっても、LEDパッケージの発光特性を均一にして、生産歩留まりを向上させることができる。
本発明の一実施の形態のLEDパッケージ製造システムの構成を示すブロック図 (a),(b)本発明の一実施の形態のLEDパッケージ製造システムによって製造されるLEDパッケージの構成説明図 (a)~(d)本発明の一実施の形態のLEDパッケージ製造システムにおいて用いられるLED素子の供給形態および素子特性情報の説明図 本発明の一実施の形態のLEDパッケージ製造システムにおいて用いられる樹脂塗布情報の説明図 (a)~(c)本発明の一実施の形態のLEDパッケージ製造システムにおける部品実装装置の構成および機能の説明図 本発明の一実施の形態のLEDパッケージ製造システムにおいて用いられるマップデータの説明図 (a),(b)本発明の一実施の形態のLEDパッケージ製造システムにおける樹脂塗布装置の構成および機能の説明図 (a)~(c)本発明の一実施の形態のLEDパッケージ製造システムにおける樹脂塗布装置に備えられた発光特性検査機能の説明図 (a),(b)本発明の一実施の形態のLEDパッケージ製造システムにおける樹脂塗布装置の構成および機能の説明図 (a),(b)本発明の一実施の形態のLEDパッケージ製造システムにおける樹脂塗布装置に備えられた発光特性検査機能の説明図 本発明の一実施の形態のLEDパッケージ製造システムの制御系の構成を示すブロック図 本発明の一実施の形態のLEDパッケージ製造システムによるLEDパッケージ製造のフロー図 本発明の一実施の形態のLEDパッケージ製造システムにおける良品判定用のしきい値データ作成処理のフロー図 (a)~(c)本発明の一実施の形態のLEDパッケージ製造システムにおける良品判定用のしきい値データの説明図 本発明の一実施の形態のLEDパッケージ製造システムにおける良品判定用のしきい値データを説明する色度図 本発明の一実施の形態のLEDパッケージ製造システムによるLEDパッケージ製造過程における樹脂塗布作業処理のフロー図 (a)~(d)本発明の一実施の形態のLEDパッケージ製造システムによるLEDパッケージ製造過程における樹脂塗布作業処理の説明図 (a)~(d)本発明の一実施の形態のLEDパッケージ製造システムによるLEDパッケージ製造過程を示す工程説明図 (a)~(d)本発明の一実施の形態のLEDパッケージ製造システムによるLEDパッケージ製造過程を示す工程説明図
 次に本発明の実施の形態を図面を参照して説明する。まず図1を参照して、LEDパッケージ製造システム1の構成を説明する。LEDパッケージ製造システム1は、基板に実装されたLED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージを製造する機能を有するものである。本実施の形態においては、図1に示すように、部品実装装置M1、キュア装置M2、ワイヤボンディング装置M3、樹脂塗布装置M4、キュア装置M5、個片切断装置M6の各装置をLANシステム2によって接続し、管理コンピュータ3によってこれらの各装置を統括して制御する構成となっている。
 部品実装装置M1はLEDパッケージのベースとなる基板4(図2(a),(b)参照)にLED素子5を樹脂接着剤によって接合して実装する。キュア装置M2はLED素子5が実装された後の基板4を加熱することにより、実装時の接合に用いられた樹脂接着剤を硬化させる。ワイヤボンディング装置M3は基板4の電極とLED素子5の電極とをボンディングワイヤによって接続する。樹脂塗布装置M4はワイヤボンディング後の基板4において、各LED素子5毎に蛍光体を含む樹脂を塗布する。キュア装置M5は樹脂塗布後の基板4を加熱することにより、LED素子5を覆って塗布された樹脂を硬化させる。個片切断装置M6は、樹脂が硬化した後の基板4を各個別のLED素子5毎に切断して、個片のLEDパッケージに分割する。これにより、個片に分割されたLEDパッケージが完成する。
 なお図1においては、部品実装装置M1~個片切断装置M6の各装置を直列に配置して製造ラインを構成した例を示しているが、LEDパッケージ製造システム1としては必ずしもこのようなライン構成を採用する必要はなく、以下の説明において述べる情報伝達が適切になされる限りにおいては、分散配置された各装置によってそれぞれの工程作業を順次実行する構成であってもよい。また、ワイヤボンディング装置M3の前後に、ワイヤボンディングに先立って電極のクリーニングを目的としたプラズマ処理を行うプラズマ処理装置、ワイヤボンディング後に、樹脂塗布に先立って樹脂の密着性を向上させるための表面改質を目的としたプラズマ処理を行うプラズマ処理装置を介在させるようにしてもよい。
 ここで図2(a)~図3(d)を参照して、LEDパッケージ製造システム1における作業対象となる基板4、LED素子5および完成品としてのLEDパッケージ50について説明する。図2(a)に示すように、基板4は、完成品において1つのLEDパッケージ50のベースとなる個片基板4aが複数個作り込まれた多連型基板であり、各個片基板4aには、それぞれLED素子5が実装される1つのLED実装部4bが形成されている。各個片基板4a毎においてLED実装部4b内にLED素子5を実装し、その後LED実装部4b内にLED素子5を覆って樹脂8を塗布し、さらに樹脂8の硬化後に工程完了済みの基板4を個片基板4a毎に切断することにより、図2(b)に示すLEDパッケージ50が完成する。
 LEDパッケージ50は、各種の照明装置の光源として用いられる白色光を照射する機能を有しており、青色LEDであるLED素子5と青色と補色関係にある黄色の蛍光を発する蛍光体を含んだ樹脂8とを組み合わせることにより、擬似白色光を得るようになっている。図2(b)に示すように、個片基板4aにはLED実装部4bを形成する例えば円形や楕円形の環状堤を有するキャビティ形状の反射部4cが設けられている。反射部4cの内側に搭載されたLED素子5のN型部電極6a、P型部電極6bは、個片基板4aの上面に形成された配線層4e、4dと、それぞれボンディングワイヤ7によって接続される。そして樹脂8はこの状態のLED素子5を覆って反射部4cの内側に所定厚みで塗布され、LED素子5から発光された青色光が樹脂8を透過して照射される過程において、樹脂8内含まれる蛍光体が発光する黄色と混色され、白色光となって照射される。
 図3(a)に示すように、LED素子5は、サファイア基板5a上にN型半導体5b、P型半導体5cを積層し、さらにP型半導体5cの表面を透明電極5dで覆って構成され、N型半導体5b、P型半導体5cにはそれぞれ外部接続用のN型部電極6a、P型部電極6bが形成されている。LED素子5は、図3(b)に示すように、複数が一括して形成された後に個片に分割された状態で保持シート10aに貼着保持されたLEDウェハ10から取り出される。LED素子5は、製造過程における種々の誤差要因、例えばウェハにおける膜形成時の組成の不均一などに起因して、ウェハ状態から個片に分割されたLED素子5には、発光波長など発光特性にばらつきが生じることが避けられない。そしてこのようなLED素子5をそのまま基板4に実装すると、製品としてのLEDパッケージ50の発光特性のばらつきとなる。
 このような発光特性のばらつきに起因する品質不良を防止するため、本実施の形態においては、同一製造過程で製造される複数のLED素子5の発光特性を予め計測し、各LED素子5と当該LED素子5の発光特性を示すデータとを対応させた素子特性情報を作成しておき、樹脂8の塗布において各LED素子5の発光特性に応じた適正量の樹脂8を塗布するようにしている。そして適正量の樹脂8を塗布するために、後述する樹脂塗布情報が予め準備される。
 まず素子特性情報について説明する。図3(c)に示すように、LEDウェハ10から取り出されたLED素子5は、個々を識別する素子ID(ここでは、当該LEDウェハ10における連番(i)にて個別のLED素子5を識別)が付与された上で、発光特性計測装置11に順次投入される。なお、素子IDとしては、LED素子5を個別に特定できる情報であれば、他のデータ形式のもの、例えばLEDウェハ10におけるLED素子5の配列を示すマトリクス座標をそのまま用いるようにしてもよい。このような形式の素子IDを用いることにより、後述する部品実装装置M1において、LED素子5をLEDウェハ10の状態のまま供給することが可能となる。
 発光特性計測装置11においては、各LED素子5にプローブを介して電力を供給して実際に発光させ、その光を分光分析して発光波長や発光強度などの所定項目について計測を行う。計測対象となるLED素子5については、予め発光波長の標準的な分布が参照データとして準備されており、さらにその分布における標準範囲に該当する波長範囲を複数の波長域に区分することにより、計測対象となった複数のLED素子5を、発光波長によってランク分けする。ここでは、波長範囲を5つに区分することにより設定されたランクのそれぞれに対応して、低波長側から順に、Binコード[1]、[2]、[3]、[4]、[5]が付与されている。そして素子ID12aにBinコード12bを対応させたデータ構成の素子特性情報12が作成される。
 すなわち素子特性情報12は、複数のLED素子5の発光波長を含む発光特性を予め個別に測定して得られた情報であり、予めLED素子製造メーカなどによって準備されてLEDパッケージ製造システム1に対して伝達される。この素子特性情報12の伝達形態としては、単独の記憶媒体に記録された形で伝達されてもよく、またLANシステム2を介して管理コンピュータ3に伝達するようにしてもよい。いずれにおいても、伝達された素子特性情報12は管理コンピュータ3において記憶され、必要に応じて部品実装装置M1に提供される。
