WO2013121752A1 - 樹脂塗布装置および樹脂塗布方法 - Google Patents

樹脂塗布装置および樹脂塗布方法 Download PDF

Info

Publication number
WO2013121752A1
WO2013121752A1 PCT/JP2013/000676 JP2013000676W WO2013121752A1 WO 2013121752 A1 WO2013121752 A1 WO 2013121752A1 JP 2013000676 W JP2013000676 W JP 2013000676W WO 2013121752 A1 WO2013121752 A1 WO 2013121752A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
light emission
coating
light
unit
Prior art date
Application number
PCT/JP2013/000676
Other languages
English (en)
French (fr)
Inventor
野々村 勝
真司 梅田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013121752A1 publication Critical patent/WO2013121752A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/24Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a resin coating apparatus and a resin coating method used in an LED package manufacturing system for manufacturing an LED package in which an LED element mounted on a substrate is covered with a resin containing a phosphor.
  • LEDs light emitting diodes having excellent characteristics of low power consumption and long life have been widely used as light sources for various lighting devices. Since the basic light emitted from the LED element is currently limited to three colors of red, green, and blue, in order to obtain white light suitable for general lighting applications, the above three basic lights are added.
  • a method of obtaining white light by color mixing, a method of obtaining pseudo white light by combining a blue LED and a phosphor emitting yellow fluorescence having a complementary color relationship with blue are used.
  • the latter method has been widely used, and an illumination device using an LED package in which a blue LED and a YAG phosphor are combined has been used for a backlight of a liquid crystal panel (for example, a patent). Reference 1).
  • YAG phosphor particles are placed in a mounting portion in which YAG phosphor particles are dispersed in the mounting portion.
  • An LED package is configured by injecting dispersed silicone resin, epoxy resin, or the like to form a resin packaging portion. And, for the purpose of uniforming the height of the resin packaging part in the mounting part after the resin injection, a residual resin storage part for discharging and storing the surplus resin injected more than a specified amount from the mounting part is formed.
  • An example is given. As a result, even when the discharge amount from the dispenser varies at the time of resin injection, a resin packaging portion having a certain resin amount and a specified height is formed on the LED element.
  • the LED element has undergone a manufacturing process in which a plurality of elements are formed on the wafer at the same time, and due to various error factors in this manufacturing process, such as non-uniform composition during film formation on the wafer, the wafer state Inevitably, variations in emission wavelength occur in the LED elements divided into individual pieces. And in the above-mentioned example, since the height of the resin wrapping part covering the LED element is set uniformly, the variation in the emission wavelength in the individual LED element is directly reflected in the variation in the emission characteristic of the LED package as a product.
  • the conventional LED package manufacturing technology has a problem in that the emission characteristics of the LED package as a product vary due to variations in the emission wavelength of the individual LED elements, leading to a decrease in production yield. .
  • the present invention provides a resin coating apparatus and a resin coating that can make the light emission characteristics of the LED package uniform and improve the production yield even when the light emission wavelength of the individual LED elements varies in the LED package manufacturing system. It aims to provide a method.
  • the resin coating apparatus of the present invention is used in an LED package manufacturing system for manufacturing an LED package in which an LED element mounted on a substrate is covered with a resin containing a phosphor, and covers the LED element mounted on the substrate.
  • a resin coating apparatus for applying a resin wherein the resin is made to emit light by controlling the resin application unit and a resin application unit that discharges the resin in a variable amount and applies the resin to any application target position.
  • a coating control unit that executes a coating process for measurement that is applied to a light-transmissive member for measurement and a coating process that is applied to the LED element for actual production, and a light source unit that emits excitation light that excites the phosphor.
  • a light emission characteristic measuring unit that measures the light emission characteristic of light emitted from the resin by irradiating the resin applied to the translucent member, a measurement result of the light emission characteristic measurement part, and a predetermined light emission characteristic
  • the appropriate resin application by instructing the application control unit to apply the appropriate resin application amount, and an application amount derivation processing unit that derives the appropriate resin application amount of the resin to be applied to the LED element for actual production.
  • a production execution processing unit for executing a production coating process for applying an amount of resin to the LED element, and an image display control unit for displaying on the display means the change state of the light emission characteristics measured by the light emission characteristic measurement unit. Prepared.
  • the resin coating method of the present invention is used in an LED package manufacturing system for manufacturing an LED package in which an LED element mounted on a substrate is covered with a resin containing a phosphor, and covers the LED element mounted on the substrate.
  • a resin application method for applying the resin wherein the resin is applied to a translucent member as a light emission characteristic measurement by a resin discharge unit that discharges the resin in a variable amount, and the resin
  • a light emission characteristic measurement step for measuring the light emission characteristic of light emitted from the resin by irradiating the resin applied to the translucent member, a measurement result in the light emission characteristic measurement step, and a pre-defined value.
  • An application amount deriving process for deriving an appropriate resin application amount of the resin to be applied to the LED element for actual production based on the light emission characteristics; and
  • a production execution step for executing a production coating process for applying the appropriate amount of resin to the LED element by instructing the application control unit to control, and a change in the light emission characteristic measured in the light emission characteristic measurement step
  • a translucent member in which a resin is trial-coated for light emission characteristic measurement is provided with a light source portion. Measurement results obtained by measuring the light emission characteristics of the light emitted by this resin by irradiating the resin applied to the translucent member with the excitation light emitted from the light source part, which is placed on the member placement part, and the predetermined emission Even if the emission wavelength of individual LED elements varies, by calculating the deviation from the characteristics and deriving the appropriate resin application amount of the resin to be applied to the LED elements for actual production based on this deviation The light emitting characteristics of the LED package can be made uniform to improve the production yield. In addition, since the measured change in the light emission characteristics is displayed as an image, the operator of the LED package manufacturing system visually confirms whether the calculation of the appropriate resin coating amount and the correction of the light emission characteristics are performed correctly. Can be done automatically.
  • coating information used in the LED package manufacturing system of one embodiment of this invention (A)-(c) is explanatory drawing of a structure and function of the component mounting apparatus in the LED package manufacturing system of one embodiment of this invention
  • (A) Exploded perspective view (b) Perspective view of a part of a test hitting / measuring unit provided in the LED package manufacturing system in one embodiment of the present invention (A), (b) is a perspective view of a part of a test hitting / measuring unit provided in the LED package manufacturing system according to one embodiment of the present invention.
  • A) perspective view (b) enlarged exploded perspective view of a part of a test hitting / measurement unit provided in the LED package manufacturing system according to an embodiment of the present invention (A)-(f) is operation
  • the block diagram which shows the structure of the control system of the LED package manufacturing system of one embodiment of this invention Flowchart of LED package manufacturing by LED package manufacturing system of one embodiment of the present invention Flow chart of threshold data creation processing for non-defective product determination in LED package manufacturing system of one embodiment of the present invention (A)-(c) is explanatory drawing of the threshold value data for the quality determination in the LED package manufacturing system of one embodiment of this invention Chromaticity diagram for explaining threshold data for non-defective product determination in the LED package manufacturing system of one embodiment of the present invention
  • coating operation process in the LED package manufacturing process by the LED package manufacturing system of one embodiment of this invention (A)-(d) is explanatory drawing of the resin application
  • FIG. (A)-(c) is explanatory drawing of the light emission characteristic test
  • the block diagram which shows the structure of the control system of the LED package manufacturing system of other embodiment of this invention.
  • the figure which shows the change condition of the light emission characteristic displayed on the display apparatus with which the LED package manufacturing system in other embodiment of this invention is provided.
  • the figure which shows the change condition of the light emission characteristic displayed on the display apparatus with which the LED package manufacturing system in other embodiment of this invention is provided.
  • the LED package manufacturing system 1 has a function of manufacturing an LED package in which an LED element mounted on a substrate is covered with a resin containing a phosphor.
  • the component mounting apparatus M1, the curing apparatus M2, the wire bonding apparatus M3, the resin coating apparatus M4, the curing apparatus M5, and the piece cutting apparatus M6 are connected by the LAN system 2. These devices are connected and controlled by the management computer 3 in an integrated manner.
  • the component mounting apparatus M1 is mounted by bonding the LED element 5 to the substrate 4 (see FIGS. 2A and 2B) serving as the base of the LED package with a resin adhesive.
  • the curing device M2 cures the resin adhesive used for bonding at the time of mounting by heating the substrate 4 after the LED element 5 is mounted.
  • the wire bonding apparatus M3 connects the electrode of the substrate 4 and the electrode of the LED element 5 with a bonding wire.
  • the resin coating device M4 applies a resin containing a phosphor to each LED element 5 on the substrate 4 after wire bonding.
  • the curing device M5 cures the resin applied so as to cover the LED elements 5 by heating the substrate 4 after the resin application.
  • the piece cutting device M6 cuts the substrate 4 after the resin is cured into each individual LED element 5 and divides it into individual LED packages. Thereby, the LED package divided
  • FIG. 1 shows an example in which a production line is configured by arranging each of the component mounting device M1 to the piece cutting device M6 in series.
  • the LED package manufacturing system 1 does not necessarily have such a line configuration.
  • each process work may be sequentially executed by each of the distributed devices.
  • a plasma processing apparatus that performs plasma treatment for electrode cleaning prior to wire bonding before and after the wire bonding apparatus M3, and a surface modification for improving resin adhesion before resin application after wire bonding. You may make it interpose the plasma processing apparatus which performs the plasma processing for the purpose of quality.
  • the substrate 4 is a multiple-type substrate in which a plurality of individual substrates 4a serving as a base of one LED package PKG in a finished product are formed.
  • Each individual substrate 4a includes Each LED mounting portion 4b on which the LED element 5 is mounted is formed.
  • the LED element 5 is mounted in the LED mounting portion 4b for each individual substrate 4a, and then the resin 8 is applied to cover the LED element 5 in the LED mounting portion 4b. Is cut for each individual substrate 4a to complete the LED package PKG shown in FIG.
  • the LED package PKG has a function of irradiating white light used as a light source of various lighting devices, and includes a phosphor that emits yellow fluorescence that is complementary to the blue LED element 5 and blue. By combining with the resin 8, pseudo white light is obtained.
  • the individual substrate 4a is provided with a cavity-shaped reflecting portion 4c having, for example, a circular or elliptical annular bank that forms the LED mounting portion 4b.
  • the N-type part electrode 6a and the P-type part electrode 6b of the LED element 5 mounted inside the reflection part 4c are connected to the wiring layers 4e and 4d formed on the upper surface of the individual substrate 4a by bonding wires 7, respectively.
  • the resin 8 covers the LED element 5 in this state and is applied to the inside of the reflecting portion 4c with a predetermined thickness.
  • the resin 8 The phosphor contained in is mixed with yellow light to emit light and irradiated as white light.
  • the LED element 5 is configured by stacking an N-type semiconductor 5b and a P-type semiconductor 5c on a sapphire substrate 5a, and further covering the surface of the P-type semiconductor 5c with a transparent electrode 5d.
  • An N-type part electrode 6a and a P-type part electrode 6b for external connection are formed on the N-type semiconductor 5b and the P-type semiconductor 5c, respectively.
  • the LED elements 5 are taken out from the LED wafer 10 that is stuck and held on the holding sheet 10a in a state where a plurality of LED elements 5 are formed in a lump and then divided into pieces.
  • the LED element 5 is divided into individual pieces from the wafer state due to various error factors in the manufacturing process, for example, non-uniform composition during film formation on the wafer. It is inevitable that variations occur in the case. If such an LED element 5 is mounted on the substrate 4 as it is, the emission characteristics of the LED package PKG as a product will vary.
  • the light emission characteristics of a plurality of LED elements 5 manufactured in the same manufacturing process are measured in advance, Element characteristic information corresponding to data indicating the light emission characteristics of the LED elements 5 is created, and an appropriate amount of the resin 8 corresponding to the light emission characteristics of each LED element 5 is applied in the application of the resin 8. .
  • resin application information to be described later is prepared in advance.
  • the LED elements 5 taken out from the LED wafer 10 are individually identified by element IDs (in this case, the individual LED elements 5 with the serial number (i) in the LED wafer 10). Are given sequentially to the light emission characteristic measuring device 11.
  • element ID if it is the information which can specify the LED element 5 separately, you may make it use the matrix coordinate which shows the arrangement
  • the LED element 5 can be supplied in the state of the LED wafer 10 in the component mounting apparatus M1 described later.
  • the light emission characteristic measuring device 11 power is actually supplied to each LED element 5 through a probe to actually emit light, and the light is spectrally analyzed to measure predetermined items such as a light emission wavelength and light emission intensity.
  • a standard distribution of emission wavelengths is prepared as reference data in advance, and the wavelength range corresponding to the standard range in the distribution is further divided into a plurality of wavelength ranges.
  • the plurality of target LED elements 5 are ranked according to the emission wavelength.
  • Bin codes [1], [2], [3], [4], [5] are assigned in order from the low wavelength side corresponding to each of the ranks set by dividing the wavelength range into five. ] Is given.
  • element characteristic information 12 having a data structure in which the Bin code 12b is associated with the element ID 12a is created.
  • the element characteristic information 12 is information obtained by individually measuring the light emission characteristics including the light emission wavelengths of the plurality of LED elements 5 in advance.
  • the element characteristic information 12 is prepared in advance by an LED element manufacturer or the like and is used for the LED package manufacturing system 1. Is transmitted.
  • the element characteristic information 12 may be transmitted in a form recorded on a single storage medium, or may be transmitted to the management computer 3 via the LAN system 2. In any case, the transmitted element characteristic information 12 is stored in the management computer 3 and provided to the component mounting apparatus M1 as necessary.
  • the plurality of LED elements 5 for which the light emission characteristic measurement is completed in this way are sorted for each characteristic rank as shown in FIG. 3D, and are distributed into five types according to each characteristic rank. Attached individually to 13a. Thereby, the three types of LED sheets 13A, 13B in which the LED elements 5 corresponding to the Bin codes [1], [2], [3], [4], and [5] are adhered and held on the adhesive sheet 13a, respectively. 13C, 13D, and 13E are created, and when these LED elements 5 are mounted on the individual substrate 4a of the substrate 4, the LED elements 5 are already classified into LED sheets 13A, 13B, 13C, and 13D. , 13E in the form of the component mounting apparatus M1.
  • the LED elements 5 corresponding to any of the Bin codes [1], [2], [3], [4], and [5] are held in the LED sheets 13A, 13B, 13C, 13D, and 13E, respectively.
  • the element characteristic information 12 is provided from the management computer 3 in a form indicating whether or not it has been.
  • the appropriate amount of the phosphor particles in the resin 8 applied to cover the LED element 5 differs depending on the Bin codes [1], [2], [3], [4], and [5]. It will be a thing.
  • the appropriate resin application amount for each Bin classification of the resin 8 containing YAG-based phosphor particles in a silicone resin, an epoxy resin, or the like It is defined in advance according to the Bin code section 17 in units of nl (nanoliter).
  • the amount of the phosphor particles in the resin covering the LED element 5 is an appropriate amount of supplying phosphor particles. This ensures the normal emission wavelength required for the finished product after the resin is thermally cured.
  • a plurality of phosphor concentrations indicating the concentration of the phosphor particles in the resin 8 (here, D1 (5%), D2 (10%), D3 (15%)).
  • the appropriate resin coating amount of the resin 8 is also set to an appropriate numerical value according to the phosphor concentration of the resin 8 to be used. That is, when the resin having the phosphor concentration D1 is applied, the appropriate resin application amounts VA0, VB0, VC0, and Bin codes [1], [2], [3], [4], and [5], respectively. Resin 8 of VD0, VE0 (appropriate resin coating amount 15 (1)) is applied.
  • the appropriate resin application amounts VF0, VG0, VH0 are respectively obtained for the bin codes [1], [2], [3], [4], and [5].
  • VJ0, VK0 appropriate resin coating amount 15 (2) of resin 8 is applied.
  • VR8 appropriate resin coating amount 15 (3) of resin 8 is applied.
  • the appropriate resin coating amount is set for each of a plurality of different phosphor concentrations as described above, in order to ensure quality by applying the resin 8 having the optimum phosphor concentration according to the degree of variation in the emission wavelength. This is because it is more preferable.
  • the component mounting apparatus M1 includes a substrate transport mechanism 21 that transports the work target substrate 4 supplied from the upstream side in the substrate transport direction (arrow a).
  • the substrate transport mechanism 21 is provided with an adhesive application part A shown in section AA in FIG. 5B and a component mounting part B shown in section BB in FIG. 4C. It is installed.
  • the adhesive application unit A is disposed on the side of the substrate transport mechanism 21 and supplies the resin adhesive 23 in the form of a coating film having a predetermined film thickness, and the substrate transport mechanism 21 and the adhesive supply unit 22.
  • the component mounting part B is disposed on the side of the board transport mechanism 21 and has the parts supply mechanism 25 and the board transport mechanism 21 that hold the LED sheets 13A, 13B, 13C, 13D, and 13E shown in FIG.
  • a component mounting mechanism 26 that is movable in the horizontal direction (arrow c) above the supply mechanism 25 is provided.
  • the substrate 4 carried into the substrate transport mechanism 21 is positioned by the adhesive application portion A, and is bonded to the LED mounting portion 4b formed on each individual substrate 4a.
  • the agent 23 is applied. That is, first, the adhesive transfer mechanism 24 is moved above the adhesive supply unit 22 so that the transfer pin 24a is brought into contact with the coating film of the resin adhesive 23 formed on the transfer surface 22a, and the resin adhesive 23 is adhered. Next, the adhesive transfer mechanism 24 is moved above the substrate 4 and the transfer pin 24a is lowered to the LED mounting portion 4b (arrow d), whereby the resin adhesive 23 attached to the transfer pin 24a is moved into the LED mounting portion 4b. It is supplied by transfer to the element mounting position.
  • the substrate 4 after application of the adhesive is conveyed to the downstream side, positioned at the component mounting portion B as shown in FIG. 5 (c), and the LED elements are targeted for each LED mounting portion 4b after the adhesive is supplied.
  • 5 is implemented. That is, first, the component mounting mechanism 26 is moved above the component supply mechanism 25, and the mounting nozzle 26a is lowered with respect to any of the LED sheets 13A, 13B, 13C, 13D, and 13E held by the component supply mechanism 25, and mounted. The LED element 5 is held and taken out by the nozzle 26a.
  • the component mounting mechanism 26 is moved above the LED mounting portion 4b of the substrate 4 to lower the mounting nozzle 26a (arrow e), whereby the LED element 5 held by the mounting nozzle 26a is bonded to the adhesive in the LED mounting portion 4b. It is mounted at the element mounting position where is applied.
  • any one of the LED sheets 13A, 13B, 13C, 13D, and 13E can be used in an individual mounting operation by the component mounting program 26, that is, the component mounting mechanism 26.
  • the order in which the LED elements 5 are taken out and mounted on the plurality of individual boards 4a of the board 4 is set in advance, and the component mounting work is executed according to this element mounting program.
  • mounting position information 71a (see FIG. 21) indicating which of the plurality of individual boards 4a of the board 4 is mounted from the work execution history is extracted. Record.
  • the mounting position information 71a and the LED element 5 mounted on each individual substrate 4a correspond to any characteristic rank (Bin code [1], [2], [3], [4], [5]).
  • Data associated with the element characteristic information 12 indicating whether or not to be created is created as map data 18 shown in FIG. 6 by the map creation processing unit 74 (see FIG. 21).
  • the individual positions of the plurality of individual substrates 4a of the substrate 4 are specified by combinations of matrix coordinates 19X and 19Y indicating the positions in the X direction and the Y direction, respectively. Then, by making the Bin code to which the LED element 5 mounted at the position belongs correspond to the individual cell of the matrix constituted by the matrix coordinates 19X and 19Y, the LED element 5 mounted by the component mounting apparatus M1 on the substrate 4 Map data 18 in which the mounting position information 71a indicating the position and the element characteristic information 12 about the LED element 5 are associated is created.
  • the component mounting apparatus M1 displays the map data 18 in which the mounting position information indicating the position of the LED element 5 mounted by the apparatus on the board 4 and the element characteristic information 12 on the LED element 5 are associated with the board 4
  • a map creation processing unit 74 is provided as map data creation means to be created every time.
  • the created map data 18 is transmitted as feedforward data to the resin coating apparatus M4 described below via the LAN system 2.
  • the resin coating device M4 has a function of coating the resin 8 so as to cover the plurality of LED elements 5 mounted on the substrate 4 by the component mounting device M1.
  • the resin coating apparatus M4 transfers the work target substrate 4 supplied from the upstream side to the substrate transport mechanism 31 that transports the substrate 4 in the substrate transport direction (arrow f).
  • the resin application part C is provided with a resin discharge head 32 configured to discharge the resin 8 from the discharge nozzle 33a attached to the lower end.
  • the resin discharge head 32 is driven by the nozzle moving mechanism 34, and the nozzle moving mechanism 34 is controlled by the application control unit 36, whereby the horizontal direction (arrow g shown in FIG. 7A). ) Move and lift operations.
  • the resin discharge head 32 is supplied with the resin 8 stored in a syringe attached to the dispenser 33, and the resin discharge mechanism 35 discharges the resin 8 in the dispenser 33 by applying air pressure into the dispenser 33. It is discharged through the nozzle 33 a and applied to the LED mounting portion 4 b formed on the substrate 4. At this time, by controlling the resin discharge mechanism 35 by the application control unit 36, the discharge amount of the resin 8 can be arbitrarily controlled.
  • the resin application part C has a function of discharging the resin 8 in a variable amount and applying it to any application target position.
  • various liquid discharge methods such as a plunger method using a mechanical cylinder and a screw pump method can be employed for the resin discharge mechanism 35.
  • a test hitting / measurement unit 40 is disposed on the side of the substrate transport mechanism 31 so as to be located within the movement range of the resin discharge head 32.
  • the test hitting / measurement unit 40 determines whether or not the application amount of the resin 8 is appropriate. It has a function of determining by measuring the light emission characteristics. That is, the light emission characteristics when the light emitted from the measurement light source section 42 is irradiated onto the translucent member 41 on which the resin 8 has been trial-applied by the resin application section C are shown as the spectroscope 43, the integrating sphere 44, and the light emission characteristic measurement processing section 39.
  • the translucent member 41 has an embossed portion 41a corresponding to the concave shape of the LED package PKG provided on the lower surface of the tape material made of a flat sheet-like member made of transparent resin as shown in FIG.
  • An embossed type embssed tape is used.
  • composition and properties of the resin 8 containing the phosphor particles are not necessarily stable, and even if an appropriate resin application amount is set in advance in the resin application information 14, the concentration of the phosphor and the resin viscosity over time. Inevitable fluctuations. For this reason, even if the resin 8 is discharged with the discharge parameters corresponding to the preset appropriate resin application amount, the resin application amount itself varies from the preset appropriate value, or the resin application amount itself is appropriate. However, the amount of the phosphor particles to be originally supplied varies depending on the concentration change.
  • a test coating for inspecting whether or not an appropriate supply amount of phosphor particles is supplied at a predetermined interval is executed by the resin coating apparatus M4. Further, by measuring the emission characteristics of the test-applied resin 8 as an object, the supply amount of the phosphor particles is stabilized in accordance with the emission characteristics that should originally exist.
  • the resin coating unit C provided in the resin coating apparatus M4 shown in the present embodiment includes a coating process for measurement in which the resin 8 is trial-coated on the translucent member 41 for measuring the above-described light emission characteristics, and a substrate for actual production. 4 has a function of executing a production coating process to be applied to the LED element 5 mounted in the state 4. Both the coating process for measurement and the coating process for production are executed when the coating control unit 36 controls the resin coating unit C.
  • the test hitting / measuring unit 40 includes a supply reel 47 that supplies a translucent member 41 to a base portion 45 and a recovery reel 48 that collects the translucent member 41 supplied by the supply reel 47, as described above.
  • the translucent member 41 between the supply reel 47 and the collection reel 48 is guided by a plurality of guide pulleys 49 and one tension pulley 50 and pulled (pulled) by a sprocket 52 driven by a sprocket drive motor 51 (drive source).
  • the translucent member mounting portion 53 has an upper guide member 53 c having a function of guiding both end surfaces of the translucent member 41 on the upper surface of the lower support member 53 b that supports the lower surface of the translucent member 41. It has a structure equipped with.
  • the tension pulley 50 is provided so as to be movable in the vertical direction along a pulley guide 45 a provided to extend vertically in the base portion 45, and applies tension to the translucent member 41 by its own weight. ing. This prevents the light transmitting member 41 from being slackened.
  • the supply reel 47 and the recovery reel 48 extend on a support shaft 56 (shaft member) that extends in the horizontal direction and whose both ends are rotatably supported by a pair of shaft support members 55 a and 55 b. It is arranged coaxially.
  • the supply reel 47 is a hollow cylindrical member 47a around which the translucent member 41 is wound, and a thin disk disk disposed concentrically with the cylindrical member 47a on one side surface of the cylindrical member 47a and fixed to the cylindrical member 47a.
  • the central portion of the cylindrical member 47a, the first guide member 47b, and the second guide member 47c is provided so as to penetrate from the second guide member 47c side, and a flange portion 47d is formed at the end portion on the second guide member 47c side.
  • the cylindrical member 47a, the first guide member 47b, and the second guide member 4 are screwed into the end portions of the penetrating member 47e and the penetrating member 47e on the first guide member 47b side. Clamping the c between the flange portion 47d of the penetrating member 47e consisting of the clamping member 47f. A support shaft 56 is press-fitted into the penetrating member 47e.
  • the recovery reel 48 is a hollow cylindrical member 48a around which the translucent member 41 is wound, and is disposed concentrically with the cylindrical member 48a on one side surface of the cylindrical member 48a.
  • a translucent member fixing ring 48d composed of a ring-shaped member detachably fitted to the outer peripheral surface of the cylindrical member 48a, the cylindrical member 48a, the first guide member 48b and the second guide A torque limiter 48e provided through the center of the member 48c from the second guide member 48c side, and protrudes from the cylindrical member 48a to the second guide member 48c side. Screwed onto the outer peripheral surface of the projecting portion 48f provided Te are made of clamping member 48g tightening the second guide member 48c to the cylindrical member 48a.
  • the translucent member fixing ring 48d is fitted and attached to the outside of the cylindrical member 48a.
  • the locking protrusion 48h provided on the outer peripheral surface of the cylindrical member 48a enters the protrusion locking groove 48j provided on the inner peripheral surface of the translucent member fixing ring 48d.
  • the translucent member fixing ring 48d rotates integrally with the cylindrical member 48a.
  • the translucent member fixing ring 48d has the outer shape of the embossed portion 41a of the translucent member 41 reversed on the inner peripheral surface thereof.
