WO2012164684A1 - 温度調節システム及び空気調和システム及び制御方法 - Google Patents

温度調節システム及び空気調和システム及び制御方法 Download PDF

Info

Publication number
WO2012164684A1
WO2012164684A1 PCT/JP2011/062470 JP2011062470W WO2012164684A1 WO 2012164684 A1 WO2012164684 A1 WO 2012164684A1 JP 2011062470 W JP2011062470 W JP 2011062470W WO 2012164684 A1 WO2012164684 A1 WO 2012164684A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
outside air
control
heat medium
difference
Prior art date
Application number
PCT/JP2011/062470
Other languages
English (en)
French (fr)
Inventor
加藤 央平
耕司 松澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013517744A priority Critical patent/JP5657110B2/ja
Priority to PCT/JP2011/062470 priority patent/WO2012164684A1/ja
Priority to EP11866717.9A priority patent/EP2716989B1/en
Priority to CN201180071265.5A priority patent/CN103597290B/zh
Priority to US14/113,465 priority patent/US9562701B2/en
Publication of WO2012164684A1 publication Critical patent/WO2012164684A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems

Definitions

  • the present invention relates to a control technique in which high operating efficiency is realized by changing a water temperature according to a load in an air conditioning system in which a load device and a heat source device are connected by a water circuit.
  • an air-conditioning system in which cold / hot water is generated by a heat source device such as a heat pump, and is transported to an indoor unit by a water pump for air conditioning.
  • a heat source device such as a heat pump
  • hot water for example, cold water of 16 ° C. is supplied to the indoor unit during cooling, and hot water of 35 ° C. is supplied to the indoor unit during heating.
  • a method of sending water is common. In this method, in the middle of the season or when the load is small, the heat source machine stops when the room temperature reaches a set value, or the water supply to the indoor unit is stopped by a three-way valve. Therefore, comfort is impaired and driving efficiency decreases.
  • the installer has a function to set the target water temperature according to the outside air temperature.
  • the water temperature and the load match, but depending on conditions, an operation with insufficient capacity where the water temperature is low with respect to the load or an operation with excessive capacity where the water temperature is high with respect to the load is performed. As a result, comfort and driving efficiency are reduced.
  • Patent Document 1 resets the target water temperature supplied by the heat source unit based on the deviation between the target indoor temperature set by the user and the current indoor temperature, and reset the target water temperature.
  • a control method for resetting the target water flow rate based on the deviation of the water temperature from the current target water temperature is disclosed.
  • the air conditioning system of Patent Literature 1 includes a refrigerant circuit including a compressor, a decompression device, and a heat exchanger, and a cold / hot water circulation circuit that can exchange heat with the refrigerant circuit.
  • the cold / hot water circulation circuit supplies cold / hot water to the indoor unit.
  • the target water temperature is newly set from the deviation of the current indoor temperature from the target indoor temperature, and the capacity of the heat source machine, that is, the compressor frequency is changed so that the water temperature becomes the target value.
  • the air conditioning system in order to achieve high-efficiency operation while maintaining comfort, not only the water temperature changes according to the load, but also the room temperature exceeds the set temperature when the load changes. It is necessary to change the water temperature change range according to the water temperature setting that suppresses the chute and undershoot, that is, the load. For example, consider the water temperature change width between the low outside air temperature and the high outside air temperature when the set temperature is fixed in the “heating operation”. Since the difference between the set temperature and the outside air temperature is large at low outside air temperature, it can be said that the indoor load for satisfying the set temperature is large. Further, it can be said that the indoor load is small because the difference between the set temperature and the outside air temperature is small at high outside air temperature.
  • the load when the outside air temperature changes from a low state to a high state from dawn to noon, the load is reduced, so the capacity required for the heat source unit is also reduced. Conversely, when the outside air temperature changes from a high state to a low state from noon to dawn, the load increases, so the capacity required for the heat source unit increases. In other words, the capability of the heat source device varies depending on the outside air temperature change.
  • the indoor temperature is affected by changes in the outside air temperature, but due to the heat capacity of the building, the indoor temperature change appears later than the outside air temperature change. For this reason, the capacity of the heat source machine changes after a change in load.
  • Patent Document 1 when the water temperature is changed only by the difference between the set temperature and the room temperature, the change in the water temperature due to the adjustment of the capacity of the heat source device is delayed with respect to the load change accompanying the change in the outside air temperature. . Therefore, overshoot or undershoot of the room temperature with respect to the set temperature occurs, which also impairs comfort and leads to a decrease in driving efficiency.
  • the present invention is to realize a high operating efficiency without impairing comfort by changing the outlet water temperature of the heat source machine according to the change in the outside air temperature.
  • the temperature control system of the present invention includes: Heating or cooling the heat medium flowing in by receiving control, heat exchange with the heat source device that flows out the heat medium, and the adjustment target that is the target of temperature adjustment when the heat medium passes, A heat exchange device that adjusts the temperature of the adjustment target to a target temperature, and a conveyance device that conveys the heat medium are connected to each other by a pipe, and a heat medium circuit in which the heat medium circulates by the conveyance device; A control device for controlling the temperature of the heat medium flowing out of the heat source device through the control of the heat source device; An outside temperature detector for detecting outside temperature, The controller is Performing a first control for controlling a temperature of a heat medium flowing out from the heat source device on the basis of the outside air temperature and a temperature difference between the outside air temperatures that change in time, and implement the first control. To adjust the temperature of the object to be adjusted to a target temperature.
  • the present invention changes the outlet water temperature of the heat source unit according to the change in the outside air temperature, it is possible to realize high operating efficiency of the air conditioning system without impairing comfort.
  • FIG. 5 is a flowchart illustrating a control operation by the control device 31 according to the first embodiment.
  • 3 is a graph showing the relationship between the outdoor temperature and the indoor load in the first embodiment. The graph showing the relationship between the deviation of the indoor temperature of Embodiment 1, and the outside temperature, and the change rate of outlet water temperature.
  • FIG. 1 is a configuration diagram of an air conditioning system 1.
  • the air conditioning system 1 includes a water circuit 10 (heat medium circuit) and a control device 31.
  • the water circuit 10 is configured by connecting an outdoor unit 2 (heat source device), an indoor unit 3 (heat exchange device), and a water pump 11 (conveyance device) in a ring shape with a pipe.
  • the outdoor unit 2 is a heat source device including a refrigerant circuit 4. Under the control of the control device 31, the outdoor unit 2 performs either heating or cooling of the inflowing water (heat medium) and flows out the water.
  • the outdoor unit 2 can adjust the heating capacity and cooling capacity of water (heat medium) by receiving control of the control device 31.
  • the indoor unit 3 includes an indoor heat exchanger 12 and is installed indoors. When the water heated or cooled by the outdoor unit 2 passes, the indoor heat exchanger 12 exchanges heat with the air (target to be adjusted) in the room (space to be air-conditioned), and adjusts the room temperature to the target temperature.
  • the water pump 11 conveys a heat medium such as water.
  • the control device 31 controls the temperature of water flowing out of the outdoor unit 2 through the control of the outdoor unit 2.
  • the air conditioning system 1 includes an outdoor temperature detector 21 (outside air temperature detector) that detects an outdoor temperature (outside air temperature) where the outdoor unit 2 is disposed, and an indoor temperature (target to be adjusted) where the indoor unit 3 is disposed.
  • the indoor temperature detector 22 adjustment target temperature detector
  • the indoor temperature detector 22 for detecting the temperature of the water
  • the inlet water temperature detector 23 for detecting the inlet water temperature of the water flowing into the outdoor unit 2 (intermediate heat exchanger 9)
  • the outdoor unit 2 intermediate.
  • An outlet water temperature detector 24 for detecting the outlet water temperature of the water flowing out from the heat exchanger 9) is provided.
  • the detection values of the outdoor temperature detector 21 to the outlet water temperature detector 24 are taken into the control device 31.
  • the control device 31 includes a storage device 33.
  • the detection values of the outdoor temperature detector 21 to the outlet water temperature detector 24 are stored in the storage device 33.
  • the refrigerant circuit 4 includes a compressor 5, a four-way valve 6 for switching the refrigerant flow path, an outdoor heat exchanger 7 that performs heat exchange between outdoor air and the refrigerant, an expansion valve 8 that is a decompression device, and heat exchange between water and the refrigerant.
  • the intermediate heat exchanger 9 to be performed is connected in a ring shape.
  • the compressor 5 is a hermetic compressor, for example.