 このようにして発光特性計測が終了した複数のLED素子5は、図3(d)に示すように特性ランク毎にソートされ、それぞれの特性ランクに応じて5種類に振り分けられ、5つの粘着シート13aに個別に貼着される。これにより、Binコード[1]、[2]、[3]、[4]、[5]のそれぞれに対応するLED素子5を粘着シート13aに貼着保持した3種類のLEDシート13A、13B、13C、13D、13Eが作成され、これらLED素子5を基板4の個片基板4aに実装する際には、LED素子5はこのようなランク分けが既になされたLEDシート13A、13B、13C、13D、13Eの形態で部品実装装置M1に供給される。このとき、LEDシート13A、13B、13C、13D、13Eのそれぞれには、Binコード[1]、[2]、[3]、[4]、[5]のいずれに対応したLED素子5が保持されているかを示す形で素子特性情報12が管理コンピュータ3から提供される。
 次に、上述の素子特性情報12に対応して予め準備される樹脂塗布情報について、図4を参照して説明する。青色LEDとYAG系の蛍光体を組み合わせることにより白色光を得る構成のLEDパッケージ50では、LED素子5が発光する青色光とこの青色光によって蛍光体が励起されて発光する黄色光との加色混合が行われることから、LED素子5が実装される凹状のLED実装部4b内における蛍光体粒子の量が、製品のLEDパッケージ50の正規の発光特性を確保する上で重要な要素となる。
 上述のように、同時に作業対象となる複数のLED素子5の発光波長には、Binコード[1]、[2]、[3]、[4]、[5]によって分類されるばらつきが存在することから、LED素子5を覆って塗布される樹脂8中の蛍光体粒子の適正量は、Binコード[1]、[2]、[3]、[4]、[5]に応じて異なったものとなる。本実施の形態において準備される樹脂塗布情報14では、図4に示すように、シリコーン樹脂やエポキシ樹脂などにYAG系の蛍光体粒子を含有させた樹脂8のBin分類別適正樹脂塗布量を、nl(ナノリットル)単位で、Binコード区分17に応じて予め規定している。すなわち、LED素子5を覆って樹脂8を樹脂塗布情報14に示される適正樹脂塗布量だけ正確に塗布すると、LED素子5を覆う樹脂中の蛍光体粒子の量は適正な蛍光体粒子供給量となり、これにより樹脂が熱硬化した後に完成品に求められる正規の発光波長が確保される。
 ここでは、蛍光体濃度欄16に示すように、樹脂8中の蛍光体粒子の濃度を示す蛍光体濃度を複数通り(ここではD1(5%),D2(10%),D3(15%)の3通り)に設定し、樹脂8の適正樹脂塗布量も使用する樹脂8の蛍光体濃度に応じて適正な(表現に違和感)数値を用いるようにしている。すなわち、蛍光体濃度D1の樹脂を塗布する場合には、Binコード[1]、[2]、[3]、[4]、[5]のそれぞれについて、適正樹脂塗布量VA0、VB0,VC0,VD0,VE0(適正樹脂塗布量15(1))の樹脂8を塗布する。同様に、蛍光体濃度D2の樹脂を塗布する場合には、Binコード[1]、[2]、[3]、[4]、[5]のそれぞれについて、適正樹脂塗布量VF0、VG0,VH0,VJ0,VK0(適正樹脂塗布量15(2))の樹脂8を塗布する。また蛍光体濃度D3の樹脂を塗布する場合には、Binコード[1]、[2]、[3]、[4]、[5]のそれぞれについて、適正樹脂塗布量VL0、VM0,VN0,VP0,VR0(適正樹脂塗布量15(3))の樹脂8を塗布する。このように異なった複数の蛍光体濃度毎にそれぞれ適正樹脂塗布量を設定するのは、発光波長のばらつきの程度に応じて最適の蛍光体濃度の樹脂8を塗布するのが品質確保の上で、より好ましいからである。
 次に図5(a)~(c)を参照して、部品実装装置M1の構成および機能を説明する。図5(a)の平面図に示すように、部品実装装置M1は、上流側から供給された作業対象の基板4を基板搬送方向(矢印a)に搬送する基板搬送機構21を備えている。基板搬送機構21には、上流側から順に、図5(b)にA-A断面にて示す接着剤塗布部A、図4(c)にB-B断面にて示す部品実装部Bが配設されている。接着剤塗布部Aは、基板搬送機構21の側方に配置され樹脂接着剤23を所定の膜厚の塗膜の形で供給する接着剤供給部22および基板搬送機構21と接着剤供給部22の上方で水平方向(矢印b)に移動自在な接着剤転写機構24を備えている。また部品実装部Bは、基板搬送機構21の側方に配置され、図3(d)に示すLEDシート13A、13B、13C,13D,13Eを保持する部品供給機構25および基板搬送機構21と部品供給機構25の上方で水平方向(矢印c)に移動自在な部品実装機構26を備えている。
 基板搬送機構21に搬入された基板4は、図5(b)に示すように、接着剤塗布部Aにて位置決めされ、各個片基板4aに形成されたLED実装部4bを対象として、樹脂接着剤23の塗布が行われる。すなわちまず接着剤転写機構24を接着剤供給部22の上方に移動させて転写ピン24aを転写面22aに形成された樹脂接着剤23の塗膜に接触させ、樹脂接着剤23を付着させる。次いで接着剤転写機構24を基板4の上方に移動させて、転写ピン24aをLED実装部4bに下降させることにより(矢印d)、転写ピン24aに付着した樹脂接着剤23をLED実装部4b内の素子実装位置に転写により供給する。
 次いで接着剤塗布後の基板4は下流側へ搬送されて、図5(c)に示すように部品実装部Bにて位置決めされ、接着剤供給後の各LED実装部4bを対象として、LED素子5の実装が行われる。すなわちまず部品実装機構26を部品供給機構25の上方に移動させて実装ノズル26aを部品供給機構25に保持されたLEDシート13A、13B、13C,13D,13Eのいずれかに対して下降させ、実装ノズル26aによってLED素子5を保持して取り出す。次いで部品実装機構26を基板4のLED実装部4bの上方に移動させて実装ノズル26aを下降させることにより(矢印e)、実装ノズル26aに保持したLED素子5をLED実装部4b内において接着剤が塗布された素子実装位置に実装する。
 この部品実装装置M1による基板4へのLED素子5の実装においては、予め作成された素子実装プログラム、すなわち部品実装機構26による個別実装動作においてLEDシート13A、13B、13C,13D,13EのいずれからLED素子5を取り出して基板4の複数の個片基板4aに実装するかの順序が予め設定されており、部品実装作業はこの素子実装プログラムにしたがって実行される。
 そして部品実装作業の実行に際しては、作業実行履歴から個別のLED素子5が基板4の複数の個片基板4aのうちのいずれに実装されたかを示す実装位置情報71a(図11参照)を抽出し記録する。そしてこの実装位置情報71aと個々の個片基板4aに実装されたLED素子5がいずれの特性ランク(Binコード[1]、[2]、[3]、[4]、[5])に対応するものであるかを示す素子特性情報12とを関連づけたデータが、マップ作成処理部74(図11参照)によって、図6に示すマップデータ18として作成されるようになっている。
 図6において、基板4の複数の個片基板4aの個別の位置は、X方向,Y方向の位置をそれぞれ示すマトリクス座標19X、19Yの組み合わせによって特定される。そしてマトリクス座標19X、19Yによって構成されるマトリックスの個別セルに、当該位置に実装されたLED素子5が属するBinコードを対応させることにより、部品実装装置M1によって実装されたLED素子5の基板4における位置を示す実装位置情報71aと、当該LED素子5についての素子特性情報12とを関連付けたマップデータ18が作成される。
 すなわち、部品実装装置M1は、当該装置によって実装されたLED素子5の基板4における位置を示す実装位置情報と、当該LED素子5についての素子特性情報12とを関連付けたマップデータ18を、基板4毎に作成するマップデータ作成部としてのマップ作成処理部74を備えた構成となっている。そして作成されたマップデータ18は、LANシステム2を介して以下に説明する樹脂塗布装置M4に対してフィードフォワードデータとして送信される。
 次に図7(a)~図8(c)を参照して、樹脂塗布装置M4の構成および機能について説明する。樹脂塗布装置M4は、部品実装装置M1によって基板4に実装された複数のLED素子5を覆って樹脂8を塗布する機能を有するものである。図7(a)の平面図に示すように、樹脂塗布装置M4は上流側から供給された作業対象の基板4を基板搬送方向(矢印f)に搬送する基板搬送機構31に、図7(b)にC-C断面にて示す樹脂塗布部Cを配設した構成となっている。樹脂塗布部Cには、下端部に装着された吐出ノズル33aから樹脂8を吐出する構成の樹脂吐出ヘッド32が設けられている。
 図7(b)に示すように、樹脂吐出ヘッド32はノズル移動機構34によって駆動され、ノズル移動機構34を塗布制御部36によって制御することにより、水平方向(図7(a)に示す矢印g)の移動動作および昇降動作を行う。樹脂吐出ヘッド32には樹脂8がディスペンサ33に装着されるシリンジに収納された状態で供給され、樹脂吐出機構35によって空圧をディスペンサ33内に印加することにより、ディスペンサ33内の樹脂8は吐出ノズル33aを介して吐出されて、基板4に形成されたLED実装部4bに塗布される。このとき、樹脂吐出機構35を塗布制御部36によって制御することにより、樹脂8の吐出量を任意に制御することができる。すなわち樹脂塗布部Cは、樹脂8を塗布量を可変に吐出して、任意の塗布対象位置に塗布する機能を有している。なお、樹脂吐出機構35には、空圧のディスペンサ33以外にもメカシリンダを用いたプランジャ方式、スクリューポンプ方式など、各種の液吐出方式を採用することができる。