  • a plurality of uneven portions 48k having different shapes are provided side by side.
  • the thickness between the inner peripheral surface of the translucent member fixing ring 48d and the outer peripheral surface of the cylindrical member 48a is larger than the thickness of the translucent member 41.
  • a gap d having a slightly larger size is formed (enlarged view shown in FIG. 13B), and the end of the translucent member 41 fed from the supply reel 47 is inserted into the gap d.
  • the embossed portion 41a of the translucent member 41 is pushed and locked so as to follow the shape of the concavo-convex portion 48k of the translucent member fixing ring 48d (FIG. 14 (a) ⁇ FIG. 14 (b)).
  • the optical member 41 is fixed to the collection reel 48.
  • the cylindrical member 48a is inserted into the hole 48m at the center of the second guide member 48c.
  • the fastening member 48g is screwed into the protrusion 48f of the cylindrical member 48a (FIG. 15B).
  • the torque limiter 48e includes a hollow cylindrical reel side member 57 and a shaft side member 58 inserted into the reel side member 57.
  • the reel side member 57 engages with a key groove 48p provided at the center portion of the first guide member 48b with a detent protrusion 57M (see also FIG. 16B) formed at the end portion on the first guide member 48b side. (FIG. 16 (a) ⁇ FIG. 16 (b)).
  • the shaft side member 58 is penetrated by the support shaft 56, and two engagement protrusions 56 a (see also FIGS. 17A and 17B) provided on the outer peripheral surface of the support shaft 56 are shaft side members. It is engaged with two protrusion engaging portions 58T formed in 58 (FIGS.
  • the translucent member 41 is driven by a sprocket 52 driven by a sprocket drive motor 51 to move from the supply reel 47 side to the recovery reel 48 side (FIG. 18 ( b) Forward movement to arrow W1) shown in (d), (f) and direction from collection reel 48 side to supply reel 47 side (arrow W2 shown in FIGS. 18 (c), (e))
  • a reverse movement is performed, and accurate positioning is performed by rotation control of the sprocket 52.
  • the translucent member 41 moves forward, the supply reel 47 rotates together with the support shaft 56 by the translucent member 41 pulled by the sprocket 52, whereby the translucent member 41 is fed out from the supply reel 47. Further, the rotational force of the support shaft 56 is transmitted to the recovery reel 48 via the internal frictional engagement force of the torque limiter 48e, and the recovery reel 48 rotates, whereby the translucent member 41 that has moved forward is wound and recovered. Is done.
  • the torque limiter 48e transmits the rotational force of the supply reel 47 to the recovery reel 48 by the internal frictional engagement force, and rotates the recovery reel 48 in the same direction as the supply reel 47.
  • the winding radius of the translucent member 41 on the recovery reel 48 is larger than the winding radius of the translucent member 41 on the supply reel 47, and the supply reel 47 and the recovery reel 48 have the same rotation angle.
  • the reel side member 57 and the shaft side member 58 of the torque limiter 48e slipping occurs between them (the rotation angle of the reel-side member 57 ⁇ the rotation angle of the shaft-side member 58).
  • Never excessive tension will cut off thousand acts.
  • the winding radius of the translucent member 41 on the supply reel 47 is greater than the winding radius of the translucent member 41 on the recovery reel 48.
  • the collection reel 48 and the supply reel 47 rotate at the same rotation angle, the length of the translucent member 41 taken up by the supply reel 47 is longer than the length of the translucent member 41 fed out by the collection reel 48.
  • slip occurs between the reel-side member 57 and the shaft-side member 58 of the torque limiter 48e (at this time, the rotation angle of the reel-side member 57> the rotation angle of the shaft-side member 58). 41 is not broken by excessive tension.
  • the winding radius of the translucent member 41 in the supply reel 47 is larger than the winding radius of the translucent member 41 in the recovery reel 48, and the supply reel 47 and the recovery reel 48.
  • the reel side member of the torque limiter 48e. 57 and the shaft side member 58 rotate at the same rotation angle without causing slippage, and the difference in length of the light transmitting member 41 is absorbed by the downward movement stroke of the tension pulley 50. Therefore, the light transmitting member 41 does not sag.
  • the wrapping radius of the translucent member 41 in the recovery reel 48 is larger than the wrapping radius of the translucent member 41 in the supply reel 47.
  • the supply reel 47 and the recovery reel 48 are arranged on the same support shaft 56 (shaft member), and a sprocket drive motor that is a drive source for moving the translucent member 41 forward.
  • a sprocket drive motor that is a drive source for moving the translucent member 41 forward.
  • the irradiating unit 54 has a function of irradiating the translucent member 41 with the measurement light emitted from the light source unit 42, and has a simple dark box function.
  • a light converging tool 54b in which measurement light emitted from the light source unit 42 is guided by a fiber cable is provided.
  • the light source unit 42 has a function of emitting excitation light that excites the phosphor contained in the resin 8.
  • the light source unit 42 is disposed above the translucent member mounting unit 53 and transmits measurement light.
  • the light member 41 is irradiated from above via the light focusing tool 54b.
  • the resin 8 is trial-applied to the translucent member 41 by the resin ejection head 32.
  • this trial application has an appropriate discharge amount of a specified amount specified by the resin application information 14 in the embossed portion 41 a of the translucent member 41 whose lower surface is supported by the test strike stage 40 a. This is performed by discharging (coating) the resin 8 by the discharge nozzle 33a.
  • the resin 8 applied in the test hitting stage 40a is a test application for empirically determining whether or not the phosphor supply amount is appropriate for the target LED element 5. Therefore, when the resin 8 is continuously applied to the plurality of points on the translucent member 41 by the same trial application operation by the resin discharge head 32, the correlation between the measured light emission characteristic value and the application amount is known. Based on the data, the application amount is varied in stages and applied.
  • the white light emitted from the light source unit 42 is irradiated from above through the light focusing tool 54b onto the light transmitting member 41 guided into the light shielding box 54a after the resin 8 is trial-coated.
  • coated to the translucent member 41 passes through the translucent opening part 53a provided in the translucent member mounting part 53, as shown in FIG. The light is received by an integrating sphere 44 disposed below 53.
  • the distance (adjacent embossing) between the resins 8 adjacent to each other in the direction in which the light transmitting member 41 extends on the light transmitting member 41 is the inspection location where the light from the light source portion 42 is irradiated and the supply location where the resin 8 is supplied by the dispenser 33 (when the dispenser 33 supplies the resin 8 to the translucent member 41, And the distance DD between the light transmitting member 41 and the light transmitting member 41 is small. For this reason, the resin 8 applied to the translucent member 41 by the dispenser 33 is moved forward by the rotational operation of the sprocket 52 (the left transversal in FIG.
  • the translucent member 41 is collected in a state of being wound around the collection reel 48, but the translucent member 41 is compared with a case where the translucent member 41 is pushed into the collection box or the like as it is (that is, without being wound around the collection reel 48). Not only is the disposal process of 41 easy, but by rotating the collection reel 48 together with the supply reel 47, the forward movement and reverse movement of the translucent member 41 can be performed smoothly. Further, the translucent member 41 is attached to the recovery reel 48 by engaging the embossed portion 41a with a translucent member fixing ring 48d that is detachably fitted to the outer peripheral surface of the cylindrical member 48a at the center of the recovery reel 48. Therefore, it is very easy to attach and recover the translucent member 41 to the recovery reel 48.
  • the translucent member mounting portion 53 guides the translucent member 41 during conveyance in the trial hitting / measurement unit 40 and also holds the position by placing the translucent member 41 on which the resin 8 has been trial-applied in the measurement coating process. It has a function to do.
  • the integrating sphere 44 has a function of condensing the transmitted light that has been irradiated from the light focusing tool 54 b (arrow h) and transmitted through the resin 8 and led to the spectroscope 43. That is, the integrating sphere 44 has a spherical spherical reflecting surface 44 c inside, and transmitted light (arrow i) incident from the opening 44 a located immediately below the light transmitting opening 53 a is the top of the integrating sphere 44.
  • the white light emitted by the LED package PKG used in the light source unit 42 is applied to the resin 8 that has been trial-applied to the translucent member 41.
  • the blue light component contained in the white light excites the phosphor in the resin 8 to emit yellow light.
  • White light obtained by adding and mixing yellow light and blue light is irradiated upward from the resin 8 and is received by the spectroscope 43 through the integrating sphere 44 described above.
  • the received white light is analyzed by the light emission characteristic measurement processing unit 39 to measure the light emission characteristic, as shown in FIG. 7B.
  • the light emission characteristics such as the color tone rank of white light and the luminous flux are inspected, and a deviation from the prescribed light emission characteristics is detected as the inspection result.
  • the integrating sphere 44, the spectroscope 43, and the light emission characteristic measurement processing unit 39 emit excitation light emitted from the light source unit 42 onto the resin 8 applied to the translucent member 41 (in this case, white light emitted from a white LED).
  • the light emitted from the resin 8 is received from below the translucent member 41 to constitute a light emission characteristic measuring unit for measuring the light emission characteristic of the light emitted from the resin 8.
  • the light emission characteristic measuring unit is configured by disposing the integrating sphere 44 below the translucent member 41, and configured to receive light emitted from the resin 8 through the opening 44 a of the integrating sphere 44. Has been.
  • the following effects can be obtained by configuring the light emission characteristic measuring unit as described above. That is, in the application shape of the resin 8 that is trial-applied to the translucent member 41 shown in FIG. 9, the lower surface side is always in contact with the upper surface of the translucent member 41 or the bottom surface of the embossed portion 41a. Is always at the reference height defined by the translucent member 41. Therefore, the height difference between the lower surface of the resin 8 and the opening 44a of the integrating sphere 44 is always kept constant.
  • the upper surface of the resin 8 is not necessarily realized to have the same liquid surface shape and height due to disturbances such as application conditions by the discharge nozzle 33a, and between the upper surface of the resin 8 and the light focusing tool 54b. The interval of will vary.
  • the irradiation light applied to the resin 8 is the light focusing tool 54b. Therefore, the degree of focusing is high, and the influence of the variation in the distance between the upper surface of the resin 8 and the light focusing tool 54b on the light transmission can be ignored.
  • the transmitted light that has passed through the resin 8 is excitation light in which the phosphor is excited inside the resin 8, so that the degree of scattering is high, and the distance between the lower surface of the resin 8 and the opening 44 a varies. Has an influence on the degree of light being taken in by the integrating sphere 44.
  • the light emitted from the resin 8 is transmitted by irradiating the resin 8 with the excitation light emitted from the light source unit 42 as described above. Since a configuration in which light is received by the integrating sphere 44 from below the optical member 41 is employed, it is possible to perform stable light emission characteristic determination. Further, by using the integrating sphere 44, it is not necessary to separately provide a dark room structure in the light receiving portion, so that the apparatus can be made compact and the equipment cost can be reduced.
  • the measurement result of the light emission characteristic measurement processing unit 39 is sent to the application amount derivation processing unit 38, and the application amount derivation processing unit 38 defines the measurement result of the light emission characteristic measurement processing unit 39 in advance.
  • a deviation from the emitted light emission characteristic is obtained, and a process for deriving an appropriate resin application amount of the resin 8 to be applied to the LED element 5 for actual production is performed based on the deviation.
  • the new appropriate discharge amount derived by the application amount derivation processing unit 38 is sent to the production execution processing unit 37, and the production execution processing unit 37 commands the newly derived appropriate resin application amount to the application control unit 36.
  • the application control unit 36 controls the nozzle moving mechanism 34 and the resin discharge mechanism 35 to perform a production application process for applying an appropriate resin application amount of the resin 8 to the LED elements 5 mounted on the substrate 4. 32.
  • a resin 8 having an appropriate resin coating amount specified in the resin coating information 14 is actually applied, and light emission characteristics are measured while the resin 8 is uncured. Then, based on the obtained measurement results, a non-defective range of emission characteristic measurement values when the emission characteristics are measured for the resin 8 applied in the production coating is set, and the non-defective range is determined for the quality determination in the production coating. It is used as a threshold value (see threshold value data 81a shown in FIG. 21).
  • a white LED is used as the light source unit 42 for measuring the light emission characteristics
  • the threshold is set in advance as a basis for setting a pass / fail judgment threshold in the production coating.
  • the regular emission characteristics required for the finished product in which the resin 8 applied to the LED element 5 is cured are biased by the difference in emission characteristics due to the resin 8 being in an uncured state. Emission characteristics are used. Thereby, control of the resin application amount in the resin application process to the LED element 5 can be performed based on the normal light emission characteristics of the finished product.
  • an LED package PKG that emits white light is used as the light source unit 42.
  • the light emission characteristic measurement of the resin 8 applied by trial can be performed by the light having the same characteristic as the excitation light emitted from the finished LED package PKG, and a more reliable test result can be obtained.
  • a light source device that can stably emit blue light having a constant wavelength for example, a blue LED that emits blue light or a blue laser light source
  • a light source unit for inspection is used as able to.
  • blue light having a predetermined wavelength may be extracted using a band-pass filter.
  • a test hit / measure unit 140 having the configuration shown in FIGS. 19A, 19B, 20A, and 20B may be used. . That is, as shown in FIGS. 19 (a), 19 (b), 20 (a), and 20 (b), the test hitting / measuring unit 140 has a cover portion 140b disposed above an elongated horizontal base portion 140a. It has an external structure. The cover part 140b is provided with an opening part 140c, and the opening part 140c can be freely opened and closed by a sliding slide window 140d for application (arrow l).
  • a trial hitting stage 145a for supporting the translucent member 41 from the lower surface side, a translucent member mounting portion 141 on which the translucent member 41 is placed, and a translucent member mounting portion 141.
  • a spectroscope 43 is provided above.
  • the translucent member mounting unit 141 includes a light source device that emits excitation light that excites the phosphor, similarly to the light source unit 42 illustrated in FIG. 8. Excitation light is irradiated to the member 41 from the lower surface side of the light source device. As in the example shown in FIG. 8, the translucent member 41 is wound and accommodated on the supply reel 47, supplied, and sent along the upper surface of the test strike stage 145a (arrow m), and then the translucent member mounting portion. 141 and the spectroscope 43 are wound around the collection reel 48.
  • the resin discharge head 32 applies the resin 8 by trial application to the translucent member 41 placed on the upper surface. Is possible.
  • this trial application as shown in FIG. 9, a predetermined amount of resin 8 is discharged onto the light transmissive member 41 by the discharge nozzle 33 a with respect to the light transmissive member 41 whose lower surface is supported by the test strike stage 145 a. Is done by.
  • FIG. 20B the translucent member 41 on which the resin 8 has been trial-applied is moved by the trial hitting stage 145a so that the resin 8 is positioned above the translucent member mounting portion 141, and the cover portion 140b is further moved.
  • a state in which a darkroom for measuring light emission characteristics is formed between the base 140a and the base 140a is shown.
  • An LED package PKG that emits white light is used as the light source device for the translucent member mounting portion 141.
  • the wiring layers 4e and 4d connected to the LED element 5 are connected to the power supply device 148. By turning on the power supply device 148, the LED element 5 is supplied with power for light emission.
  • the LED package PKG emits white light.
  • the phosphor in the resin 8 is excited by the blue light contained in the white light and emitted yellow.
  • White light in which light and blue light are added and mixed is irradiated upward from the resin 8.
  • the spectroscope 43 is disposed above the trial hitting / measurement unit 140, and the white light emitted from the resin 8 is received by the spectroscope 43, and the received white light is analyzed by the light emission characteristic measurement processing unit 39. The emission characteristics are measured.
  • the light emission characteristic measurement processing unit 39 measures the light emission characteristic of the light emitted from the resin 8 by irradiating the resin 8 applied to the translucent member 41 with the excitation light emitted from the LED element 5 as the light source unit. . Then, the measurement result of the light emission characteristic measurement processing unit 39 is sent to the coating amount derivation processing unit 38, and the same processing as the example shown in FIGS. 7A and 7B is executed.
  • the configuration of the control system of the LED package manufacturing system 1 will be described with reference to FIG.
  • the component mounting device M1 and the resin coating device M4 the element characteristic information 12, the resin coating information 14, the map data 18, and the above-mentioned
  • the components related to the transmission / reception and update processing of the threshold data 81a are shown.
  • the management computer 3 includes a system control unit 60, a storage unit 61, and a communication unit 62.
  • the system control unit 60 controls the LED package manufacturing work by the LED package manufacturing system 1 in an integrated manner.
  • the storage unit 61 stores element characteristic information 12, resin application information 14, and map data 18 and threshold data 81a as necessary. ing.
  • the communication unit 62 is connected to other devices via the LAN system 2 and exchanges control signals and data.
  • the element characteristic information 12 and the resin application information 14 are transmitted from the outside via the LAN system 2 and the communication unit 62 or via a single storage medium such as a CD ROM, USB memory storage, SD card, and stored in the storage unit 61. Is done.
  • the component mounting apparatus M1 includes a mounting control unit 70, a storage unit 71, a communication unit 72, a mechanism driving unit 73, and a map creation processing unit 74.
  • the mounting control unit 70 controls each unit described below based on various programs and data stored in the storage unit 71 in order to execute a component mounting operation by the component mounting apparatus M1.
  • the storage unit 71 stores mounting position information 71 a and element characteristic information 12 in addition to programs and data necessary for control processing by the mounting control unit 70.
  • the mounting position information 71 a is created from execution history data of mounting operation control by the mounting control unit 70.
  • the element characteristic information 12 is transmitted from the management computer 3 via the LAN system 2.
  • the communication unit 72 is connected to other devices via the LAN system 2 and exchanges control signals and data.
  • the mechanism driving unit 73 is controlled by the mounting control unit 70 to drive the component supply mechanism 25 and the component mounting mechanism 26.
  • the map creation processing unit 74 includes mounting position information 71a indicating the position of the LED element 5 on the substrate 4 stored in the storage unit 71 and mounted by the component mounting apparatus M1, and an element for the LED element 5 A process of creating the map data 18 associated with the characteristic information 12 for each substrate 4 is performed. That is, the map data creating means is provided in the component mounting apparatus M1, and the map data 18 is transmitted from the component mounting apparatus M1 to the resin coating apparatus M4. The map data 18 may be transmitted from the component mounting apparatus M1 to the resin coating apparatus M4 via the management computer 3. In this case, the map data 18 is also stored in the storage unit 61 of the management computer 3 as shown in FIG.
  • the resin coating apparatus M4 includes a coating control unit 36, a storage unit 81, a communication unit 82, a production execution processing unit 37, a coating amount derivation processing unit 38, and a light emission characteristic measurement processing unit 39.
  • the application control unit 36 controls the nozzle moving mechanism 34, the resin discharge mechanism 35, and the test hitting / measurement unit 40 constituting the resin application unit C, so that the resin 8 is applied to the translucent member 41 for light emission characteristic measurement.
  • the measurement coating process to be performed and the production coating process to be applied to the LED element 5 for actual production are performed.
  • the storage unit 81 stores programs and data necessary for control processing by the application control unit 36, as well as resin application information 14, map data 18, threshold data 81a, and actual production application amount 81b.
  • the resin application information 14 is transmitted from the management computer 3 via the LAN system 2, and the map data 18 is similarly transmitted from the component mounting apparatus M1 via the LAN system 2.
  • the communication unit 82 is connected to other devices via the LAN system 2 and exchanges control signals and data.
  • the light emission characteristic measurement processing unit 39 performs a process of measuring the light emission characteristic of the light emitted from the resin by irradiating the resin 8 applied to the light transmitting member 41 with the excitation light emitted from the light source unit 42.
  • the application amount derivation processing unit 38 obtains a deviation between the measurement result of the light emission characteristic measurement processing unit 39 and a predetermined light emission characteristic, and based on this deviation, the resin 8 to be applied to the LED element 5 for actual production. An arithmetic process for deriving an appropriate resin application amount is performed. Then, the production execution processing unit 37 instructs the application control unit 36 to specify the appropriate resin application amount derived by the application amount derivation processing unit 38, thereby applying the appropriate resin application amount of resin to the LED element 5. Execute the process.
  • a processing function other than the function for executing a work operation unique to each apparatus for example, the function of the map creation processing unit 74 provided in the component mounting apparatus M1, and the resin coating apparatus M4 are provided.
  • the function of the applied amount derivation processing unit 38 is not necessarily attached to the apparatus.
  • the functions of the map creation processing unit 74 and the coating amount derivation processing unit 38 are covered by the arithmetic processing function of the system control unit 60 of the management computer 3 and necessary signal exchange is performed via the LAN system 2. It may be configured.
  • both the component mounting apparatus M1 and the resin coating apparatus M4 are connected to the LAN system 2.
  • the management computer 3 and the LAN system 2 in which the element characteristic information 12 is stored in the storage unit 61 uses the information obtained by separately measuring the emission characteristics including the emission wavelengths of the plurality of LED elements 5 in advance as the element characteristic information. 12 is element characteristic information providing means provided to the component mounting apparatus M1.
  • the element characteristic information providing means for providing the element characteristic information 12 to the component mounting apparatus M1 and the resin information providing means for providing the resin coating information 14 to the resin coating apparatus M4 are the storage unit 61 of the management computer 3 which is an external storage means.
  • the element characteristic information and the resin application information read out are transmitted to the component mounting apparatus M1 and the resin application apparatus M4 via the LAN system 2, respectively.
  • element characteristic information 12 and resin application information 14 are acquired (ST1). That is, the appropriate resin application amount of the resin 8 for obtaining the LED package PKG having the element characteristic information 12 obtained by individually measuring the emission characteristics including the emission wavelengths of the plurality of LED elements 5 in advance and the prescribed emission characteristics
  • the resin application information 14 in which the element characteristic information 12 is associated is acquired from an external device via the LAN system 2 or via a storage medium.
  • the board 4 to be mounted is carried into the component mounting apparatus M1 (ST2).
  • the resin adhesive 23 is supplied to the element mounting position in the LED mounting portion 4b by raising and lowering the transfer pin 24a of the adhesive transfer mechanism 24 (arrow n).
  • the LED element 5 held by the mounting nozzle 26a of the component mounting mechanism 26 is lowered (arrow o) and mounted in the LED mounting portion 4b of the substrate 4 via the resin adhesive 23 ( ST3).
  • the map creation processing unit 74 creates map data 18 that associates the mounting position information 71a with the element characteristic information 12 of each LED element 5 for the board 4 from the execution data of the component mounting work (ST4). ).
  • the map data 18 is transmitted from the component mounting apparatus M1 to the resin coating apparatus M4, and the resin coating information 14 is transmitted from the management computer 3 to the resin coating apparatus M4 (ST5). Thereby, it will be in the state which can perform the resin coating operation
  • the substrate 4 after component mounting is sent to the curing device M2, where it is heated to heat the resin adhesive 23 to become a resin adhesive 23 * as shown in FIG.
  • the LED element 5 is fixed to the individual substrate 4a.
  • the substrate 4 after the resin curing is sent to the wire bonding apparatus M3, and as shown in FIG. 28 (d), the wiring layers 4e and 4d of the individual substrate 4a are respectively connected to the N-type portion electrodes 6a and P of the LED element 5.
  • the mold part electrode 6 b is connected to the bonding wire 7.
  • threshold data creation processing for non-defective product determination is executed (ST6). This process is executed in order to set a pass / fail judgment threshold value in production coating (see threshold value data 81a shown in FIG. 21). Bin codes [1], [2], [3 ], [4], and [5] are repeatedly executed for each of the production coatings. Details of the threshold data creation processing will be described with reference to FIGS. 23, 24A to 24C, and FIG. In FIG. 23, first, a resin 8 containing a phosphor specified in the resin application information 14 at a genuine concentration is prepared (ST11).
  • the resin discharge head 32 is moved to the test hitting stage 40 a of the test hitting / measurement unit 40, and the resin 8 is applied to the specified application amount (appropriate resin application) indicated in the resin application information 14.
  • the amount is applied to the translucent member 41 (ST12).
  • the resin 8 applied to the translucent member 41 is moved onto the translucent member mounting portion 53, the LED element 5 is caused to emit light, and the light emission characteristics in an uncured state of the resin 8 are measured by the light emission characteristic measuring section having the above-described configuration. Measure (ST13).
  • a non-defective product determination range of the measurement value for determining the light emission characteristic to be non-defective is set (ST14).
  • the non-defective product determination range is stored as threshold data 81a in the storage unit 81, transferred to the management computer 3, and stored in the storage unit 61 (ST15).
  • FIGS. 24A to 24C show threshold data created in this way, that is, measurement of light emission characteristics obtained in the uncured state of the resin after applying the resin 8 containing the phosphor with the genuine content.
  • the non-defective product determination range (threshold value) of the measured value for determining that the value and the light emission characteristic are good products is shown.
  • 24A, 24B, and 24C the phosphor concentration in the resin 8 is 5%, respectively.
  • the threshold values corresponding to the Bin codes [1], [2], [3], [4], and [5] in the case of 10% and 15% are shown.
  • each of the Bin codes 12b corresponds to the application amount shown in each of the appropriate resin application amounts 15 (1).
  • the measurement result obtained by measuring the light emission characteristics of the light emitted from the resin 8 by irradiating the resin 8 coated with the respective coating amounts with the blue light of the LED element 5 is the light emission characteristic measured value 39a (1 ).
  • threshold data 81a (1) is set based on the respective emission characteristic measurement values 39a (1).
  • the measurement result of measuring the light emission characteristics of the resin 8 applied with the appropriate resin application amount VA0 corresponding to the Bin code [1] is the chromaticity coordinate ZA0 (X A0 , Y A0 on the chromaticity table shown in FIG. ).
  • a predetermined range for example, ⁇ 10%
  • a non-defective product determination range for the appropriate resin coating amounts corresponding to the other Bin codes [2] to [5]
  • a non-defective product determination range is set based on the light emission characteristic measurement result (chromaticity table shown in FIG. 25).
  • the predetermined range set as the threshold is appropriately set according to the accuracy level of the light emission characteristics required for the LED package PKG as a product.
  • FIGS. 24B and 24C show the emission characteristic measurement values and non-defective product determination ranges (threshold values) when the phosphor concentrations of the resin 8 are 10% and 15%, respectively.
  • the appropriate resin application amount 15 (2) and the appropriate resin application amount 15 (3) indicate the appropriate resin application amounts when the phosphor concentrations are 10% and 15%, respectively.
  • the emission characteristic measurement value 39a (2) and the emission characteristic measurement value 39a (3) are emission specific measurement values when the phosphor concentrations are 10% and 15%, respectively, and threshold data 81a ( 2)
  • the threshold value data 81a (3) indicates a non-defective product determination range (threshold value) in each case.
  • the threshold data created in this way is selectively used according to the Bin code 12b to which the target LED element 5 belongs in the production coating operation.
