JP2012159255A - ヒートポンプ式熱源機および加温システム - Google Patents

ヒートポンプ式熱源機および加温システム Download PDF

Info

Publication number
JP2012159255A
JP2012159255A JP2011020304A JP2011020304A JP2012159255A JP 2012159255 A JP2012159255 A JP 2012159255A JP 2011020304 A JP2011020304 A JP 2011020304A JP 2011020304 A JP2011020304 A JP 2011020304A JP 2012159255 A JP2012159255 A JP 2012159255A
Authority
JP
Japan
Prior art keywords
temperature
heat source
heat
heat pump
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011020304A
Other languages
English (en)
Inventor
Kaoru Katayama
馨 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2011020304A priority Critical patent/JP2012159255A/ja
Priority to CN201210021651.XA priority patent/CN102628627B/zh
Publication of JP2012159255A publication Critical patent/JP2012159255A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】
加温する負荷の大きさに応じて最適な加熱能力を備えたヒートポンプ式熱源機を準備しなければならず、機種数が多くなってしまい、製造や流通が非効率的になるという問題が生じる。
【解決手段】
ヒートポンプ式熱源機は、水―冷媒熱交換器と、この水―冷媒熱交換器の入口水温を検出する入口温度センサと、水―冷媒熱交換器の出口水温を検出する出口温度センサと、入口温度センサによって検出した温度と停止温度とを比較して冷凍サイクルの運転/停止を制御する運転制御手段と、出口温度センサによって検出した温度と目標温度とを比較して冷凍サイクルによる加熱量を制御する加熱量制御手段と、停止温度と目標温度のそれぞれを独立して設定可能な操作手段とを備える。
【選択図】図2