  • the compressor 5 adjusts the flow rate of the refrigerant circulating in the refrigerant circuit 4 by changing the rotation speed with an inverter according to a command from the control device 31. Since the amount of heat exchange in the intermediate heat exchanger 9 is changed by this adjustment, the outlet water temperature of the outdoor unit 2 can be controlled.
  • the four-way valve 6 is used for switching the flow of the refrigerant circuit 4. When there is no need to switch the flow of the refrigerant, for example, when the air conditioning system 1 is used exclusively for cooling or heating, switching of the flow path is unnecessary. If switching of the flow path is not necessary, the four-way valve 6 may be omitted.
  • Outdoor heat exchanger 7 As the outdoor heat exchanger 7, for example, a fin-and-tube heat exchanger can be used. In the case of this fin-and-tube heat exchanger, the outdoor heat exchanger 7 includes an outdoor fan (not shown). In this case, the outdoor heat exchanger 7 promotes heat exchange between the outside air supplied from the outdoor fan and the refrigerant.
  • the outdoor heat exchanger 7 may be of a type that can supply a heat source having a stable temperature throughout the year by being buried in the ground and using geothermal heat.
  • the outdoor heat exchanger 7 may use a plate heat exchanger so that, for example, water or antifreeze can be used as a heat source.
  • the expansion valve 8 has a variable opening, for example, and adjusts the opening so that the condenser outlet supercooling degree or the evaporator outlet superheating degree is as small as possible. Since the refrigerant flow rate can be adjusted by adjusting the opening, the heat exchanger can be used effectively. Further, when a plurality of fixed throttle devices such as capillaries are arranged in parallel, the refrigerant flow rate can be adjusted.
  • Intermediate heat exchanger 9 As the intermediate heat exchanger 9, for example, a plate heat exchanger is used.
  • the intermediate heat exchanger 9 exchanges heat between the refrigerant and water and supplies cold / hot water to the water circuit 10. Moreover, even if a double pipe type or a full liquid type heat exchanger is used as the intermediate heat exchanger 9, the same effect as the plate heat exchanger can be obtained.
  • the indoor unit 3 includes an indoor heat exchanger 12.
  • the indoor heat exchanger 12 performs heat exchange between water and room air, and heats or cools the room.
  • a radiator is used as the indoor heat exchanger 12.
  • the room can be heated or cooled by the temperature of water flowing into the radiator.
  • the indoor heat exchanger 12 is not limited to a radiator, and a fan coil unit, a floor heating panel, or the like may be used as the indoor heat exchanger 12.
  • the water pump 11 supplies water as a heat medium to the outdoor unit 2 and the indoor unit 3.
  • the water pump 11 includes a constant speed pump and a pump whose rotational speed is variable by an inverter or the like. Further, the flow rate of the circulating water can be adjusted by combining the constant speed water pump 11 and the displacement control valve having a variable opening and adjusting the opening of the displacement control valve.
  • Two (i) Two (i-1) + ⁇ T1 + ⁇ T2 (A) Two (i) : Current exit water temperature, T wo (i-1) : outlet water temperature before a predetermined period, ⁇ T1: outlet water temperature change calculated by the first control, ⁇ T2: outlet water temperature change calculated by the second control, More specifically, the control device 31 controls the outlet water temperature (T wo (i) ) flowing out from the outdoor unit 2 (intermediate heat exchanger 9) based on the temperature difference between the indoor temperatures that change with time.
  • the outlet water temperature flowing out from the outdoor unit 2 based on the second control (control based on the calculation of ⁇ T2) that keeps the room at a substantially constant temperature, the outside air temperature, and the temperature difference between the outside air temperatures that change with time.
  • the room temperature is held at a substantially constant temperature by both the first control (control based on the calculation of ⁇ T1) that keeps the room at a substantially constant temperature.
  • (i-1) indicates before a predetermined time
  • (i) indicates after the predetermined time has elapsed.
  • the inlet water temperature T wi and the outlet water temperature T wo are the inlet water temperature and the outlet water temperature of the outdoor unit 2 (intermediate heat exchanger 9).
  • the indoor load before a predetermined time that is, the heat exchange amount Q io (i-1) between the room and the outside air is Heat exchange performance AK io (i-1) of the building before a predetermined time
  • Indoor temperature T ai (i-1) From the outside air temperature T ao (i-1) It can be represented by Formula (1).
  • the heat exchange amount Q w (i ⁇ 1) in the intermediate heat exchanger 9 is Water flow rate G w (i-1) , Specific heat of water Cp w (i-1) , Inlet water temperature Twi (i-1) of the intermediate heat exchanger 9, From the outlet water temperature Two (i-1) of the intermediate heat exchanger 9, It can be represented by Formula (2).
  • C1 of Formula (3) is a constant determined from the water flow rate and the heat exchange performance of the building.
  • the outdoor water temperature changes from T ao (i ⁇ 1) to T ao (i) and the outlet water temperature when the room temperature matches the room temperature before the change is T wo (i) the target indoor temperature
  • T ai (i) and the outlet water temperature T wo (i) is expressed by equation (4).
  • Equation (3) The inlet / outlet water temperature before the outside air temperature change (i-1), Indoor / outdoor temperature before change (i-1), The indoor / outdoor temperature after the change (i)
  • Equation (5) The relationship with the inlet / outlet water temperature after change (i) can be expressed by equation (5).
  • Controller 31 for example, based on the equation (6), the outside air temperature ((T ai (i-1 ) -T ao (i-1)) of the T ao (i-1)), chronologically successive Based on the temperature difference of the outside air temperature ((T ao (i ⁇ 1) ⁇ T ao (i) )), the first control for controlling the temperature of the water flowing out of the outdoor unit 2 is performed. To adjust the room temperature to be adjusted to the target temperature. The same applies to the cooling formula (7) described later.
  • the transformation from Equation (5) to Equation (6) is as follows. The part surrounded by the frame in the following formula (i) was replaced with the formula (5) using the formulas (B) and (C).
  • the target outlet water temperature can be expressed by equation (7) when considered in the same manner as the derivation of equation (6).
  • the target outlet water temperature for preventing the indoor temperature from changing before and after the change in the outside air temperature is the change width of the outside air temperature (T ao (i ⁇ 1) ⁇ T ao (i) ) as shown in the equation (8).
  • the heat exchange amount (T wo (i-1) -T wi (i-1) ) of the intermediate heat exchanger 9 which is the capacity of the outdoor unit 2 and the indoor load (T ai (i -1) -T ao (i-1) ), the target outlet water temperature for matching the room temperature before and after the outside air temperature change (T ao (i-1) -T ao (i) ) T wo (i) can be determined.
  • the target outlet water temperature Two (i) is expressed by the equations (6) and (7). Is it inversely proportional to the temperature difference between indoor and outdoor? Is proportional to the difference in inlet / outlet water temperature, Proportional to the ratio of inlet / outlet water temperature difference and indoor / outdoor temperature difference, It can be determined from equation (9) as follows.
  • control unit 31 adjusts the target outlet water temperature by multiplying the second term on the right side of Expression (6) or Expression (7) by the relaxation coefficient so that the room temperature finally matches the target room temperature. Controls the outdoor unit 2.
  • FIG. 2 shows operations performed by the control device 31.
  • the operation of the outdoor unit 2 is started (S01), and either the heating operation or the cooling operation is selected (S02).
  • S01 the heating operation or the cooling operation is selected (S02).
  • S02 an outside air temperature deviation (T ao (i) ⁇ T ao (i ⁇ 1)) which is a difference between the current outside air temperature T ao (i) and the outside air temperature T ao (i ⁇ 1) a predetermined time ago. ) Is calculated.
  • the calculated outside air temperature deviation is compared, and when the outside air temperature deviation is zero or within a predetermined range (S03), the operation is continued at the current outlet water temperature.
  • the outside air temperature deviation is less than 0 (T ao (i) ⁇ T ao (i ⁇ 1) ), that is, the current outside air temperature T ao (i) is higher than the outside air temperature T ao (i ⁇ 1) before a predetermined time.
  • the control device 31 sets the target outlet water temperature according to the above-described equation (6) (S05). At this time, since the outside air temperature deviation is smaller than 0, the indoor load becomes large.
  • the control device 31 increases the target outlet water temperature T wo (i) above the current outlet water temperature T wo (i ⁇ 1). (S06).
  • the outside air temperature deviation is larger than 0 (T ao (i) > T ao (i ⁇ 1) ), that is, the current outside air temperature T ao (i) is the outside air temperature T ao (i ⁇ 1 ) before the predetermined time. )
  • the target outlet water temperature is calculated from equation (6) (S07), and the control device 31 sets the target outlet water temperature T wo (i) from the current outlet water temperature T wo (i ⁇ 1) . Is also controlled in the direction of lowering (S08).
  • the control device 31 performs the determination based on the calculated outside air temperature deviation (T ao (i) ⁇ T ao (i ⁇ 1) ) similarly to the heating operation (S10).
  • the control device 31 continues the changing operation at the current target outlet water temperature.
  • T ao (i) ⁇ T ao (i ⁇ 1) that is, the current outside air temperature T ao (i) is higher than the outside air temperature T ao (i ⁇ 1) before a predetermined time.
  • the target outlet water temperature is calculated from the equation (7) (S12).
  • the control device 31 moves the target outlet water temperature T wo (i ) higher than the current outlet water temperature T wo (i ⁇ 1) .