  • the threshold value data creation process shown in (ST6) is executed as an off-line operation by a single inspection device provided separately from the LED package manufacturing system 1, and is previously stored in the management computer 3 as threshold value data 81a. It is also possible to transmit the received data to the resin coating apparatus M4 via the LAN system 2.
  • the substrate 4 after wire bonding is transferred to the resin coating apparatus M4 (ST7), and as shown in FIG. 29A, the resin is discharged from the discharge nozzle 33a into the LED mounting portion 4b surrounded by the reflection portion 4c. 8 is discharged.
  • the resin application information 14 based on the map data 18, the threshold data 81a, and the resin application information 14, an operation of applying a specified amount of the resin 8 shown in FIG. 29B covering the LED element 5 is performed (ST8). Details of this resin application work processing will be described with reference to FIGS. 26 and 27A to 27D.
  • the resin container is exchanged as necessary (ST21). That is, the dispenser 33 attached to the resin discharge head 32 is replaced with one containing a resin 8 having a phosphor concentration selected according to the characteristics of the LED element 5.
  • the resin application part C applies the resin 8 to the translucent member 41 for light emission characteristic measurement (measurement application step) (ST22). That is, the resin 8 having an appropriate resin coating amount (VA0 to VE0) for each Bin code 12b defined in FIG. 4 is formed on the translucent member 41 drawn out to the trial placement stage 40a by the trial placement / measurement unit 40. Apply. At this time, even if the discharge operation parameter corresponding to the appropriate resin application amount (VA0 to VE0) is commanded to the resin discharge mechanism 35, the actual resin application amount discharged from the discharge nozzle 33a and applied to the translucent member 41 is the resin.
  • the above-mentioned appropriate resin application amount does not necessarily become the above-mentioned appropriate resin application amount due to the change in the property of 8 over time, and the actual resin application amount becomes VA1 to VE1 somewhat different from VA0 to VE0 as shown in FIG.
  • the translucent member 41 on which the resin 8 has been trial-applied is sent and placed on the translucent member mounting portion 53 (translucent member mounting step).
  • the excitation light which excites fluorescent substance is light-emitted from the light source part 42 arrange
  • the light emission characteristic measurement processing unit 39 measures the light emission characteristic (light emission characteristic measurement step) (ST23).
  • a light emission characteristic measurement value represented by the chromaticity coordinate Z (see FIG. 25) is obtained.
  • This measurement result is not necessarily based on the above-described error in the coating amount and the change in the concentration of the phosphor particles in the resin 8, and so on, and the standard color at the time of proper resin coating shown in FIG.
  • the degree coordinates ZA0 to ZE0 do not match.
  • the deviation ( ⁇ X A) indicating the separation in the X and Y coordinates between the obtained chromaticity coordinates ZA1 to ZE1 and the standard chromaticity coordinates ZA0 to ZE0 at the time of proper resin application shown in FIG. , ⁇ Y A ) to ( ⁇ X E , ⁇ Y E ) are determined to determine whether correction is necessary to obtain desired light emission characteristics.
  • the measurement result is within the threshold value (ST24), and as shown in FIG. 27C, the deviation obtained in (ST23) is compared with the threshold value.
  • the deviations ( ⁇ X A , ⁇ Y A ) to ( ⁇ X E , ⁇ Y E ) are within ⁇ 10% of ZA0 to ZE0.
  • the application amount is corrected (ST25). That is, the deviation between the measurement result in the light emission characteristic measuring step and the predetermined light emission characteristic is obtained, and as shown in FIG. 27 (d), the actual production to be applied to the LED element 5 based on the obtained deviation.
  • the process of deriving the new appropriate resin application amount (VA2 to VE2) is executed by the application amount deriving processing unit 38 (application amount deriving process step).
  • the corrected appropriate resin coating amount (VA2 to VE2) is an updated value obtained by adding a correction amount corresponding to each deviation to the preset appropriate resin coating amount VA0 to VE0.
  • the relationship between the deviation and the correction amount is recorded in the resin application information 14 as known accompanying data in advance.
  • the processes of (ST22), (ST23), (ST24), and (ST25) are repeatedly executed, and the measurement result is defined in advance in (ST24).
  • the proper resin coating amount for actual production is determined.
  • the appropriate resin coating amount is determined by repeatedly executing the measurement coating step, the translucent member placement step, the excitation light emission step, the light emission characteristic measurement step, and the coating amount derivation step. I try to derive.
  • the determined proper resin application amount is stored in the storage unit 81 as the actual production application amount 81b.
  • the production coating is executed (ST31). That is, when the production execution processing unit 37 instructs the application control unit 36 that controls the resin discharge mechanism 35, the appropriate resin application amount derived by the application amount derivation processing unit 38 and stored as the actual production application amount 81b. Then, a production coating process is performed in which the appropriate amount of resin 8 is applied to the LED element 5 mounted on the substrate 4 (production execution step).
  • the number of times of application by the dispenser 33 is counted, and it is monitored whether or not the predetermined number of times of application has passed (ST32). That is, until the predetermined number of times is reached, it is determined that there is little change in the properties of the resin 8 and the phosphor concentration, and the production coating execution (ST31) is repeated while maintaining the same actual production coating amount 81b. If the predetermined number of times has been confirmed in (ST32), it is determined that there is a possibility that the property of the resin 8 or the phosphor concentration has changed, and the process returns to (ST22). And the coating amount correction process based on the measurement result is repeatedly executed.
  • the substrate 4 is sent to the curing device M5, and the resin 8 is cured by heating by the curing device M5 (ST9).
  • the resin 8 applied so as to cover the LED element 5 is thermally cured to become the resin 8 *, and is fixed in the LED mounting portion 4b.
  • the substrate 4 after the resin curing is sent to the individual piece cutting device M6, where the substrate 4 is cut into individual piece substrates 4a, and as shown in FIG. 29 (d), the individual LED package PKG is obtained. (ST10). Thereby, the LED package PKG is completed.
  • the LED package manufacturing system 1 shown in the embodiment described above separately measures the component mounting apparatus M1 for mounting the plurality of LED elements 5 on the substrate 4 and the emission wavelengths of the plurality of LED elements 5 in advance.
  • the element characteristic information providing means for providing the obtained information as element characteristic information 12 is associated with the appropriate resin application amount of the resin 8 for obtaining the LED package PKG having the prescribed light emission characteristic and the element characteristic information 12.
  • the appropriate resin coating amount of the resin 8 for having a light emission characteristic of the provisions has a configuration in which a resin coating device M4 to be applied to each LED element mounted on the substrate 4.
  • the resin coating apparatus M4 controls the resin coating unit C that discharges the resin 8 in a variable amount and applies the resin 8 to an arbitrary coating target position, and the resin coating unit C.
  • a coating control unit 36 that executes a coating process for measurement that is applied to the translucent member 41 and a production coating process that is applied to the LED element 5 for actual production, and a light source unit that emits excitation light that excites the phosphor.
  • the translucent member mounting portion 53 on which the translucent member 41 on which the resin 8 has been trial-applied is placed, and the excitation light emitted from the light source unit on the translucent member 41.
  • a light emission characteristic measuring unit that measures the light emission characteristic of the light emitted from the resin 8 by irradiation, and obtaining a deviation between a measurement result of the light emission characteristic measuring part and a predetermined light emission characteristic, and applying an appropriate resin based on this deviation Correct the amount
  • the application control unit 36 with the application amount derivation processing unit 38 for deriving the appropriate resin application amount for actual production to be applied to the LED element 5
  • It has a configuration including a production execution processing unit 37 that executes a production application process for applying a resin application amount of resin to the LED element 5.
  • the translucent member 41 on which the resin 8 is applied for measurement of light emission characteristics is mounted.
  • This resin is placed on the unit 53, emits excitation light for exciting the phosphor from the light source unit 42 disposed above, and irradiates the resin 8 applied to the translucent member 41 from above with this resin. 8 is obtained from the lower side of the translucent member 41 and the light emission characteristic of the light is measured, and a deviation between the predetermined light emission characteristic is obtained, and the LED element 5 is used for actual production based on this deviation.
  • the appropriate resin application amount of the resin to be applied can be derived. Thereby, even when the light emission wavelengths of the individual LED elements 5 vary, the light emission characteristics of the LED package PKG can be made uniform and the production yield can be improved.
  • the translucent member 41 is wound around the collection reel 48 while being fed out from the supply reel 47, so that the used translucent member 41 is disposed of. In addition to being easy, by rotating the collection reel 48 together with the supply reel 47, the forward movement operation and the reverse movement operation of the translucent member 41 can be performed smoothly. Further, since the supply reel 47 and the recovery reel 48 are provided on the same shaft member (support shaft 56), the entire resin coating device M4 can be made compact.
  • the translucent member 41 is made of an embossed tape having an embossed portion 41a.
  • the translucent member 41 is not necessarily an embossed tape (in this case, however, a recovery reel). 48 is required to be attached by another method not using the light transmitting member fixing ring 48d).
  • the resin coating device M4 has a function of coating the resin 8 so as to cover the plurality of LED elements 5 mounted on the substrate 4 by the component mounting device M1.
  • the resin coating apparatus M4 transfers the work target substrate 4 supplied from the upstream side to the substrate transport mechanism 31 that transports the substrate 4 in the substrate transport direction (arrow f).
  • the resin application part C is provided with a resin discharge head 32 configured to discharge the resin 8 from the discharge nozzle 33a attached to the lower end.
  • the resin discharge head 32 is driven by the nozzle moving mechanism 34, and the nozzle moving mechanism 34 is controlled by the application control unit 36, whereby the horizontal direction (arrow g shown in FIG. 30A). ) Move and lift operations.
  • the resin discharge head 32 is supplied with the resin 8 stored in a syringe attached to the dispenser 33, and the resin discharge mechanism 35 discharges the resin 8 in the dispenser 33 by applying air pressure into the dispenser 33. It is discharged through the nozzle 33 a and applied to the LED mounting portion 4 b formed on the substrate 4.
  • the discharge amount of the resin 8 can be arbitrarily controlled. That is, the resin application part C has a function of discharging the resin 8 in a variable amount and applying it to any application target position.
  • a test hitting / measurement unit 40 is disposed on the side of the substrate transport mechanism 31 so as to be located within the movement range of the resin discharge head 32.
  • the test hitting / measurement unit 40 determines whether or not the application amount of the resin 8 is appropriate. It has a function of determining by measuring the light emission characteristics. That is, the light emission characteristic when the light-emitting member 143 irradiated with the resin 8 by trial application with the resin application part C is irradiated with light from the measurement light source part is measured by the light emission characteristic measurement part 139, and the measurement result is set in advance. By comparing with the threshold value, the suitability of the preset resin application amount defined by the resin application information 14 shown in FIG. 4 is determined.
  • composition and properties of the resin 8 containing the phosphor particles are not necessarily stable, and even if an appropriate resin application amount is set in advance in the resin application information 14, the concentration of the phosphor and the resin viscosity over time. Inevitable fluctuations. For this reason, even if the resin 8 is discharged with the discharge parameters corresponding to the preset appropriate resin application amount, the resin application amount itself varies from the preset appropriate value, or the resin application amount itself is appropriate. However, the amount of the phosphor particles to be originally supplied varies depending on the concentration change.
  • a test coating for inspecting whether or not an appropriate supply amount of phosphor particles is supplied at a predetermined interval is executed by the resin coating apparatus M4. Further, by measuring the emission characteristics of the test-applied resin 8 as an object, the supply amount of the phosphor particles is stabilized in accordance with the emission characteristics that should originally exist.
  • the resin coating unit C provided in the resin coating apparatus M4 shown in the present embodiment includes a measurement coating process for applying the resin 8 to the light-transmitting member 143 for the above-described light emission characteristic measurement, and a substrate for actual production. 4 has a function of executing a production coating process to be applied to the LED element 5 mounted in the state 4. Both the coating process for measurement and the coating process for production are executed when the coating control unit 36 controls the resin coating unit C.
  • the test hitting / measuring unit 40 has an external structure in which a cover portion 140b having an application sliding window 140d slidable (arrow p) with respect to an elongated horizontal base portion 140a is disposed.
  • the cover 140b is provided with an opening 140c, and the opening 140c can be freely opened and closed by an application slide window 140d.
  • the trial hitting / measuring unit 40 includes a test hitting stage 145 for supporting the translucent member 143 from the lower surface side, a translucent member mounting portion 141 on which the translucent member 143 is mounted, and a translucent member mounting portion 141.
  • a spectroscope 142 disposed above is provided.
  • the translucent member mounting unit 141 includes a light source unit that emits excitation light that excites the phosphor. From the light source unit, the translucent member 143 on which the resin 8 is applied by trial in the measurement coating process. Excitation light is irradiated from the lower surface side.
  • the LED element 5 sealed with the resin 8 not including the phosphor is used as the light source part.
  • the light emission characteristic measurement of the resin 8 applied by trial can be performed by the light having the same characteristic as the excitation light emitted from the finished LED package PKG, and a more reliable test result can be obtained.
  • the same LED element 5 it is not always necessary to use the same LED element 5 as that used in the finished product. If the light source device emits blue light having a certain wavelength in the same manner as the LED element 5 (for example, a blue laser light source), It can be used as a light source unit for inspection.
  • the translucent member 143 is wound and supplied on the supply reel 144 and is fed along the upper surface of the test strike stage 145 (arrow q). Then, the translucent member placement unit 141 is placed between the translucent member mounting unit 141 and the spectroscope 142. Then, the sheet is wound around a collection reel 146 driven by a winding motor 147.
  • a flat sheet-like member made of transparent resin is used as the translucent member 143 as a tape material having a predetermined width, or an embossed portion 143a corresponding to the concave shape of the LED package PKG is provided on the lower surface of the same tape material. Embossed type is used.
  • FIG. 31 (b) shows a state in which the preset appropriate discharge amount of the resin 8 defined by the resin application information 14 is applied to the light transmitting member 143 made of the tape material.
  • (b-2) of FIG. 31 (b) shows a state in which the resin 8 having a preset appropriate discharge amount is similarly applied to the embossed portion 143a of the embossed type translucent member 143 described above.
  • the resin 8 applied in the test hitting stage 145 is a test application for empirically determining whether or not the phosphor supply amount is appropriate for the target LED element 5.
  • the known relationship indicating the correlation between the measured light emission characteristic and the application amount is known. Based on the data, the application amount is varied in stages and applied.
  • the translucent member 143 on which the resin 8 has been trial-applied is moved by the trial hitting stage 145, the resin 8 is positioned above the translucent member mounting portion 141, and the cover portion 140b is further moved.
  • a state in which a darkroom for measuring light emission characteristics is formed between the base 140a and the base 140a is shown.
  • an LED package PKG * having a configuration in which the resin 8 in the LED package PKG is replaced with a transparent resin 80 that does not contain phosphor particles is used.
  • the wiring layers 4e and 4d connected to the LED element 5 are connected to the power supply device 148.
  • the power supply device 148 When the power supply device 148 is turned on, the LED element 5 is supplied with power for light emission.
  • the LED element 5 emits blue light.
  • the light emission characteristic measuring unit 139 measures the light emission characteristic of the light emitted from the resin 8 by irradiating the resin 8 applied to the light transmitting member 143 with the excitation light emitted from the LED element 5 that is the light source unit.
  • the measurement result of the light emission characteristic measurement unit 139 is sent to the application amount derivation processing unit 38, and the application amount derivation processing unit 38 obtains a deviation between the measurement result of the light emission characteristic measurement unit 139 and the predetermined light emission characteristic. Based on the above, a process for deriving an appropriate resin application amount of the resin 8 to be applied to the LED element 5 for actual production is performed.
  • the new appropriate discharge amount derived by the application amount derivation processing unit 38 is sent to the production execution processing unit 37, and the production execution processing unit 37 commands the newly derived appropriate resin application amount to the application control unit 36. Accordingly, the application control unit 36 controls the nozzle moving mechanism 34 and the resin discharge mechanism 35 to perform a production application process for applying an appropriate resin application amount of the resin 8 to the LED elements 5 mounted on the substrate 4. 32.
  • a resin 8 having an appropriate resin coating amount specified in the resin coating information 14 is actually applied, and light emission characteristics are measured while the resin 8 is uncured. Then, based on the obtained measurement results, a non-defective range of emission characteristic measurement values when the emission characteristics are measured for the resin 8 applied in the production coating is set, and the non-defective range is determined for the quality determination in the production coating. It is used as a threshold value (see threshold value data 81a shown in FIG. 32).
  • the LED element 5 is used as the light source unit for measuring the light emission characteristics, and is preliminarily defined as a basis for setting a threshold value for quality determination in production coating.
  • the emission characteristics the regular emission characteristics required for the finished product in which the resin 8 applied to the LED element 5 is cured are biased by the difference in emission characteristics due to the resin 8 being in an uncured state. Emission characteristics are used. Thereby, control of the resin application amount in the resin application process to the LED element 5 can be performed based on the normal light emission characteristics of the finished product.
  • the resin coating apparatus M4 includes a coating control unit 36, a storage unit 81, a communication unit 82, a production execution processing unit 37, a coating amount derivation processing unit 38, and a light emission characteristic measuring unit 139.
  • the application control unit 36 controls the nozzle moving mechanism 34, the resin discharge mechanism 35, and the test hitting / measurement unit 40 constituting the resin application unit C, so that the resin 8 is applied to the translucent member 143 for light emission characteristic measurement.
  • the measurement coating process to be performed and the production coating process to be applied to the LED element 5 for actual production are performed.
  • the light emission characteristic measurement unit 139 performs a process of measuring the light emission characteristic of the light emitted from the resin by irradiating the resin 8 applied to the translucent member 143 with the excitation light emitted from the LED element 5 as the light source unit. .
  • the application amount derivation processing unit 38 obtains a deviation between the measurement result of the light emission characteristic measurement unit 139 and a predetermined light emission characteristic, and based on this deviation, the appropriateness of the resin 8 to be applied to the LED element 5 for actual production is obtained. An arithmetic process for deriving the resin coating amount is performed. Then, the production execution processing unit 37 instructs the application control unit 36 to specify the appropriate resin application amount derived by the application amount derivation processing unit 38, thereby applying the appropriate resin application amount of resin to the LED element 5. Execute the process.
  • the LED manufacturing process executed by the LED package manufacturing system shown in FIG. 32 is basically the same as the system shown in FIG. 21, and the same processes as those shown in FIGS. 22 to 29 are executed.
  • the processes shown in FIGS. 28 and 29 are performed according to the flow of FIG.
  • a threshold data creation process for determining non-defective products is executed.
  • This process is a threshold for determining pass / fail in production coating (shown in FIG. 32).
  • Threshold value data 81a) and is repeated for each of the production coatings corresponding to the Bin codes [1], [2], [3], [4], [5]. And executed.
  • the details of the threshold data creation processing are basically the same as those described in FIGS.
  • FIG. 23 first, a resin 8 containing a phosphor specified in the resin application information 14 at a genuine concentration is prepared (ST11). Then, after setting the resin 8 on the resin discharge head 32, the resin discharge head 32 is moved to the test hitting stage 145 of the test hitting / measurement unit 40, and the resin 8 is applied to a specified application amount (appropriate resin application) indicated in the resin application information 14. The amount is applied to the translucent member 143 (ST12).
  • the resin 8 applied to the translucent member 143 is moved onto the translucent member mounting portion 141, the LED element 5 is caused to emit light, and the light emission characteristic in the uncured state of the resin 8 is measured by the light emission characteristic measuring unit 139. (ST13). Then, based on the light emission characteristic measurement value 39a that is the measurement result of the light emission characteristic measured by the light emission characteristic measurement unit 139, a non-defective product determination range for the light emission characteristic is determined to be determined as good (ST14).
  • the non-defective product determination range is stored as threshold data 81a in the storage unit 81 and is also transferred to the management computer 3 and stored in the storage unit 61 (ST15).
  • the resin application part C trial-applies the resin 8 to the translucent member 143 for measuring the light emission characteristics (measurement application process) (ST22). That is, the resin 8 having an appropriate resin coating amount (VA0 to VE0) for each Bin code 12b defined in FIG. 4 is formed on the translucent member 143 drawn out to the trial placement stage 145 by the trial placement / measurement unit 40. Apply.
  • the actual resin application amount discharged from the discharge nozzle 33a and applied to the translucent member 143 is the resin.
  • the above-mentioned appropriate resin application amount does not necessarily become the above-mentioned appropriate resin application amount due to the change in the property of 8 over time, and the actual resin application amount becomes VA1 to VE1 somewhat different from VA0 to VE0 as shown in FIG.
  • the light-transmitting member 143 is sent in the test hitting / measurement unit 40, so that the light-transmitting member 143 on which the resin 8 is trial-applied is sent, and the LED element 5 is provided as a light source unit that emits excitation light for exciting the phosphor. It is mounted on the translucent member mounting portion 141 (translucent member mounting step).
  • the excitation light emitted from the LED element 5 is irradiated onto the resin 8 applied to the translucent member 143, so that the light emitted from the resin 8 is received by the spectroscope 142, and the light emission characteristic measuring unit 139 Emission characteristic measurement is performed (luminescence characteristic measurement step) (ST23).
  • the measurement values already described in FIG. 27B are obtained, and the processes in FIGS. 27C and 27D are executed.
  • the processes (ST22), (ST23), (ST24), and (ST25) are repeatedly executed to determine the appropriate resin application amount for actual production.
  • the image display control unit 83 included in the resin coating apparatus M4 performs a light emission characteristic measurement unit 139 in a process in which the application amount derivation processing unit 38 determines whether correction is necessary to obtain a desired light emission characteristic.
  • the change state of the light emission characteristics measured by is displayed on the display device DP as a display means provided in the resin coating device M4 (image display step).
  • the operator or process manager of the LED package manufacturing system 1 determines whether or not the calculation of the appropriate resin coating amount in the coating amount derivation processing unit 38 is correctly performed, and in what range the current production quality is managed and maintained. It can be confirmed visually whether or not it is done.
  • an XY coordinate is obtained by expressing the light emission characteristics measured by the light emission characteristic measurement unit 139 in chromaticity coordinates.
  • FIG. 33 Square marks shown in the figure are plot points
  • FIG. 34 What plots what was represented along a time series (FIG. 34. The square-shaped mark shown in the figure is a plot point) etc. are employ
  • the standard value of the chromaticity coordinates is also shown. This makes it very easy for the operator and the process manager to perform the above confirmation work.
  • the standard value represented on the screen of the display device DP is represented as a rectangular standard region when the chromaticity coordinates are plotted on the XY coordinates (FIG. 33), and the chromaticity coordinates are divided into an X component and a Y component. Are plotted as upper and lower limits (FIG. 34).
  • the image display control unit 83 displays the intensity spectrum of each color when the light emission characteristics are represented by blue, red, and green tristimulus values instead of displaying each chromaticity coordinate as described above. Also good. Thereafter, the processes after ST26 in FIG. 26 described above are performed.
  • the resin coating apparatus M4 controls the resin coating unit C and the resin coating unit C by discharging the resin 8 in a variable amount and coating the resin 8 to an arbitrary coating target position.
  • a light emission characteristic measurement unit 139 that measures the light emission characteristic of light emitted from the resin 8 by irradiating the resin 8 applied to the member 143, and a deviation between the measurement result of the light emission characteristic measurement part 139 and a predetermined light emission characteristic
  • the application amount derivation processing unit 38 for deriving the appropriate resin application amount for actual production to be applied to the LED element 5 by correcting the appropriate resin application amount based on this deviation, and the derived appropriate resin application
  • a production execution processing unit 37 for executing a production coating process for coating the LED element 5 with a resin having an appropriate resin coating amount by instructing the amount to the coating control unit 36 is provided.
  • the light transmissive member 143 obtained by applying the resin 8 for light emission characteristic measurement is provided with a light source unit.
  • a measurement result obtained by measuring the light emission characteristics of the light emitted from the resin by irradiating the resin applied to the light transmissive member 143 with the excitation light emitted from the light source unit placed on the light transmissive member placing part 141 and A deviation from the prescribed light emission characteristics can be obtained, and an appropriate resin application amount of the resin to be applied to the LED element for actual production can be derived based on the deviation.
  • the light emission characteristics of the LED package PKG can be made uniform and the production yield can be improved.
  • the operator or process manager of the LED package manufacturing system 1 determines whether the calculation of the appropriate resin application amount is correctly performed, It is possible to visually check to what extent the production quality is managed and maintained.
  • the LED package manufacturing system 1 having the above-described configuration shows a configuration in which the management computer 3 and the component mounting apparatus M1 to the individual piece cutting apparatus M6 are connected by the LAN system 2.
  • the LAN system 2 is indispensable. It is not a configuration requirement. That is, there are storage means for storing element characteristic information 12 and resin application information 14 prepared and transmitted from the outside for each LED package PKG. From these storage means, the element characteristics are sent to the component mounting apparatus M1. If there is a data providing means capable of providing the information 12 and the resin coating information 14 and the map data 18 to the resin coating apparatus M4 as needed, the LED package manufacturing system 1 shown in the present embodiment will be described. Function can be realized.
  • the LED package manufacturing system of the present invention has the effect that even if the light emission wavelength of individual LED elements varies, the light emission characteristics of the LED package can be made uniform and the production yield can be improved.
  • the present invention can be used in the field of manufacturing an LED package in which the element is covered with a resin containing a phosphor.
  • the light transmitting member supply / recovery unit including the supply reel 47, the recovery reel 48, and the like is attached to the base unit 45 of the resin coating apparatus M4, and the light source unit 42, the spectroscope 43, the integrating sphere 44, and the like.
  • the translucent member supply / recovery unit including the supply reel 47 and the recovery reel 48 is provided independently from the light emission inspection unit. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Led Device Packages (AREA)
  • Coating Apparatus (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