 基板搬送機構31の側方には、樹脂吐出ヘッド32の移動範囲内に位置して、試し打ち・測定ユニット40が配置されている。試し打ち・測定ユニット40は、樹脂8を基板4のLED実装部4bに塗布する実生産用塗布作業に先立って、樹脂8の塗布量が適正であるか否かを、試し塗布した樹脂8の発光特性を測定することにより判定する機能を有するものである。すなわち、樹脂塗布部Cによって樹脂8を試し塗布した透光部材43に測定用の光源部45が発する光を照射したときの発光特性を、分光器42および発光特性測定処理部39を備えた発光特性測定部によって測定し、測定結果を予め設定されたしきい値と比較することにより、図4に示す樹脂塗布情報14にて規定される既設定の樹脂塗布量の適否を判定する。
 蛍光体粒子を含有する樹脂8は、その組成・性状は必ずしも安定的ではなく、予め樹脂塗布情報14にて適正樹脂塗布量を設定していても、時間の経過によって蛍光体の濃度や樹脂粘度が変動することが避けられない。このため予め設定された適正樹脂塗布量に対応する吐出パラメータで樹脂8を吐出しても、樹脂塗布量そのものが既設定の適正値からばらつく場合や、さらには樹脂塗布量自体は適正であっても濃度変化によって本来供給されるべき蛍光体粒子の供給量がばらつく結果となる。
 このような不都合を排除するため、本実施の形態では、所定のインターバルにて適正供給量の蛍光体粒子が供給されているか否かを検査するための試し塗布を樹脂塗布装置M4にて実行し、さらに試し塗布された樹脂を対象として発光特性の測定を実行することにより、本来あるべき発光特性に則して蛍光体粒子の供給量を安定させるようにしている。そして本実施の形態に示す樹脂塗布装置M4に備えられた樹脂塗布部Cは、樹脂8を上述の発光特性測定用として透光部材43に試し塗布する測定用塗布処理と、実生産用として基板4に実装された状態のLED素子5に塗布する生産用塗布処理とを併せて実行する機能を有している。これらの測定用塗布処理および生産用塗布処理は、いずれも塗布制御部36が樹脂塗布部Cを制御することにより実行される。
 図8(a)~(c)を参照して試し打ち・測定ユニット40の詳細構成を説明する。図8(a)に示すように、透光部材43は供給リール47に卷回収納されて供給され、試し打ちステージ40aの上面に沿って送られた後、透光部材載置部41と照射部46との間を経由して、巻き取りモータ49によって駆動される回収リール48に巻き取られる。なお、透光部材43を回主する機構としては、回収リール48に卷回して回収する方式以外にも、回収ボックス内に透光部材43を送り機構によって送り込む方式など、各種の方式を採用することができる。
 照射部46は光源部45によって発光された測定光を透光部材43に対して照射する機能を有しており、簡易暗箱機能を有する遮光ボックス46a内に、光源部45が発光する測定光がファイバケーブルによって導光される光集束ツール46bを配設した構成となっている。光源部45は樹脂8に含まれる蛍光体を励起する励起光を発光する機能を有しており、本実施の形態においては透光部材載置部41の上方に配置されて、測定光を透光部材43に対して光集束ツール46bを介して上方から照射する形態となっている。
 ここで透光部材43としては、透明樹脂製の平面シート状部材を所定幅のテープ材としたものや、同様のテープ材にLEDパッケージ50の凹部形状に対応したエンボス部43aが下面に凸設されたエンボスタイプのものなどが用いられる(図8(b)参照)。透光部材43が試し打ち・測定ユニット40上を送られる過程において、透光部材43に対して樹脂吐出ヘッド32によって樹脂8が試し塗布される。この試し塗布は、下面側を試し打ちステージ40aによって支持された透光部材43に対して、図8(b)に示すように、吐出ノズル33aによって規定塗布量の樹脂8を透光部材43に吐出することによって行われる。
 図8(b)(I)は、前述のテープ材よりなる透光部材43に樹脂塗布情報14にて規定される既設定の適正吐出量の樹脂8を塗布した状態を示している。また図8(b)(II)は、前述のエンボスタイプの透光部材43のエンボス部43a内に、同様に既設定の適正吐出量の樹脂8を塗布した状態を示している。なお、後述するように、試し打ちステージ40aにて塗布された樹脂8は、対象となるLED素子5に対して蛍光体供給量が適正であるか否かを実証的に判定するための試し塗布であることから、樹脂吐出ヘッド32による同一試し塗布動作で複数点に樹脂8を連続的に透光部材43上に塗布する場合には、発光特性測定値と塗布量との相関関係を示す既知のデータに基づいて塗布量を段階的に異ならせて塗布しておく。
 このようにして樹脂8が試し塗布された後に遮光ボックス46a内に導かれた透光部材43に対して、光源部45によって発光された白色光を光集束ツール46bを介して上方から照射する。そして透光部材43に塗布された樹脂8を透過した光は、透光部材載置部41に設けられた光透過開口部41aを介して、透光部材載置部41の下方に配設された積分球44によって受光される。図8(c)は、透光部材載置部41、積分球44の構造を示している。透光部材載置部41は、透光部材43の下面を支持する下部支持部材41bの上面に、透光部材43の両端面をガイドする機能を有する上部ガイド部材41cを装着した構造となっている。
 透光部材載置部41は試し打ち・測定ユニット40における搬送時に透光部材43をガイドするとともに、測定用塗布処理において樹脂8が試し塗布された透光部材43を載置して位置を保持する機能を有している。積分球44は光集束ツール46bから照射されて(矢印h)樹脂8を透過した透過光を集光し、分光器42に導く機能を有している。すなわち積分球44は内部に球面状の球状反射面44cを有しており、光透過開口部41aの直下に位置する開口部44aから入光した透過光(矢印i)は、積分球44の頂部に設けられた開口部44aから反射空間44b内に入射し、球状反射面44cによる全反射(矢印j)を反復する過程で出力部44dから測定光(矢印k)として取り出され、分光器42によって受光される。
 上述構成では、光源部45に用いられるLEDパッケージによって発光された白色光が透光部材43に試し塗布された樹脂8に照射される。この過程において、白色光中に含まれる青色光成分が樹脂8中の蛍光体を励起させて黄色光を発光させる。そしてこの黄色光と青色光が加色混合した白色光が樹脂8から上方に照射され、上述の積分球44を介して分光器42によって受光される。
 そして受光された白色光は、図7(b)に示すように、発光特性測定処理部39によって分析されて発光特性が測定される。ここでは、白色光の色調ランクや光束などの発光特性が検査され、検査結果として、規定の発光特性との偏差が検出される。積分球44、分光器42および発光特性測定処理部39は、励起光を透光部材43に塗布された樹脂8に光源部45によって発光された励起光(ここでは白色LEDにより発光された白色光)を上方から照射することによりこの樹脂8が発する光を透光部材43の下方から受光して、樹脂8が発する光の発光特性を測定する発光特性測定部を構成する。そして本実施の形態においては、発光特性測定部は積分球44を透光部材43の下方に配置して成り、樹脂8が発する光を積分球44の開口部44aを介して受光するように構成されている。
 発光特性測定部を上述のような構成とすることにより、以下に述べるような効果を得る。すなわち、図8(b)に示す透光部材43に試し塗布される樹脂8の塗布形状において、下面側は常に透光部材43の上面またはエンボス部43aの底面に接触していることから、樹脂8の下面は常に透光部材43によって規定される基準高さにある。したがって、樹脂8の下面と積分球44の開口部44aとの高さ差は常に一定に保たれる。これに対し、樹脂8の上面は吐出ノズル33aによる塗布条件などの外乱によって、必ずしも同一の液面形状・高さが実現されるとは限らず、樹脂8の上面と光集束ツール46bとの間の間隔はばらつくこととなる。
 ここで樹脂8の上面に対して照射される照射光と樹脂8の下面からの透過光とを比較した場合の安定度合いを考えると、樹脂8に対して照射される照射光は光集束ツール46bを介して照射されることから集束度が高く、樹脂8の上面と光集束ツール46bとの間の間隔のばらつきが光伝達に対して与える影響は無視できる。これに対し、樹脂8を透過した透過光は樹脂8の内部で蛍光体が励起された励起光であることから散乱の度合いが高く、樹脂8の下面と開口部44aとの間の距離のばらつきが積分球44によって光が取り込まれる度合いに与える影響は無視できない。
 本実施の形態に示す試し打ち・測定ユニット40においては、前述構成のように光源部45によって発光された励起光を、樹脂8に対して上方から照射することによりこの樹脂8が発する光を透光部材43の下方から積分球44によって受光する構成を採用していることから、安定した発光特性の判定を行うことが可能となっている。さらに、積分球44を用いることにより受光部分に暗室構造を別途設ける必要がなく、装置のコンパクト化と設備費用の削減が可能となっている。
 図7(b)に示すように、発光特性測定処理部39の測定結果は塗布量導出処理部38に送られ、塗布量導出処理部38は、発光特性測定処理部39の測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて実生産用としてLED素子5に塗布されるべき樹脂8の適正樹脂塗布量を導出する処理を行う。塗布量導出処理部38によって導出された新たな適正吐出量は生産実行処理部37に送られ、生産実行処理部37は新たに導出された適正樹脂塗布量を塗布制御部36に指令する。これにより塗布制御部36は、ノズル移動機構34、樹脂吐出機構35を制御して、適正樹脂塗布量の樹脂8を基板4に実装されたLED素子5に塗布する生産用塗布処理を樹脂吐出ヘッド32に実行させる。
 この生産用塗布処理においては、まず樹脂塗布情報14に規定される適正樹脂塗布量の樹脂8を実際に塗布し、樹脂8が未硬化の状態で発光特性の測定を行う。そして得られた測定結果に基づき、生産用塗布において塗布された樹脂8を対象として発光特性を測定した場合における発光特性測定値の良品範囲を設定し、この良品範囲を生産用塗布における良否判定のしきい値(図11に示すしきい値データ81a参照)として用いるようにしている。