  • Control (S13) On the other hand, when the outside air temperature deviation is larger than 0 (T ao (i) > T ao (i ⁇ 1) ), that is, the current outside air temperature T ao (i) is the outside air temperature T ao (i ⁇ 1 ) before the predetermined time.
  • the target outlet water temperature is calculated from the equation (7) (S14), and the control device 31 needs to lower the indoor temperature because the indoor load becomes high. Therefore, the target outlet water temperature Two (I) is controlled so as to decrease the current outlet water temperature Two (i-1) (S15).
  • FIG. 3 is a graph showing the relationship between the outdoor temperature (outside air temperature) and the indoor load.
  • the horizontal axis indicates the outdoor temperature
  • the vertical axis indicates the indoor load.
  • the change width of the target outlet water temperature when the outside air temperature changes will be considered.
  • the room temperature is 20 ° C. and the outside air temperature is increased from 0 ° C. to 2 ° C.
  • the room temperature does not change.
  • FIG. 4 is a graph showing the relationship between the deviation between the room temperature and the outside air temperature and the rate of change in the outlet water temperature. That is, as shown in FIG. 4, even when the outside air temperature deviation is the same (the deviation is 2 ° C. in the above example), when the outside air temperature is high (when the difference between the indoor set temperature and the outside air temperature is small), The rate of change of the target outlet water temperature increases. Further, when the outside air temperature is low (when the difference between the indoor set temperature and the outside air temperature is large), the change rate of the target outlet water temperature is small.
  • the newly set target outlet water temperature is inversely proportional to the difference between the room temperature and the outside air temperature.
  • Target outlet water temperature T wormH when the capacity of the outdoor unit 2 is large If the target outlet water temperature when the capacity of the outdoor unit 2 is small is TwomL , From Expression (9), the relationship between the current inlet water temperature (30 ° C.), outlet water temperature (40 ° C., 35 ° C.), and target outlet water temperature T wo is Expression (11) and Expression (12).
  • the target outlet water temperature is T womL ⁇ T wormH , and it is necessary to move the target outlet water temperature larger than the current outlet water temperature when the capacity of the outdoor unit 2 is large. is there.
  • the target outlet water temperature is proportional to the inlet / outlet water temperature difference.
  • the control device 31 detects values representative of the flow rate, such as the rotation speed of the water pump 11 and the flow rate adjustment valve opening. Instead of “the difference between the inlet water temperature and the outlet water temperature”, the control device 31 represents values representing the pump flow rate (flow rate index value) such as the pump flow rate, the rotation speed of the water pump 11, and the flow rate adjustment valve opening degree. May be used. As described above, the control device 31 is a flow index value indicating the flow rate of the water conveyed by the water pump 11, and the difference between the flow index values that fluctuate in time is “the difference between the inlet water temperature and the outlet water temperature”. It may be used instead of.
  • T ao (i) and T ao (i ⁇ 1) in the outside air temperature deviation (T ao (i ⁇ 1) ⁇ T ao (i) ) are compared with the current outside air temperature and a predetermined time ago. It was assumed that the outside air temperature was used.
  • the current outside air temperature and the outside air temperature before the predetermined time are, for example, a period ⁇ Tb that is a period after the period ⁇ Ta, using, for example, an average outside air temperature during a certain period ⁇ Ta as T ao (i ⁇ 1). May be used as T ao (i) .
  • the outside air temperature after a predetermined time may be predicted from the current outside air temperature and the past outside air temperature, and a deviation between the predicted outside air temperature and the current outside air temperature may be applied.
  • the control device 31 flows out of the outdoor unit 2 (heat source device) when the room temperature is kept constant.
  • the target effluent heat medium temperature is proportional to the temperature difference between the detected value of the outdoor temperature detector 21 and the detected value before a predetermined time. decide.
  • the air conditioning system 1 can set the target outflow heat medium temperature in accordance with the change in the indoor load accompanying the change in the outside air temperature, thereby realizing control with high operating efficiency without impairing the user's comfort. Is possible.
  • the control device 31 determines the outdoor temperature when the target temperature of the heat medium flowing out from the outdoor unit 2 is determined when keeping the room temperature constant.
  • the difference between the detection values of the indoor temperature detector 22 and the outdoor temperature detector 21 is proportional to the temperature difference using the current detection value and the detection value before a predetermined time.
  • the target effluent heat medium temperature is determined so as to be inversely proportional to.
  • the air-conditioning system 1 can set the target outflow heat medium temperature according to the indoor load, so that control with high operation efficiency can be realized without impairing the user's comfort.
  • the control device 31 determines the outdoor temperature when the target temperature of the heat medium flowing out from the outdoor unit 2 is determined when keeping the room temperature constant.
  • the detection values of the detector 21 it is proportional to the temperature difference using the current detection value and the detection value before a predetermined time, and “the difference between the inlet water temperature and the outlet water temperature” (inlet water temperature detector 23, outlet water temperature).
  • the target outflow heat medium temperature is determined so as to be proportional to (detected by the detector 24). With this determination method, the air-conditioning system 1 can set the target outflow heat medium temperature according to the indoor load, so that control with high operation efficiency can be realized without impairing the user's comfort.
  • the control device 31 determines the target value of the outflow heat medium temperature flowing out from the outdoor unit 2 by the detection of the outdoor temperature detector 21.
  • the target outflow heat medium temperature is determined so as to be proportional to the temperature difference using the current detection value and the detection value before the predetermined time and also to the pump flow rate.
  • the air-conditioning system 1 can set the target outflow heat medium temperature according to the indoor load, so that control with high operation efficiency can be realized without impairing the user's comfort.
  • control device 31 determines the target value of the effluent heat medium temperature flowing out from the outdoor unit 2, as shown in the equation (9), the above-mentioned “Modification 1 of Embodiment 1”, etc.
  • the detection value of the detector 21 is proportional to the temperature difference using the current detection value and the detection value before a predetermined time, and the “difference between the inlet water temperature and the outlet water temperature” or the pump flow rate is divided by the indoor / outdoor temperature difference.
  • the target outlet water temperature is determined to be proportional to the measured value.
  • control device 31 includes control (second control) for setting the target outlet water temperature based on the difference between the current indoor temperature and the indoor set temperature, the indoor heat capacity changes depending on the building heat capacity even if the indoor load changes due to the outside air temperature change.
  • the temperature change is small and cannot be detected by the room temperature detector 22, and it is determined that the set temperature and the room temperature match.
  • the target outlet water temperature cannot be changed despite the change in the indoor load.
  • the air conditioning system 1 also uses the first control as described above, the target outlet water temperature can be set by changing the outside air temperature. For this reason, control with high driving efficiency is realizable, without impairing a user's comfort.
  • the control device 31 executes the first control even when it is determined that the room temperature is maintained at a substantially constant temperature by the execution of the second control.
  • the control device 31 changes the target outlet water temperature according to the term ( ⁇ T2 in the above formula (A)) that changes the target outlet water temperature based on the deviation between the indoor set temperature and the indoor temperature (detected value), and the variation range of the outside air temperature.
  • the calculation interval is different from the term ( ⁇ T1 in the above formula (A)).
  • the control device 31 periodically executes the first calculation for the first control and the second calculation for the second control. At this time, the cycle of the first calculation is different from the cycle of the second calculation. Thereby, since the control apparatus 31 can detect the temperature to utilize accurately, it can set the target outlet water temperature reliably.
  • variable capacity heat pump device may be used as the outdoor unit 2.
  • the capacity variable heat pump device has high operating efficiency and can easily change the target outlet water temperature, so that power consumption can be suppressed.
  • the heat source device changes the water temperature according to the indoor load without impairing comfort. High operating efficiency can be realized.
  • the indoor unit 3 heat exchange device
  • the target of temperature control by the temperature control system is not limited to air, and may be water used for hot water supply or water stored in a tank.
  • water circulates in the water circuit 10 as a heat medium. Since water or the like used for hot water supply is heated by the water circulating in the water circuit 10, a water-water heat exchanger is used as the heat exchange device.
  • control by the control device 31 in the air conditioning system 1 can be grasped as a control method for the air conditioning system 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)
  • Thermal Sciences (AREA)