 LED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージの製造に用いられる樹脂塗布において、樹脂8を発光特性測定用として試し塗布した透光部材143を光源部を備えた透光部材載置部141に載置し、光源部から発光された励起光を透光部材143に塗布された樹脂8に照射することによりこの樹脂8が発する光の発光特性を発光特性測定部139によって測定した測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて実生産用としてLED素子に塗布されるべき樹脂の適正樹脂塗布量を導出する。

Description

樹脂塗布装置および樹脂塗布方法
 本発明は、基板に実装されたLED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージを製造するLEDパッケージ製造システムに用いられる樹脂塗布装置および樹脂塗布方法に関するものである。
 近年、各種の照明装置の光源として、消費電力が少なく長寿命であるという優れた特性を有するLED(発光ダイオード)が、広範囲で用いられるようになっている。LED素子が発する基本光は、現在のところ赤、緑、青の3つに限られているため、一般的な照明用途として好適な白色光を得るためには、上述の3つの基本光を加色混合することによって白色光を得る方法や、青色LEDと青色と補色関係にある黄色の蛍光を発する蛍光体とを組み合わせることにより疑似白色光を得る方法などが用いられる。近年は後者の方法が広く用いられるようになっており、青色LEDとYAG蛍光体を組み合わせたLEDパッケージを用いた照明装置が、液晶パネルのバックライトなどに用いられるようになっている(例えば特許文献1参照)。
 この特許文献例においては、側壁に反射面が形成された凹状の実装部の底面にLED素子を実装した後、実装部内にYAG系蛍光体粒子が分散された実装部内にYAG系蛍光体粒子が分散されたシリコーン樹脂やエポキシ樹脂などを注入して樹脂包装部を形成することにより、LEDパッケージを構成するようにしている。そして、樹脂注入後の実装部内における樹脂包装部の高さを均一にすることを目的として、規定量以上に注入された剰余樹脂を実装部から排出して貯留するための剰余樹脂貯蔵部を形成する例が記載されている。これにより、樹脂注入時にディスペンサからの吐出量がばらついている場合にあっても、LED素子上には一定の樹脂量を有し規定高さの樹脂包装部が形成される。
日本国特開2007-66969号公報
 しかしながら上述の先行技術例においては、個々のLED素子における発光波長のばらつきに起因して、製品となるLEDパッケージの発光特性がばらつくという問題があった。すなわちLED素子は複数の素子をウェハ上に一括して作り込む製造過程を経ており、この製造過程における種々の誤差要因、例えばウェハにおける膜形成時の組成の不均一などに起因して、ウェハ状態から個片に分割されたLED素子には、発光波長のばらつきが生じることが避けられない。そして上述例では、LED素子を覆う樹脂包装部の高さは均一に設定されていることから、個片のLED素子における発光波長のばらつきは、そのまま製品としてのLEDパッケージの発光特性のばらつきに反映され、結果として品質許容範囲から逸脱する不良品の増加を余儀なくされていた。このように、従来のLEDパッケージ製造技術には、個片のLED素子における発光波長のばらつきに起因して、製品としてのLEDパッケージの発光特性がばらつき、生産歩留まりの低下を招くという問題があった。
 そこで本発明は、LEDパッケージ製造システムにおいて、個片のLED素子の発光波長がばらつく場合にあってもLEDパッケージの発光特性を均一にして、生産歩留まりを向上させることができる樹脂塗布装置および樹脂塗布方法を提供することを目的とする。
 本発明の樹脂塗布装置は、基板に実装されたLED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージを製造するLEDパッケージ製造システムに用いられ、前記基板に実装されたLED素子を覆って前記樹脂を塗布する樹脂塗布装置であって、前記樹脂を塗布量を可変に吐出して任意の塗布対象位置に塗布する樹脂塗布部と、前記樹脂塗布部を制御することにより、前記樹脂を発光特性測定用として透光部材に試し塗布する測定用塗布処理および実生産用として前記LED素子に塗布する生産用塗布処理を実行させる塗布制御部と、前記蛍光体を励起する励起光を発光する光源部と、前記測定用塗布処理において前記樹脂が試し塗布された前記透光部材が載置される透光部材載置部と、前記光源部から発光された前記励起光を前記透光部材に塗布された前記樹脂に照射することによりこの樹脂が発する光の発光特性を測定する発光特性測定部と、前記発光特性測定部の測定結果と予め規定された発光特性とに基づいて実生産用として前記LED素子に塗布されるべき前記樹脂の適正樹脂塗布量を導出する塗布量導出処理部と、前記適正樹脂塗布量を前記塗布制御部に指令することにより、この適正樹脂塗布量の樹脂を前記LED素子に塗布する生産用塗布処理を実行させる生産実行処理部と、前記発光特性測定部が測定した前記発光特性の変化状況を表示手段に画像表示させる画像表示制御部とを備えた。
 本発明の樹脂塗布方法は、基板に実装されたLED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージを製造するLEDパッケージ製造システムに用いられ、前記基板に実装された前記LED素子を覆って前記樹脂を塗布する樹脂塗布方法であって、前記樹脂を塗布量を可変に吐出する樹脂吐出部によって、前記樹脂を発光特性測定用として透光部材に試し塗布する測定用塗布工程と、前記樹脂が試し塗布された前記透光部材を透光部材載置部に載置する透光部材載置工程と、前記蛍光体を励起する励起光を発光する光源部から発光された前記励起光を前記透光部材に塗布された前記樹脂に照射することによりこの樹脂が発する光の発光特性を測定する発光特性測定工程と、前記発光特性測定工程における測定結果と予め規定された発光特性とに基づいて実生産用として前記LED素子に塗布されるべき前記樹脂の適正樹脂塗布量を導出する塗布量導出処理工程と、前記導出された適正樹脂塗布量を前記樹脂吐出部を制御する塗布制御部に指令することにより、この適正樹脂塗布量の樹脂を前記LED素子に塗布する生産用塗布処理を実行させる生産実行工程と、前記発光特性測定工程において測定した前記発光特性の変化状況を画像表示させる画像表示工程とを含む。
 本発明によれば、LED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージの製造に用いられる樹脂塗布において、樹脂を発光特性測定用として試し塗布した透光部材を光源部を備えた透光部材載置部に載置し、光源部から発光された励起光を透光部材に塗布された樹脂に照射することによりこの樹脂が発する光の発光特性を測定した測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて実生産用としてLED素子に塗布されるべき樹脂の適正樹脂塗布量を導出することにより、個片のLED素子の発光波長がばらつく場合にあっても、LEDパッケージの発光特性を均一にして、生産歩留まりを向上させることができる。また、測定した発光特性の変化状況を画像表示させるようになっているので、LEDパッケージ製造システムのオペレータは、適正樹脂塗布量の算出並びに発光特性の補正が正しく行われているかどうかの確認を視覚的に行うことができる。
本発明の一実施の形態のLEDパッケージ製造システムの構成を示すブロック図 (a)、(b)は本発明の一実施の形態のLEDパッケージ製造システムによって製造されるLEDパッケージの構成説明図 (a)~(d)は本発明の一実施の形態のLEDパッケージ製造システムにおいて用いられるLED素子の供給形態および素子特性情報の説明図 本発明の一実施の形態のLEDパッケージ製造システムにおいて用いられる樹脂塗布情報の説明図 (a)~(c)は本発明の一実施の形態のLEDパッケージ製造システムにおける部品実装装置の構成および機能の説明図 本発明の一実施の形態のLEDパッケージ製造システムにおいて用いられるマップデータの説明図 (a)、(b)は本発明の一実施の形態のLEDパッケージ製造システムにおける樹脂塗布装置の構成および機能の説明図 本発明の一実施の形態のLEDパッケージ製造システムにおける樹脂塗布装置に備えられた発光特性検査機能の説明図 本発明の一実施の形態におけるLEDパッケージ製造システムによりエンボステープへ樹脂を吐出した状態を示す図 本発明の一実施の形態のLEDパッケージ製造システムにおける樹脂塗布装置に備えられた発光特性検査機能の説明図 本発明の一実施の形態におけるLEDパッケージ製造システムが備える試し打ち・測定ユニットの一部の一部断面側面図 本発明の一実施の形態におけるLEDパッケージ製造システムが備える試し打ち・測定ユニットの一部の一部断面分解側面図 (a)、(b)は本発明の一実施の形態におけるLEDパッケージ製造システムが備える試し打ち・測定ユニットの一部の(a)分解斜視図(b)側面図 (a)、(b)は本発明の一実施の形態におけるLEDパッケージ製造システムが備える試し打ち・測定ユニットの一部の分解斜視図 本発明の一実施の形態におけるLEDパッケージ製造システムが備える試し打ち・測定ユニットの一部の(a)分解斜視図(b)斜視図 (a)、(b)は本発明の一実施の形態におけるLEDパッケージ製造システムが備える試し打ち・測定ユニットの一部の斜視図 本発明の一実施の形態におけるLEDパッケージ製造システムが備える試し打ち・測定ユニットの一部の(a)斜視図(b)拡大分解斜視図 (a)~(f)は本発明の一実施の形態におけるLEDパッケージ製造システムが備える試し打ち・測定ユニットの動作説明図 (a)、(b)は本発明の一実施の形態のLEDパッケージ製造システムにおける樹脂塗布装置の構成および機能の説明図 (a)、(b)は本発明の一実施の形態のLEDパッケージ製造システムにおける樹脂塗布装置に備えられた発光特性検査機能の説明図 本発明の一実施の形態のLEDパッケージ製造システムの制御系の構成を示すブロック図 本発明の一実施の形態のLEDパッケージ製造システムによるLEDパッケージ製造のフロー図 本発明の一実施の形態のLEDパッケージ製造システムにおける良品判定用のしきい値データ作成処理のフロー図 (a)~(c)は本発明の一実施の形態のLEDパッケージ製造システムにおける良品判定用のしきい値データの説明図 本発明の一実施の形態のLEDパッケージ製造システムにおける良品判定用のしきい値データを説明する色度図 本発明の一実施の形態のLEDパッケージ製造システムによるLEDパッケージ製造過程における樹脂塗布作業処理のフロー図 (a)~(d)は本発明の一実施の形態のLEDパッケージ製造システムによるLEDパッケージ製造過程における樹脂塗布作業処理の説明図 (a)~(d)は本発明の一実施の形態のLEDパッケージ製造システムによるLEDパッケージ製造過程を示す工程説明図 (a)~(d)は本発明の一実施の形態のLEDパッケージ製造システムによるLEDパッケージ製造過程を示す工程説明図 (a)、(b)は本発明の他の実施の形態のLEDパッケージ製造システムにおける樹脂塗布装置の構成および機能の説明図 (a)~(c)は本発明の他の実施の形態のLEDパッケージ製造システムにおける樹脂塗布装置に備えられた発光特性検査機能の説明図 本発明の他の実施の形態のLEDパッケージ製造システムの制御系の構成を示すブロック図 本発明の他の実施の形態におけるLEDパッケージ製造システムが備えるディスプレイ装置に表示された発光特性の変化状況を示す図 本発明の他の実施の形態におけるLEDパッケージ製造システムが備えるディスプレイ装置に表示された発光特性の変化状況を示す図
 次に本発明の実施の形態を図面を参照して説明する。まず図1を参照して、LEDパッケージ製造システム1の構成を説明する。LEDパッケージ製造システム1は、基板に実装されたLED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージを製造する機能を有するものである。本実施の形態においては、図1に示すように、部品実装装置M1、キュア装置M2、ワイヤボンディング装置M3、樹脂塗布装置M4、キュア装置M5、個片切断装置M6の各装置をLANシステム2によって接続し、管理コンピュータ3によってこれらの各装置を統括して制御する構成となっている。
 部品実装装置M1はLEDパッケージのベースとなる基板4(図2(a)、(b)参照)にLED素子5を樹脂接着剤によって接合して実装する。キュア装置M2はLED素子5が実装された後の基板4を加熱することにより、実装時の接合に用いられた樹脂接着剤を硬化させる。ワイヤボンディング装置M3は基板4の電極とLED素子5の電極とをボンディングワイヤによって接続する。樹脂塗布装置M4はワイヤボンディング後の基板4において、各LED素子5毎に蛍光体を含む樹脂を塗布する。キュア装置M5は樹脂塗布後の基板4を加熱することにより、LED素子5を覆って塗布された樹脂を硬化させる。個片切断装置M6は、樹脂が硬化した後の基板4を各個別のLED素子5毎に切断して、個片のLEDパッケージに分割する。これにより、個片に分割されたLEDパッケージが完成する。
 なお図1においては、部品実装装置M1~個片切断装置M6の各装置を直列に配置して製造ラインを構成した例を示しているが、LEDパッケージ製造システム1としては必ずしもこのようなライン構成を採用する必要はなく、以下の説明において述べる情報伝達が適切になされる限りにおいては、分散配置された各装置によってそれぞれの工程作業を順次実行する構成であってもよい。また、ワイヤボンディング装置M3の前後に、ワイヤボンディングに先立って電極のクリーニングを目的としたプラズマ処理を行うプラズマ処理装置、ワイヤボンディング後に、樹脂塗布に先立って樹脂の密着性を向上させるための表面改質を目的としたプラズマ処理を行うプラズマ処理装置を介在させるようにしてもよい。
 ここで図2(a)、(b)、図3(a)~(d)を参照して、LEDパッケージ製造システム1における作業対象となる基板4、LED素子5および完成品としてのLEDパッケージPKGについて説明する。図2(a)に示すように、基板4は、完成品において1つのLEDパッケージPKGのベースとなる個片基板4aが複数個作り込まれた多連型基板であり、各個片基板4aには、それぞれLED素子5が実装される1つのLED実装部4bが形成されている。各個片基板4a毎においてLED実装部4b内にLED素子5を実装し、その後LED実装部4b内にLED素子5を覆って樹脂8を塗布し、さらに樹脂8の硬化後に工程完了済みの基板4を個片基板4a毎に切断することにより、図2(b)に示すLEDパッケージPKGが完成する。
 LEDパッケージPKGは、各種の照明装置の光源として用いられる白色光を照射する機能を有しており、青色LEDであるLED素子5と青色と補色関係にある黄色の蛍光を発する蛍光体を含んだ樹脂8とを組み合わせることにより、擬似白色光を得るようになっている。図2(b)に示すように、個片基板4aにはLED実装部4bを形成する例えば円形や楕円形の環状堤を有するキャビティ形状の反射部4cが設けられている。反射部4cの内側に搭載されたLED素子5のN型部電極6a、P型部電極6bは、個片基板4aの上面に形成された配線層4e、4dと、それぞれボンディングワイヤ7によって接続される。そして樹脂8はこの状態のLED素子5を覆って反射部4cの内側に所定厚みで塗布され、LED素子5から発光された青色光が樹脂8を透過して照射される過程において、樹脂8内に含まれる蛍光体が発光する黄色と混色され、白色光となって照射される。
 図3(a)に示すように、LED素子5は、サファイア基板5a上にN型半導体5b、P型半導体5cを積層し、さらにP型半導体5cの表面を透明電極5dで覆って構成され、N型半導体5b、P型半導体5cにはそれぞれ外部接続用のN型部電極6a、P型部電極6bが形成されている。LED素子5は、図3(b)に示すように、複数が一括して形成された後に個片に分割された状態で保持シート10aに貼着保持されたLEDウェハ10から取り出される。LED素子5は、製造過程における種々の誤差要因、例えばウェハにおける膜形成時の組成の不均一などに起因して、ウェハ状態から個片に分割されたLED素子5には、発光波長など発光特性にばらつきが生じることが避けられない。そしてこのようなLED素子5をそのまま基板4に実装すると、製品としてのLEDパッケージPKGの発光特性のばらつきとなる。
 このような発光特性のばらつきに起因する品質不良を防止するため、本実施の形態においては、同一製造過程で製造される複数のLED素子5の発光特性を予め計測し、各LED素子5と当該LED素子5の発光特性を示すデータとを対応させた素子特性情報を作成しておき、樹脂8の塗布において各LED素子5の発光特性に応じた適正量の樹脂8を塗布するようにしている。そして適正量の樹脂8を塗布するために、後述する樹脂塗布情報が予め準備される。
 まず素子特性情報について説明する。図3(c)に示すように、LEDウェハ10から取り出されたLED素子5は、個々を識別する素子ID(ここでは、当該LEDウェハ10における連番(i)にて個別のLED素子5を識別)が付与された上で、発光特性計測装置11に順次投入される。なお、素子IDとしては、LED素子5を個別に特定できる情報であれば、他のデータ形式のもの、例えばLEDウェハ10におけるLED素子5の配列を示すマトリクス座標をそのまま用いるようにしてもよい。このような形式の素子IDを用いることにより、後述する部品実装装置M1において、LED素子5をLEDウェハ10の状態のまま供給することが可能となる。
 発光特性計測装置11においては、各LED素子5にプローブを介して電力を供給して実際に発光させ、その光を分光分析して発光波長や発光強度などの所定項目について計測を行う。計測対象となるLED素子5については、予め発光波長の標準的な分布が参照データとして準備されており、さらにその分布における標準範囲に該当する波長範囲を複数の波長域に区分することにより、計測対象となった複数のLED素子5を、発光波長によってランク分けする。ここでは、波長範囲を5つに区分することにより設定されたランクのそれぞれに対応して、低波長側から順に、Binコード[1]、[2]、[3]、[4]、[5]が付与されている。そして素子ID12aにBinコード12bを対応させたデータ構成の素子特性情報12が作成される。
 すなわち素子特性情報12は、複数のLED素子5の発光波長を含む発光特性を予め個別に測定して得られた情報であり、予めLED素子製造メーカなどによって準備されてLEDパッケージ製造システム1に対して伝達される。この素子特性情報12の伝達形態としては、単独の記憶媒体に記録された形で伝達されてもよく、またLANシステム2を介して管理コンピュータ3に伝達するようにしてもよい。いずれにおいても、伝達された素子特性情報12は管理コンピュータ3において記憶され、必要に応じて部品実装装置M1に提供される。
 このようにして発光特性計測が終了した複数のLED素子5は、図3(d)に示すように特性ランク毎にソートされ、それぞれの特性ランクに応じて5種類に振り分けられ、5つの粘着シート13aに個別に貼着される。これにより、Binコード[1]、[2]、[3]、[4]、[5]のそれぞれに対応するLED素子5を粘着シート13aに貼着保持した3種類のLEDシート13A、13B、13C、13D、13Eが作成され、これらLED素子5を基板4の個片基板4aに実装する際には、LED素子5はこのようなランク分けが既になされたLEDシート13A、13B、13C、13D、13Eの形態で部品実装装置M1に供給される。このとき、LEDシート13A、13B、13C、13D、13Eのそれぞれには、Binコード[1]、[2]、[3]、[4]、[5]のいずれに対応したLED素子5が保持されているかを示す形で素子特性情報12が管理コンピュータ3から提供される。
 次に、上述の素子特性情報12に対応して予め準備される樹脂塗布情報について、図4を参照して説明する。青色LEDとYAG系の蛍光体を組み合わせることにより白色光を得る構成のLEDパッケージPKGでは、LED素子5が発光する青色光とこの青色光によって蛍光体が励起されて発光する黄色光との加色混合が行われることから、LED素子5が実装される凹状のLED実装部4b内における蛍光体粒子の量が、製品のLEDパッケージPKGの正規の発光特性を確保する上で重要な要素となる。
 上述のように、同時に作業対象となる複数のLED素子5の発光波長には、Binコード[1]、[2]、[3]、[4]、[5]によって分類されるばらつきが存在することから、LED素子5を覆って塗布される樹脂8中の蛍光体粒子の適正量は、Binコード[1]、[2]、[3]、[4]、[5]に応じて異なったものとなる。本実施の形態において準備される樹脂塗布情報14では、図4に示すように、シリコーン樹脂やエポキシ樹脂などにYAG系の蛍光体粒子を含有させた樹脂8のBin分類別適正樹脂塗布量を、nl(ナノリットル)単位で、Binコード区分17に応じて予め規定している。すなわち、LED素子5を覆って樹脂8を樹脂塗布情報14に示される適正樹脂塗布量だけ正確に塗布すると、LED素子5を覆う樹脂中の蛍光体粒子の量は適正な蛍光体粒子供給量となり、これにより樹脂が熱硬化した後に完成品に求められる正規の発光波長が確保される。
 ここでは、蛍光体濃度欄16に示すように、樹脂8中の蛍光体粒子の濃度を示す蛍光体濃度を複数通り(ここではD1(5%)、D2(10%)、D3(15%)の3通り)に設定し、樹脂8の適正樹脂塗布量も使用する樹脂8の蛍光体濃度に応じて適正な数値を用いるようにしている。すなわち、蛍光体濃度D1の樹脂を塗布する場合には、Binコード[1]、[2]、[3]、[4]、[5]のそれぞれについて、適正樹脂塗布量VA0、VB0、VC0、VD0、VE0(適正樹脂塗布量15(1))の樹脂8を塗布する。同様に、蛍光体濃度D2の樹脂を塗布する場合には、Binコード[1]、[2]、[3]、[4]、[5]のそれぞれについて、適正樹脂塗布量VF0、VG0、VH0、VJ0、VK0(適正樹脂塗布量15(2))の樹脂8を塗布する。また蛍光体濃度D3の樹脂を塗布する場合には、Binコード[1]、[2]、[3]、[4]、[5]のそれぞれについて、適正樹脂塗布量VL0、VM0、VN0、VP0、VR0(適正樹脂塗布量15(3))の樹脂8を塗布する。このように異なった複数の蛍光体濃度毎にそれぞれ適正樹脂塗布量を設定するのは、発光波長のばらつきの程度に応じて最適の蛍光体濃度の樹脂8を塗布するのが品質確保の上で、より好ましいからである。
 次に図5(a)~(c)を参照して、部品実装装置M1の構成および機能を説明する。図5(a)の平面図に示すように、部品実装装置M1は、上流側から供給された作業対象の基板4を基板搬送方向(矢印a)に搬送する基板搬送機構21を備えている。基板搬送機構21には、上流側から順に、図5(b)にA-A断面にて示す接着剤塗布部A、図4(c)にB-B断面にて示す部品実装部Bが配設されている。接着剤塗布部Aは、基板搬送機構21の側方に配置され樹脂接着剤23を所定の膜厚の塗膜の形で供給する接着剤供給部22および基板搬送機構21と接着剤供給部22の上方で水平方向(矢印b)に移動自在な接着剤転写機構24を備えている。また部品実装部Bは、基板搬送機構21の側方に配置され、図3(d)に示すLEDシート13A、13B、13C、13D、13Eを保持する部品供給機構25および基板搬送機構21と部品供給機構25の上方で水平方向(矢印c)に移動自在な部品実装機構26を備えている。
 基板搬送機構21に搬入された基板4は、図5(b)に示すように、接着剤塗布部Aにて位置決めされ、各個片基板4aに形成されたLED実装部4bを対象として、樹脂接着剤23の塗布が行われる。すなわちまず接着剤転写機構24を接着剤供給部22の上方に移動させて転写ピン24aを転写面22aに形成された樹脂接着剤23の塗膜に接触させ、樹脂接着剤23を付着させる。次いで接着剤転写機構24を基板4の上方に移動させて、転写ピン24aをLED実装部4bに下降させることにより(矢印d)、転写ピン24aに付着した樹脂接着剤23をLED実装部4b内の素子実装位置に転写により供給する。
 次いで接着剤塗布後の基板4は下流側へ搬送されて、図5(c)に示すように部品実装部Bにて位置決めされ、接着剤供給後の各LED実装部4bを対象として、LED素子5の実装が行われる。すなわちまず部品実装機構26を部品供給機構25の上方に移動させて実装ノズル26aを部品供給機構25に保持されたLEDシート13A、13B、13C、13D、13Eのいずれかに対して下降させ、実装ノズル26aによってLED素子5を保持して取り出す。次いで部品実装機構26を基板4のLED実装部4bの上方に移動させて実装ノズル26aを下降させることにより(矢印e)、実装ノズル26aに保持したLED素子5をLED実装部4b内において接着剤が塗布された素子実装位置に実装する。