 すなわち本実施の形態に示すLEDパッケージ製造システムにおける樹脂塗布方法では、発光特性測定用の光源部45として白色LEDを用いるとともに、生産用塗布における良否判定のしきい値設定の基となる予め規定された発光特性として、LED素子5に塗布された樹脂8が硬化した状態の完成製品について求められる正規の発光特性を、樹脂8が未硬化の状態であることによる発光特性の相違分だけ偏らせた発光特性を用いるようにしている。これにより、LED素子5への樹脂塗布過程における樹脂塗布量の制御を完成製品についての正規の発光特性に基づいて行うことが可能となっている。
 なお本実施の形態においては、光源部45として白色光を発するLEDパッケージ50を用いている。これにより、試し塗布された樹脂8の発光特性測定を、完成品のLEDパッケージ50において発光される励起光と同一特性の光によって行うことができ、より信頼性の高い検査結果を得ることができる。なお完成品に用いられるものと同一のLEDパッケージ50を用いることは必ずしも必須要件ではない。発光特性測定には、一定波長の青色光を安定的に発光することが可能な光源装置(例えば青色光を発光する青色LEDや、青色レーザ光源など)であれば、検査用の光源部として用いることができる。但し、青色LEDを用いた白色光を発するLEDパッケージ50を用いることにより、安定的な品質の光源装置を低コストで選定することができるという利点を有する。ここでバンドパスフィルタを用いて、所定の波長の青色光を取り出すようにしてもよい。
 なお上述構成の試し打ち・測定ユニット40の替わりに、図9(b),図10(a)に示す構成の試し打ち・測定ユニット140を用いるようにしてもよい.すなわち、図9(b),図10(a)に示すように、試し打ち・測定ユニット140は細長形状の水平な基部140aの上方に、カバー部140bを配設した外部構造となっている。カバー部140bには開口部140cが設けられており、開口部140cはスライド自在(矢印l)な塗布用スライド窓140dによって開閉自在となっている。試し打ち・測定ユニット140の内部には、透光部材43を下面側から支持する試し打ちステージ145a、透光部材43が載置される透光部材載置部141および透光部材載置部141の上方に配設された分光器42が設けられている。
 透光部材載置部141は、図8(a)に示す光源部45と同様に蛍光体を励起する励起光を発光する光源装置を備えており、測定用塗布処理において樹脂8が試し塗布された透光部材43に対して、この光源装置より下面側から励起光が照射される。透光部材43は、図8(a)に示す例と同様に供給リール47に卷回収納されて供給され、試し打ちステージ145aの上面に沿って送られた後(矢印m)、透光部材載置部141と分光器42との間を経由して巻き取りモータ49によって駆動される回収リール48に巻き取られる。
 塗布用スライド窓140dをスライドさせて開放した状態では、試し打ちステージ145a上面は上方に露呈され、上面に載置された透光部材43に対して樹脂吐出ヘッド32によって樹脂8を試し塗布することが可能となる。この試し塗布は、下面側を試し打ちステージ145aによって支持された透光部材43に対して、図8(b)に示すように、吐出ノズル33aによって規定塗布量の樹脂8を透光部材43に吐出することによって行われる。
 図10(b)は、試し打ちステージ145aにて樹脂8が試し塗布された透光部材43を移動させて、樹脂8を透光部材載置部141の上方に位置させ、さらにカバー部140bを下降させて基部140aとの間に発光特性測定用の暗室を形成した状態を示している。透光部材載置部141には、光源装置として白色光を発するLEDパッケージ50が用いられている。LEDパッケージ50においてLED素子5と接続された配線層4e、4dは電源装置142と接続されており、電源装置142をONすることにより、LED素子5には発光用の電力が供給され、これによりLEDパッケージ50は白色光を発光する。
 そしてこの白色光が樹脂8を透過した後に透光部材43に試し塗布された樹脂8に照射される過程において、白色光に含まれる青色光によって樹脂8中の蛍光体が励起して発光した黄色光と青色光が加色混合した白色光が、樹脂8から上方に照射される。試し打ち・測定ユニット140の上方には分光器42が配置されており、樹脂8から照射された白色光は分光器42によって受光され、受光された白色光は発光特性測定処理部39によって分析されて発光特性が測定される。ここでは、白色光の色調ランクや光束などの発光特性が検査され、検査結果として、規定の発光特性との偏差が検出される。すなわち発光特性測定処理部39は、光源部であるLED素子5から発光された励起光を透光部材43に塗布された樹脂8に照射することによりこの樹脂8が発する光の発光特性を測定する。そして発光特性測定処理部39の測定結果は塗布量導出処理部38に送られ、図7(b)に示す例と同様の処理が実行される。
 次に図11を参照して、LEDパッケージ製造システム1の制御系の構成について説明する。なお、ここではLEDパッケージ製造システム1を構成する各装置の構成要素のうち、管理コンピュータ3、部品実装装置M1、樹脂塗布装置M4において、素子特性情報12、樹脂塗布情報14およびマップデータ18、上述のしきい値データ81aの送受信および更新処理に関連する構成要素を示すものである。
 図11において、管理コンピュータ3は、システム制御部60、記憶部61、通信部62を備えている。システム制御部60は、LEDパッケージ製造システム1によるLEDパッケージ製造作業を統括して制御する。記憶部61には、システム制御部60による制御処理に必要なプログラムやデータのほか、素子特性情報12、樹脂塗布情報14、さらには必要に応じてマップデータ18、しきい値データ81aが記憶されている。通信部62はLANシステム2を介して他装置と接続されており、制御信号やデータの授受を行う。素子特性情報12、樹脂塗布情報14は、LANシステム2および通信部62を介して、またはCDロム、USBメモリストレージ、SDカードなど単独の記憶媒体を介して、外部から伝達され記憶部61に記憶される。
 部品実装装置M1は、実装制御部70、記憶部71、通信部72、機構駆動部73およびマップ作成処理部74を備えている。実装制御部70は、部品実装装置M1による部品実装作業を実行するために、記憶部71に記憶された各種のプログラムやデータに基づいて、以下に説明する各部を制御する。記憶部71には、実装制御部70による制御処理に必要なプログラムやデータのほか、実装位置情報71aや素子特性情報12を記憶する。実装位置情報71aは、実装制御部70による実装動作制御の実行履歴データより作成される。素子特性情報12は、LANシステム2を介して管理コンピュータ3から送信される。通信部72は、LANシステム2を介して他装置と接続されており、制御信号やデータの授受を行う。
 機構駆動部73は、実装制御部70に制御されて、部品供給機構25や部品実装機構26を駆動する。これにより、基板4の各個片基板4aにLED素子5が実装される。マップ作成処理部74(マップデータ作成部)は、記憶部71に記憶され部品実装装置M1によって実装されたLED素子5の基板4における位置を示す実装位置情報71aと、当該LED素子5についての素子特性情報12とを関連付けたマップデータ18を、基板4毎に作成する処理を行う。すなわち、マップデータ作成部は部品実装装置M1に設けられており、マップデータ18は部品実装装置M1から樹脂塗布装置M4に送信される。なお、マップデータ18を管理コンピュータ3経由で部品実装装置M1から樹脂塗布装置M4に送信するようにしてもよい。この場合には、マップデータ18は、図11に示すように、管理コンピュータ3の記憶部61にも記憶される。
 樹脂塗布装置M4は、塗布制御部36、記憶部81、通信部82、生産実行処理部37、塗布量導出処理部38、発光特性測定処理部39を備えている。塗布制御部36は、樹脂塗布部Cを構成するノズル移動機構34、樹脂吐出機構35および試し打ち・測定ユニット40を制御することにより、樹脂8を発光特性測定用として透光部材43に試し塗布する測定用塗布処理および実生産用としてLED素子5に塗布する生産用塗布処理を実行させる処理を行う。
 記憶部81には、塗布制御部36による制御処理に必要なプログラムやデータのほか、樹脂塗布情報14やマップデータ18、しきい値データ81a、実生産用塗布量81bを記憶する。樹脂塗布情報14はLANシステム2を介して管理コンピュータ3から送信され、マップデータ18は同様にLANシステム2を介して部品実装装置M1から送信される。通信部82はLANシステム2を介して他装置と接続されており、制御信号やデータの授受を行う。
 発光特性測定処理部39は、光源部45から発光された励起光を透光部材43に塗布された樹脂8に照射することによりこの樹脂が発する光の発光特性を測定する処理を行う。塗布量導出処理部38は、発光特性測定処理部39の測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて実生産用としてLED素子5に塗布されるべき樹脂8の適正樹脂塗布量を導出する演算処理を行う。そして生産実行処理部37は、塗布量導出処理部38により導出された適正樹脂塗布量を塗布制御部36に指令することにより、この適正樹脂塗布量の樹脂をLED素子5に塗布する生産用塗布処理を実行させる。