Description

本発明の実施の形態は、ヒートポンプ式冷凍サイクルを用いて温水を発生させるヒートポンプ式熱源機およびこの熱源機を用いた加温システムに関する。
床暖房、ファンコイルユニット等の負荷に対して温水を供給して暖房等の加熱を行なう加温システムにおいて、水を加熱する手段として外気等の空気を熱源としたヒートポンプ式熱源機を用いることが考えられている。 このようなヒートポンプ式熱源機では、水を加熱するための熱量が負荷の要求する熱量以上である必要がある。したがって、負荷に応じて最適能力(加熱熱量)のヒートポンプ式熱源機を選定する必要がある。 加熱熱量は設置先や負荷の種類等によって異なるため、それぞれの負荷に合わせた加熱能力を備えたヒートポンプ式熱源機の種類を準備しなければならない。
また、加熱能力を大きくするために複数の冷凍サイクルを備え、各冷凍サイクルの加熱出力となる水熱交換器を直列に接続して大能力化を図ったヒートポンプ式熱源機も考えられている。(特許文献1参照)
特開2008−175476号公報
しかしながら、負荷に応じて最適な加熱能力を備えたヒートポンプ式熱源機を準備した場合、機種数が多くなってしまい、製造や流通が非効率的になるという問題が生じる。
本発明の実施形態によれば、ヒートポンプ式熱源機は、水を加熱するために、水と冷媒とを熱交換するための水―冷媒熱交換器を備えたヒートポンプ冷凍サイクルを有する。このヒートポンプ式熱源機は、水―冷媒熱交換器の入口側の水温を検出する入口温度センサと、水―冷媒熱交換器の出口側の水温を検出する出口温度センサと、入口温度センサによって検出した入口水温と停止温度とを比較してヒートポンプ冷凍サイクルの運転/停止を制御する運転制御手段と、出口温度センサによって検出した出口水温と目標温度とを比較してヒートポンプ冷凍サイクルによる加熱量を制御する加熱量制御手段と、停止温度と目標温度のそれぞれを独立して設定可能な操作手段とを備える。
また、本発明の実施形態によれば、加温システムは、水配管によって負荷とポンプと複数台の上記ヒートポンプ式熱源機の各水―冷媒熱交換器を直列に接続し、上流側のヒートポンプ式熱源機の目標温度を、下流側のヒートポンプ式熱源機の停止温度よりも低く設定する。
本発明の実施形態に係る加温システムの構成図。 同加温システムに使用されるヒートポンプ式熱源機の冷凍サイクルと制御ブロック図。 同ヒートポンプ式熱源機の制御フローチャート。 同ヒートポンプ式熱源機の各部の温度変化と冷凍サイクルの運転状態を示すグラフ。
本発明の実施形態について、図1乃至図4を用いて説明する。
本発明の実施形態に係るヒートポンプ式熱源機およびこのヒートポンプ式熱源機を用いた加温システム1の構成を図1に示す。
加温システム1は、床暖房、ファンコイルユニット等の負荷4に水配管5から供給される温水が流通する。負荷4では、この温水の熱が放熱され所定の暖房や加熱が行われる。水配管5は途中にポンプ3が設けられ、このポンプ3が動作することで水配管5内の水が流通するようになっている。水配管5途中には複数のヒートポンプ式熱源機HS(1)〜HS(n)が直列に設けられている。水配管5は負荷4とポンプ3、複数のヒートポンプ式熱源機HS(1)〜HS(n)の各水―冷媒熱交換器(図2中の26)を直列に接続した閉回路を構成している。ポンプ3を運転することで、水配管5内の水が負荷4、直列接続された複数のヒートポンプ式熱源機HS(1)〜HS(n)間を循環する。このように熱を搬送する水は閉回路になっている。
なお、図1では最終段のヒートポンプ式熱源機HS(n)と負荷4との間にポンプ3を配置しているが、ポンプ3の設置位置は水配管5途中のどこに設けても良い。
以下、水配管5に対して直列接続されたヒートポンプ式熱源機HS(1)〜HS(n)において任意のヒートポンプ式熱源機をヒートポンプ式熱源機HS(i)とし、このヒートポンプ式熱源機HS(i)に隣接し、水配管5に流れる水の方向を基準として下流側のヒートポンプ式熱源機をヒートポンプ式熱源機HS(i+1)で表す。
ポンプ3の運転によって、負荷4から流出した低温水は、複数のヒートポンプ式熱源機HS(1)〜HS(n)を直列に流れる。ここで、ヒートポンプ式熱源機HS(1)〜HS(n)が運転されれば、水配管5内の水が所望の温度になるまで各ヒートポンプ式熱源機HS(1)〜HS(n)で順次加熱され、この加熱された水(湯)が、再び負荷4に戻る。この結果、負荷4には温水が供給され、その熱を放熱して、暖房または加熱が実行される。
図2に示す各ヒートポンプ式熱源機HS(1)〜HS(n)は、いずれも同一構成となっており、1つのヒートポンプ式冷凍サイクルとその冷凍サイクルを制御する制御装置とから構成される。ヒートポンプ式冷凍サイクルは、インバータ装置23で可変速駆動される圧縮機24、冷媒の流通方向を変更する四方弁25、水―冷媒熱交換器26、膨張弁27、熱源側熱交換器28、再び四方弁2を通過して圧縮機24へと戻るように順次冷媒配管を接続することで構成された一般的な冷凍サイクルとなっている。
熱源側熱交換器28は、例えば、フィンドチューブタイプの空気熱交換器であり、この熱交換器に通風するためのプロペラファン29が設けられている。
なお、四方弁25は熱源側熱交換器28の表面に空気中の水分が凝縮してできる着霜を溶かす除霜運転のために設けられるが、着霜しない高温の雰囲気条件下で熱源側熱交換器28が使用されるのであれば、四方弁25は不要となる。