Abstract

 制御装置31は、室外温度検出器21によって検出された外気温度と、時間的に前後する外気温度の温度差と、に基づいて、熱源装置2から流出する水(熱媒体)の温度を制御する第1制御を実施する。制御装置31は、前記第1制御を実施することによって、室内の温度を目標温度に調節する。

Description

温度調節システム及び空気調和システム及び制御方法
 この発明は、負荷装置と熱源装置とが水回路によって接続される空気調和システムにおいて、熱源装置が負荷に応じて水温を変化させることで、高い運転効率が実現される制御技術に関する。
 従来、ヒートポンプなどの熱源機により冷温水を生成し、水ポンプで室内機へ搬送して室内の冷暖房を行う空気調和システムが一般的に知られている。この方式の空気調和システムは、例えば冷房時は16℃の冷水が室内機へ供給され、暖房時は35℃の温水が室内機へ供給されるといったように、負荷によらず水温を一定にして送水する方式が一般的である。この方式では、季節の中間期や負荷が小さい場合、室温が設定値になると熱源機が停止するか、あるいは三方弁によって室内機への送水が停止されるといったように断続的な運転となる。よって、快適性が損なわれ、運転効率が低下する。
 また、ある空気調和システムでは、設置業者が外気温度に応じた目標水温を設定する機能が付いている。しかし、水温と負荷とが一致していれば問題ないが、条件によっては負荷に対して水温が低い能力不足の運転や、負荷に対して水温が高い能力過多の運転などが行われる。よって、やはり快適性と運転効率の低下を招く。
 これらの課題を解決する手段として、特許文献1には、利用者が設定した目標室内温度と現在の室内温度との偏差に基づいて熱源機が供給する目標水温を再設定し、再設定した目標水温を現在の目標水温との偏差に基づいて目標水流量を再設定する制御方法が開示されている。具体的には、特許文献1の空気調和システムは、圧縮機、減圧装置及び熱交換器で構成される冷媒回路と、前記冷媒回路と熱交換可能な冷温水循環回路とを備える。冷温水循環回路は、室内機へ冷温水を供給する。この空気調和システムでは、現在の室内温度を目標とする室内温度との偏差から目標水温を新たに設定し、水温が目標値となるように熱源機の能力、つまり圧縮機周波数を変化させる。
特開2007-212085号公報(図3、図4)
 上記のような空気調和システムにおいて、快適性を保ちながら、効率の高い運転を実現するためには、負荷に応じて水温を変化させるだけでなく、負荷変化時にも、設定温度に対する室内温度のオーバーシュートやアンダーシュートを抑えた水温設定、つまり負荷に応じて水温変化幅を変える必要がある。例えば、「暖房運転」で設定温度を固定したときの低外気温と高外気温との水温変化幅について考える。低外気温では設定温度と外気温度との差は大きいので設定温度を満足するための室内負荷が大きいと言える。また、高外気温では設定温度と外気温度との差は小さいので室内負荷は小さいと言える。例えば、明け方から昼にかけて外気温度が低い状態から高い状態へ変化した場合、負荷は小さくなるので熱源機に必要な能力も小さくなる。逆に昼から明け方にかけて外気温度が高い状態から低い状態へ変化した場合、負荷は大きくなるので熱源機に必要な能力は大きくなる。つまり、外気温度変化によって熱源機が必要な能力は異なる。
 また、室内温度は外気温度の変化の影響を受けるが、建物の熱容量の影響により、室内の温度変化は外気温度変化よりも遅れて現れる。このため、熱源機の能力は負荷の変化に遅れて変化する。
 つまり、特許文献1に開示されているように、設定温度と室内温度との差だけで水温を変化させる場合、外気温度変化に伴う負荷の変化に対して熱源機の能力調整による水温変化が遅れる。よって、設定温度に対する室内温度のオーバーシュートやアンダーシュートが発生し、やはり快適性を損ない、運転効率の低下も招く。
 本発明は、外気温度変化に応じて熱源機の出口水温を変化させることで、快適性を損なうことなく、高い運転効率を実現することにある。
 本発明の温度調節システムは、
 制御を受けることで流入する熱媒体の加熱と冷却とのいずれかを行い、熱媒体を流出する熱源装置と、熱媒体が通過することで温度調節の対象となる調節対象と熱交換し、前記調節対象の温度を目標温度に調節する熱交換装置と、熱媒体を搬送する搬送装置とが環状に配管で接続され、前記搬送装置によって熱媒体が循環する熱媒体回路と、
 前記熱源装置の制御を介して、前記熱源装置から流出する熱媒体の温度を制御する制御装置と、
 外気温度を検出する外気温度検出器と、を備え、
 前記制御装置は、
 前記外気温度と、時間的に前後する前記外気温度の温度差と、に基づいて、前記熱源装置から流出する熱媒体の温度を制御する第1制御を実施し、前記第1制御を実施することによって前記調節対象の温度を目標温度に調節することを特徴とする。
 この発明は、外気温度変化に応じて熱源機の出口水温を変化させるので、快適性を損なうことなく、空気調和システムの高い運転効率を実現できる。
実施の形態1の空気調和システム1の構成図。 実施の形態1の制御装置31による制御動作を示すフローチャート。 実施の形態1の室外温度と室内負荷との関係を表すグラフ。 実施の形態1の室内温度と外気温度との偏差と、出口水温の変化率との関係を表すグラフ。
 実施の形態1.
<空気調和システム構成概要>
 図1~図4を参照して、実施の形態1の空気調和システム1(温度調節システム)を説明する。
 図1は、空気調和システム1の構成図である。空気調和システム1は、水回路10(熱媒体回路)と、制御装置31とを備えている。水回路10は、室外機2(熱源装置)と、室内機3(熱交換装置)と、水ポンプ11(搬送装置)とが、環状に配管で接続されて、構成されている。
(1)室外機2は、冷媒回路4を備えた熱源装置である。室外機2は、制御装置31の制御を受けることで、流入する水(熱媒体)の加熱と冷却とのいずれかを行い、水を流出する。室外機2は、制御装置31の制御を受けることで、水(熱媒体)の加熱能力、冷却能力が調整可能である。
(2)室内機3は、室内熱交換器12を備え、室内に設置される。室内熱交換器12は、室外機2によって加熱または冷却された水が通過することで、室内(空調対象の空間)の
空気(調節対象)と熱交換し、室内温度を目標温度に調節する。
(3)水ポンプ11は、例えば水のような熱媒体を搬送する。
(4)制御装置31は、室外機2の制御を介して、室外機2から流出する水の温度を制御する。
 また、空気調和システム1は、室外機2が配置された室外の温度(外気温度)を検出する室外温度検出器21(外気温度検出器)、室内機3が配置された室内の温度(調節対象の温度)を検出する室内温度検出器22(調節対象温度検出器)、室外機2(中間熱交換器9)へ流入する水の入口水温を検出する入口水温検出器23、室外機2(中間熱交換器9)から流出する水の出口水温を検出する出口水温検出器24を備える。室外温度検出器21~出口水温検出器24の検出値は、制御装置31へ取り込まれる。制御装置31は図1に示すように記憶装置33を備えている。室外温度検出器21~出口水温検出器24の検出値は、記憶装置33に記憶される。
(冷媒回路4)
 冷媒回路4は、圧縮機5、冷媒流路を切り替える四方弁6、室外空気と冷媒との熱交換を行う室外熱交換器7、減圧装置である膨張弁8、水と冷媒との熱交換を行う中間熱交換器9が、環状に接続されている。
(圧縮機5)
 圧縮機5は、例えば全密閉式圧縮機である。圧縮機5は、制御装置31からの指令によってインバータで回転数を変化させることで冷媒回路4を循環する冷媒流量を調整する。この調整によって中間熱交換器9での熱交換量が変化するので、室外機2の出口水温の制御が可能となる。
(四方弁6)
 四方弁6は、冷媒回路4の流れを切り替えるために用いられる。冷媒の流れを切り替える必要が無い場合、例えば冷房専用もしくは暖房専用で空気調和システム1を用いる場合は、流路の切り替えが不要である。流路の切り替えが不要の場合は、四方弁6は、なくてもよい。
(室外熱交換器7)
 室外熱交換器7は、例えばフィンアンドチューブ型熱交換器を使用できる。このフィンアンドチューブ型熱交換器の場合は、室外熱交換器7は、室外ファン(図示しない)を備える。この場合、室外熱交換器7は、室外ファンから供給された外気と、冷媒との熱交換を促進させる。また、室外熱交換器7は、地中に埋めて地熱を利用することで、年間を通じて安定した温度の熱源を供給できるタイプでも良い。また室外熱交換器7は、プレート熱交換器を用いて、例えば水や不凍液などを熱源として利用できるようにしても良い。
(膨張弁8)
 膨張弁8は、例えば開度が可変なものを用い、凝縮器出口過冷却度または蒸発器出口過熱度が、できるだけ小さくなるように開度調整する。この開度調整によって冷媒流量を調整できるので、熱交換器を有効に利用できる。また、キャピラリのような固定絞り装置を複数並列に並べた場合も、冷媒流量調整が可能である。
(中間熱交換器9)
 中間熱交換器9は、例えばプレート熱交換器を用いる。中間熱交換器9は、冷媒と水との熱交換を行い、水回路10へ冷温水を供給する。また、中間熱交換器9として、二重管式や満液式の熱交換器を用いても、プレート熱交換器と同様の効果が得られる。
(室内熱交換器12)
 室内機3は、室内熱交換器12を備える。室内熱交換器12は、水と室内空気との熱交換を行い、室内を加熱あるいは冷却する。室内熱交換器12としては、例えばラジエータが使用される。ラジエータに流入する水温によって室内を加熱あるいは冷却できる。また、室内熱交換器12はラジエータに限らず、ファンコイルユニットや、床暖房パネルなどを室内熱交換器12として用いても良い。
(水ポンプ11)
 水ポンプ11は、室外機2および室内機3へ熱媒体である水を供給する。水ポンプ11は、一定速のものや、インバータなどによって回転数が可変のものがある。また、一定速の水ポンプ11と開度が可変な容量制御弁とを組み合わせ、容量制御弁の開度を調整することで循環する水流量の調整ができる。
<中間熱交換器9の出口水温の決定方法>
 次に、空気調和システム1において、制御装置31が、外気温度変化から、中間熱交換器9の「目標の出口水温」を決定する方法について説明する。例として、暖房の場合(下記に示す式(6))について説明する。以下に説明する制御は、制御装置31によって実行される。また、以下に説明する「目標の出口水温の決定方法」は、下記の第1制御に関する。すなわち、制御装置31は、式(A)に基づく制御により室内の温度を一定に保持する。