 この部品実装装置M1による基板4へのLED素子5の実装においては、予め作成された素子実装プログラム、すなわち部品実装機構26による個別実装動作においてLEDシート13A、13B、13C、13D、13EのいずれからLED素子5を取り出して基板4の複数の個片基板4aに実装するかの順序が予め設定されており、部品実装作業はこの素子実装プログラムにしたがって実行される。
 そして部品実装作業の実行に際しては、作業実行履歴から個別のLED素子5が基板4の複数の個片基板4aのうちのいずれに実装されたかを示す実装位置情報71a(図21参照)を抽出し記録する。そしてこの実装位置情報71aと個々の個片基板4aに実装されたLED素子5がいずれの特性ランク(Binコード[1]、[2]、[3]、[4]、[5])に対応するものであるかを示す素子特性情報12とを関連づけたデータが、マップ作成処理部74(図21参照)によって、図6に示すマップデータ18として作成されるようになっている。
 図6において、基板4の複数の個片基板4aの個別の位置は、X方向、Y方向の位置をそれぞれ示すマトリクス座標19X、19Yの組み合わせによって特定される。そしてマトリクス座標19X、19Yによって構成されるマトリックスの個別セルに、当該位置に実装されたLED素子5が属するBinコードを対応させることにより、部品実装装置M1によって実装されたLED素子5の基板4における位置を示す実装位置情報71aと、当該LED素子5についての素子特性情報12とを関連付けたマップデータ18が作成される。
 すなわち、部品実装装置M1は、当該装置によって実装されたLED素子5の基板4における位置を示す実装位置情報と、当該LED素子5についての素子特性情報12とを関連付けたマップデータ18を、基板4毎に作成するマップデータ作成手段としてのマップ作成処理部74を備えた構成となっている。そして作成されたマップデータ18は、LANシステム2を介して以下に説明する樹脂塗布装置M4に対してフィードフォワードデータとして送信される。
 次に図7(a)、(b)~図17(a)、(b)を参照して、樹脂塗布装置M4の構成および機能について説明する。樹脂塗布装置M4は、部品実装装置M1によって基板4に実装された複数のLED素子5を覆って樹脂8を塗布する機能を有するものである。図7(a)の平面図に示すように、樹脂塗布装置M4は上流側から供給された作業対象の基板4を基板搬送方向(矢印f)に搬送する基板搬送機構31に、図7(b)にC-C断面にて示す樹脂塗布部Cを配設した構成となっている。樹脂塗布部Cには、下端部に装着された吐出ノズル33aから樹脂8を吐出する構成の樹脂吐出ヘッド32が設けられている。
 図7(b)に示すように、樹脂吐出ヘッド32はノズル移動機構34によって駆動され、ノズル移動機構34を塗布制御部36によって制御することにより、水平方向(図7(a)に示す矢印g)の移動動作および昇降動作を行う。樹脂吐出ヘッド32には樹脂8がディスペンサ33に装着されるシリンジに収納された状態で供給され、樹脂吐出機構35によって空圧をディスペンサ33内に印加することにより、ディスペンサ33内の樹脂8は吐出ノズル33aを介して吐出されて、基板4に形成されたLED実装部4bに塗布される。このとき、樹脂吐出機構35を塗布制御部36によって制御することにより、樹脂8の吐出量を任意に制御することができる。すなわち樹脂塗布部Cは、樹脂8を塗布量を可変に吐出して、任意の塗布対象位置に塗布する機能を有している。なお、樹脂吐出機構35には、空圧のディスペンサ33以外にもメカシリンダを用いたプランジャ方式、スクリューポンプ方式など、各種の液吐出方式を採用することができる。
 基板搬送機構31の側方には、樹脂吐出ヘッド32の移動範囲内に位置して、試し打ち・測定ユニット40が配置されている。試し打ち・測定ユニット40は、樹脂8を基板4のLED実装部4bに塗布する実生産用塗布作業に先立って、樹脂8の塗布量が適正であるか否かを、試し塗布した樹脂8の発光特性を測定することにより判定する機能を有するものである。すなわち、樹脂塗布部Cによって樹脂8を試し塗布した透光部材41に測定用の光源部42が発する光を照射したときの発光特性を、分光器43、積分球44および発光特性測定処理部39を備えた発光特性測定部によって測定し、測定結果を予め設定されたしきい値と比較することにより、図4に示す樹脂塗布情報14にて規定される既設定の樹脂塗布量の適否を判定する。本実施の形態では、透光部材41には、図9に示すような、透明樹脂製の平面シート状部材から成るテープ材にLEDパッケージPKGの凹部形状に対応したエンボス部41aが下面に凸設されたエンボスタイプのもの(エンボステープ)が用いられる。
 蛍光体粒子を含有する樹脂8は、その組成・性状は必ずしも安定的ではなく、予め樹脂塗布情報14にて適正樹脂塗布量を設定していても、時間の経過によって蛍光体の濃度や樹脂粘度が変動することが避けられない。このため予め設定された適正樹脂塗布量に対応する吐出パラメータで樹脂8を吐出しても、樹脂塗布量そのものが既設定の適正値からばらつく場合や、さらには樹脂塗布量自体は適正であっても濃度変化によって本来供給されるべき蛍光体粒子の供給量がばらつく結果となる。
 このような不都合を排除するため、本実施の形態では、所定のインターバルにて適正供給量の蛍光体粒子が供給されているか否かを検査するための試し塗布を樹脂塗布装置M4にて実行し、さらに試し塗布された樹脂8を対象として発光特性の測定を実行することにより、本来あるべき発光特性に則して蛍光体粒子の供給量を安定させるようにしている。そして本実施の形態に示す樹脂塗布装置M4に備えられた樹脂塗布部Cは、樹脂8を上述の発光特性測定用として透光部材41に試し塗布する測定用塗布処理と、実生産用として基板4に実装された状態のLED素子5に塗布する生産用塗布処理とを併せて実行する機能を有している。これらの測定用塗布処理および生産用塗布処理は、いずれも塗布制御部36が樹脂塗布部Cを制御することにより実行される。
 図8、図9および図10を参照して試し打ち・測定ユニット40の詳細構成を説明する。これらの図に示すように、試し打ち・測定ユニット40は、ベース部45に透光部材41の供給を行う供給リール47と供給リール47が供給する透光部材41を回収する回収リール48、前述の光源部42、分光器43、積分球44等を備えて成る。供給リール47と回収リール48の間の透光部材41は複数の案内プーリ49と1つのテンションプーリ50によって案内され、スプロケット駆動モータ51(駆動源)によって駆動されるスプロケット52により引っ張られる(牽引される)ことによってその一部が試し打ちステージ40aの上面および透光部材載置部53と照射部54との間を水平方向に通過するようになっている。透光部材載置部53は、図10に示すように、透光部材41の下面を支持する下部支持部材53bの上面に、透光部材41の両端面をガイドする機能を有する上部ガイド部材53cを装着した構造となっている。
 図8において、テンションプーリ50は、ベース部45に上下に延びて設けられたプーリガイド45aに沿って上下方向に移動自在に設けられており、その自重によって、透光部材41にテンションを付与している。これにより透光部材41に弛みが生じることが防止される。
 図8、図11および図12において、供給リール47と回収リール48は水平方向に延びてその両端が一対のシャフト支持部材55a、55bによって回転自在に支持された支持シャフト56(シャフト部材)上に同軸に配置されている。
 図11および図12において、供給リール47は透光部材41が巻き付けられる中空の円筒部材47a、円筒部材47aの一方の側面に円筒部材47aと同心に配置されて円筒部材47aに固定された薄板円盤状の第1ガイド部材47b、円筒部材47aの他方の側面に円筒部材47aと同心に配置されて第1ガイド部材47bと同径の大きさを有する薄板円盤状の第2ガイド部材47cのほか、円筒部材47a、第1ガイド部材47bおよび第2ガイド部材47cの中央部を第2ガイド部材47cの側から貫通して設けられ、第2ガイド部材47cの側の端部にフランジ部47dが形成された貫通部材47e、貫通部材47eの第1ガイド部材47b側の端部に螺合されて円筒部材47a、第1ガイド部材47bおよび第2ガイド部材47cを貫通部材47eのフランジ部47dとの間で締め付ける締め付け部材47fから成る。貫通部材47eには支持シャフト56が圧入される。
 図11、図12および図13(a)、(b)において、回収リール48は透光部材41が巻き付けられる中空の円筒部材48a、円筒部材48aの一方の側面に円筒部材48aと同心に配置されて円筒部材48aに固定された薄板円盤状の第1ガイド部材48b、円筒部材48aの他方の側面に円筒部材48aと同心に配置されて第1ガイド部材48bと同径の大きさを有する薄板円盤状の第2ガイド部材48c、円筒部材48aの外周面に着脱自在に嵌合取り付けされたリング状部材から成る透光部材固定リング48dのほか、円筒部材48a、第1ガイド部材48bおよび第2ガイド部材48cの中央部を第2ガイド部材48cの側から貫通して設けられたトルクリミッタ48e、円筒部材48aから第2ガイド部材48cの側に突出して設けられた突出部48fの外周面に螺合されて円筒部材48aに第2ガイド部材48cを締め付ける締め付け部材48gから成る。
 図13(a)、(b)において、透光部材固定リング48dは円筒部材48aの外側に嵌合させて取り付けられる。このとき円筒部材48aの外周面に設けられた係止突起48hが透光部材固定リング48dの内周面に設けられた突起係止溝48jに入り込むようにする。これにより透光部材固定リング48dは円筒部材48aが支持シャフト56の軸回りに回転すると円筒部材48aと一体となって回転する。
 図13(a)、(b)および図14(a)、(b)において、透光部材固定リング48dには、その内周面に透光部材41が有するエンボス部41aの外形形状を反転させた形状の凹凸部48kが複数並んで設けられている。透光部材固定リング48dが円筒部材48aの外周面に取り付けられた状態では、透光部材固定リング48dの内周面と円筒部材48aの外周面との間には透光部材41の厚みよりも若干大きい大きさの隙間dが形成され(図13(b)中に示す拡大図)、この隙間dには、供給リール47から繰り出された透光部材41の端部が差し込まれる。このとき透光部材41のエンボス部41aは透光部材固定リング48dの凹凸部48kの形状に沿うように押し込まれて係止され(図14(a)→図14(b))、これにより透光部材41は回収リール48に固定される。このようにして透光部材固定リング48dの内周面と円筒部材48aとの間に透光部材41の端部が差し込まれたら、第2ガイド部材48cの中央部の孔48mに円筒部材48aの突出部48fを貫通させた後(図14(b)→図15(a))、円筒部材48aの突出部48fに締め付け部材48gを螺合させる(図15(b))。
 図12において、トルクリミッタ48eは、中空円筒形状のリール側部材57と、リール側部材57の内部に挿入されたシャフト側部材58から成る。リール側部材57は第1ガイド部材48b側の端部に形成された回り止め突起57M(図16(b)も参照)を第1ガイド部材48bの中央部に設けられたキー溝48pに係合させている(図16(a)→図16(b))。一方、シャフト側部材58には支持シャフト56が貫通されており、支持シャフト56の外周面に設けられた2つの係合突起56a(図17(a)、(b)も参照)がシャフト側部材58に形成された2つの突起係合部58Tに係合されている(図17(a)および図17(b))。このため供給リール47が回転し、これにより支持シャフト56が回転すると、トルクリミッタ48eの内部摩擦係合力(リール側部材57の内周面とシャフト側部材58の外周面との間の摩擦係合力)を介して回収リール48が支持シャフト56の軸回りに回転する。また、回収リール48が支持シャフト56の軸回りに回転すると、トルクリミッタ48eの内部摩擦係合力を介して支持シャフト56が回転し、これにより供給リール47が回転する。
 図18(a)~(f)に示すように、透光部材41は、スプロケット駆動モータ51によって駆動されるスプロケット52により駆動されて供給リール47側から回収リール48側へ向かう方向(図18(b)、(d)、(f)中に示す矢印W1)への前進動作および回収リール48側から供給リール47側へ向かう方向(図18(c)、(e)中に示す矢印W2)への後進動作を行い、スプロケット52の回転制御によって正確な位置決めがなされる。透光部材41の前進動作時には、スプロケット52により引っ張られた透光部材41によって供給リール47が支持シャフト56とともに回転し、これにより供給リール47から透光部材41が繰り出される。また、この支持シャフト56の回転力がトルクリミッタ48eの内部摩擦係合力を介して回収リール48に伝達され、回収リール48が回転することによって、前進動作した透光部材41が巻き取られて回収される。
 上記のようにトルクリミッタ48eは、内部摩擦係合力によって供給リール47の回転力を回収リール48に伝達して回収リール48を供給リール47と同方向に回転させる作用をするが、透光部材41の前進動作時であって、供給リール47における透光部材41の巻き付け半径よりも回収リール48における透光部材41の巻き付け半径の方が大きく、供給リール47と回収リール48が同一の回転角度で回転した場合に回収リール48が巻き取る透光部材41の長さが供給リール47により繰り出される透光部材41の長さよりも長くなる状況では、トルクリミッタ48eのリール側部材57とシャフト側部材58との間には滑りが生じるので(リール側部材57の回転角度<シャフト側部材58の回転角度となる)、透光部材41に過度のテンションが作用して千切れてしまうことはない。
 また、スプロケット52が逆方向に回転される透光部材41の後進動作時であって、回収リール48における透光部材41の巻き付け半径よりも供給リール47における透光部材41の巻き付け半径の方が大きく、回収リール48と供給リール47が同一の回転角度で回転した場合に供給リール47が巻き取る透光部材41の長さが回収リール48により繰り出される透光部材41の長さよりも長くなる状況においても、トルクリミッタ48eのリール側部材57とシャフト側部材58との間には滑りが生じるので(このときリール側部材57の回転角度>シャフト側部材58の回転角度となる)、透光部材41が過度のテンションにより千切れてしまうことはない。
 一方、透光部材41の前進動作時であって、回収リール48における透光部材41の巻き付け半径よりも供給リール47における透光部材41の巻き付け半径の方が大きく、供給リール47と回収リール48が同一の回転角度で回転した場合に供給リール47が繰り出す透光部材41の長さが回収リール48によって巻き取られる透光部材41の長さよりも長くなる状況では、トルクリミッタ48eのリール側部材57とシャフト側部材58とは滑りを生じることなく同一の回転角度で回転し、上記透光部材41の長さの差はテンションプーリ50の下方への移動ストロークによって吸収されるので、透光部材41に弛みが生じることはない。
 また、透光部材41の後進動作時であって、供給リール47における透光部材41の巻き付け半径よりも回収リール48における透光部材41の巻き付け半径よりも大きく、供給リール47と回収リール48が同一の回転角度で回転した場合に回収リール48が繰り出す透光部材41の長さが供給リール47によって巻き取られる透光部材41の長さよりも長くなる状況においても、トルクリミッタ48eのリール側部材57とシャフト側部材58とは滑りを生じることなく同一の回転角度で回転し、上記透光部材41の長さの差はテンションプーリ50の下方への移動ストロークによって吸収されるので、透光部材41に弛みが生じることはない。
 このように本実施の形態における樹脂塗布装置M4では、供給リール47と回収リール48は同一の支持シャフト56(シャフト部材)上に配置され、透光部材41を進行させる駆動源であるスプロケット駆動モータ51の作動によって透光部材41を進行させると供給リール47および回収リール48のうちの一方側が透光部材41によって引っ張られて回転して透光部材41を繰り出し、他方側は支持シャフト56上に設けられたトルクリミッタ48eを介して回転駆動されることによって透光部材41を巻き取る構成となっている。
 図7(a)、(b)および図8において、照射部54は光源部42によって発光された測定光を透光部材41に対して照射する機能を有しており、簡易暗箱機能を有する遮光ボックス54a内に、光源部42が発光する測定光がファイバケーブルによって導光される光集束ツール54bを配設した構成となっている。光源部42は樹脂8に含まれる蛍光体を励起する励起光を発光する機能を有しており、本実施の形態においては透光部材載置部53の上方に配置されて、測定光を透光部材41に対して光集束ツール54bを介して上方から照射する形態となっている。
 前述のようにして透光部材41が試し打ち・測定ユニット40上を送られる過程において、透光部材41に対して樹脂吐出ヘッド32によって樹脂8が試し塗布される。この試し塗布は、図9に示すように、下面側を試し打ちステージ40aによって支持された透光部材41のエンボス部41a内に、樹脂塗布情報14にて規定される規定量の適正吐出量の樹脂8を吐出ノズル33aによって吐出(塗布)することによって行われる。
 なお、後述するように、試し打ちステージ40aにて塗布された樹脂8は、対象となるLED素子5に対して蛍光体供給量が適正であるか否かを実証的に判定するための試し塗布であることから、樹脂吐出ヘッド32による同一試し塗布動作で複数点に樹脂8を連続的に透光部材41上に塗布する場合には、発光特性測定値と塗布量との相関関係を示す既知のデータに基づいて塗布量を段階的に異ならせて塗布しておく。
 このようにして樹脂8が試し塗布された後に遮光ボックス54a内に導かれた透光部材41に対して、光源部42によって発光された白色光を光集束ツール54bを介して上方から照射する。そして透光部材41に塗布された樹脂8を透過した光は、図10に示すように、透光部材載置部53に設けられた光透過開口部53aを介して、透光部材載置部53の下方に配設された積分球44によって受光される。
 試し打ち・測定ユニット40では、図18(a)および図18(c)に示すように、透光部材41上において透光部材41の延びる方向に隣接する樹脂8の間の距離(隣接するエンボス部41aの間の距離)ddは、光源部42からの光が照射される検査箇所とディスペンサ33により樹脂8が供給される供給箇所(ディスペンサ33は透光部材41に樹脂8を供給するとき、透光部材41の直上に位置する)との間の距離DDに比べて小さい。このため、ディスペンサ33によって透光部材41に塗布された樹脂8は、スプロケット52の回転動作により透光部材41が前進(図18(a)~(f)では紙面を左進)されることによって光源部42の直下に移動され、ここで発光特性の測定が行われた後、次の樹脂8の塗布のために一旦後進されることになることから、透光部材41上への樹脂8の塗布および塗布した樹脂8の検査を連続実行するにおいては、供給リール47および回収リール48の同期動作による透光部材41の前進動作と後進動作が交互に繰り返し実行されることになり(図18(a)→図18(b)→・・・→図18(e)→図18(f)→・・・)、試し打ち・測定が行われている間、透光部材41は前進動作と後進動作を繰り返しつつ、全体として少しずつ前進していくことになり、透光部材41の使用済みの部分は回収リール48に巻き付けられていく。
 このように透光部材41は回収リール48に巻き付けた状態で回収されるが、透光部材41をそのまま(すなわち、回収リール48に巻き付けることなく)回収ボックスなどに押し込む場合と比べて透光部材41の廃棄処理が容易であるだけでなく、供給リール47と併せて回収リール48を回転させることで、透光部材41の前進動作と後進動作をスムーズに行うことができる。また、透光部材41はそのエンボス部41aが回収リール48の中心の円筒部材48aの外周面に着脱自在に嵌合される透光部材固定リング48dに係止されることによって回収リール48に取り付けられるようになっているので、透光部材41の回収リール48への取り付けと回収が非常に容易である。
 透光部材載置部53は試し打ち・測定ユニット40における搬送時に透光部材41をガイドするとともに、測定用塗布処理において樹脂8が試し塗布された透光部材41を載置して位置を保持する機能を有している。積分球44は、図10に示すように、光集束ツール54bから照射されて(矢印h)樹脂8を透過した透過光を集光し、分光器43に導く機能を有している。すなわち積分球44は内部に球面状の球状反射面44cを有しており、光透過開口部53aの直下に位置する開口部44aから入光した透過光(矢印i)は、積分球44の頂部に設けられた開口部44aから反射空間44b内に入射し、球状反射面44cによる全反射(矢印j)を反復する過程で出力部44dから測定光(矢印k)として取り出され、分光器43によって受光される。
 上述構成では、光源部42に用いられるLEDパッケージPKGによって発光された白色光が透光部材41に試し塗布された樹脂8に照射される。この過程において、白色光中に含まれる青色光成分が樹脂8中の蛍光体を励起させて黄色光を発光させる。そしてこの黄色光と青色光が加色混合した白色光が樹脂8から上方に照射され、上述の積分球44を介して分光器43によって受光される。
 そして受光された白色光は、図7(b)に示すように、発光特性測定処理部39によって分析されて発光特性が測定される。ここでは、白色光の色調ランクや光束などの発光特性が検査され、検査結果として、規定の発光特性との偏差が検出される。積分球44、分光器43および発光特性測定処理部39は、励起光を透光部材41に塗布された樹脂8に光源部42によって発光された励起光(ここでは白色LEDにより発光された白色光)を上方から照射することによりこの樹脂8が発する光を透光部材41の下方から受光して、樹脂8が発する光の発光特性を測定する発光特性測定部を構成する。そして本実施の形態においては、発光特性測定部は積分球44を透光部材41の下方に配置して成り、樹脂8が発する光を積分球44の開口部44aを介して受光するように構成されている。
 発光特性測定部を上述のような構成とすることにより、以下に述べるような効果を得る。すなわち、図9に示す透光部材41に試し塗布される樹脂8の塗布形状において、下面側は常に透光部材41の上面またはエンボス部41aの底面に接触していることから、樹脂8の下面は常に透光部材41によって規定される基準高さにある。したがって、樹脂8の下面と積分球44の開口部44aとの高さ差は常に一定に保たれる。これに対し、樹脂8の上面は吐出ノズル33aによる塗布条件などの外乱によって、必ずしも同一の液面形状・高さが実現されるとは限らず、樹脂8の上面と光集束ツール54bとの間の間隔はばらつくこととなる。
 ここで樹脂8の上面に対して照射される照射光と樹脂8の下面からの透過光とを比較した場合の安定度合いを考えると、樹脂8に対して照射される照射光は光集束ツール54bを介して照射されることから集束度が高く、樹脂8の上面と光集束ツール54bとの間の間隔のばらつきが光伝達に対して与える影響は無視できる。これに対し、樹脂8を透過した透過光は樹脂8の内部で蛍光体が励起された励起光であることから散乱の度合いが高く、樹脂8の下面と開口部44aとの間の距離のばらつきが積分球44によって光が取り込まれる度合いに与える影響は無視できない。
 本実施の形態に示す試し打ち・測定ユニット40においては、前述構成のように光源部42によって発光された励起光を、樹脂8に対して上方から照射することによりこの樹脂8が発する光を透光部材41の下方から積分球44によって受光する構成を採用していることから、安定した発光特性の判定を行うことが可能となっている。さらに、積分球44を用いることにより受光部分に暗室構造を別途設ける必要がなく、装置のコンパクト化と設備費用の削減が可能となっている。
 図7(b)に示すように、発光特性測定処理部39の測定結果は塗布量導出処理部38に送られ、塗布量導出処理部38は、発光特性測定処理部39の測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて実生産用としてLED素子5に塗布されるべき樹脂8の適正樹脂塗布量を導出する処理を行う。塗布量導出処理部38によって導出された新たな適正吐出量は生産実行処理部37に送られ、生産実行処理部37は新たに導出された適正樹脂塗布量を塗布制御部36に指令する。これにより塗布制御部36は、ノズル移動機構34、樹脂吐出機構35を制御して、適正樹脂塗布量の樹脂8を基板4に実装されたLED素子5に塗布する生産用塗布処理を樹脂吐出ヘッド32に実行させる。
 この生産用塗布処理においては、まず樹脂塗布情報14に規定される適正樹脂塗布量の樹脂8を実際に塗布し、樹脂8が未硬化の状態で発光特性の測定を行う。そして得られた測定結果に基づき、生産用塗布において塗布された樹脂8を対象として発光特性を測定した場合における発光特性測定値の良品範囲を設定し、この良品範囲を生産用塗布における良否判定のしきい値(図21に示すしきい値データ81a参照)として用いるようにしている。