冷凍サイクルが運転されると圧縮機24で冷媒が圧縮され、吐出された高温高圧冷媒が四方弁25を経由して水―冷媒熱交換器26に流れる。水―冷媒熱交換器26では水配管5を流れる水と冷凍サイクル中の高温高圧冷媒が熱交換し、水が加熱される。
各ヒートポンプ式熱源機HS(1)〜HS(n)の冷凍サイクルの冷媒として、本実施の形態ではHFC冷媒であるR410Aを用いているが、適切な他の冷媒を用いてもよい。 また、各ヒートポンプ式熱源機HS(1)〜HS(n)は全く同一でなくとも、各ヒートポンプ式熱源機HS(1)〜HS(n)の加熱能力を異ならせても良い。例えば、加熱能力が5Kwの各ヒートポンプ式熱源機と2.5Kwのヒートポンプ式熱源機を組み合わせることも可能である。 例えば、負荷4が必要とする最大加熱能力が10Kwの場合には、5Kwのヒートポンプ式熱源機を水配管5に対して2台直列に設置しても良いし、水配管5に対して5Kwのヒートポンプ式熱源機を1台と2.5Kwのヒートポンプ式熱源機2台を直列に設置してもよい。
次に、図2に従ってヒートポンプ式熱源機HS(i)の制御装置について、説明する。 圧縮機24を駆動するインバータ装置23とプロペラファン29を駆動するファンモータ30は、制御手段である制御器21によって制御される。 制御器21は、マイクロコンピュータおよびその周辺回路から構成される。制御器21には、その入力側に水―冷媒熱交換器26の入口側の水配管5の温度(以下、入口水温Tin(i)という。)を検出する入口温度センサ32と水―冷媒熱交換器26の出口側の水配管5の温度(以下、出口水温Tout(i)という。)を検出する出口温度センサ31が入力される。さらに、制御器21には、使用者が設定操作可能な操作手段である操作器22が接続されている。 制御器21は、これらのセンサ31、32の検出温度および操作器22の設定内容が入力され、これらのデータに基づき圧縮機24やファンモータ30の回転数を決定し、制御する。
さらに、熱源側熱交換器28の加熱運転時の冷媒出口配管近傍には熱交温度センサ33が設けられ、冷媒温度(Te)を検出する。また熱源側熱交換器28の熱交換用空気流入側には熱交換用の空気温度(To)を検出する温度センサ34が設けられている。これらのセンサ33,34も制御器21に接続され、制御器21は、検出した各温度Te、Toを読み取るよう。 これらのセンサの検出温度は、熱源側熱交換器28の着霜状態の検出に用いられる。制御器21は、各温度Te、Toの差(To−Te)及びその差の時間変化に基づき着霜状態を検出し、その着霜量が除霜に必要な量に到達したか否かを判断し、除霜が必要と判断した場合、除霜運転を行なう。
操作手段として機能する操作器22は、図2にその外観を示すように、表面に2種類のアップ/ダウン操作ボタン22a、22b及びヒートポンプ熱源機HS(i)の運転/停止を指示する運転/停止釦22cが設けられている。第1アップ/ダウン操作ボタン22aは、ヒートポンプ熱源機HS(i)の停止温度Toff(i)を設定するための操作釦で、入口温度センサ32の検出する入口水温Tin(i)が停止温度Toff(i)を超えると圧縮機24及びファンモータ30を停止する。 この第1アップ/ダウン操作ボタン22aの上部には表示手段である第1液晶表示部22dが設けられており、第1アップ/ダウン操作ボタン22aによって設定された停止温度Toff(i)がデジタル値で表示される。
一方、第2アップ/ダウン操作ボタン22bは、ヒートポンプ熱源機HS(i)の出湯温度を設定するための釦で、ヒートポンプ熱源機HS(i)から出力される温水の目標温度Ts(i)を設定するためのものである。 第2アップ/ダウン操作ボタン22bの上部にも表示手段である第2液晶表示部22eが設けられており、第2アップ/ダウン操作ボタン22bによって設定された目標温度Ts(i)がデジタル値で表示される。このように、操作器22は、ヒートポンプ熱源機HS(i)の停止温度Toff(i)と温水の目標温度Ts(i)を使用者が独立して設定可能になっている。
制御器21は、操作器22により設定された停止温度Toff(i)と目標温度Ts(i)を読み込むとともに入口温度センサ32の検出する入口水温Tin(i)と出口温度センサ31が検出する出口水温Tout(i)、冷媒温度Te、空気温度Toを読み込む。 制御器21は、これらのデータ等を用いてヒートポンプ熱源機HS(i)を制御するための以下の手段を有している。
(1) 入口水温Tin(i)と停止温度Toff(i)を比較し、その結果に応じてヒートポンプ熱源機HS(i)の冷凍サイクルの運転/停止を制御する運転制御手段。
(2) ヒートポンプ熱源機HS(i)の運転中、目標温度Ts(i)と出口水温Tout(i)との差ΔT(i)に応じてインバータ装置23の出力周波数f(i)を変化させ、圧縮機24の回転数を制御してヒートポンプ熱源機HS(i)の加熱量を制御する加熱量制御手段。
(3)熱源側熱交換器28の冷媒温度Teと熱交換用の空気温度Toの差(To−Te)及びその差の時間変化に基づき着霜状態を検出し、その着霜量が除霜に必要な量に到達したか否かを判断し、除霜が必要と判断した場合、除霜運転を行う除霜運転手段。
操作器22での設定内容に基づくヒートポンプ熱源機HS(i)の運転動作を、図3の制御器21の制御フローチャートに基づき説明する。
制御器21は、運転/停止釦22cにおいて運転が設定されている間は、ヒートポンプ熱源機HS(i)を運転するために操作器22に設定された停止温度Toff(i)、目標温度Ts(i)を読み込むと共に各種温度センサの検出値である入口水温Tin(i)、出口水温Tout(i)、冷媒温度Teと熱交換用の空気温度Toを読み込む(ステップST0)。なお、運転/停止釦22cにおいて停止が設定されていれば、ヒートポンプ熱源機HS(i)のすべての機器の運転を停止する。