 Two(i)=Two(i-1)+ΔT1+ΔT2   (A)
 Two(i):現在の出口水温、
 Two(i-1):所定期間前の出口水温、
 ΔT1:第1制御によって算出される出口水温変化、
 ΔT2:第2制御によって算出される出口水温変化、
 より具体的には、制御装置31は、時間的に前後する室内温度の温度差に基づいて室外機2(中間熱交換器9)から流出する出口水温(Two(i))を制御することにより、室内を略一定温度に保持する第2制御(ΔT2の算出に基づく制御)と、外気温度と、時間的に前後する外気温度の温度差とに基づいて、室外機2から流出する出口水温(Two(i))を制御することにより、室内を略一定温度に保持する第1制御(ΔT1の算出に基づく制御)との双方の制御によって、室内の温度を略一定温度に保持する。
 以下に、外気温度の温度差に基づく、第1制御の内容を説明する。
 なお、下記において(i-1)は所定時間前を示し、(i)は、所定時間経過後を示す。
 また、下記において入口水温Twi、出口水温Twoとは、室外機2(中間熱交換器9)の入口水温、出口水温である。
 所定時間前の室内負荷、つまり室内と外気との熱交換量Qio(i-1)は、
 所定時間前の建物の熱交換性能AKio(i-1)
 室内温度Tai(i-1)
 外気温度Tao(i-1)から、
式(1)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 一方、中間熱交換器9での熱交換量Qw(i-1)は、
 水流量Gw(i-1)
 水の比熱Cpw(i-1)
 中間熱交換器9の入口水温Twi(i-1)
 中間熱交換器9の出口水温Two(i-1)から、
式(2)で表すことができる。
Figure JPOXMLDOC01-appb-M000002
 中間熱交換器9の能力Qw(i-1)と、室内と外気との熱交換量Qio(i-1)とが釣り合っている場合、式(1)と式(2)とから、
 流入温度(入口水温Twi(i-1))、
 流出温度(出口水温Two(i-1))、
 室内温度Tai(i-1)
 外気温度Tao(i-1)
の関係を式(3)で表すことができる。
Figure JPOXMLDOC01-appb-M000003
 なお、式(3)のC1は、水流量や建物の熱交換性能から決まる定数である。
 ここで、外気温度がTao(i-1)からTao(i)へ変化後、室内温度が変化前の室内温度と一致するときの出口水温をTwo(i)とすると、目標室内温度Tai(i)と出口水温Two(i)との関係は式(4)となる。
Figure JPOXMLDOC01-appb-M000004
 そして、式(3)と式(4)とから、
 外気温度変化前(i-1)の出入口水温と、
 変化前(i-1)の室内外温度と、
 変化後(i)の室内外温度と、
 変化後(i)の出入口水温との関係は,式(5)で表すことができる。
Figure JPOXMLDOC01-appb-M000005
 ここで、室内温度は変化させない前提であるので、
 Tai(i)=Tai(i-1)   (B)
となる。また、入口水温は変化しないと仮定する。
 すなわち、
 Twi(i)=Twi(i-1)、  (C)
とする。
 式(B)、(C)の条件の下で式(5)を変形すると、式(6)となる。制御装置31は、例えば、式(6)に基づき、外気温度((Tai(i-1)-Tao(i-1))のTao(i-1))と、時間的に前後する外気温度の温度差((Tao(i-1)-Tao(i)))と、に基づいて、室外機2から流出する水の温度を制御する第1制御を実施し、第1制御を実施することによって調節対象の室内温度を目標温度に調節する。後述する冷房の式(7)についても同様である。 式(5)から式(6)への変形は、以下に示す通りである。
 以下の式(i)における枠で囲まれた部分は、式(5)に対して、式(B)、(C)を用いて置き換えた。
Figure JPOXMLDOC01-appb-M000006
 冷房の場合も式(6)の導出と同様に考えると、目標出口水温は式(7)によって、表すことができる。
Figure JPOXMLDOC01-appb-M000007
 つまり、外気温度変化前後で室内温度を変化させないための目標出口水温は、式(8)のように、外気温度の変化幅である(Tao(i-1)-Tao(i))に比例するように決定することができる
Figure JPOXMLDOC01-appb-M000008
 さらに、式(6)により、室外機2の能力である中間熱交換器9の熱交換量(Two(i-1)-Twi(i-1))と、室内負荷(Tai(i-1)-Tao(i-1))との熱バランスの関係から、外気温度変化前後(Tao(i-1)-Tao(i))の室内温度を一致させるための目標出口水温Two(i)を決定することができる。式(7)についても同様である。具体的には、目標出口水温Two(i)は、式(6)、(7)により、
 室内外の温度差に反比例するか、
 出入口水温度の差に比例するか、
 出入口水温度差と室内外温度差との比に比例する、
などのように、式(9)から決定することができる。
Figure JPOXMLDOC01-appb-M000009
 実際の制御では、式(6)もしくは式(7)の右辺第二項に緩和係数を乗じて目標出口水温を変更し、最終的に室内温度が目標室内温度と一致するように、制御装置31が室外機2を制御する。
<具体的な制御方法>
(暖房運転時における目標出口水温の動作方向)
 次に、上記の目標出口水温決定方法を制御装置31が実行することによる、室外機2の制御方法について説明する。
 図2は、室外機2の運転中における、目標出口水温Twoの変化の方向を示す。図2は制御装置31が行う動作である。室外機2の運転が開始し(S01)、暖房運転、もしくは冷房運転のどちらかの運転が選択される(S02)。暖房運転中に、現在の外気温度Tao(i)と所定時間前の外気温度Tao(i-1)との差である外気温度偏差(Tao(i)-Tao(i-1))を算出する。算出した外気温度偏差の比較を行い、外気温度偏差がゼロ、もしくは所定の範囲の場合(S03)は、現在の出口水温で運転を継続する。外気温度偏差が0を下回る場合(Tao(i)<Tao(i-1))、つまり現在の外気温度Tao(i)が所定時間前の外気温度Tao(i-1)よりも低い場合(S04)は、外気温度偏差を用いて、制御装置31は、前述した式(6)に従って目標出口水温を設定する(S05)。このとき、外気温度偏差が0より小さいことから、室内負荷は大きくなるため、制御装置31は、目標出口水温Two(i)を現在の出口水温Two(i-1)よりも上昇させる方向へ制御する(S06)。一方、外気温度偏差が0よりも大きい場合(Tao(i)>Tao(i-1))、つまり現在の外気温度Tao(i)が所定時間前の外気温度Tao(i-1)よりも高い場合は、同様に式(6)より目標出口水温を算出し(S07)、制御装置31は、目標出口水温Two(i)を現在の出口水温Two(i-1)よりも低下させる方向へ制御する(S08)。
(冷房運転時における目標出口水温の動作方向)
 次に、冷房運転の場合について説明する。冷房運転と判定すると(S02)、制御装置31は、暖房運転と同様に、算出した外気温度偏差(Tao(i)-Tao(i-1))を基に判定を行う(S10)。外気温度偏差がゼロ、もしくは所定の範囲の場合は、制御装置31は、現在の目標出口水温で変更運転を継続する。外気温度偏差が0より小さい場合(Tao(i)<Tao(i-1))、つまり現在の外気温度Tao(i)が所定時間前の外気温度Tao(i-1)よりも低い場合(S11)、式(7)より目標出口水温を算出する(S12)。このとき、外気温度偏差が0より小さいことから室内負荷は小さくなるため、制御装置31は、目標出口水温Two(i)を現在の出口水温Two(i-1)よりも上昇させる方向へ制御する(S13)。一方、外気温度偏差が0よりも大きい場合(Tao(i)>Tao(i-1))、つまり現在の外気温度Tao(i)が所定時間前の外気温度Tao(i-1)よりも高い場合は、同様に式(7)から目標出口水温を算出し(S14)、制御装置31は、室内負荷が高くなることから室内温度を下げる必要があるため、目標出口水温Two(i)を現在の出口水温Two(i-1)よりも低下させる方向へ制御する(S15)。
 次に、目標出口水温Two(i)の算出である式(6)及び式(7)に記載された、「室内温度と外気温度との差」、及び「入口水温と出口水温との差」の影響について、暖房運転の場合を例に説明する。
(室内温度と外気温度との差;外気温度の影響)
 暖房運転の場合の式(6)に関して、「室内温度と外気温度との差」(Tai(i-1)-Tao(i-1))について説明する。
 図3は、室外温度(外気温度)と室内負荷との関係を表すグラフである。横軸は室外温度を示し、縦軸は室内負荷を示す。室内温度が一定である場合(例えば室内温度=20℃)、暖房運転時における室内負荷は、図3に示すように、外気温度が低い(例えば0℃)と大きく、外気温度が高い(例えば10℃)と小さくなる。ここで、外気温度が変化した場合の、目標出口水温の変化幅について考える。まず、室内温度=20℃とし、外気温度が0℃から2℃に上昇したとする。式(1)に示すように、外気温度と室内温度との差は、室内負荷に比例する。このことから、外気温度が上昇しても室内温度を変化させないための室外機能力は、外気温度上昇前に対する室外機2の能力が、
 (20℃―2℃)÷(20℃―0℃)×100=90%
のとき安定する。つまり、現在の室外機2の能力の10%に相当する目標出口水温の低下で、外気温度が上昇しても室内温度は変化させずに済む。
 一方、外気温度が10℃から12℃へ上昇した場合は、
 (20℃―12℃)÷(20℃―10℃)×100=80%
となる。この場合、室外機2の能力20%低下に相当する目標出口水温の低下で、室内温度が設定温度と一致すると言える。
 図4は、室内温度と外気温度との偏差と、出口水温の変化率との関係を表すグラフである。つまり、図4に示すように、外気温度偏差が同じ(上記の例では偏差が2℃)であっても、外気温度が高い場合(室内設定温度と外気温度との差が小さい場合)は、目標出口水温の変化率は大きくなる。また、外気温度が低い場合(室内設定温度と外気温度との差が大きい場合)は、目標出口水温の変化率は小さくなる。新たに設定する目標出口水温は、室内温度と外気温度との差に反比例する。