 なお、図11に示す構成において、各装置固有の作業動作を実行するための機能以外の処理機能、例えば部品実装装置M1に設けられているマップ作成処理部74の機能、樹脂塗布装置M4に設けられている塗布量導出処理部38の機能は、必ずしも当該装置に付属させる必要はない。例えば、マップ作成処理部74、塗布量導出処理部38の機能を管理コンピュータ3のシステム制御部60が有する演算処理機能によってカバーするようにし、必要な信号授受をLANシステム2を介して行うように構成してもよい。
 上述のLEDパッケージ製造システム1の構成において、部品実装装置M1、樹脂塗布装置M4はいずれもLANシステム2に接続されている。そして記憶部61に素子特性情報12が記憶された管理コンピュータ3およびLANシステム2は、複数のLED素子5の発光波長を含む発光特性を予め個別に測定して得られた情報を、素子特性情報12として部品実装装置M1に提供する素子特性情報提供部となっている。同様に、記憶部61に樹脂塗布情報14が記憶された管理コンピュータ3およびLANシステム2は、規定の発光特性を具備したLEDパッケージ50を得るための樹脂8の適正樹脂塗布量と素子特性情報とを対応させた情報を樹脂塗布情報として樹脂塗布装置M4に提供する樹脂情報提供部となっている。
 すなわち、素子特性情報12を部品実装装置M1に提供する素子特性情報提供部および樹脂塗布情報14を樹脂塗布装置M4に提供する樹脂情報提供部は、外部記憶手段である管理コンピュータ3の記憶部61より読み出された素子特性情報および樹脂塗布情報を、LANシステム2を介して部品実装装置M1および樹脂塗布装置M4にそれぞれ送信する構成となっている。
 次にLEDパッケージ製造システム1によって実行されるLEDパッケージ製造過程について、図12のフローに沿って、各図を参照しながら説明する。まず、素子特性情報12および樹脂塗布情報14を取得する(ST1)。すなわち、複数のLED素子5の発光波長を含む発光特性を予め個別に測定して得られた素子特性情報12および規定の発光特性を具備したLEDパッケージ50を得るための樹脂8の適正樹脂塗布量と素子特性情報12とを対応させた樹脂塗布情報14を、外部装置からLANシステム2を介して、または記憶媒体を介して取得する。
 この後、部品実装装置M1に実装対象となる基板4を搬入する(ST2)。そして図18(a)に示すように、接着剤転写機構24の転写ピン24aを昇降させることにより(矢印n)、LED実装部4b内の素子実装位置に樹脂接着剤23を供給した後、図18(b)に示すように、部品実装機構26の実装ノズル26aに保持したLED素子5を下降させ(矢印o)、樹脂接着剤23を介して基板4のLED実装部4b内に実装する(ST3)。そしてこの部品実装作業の実行データから、当該基板4について、実装位置情報71aと、それぞれのLED素子5の素子特性情報12とを関連付けたマップデータ18を、マップ作成処理部74によって作成する(ST4)。次いでこのマップデータ18を部品実装装置M1から樹脂塗布装置M4に送信するとともに、管理コンピュータ3から樹脂塗布情報14を樹脂塗布装置M4に送信する(ST5)。これにより、樹脂塗布装置M4による樹脂塗布作業が実行可能な状態となる。
 次いで、部品実装後の基板4はキュア装置M2に送られ、ここで加熱されることにより、図18(c)に示すように、樹脂接着剤23が熱硬化して樹脂接着剤23*となり、LED素子5は個片基板4aに固着される。次いで樹脂キュア後の基板4はワイヤボンディング装置M3に送られ、図18(d)に示すように、個片基板4aの配線層4e、4dを、それぞれLED素子5のN型部電極6a、P型部電極6bとボンディングワイヤ7によって接続する。
 次いで、良品判定用のしきい値データ作成処理が実行される(ST6)。この処理は、生産用塗布における良否判定のしきい値(図11に示すしきい値データ81a参照)を設定するために実行されるものであり、Binコード[1]、[2]、[3]、[4]、[5]に対応する生産用塗布のそれぞれについて反復して実行される。このしきい値データ作成処理の詳細について、図13,図14(a)~(c),図15を参照して説明する。図13において、まず樹脂塗布情報14に規定する蛍光体を純正濃度で含む樹脂8を準備する(ST11)。そしてこの樹脂8を樹脂吐出ヘッド32にセットした後、樹脂吐出ヘッド32を試し打ち・測定ユニット40の試し打ちステージ40aに移動させて樹脂8を樹脂塗布情報14に示す規定塗布量(適正樹脂塗布量)で透光部材43に塗布する(ST12)。次いで透光部材43に塗布された樹脂8を透光部材載置部41上に移動させ、LED素子5を発光させて樹脂8が未硬化の状態における発光特性を前述構成の発光特性測定部によって測定する(ST13)。そして発光特性測定部によって測定された発光特性の測定結果である発光特性測定値39aに基づき、発光特性が良品と判定されるための測定値の良品判定範囲を設定し(ST14)、設定された良品判定範囲をしきい値データ81aとして、記憶部81に記憶させるとともに管理コンピュータ3に転送して記憶部61に記憶させる(ST15)。
 図14(a)~(c)はこのようにして作成されたしきい値データ、すなわち純正含有量の蛍光体を含有した樹脂8を塗布した後、樹脂未硬化状態において求められた発光特性測定値および発光特性が良品と判定されるための測定値の良品判定範囲(しきい値)を示している。図14(a)、(b)、(c)は、樹脂8における蛍光体濃度がそれぞれ5%。10%、15%である場合の、Binコード[1]、[2]、[3]、[4]、[5]に対応したしきい値を示すものである。
 例えば図14(a)に示すように、樹脂8の蛍光体濃度が5%である場合において、Binコード12bのそれぞれには適正樹脂塗布量15(1)のそれぞれに示す塗布量が対応しており、それぞれの塗布量で塗布した樹脂8にLED素子5の青色光を照射することにより樹脂8が発する光の発光特性を発光特性測定部によって測定した測定結果が、発光特性測定値39a(1)に示されている。そしてそれぞれの発光特性測定値39a(1)に基づいて、しきい値データ81a(1)が設定される。例えばBinコード[1]に対応して適正樹脂塗布量VA0で塗布した樹脂8対象として発光特性を測定した測定結果は、図15に示す色度表上の色度座標ZA0(XA0、YA0)によって表される。そしてこの色度座標ZA0を中心として、色度表上におけるX座標、Y座標についての所定範囲(例えば±10%)が良品判定範囲(しきい値)として設定される。他のBinコード[2]~[5]に対応した適正樹脂塗布量についても同様に、発光特性測定結果に基づいて良品判定範囲(しきい値)が設定される(図15に示す色度表上の色度座標ZB0~ZE0参照)。ここで、しきい値として設定される所定範囲は、製品としてのLEDパッケージ50に求められる発光特性の精度レベルに応じて適宜設定される。
 そして図14(b)、(c)は、同様に樹脂8の蛍光体濃度がそれぞれ10%、15%である場合の、発光特性測定値および良品判定範囲(しきい値)を示している。図14(b)、(c)において、適正樹脂塗布量15(2)、適正樹脂塗布量15(3)はそれぞれ蛍光体濃度がそれぞれ10%、15%である場合の適正樹脂塗布量を示しており、発光特性測定値39a(2)、発光特性測定値39a(3)は、それぞれ蛍光体濃度がそれぞれ10%、15%である場合の発光特定測定値を、またしきい値データ81a(2)、しきい値データ81a(3)はそれぞれの場合の良品判定範囲(しきい値)を示している。このようにして作成されたしきい値データは、生産用塗布作業において、対象となるLED素子5の属するBinコード12bに応じて使い分けられる。なお、(ST6)に示すしきい値データ作成処理は、LEDパッケージ製造システム1とは別に設けられた単独の検査装置によってオフライン作業として実行し、管理コンピュータ3に予めしきい値データ81aとして記憶させたものをLANシステム2経由樹脂塗布装置M4に送信して用いるようにしてもよい。
 この後、ワイヤボンディング後の基板4は樹脂塗布装置M4に搬送され(ST7)、図19(a)に示すように、反射部4cで囲まれるLED実装部4bの内部に、吐出ノズル33aから樹脂8を吐出させる。ここでは、マップデータ18、しきい値データ81aおよび樹脂塗布情報14に基づき、図19(b)に示す規定量の樹脂8をLED素子5を覆って塗布する作業が実行される(ST8)。この樹脂塗布作業処理の詳細について、図14(a)~(c),図15を参照して説明する。まず樹脂塗布作業の開始に際しては、必要に応じて樹脂収納容器の交換が行われる(ST21)。すなわち樹脂吐出ヘッド32に装着されるディスペンサ33を、LED素子5の特性に応じて選択された蛍光体濃度の樹脂8を収納したものに交換する。
 次いで樹脂塗布部Cによって、樹脂8を発光特性測定用として透光部材43に試し塗布する(測定用塗布工程)(ST22)。すなわち、試し打ち・測定ユニット40にて試し打ちステージ40aに引き出された透光部材43上に、図4にて規定される各Binコード12b毎の適正樹脂塗布量(VA0~VE0)の樹脂8を塗布する。このとき適正樹脂塗布量(VA0~VE0)に対応する吐出動作パラメータを樹脂吐出機構35に指令しても、吐出ノズル33aから吐出されて透光部材43に塗布される実際の樹脂塗布量は樹脂8の性状の経時変化などによって必ずしも上述の適正樹脂塗布量とはならず、図17(a)に示すように、実際樹脂塗布量はVA0~VE0とは幾分異なるVA1~VE1となる。
 次いで試し打ち・測定ユニット40において透光部材43を送ることにより、樹脂8が試し塗布された透光部材43を送り、透光部材載置部41に載置する(透光部材載置工程)。そして透光部材載置部41の上方に配置された光源部45から、蛍光体を励起する励起光を発光する(励起光発光工程)。そしてこの励起光を透光部材43に塗布された樹脂8に上方から照射することにより、この樹脂8が発する光を透光部材43の下方から積分球44を介して分光器42によって受光し、発光特性測定処理部39によってこの光の発光特性測定を行う(発光特性測定工程)(ST23)。