ステップST0に続いて、入口水温Tin(i)と停止温度Toff(i)を比較し(ステップST1)、Tin(i)>Toff(i)となった場合(ステップST1のYes)は、負荷4での放熱が少なく、加熱の必要がないと判断されるため、冷凍サイクルの運転を停止、すなわち、圧縮機24、ファンモータ30を停止させる(ステップST2)。ステップST2で冷凍サイクルを停止させた後は、再び最初のステップST1に戻り、入口水温Tin(i)が停止温度Toff(i)未満に低下するまでは停止状態を継続する。
一方、ステップST1において、入口水温Tin(i)が停止温度Toff(i)未満に低下している場合(ステップST1のNo)には、負荷4に供給する水の温度が低下しているため、加熱が必要と判断されるため、冷凍サイクルを運転する。すなわち、圧縮機24、ファンモータ30を運転させる(ステップST3〜5)。
具体的には、圧縮機24を運転するインバータ装置23の出力周波数f(i)をステップST3、4で決定して、この周波数出力f(i)をインバータ装置23から圧縮機24に対して出力させるとともにファンモータ30が所定の回転数となるように運転する。 まず、ステップST3では、温度差ΔT(i)を操作器22により設定された目標温度Ts(i)から出口水温Tout(i)を減算して算出する。続いてステップST4にてこの温度差ΔT(i)とその時間変化割合に基づきインバータ装置23の出力周波数f(i)を算出する。この出力周波数f(i)の算出は、例えばPI制御等により、温度差ΔT(i)に比例して出力周波数f(i)を制御することで、加熱量を制御ために行なわれる。そして、算出された出力周波数f(i)となるように次のステップST5でインバータ装置23を制御する。
この結果、目標温度Ts(i)と出口水温Tout(i)との差ΔT(i)が大きければ出力周波数f(i)が大きくなって圧縮機24の回転数が増加し、ヒートポンプ熱源機HS(i)の加熱能力を増大させ、差ΔT(i)が小さければ出力周波数f(i)が小さくなって圧縮機24の回転数が低下し、ヒートポンプ熱源機HS(i)の加熱能力を減少させる。
ステップST5に続き、除霜運転の要否の判定が行われる。まず、冷媒温度Teと空気温度Toとの差(To−Te)及びその時間変化が算出される(ステップST6)。算出されたデータが、予め定められた除霜必要条件に合致するか否かが判定される(ステップST7)。ここで、除霜が必要と判断されると冷凍サイクルの除霜運転が実行される(ステップST8)。除霜運転中は除霜運転が完了したか否かが判断され(ステップST9)、完了するまで(ステップST9のNO)除霜運転が継続され、完了すれば(ステップST9のYES)、再びステップST1に戻り、加熱運転に復帰する。なお、除霜完了の判断は、例えば、除霜運転の時間(7分間)や冷媒温度Teの上昇等が用いられる。
一方、ステップST7において除霜が不要と判断された場合(ステップST7のNo)は、ステップST0に戻り、再び各ステップを繰り返す。
ここで、図2に戻り、冷凍サイクルの動作を説明する。 加熱運転中は、図2に示す冷凍サイクルの配管の横に記載された実線矢印の方向に冷媒が流れる。 まず圧縮機24が運転されると、圧縮され高温・高圧となった冷媒は、四方弁25を通過して水―冷媒熱交換器26へと流入する。水―冷媒熱交換器26は、凝縮器として機能し、冷媒の熱を水配管5中を流れる水に供給し、水を加熱し、冷媒自身は凝縮して液冷媒となる。この液冷媒は、膨張弁27を通過する際に膨張して低圧・低温となり、蒸発器として機能する熱源側熱交換器28へと流入する。熱源側熱交換器28内で、冷媒は、プロペラファン29によって送風される空気と熱交換し、空気中の熱を奪い、ガス冷媒へと蒸発し、四方弁25を通って圧縮機24へと戻り、これを繰り返す。
熱源側熱交換器28を室外に設置している場合、冬季には、吸熱する熱源側熱交換器28の表面に結露した水が凍結し、霜に成長することがある。この着霜を放置すると熱源側熱交換器28が空気と熱交換できなくなるため、適宜、除霜運転が必要となる。冷媒温度Teと熱交換用の空気温度Toの差(To−Te)及びその差の時間変化に基づき除霜運転が必要と判断された場合、制御器21は、四方弁25を反転させ、冷媒の流れを逆方向へ移行させるとともにインバータ装置23の出力周波数f(i)を制御して圧縮機24を除霜用の回転数に固定し、ファンモータ30の運転を停止させる。
この結果、除霜運転中は、圧縮機24から吐出された冷媒は、図2中破線矢印の方向に流れ、四方弁25を通過し、熱源側熱交換器28へと流れ、ここで放熱する。熱源側熱交換器28の表面に付着した霜は、内部を流れる高温の冷媒によって溶かされる。その後、冷媒は膨張弁27、水―冷媒熱交換器26を経て四方弁を経由して圧縮機24へと戻る。この際、水―冷媒熱交換器26では、加熱運転ができず、逆に吸熱が行なわれるため、水配管5を流れる水の温度を低下させてしまうことになる。このため、除霜運転は極力短時間で完了することが望ましい。除霜運転が完了すると制御器21は、四方弁25を元の位置に戻し、再び上述した加熱運転が再開される。
本実施の形態は、使用者がヒートポンプ式熱源機HS(i)の操作器22を操作して停止温度Toff(i)及び温水の目標温度Ts(i)のそれぞれを独立して設定することができるようにしている。