 すなわち本実施の形態に示すLEDパッケージ製造システムにおける樹脂塗布方法では、発光特性測定用の光源部42として白色LEDを用いるとともに、生産用塗布における良否判定のしきい値設定の基となる予め規定された発光特性として、LED素子5に塗布された樹脂8が硬化した状態の完成製品について求められる正規の発光特性を、樹脂8が未硬化の状態であることによる発光特性の相違分だけ偏らせた発光特性を用いるようにしている。これにより、LED素子5への樹脂塗布過程における樹脂塗布量の制御を完成製品についての正規の発光特性に基づいて行うことが可能となっている。
 なお本実施の形態においては、光源部42として白色光を発するLEDパッケージPKGを用いている。これにより、試し塗布された樹脂8の発光特性測定を、完成品のLEDパッケージPKGにおいて発光される励起光と同一特性の光によって行うことができ、より信頼性の高い検査結果を得ることができる。なお完成品に用いられるものと同一のLEDパッケージPKGを用いることは必ずしも必須要件ではない。発光特性測定には、一定波長の青色光を安定的に発光することが可能な光源装置(例えば青色光を発光する青色LEDや、青色レーザ光源など)であれば、検査用の光源部として用いることができる。但し、青色LEDを用いた白色光を発するLEDパッケージPKGを用いることにより、安定的な品質の光源装置を低コストで選定することができるという利点を有する。ここでバンドパスフィルタを用いて、所定の波長の青色光を取り出すようにしてもよい。
 なお上述構成の試し打ち・測定ユニット40の替わりに、図19(a)、(b)、図20(a)、(b)に示す構成の試し打ち・測定ユニット140を用いるようにしてもよい。すなわち、図19(a)、(b)、図20(a)、(b)に示すように、試し打ち・測定ユニット140は細長形状の水平な基部140aの上方に、カバー部140bを配設した外部構造となっている。カバー部140bには開口部140cが設けられており、開口部140cはスライド自在(矢印l)な塗布用スライド窓140dによって開閉自在となっている。試し打ち・測定ユニット140の内部には、透光部材41を下面側から支持する試し打ちステージ145a、透光部材41が載置される透光部材載置部141および透光部材載置部141の上方に配設された分光器43が設けられている。
 透光部材載置部141は、図8に示す光源部42と同様に蛍光体を励起する励起光を発光する光源装置を備えており、測定用塗布処理において樹脂8が試し塗布された透光部材41に対して、この光源装置より下面側から励起光が照射される。透光部材41は、図8に示す例と同様に供給リール47に巻回収納されて供給され、試し打ちステージ145aの上面に沿って送られた後(矢印m)、透光部材載置部141と分光器43との間を経由して回収リール48に巻き取られる。
 塗布用スライド窓140dをスライドさせて開放した状態では、試し打ちステージ145a上面は上方に露呈され、上面に載置された透光部材41に対して樹脂吐出ヘッド32によって樹脂8を試し塗布することが可能となる。この試し塗布は、下面側を試し打ちステージ145aによって支持された透光部材41に対して、図9に示すように、吐出ノズル33aによって規定塗布量の樹脂8を透光部材41に吐出することによって行われる。
 図20(b)は、試し打ちステージ145aにて樹脂8が試し塗布された透光部材41を移動させて、樹脂8を透光部材載置部141の上方に位置させ、さらにカバー部140bを下降させて基部140aとの間に発光特性測定用の暗室を形成した状態を示している。透光部材載置部141には、光源装置として白色光を発するLEDパッケージPKGが用いられている。LEDパッケージPKGにおいてLED素子5と接続された配線層4e、4dは電源装置148と接続されており、電源装置148をONすることにより、LED素子5には発光用の電力が供給され、これによりLEDパッケージPKGは白色光を発光する。
 そしてこの白色光が樹脂8を透過した後に透光部材41に試し塗布された樹脂8に照射される過程において、白色光に含まれる青色光によって樹脂8中の蛍光体が励起して発光した黄色光と青色光が加色混合した白色光が、樹脂8から上方に照射される。試し打ち・測定ユニット140の上方には分光器43が配置されており、樹脂8から照射された白色光は分光器43によって受光され、受光された白色光は発光特性測定処理部39によって分析されて発光特性が測定される。ここでは、白色光の色調ランクや光束などの発光特性が検査され、検査結果として、規定の発光特性との偏差が検出される。すなわち発光特性測定処理部39は、光源部であるLED素子5から発光された励起光を透光部材41に塗布された樹脂8に照射することによりこの樹脂8が発する光の発光特性を測定する。そして発光特性測定処理部39の測定結果は塗布量導出処理部38に送られ、図7(a)、(b)に示す例と同様の処理が実行される。
 次に図21を参照して、LEDパッケージ製造システム1の制御系の構成について説明する。なお、ここではLEDパッケージ製造システム1を構成する各装置の構成要素のうち、管理コンピュータ3、部品実装装置M1、樹脂塗布装置M4において、素子特性情報12、樹脂塗布情報14およびマップデータ18、上述のしきい値データ81aの送受信および更新処理に関連する構成要素を示すものである。
 図21において、管理コンピュータ3は、システム制御部60、記憶部61、通信部62を備えている。システム制御部60は、LEDパッケージ製造システム1によるLEDパッケージ製造作業を統括して制御する。記憶部61には、システム制御部60による制御処理に必要なプログラムやデータのほか、素子特性情報12、樹脂塗布情報14、さらには必要に応じてマップデータ18、しきい値データ81aが記憶されている。通信部62はLANシステム2を介して他装置と接続されており、制御信号やデータの授受を行う。素子特性情報12、樹脂塗布情報14は、LANシステム2および通信部62を介して、またはCDロム、USBメモリストレージ、SDカードなど単独の記憶媒体を介して、外部から伝達され記憶部61に記憶される。
 部品実装装置M1は、実装制御部70、記憶部71、通信部72、機構駆動部73およびマップ作成処理部74を備えている。実装制御部70は、部品実装装置M1による部品実装作業を実行するために、記憶部71に記憶された各種のプログラムやデータに基づいて、以下に説明する各部を制御する。記憶部71には、実装制御部70による制御処理に必要なプログラムやデータのほか、実装位置情報71aや素子特性情報12を記憶する。実装位置情報71aは、実装制御部70による実装動作制御の実行履歴データより作成される。素子特性情報12は、LANシステム2を介して管理コンピュータ3から送信される。通信部72は、LANシステム2を介して他装置と接続されており、制御信号やデータの授受を行う。
 機構駆動部73は、実装制御部70に制御されて、部品供給機構25や部品実装機構26を駆動する。これにより、基板4の各個片基板4aにLED素子5が実装される。マップ作成処理部74(マップデータ作成手段)は、記憶部71に記憶され部品実装装置M1によって実装されたLED素子5の基板4における位置を示す実装位置情報71aと、当該LED素子5についての素子特性情報12とを関連付けたマップデータ18を、基板4毎に作成する処理を行う。すなわち、マップデータ作成手段は部品実装装置M1に設けられており、マップデータ18は部品実装装置M1から樹脂塗布装置M4に送信される。なお、マップデータ18を管理コンピュータ3経由で部品実装装置M1から樹脂塗布装置M4に送信するようにしてもよい。この場合には、マップデータ18は、図21に示すように、管理コンピュータ3の記憶部61にも記憶される。
 樹脂塗布装置M4は、塗布制御部36、記憶部81、通信部82、生産実行処理部37、塗布量導出処理部38、発光特性測定処理部39を備えている。塗布制御部36は、樹脂塗布部Cを構成するノズル移動機構34、樹脂吐出機構35および試し打ち・測定ユニット40を制御することにより、樹脂8を発光特性測定用として透光部材41に試し塗布する測定用塗布処理および実生産用としてLED素子5に塗布する生産用塗布処理を実行させる処理を行う。
 記憶部81には、塗布制御部36による制御処理に必要なプログラムやデータのほか、樹脂塗布情報14やマップデータ18、しきい値データ81a、実生産用塗布量81bを記憶する。樹脂塗布情報14はLANシステム2を介して管理コンピュータ3から送信され、マップデータ18は同様にLANシステム2を介して部品実装装置M1から送信される。通信部82はLANシステム2を介して他装置と接続されており、制御信号やデータの授受を行う。
 発光特性測定処理部39は、光源部42から発光された励起光を透光部材41に塗布された樹脂8に照射することによりこの樹脂が発する光の発光特性を測定する処理を行う。塗布量導出処理部38は、発光特性測定処理部39の測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて実生産用としてLED素子5に塗布されるべき樹脂8の適正樹脂塗布量を導出する演算処理を行う。そして生産実行処理部37は、塗布量導出処理部38により導出された適正樹脂塗布量を塗布制御部36に指令することにより、この適正樹脂塗布量の樹脂をLED素子5に塗布する生産用塗布処理を実行させる。
 なお、図21に示す構成において、各装置固有の作業動作を実行するための機能以外の処理機能、例えば部品実装装置M1に設けられているマップ作成処理部74の機能、樹脂塗布装置M4に設けられている塗布量導出処理部38の機能は、必ずしも当該装置に付属させる必要はない。例えば、マップ作成処理部74、塗布量導出処理部38の機能を管理コンピュータ3のシステム制御部60が有する演算処理機能によってカバーするようにし、必要な信号授受をLANシステム2を介して行うように構成してもよい。
 上述のLEDパッケージ製造システム1の構成において、部品実装装置M1、樹脂塗布装置M4はいずれもLANシステム2に接続されている。そして記憶部61に素子特性情報12が記憶された管理コンピュータ3およびLANシステム2は、複数のLED素子5の発光波長を含む発光特性を予め個別に測定して得られた情報を、素子特性情報12として部品実装装置M1に提供する素子特性情報提供手段となっている。同様に、記憶部61に樹脂塗布情報14が記憶された管理コンピュータ3およびLANシステム2は、規定の発光特性を具備したLEDパッケージPKGを得るための樹脂8の適正樹脂塗布量と素子特性情報とを対応させた情報を樹脂塗布情報として樹脂塗布装置M4に提供する樹脂情報提供手段となっている。
 すなわち、素子特性情報12を部品実装装置M1に提供する素子特性情報提供手段および樹脂塗布情報14を樹脂塗布装置M4に提供する樹脂情報提供手段は、外部記憶手段である管理コンピュータ3の記憶部61より読み出された素子特性情報および樹脂塗布情報を、LANシステム2を介して部品実装装置M1および樹脂塗布装置M4にそれぞれ送信する構成となっている。
 次にLEDパッケージ製造システム1によって実行されるLEDパッケージ製造過程について、図22のフローに沿って、各図を参照しながら説明する。まず、素子特性情報12および樹脂塗布情報14を取得する(ST1)。すなわち、複数のLED素子5の発光波長を含む発光特性を予め個別に測定して得られた素子特性情報12および規定の発光特性を具備したLEDパッケージPKGを得るための樹脂8の適正樹脂塗布量と素子特性情報12とを対応させた樹脂塗布情報14を、外部装置からLANシステム2を介して、または記憶媒体を介して取得する。
 この後、部品実装装置M1に実装対象となる基板4を搬入する(ST2)。そして図28(a)に示すように、接着剤転写機構24の転写ピン24aを昇降させることにより(矢印n)、LED実装部4b内の素子実装位置に樹脂接着剤23を供給した後、図28(b)に示すように、部品実装機構26の実装ノズル26aに保持したLED素子5を下降させ(矢印o)、樹脂接着剤23を介して基板4のLED実装部4b内に実装する(ST3)。そしてこの部品実装作業の実行データから、当該基板4について、実装位置情報71aと、それぞれのLED素子5の素子特性情報12とを関連付けたマップデータ18を、マップ作成処理部74によって作成する(ST4)。次いでこのマップデータ18を部品実装装置M1から樹脂塗布装置M4に送信するとともに、管理コンピュータ3から樹脂塗布情報14を樹脂塗布装置M4に送信する(ST5)。これにより、樹脂塗布装置M4による樹脂塗布作業が実行可能な状態となる。
 次いで、部品実装後の基板4はキュア装置M2に送られ、ここで加熱されることにより、図28(c)に示すように、樹脂接着剤23が熱硬化して樹脂接着剤23*となり、LED素子5は個片基板4aに固着される。次いで樹脂キュア後の基板4はワイヤボンディング装置M3に送られ、図28(d)に示すように、個片基板4aの配線層4e、4dを、それぞれLED素子5のN型部電極6a、P型部電極6bとボンディングワイヤ7によって接続する。
 次いで、良品判定用のしきい値データ作成処理が実行される(ST6)。この処理は、生産用塗布における良否判定のしきい値(図21に示すしきい値データ81a参照)を設定するために実行されるものであり、Binコード[1]、[2]、[3]、[4]、[5]に対応する生産用塗布のそれぞれについて反復して実行される。このしきい値データ作成処理の詳細について、図23、図24(a)~(c)、図25を参照して説明する。図23において、まず樹脂塗布情報14に規定する蛍光体を純正濃度で含む樹脂8を準備する(ST11)。そしてこの樹脂8を樹脂吐出ヘッド32にセットした後、樹脂吐出ヘッド32を試し打ち・測定ユニット40の試し打ちステージ40aに移動させて樹脂8を樹脂塗布情報14に示す規定塗布量(適正樹脂塗布量)で透光部材41に塗布する(ST12)。次いで透光部材41に塗布された樹脂8を透光部材載置部53上に移動させ、LED素子5を発光させて樹脂8が未硬化の状態における発光特性を前述構成の発光特性測定部によって測定する(ST13)。そして発光特性測定部によって測定された発光特性の測定結果である発光特性測定値39aに基づき、発光特性が良品と判定されるための測定値の良品判定範囲を設定し(ST14)、設定された良品判定範囲をしきい値データ81aとして、記憶部81に記憶させるとともに管理コンピュータ3に転送して記憶部61に記憶させる(ST15)。
 図24(a)~(c)はこのようにして作成されたしきい値データ、すなわち純正含有量の蛍光体を含有した樹脂8を塗布した後、樹脂未硬化状態において求められた発光特性測定値および発光特性が良品と判定されるための測定値の良品判定範囲(しきい値)を示している。図24(a)、(b)、(c)は、樹脂8における蛍光体濃度がそれぞれ5%。10%、15%である場合の、Binコード[1]、[2]、[3]、[4]、[5]に対応したしきい値を示すものである。
 例えば図24(a)に示すように、樹脂8の蛍光体濃度が5%である場合において、Binコード12bのそれぞれには適正樹脂塗布量15(1)のそれぞれに示す塗布量が対応しており、それぞれの塗布量で塗布した樹脂8にLED素子5の青色光を照射することにより樹脂8が発する光の発光特性を発光特性測定部によって測定した測定結果が、発光特性測定値39a(1)に示されている。そしてそれぞれの発光特性測定値39a(1)に基づいて、しきい値データ81a(1)が設定される。例えばBinコード[1]に対応して適正樹脂塗布量VA0で塗布した樹脂8対象として発光特性を測定した測定結果は、図25に示す色度表上の色度座標ZA0(XA0、YA0)によって表される。そしてこの色度座標ZA0を中心として、色度表上におけるX座標、Y座標についての所定範囲(例えば±10%)が良品判定範囲(しきい値)として設定される。他のBinコード[2]~[5]に対応した適正樹脂塗布量についても同様に、発光特性測定結果に基づいて良品判定範囲(しきい値)が設定される(図25に示す色度表上の色度座標ZB0~ZE0参照)。ここで、しきい値として設定される所定範囲は、製品としてのLEDパッケージPKGに求められる発光特性の精度レベルに応じて適宜設定される。
 そして図24(b)、(c)は、同様に樹脂8の蛍光体濃度がそれぞれ10%、15%である場合の、発光特性測定値および良品判定範囲(しきい値)を示している。図24(b)、(c)において、適正樹脂塗布量15(2)、適正樹脂塗布量15(3)はそれぞれ蛍光体濃度がそれぞれ10%、15%である場合の適正樹脂塗布量を示しており、発光特性測定値39a(2)、発光特性測定値39a(3)は、それぞれ蛍光体濃度がそれぞれ10%、15%である場合の発光特定測定値を、またしきい値データ81a(2)、しきい値データ81a(3)はそれぞれの場合の良品判定範囲(しきい値)を示している。このようにして作成されたしきい値データは、生産用塗布作業において、対象となるLED素子5の属するBinコード12bに応じて使い分けられる。なお、(ST6)に示すしきい値データ作成処理は、LEDパッケージ製造システム1とは別に設けられた単独の検査装置によってオフライン作業として実行し、管理コンピュータ3に予めしきい値データ81aとして記憶させたものをLANシステム2経由で樹脂塗布装置M4に送信して用いるようにしてもよい。
 この後、ワイヤボンディング後の基板4は樹脂塗布装置M4に搬送され(ST7)、図29(a)に示すように、反射部4cで囲まれるLED実装部4bの内部に、吐出ノズル33aから樹脂8を吐出させる。ここでは、マップデータ18、しきい値データ81aおよび樹脂塗布情報14に基づき、図29(b)に示す規定量の樹脂8をLED素子5を覆って塗布する作業が実行される(ST8)。この樹脂塗布作業処理の詳細について、図26、図27(a)~(d)を参照して説明する。まず樹脂塗布作業の開始に際しては、必要に応じて樹脂収納容器の交換が行われる(ST21)。すなわち樹脂吐出ヘッド32に装着されるディスペンサ33を、LED素子5の特性に応じて選択された蛍光体濃度の樹脂8を収納したものに交換する。
 次いで樹脂塗布部Cによって、樹脂8を発光特性測定用として透光部材41に試し塗布する(測定用塗布工程)(ST22)。すなわち、試し打ち・測定ユニット40にて試し打ちステージ40aに引き出された透光部材41上に、図4にて規定される各Binコード12b毎の適正樹脂塗布量(VA0~VE0)の樹脂8を塗布する。このとき適正樹脂塗布量(VA0~VE0)に対応する吐出動作パラメータを樹脂吐出機構35に指令しても、吐出ノズル33aから吐出されて透光部材41に塗布される実際の樹脂塗布量は樹脂8の性状の経時変化などによって必ずしも上述の適正樹脂塗布量とはならず、図27(a)に示すように、実際樹脂塗布量はVA0~VE0とは幾分異なるVA1~VE1となる。
 次いで試し打ち・測定ユニット40において透光部材41を送ることにより、樹脂8が試し塗布された透光部材41を送り、透光部材載置部53に載置する(透光部材載置工程)。そして透光部材載置部53の上方に配置された光源部42から、蛍光体を励起する励起光を発光する(励起光発光工程)。そしてこの励起光を透光部材41に塗布された樹脂8に上方から照射することにより、この樹脂8が発する光を透光部材41の下方から積分球44を介して分光器43によって受光し、発光特性測定処理部39によってこの光の発光特性測定を行う(発光特性測定工程)(ST23)。
 これにより、図27(b)に示すように、色度座標Z(図25参照)で表される発光特性測定値が得られる。この測定結果は、上述の塗布量の誤差および樹脂8中の蛍光体粒子の濃度変化などによって、必ずしも予め規定された発光特性、すなわち図24(a)に示す適正樹脂塗布時における標準的な色度座標ZA0~ZE0とは一致しない。このため、得られた色度座標ZA1~ZE1と、図24(a)に示す適正樹脂塗布時における標準的な色度座標ZA0~ZE0との、X、Y座標における隔たりを示す偏差(ΔX、ΔY)~(ΔX、ΔY)を求め、所望の発光特性を得るための補正の要否を判定する。
 ここでは測定結果はしきい値以内であるか否かの判定が行われ(ST24)、図27(c)に示すように、(ST23)にて求められた偏差としきい値とを比較することにより、偏差(ΔX、ΔY)~(ΔX、ΔY)がZA0~ZE0に対して±10%の範囲内にあるか否かを判断する。ここで、偏差がしきい値以内であれば、既設定の適正樹脂塗布量VA0~VE0に対応する吐出動作パラメータをそのまま維持する。これに対し、偏差がしきい値を超えている場合には、塗布量の補正を行う(ST25)。すなわち発光特性測定工程における測定結果と予め規定された発光特性との偏差を求め、図27(d)に示すように、求められた偏差に基づいて、LED素子5に塗布されるべき実生産用の新たな適正樹脂塗布量(VA2~VE2)を導出する処理を、塗布量導出処理部38によって実行する(塗布量導出処理工程)。
 ここで、補正後の適正樹脂塗布量(VA2~VE2)は、既設定の適正樹脂塗布量VA0~VE0に、それぞれの偏差に応じた補正分を加えた更新値である。偏差と補正分との関係は、予め既知の付随データとして樹脂塗布情報14に記録されている。そして補正後の適正樹脂塗布量(VA2~VE2)に基づいて(ST22)、(ST23)、(ST24)、(ST25)の処理が反復実行され、(ST24)にて測定結果と予め規定された発光特性との偏差がしきい値以内であることが確認されることにより、実生産用の適正樹脂塗布量が確定する。すなわち上述の樹脂塗布方法においては、測定用塗布工程、透光部材載置工程、励起光発光工程、発光特性測定工程および塗布量導出工程を反復実行することにより、適正樹脂塗布量を確定的に導出するようにしている。そして確定した適正樹脂塗布量は、記憶部81に実生産用塗布量81bとして記憶される。
 そしてこの後、次のステップに移行して捨て打ちが実行される(ST26)。ここでは、所定量の樹脂8を吐出ノズル33aから吐出させることにより、樹脂吐出経路内の樹脂流動状態を改善して、ディスペンサ33、樹脂吐出機構35の動作を安定させる。なお図26にて破線枠によって示す(ST27)、(ST28)、(ST29)、(ST30)の処理は、(ST22)、(ST23)、(ST24)、(ST25)に示す処理内容と同様であり、所望の発光特性が完全に確保されていることを入念的に確認する必要がある場合に実行されるものであり、必ずしも必須実行事項ではない。
 このようにして、所望の発光特性を与える適正樹脂塗布量が確定したならば、生産用塗布が実行される(ST31)。すなわち、塗布量導出処理部38によって導出され実生産用塗布量81bとして記憶されたた適正樹脂塗布量を、樹脂吐出機構35を制御する塗布制御部36に生産実行処理部37が指令することにより、この適正樹脂塗布量の樹脂8を基板4に実装されたLED素子5に塗布する生産用塗布処理を実行させる(生産実行工程)。
 そしてこの生産用塗布処理を反復実行する過程においては、ディスペンサ33による塗布回数をカウントしており、塗布回数が予め設定された所定回数を経過したか否かが監視される(ST32)。すなわちこの所定回数に到達するまでは、樹脂8の性状や蛍光体濃度の変化は少ないと判断して、同一の実生産用塗布量81bを維持したまま生産用塗布実行(ST31)を反復する。そして(ST32)にて所定回数の経過が確認されたならば、樹脂8の性状や蛍光体濃度が変化している可能性有りと判断して(ST22)に戻り、以下同様の発光特性の測定とその測定結果に基づく塗布量補正処理が反復して実行される。
 このようにして1枚の基板4を対象とする樹脂塗布が終了すると、基板4はキュア装置M5に送られ、キュア装置M5によって加熱することにより樹脂8を硬化させる(ST9)。これにより、図29(c)に示すように、LED素子5を覆って塗布された樹脂8は熱硬化して樹脂8*となり、LED実装部4b内で固着状態となる。次いで、樹脂キュア後の基板4は個片切断装置M6に送られ、ここで基板4を個片基板4a毎に切断することにより、図29(d)に示すように、個片のLEDパッケージPKGに分割する(ST10)。これにより、LEDパッケージPKGが完成する。
 上記説明したように、上記実施の形態に示すLEDパッケージ製造システム1は、基板4に複数のLED素子5を実装する部品実装装置M1と、複数のLED素子5の発光波長を予め個別に測定して得られた情報を素子特性情報12として提供する素子特性情報提供手段と、規定の発光特性を具備したLEDパッケージPKGを得るための樹脂8の適正樹脂塗布量と素子特性情報12とを対応させた情報を樹脂塗布情報14として提供する樹脂情報提供手段と、部品実装装置M1によって実装されたLED素子5の基板4における位置を示す実装位置情報71aと当該LED素子5についての素子特性情報12とを関連付けたマップデータ18を、基板4毎に作成するマップデータ作成手段と、マップデータ18と樹脂塗布情報14に基づき、規定の発光特性を具備するための適正樹脂塗布量の樹脂8を、基板4に実装された各LED素子に塗布する樹脂塗布装置M4とを備えた構成となっている。