 これにより、図17(b)に示すように、色度座標Z(図15参照)で表される発光特性測定値が得られる。この測定結果は、上述の塗布量の誤差および樹脂8中の蛍光体粒子の濃度変化などによって、必ずしも予め規定された発光特性、すなわち図14(a)に示す適正樹脂塗布時における標準的な色度座標ZA0~ZE0とは一致しない。このため、得られた色度座標ZA1~ZE1と、図14(a)に示す適正樹脂塗布時における標準的な色度座標ZA0~ZE0との、X,Y座標における隔たりを示す偏差(ΔXA、ΔYA)~(ΔXE、ΔYE)を求め、所望の発光特性を得るための補正の要否を判定する。
 ここでは測定結果はしきい値以内であるか否かの判定が行われ(ST24)、図17(c)に示すように、(ST23)にて求められた偏差としきい値とを比較することにより、偏差(ΔXA、ΔYA)~(ΔXE、ΔYE)がZA0~ZE0に対して±10%の範囲内にあるか否かを判断する。ここで、偏差がしきい値以内であれば、既設定の適正樹脂塗布量VA0~VE0に対応する吐出動作パラメータをそのまま維持する。これに対し、偏差がしきい値を超えている場合には、塗布量の補正を行う(ST25)。すなわち発光特性測定工程における測定結果と予め規定された発光特性との偏差を求め、図17(d)に示すように、求められた偏差に基づいて、LED素子5に塗布されるべき実生産用の新たな適正樹脂塗布量(VA2~VE2)を導出する処理を、塗布量導出処理部38によって実行する(塗布量導出処理工程)。
 ここで、補正後の適正樹脂塗布量(VA2~VE2)は、既設定の適正樹脂塗布量VA0~VE0に、それぞれの偏差に応じた補正分を加えた更新値である。偏差と補正分との関係は、予め既知の付随データとして樹脂塗布情報14に記録されている。そして補正後の適正樹脂塗布量(VA2~VE2)に基づいて(ST22)、(ST23)、(ST24)、(ST25)の処理が反復実行され、(ST24)にて測定結果と予め規定された発光特性との偏差がしきい値以内であることが確認されることにより、実生産用の適正樹脂塗布量が確定する。すなわち上述の樹脂塗布方法においては、測定用塗布工程、透光部材載置工程、励起光発光工程、発光特性測定工程および塗布量導出工程を反復実行することにより、適正樹脂塗布量を確定的に導出するようにしている。そして確定した適正樹脂塗布量は、記憶部81に実生産用塗布量81bとして記憶される。
 そしてこの後、次のステップに移行して捨て打ちが実行される(ST26)。ここでは、所定量の樹脂8を吐出ノズル33aから吐出させることにより、樹脂吐出経路内の樹脂流動状態を改善して、ディスペンサ33、樹脂吐出機構35の動作を安定させる。なお図16にて破線枠によって示す(ST27)、(ST28)、(ST29)、(ST30)の処理は、(ST22)、(ST23)、(ST24)、(ST25)に示す処理内容と同様であり、所望の発光特性が完全に確保されていることを入念的に確認する必要がある場合に実行されるものであり、必ずしも必須実行事項ではない。
 このようにして、所望の発光特性を与える適正樹脂塗布量が確定したならば、生産用塗布が実行される(ST31)。すなわち、塗布量導出処理部38によって導出され実生産用塗布量81bとして記憶された適正樹脂塗布量を、樹脂吐出機構35を制御する塗布制御部36に生産実行処理部37が指令することにより、この適正樹脂塗布量の樹脂8を基板4に実装されたLED素子5に塗布する生産用塗布処理を実行させる(生産実行工程)。
 そしてこの生産用塗布処理を反復実行する過程においては、ディスペンサ33による塗布回数をカウントしており、塗布回数が予め設定された所定回数を経過したか否かが監視される(ST32)。すなわちこの所定回数に到達するまでは、樹脂8の性状や蛍光体濃度の変化は少ないと判断して、同一の実生産用塗布量81bを維持したまま生産用塗布実行(ST31)を反復する。そして(ST32)にて所定回数の経過が確認されたならば、樹脂8の性状や蛍光体濃度が変化している可能性有りと判断して(ST22)に戻り、以下同様の発光特性の測定とその測定結果に基づく塗布量補正処理が反復して実行される。
 このようにして1枚の基板4を対象とする樹脂塗布が終了すると、基板4はキュア装置M5に送られ、キュア装置M5によって加熱することにより樹脂8を硬化させる(ST9)。これにより、図19(c)に示すように、LED素子5を覆って塗布された樹脂8は熱硬化して樹脂8*となり、LED実装部4b内で固着状態となる。次いで、樹脂キュア後の基板4は個片切断装置M6に送られ、ここで基板4を個片基板4a毎に切断することにより、図19(d)に示すように、個片のLEDパッケージ50に分割する(ST10)。これにより、LEDパッケージ50が完成する。
 上記説明したように、上記実施の形態に示すLEDパッケージ製造システム1は、基板4に複数のLED素子5を実装する部品実装装置M1と、複数のLED素子5の発光波長を予め個別に測定して得られた情報を素子特性情報12として提供する素子特性情報提供部と、規定の発光特性を具備したLEDパッケージ50を得るための樹脂8の適正樹脂塗布量と素子特性情報12とを対応させた情報を樹脂塗布情報14として提供する樹脂情報提供部と、部品実装装置M1によって実装されたLED素子5の基板4における位置を示す実装位置情報71aと当該LED素子5についての素子特性情報12とを関連付けたマップデータ18を、基板4毎に作成するマップデータ作成部と、マップデータ18と樹脂塗布情報14に基づき、規定の発光特性を具備するための適正樹脂塗布量の樹脂8を、基板4に実装された各LED素子に塗布する樹脂塗布装置M4とを備えた構成となっている。
 そして樹脂塗布装置M4は、樹脂8を塗布量を可変に吐出して任意の塗布対象位置に塗布する樹脂塗布部Cと、樹脂塗布部Cを制御することにより、樹脂8を発光特性測定用として透光部材43に試し塗布する測定用塗布処理および実生産用としてLED素子5に塗布する生産用塗布処理を実行させる塗布制御部36と、蛍光体を励起する励起光を発光する光源部を備え測定用塗布処理において樹脂8が試し塗布された透光部材43が載置される透光部材載置部41と、光源部から発光された励起光を透光部材43に塗布された樹脂8に照射することによりこの樹脂8が発する光の発光特性を測定する発光特性測定部と、発光特性測定部の測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて適正樹脂塗布量を補正することにより、LED素子5に塗布されるべき実生産用の適正樹脂塗布量を導出する塗布量導出処理部38と、導出された適正樹脂塗布量を塗布制御部36に指令することにより、この適正樹脂塗布量の樹脂をLED素子5に塗布する生産用塗布処理を実行させる生産実行処理部37とを備えた構成となっている。
 上述構成により、LED素子5を蛍光体を含む樹脂によって覆って成るLEDパッケージ50の製造に用いられる樹脂塗布において、樹脂8を発光特性測定用として試し塗布した透光部材43を透光部材載置部41に載置し、上方に配置された光源部45から蛍光体を励起する励起光を発光し、励起光を透光部材43に塗布された樹脂8に上方から照射することにより、この樹脂8が発する光を透光部材43の下方から受光して光の発光特性を測定した測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて実生産用としてLED素子5に塗布されるべき樹脂の適正樹脂塗布量を導出することができる。これにより、個片のLED素子5の発光波長がばらつく場合にあっても、LEDパッケージ50の発光特性を均一にして、生産歩留まりを向上させることができる。
 また、上述構成のLEDパッケージ製造システム1においては、管理コンピュータ3および部品実装装置M1~個片切断装置M6の各装置をLANシステム2によって接続した構成を示しているが、LANシステム2は必ずしも必須の構成要件ではない。すなわち予め準備されて外部から伝達される素子特性情報12、樹脂塗布情報14を各LEDパッケージ50毎に記憶しておく記憶部があり、これらの記憶部から、部品実装装置M1に対して素子特性情報12を、また樹脂塗布装置M4に対して樹脂塗布情報14およびマップデータ18を、必要に応じて随時提供可能なデータ提供部が存在すれば、本実施の形態に示すLEDパッケージ製造システム1の機能を実現することができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年5月30日出願の日本特許出願(特願2011-119988)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のLEDパッケージ製造システムは、個片のLED素子の発光波長がばらつく場合にあっても、LEDパッケージの発光特性を均一にして、生産歩留まりを向上させることができるという効果を有し、LED素子を蛍光体を含む樹脂で覆った構成のLEDパッケージを製造する分野において利用可能である。
 1 LEDパッケージ製造システム
 2 LANシステム
 4 基板
 4a 個片基板
 4b LED実装部
 4c 反射部
 5 LED素子
 8 樹脂
 12 素子特性情報
 13A,13B,13C,13D,13E LEDシート
 14 樹脂塗布情報
 18 マップデータ
 23 樹脂接着剤
 24 接着剤転写機構
 25 部品供給機構
 26 部品実装機構
 32 樹脂吐出ヘッド
 33 ディスペンサ
 33a 吐出ノズル
 40、140 試し打ち・測定ユニット
 40a 試し打ちステージ
 41、141 透光部材載置部
 42 分光器
 43 透光部材
 44 積分球
 46 照射部
 50 LEDパッケージ