(水温温度差の影響)
 次に、「入口水温と出口水温との差」(Two(i-1)-Twi(i-1))の影響について説明する。水流量が一定の場合、「入口水温と出口水温との差」は室外機2の能力を示している。水流量が一定の場合は、「入口水温と出口水温との差」の増加に伴い、室外機2の能力は大きい、つまり室内負荷が大きい状態と言える。式(5)を変形すると、外気温度変化後の出口水温と入口水温との差は、式(10)に示すように、1周期前の出口水温と入口水温との差に比例の関係となる。
Figure JPOXMLDOC01-appb-M000010
 ここで、室外機2の能力が大きい、つまり「入口水温と出口水温との差」が大きい場合(例えば、出口水温が40℃であり、「入口水温と出口水温との差」=10℃)と、室外機2の能力が小さい、つまり「入口水温と出口水温との差」が小さい場合(例えば、出口水温度が35℃であり、「入口水温と出口水温との差」=5℃)について考える。
 室外機2の能力が大きい場合の目標出口水温TwomH
 室外機2の能力が小さい場合の目標出口水温をTwomLとすると、
 式(9)から、現在の入口水温(30℃)、出口水温(40℃、35℃)と、目標出口水温Twoの関係は、式(11)、式(12)となる。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 入口水温は同じ(30℃)であることから、目標出口水温はTwomL<TwomHとなり、室外機2の能力が大きい場合のほうが、現在の出口水温に対して目標出口水温を大きく動かす必要がある。
 つまり、室内負荷、つまり室外機2の能力が大きい場合は、目標出口水温の変化幅は大きく、室外機能力が低い場合は目標出口水温の変化幅は小さくてよい。つまり、目標出口水温は出入口水温度差に比例する。
(実施の形態1の変形例1)
 上記では、水流量が一定の場合にける水流量の偏差について記述した。次に、制御装置31の制御により水ポンプ11のポンプ流量が可変である場合において、「入口水温と出口水温との差」が常に一定となるようにポンプ流量を制御できる場合について説明する。このように、「入口水温と出口水温との差」が常に一定となるようにポンプ流量を制御できる場合は、室外機2と室内熱交換器12との間に流量計を取り付けて、制御装置31は流量計によってポンプ流量を検出する。あるいは制御装置31は、水ポンプ11の回転数、流量調整弁開度など、流量を代表する値を検出する。制御装置31は、「入口水温と出口水温との差」の替わりに、上記のポンプ流量、水ポンプ11の回転数、流量調整弁開度などの、ポンプ流量を代表する値(流量指標値)を用いても良い。このように、制御装置31は、水ポンプ11によって搬送される水の流量を指標する流量指標値であって、時間的に前後する流量指標値の差を「入口水温と出口水温との差」の替わりに用いてもよい。
(実施の形態1の変形例2)
 また、以上の説明では外気温度偏差(Tao(i-1)-Tao(i))における、Tao(i)とTao(i-1)とに、現在の外気温度と所定時間前の外気温度とを用いることを想定した。この場合、現在の外気温度、定時間前の外気温度とは、例えば、ある期間ΔTaの平均の外気温度をTao(i-1)として使用し、期間ΔTaよりも後の期間である期間ΔTbの平均の外気温度をTao(i)として使用してもよい。また、例えば現在と過去の外気温度から所定時間後の外気温度を予測し、予測した外気温度と現在の外気温度との偏差を適用しても良い。
(外気温度差に基づく制御)
 以上のように、本実施の形態1では、式(6)~(9)等に示すように、制御装置31は、室内温度を一定に保持するに際して、室外機2(熱源装置)から流出する流出熱媒体温度の目標値を決定する場合、室外温度検出器21の検出値のうち、現在の検出値と所定時間前の検出値とを用いた温度差に比例して目標流出熱媒体温度を決定する。この決定方式により、空気調和システム1では、外気温度変化に伴う室内負荷変化に応じた目標流出熱媒体温度の設定ができるため、使用者の快適性を損なうことなく、運転効率の高い制御が実現可能である。
(室内外温度差を加味した制御)
 また、制御装置31は、式(6)~(9)等に示すように、室内温度を一定に保持するに際して、室外機2から流出する流出熱媒体温度の目標値を決定する場合、室外温度検出器21の検出値のうち、現在の検出値と所定時間前の検出値とを用いた温度差に比例し、かつ室内温度検出器22と室外温度検出器21とのそれぞれの検出値の差に反比例するように目標流出熱媒体温度を決定する。この決定方式により、空気調和システム1では、室内負荷に応じた目標流出熱媒体温度を設定できるため、使用者の快適性を損なうことなく、運転効率の高い制御が実現可能である。
(「入口水温と出口水温との差」を加味した制御)
 また、制御装置31は、式(6)~(9)等に示すように、室内温度を一定に保持するに際して、室外機2から流出する流出熱媒体温度の目標値を決定する場合、室外温度検出器21の検出値のうち、現在の検出値と所定時間前の検出値とを用いた温度差に比例し、かつ「入口水温と出口水温との差」(入口水温検出器23、出口水温検出器24により検出)に比例するように目標流出熱媒体温度を決定する。この決定方式により、空気調和システム1では、室内負荷に応じた目標流出熱媒体温度を設定できるため、使用者の快適性を損なうことなく、運転効率の高い制御が実現可能である。
(「入口水温と出口水温との差」に代えてポンプ流量を加味した制御)
 また、制御装置31は、上記の「実施の形態1の変形例1」で述べたように、室外機2から流出する流出熱媒体温度の目標値を決定する場合、室外温度検出器21の検出値のうち、現在の検出値と所定時間前の検出値とを用いた温度差に比例し、かつポンプ流量に比例するように目標流出熱媒体温度を決定する。この決定方式により、空気調和システム1では、室内負荷に応じた目標流出熱媒体温度を設定できるため、使用者の快適性を損なうことなく、運転効率の高い制御が実現可能である。
(室内外温度差及び「入口水温と出口水温との差」を加味した制御、あるいは室内外温度差及びポンプ流量を加味した制御)
 また、制御装置31は、室外機2から流出する流出熱媒体温度の目標値を決定する場合、式(9)、上記の「実施の形態1の変形例1」等に示すように、室外温度検出器21の検出値のうち、現在の検出値と所定時間前の検出値とを用いた温度差に比例し、「入口水温と出口水温との差」またはポンプ流量を室内外温度差で除した値に比例するように目標出口水温を決定する。この決定方式により、現在の室内負荷と室外機2の能力のそれぞれに応じた目標流出熱媒体温度の設定ができるため、使用者の快適性を損なうことなく、運転効率の高い制御が実現可能である。
(第2制御によって、室内設定温度と室内検出温度とが一致の場合)
 また、制御装置31が現在の室内温度と室内設定温度との差によって目標出口水温を設定する制御(第2制御)を備える場合、外気温度変化により室内負荷が変化しても建物の熱容量により室内温度変化が小さく、室内温度検出器22で検出できず、設定温度と室内温度とが一致していると判定される場合がある。このような場合、第2制御のみでは、室内負荷が変化しているにもかかわらず目標出口水温を変化させることが出来ない。しかし、空気調和システム1では、上記のように第1制御も用いるので外気温度変化によって目標出口水温の設定ができる。このため、使用者の快適性を損なうことなく、運転効率の高い制御が実現可能である。このように制御装置31は、室内温度が、第2制御の実行により略一定温度に保持されていると判定した場合であっても、第1制御を実行する。
(第1制御と第2制御との演算周期)
 また、室内温度と外気温度では応答周期が異なる。制御装置31は、室内設定温度と室内温度(検出値)との偏差で目標出口水温を変化させる項(上記式(A)のΔT2)と、外気温度の変化幅に応じて目標出口水温を変化させる項(上記式(A)のΔT1)との演算インターバルが異なる。このように制御装置31は、第1制御のための第1演算と、第2制御のための第2演算とを周期的に実行する。このとき、第1演算の周期と、第2演算の周期とは、異なる。これにより、制御装置31は、利用する温度を的確に検出できるため、目標出口水温の設定を確実に行うことができる。
(ヒートポンプ装置の使用)
 また、室外機2として、能力可変のヒートポンプ装置を用いてもよい。能力可変のヒートポンプ装置によって、運転効率が高く、目標出口水温を容易に変化させることができるため、消費電力量を抑制することができる。
(除霜運転と外気温度の検出値)
 また、室外機2がヒートポンプ装置の場合、暖房運転により着霜が発生するため、除霜運転が必要となる。このとき、室外温度検出器21は、除霜中の室外熱交換器7の温度の影響を受けるため、外気温度を正確に検出できない。そこで、制御装置31は、除霜運転中と、除霜終了後の所定期間内(例えば3分以内)の外気温度を採用しないようにする。これにより、外気温度を正確に検出できる。
 本実施の形態1によれば、負荷装置と熱源装置とが水回路によって接続される空気調和システム1において、熱源装置が室内負荷に応じて水温を変化させることで、快適性を損なうことなく、高い運転効率を実現できる。
 以上の実施の形態1では、室内機3(熱交換装置)によって室内の空気を対象に温度調節を行う場合を説明したが、一例である。温度調節システムによる温度調節の対象は、空気に限らず、給湯に利用される水や、タンクに蓄えられる水でも構わない。この例では、水回路10には熱媒体として水が循環する。水回路10を循環する水によって、給湯に利用される水等が加熱されるので、熱交換装置は、水-水熱交換器が使用される。
 以上の実施の形態1では空気調和システム1を説明したが、空気調和システム1における制御装置31による制御を、空気調和システム1に対する制御方法として把握することも可能である。
 1 空気調和システム、2 室外機、3 室内機、4 冷媒回路、5 圧縮機、6 四方弁、7 室外熱交換器、8 膨張弁、9 中間熱交換器、10 水回路、11 水ポンプ、12 室内熱交換器、21 室外温度検出器、22 室内温度検出器、23 入口水温検出器、24 出口水温検出器、31 制御装置、33 記憶装置。
 