従来、ヒートポンプ式熱源機HS(i)は、複数台を直列に接続することを想定していないため、予め定められた温水の目標温度及び停止温度が固定され、操作不可能となっているか、温水の目標温度のみが設定可能で、温水の目標温度が設定されると自動的にそれよりも若干低い停止温度を制御器側で決定するようになっている。このため、水配管に対して複数台のヒートポンプ式熱源機HS(i)を直列接続しても適切な運転ができない。
これに対し、本実施の形態のように、各ヒートポンプ式熱源機HS(i)において操作器22を用いて停止温度Toff(i)及び温水の目標温度Ts(i)のそれぞれを使用者が独立して操作し、設定可能となっているため、きわめて容易にヒートポンプ式熱源機HS(i)の複数台の直列接続設置が可能となる。
図1に示すように加温システム1では、複数台の独立した、すなわち、統合的に制御する制御装置を備えない、ヒートポンプ式熱源機HS(i)の水―冷媒熱交換器26が水配管5を通じて負荷4に対して直列接続される。ここで、複数台のヒートポンプ式熱源機HS(1)〜HS(n)は、その合計最大加熱能力が、負荷4の予想される最大放熱量と同じか、それをわずかに超えるものが選定される。すなわち、複数台のヒートポンプ式熱源機HS(1)〜HS(n)は、各ヒートポンプ式熱源機の最大加熱能力を合計した合計最大加熱能力が、負荷4の最大放熱量以上である。
使用者は、ヒートポンプ式熱源機HS(i)及び水配管5内の水の流れ方向の下流に設置されたヒートポンプ式熱源機HS(i+1)の各々の操作器22を操作して、水配管5内を流れる水の方向に対し上流側のヒートポンプ式熱源機HS(i)の温水の目標温度Ts(i)をその下流側のヒートポンプ式熱源機HS(i+1)の停止温度Toff(i+1)よりも低く設定する。すなわち、Toff(i+1)>Ts(i)とする。このような温度設定を行なうことで両方のヒートポンプ式熱源機HS(i)を効率よく運転させることが可能となる。例えば、各温度の設定値をTs(i)=43℃>Toff(i)=41℃、Ts(i+1)=47℃>Toff(i+1)=45℃とする。なお目標温度は、当然、Ts(i)<Ts(i+1)に設定される。
ヒートポンプ式熱源機HS(i)及びヒートポンプ式熱源機HS(i+1)に対して、上記設定を行なった場合の加温システム1の動作を図4に基づき説明する。 なお、図4の各部の温度変化を示す上段のグラフにおいて、一点鎖線が、ヒートポンプ式熱源機HS(i+1)の出口水温Tout(i+1)の変化を示し、実線がヒートポンプ式熱源機HS(i)の出口水温Tout(i)(=Tin(i+1))及びヒートポンプ式熱源機HS(i)の入口水温Tin(i)を表している。 図4中、t0〜t1の区間のようにヒートポンプ式熱源機HS(1)〜(n)の合計加熱能力と負荷4での放熱量がほぼバランスしている状態では、上流側のヒートポンプ式熱源機HS(i)の入口水温Tin(i)がToff(i)=41℃よりも低いため、上流側のヒートポンプ式熱源機HS(i)は、出口水温Tout(i)ができるだけ目標温度Ts(i)=43℃となるように加熱運転を行なう。そして、上流側のヒートポンプ式熱源機HS(i)によって、出口水温Tout(i)が目標温度Ts(i)=43℃となっても、下流側のヒートポンプ式熱源機HS(i+1)は、入口水温Tin(i+1)=43℃<Toff(i+1)=45℃であるため、運転を停止することなく加熱運転を行なう。
すなわち、この状態においては、上流側のヒートポンプ式熱源機HS(i)及び下流側のヒートポンプ式熱源機HS(i+1)の両方の加熱運転が行われる。結果的に、複数のヒートポンプ式熱源機HS(i)、HS(i+1)が分散して加熱運転を行うことになる。なお、図4に示すようにヒートポンプ式熱源機HS(i)の出口配管とヒートポンプ式熱源機HS(i+1)の入口配管は直接接続されているため、ヒートポンプ式熱源機HS(i)の出口水温Tout(i)とヒートポンプ式熱源機HS(i+1)の入口水温Tin(i+1)はほぼ同じとなる。
一方、図4中、t1〜t2区間のように負荷4の放熱量が減少すると、上流側のヒートポンプ式熱源機HS(i)の入口水温Tin(i)が上昇し、停止温度Toff(i)=41℃を超え、Toff(i+1)=45℃未満の範囲になる。この状態になると、上流側のヒートポンプ式熱源機HS(i)が加熱運転を停止(OFF)し、下流側のヒートポンプ式熱源機HS(i+1)は加熱運転を継続する。この際、上流側のヒートポンプ式熱源機HS(i)が加熱運転を停止することで加熱量が減少し、上流側のヒートポンプ式熱源機HS(i)の出口水温Tout(i)が入口水温Tin(i)まで低下する。このため、図4中Aに示す部分のように下流側のヒートポンプ式熱源機HS(i+1)の出口水温Tout(i+1)も低下してくる。このため、下流側のヒートポンプ式熱源機HS(i+1)では、温度差ΔT(i+1)が大きくなることでインバータ装置23の出力周波数f(i+1)を増加させ、加熱能力を増加させ、出口水温Tout(i+1)をTs(i+1)=47℃に近づくように上昇させる。
このように負荷4の放熱量が小さい場合に、複数台のヒートポンプ式熱源機HS(1)〜(n)によって分散して加熱すると個々のヒートポンプ式熱源機HS(1)〜(n)における加熱量が小さくなりすぎて個々の熱源機の効率が低下する。そこで、負荷4の放熱量が減少した場合は、一部のヒートポンプ式熱源機HS(i)を停止させ、少ない台数のヒートポンプ式熱源機HS(i+1)のみで加熱運転することで1台当たりの加熱量を大きくすることができ、加温システム1の総合効率を向上させることができる。