 そして樹脂塗布装置M4は、樹脂8を塗布量を可変に吐出して任意の塗布対象位置に塗布する樹脂塗布部Cと、樹脂塗布部Cを制御することにより、樹脂8を発光特性測定用として透光部材41に試し塗布する測定用塗布処理および実生産用としてLED素子5に塗布する生産用塗布処理を実行させる塗布制御部36と、蛍光体を励起する励起光を発光する光源部を備え測定用塗布処理において樹脂8が試し塗布された透光部材41が載置される透光部材載置部53と、光源部から発光された励起光を透光部材41に塗布された樹脂8に照射することによりこの樹脂8が発する光の発光特性を測定する発光特性測定部と、発光特性測定部の測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて適正樹脂塗布量を補正することにより、LED素子5に塗布されるべき実生産用の適正樹脂塗布量を導出する塗布量導出処理部38と、導出された適正樹脂塗布量を塗布制御部36に指令することにより、この適正樹脂塗布量の樹脂をLED素子5に塗布する生産用塗布処理を実行させる生産実行処理部37とを備えた構成となっている。
 上述構成により、LED素子5を蛍光体を含む樹脂によって覆って成るLEDパッケージPKGの製造に用いられる樹脂塗布において、樹脂8を発光特性測定用として試し塗布した透光部材41を透光部材載置部53に載置し、上方に配置された光源部42から蛍光体を励起する励起光を発光し、励起光を透光部材41に塗布された樹脂8に上方から照射することにより、この樹脂8が発する光を透光部材41の下方から受光して光の発光特性を測定した測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて実生産用としてLED素子5に塗布されるべき樹脂の適正樹脂塗布量を導出することができる。これにより、個片のLED素子5の発光波長がばらつく場合にあっても、LEDパッケージPKGの発光特性を均一にして、生産歩留まりを向上させることができる。
 また、本実施の形態における樹脂塗布装置M4において、透光部材41は供給リール47から繰り出されつつ回収リール48によって巻き取られるようになっているので、使用済みの透光部材41の廃棄処理が容易であるだけでなく、供給リール47と併せて回収リール48を回転させることで、透光部材41の前進動作と後進動作をスムーズに行うことができる。また、供給リール47と回収リール48は同一のシャフト部材(支持シャフト56)上に設けられているので、樹脂塗布装置M4全体をコンパクトな構成とすることができる。なお、上述の実施の形態では、透光部材41はエンボス部41aを有したエンボステープから成っていたが、透光部材41は必ずしもエンボステープでなくてもよい(但し、この場合には回収リール48への取り付けは透光部材固定リング48dによらない別の方法による必要がある)。
 次に図30(a)、(b)、図31(a)~(c)、図32を参照して、他の実施の形態のLEDパッケージ製造システムにおける樹脂塗布装置M4の構成および機能について説明する。樹脂塗布装置M4は、部品実装装置M1によって基板4に実装された複数のLED素子5を覆って樹脂8を塗布する機能を有するものである。図30(a)の平面図に示すように、樹脂塗布装置M4は上流側から供給された作業対象の基板4を基板搬送方向(矢印f)に搬送する基板搬送機構31に、図30(b)にC-C断面にて示す樹脂塗布部Cを配設した構成となっている。樹脂塗布部Cには、下端部に装着された吐出ノズル33aから樹脂8を吐出する構成の樹脂吐出ヘッド32が設けられている。
 図30(b)に示すように、樹脂吐出ヘッド32はノズル移動機構34によって駆動され、ノズル移動機構34を塗布制御部36によって制御することにより、水平方向(図30(a)に示す矢印g)の移動動作および昇降動作を行う。樹脂吐出ヘッド32には樹脂8がディスペンサ33に装着されるシリンジに収納された状態で供給され、樹脂吐出機構35によって空圧をディスペンサ33内に印加することにより、ディスペンサ33内の樹脂8は吐出ノズル33aを介して吐出されて、基板4に形成されたLED実装部4bに塗布される。このとき、樹脂吐出機構35を塗布制御部36によって制御することにより、樹脂8の吐出量を任意に制御することができる。すなわち樹脂塗布部Cは、樹脂8を塗布量を可変に吐出して、任意の塗布対象位置に塗布する機能を有している。
 基板搬送機構31の側方には、樹脂吐出ヘッド32の移動範囲内に位置して、試し打ち・測定ユニット40が配置されている。試し打ち・測定ユニット40は、樹脂8を基板4のLED実装部4bに塗布する実生産用塗布作業に先立って、樹脂8の塗布量が適正であるか否かを、試し塗布した樹脂8の発光特性を測定することにより判定する機能を有するものである。すなわち、樹脂塗布部Cによって樹脂8を試し塗布した透光部材143に測定用の光源部から光を照射したときの発光特性を発光特性測定部139によって測定し、測定結果を予め設定されたしきい値と比較することにより、図4に示す樹脂塗布情報14にて規定される既設定の樹脂塗布量の適否を判定する。
 蛍光体粒子を含有する樹脂8は、その組成・性状は必ずしも安定的ではなく、予め樹脂塗布情報14にて適正樹脂塗布量を設定していても、時間の経過によって蛍光体の濃度や樹脂粘度が変動することが避けられない。このため予め設定された適正樹脂塗布量に対応する吐出パラメータで樹脂8を吐出しても、樹脂塗布量そのものが既設定の適正値からばらつく場合や、さらには樹脂塗布量自体は適正であっても濃度変化によって本来供給されるべき蛍光体粒子の供給量がばらつく結果となる。
 このような不都合を排除するため、本実施の形態では、所定のインターバルにて適正供給量の蛍光体粒子が供給されているか否かを検査するための試し塗布を樹脂塗布装置M4にて実行し、さらに試し塗布された樹脂8を対象として発光特性の測定を実行することにより、本来あるべき発光特性に則して蛍光体粒子の供給量を安定させるようにしている。そして本実施の形態に示す樹脂塗布装置M4に備えられた樹脂塗布部Cは、樹脂8を上述の発光特性測定用として透光部材143に試し塗布する測定用塗布処理と、実生産用として基板4に実装された状態のLED素子5に塗布する生産用塗布処理とを併せて実行する機能を有している。これらの測定用塗布処理および生産用塗布処理は、いずれも塗布制御部36が樹脂塗布部Cを制御することにより実行される。
 図31に示すように、試し打ち・測定ユニット40は細長形状の水平な基部140aに対してスライド自在(矢印p)な塗布用スライド窓140dを備えたカバー部140bを配設した外部構造となっており、特にカバー部140bには開口部140cが設けられており、開口部140cは塗布用スライド窓140dによって開閉自在となっている。試し打ち・測定ユニット40の内部には透光部材143を下面側から支持する試し打ちステージ145、透光部材143が載置される透光部材載置部141および透光部材載置部141の上方に配設された分光器142が設けられている。透光部材載置部141は、蛍光体を励起する励起光を発光する光源部を備えており、測定用塗布処理において樹脂8が試し塗布された透光部材143に対して、この光源部より下面側から励起光が照射される。
 本実施の形態においては、光源部として蛍光体を含まない樹脂8によって封止されたLED素子5を用いている。これにより、試し塗布された樹脂8の発光特性測定を、完成品のLEDパッケージPKGにおいて発光される励起光と同一特性の光によって行うことができ、より信頼性の高い検査結果を得ることができる。なお完成品に用いられるものと同一のLED素子5を用いることは必ずしも必須要件ではなく、LED素子5と同様に一定波長の青色光を発光する光源装置(例えば青色レーザ光源など)であれば、検査用の光源部として用いることができる。
 透光部材143は供給リール144に卷回収納されて供給され、試し打ちステージ145の上面に沿って送られた後(矢印q)、透光部材載置部141と分光器142との間を経由して巻き取りモータ147によって駆動される回収リール146に巻き取られる。ここで、透光部材143として透明樹脂製の平面シート状部材を所定幅のテープ材としたものや、同様のテープ材にLEDパッケージPKGの凹部形状に対応したエンボス部143aが下面に凸設されたエンボスタイプのものなどが用いられる。
 塗布用スライド窓140dをスライドさせて開放した状態では、試し打ちステージ145の上面は上方に露呈され、上面に載置された透光部材143に対して樹脂吐出ヘッド32によって樹脂8を試し塗布することが可能となる。この試し塗布は、下面側を試し打ちステージ145によって支持された透光部材143に対して、図31(b)に示すように、吐出ノズル33aによって規定塗布量の樹脂8を透光部材143に吐出することによって行われる。
 図31(b)の(b-1)は、前述のテープ材よりなる透光部材143に樹脂塗布情報14にて規定される既設定の適正吐出量の樹脂8を塗布した状態を示している。また図31(b)の(b-2)は、前述のエンボスタイプの透光部材143のエンボス部143a内に、同様に既設定の適正吐出量の樹脂8を塗布した状態を示している。なお、後述するように、試し打ちステージ145にて塗布された樹脂8は、対象となるLED素子5に対して蛍光体供給量が適正であるか否かを実証的に判定するための試し塗布であることから、樹脂吐出ヘッド32による同一試し塗布動作で複数点に樹脂8を連続的に透光部材143上に塗布する場合には、発光特性測定値と塗布量との相関関係を示す既知のデータに基づいて塗布量を段階的に異ならせて塗布しておく。
 図31(c)は、試し打ちステージ145にて樹脂8が試し塗布された透光部材143を移動させて、樹脂8を透光部材載置部141の上方に位置させ、さらにカバー部140bを下降させて基部140aとの間に発光特性測定用の暗室を形成した状態を示している。透光部材載置部141には、LEDパッケージPKGにおいて樹脂8を蛍光体粒子を含有しない透明の樹脂80で置き換えた構成のLEDパッケージPKG*が用いられている。LEDパッケージPKG*においてLED素子5と接続された配線層4e、4dは電源装置148と接続されており、電源装置148をONすることにより、LED素子5には発光用の電力が供給され、これによりLED素子5は青色光を発光する。
 そしてこの青色光が透明の樹脂80を透過した後に透光部材143に試し塗布された樹脂8に照射される過程において、樹脂8中の蛍光体が励起して発光した黄色光と青色光が加色混合した白色光が樹脂8から上方に照射される。試し打ち・測定ユニット40の上方には分光器142が配置されており、樹脂8から照射された白色光は分光器142によって受光され、受光された白色光は発光特性測定部139によって分析されて発光特性が測定される。ここでは、白色光の色調ランクや光束などの発光特性が検査され、検査結果として、規定の発光特性との偏差が検出される。すなわち発光特性測定部139は、光源部であるLED素子5から発光された励起光を透光部材143に塗布された樹脂8に照射することによりこの樹脂8が発する光の発光特性を測定する。
 発光特性測定部139の測定結果は塗布量導出処理部38に送られ、塗布量導出処理部38は、発光特性測定部139の測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて実生産用としてLED素子5に塗布されるべき樹脂8の適正樹脂塗布量を導出する処理を行う。塗布量導出処理部38によって導出された新たな適正吐出量は生産実行処理部37に送られ、生産実行処理部37は新たに導出された適正樹脂塗布量を塗布制御部36に指令する。これにより塗布制御部36は、ノズル移動機構34、樹脂吐出機構35を制御して、適正樹脂塗布量の樹脂8を基板4に実装されたLED素子5に塗布する生産用塗布処理を樹脂吐出ヘッド32に実行させる。
 この生産用塗布処理においては、まず樹脂塗布情報14に規定される適正樹脂塗布量の樹脂8を実際に塗布し、樹脂8が未硬化の状態で発光特性の測定を行う。そして得られた測定結果に基づき、生産用塗布において塗布された樹脂8を対象として発光特性を測定した場合における発光特性測定値の良品範囲を設定し、この良品範囲を生産用塗布における良否判定のしきい値(図32に示すしきい値データ81a参照)として用いるようにしている。
 すなわち本実施の形態に示すLEDパッケージ製造システムにおける樹脂塗布方法では、発光特性測定用の光源部としてLED素子5を用いるとともに、生産用塗布における良否判定のしきい値設定の基となる予め規定された発光特性として、LED素子5に塗布された樹脂8が硬化した状態の完成製品について求められる正規の発光特性を、樹脂8が未硬化の状態であることによる発光特性の相違分だけ偏らせた発光特性を用いるようにしている。これにより、LED素子5への樹脂塗布過程における樹脂塗布量の制御を完成製品についての正規の発光特性に基づいて行うことが可能となっている。
 図32を参照して、LEDパッケージ製造システム1の制御系の構成、特に図21の実施形態とは異なる樹脂塗布装置M4の部分について説明し、共通の部分については説明を省略する。ここでの樹脂塗布装置M4は、塗布制御部36、記憶部81、通信部82、生産実行処理部37、塗布量導出処理部38、発光特性測定部139を備えている。塗布制御部36は、樹脂塗布部Cを構成するノズル移動機構34、樹脂吐出機構35および試し打ち・測定ユニット40を制御することにより、樹脂8を発光特性測定用として透光部材143に試し塗布する測定用塗布処理および実生産用としてLED素子5に塗布する生産用塗布処理を実行させる処理を行う。
 発光特性測定部139は、光源部であるLED素子5から発光された励起光を透光部材143に塗布された樹脂8に照射することによりこの樹脂が発する光の発光特性を測定する処理を行う。塗布量導出処理部38は、発光特性測定部139の測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて実生産用としてLED素子5に塗布されるべき樹脂8の適正樹脂塗布量を導出する演算処理を行う。そして生産実行処理部37は、塗布量導出処理部38により導出された適正樹脂塗布量を塗布制御部36に指令することにより、この適正樹脂塗布量の樹脂をLED素子5に塗布する生産用塗布処理を実行させる。
 図32に示すLEDパッケージ製造システムによって実行されるLED製造過程は、図21のシステムと基本的に同じであり、図22~図29に示されたプロセスと同様のものが実行される。図22のフローに従って、図28、図29に示すような処理が行われる。図22の既述したST1~ST5の後のST6では、良品判定用のしきい値データ作成処理が実行されるが、この処理は、生産用塗布における良否判定のしきい値(図32に示すしきい値データ81a参照)を設定するために実行されるものであり、Binコード[1]、[2]、[3]、[4]、[5]に対応する生産用塗布のそれぞれについて反復して実行される。このしきい値データ作成処理の詳細については、基本的に図23、図24(a)~(c)、図25で説明したものと同じであるが、図23のフローについて、本実施形態(図30~図32)に適用した場合について以下説明する。図23において、まず樹脂塗布情報14に規定する蛍光体を純正濃度で含む樹脂8を準備する(ST11)。そしてこの樹脂8を樹脂吐出ヘッド32にセットした後、樹脂吐出ヘッド32を試し打ち・測定ユニット40の試し打ちステージ145に移動させて樹脂8を樹脂塗布情報14に示す規定塗布量(適正樹脂塗布量)で透光部材143に塗布する(ST12)。次いで透光部材143に塗布された樹脂8を透光部材載置部141上に移動させ、LED素子5を発光させて樹脂8が未硬化の状態における発光特性を発光特性測定部139によって測定する(ST13)。そして発光特性測定部139によって測定された発光特性の測定結果である発光特性測定値39aに基づき、発光特性が良品と判定されるための測定値の良品判定範囲を設定し(ST14)、設定された良品判定範囲をしきい値データ81aとして、記憶部81に記憶させるとともに管理コンピュータ3に転送して記憶部61に記憶させる(ST15)。このプロセスにより、既に説明した図24(a)~(c)のデータが作成され、図25の色度図にしたがって良品判定用のしきい値データが説明される。
 図22の既述したST7の後、ST8の樹脂塗布作業処理が行われるが、その詳細は図26、図27(a)~(d)で説明した通りである。図26の既述したST21の後のST22(測定用塗布工程)、ST23(発光特性測定工程)について、本実施形態(図30~図32)に適用した場合について以下説明する。樹脂塗布部Cによって、樹脂8を発光特性測定用として透光部材143に試し塗布する(測定用塗布工程)(ST22)。すなわち、試し打ち・測定ユニット40にて試し打ちステージ145に引き出された透光部材143上に、図4にて規定される各Binコード12b毎の適正樹脂塗布量(VA0~VE0)の樹脂8を塗布する。このとき適正樹脂塗布量(VA0~VE0)に対応する吐出動作パラメータを樹脂吐出機構35に指令しても、吐出ノズル33aから吐出されて透光部材143に塗布される実際の樹脂塗布量は樹脂8の性状の経時変化などによって必ずしも上述の適正樹脂塗布量とはならず、図27(a)に示すように、実際樹脂塗布量はVA0~VE0とは幾分異なるVA1~VE1となる。
 次いで試し打ち・測定ユニット40において透光部材143を送ることにより、樹脂8が試し塗布された透光部材143を送り、蛍光体を励起する励起光を発光する光源部としてのLED素子5を備えた透光部材載置部141に載置する(透光部材載置工程)。そしてLED素子5から発光された励起光を透光部材143に塗布された樹脂8に照射することにより、この樹脂8が発する光を分光器142によって受光し、発光特性測定部139によってこの光の発光特性測定を行う(発光特性測定工程)(ST23)。このプロセスにより、既に説明した図27(b)の測定値が得られ、図27(c)、(d)の処理が実行される。既に説明したように、(ST22)、(ST23)、(ST24)、(ST25)の処理が反復実行され、実生産用の適正樹脂塗布量が確定する。
 ここで、樹脂塗布装置M4が備える画像表示制御部83(図32)は、塗布量導出処理部38が所望の発光特性を得るための補正の要否を判定する過程において、発光特性測定部139が測定した発光特性の変化状況を、樹脂塗布装置M4に設けられた表示手段としてのディスプレイ装置DPに画像表示させる(画像表示工程)。これにより、LEDパッケージ製造システム1のオペレータや工程管理者は、塗布量導出処理部38における適正樹脂塗布量の算出が正しく行われているかどうか、また、現在の生産品質がどの範囲で管理され維持されているかどうかの確認を視覚的に行うことができる。
 塗布量導出処理部38が、発光特性測定部139が測定した発光特性の変化状況を画像表示する形式としては、発光特性測定部139が測定した発光特性を色度座標で表したものをXY座標上にプロットするものや(図33。図中に示す正方形形状のマークがプロット点)、発光特性測定部139が測定した発光特性を色度座標で表したものをX成分、Y成分に分けて表したものを時系列に沿ってプロットするもの(図34。図中に示す正方形形状のマークがプロット点)等が採用される。このように色度座標をプロットするものでは、併せて色度座標の規格値を示すようにする。これによりオペレータや工程管理者は、上記の確認作業が大変容易となる。なお、ディスプレイ装置DPの画面上に表される規格値は、色度座標をXY座標にプロットするものでは矩形の規格領域として表され(図33)、色度座標をX成分とY成分に分けてプロットするものでは上限値及び下限値として表される(図34)。また、画像表示制御部83は、上記のように各色度座標を表示する代わりに、発光特性を青、赤、緑の三色刺激値で表したときの各色の強度スペクトルを表示するようにしてもよい。この後、既述した図26のST26以降の処理が行われる。
 図30~図32の実施形態において、樹脂塗布装置M4は、樹脂8を塗布量を可変に吐出して任意の塗布対象位置に塗布する樹脂塗布部Cと、樹脂塗布部Cを制御することにより、樹脂8を発光特性測定用として透光部材143に試し塗布する測定用塗布処理および実生産用として前記LED素子に塗布する生産用塗布処理を実行させる塗布制御部36と、蛍光体を励起する励起光を発光する光源部を備え測定用塗布処理において樹脂8が試し塗布された透光部材143が載置される透光部材載置部141と、光源部から発光された励起光を透光部材143に塗布された樹脂8に照射することによりこの樹脂8が発する光の発光特性を測定する発光特性測定部139と、発光特性測定部139の測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて適正樹脂塗布量を補正することにより、LED素子5に塗布されるべき実生産用の適正樹脂塗布量を導出する塗布量導出処理部38と、導出された適正樹脂塗布量を塗布制御部36に指令することにより、この適正樹脂塗布量の樹脂をLED素子5に塗布する生産用塗布処理を実行させる生産実行処理部37とを備えた構成となっている。
 上述構成により、LED素子5を蛍光体を含む樹脂によって覆って成るLEDパッケージPKGの製造に用いられる樹脂塗布において、樹脂8を発光特性測定用として試し塗布した透光部材143を光源部を備えた透光部材載置部141に載置し、光源部から発光された励起光を透光部材143に塗布された樹脂に照射することによりこの樹脂が発する光の発光特性を測定した測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて実生産用としてLED素子に塗布されるべき樹脂の適正樹脂塗布量を導出することができる。これにより、個片のLED素子5の発光波長がばらつく場合にあっても、LEDパッケージPKGの発光特性を均一にして、生産歩留まりを向上させることができる。また、測定した発光特性の変化状況を画像表示させるようになっているので、LEDパッケージ製造システム1のオペレータや工程管理者は、適正樹脂塗布量の算出が正しく行われているかどうか、また、現在の生産品質がどの範囲で管理され維持されているかどうかの確認を視覚的に行うことができる。
 また、上述構成のLEDパッケージ製造システム1においては、管理コンピュータ3および部品実装装置M1~個片切断装置M6の各装置をLANシステム2によって接続した構成を示しているが、LANシステム2は必ずしも必須の構成要件ではない。すなわち予め準備されて外部から伝達される素子特性情報12、樹脂塗布情報14を各LEDパッケージPKG毎に記憶しておく記憶手段があり、これらの記憶手段から、部品実装装置M1に対して素子特性情報12を、また樹脂塗布装置M4に対して樹脂塗布情報14およびマップデータ18を、必要に応じて随時提供可能なデータ提供手段が存在すれば、本実施の形態に示すLEDパッケージ製造システム1の機能を実現することができる。
 本出願は、2012年2月16日出願の日本国特許出願(特願2012-031285)および2012年9月11日出願の国際特許出願(PCT/JP2012/005757)に基づくものであり、それらの内容はここに参照として取り込まれる。
 本発明のLEDパッケージ製造システムは、個片のLED素子の発光波長がばらつく場合にあっても、LEDパッケージの発光特性を均一にして、生産歩留まりを向上させることができるという効果を有し、LED素子を蛍光体を含む樹脂で覆った構成のLEDパッケージを製造する分野において利用可能である。
 また、上述の実施の形態では、供給リール47及び回収リール48等から成る透光部材供給回収部が樹脂塗布装置M4のベース部45に取り付けられて光源部42や分光器43、積分球44等の発光検査部と一体となった構成となっていたが、供給リール47及び回収リール48等から成る透光部材供給回収部は、上記発光検査部から独立して設けられた構成となっていてもよい。
 1 LEDパッケージ製造システム
 2 LANシステム
 4 基板
 4a 個片基板
 4b LED実装部
 4c 反射部
 5 LED素子
 8 樹脂
 12 素子特性情報
 13A、13B、13C、13D、13E LEDシート
 14 樹脂塗布情報
 18 マップデータ
 23 樹脂接着剤
 24 接着剤転写機構
 25 部品供給機構
 26 部品実装機構
 32 樹脂吐出ヘッド
 33 ディスペンサ
 33a 吐出ノズル
 40、140 試し打ち・測定ユニット
 40a、145 試し打ちステージ
 41、143 透光部材
 42 光源部
 43、142 分光器
 44 積分球
 47、144 供給リール
 48、146 回収リール
 48e トルクリミッタ
 51 スプロケット駆動モータ(駆動源)
 53、141 透光部材載置部
 54 照射部
 56 支持シャフト(シャフト部材)
 83 画像表示制御部
 139 発光特性測定部
 140a 基部
 140b カバー部
 140c 開口部
 140d 塗布用スライド窓
 143a エンボス部
 147 巻き取りモータ
 148 電源装置
 C 樹脂塗布部
 DP ディスプレイ装置
 PKG LEDパッケージ