Claims (8)

  1.  基板に実装されたLED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージを製造するLEDパッケージ製造システムであって、
     前記基板に複数の前記LED素子を実装する部品実装装置と、
     前記複数のLED素子の発光波長を含む発光特性を予め個別に測定して得られた情報を素子特性情報として提供する素子特性情報提供部と、
     規定の発光特性を具備したLEDパッケージを得るための前記樹脂の適正樹脂塗布量と前記素子特性情報とを対応させた情報を樹脂塗布情報として提供する樹脂情報提供部と、
     前記部品実装装置によって実装されたLED素子の前記基板における位置を示す実装位置情報と当該LED素子についての前記素子特性情報とを関連付けたマップデータを、前記基板毎に作成するマップデータ作成部と、
     前記マップデータと前記樹脂塗布情報に基づき、規定の発光特性を具備するための適正樹脂塗布量の前記樹脂を、前記基板に実装された各LED素子に塗布する樹脂塗布装置とを備え、
     前記樹脂塗布装置は、前記樹脂を塗布量を可変に吐出して任意の塗布対象位置に塗布する樹脂塗布部と、前記樹脂塗布部を制御することにより、前記樹脂を発光特性測定用として透光部材に試し塗布する測定用塗布処理および実生産用として前記LED素子に塗布する生産用塗布処理を実行させる塗布制御部と、前記測定用塗布処理において前記樹脂が試し塗布された透光部材が載置される透光部材載置部と、前記透光部材載置部の上方に配置され前記蛍光体を励起する励起光を発光する光源部と、前記励起光を前記透光部材に塗布された樹脂に上方から照射することによりこの樹脂が発する光を前記透光部材の下方から受光して前記光の発光特性を測定する発光特性測定部と、前記発光特性測定部の測定結果と予め規定された発光特性との偏差を求めこの偏差に基づいて前記適正樹脂塗布量を補正することにより、前記LED素子に塗布されるべき実生産用の適正樹脂塗布量を導出する塗布量導出処理部と、
     前記導出された適正樹脂塗布量を前記塗布制御部に指令することにより、この適正樹脂塗布量の樹脂をLED素子に塗布する生産用塗布処理を実行させる生産実行処理部とを備えたことを特徴とするLEDパッケージ製造システム。
  2.  前記光源部として、白色光を発するLEDパッケージを用いることを特徴とする請求項1記載のLEDパッケージ製造システム。
  3.  前記発光特性測定部は積分球を前記透光部材の下方に配置して成り、前記樹脂が発する光を前記積分球の開口部を介して受光することを特徴とする請求項1または2のいずれかに記載のLEDパッケージ製造システム。
  4.  前記部品実装装置、樹脂塗布装置はいずれもLANシステムに接続されており、前記素子特性情報提供部および樹脂情報提供部は、外部記憶手段より読み出された前記素子特性情報および樹脂塗布情報を、前記LANシステムを介して前記部品実装装置および樹脂塗布装置にそれぞれ送信することを特徴とする請求項1乃至3のいずれか一項に記載のLEDパッケージ製造システム。
  5.  前記マップデータ作成部は前記部品実装装置に設けられており、前記マップデータは部品実装装置から前記樹脂塗布装置に送信されることを特徴とする請求項1乃至4のいずれか一項に記載のLEDパッケージ製造システム。
  6.  基板に実装されたLED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージを製造するLEDパッケージ製造システムにおいて、部品実装装置によって前記基板に実装された複数のLED素子を覆って前記樹脂を塗布するLEDパッケージ製造システムにおける樹脂塗布方法であって、
     前記LEDパッケージ製造システムは、前記基板に複数の前記LED素子を実装する部品実装装置と、前記複数のLED素子の発光波長を含む発光特性を予め個別に測定して得られた情報を素子特性情報として提供する素子特性情報提供部と、規定の発光特性を具備したLEDパッケージを得るための前記樹脂の適正樹脂塗布量と前記素子特性情報とを対応させた情報を樹脂塗布情報として提供する樹脂情報提供部と、前記部品実装装置によって実装されたLED素子の前記基板における位置を示す実装位置情報と当該LED素子についての前記素子特性情報とを関連付けたマップデータを、前記基板毎に作成するマップデータ作成部と、前記マップデータと前記樹脂塗布情報に基づき、完成製品に求められる正規の発光特性を具備するための適正樹脂塗布量の前記樹脂を、前記基板に実装された各LED素子に塗布する樹脂塗布装置とを備え、
     前記樹脂を塗布量を可変に吐出する樹脂吐出部によって、前記樹脂を発光特性測定用として透光部材に試し塗布する測定用塗布工程と、
     前記樹脂が試し塗布された透光部材を透光部材載置部に載置する透光部材載置工程と、
     前記透光部材載置部の上方に配置された光源部から前記蛍光体を励起する励起光を発光する励起光発光工程と、
     前記励起光を前記透光部材に塗布された樹脂に上方から照射することによりこの樹脂が発する光を前記透光部材の下方から受光して、前記光の発光特性を測定する発光特性測定工程と、
     前記発光特性測定工程における測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて前記適正樹脂塗布量を補正することにより、前記LED素子に塗布されるべき実生産用の適正樹脂塗布量を導出する塗布量導出処理工程と、
     前記導出された適正樹脂塗布量を前記樹脂吐出部を制御する塗布制御部に指令することにより、この適正樹脂塗布量の樹脂をLED素子に塗布する生産用塗布処理を実行させる生産実行工程とを含むことを特徴とするLEDパッケージ製造システムにおける樹脂塗布方法。
  7.  前記光源部として白色光を発するLEDパッケージを用い、前記予め規定された発光特性は、LED素子に塗布された前記樹脂が硬化した状態の完成製品について求められる正規の発光特性を、前記樹脂が未硬化の状態であることによる発光特性の相違分だけ偏らせた発光特性であることを特徴とする請求項6に記載のLEDパッケージ製造システムにおける樹脂塗布方法。
  8.  前記測定用塗布工程、透光部材載置工程、励起光発光工程、発光特性測定工程および塗布量導出工程を反復実行することにより、前記適正樹脂塗布量を確定的に導出することを特徴とする請求項6または7のいずれかに記載のLEDパッケージ製造システムにおける樹脂塗布方法。
PCT/JP2012/003557 2011-05-30 2012-05-30 Ledパッケージ製造システムおよびledパッケージ製造システムにおける樹脂塗布方法 WO2012164930A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137022237A KR20140004736A (ko) 2011-05-30 2012-05-30 Led 패키지 제조 시스템 및 led 패키지 제조 시스템에서 사용하는 수지 도포 방법
CN201280019900.XA CN103493228A (zh) 2011-05-30 2012-05-30 Led封装制造系统和用在led封装制造系统中的树脂涂镀方法
US14/000,346 US8993353B2 (en) 2011-05-30 2012-05-30 LED package manufacturing system and resin coating method for use in LED package manufacturing system
DE112012002301.3T DE112012002301T5 (de) 2011-05-30 2012-05-30 LED-Gehäusefertigungssystem und Harzbeschichtungsverfahren zur Verwendung in einem LED-Gehäusefertigungssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-119988 2011-05-30
JP2011119988A JP5413404B2 (ja) 2011-05-30 2011-05-30 Ledパッケージ製造システムおよびledパッケージ製造システムにおける樹脂塗布方法