さらに負荷4の放熱量が減少すると、下流側のヒートポンプ式熱源機HS(i+1)の入水温度Tin(i+1)が、ヒートポンプ式熱源機HS(i+1)の停止温度であるToff(i+1)=45℃を超え(図4中のt2点)、ヒートポンプ式熱源機HS(i+1)の冷凍サイクル運転も不要となり、ヒートポンプ式熱源機HS(i+1)の冷凍サイクルも停止する。この状態ではいずれのヒートポンプ式熱源機HS(i)、HS(i+1)も加熱運転を行なっていないため、ヒートポンプ式熱源機HS(i)の入口水温Tin(i)、出口水温Tout(i)及びヒートポンプ式熱源機HS(i+1)の入口水温Tin(i+1)、出口水温Tout(i+1)がすべてほぼ同じ温度になる(図4中、t2〜t3区間)。
その後、負荷4の放熱量が増加してくると、下流側のヒートポンプ式熱源機HS(i+1)の入水温度Tin(i+1)が、ヒートポンプ式熱源機HS(i+1)の停止温度Toff(i+1)=45℃よりも低下し(図4中のt3点)、ヒートポンプ式熱源機HS(i+1)の加熱運転が開始される。
さらに、負荷4の放熱量が増加してくると、上流側のヒートポンプ式熱源機HS(i)の入水温度Tin(i)が、ヒートポンプ式熱源機HS(i)の停止温度Toff(i+1)=41℃よりも低下し(図4中のt4点)、ヒートポンプ式熱源機HS(i)の加熱運転が開始される。 このため、図4中t0〜t1の区間と同様に複数のヒートポンプ式熱源機HS(i)、HS(i+1)が分散して加熱運転を行ない、下流側のヒートポンプ式熱源機HS(i+1)の出口水温Tout(i+1)は、ほぼ45℃以上に維持することができる。
また、本実施の形態の加温システム1では、複数台のヒートポンプ式熱源機HS(1)〜(n)いずれかが除霜運転に入った場合でも残りのヒートポンプ式熱源機HS(1)〜(n)が加熱運転を継続することができるため、除霜運転に伴う加熱量の低下を補うことができる。例えば、ヒートポンプ式熱源機HS(i)が除霜運転に入った場合、そのヒートポンプ式熱源機HS(i)の水―冷媒熱交換器26は、循環中の水配管5中の水を冷却することになる。しかしながら、そのような状況下では、ヒートポンプ式熱源機HS(i)の出口水温Tout(i)が低下する。したがって、ヒートポンプ式熱源機HS(i)の水―冷媒熱交換器26の出口配管と接続されている下流側のヒートポンプ式熱源機HS(i+1)の水―冷媒熱交換器26の入口水温Tin(i)が低下する。入口水温Tin(i)が低下した結果、下流側のヒートポンプ式熱源機HS(i+1)では、目標温度Ts(i+1)と出口水温Tout(i+1)との差ΔT(i+1)が大きくなり、出力周波数f(i+1)を大きくしてヒートポンプ熱源機HS(i+1)の加熱能力を増大させ、自動的に上流側の除霜運転による水温低下を補うような運転が実行されることになる。
以上の通り、本実施の形態によれば、温水を供給する負荷4の放熱量が大きい時には、複数台のヒートポンプ式熱源機HS(i)が同時に加熱運転を行なう分散加熱運転が実行され、負荷4の放熱量が小さい時には複数台のヒートポンプ式熱源機HS(i)の一部が停止し、残りのヒートポンプ式熱源機HS(i)のみで加熱運転が行なわれることになり、負荷の状況に合致した総合効率の高い運転が可能な加温システム1を得ることができる。 また、このような加温システム1を構築するにあたり、各ヒートポンプ式熱源機HS(1)〜HS(n)で検出される情報のすべてを統合して制御する集中管理装置を設けることなく、独立した個々のヒートポンプ式熱源機HS(1)〜HS(n)の操作器22を用いて設置位置(水の流れに対する設置順序)に基づき各温度設定を行なうだけでよい。このため、標準的となるヒートポンプ式熱源機HSを準備し、異なる負荷4に対しては、標準のヒートポンプ式熱源機HSを、負荷4の要求する加熱能力に合わせた台数だけ直列接続し、各温度設定を行なえば良好な加熱制御が可能となる。
なお、本実施の形態の加温システム1では、複数台のヒートポンプ式熱源機HS(1)〜(n)において、ヒートポンプ式熱源機HS(i)の出口温水の目標温度Ts(i)をその下流に設置されたヒートポンプ式熱源機HS(i+1)の停止温度Toff(i+1)よりも低く設定するようにしたが、個々のヒートポンプ式熱源機HSの加熱能力よりも負荷4の放熱量が大きく、水配管5に直列接続されるヒートポンプ式熱源機HS(1)〜HS(n)の台数が多数に上る場合には、これを水配管5を流れる水の方向を基準にして上流と下流で複数の群(グループ)に分け、上流群内のヒートポンプ式熱源機の温水の目標温度Tsを同じ値とし、下流群内のヒートポンプ式熱源機の停止温度Toffを上流群のヒートポンプ式熱源機の温水の目標温度Tsよりも高く設定するようにしてもよい。
本発明は、上記実施形態に限定されない。さらに、本発明の実施の形態に開示されている複数の構成要素を適宜組み合わせることにより種々の発明を形成できる。例えば、本発明の実施の形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施の形態に亘る構成要素を適宜組み合わせてもよい。
1…加温システム、HS(1)〜HS(n)…ヒートポンプ熱源機、3…ポンプ、4…負荷、5…水配管、22…操作器、21…制御器、23…インバータ装置、24…圧縮機、26…水―冷媒熱交換器、28…熱源側熱交換器、29…プロペラファン、30…ファンモータ、31…出口温度センサ、32…入口温度センサ