Claims (16)

  1.  制御を受けることで流入する熱媒体の加熱と冷却とのいずれかを行い、熱媒体を流出する熱源装置と、熱媒体が通過することで温度調節の対象となる調節対象と熱交換し、前記調節対象の温度を目標温度に調節する熱交換装置と、熱媒体を搬送する搬送装置とが環状に配管で接続され、前記搬送装置によって熱媒体が循環する熱媒体回路と、
     前記熱源装置の制御を介して、前記熱源装置から流出する熱媒体の温度を制御する制御装置と、
     外気温度を検出する外気温度検出器と、を備え、
     前記制御装置は、
     前記外気温度と、時間的に前後する前記外気温度の温度差と、に基づいて、前記熱源装置から流出する熱媒体の温度を制御する第1制御を実施し、前記第1制御を実施することによって前記調節対象の温度を目標温度に調節することを特徴とする温度調節システム。
  2.  前記第1制御は、
     前記外気温度と、時間的に前後する前記外気温度の温度差とに加え、
    (1)過去の時刻における、前記調節対象の温度と前記外気温度との温度差、
    (2)過去の時刻における、前記熱源装置への熱媒体の流入温度と流出温度との温度差、
    (3)前記搬送装置によって搬送される熱媒体の流量を指標する流量指標値であって、時間的に前後する流量指標値の差、
    のいずれかを用いることを特徴とする請求項1記載の温度調節システム。
  3.  前記制御装置は、
     前記第1制御を実行する場合には、
     前記外気温度と、時間的に前後する前記外気温度の温度差とに加え、
     過去の時刻における、前記調節対象の温度と前記外気温度との温度差を用いると共に、さらに、
     過去の時刻における、前記熱源装置への熱媒体の流入温度と流出温度との温度差を用いることを特徴とする請求項1記載の温度調節システム。
  4.  前記制御装置は、
     前記第1制御を実行する場合には、
     前記外気温度と、時間的に前後する前記外気温度の温度差とに加え、
     過去の時刻における、前記調節対象の温度と前記外気温度との温度差を用いると共に、さらに、
     前記搬送装置によって搬送される熱媒体の流量を指標する流量指標値であって、時間的に前後する流量指標値の差を用いることを特徴とする請求項1記載の温度調節システム。
  5.  前記制御装置は、
     前記第1制御を実行する場合には、
     前記外気温度と、時間的に前後する前記外気温度の温度差とに加え、
     過去の時刻における、前記調節対象の温度と前記外気温度との温度差を用いると共に、
     時間的に前後する前記外気温度の温度差と、過去の時刻における、前記調節対象の温度と前記外気温度との温度差との温度差どうしの比の値に基づいて、前記熱源装置から流出する熱媒体の温度を制御することを特徴とする請求項1記載の温度調節システム。
  6.  前記制御装置は、
     前記第1制御を実行する場合には、
     前記外気温度と、時間的に前後する前記外気温度の温度差とに加え、
     過去の時刻における、前記熱源装置への熱媒体の流入温度と流出温度との温度差を用いると共に、
     時間的に前後する前記外気温度の温度差と、過去の時刻における、前記熱源装置への熱媒体の流入温度と流出温度との温度差との温度差どうしの積の値に基づいて、前記熱源装置から流出する熱媒体の温度を制御することを特徴とする請求項1記載の温度調節システム。
  7.  前記制御装置は、
     前記第1制御を実行する場合には、
     前記外気温度と、時間的に前後する前記外気温度の温度差とに加え、
     前記搬送装置によって搬送される熱媒体の流量を指標する流量指標値であって、時間的に前後する流量指標値の差を用いると共に、
     時間的に前後する前記外気温度の温度差と、前記搬送装置によって搬送される熱媒体の流量を指標する流量指標値であって、時間的に前後する流量指標値の差との積の値に基づいて、前記熱源装置から流出する熱媒体の温度を制御することを特徴とする請求項1記載の温度調節システム。
  8.  前記制御装置は、
     前記第1制御を実行する場合には、
     時間的に前後する前記外気温度の温度差と、過去の時刻における、前記調節対象の温度と前記外気温度との温度差との温度差どうしの比の値を、過去の時刻における、前記熱源装置への熱媒体の流入温度と流出温度との温度差に乗じた積の値に基づいて、前記熱源装置から流出する熱媒体の温度を制御することを特徴とする請求項3記載の温度調節システム。
  9.  前記制御装置は、
     前記第1制御を実行する場合には、
     時間的に前後する前記外気温度の温度差と、過去の時刻における、前記調節対象の温度と前記外気温度との温度差との温度差どうしの比の値を、前記搬送装置によって搬送される熱媒体の流量を指標する流量指標値であって、時間的に前後する流量指標値の差に乗じた積の値に基づいて、前記熱源装置から流出する熱媒体の温度を制御することを特徴とする請求項4記載の温度調節システム。
  10.  前記温度調節システムは、さらに、
     前記調節対象の温度を検出する調節対象温度検出器を備え、
     前記制御装置は、
     前記調節対象温度検出器によって検出された前記調節対象の温度に基づいて、前記熱源装置から流出する熱媒体の温度を制御する第2制御を実施し、前記第1制御と前記第2制御とを用いて前記調節対象の温度を目標温度に調節することを特徴とする請求項1記載の温度調節システム。
  11. 前記制御装置は、
     前記調節対象の温度が、前記第2制御の実行により略一定温度に保持されていると判定した場合であっても、前記第1制御を実行することを特徴とする請求項10記載の温度調節システム。
  12.  前記制御装置は、
     前記第1制御のための第1演算と、前記第2制御のための第2演算とを周期的に実行し、
     前記第1演算の周期と、前記第2演算の周期とは、
     異なることを特徴とする請求項10記載の温度調節システム。
  13.  前記温度調節システムは、
     前記熱源装置として、ヒートポンプ装置が使用されることを特徴とする請求項1記載の温度調節システム。
  14.  前記ヒートポンプ装置は、
     除霜運転が可能であり、
     前記制御装置は、
     前記ヒートポンプ装置の除霜運転中の期間と、除霜運転から通常運転へ切り替わるまでの所定の期間とにおける外気温度を、前記第1制御のための外気温度から除外することを特徴とする請求項13記載の温度調節システム。
  15.  前記請求項1~請求項14のいずれかに記載の温度調節システムを用いることにより、室内の空気を前記調節対象として前記熱交換装置によって空調することを特徴とする空気調和システム。
  16.  制御を受けることで流入する熱媒体の加熱と冷却とのいずれかを行い、熱媒体を流出する熱源装置と、熱媒体が通過することで温度調節の対象となる調節対象と熱交換し、前記調節対象の温度を調節する熱交換装置と、熱媒体を搬送する搬送装置とが環状に配管で接続され、前記搬送装置によって熱媒体が循環する熱媒体回路と、
     外気温度を検出する外気温度検出器とを
    備えた温度調節システムを制御する制御方法であって、
     制御装置が、
     前記外気温度と、時間的に前後する前記外気温度の温度差と、に基づいて、前記熱源装置から流出する熱媒体の温度を制御する第1制御を実施し、前記第1制御を実施することによって前記調節対象の温度を目標温度に調節することを特徴とする制御方法。
PCT/JP2011/062470 2011-05-31 2011-05-31 温度調節システム及び空気調和システム及び制御方法 WO2012164684A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013517744A JP5657110B2 (ja) 2011-05-31 2011-05-31 温度調節システム及び空気調和システム
PCT/JP2011/062470 WO2012164684A1 (ja) 2011-05-31 2011-05-31 温度調節システム及び空気調和システム及び制御方法
EP11866717.9A EP2716989B1 (en) 2011-05-31 2011-05-31 Temperature adjusting system, air conditioning system, and control method
CN201180071265.5A CN103597290B (zh) 2011-05-31 2011-05-31 温度调节系统、空调系统
US14/113,465 US9562701B2 (en) 2011-05-31 2011-05-31 Temperature control system and air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/062470 WO2012164684A1 (ja) 2011-05-31 2011-05-31 温度調節システム及び空気調和システム及び制御方法

Publications (1)

Publication Number Publication Date
WO2012164684A1 true WO2012164684A1 (ja) 2012-12-06

Family

ID=47258570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062470 WO2012164684A1 (ja) 2011-05-31 2011-05-31 温度調節システム及び空気調和システム及び制御方法

Country Status (5)