Publications (1)

Publication Number Publication Date
WO2012164930A1 true WO2012164930A1 (ja) 2012-12-06

Family

ID=47258802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003557 WO2012164930A1 (ja) 2011-05-30 2012-05-30 Ledパッケージ製造システムおよびledパッケージ製造システムにおける樹脂塗布方法

Country Status (6)

Country Link
US (1) US8993353B2 (ja)
JP (1) JP5413404B2 (ja)
KR (1) KR20140004736A (ja)
CN (1) CN103493228A (ja)
DE (1) DE112012002301T5 (ja)
WO (1) WO2012164930A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014107534A1 (en) * 2013-01-03 2014-07-10 Xicato, Inc. Color tuning of a multi-color led based illumination device
US8845380B2 (en) 2012-12-17 2014-09-30 Xicato, Inc. Automated color tuning of an LED based illumination device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5391336B2 (ja) * 2011-06-29 2014-01-15 パナソニック株式会社 発光素子の製造方法、及び、発光素子の製造装置
CN107168590B (zh) * 2017-06-30 2023-07-07 成都成电光信科技股份有限公司 一种触摸屏用表贴式复合式红外管
TWI733226B (zh) * 2019-10-25 2021-07-11 台灣愛司帝科技股份有限公司 發光二極體晶圓以及發光二極體晶圓檢測裝置與方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145300A (ja) * 2006-12-11 2008-06-26 Sharp Corp 蛍光体層厚み判定方法および発光装置の製造方法
JP2011021062A (ja) * 2009-07-13 2011-02-03 Koito Mfg Co Ltd 蛍光体、発光モジュール及び車両用灯具
JP2011096936A (ja) * 2009-10-30 2011-05-12 Alpha- Design Kk 半導体発光ディバイス製造装置
JP2011102004A (ja) * 2009-11-11 2011-05-26 Nitto Denko Corp 蛍光体含有複合シート
JP2012094675A (ja) * 2010-10-27 2012-05-17 Panasonic Corp Ledパッケージ製造システムおよびledパッケージ製造システムにおける樹脂塗布方法
JP2012094674A (ja) * 2010-10-27 2012-05-17 Panasonic Corp 樹脂塗布装置および樹脂塗布方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4731913B2 (ja) * 2003-04-25 2011-07-27 株式会社半導体エネルギー研究所 パターンの形成方法および半導体装置の製造方法
JP2005326393A (ja) * 2004-04-12 2005-11-24 Nireco Corp 分光透過率測定装置、透過型厚さ計、色彩値測定装置、分光透過率測定方法、厚さ測定方法、及び色彩値測定方法
WO2006098450A1 (ja) 2005-03-18 2006-09-21 Mitsubishi Chemical Corporation 発光装置、白色発光装置、照明装置及び画像表示装置
JP5098221B2 (ja) * 2005-05-24 2012-12-12 三菱化学株式会社 発光装置、照明装置、ディスプレイ用バックライトおよびディスプレイ
JP2007066969A (ja) 2005-08-29 2007-03-15 Toshiba Lighting & Technology Corp 白色発光ダイオード装置とその製造方法
JP4880329B2 (ja) * 2006-03-06 2012-02-22 株式会社小糸製作所 車両用灯具
JP5386800B2 (ja) * 2006-07-26 2014-01-15 三菱化学株式会社 蛍光体含有組成物、発光装置、照明装置、および画像表示装置
JP2009130301A (ja) * 2007-11-27 2009-06-11 Sharp Corp 発光素子および発光素子の製造方法
JPWO2010123059A1 (ja) * 2009-04-22 2012-10-25 シーシーエス株式会社 Led発光デバイスの製造方法
TWI494553B (zh) * 2010-02-05 2015-08-01 Samsung Electronics Co Ltd 評估led光學性質之設備及方法以及製造led裝置之方法
KR101478472B1 (ko) * 2010-08-17 2014-12-31 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 발광 장치의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145300A (ja) * 2006-12-11 2008-06-26 Sharp Corp 蛍光体層厚み判定方法および発光装置の製造方法
JP2011021062A (ja) * 2009-07-13 2011-02-03 Koito Mfg Co Ltd 蛍光体、発光モジュール及び車両用灯具
JP2011096936A (ja) * 2009-10-30 2011-05-12 Alpha- Design Kk 半導体発光ディバイス製造装置
JP2011102004A (ja) * 2009-11-11 2011-05-26 Nitto Denko Corp 蛍光体含有複合シート
JP2012094675A (ja) * 2010-10-27 2012-05-17 Panasonic Corp Ledパッケージ製造システムおよびledパッケージ製造システムにおける樹脂塗布方法
JP2012094674A (ja) * 2010-10-27 2012-05-17 Panasonic Corp 樹脂塗布装置および樹脂塗布方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8845380B2 (en) 2012-12-17 2014-09-30 Xicato, Inc. Automated color tuning of an LED based illumination device
US9328880B2 (en) 2012-12-17 2016-05-03 Xicato, Inc. Automated color tuning of an LED based illumination device
WO2014107534A1 (en) * 2013-01-03 2014-07-10 Xicato, Inc. Color tuning of a multi-color led based illumination device
US8870617B2 (en) 2013-01-03 2014-10-28 Xicato, Inc. Color tuning of a multi-color LED based illumination device
CN105026821A (zh) * 2013-01-03 2015-11-04 吉可多公司 基于多色led的照明设备的颜色调节
US9426863B2 (en) 2013-01-03 2016-08-23 Xicato, Inc. Color tuning of a multi-color LED based illumination device
US9585224B2 (en) 2013-01-03 2017-02-28 Xicato, Inc. Color tuning of a multi-color LED based illumination device

Also Published As

Publication number Publication date
DE112012002301T5 (de) 2014-02-20
US20130323862A1 (en) 2013-12-05
US8993353B2 (en) 2015-03-31
KR20140004736A (ko) 2014-01-13
CN103493228A (zh) 2014-01-01
JP5413404B2 (ja) 2014-02-12
JP2012248714A (ja) 2012-12-13

Similar Documents

Publication Publication Date Title
JP5310700B2 (ja) Ledパッケージ製造システムおよびledパッケージ製造システムにおける樹脂塗布方法
JP5899485B2 (ja) 樹脂塗布装置および樹脂塗布方法
WO2013121752A1 (ja) 樹脂塗布装置および樹脂塗布方法
JP5310699B2 (ja) 樹脂塗布装置および樹脂塗布方法
WO2012164930A1 (ja) Ledパッケージ製造システムおよびledパッケージ製造システムにおける樹脂塗布方法
WO2012164931A1 (ja) 樹脂塗布装置および樹脂塗布方法
JP2013065644A (ja) 発光素子の製造システムおよび製造方法ならびに発光素子パッケージの製造システムおよび製造方法
JP5375776B2 (ja) Ledパッケージ製造システム
JP5861032B2 (ja) 樹脂塗布装置および樹脂塗布方法
JP2013048130A (ja) 樹脂塗布装置および樹脂塗布方法
WO2013121474A1 (ja) 樹脂塗布装置および樹脂塗布方法
JP2014236136A (ja) Ledパッケージ製造システムにおける樹脂塗布装置および樹脂塗布方法
JP2014075546A (ja) 樹脂塗布装置および樹脂塗布方法
JP5879508B2 (ja) 樹脂塗布装置および樹脂塗布方法
JP2013048131A (ja) 樹脂塗布装置および樹脂塗布方法
JP5768217B2 (ja) 樹脂塗布装置および樹脂塗布方法
JP2013172052A (ja) 樹脂塗布装置および樹脂塗布方法
WO2013051260A1 (ja) 樹脂塗布装置および樹脂塗布方法
JP2013098522A (ja) 樹脂塗布装置および樹脂塗布方法
JP2013093496A (ja) 樹脂発光検査装置および樹脂発光検査方法
JP2013089747A (ja) 樹脂塗布装置および樹脂塗布方法
JP2013089746A (ja) 樹脂塗布装置および樹脂塗布方法
JP2013065646A (ja) 発光素子の製造システムおよび製造方法ならびに発光素子パッケージの製造システムおよび製造方法
JP2013084651A (ja) 樹脂塗布装置および樹脂塗布方法
JP2014075545A (ja) Ledパッケージ製造システムおよびledパッケージ製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793844

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14000346

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137022237

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112012002301

Country of ref document: DE

Ref document number: 1120120023013

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793844

Country of ref document: EP

Kind code of ref document: A1