Claims (3)

  1. 水と冷媒とを熱交換するための水―冷媒熱交換器を有するヒートポンプ冷凍サイクルを備えたヒートポンプ式熱源機において、
    前記水―冷媒熱交換器の入口側の水温を検出する入口温度センサと、
    前記水―冷媒熱交換器の出口側の水温を検出する出口温度センサと、
    前記入口温度センサによって検出した入口水温と停止温度とを比較してヒートポンプ冷凍サイクルの運転/停止を制御する運転制御手段と、
    前記出口温度センサによって検出した出口水温と目標温度とを比較してヒートポンプ冷凍サイクルによる加熱量を制御する加熱量制御手段と、
    前記停止温度と前記目標温度のそれぞれを独立して設定可能な操作手段とを備えたヒートポンプ式熱源機。
  2. 水配管によって負荷とポンプと複数台の請求項1記載のヒートポンプ式熱源機の各水―冷媒熱交換器を直列に接続し、上流側の前記ヒートポンプ式熱源機の前記目標温度を、下流側の前記ヒートポンプ式熱源機の前記停止温度よりも低く設定したことを特徴とする加温システム。
  3. 前記複数台のヒートポンプ式熱源機は、その合計最大加熱能力が、負荷の最大放熱量以上であることを特徴とする請求項2記載の加温システム。
JP2011020304A 2011-02-02 2011-02-02 ヒートポンプ式熱源機および加温システム Pending JP2012159255A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011020304A JP2012159255A (ja) 2011-02-02 2011-02-02 ヒートポンプ式熱源機および加温システム
CN201210021651.XA CN102628627B (zh) 2011-02-02 2012-01-31 热泵式热源机及加温系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011020304A JP2012159255A (ja) 2011-02-02 2011-02-02 ヒートポンプ式熱源機および加温システム