Country Link
US (1) US9562701B2 (ja)
EP (1) EP2716989B1 (ja)
JP (1) JP5657110B2 (ja)
CN (1) CN103597290B (ja)
WO (1) WO2012164684A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106440583A (zh) * 2016-11-14 2017-02-22 广东美的暖通设备有限公司 空调热泵热水机及其防冻控制方法
JP2018141566A (ja) * 2017-02-27 2018-09-13 清水建設株式会社 放射空調システム
JP2018146118A (ja) * 2017-03-01 2018-09-20 木村工機株式会社 空気調和システム
US10502449B2 (en) 2017-03-01 2019-12-10 Kimura Kohki Co., Ltd. Air conditioner using heat exchange water and air conditioning system including the same
CN115289611A (zh) * 2022-07-08 2022-11-04 青岛海尔空调电子有限公司 用于空气源热泵机组防冻的方法及装置、空气源热泵机组、存储介质
JP7456301B2 (ja) 2020-06-11 2024-03-27 三菱電機株式会社 空調システム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5869648B1 (ja) * 2014-10-29 2016-02-24 木村工機株式会社 空気調和システム
JP6338761B2 (ja) * 2015-02-18 2018-06-06 三菱電機株式会社 空気調和システム
JP6516838B2 (ja) * 2015-06-03 2019-05-22 三菱電機株式会社 温水暖房システム、制御装置および制御方法
CN105387541B (zh) * 2015-11-06 2019-01-08 上海清清家科技有限公司 户式化科技系统及其控制方法
KR20170068958A (ko) * 2015-12-10 2017-06-20 삼성전자주식회사 공조 시스템에서 온도를 제어하기 위한 장치 및 방법
CN107631447B (zh) * 2017-09-30 2020-05-05 广东美的制冷设备有限公司 运行控制方法、运行控制装置、空调器和存储介质
CN109556241B (zh) * 2018-09-29 2021-05-25 青岛海尔空调电子有限公司 一种水系统空调控制方法
US20230097411A1 (en) * 2021-09-28 2023-03-30 SaeHeum Song Water-Mediated Thermal Conditioning System
CN115289612A (zh) * 2022-07-08 2022-11-04 青岛海尔空调电子有限公司 用于空气源热泵机组防冻的方法及装置、空气源热泵机组、存储介质
CN115682468B (zh) * 2022-11-07 2023-04-14 鼎恒(烟台)科技发展有限公司 一种基于数据分析的空气源热泵机组智能运维管控系统

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824741A (ja) * 1981-08-05 1983-02-14 Mitsubishi Electric Corp 空気調和装置
JPS62141470A (ja) * 1985-12-13 1987-06-24 三菱電機株式会社 ヒ−トポンプ装置
JPH0233055Y2 (ja) * 1984-08-20 1990-09-06
JPH0447566Y2 (ja) * 1985-03-29 1992-11-10
JPH05340591A (ja) * 1992-06-05 1993-12-21 Fujitsu General Ltd 空気調和機の制御方法
JPH06137645A (ja) * 1992-10-21 1994-05-20 Sanden Corp 空調システムの制御方法
JPH074713A (ja) * 1993-06-16 1995-01-10 Mitsubishi Electric Corp 空気調和機の室温制御装置
JPH10141745A (ja) * 1996-11-11 1998-05-29 Daikin Ind Ltd 空気調和機
JP2899437B2 (ja) * 1991-04-25 1999-06-02 ダイダン株式会社 空調システム
JPH11159844A (ja) * 1997-11-28 1999-06-15 Matsushita Electric Ind Co Ltd 空気調和装置の外気温度表示装置
JP2000304329A (ja) * 1999-04-19 2000-11-02 Sanyo Electric Co Ltd 空気調和機
JP2007212085A (ja) 2006-02-10 2007-08-23 Ishimoto Kenchiku Jimusho:Kk 輻射パネル用空調システムの制御方法
JP2008002795A (ja) * 2006-06-26 2008-01-10 Denso Corp 冷凍サイクル装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4660759A (en) * 1984-11-13 1987-04-28 Honeywell Inc. Optimum start/stop dependent upon both space temperature and outdoor air temperature
JP3209801B2 (ja) * 1992-08-31 2001-09-17 東芝キヤリア株式会社 空気調和機
JP3492849B2 (ja) * 1996-05-01 2004-02-03 サンデン株式会社 車両用空気調和装置
JPH1054571A (ja) 1996-08-13 1998-02-24 Tokyo Gas Co Ltd 大規模床暖房システム
JP4032634B2 (ja) * 2000-11-13 2008-01-16 ダイキン工業株式会社 空気調和装置
US7146290B2 (en) * 2000-11-27 2006-12-05 Uview Ultraviolet Systems, Inc. Apparatus and method for diagnosing performance of air-conditioning systems
US7386988B1 (en) * 2004-03-09 2008-06-17 Petschauer Richard J Outside temperature humidity compensation system
US7099748B2 (en) * 2004-06-29 2006-08-29 York International Corp. HVAC start-up control system and method
JP4327738B2 (ja) 2005-01-18 2009-09-09 株式会社東芝 生体光計測装置及び生体光計測方法
JP2006329529A (ja) 2005-05-26 2006-12-07 Osaka Gas Co Ltd 熱媒循環式暖房装置
US7789317B2 (en) * 2005-09-14 2010-09-07 Arzel Zoning Technology, Inc. System and method for heat pump oriented zone control
JP5481838B2 (ja) 2008-11-10 2014-04-23 株式会社デンソー ヒートポンプサイクル装置
WO2010131378A1 (ja) * 2009-05-12 2010-11-18 三菱電機株式会社 空気調和装置
CN102022798B (zh) * 2009-09-14 2013-07-10 财团法人资讯工业策进会 温度控制系统、温度控制装置、空调装置及温度控制方法
US9797614B2 (en) 2010-02-24 2017-10-24 Mitsubishi Electric Corporation Air conditioning system
WO2012056533A1 (ja) * 2010-10-27 2012-05-03 株式会社 テクノミライ 空調制御システム及びプログラム

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824741A (ja) * 1981-08-05 1983-02-14 Mitsubishi Electric Corp 空気調和装置
JPH0233055Y2 (ja) * 1984-08-20 1990-09-06
JPH0447566Y2 (ja) * 1985-03-29 1992-11-10
JPS62141470A (ja) * 1985-12-13 1987-06-24 三菱電機株式会社 ヒ−トポンプ装置
JP2899437B2 (ja) * 1991-04-25 1999-06-02 ダイダン株式会社 空調システム
JPH05340591A (ja) * 1992-06-05 1993-12-21 Fujitsu General Ltd 空気調和機の制御方法
JPH06137645A (ja) * 1992-10-21 1994-05-20 Sanden Corp 空調システムの制御方法
JPH074713A (ja) * 1993-06-16 1995-01-10 Mitsubishi Electric Corp 空気調和機の室温制御装置
JPH10141745A (ja) * 1996-11-11 1998-05-29 Daikin Ind Ltd 空気調和機
JPH11159844A (ja) * 1997-11-28 1999-06-15 Matsushita Electric Ind Co Ltd 空気調和装置の外気温度表示装置
JP2000304329A (ja) * 1999-04-19 2000-11-02 Sanyo Electric Co Ltd 空気調和機
JP2007212085A (ja) 2006-02-10 2007-08-23 Ishimoto Kenchiku Jimusho:Kk 輻射パネル用空調システムの制御方法
JP2008002795A (ja) * 2006-06-26 2008-01-10 Denso Corp 冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2716989A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106440583A (zh) * 2016-11-14 2017-02-22 广东美的暖通设备有限公司 空调热泵热水机及其防冻控制方法
JP2018141566A (ja) * 2017-02-27 2018-09-13 清水建設株式会社 放射空調システム
JP2018146118A (ja) * 2017-03-01 2018-09-20 木村工機株式会社 空気調和システム
US10502449B2 (en) 2017-03-01 2019-12-10 Kimura Kohki Co., Ltd. Air conditioner using heat exchange water and air conditioning system including the same
JP7456301B2 (ja) 2020-06-11 2024-03-27 三菱電機株式会社 空調システム
CN115289611A (zh) * 2022-07-08 2022-11-04 青岛海尔空调电子有限公司 用于空气源热泵机组防冻的方法及装置、空气源热泵机组、存储介质

Also Published As

Publication number Publication date
US20140041848A1 (en) 2014-02-13
EP2716989A4 (en) 2015-07-01
JP5657110B2 (ja) 2015-01-21
EP2716989B1 (en) 2017-03-22
CN103597290A (zh) 2014-02-19
CN103597290B (zh) 2016-04-06
JPWO2012164684A1 (ja) 2014-07-31
EP2716989A1 (en) 2014-04-09
US9562701B2 (en) 2017-02-07

Similar Documents

Publication Publication Date Title
JP5657110B2 (ja) 温度調節システム及び空気調和システム
JP5312674B2 (ja) 空気調和システム及び空気調和システムの制御方法
EP2677251B1 (en) Refrigeration cycle device and refrigeration cycle control method
JP6570746B2 (ja) 熱媒体循環システム
JP6681896B2 (ja) 冷凍システム
WO2016194098A1 (ja) 空気調和装置及び運転制御装置
JP2012159255A (ja) ヒートポンプ式熱源機および加温システム
JP2005069554A (ja) 水熱源空調システム
JP6896161B2 (ja) 空気調和システムの制御装置、室外機、中継機、熱源機、および空気調和システム
JP5973076B2 (ja) 温水型暖房装置
JP6672619B2 (ja) 空調システム
JP2013130160A (ja) 空気調和機
JP2010236816A (ja) ヒートポンプ式空調機およびヒートポンプ式空調機の制御方法
JP2017009269A5 (ja)
JP2012007751A (ja) ヒートポンプサイクル装置
JP2018036002A (ja) 空調給湯システム
US11585578B2 (en) Refrigeration cycle apparatus
JP2020165540A (ja) ヒートポンプサイクル装置
WO2021214931A1 (ja) 空気調和システムおよび制御方法
WO2021224962A1 (ja) 空気調和装置
JP5768151B2 (ja) ヒートポンプ式空調機およびヒートポンプ式空調機の制御方法
EP2622523B1 (en) Hot water prioritization
JPH08159590A (ja) 空気調和機
JP6507598B2 (ja) 空調システム
JP2006046839A (ja) 冷温水搬送システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180071265.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866717

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14113465

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013517744

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011866717

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011866717

Country of ref document: EP