Claims (7)

  1.  基板に実装されたLED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージを製造するLEDパッケージ製造システムに用いられ、前記基板に実装されたLED素子を覆って前記樹脂を塗布する樹脂塗布装置であって、
     前記樹脂を塗布量を可変に吐出して任意の塗布対象位置に塗布する樹脂塗布部と、
     前記樹脂塗布部を制御することにより、前記樹脂を発光特性測定用として透光部材に試し塗布する測定用塗布処理および実生産用として前記LED素子に塗布する生産用塗布処理を実行させる塗布制御部と、
     前記蛍光体を励起する励起光を発光する光源部と、
     前記測定用塗布処理において前記樹脂が試し塗布された前記透光部材が載置される透光部材載置部と、
     前記光源部から発光された前記励起光を前記透光部材に塗布された前記樹脂に照射することによりこの樹脂が発する光の発光特性を測定する発光特性測定部と、
     前記発光特性測定部の測定結果と予め規定された発光特性とに基づいて実生産用として前記LED素子に塗布されるべき前記樹脂の適正樹脂塗布量を導出する塗布量導出処理部と、
     前記適正樹脂塗布量を前記塗布制御部に指令することにより、この適正樹脂塗布量の樹脂を前記LED素子に塗布する生産用塗布処理を実行させる生産実行処理部と、
     前記発光特性測定部が測定した前記発光特性の変化状況を表示手段に画像表示させる画像表示制御部とを備えたことを特徴とする樹脂塗布装置。
  2.  前記光源部として、LED素子を用いることを特徴とする請求項1記載の樹脂塗布装置。
  3.  前記画像表示制御部は、前記発光特性測定部が測定した前記発光特性を色度座標で表したものを規格値とともに前記表示手段に画像表示させることを特徴とする請求項1または2に記載の樹脂塗布装置。
  4.  基板に実装されたLED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージを製造するLEDパッケージ製造システムに用いられ、前記基板に実装された前記LED素子を覆って前記樹脂を塗布する樹脂塗布方法であって、
     前記樹脂を塗布量を可変に吐出する樹脂吐出部によって、前記樹脂を発光特性測定用として透光部材に試し塗布する測定用塗布工程と、
     前記樹脂が試し塗布された前記透光部材を透光部材載置部に載置する透光部材載置工程と、
     前記蛍光体を励起する励起光を発光する光源部から発光された前記励起光を前記透光部材に塗布された前記樹脂に照射することによりこの樹脂が発する光の発光特性を測定する発光特性測定工程と、
     前記発光特性測定工程における測定結果と予め規定された発光特性とに基づいて実生産用として前記LED素子に塗布されるべき前記樹脂の適正樹脂塗布量を導出する塗布量導出処理工程と、
     前記導出された適正樹脂塗布量を前記樹脂吐出部を制御する塗布制御部に指令することにより、この適正樹脂塗布量の樹脂を前記LED素子に塗布する生産用塗布処理を実行させる生産実行工程と、
     前記発光特性測定工程において測定した前記発光特性の変化状況を画像表示させる画像表示工程とを含むことを特徴とする樹脂塗布方法。
  5.  前記光源部として蛍光体を含まない樹脂で封止されたLED素子を用い、前記予め規定された発光特性は、前記LED素子に塗布された前記樹脂が硬化した状態の完成製品について求められる正規の発光特性を、前記樹脂が未硬化の状態であることによる発光特性の相違分だけ偏らせた発光特性であることを特徴とする請求項4に記載の樹脂塗布方法。
  6.  前記測定用塗布工程、前記透光部材載置工程、前記発光特性測定工程および塗布量導出工程を反復実行することにより、前記適正樹脂塗布量を確定的に導出することを特徴とする請求項4または5に記載の樹脂塗布方法。
  7.  前記画像表示工程では、前記発光特性測定工程において測定した前記発光特性を色度座標で表したものを規格値とともに画像表示させることを特徴とする請求項4乃至6の何れかに記載の樹脂塗布方法。
PCT/JP2013/000676 2012-02-16 2013-02-07 樹脂塗布装置および樹脂塗布方法 WO2013121752A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012031285A JP2013168533A (ja) 2012-02-16 2012-02-16 樹脂塗布装置および樹脂塗布方法
JP2012-031285 2012-02-16
PCT/JP2012/005757 WO2013121473A1 (ja) 2012-02-16 2012-09-11 樹脂塗布装置および樹脂塗布方法
JPPCT/JP2012/005757 2012-09-11

Publications (1)

Publication Number Publication Date
WO2013121752A1 true WO2013121752A1 (ja) 2013-08-22

Family

ID=48983643

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/005757 WO2013121473A1 (ja) 2012-02-16 2012-09-11 樹脂塗布装置および樹脂塗布方法
PCT/JP2013/000676 WO2013121752A1 (ja) 2012-02-16 2013-02-07 樹脂塗布装置および樹脂塗布方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005757 WO2013121473A1 (ja) 2012-02-16 2012-09-11 樹脂塗布装置および樹脂塗布方法

Country Status (4)

Country Link
US (1) US9040314B2 (ja)
JP (1) JP2013168533A (ja)
CN (1) CN103650182A (ja)
WO (2) WO2013121473A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5310700B2 (ja) * 2010-10-27 2013-10-09 パナソニック株式会社 Ledパッケージ製造システムおよびledパッケージ製造システムにおける樹脂塗布方法
DE102013021097A1 (de) * 2013-12-18 2015-06-18 Euroimmun Medizinische Labordiagnostika Ag Kalibriernormal für eine Vorrichtung zur bildlichen Darstellung biologischen Materials
WO2017013733A1 (ja) * 2015-07-21 2017-01-26 富士機械製造株式会社 部品実装装置およびそれに用いるノズル交換方法
JP6394649B2 (ja) * 2016-06-30 2018-09-26 日亜化学工業株式会社 発光装置の製造方法
US11014203B2 (en) * 2016-07-11 2021-05-25 Laird Technologies, Inc. System for applying interface materials
USD999405S1 (en) 2017-10-06 2023-09-19 Laird Technologies, Inc. Material having edging
USD881822S1 (en) 2017-10-06 2020-04-21 Laird Technologies, Inc. Material having an edge shape

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104800U (ja) * 1990-02-15 1991-10-30
JPH05221430A (ja) * 1992-02-05 1993-08-31 Kanebo Ltd 充填量監視装置
JPH06154684A (ja) * 1992-11-27 1994-06-03 Matsushita Electric Ind Co Ltd ボンド塗布装置
JPH1197829A (ja) * 1997-09-24 1999-04-09 Matsushita Electric Ind Co Ltd 電子部品接着用ボンドの塗布量調整方法
WO2012056604A1 (ja) * 2010-10-27 2012-05-03 パナソニック株式会社 樹脂塗布装置および樹脂塗布方法
WO2012164931A1 (ja) * 2011-05-30 2012-12-06 パナソニック株式会社 樹脂塗布装置および樹脂塗布方法
JP2013038372A (ja) * 2011-08-11 2013-02-21 Panasonic Corp 樹脂塗布装置および樹脂塗布方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100245476B1 (ko) * 1997-12-19 2000-02-15 윤종용 자동 커버필름 접착부/분리부를 포함하는 도포장치 및 그를이용한 도포방법
JP3749693B2 (ja) 2002-03-12 2006-03-01 タツモ株式会社 蛍光体ペースト吐出状態検査装置及び検査方法
US20050001869A1 (en) * 2003-05-23 2005-01-06 Nordson Corporation Viscous material noncontact jetting system
US7825421B2 (en) 2003-09-19 2010-11-02 Panasonic Corporation Semiconductor light emitting device
US20060029724A1 (en) 2004-08-06 2006-02-09 Nordson Corporation System for jetting phosphor for optical displays
TW200644746A (en) 2005-05-12 2006-12-16 Matsushita Electric Ind Co Ltd Apparatus for forming phosphor layer and method for forming phosphor layer using the apparatus
JP2007066969A (ja) 2005-08-29 2007-03-15 Toshiba Lighting & Technology Corp 白色発光ダイオード装置とその製造方法
JP4864525B2 (ja) 2006-04-26 2012-02-01 富士通株式会社 物質導入装置及び物質導入方法
JP2008145300A (ja) 2006-12-11 2008-06-26 Sharp Corp 蛍光体層厚み判定方法および発光装置の製造方法
JP2011096936A (ja) 2009-10-30 2011-05-12 Alpha- Design Kk 半導体発光ディバイス製造装置
JP5310700B2 (ja) 2010-10-27 2013-10-09 パナソニック株式会社 Ledパッケージ製造システムおよびledパッケージ製造システムにおける樹脂塗布方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104800U (ja) * 1990-02-15 1991-10-30
JPH05221430A (ja) * 1992-02-05 1993-08-31 Kanebo Ltd 充填量監視装置
JPH06154684A (ja) * 1992-11-27 1994-06-03 Matsushita Electric Ind Co Ltd ボンド塗布装置
JPH1197829A (ja) * 1997-09-24 1999-04-09 Matsushita Electric Ind Co Ltd 電子部品接着用ボンドの塗布量調整方法
WO2012056604A1 (ja) * 2010-10-27 2012-05-03 パナソニック株式会社 樹脂塗布装置および樹脂塗布方法
WO2012164931A1 (ja) * 2011-05-30 2012-12-06 パナソニック株式会社 樹脂塗布装置および樹脂塗布方法
JP2013038372A (ja) * 2011-08-11 2013-02-21 Panasonic Corp 樹脂塗布装置および樹脂塗布方法

Also Published As

Publication number Publication date
US9040314B2 (en) 2015-05-26
CN103650182A (zh) 2014-03-19
US20140199790A1 (en) 2014-07-17
JP2013168533A (ja) 2013-08-29
WO2013121473A1 (ja) 2013-08-22

Similar Documents

Publication Publication Date Title
JP5310700B2 (ja) Ledパッケージ製造システムおよびledパッケージ製造システムにおける樹脂塗布方法
WO2013121752A1 (ja) 樹脂塗布装置および樹脂塗布方法
JP5899485B2 (ja) 樹脂塗布装置および樹脂塗布方法
JP5310699B2 (ja) 樹脂塗布装置および樹脂塗布方法
JP5413404B2 (ja) Ledパッケージ製造システムおよびledパッケージ製造システムにおける樹脂塗布方法
JP5413405B2 (ja) 樹脂塗布装置および樹脂塗布方法
JP2013065644A (ja) 発光素子の製造システムおよび製造方法ならびに発光素子パッケージの製造システムおよび製造方法
WO2013121474A1 (ja) 樹脂塗布装置および樹脂塗布方法
JP2013048130A (ja) 樹脂塗布装置および樹脂塗布方法
JP5861032B2 (ja) 樹脂塗布装置および樹脂塗布方法
JP2014236136A (ja) Ledパッケージ製造システムにおける樹脂塗布装置および樹脂塗布方法
JP2014075546A (ja) 樹脂塗布装置および樹脂塗布方法
JP5879508B2 (ja) 樹脂塗布装置および樹脂塗布方法
JP2013048131A (ja) 樹脂塗布装置および樹脂塗布方法
JP2013172052A (ja) 樹脂塗布装置および樹脂塗布方法
JP5768217B2 (ja) 樹脂塗布装置および樹脂塗布方法
JP2013093496A (ja) 樹脂発光検査装置および樹脂発光検査方法
WO2013051260A1 (ja) 樹脂塗布装置および樹脂塗布方法
JP2013089747A (ja) 樹脂塗布装置および樹脂塗布方法
JP2013098522A (ja) 樹脂塗布装置および樹脂塗布方法
JP2013089746A (ja) 樹脂塗布装置および樹脂塗布方法
JP2013084651A (ja) 樹脂塗布装置および樹脂塗布方法
JP2014075390A (ja) Ledパッケージ製造システムに用いる樹脂塗布装置およびledパッケージ製造方法における樹脂塗布方法
JP2014075545A (ja) Ledパッケージ製造システムおよびledパッケージ製造方法
JP2013093497A (ja) 樹脂塗布装置および樹脂塗布方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13748828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13748828

Country of ref document: EP

Kind code of ref document: A1