Publications (1)

Publication Number Publication Date
JP2012159255A true JP2012159255A (ja) 2012-08-23

Family

ID=46586939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011020304A Pending JP2012159255A (ja) 2011-02-02 2011-02-02 ヒートポンプ式熱源機および加温システム

Country Status (2)

Country Link
JP (1) JP2012159255A (ja)
CN (1) CN102628627B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159253A (ja) * 2011-02-02 2012-08-23 Toshiba Carrier Corp 加温システム
JP2013064556A (ja) * 2011-09-19 2013-04-11 Toshiba Carrier Corp ヒートポンプ式熱源機
JP2014134310A (ja) * 2013-01-08 2014-07-24 Tokyo Electric Power Co Inc:The 熱供給システム
EP3032179A4 (en) * 2013-08-23 2017-03-22 Toshiba Carrier Corporation Hot water-type heating device
WO2017068631A1 (ja) * 2015-10-19 2017-04-27 三菱電機株式会社 熱源システム
CN112713129A (zh) * 2021-01-14 2021-04-27 度亘激光技术(苏州)有限公司 半导体器件散热装置及散热方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5781060B2 (ja) * 2012-12-25 2015-09-16 三菱電機株式会社 空気調和装置
CN104819610B (zh) * 2015-04-30 2017-11-07 广东美的制冷设备有限公司 空调器化霜控制装置及方法
CN107166508B (zh) * 2017-06-21 2020-07-21 海信(山东)空调有限公司 一种热泵型地暖机控制方法及热泵型地暖机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023669U (ja) * 1983-07-25 1985-02-18 株式会社日立製作所 ヒ−トポンプ装置
JPH0618092A (ja) * 1992-07-06 1994-01-25 Mitsubishi Electric Corp 集中給湯装置
JP2000343914A (ja) * 1999-06-04 2000-12-12 Hankook Tire Co Ltd ランフラット空気入りタイヤ
JP2004233010A (ja) * 2003-01-31 2004-08-19 Daikin Ind Ltd ヒートポンプ式給湯機
JP2005337626A (ja) * 2004-05-28 2005-12-08 Hitachi Home & Life Solutions Inc ヒートポンプ給湯機システム
JP2006300345A (ja) * 2005-04-15 2006-11-02 Matsushita Electric Ind Co Ltd 貯湯式温水器
JP2007093207A (ja) * 2006-12-22 2007-04-12 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP2008175476A (ja) * 2007-01-19 2008-07-31 Mitsubishi Electric Corp 冷凍空調装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3457743B2 (ja) * 1994-08-19 2003-10-20 東芝キヤリア株式会社 空気調和機
TWI296323B (en) * 2003-12-25 2008-05-01 Ind Tech Res Inst Constant temperature refrigeration system for extensive temperature range application and control method thereof
JP2008082601A (ja) * 2006-09-27 2008-04-10 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP5106819B2 (ja) * 2006-10-20 2012-12-26 三菱重工業株式会社 熱源機および熱源システムならびに熱源機の制御方法
JP2010196946A (ja) * 2009-02-24 2010-09-09 Daikin Ind Ltd ヒートポンプシステム
KR20110097203A (ko) * 2010-02-25 2011-08-31 삼성전자주식회사 히트 펌프 시스템 및 그 제어방법
CN202101467U (zh) * 2010-12-16 2012-01-04 苏州三星电子有限公司 一种空调的热泵兼容系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023669U (ja) * 1983-07-25 1985-02-18 株式会社日立製作所 ヒ−トポンプ装置
JPH0618092A (ja) * 1992-07-06 1994-01-25 Mitsubishi Electric Corp 集中給湯装置
JP2000343914A (ja) * 1999-06-04 2000-12-12 Hankook Tire Co Ltd ランフラット空気入りタイヤ
JP2004233010A (ja) * 2003-01-31 2004-08-19 Daikin Ind Ltd ヒートポンプ式給湯機
JP2005337626A (ja) * 2004-05-28 2005-12-08 Hitachi Home & Life Solutions Inc ヒートポンプ給湯機システム
JP2006300345A (ja) * 2005-04-15 2006-11-02 Matsushita Electric Ind Co Ltd 貯湯式温水器
JP2007093207A (ja) * 2006-12-22 2007-04-12 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP2008175476A (ja) * 2007-01-19 2008-07-31 Mitsubishi Electric Corp 冷凍空調装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159253A (ja) * 2011-02-02 2012-08-23 Toshiba Carrier Corp 加温システム
JP2013064556A (ja) * 2011-09-19 2013-04-11 Toshiba Carrier Corp ヒートポンプ式熱源機
JP2014134310A (ja) * 2013-01-08 2014-07-24 Tokyo Electric Power Co Inc:The 熱供給システム
EP3032179A4 (en) * 2013-08-23 2017-03-22 Toshiba Carrier Corporation Hot water-type heating device
WO2017068631A1 (ja) * 2015-10-19 2017-04-27 三菱電機株式会社 熱源システム
JPWO2017068631A1 (ja) * 2015-10-19 2018-05-31 三菱電機株式会社 熱源システム
CN112713129A (zh) * 2021-01-14 2021-04-27 度亘激光技术(苏州)有限公司 半导体器件散热装置及散热方法
CN112713129B (zh) * 2021-01-14 2022-04-29 度亘激光技术(苏州)有限公司 半导体器件散热装置及散热方法

Also Published As

Publication number Publication date
CN102628627A (zh) 2012-08-08
CN102628627B (zh) 2015-02-25

Similar Documents

Publication Publication Date Title
JP2012159255A (ja) ヒートポンプ式熱源機および加温システム
JP5642207B2 (ja) 冷凍サイクル装置及び冷凍サイクル制御方法
JP5657110B2 (ja) 温度調節システム及び空気調和システム
JP5341622B2 (ja) 空気調和機
JP2015535071A (ja) 空気調和機に関する蒸発器を除霜する方法及び装置
JP2013119954A (ja) ヒートポンプ式温水暖房機
AU2013250512A1 (en) Air conditioner
JP5404761B2 (ja) 冷凍装置
JP6609198B2 (ja) 複合熱源ヒートポンプ装置
JP5701084B2 (ja) 加温システム
AU2009227388B8 (en) Heating and method for controlling the heating
JP2013130344A (ja) 給湯空調システムおよびその制御方法
JP2012007751A (ja) ヒートポンプサイクル装置
WO2016166873A1 (ja) ヒートポンプシステム
US10465935B2 (en) Air-conditioning apparatus
JP5516332B2 (ja) ヒートポンプ式温水暖房機
JP5248437B2 (ja) 貯湯式暖房装置
JP5394314B2 (ja) ヒートポンプ温水暖房装置
JP6208086B2 (ja) 複合熱源ヒートポンプ装置
US20100043465A1 (en) Heat pump system and method of controlling the same
JP5818601B2 (ja) ヒートポンプ式熱源機
JP2008116184A (ja) 冷凍サイクル装置
JP2009085476A (ja) ヒートポンプ給湯装置
JP7368323B2 (ja) 暖房システム
JP6467271B2 (ja) 温水暖房システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150310